Science.gov

Sample records for grain wheat sourdough

  1. Durum and soft wheat flours in sourdough and straight-dough bread-making.

    PubMed

    Rinaldi, Massimiliano; Paciulli, Maria; Caligiani, Augusta; Sgarbi, Elisa; Cirlini, Martina; Dall'Asta, Chiara; Chiavaro, Emma

    2015-10-01

    In the present work, the bread-making performance of durum wheat flour under straight-dough and sourdough procedures were compared to those offered by soft wheat flour by means of selected physical properties (colour, texture, water dynamics, crumb grain characteristic, bulk volume) immediately after baking and during a 5-day shelf-life. The use of sourdough process better preserved both crumb grain characteristic and moisture content of the breads during shelf-life, independently of the wheat flour used. The flour seemed to significantly affect the water dynamics in sourdough breads, being the dehydration process of crust and under-crust faster in durum wheat breads. On the other hand, increasing trend of crumb firmness during the shelf-life was slower in durum wheat breads than in those obtained with soft wheat flour. Initial colour parameters of crust and crumb appeared to less change during shelf-life if durum wheat flour was used. Thus, the final quality of breads after baking and along the shelf-life was significantly affected by both the type of flours and the bread-making process. The results reported herein showed that technological performances of durum wheat flour, especially when combined with sourdough processes, could be successfully exploited for the production of innovative products in the bread-making industry. PMID:26396371

  2. A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough.

    PubMed

    Lhomme, Emilie; Mezaize, Sandra; Ducasse, Maren Bonnand; Chiron, Hubert; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane; Zagorec, Monique; Dousset, Xavier; Onno, Bernard

    2014-03-01

    To develop a method for organic gluten-free (GF) sourdough bread production, a long-term and original wheat sourdough was refreshed with GF flours. The dynamics of the sourdough microbiota during five months of back-slopping were analyzed by classical enumeration and molecular methods, including PCR-temporal temperature gel electrophoresis (PCR-TTGE), multiplex PCR, and pulsed field gel electrophoresis (PFGE). The results showed that the yeast counts remained constant, although Saccharomyces cerevisiae, present in the initial wheat sourdough, was no longer detected in the GF sourdough, while lactic acid bacteria (LAB) counts increased consistently. In the first phase, which was aimed at obtaining a GF sourdough from wheat sourdough, Lactobacillus sanfranciscensis, L. plantarum, and L. spicheri were the main LAB species detected. During the second phase, aimed at maintaining the GF sourdough, the L. plantarum and L. spicheri populations decreased whereas L. sanfranciscensis persisted and L. sakei became the predominant species. Multiplex PCRs also revealed the presence of several L. sakei strains in the GF sourdough. In a search for the origin of the LAB species, PCR-TTGE was performed on the flour samples but only L. sanfranciscensis was detected, suggesting a flour origin for this typical sourdough species. Thus, while replacement of the wheat flour by GF flour influenced the sourdough microbiota, some of the original sourdough LAB and yeast species remained in the GF sourdough. PMID:25296441

  3. Protein Degradation in Wheat Sourdough Fermentation with Lactobacillus plantarum M616.

    PubMed

    Yin, Yanli; Wang, Jinshui; Yang, Sen; Feng, Jingli; Jia, Feng; Zhang, Changfu

    2015-06-01

    Hydrolysis of wheat proteins during sourdough fermentation was determined in the present study. Sourdoughs were characterized with respect to cell counts, pH, TTA, and proteolytic activity as well as the quantity of total proteins and water-soluble proteins. Moreover, composition analysis of total proteins and water-soluble proteins using SDS-PAGE was carried out. Sourdough fermentation using Lactobacillus plantarum showed a decrease in pH and increase in TTA during fermentation. Fermentation resulted in hydrolysis and solubilization of wheat proteins. It demonstrated that protein hydrolysis in sourdough was mainly caused by pH-dependent activation of cereal enzymes according to change in proteolytic activity. PMID:26199213

  4. Effect of sourdough on quality and acceptability of wheat flour tortillas.

    PubMed

    Ontiveros-Martínez, M del Refugio; Ochoa-Martínez, L Araceli; González-Herrera, Silvia M; Delgado-Licon, Efren; Bello-Pérez, L Arturo; Morales-Castro, Juliana

    2011-01-01

    As an alternative on the search for functional food products, this study evaluated the use of sourdough in the preparation of wheat flour tortillas. The sourdough was elaborated with Lactobacillus sanfranciscensis and the wheat flour tortillas were prepared with different concentrations of mother sponge (5%, 15%, and 25%) and fermentation times (1 and 3 h) at room temperature (25 ± 2 °C). Quality (diameter, height, color, pH, stretchability scores, and Kramer shear cell results) of wheat tortillas was evaluated after 24 h of preparation. The mother sponge concentration and fermentation time affected some quality parameters and acceptability properties (taste, aroma, color, opacity, and rollability). In addition, the sourdough tortillas had higher stretchability values than control tortillas. Since most of the prepared sourdough tortillas had acceptability values similar to those of tortilla controls, the introduction of sourdough is a viable means to incorporate additional nutritional and nutraceutical value into wheat tortillas. PMID:22416689

  5. Microbiological characterisation and volatiles profile of model, ex-novo, and traditional Italian white wheat sourdoughs.

    PubMed

    Ripari, Valery; Cecchi, Teresa; Berardi, Enrico

    2016-08-15

    The interplay of sourdough microbiology and generated volatile compounds that define its sensory characteristics was studied. In order to detail the flavour generating potential of microorganisms, eight single-strain dough fermentations were studied, four of them never investigated before. Moreover, for the first time, both ex-novo and traditional wheat sourdoughs were investigated and compared to chemically acidified dough. HS-SPME-GC-MS was used to sample and analyse volatile compounds, some of which have never been detected before in sourdoughs. Alcohols, esters, carbonyl compounds, and acids mainly characterised the volatile profiles. Different sourdough microbiota resulted in different volatile profiles. PCA indicated that samples could be clustered according to their specific microbiota. Production of aroma compounds was strain-specific, confirming previous findings. This study can contribute to the management of desirable features and differentiate specialty products, as well as selecting new, suitable, sourdoughs after microbial screening. PMID:27006243

  6. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation.

    PubMed

    Coda, Rossana; Cagno, Raffaella Di; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-02-01

    Cereal-based foods represent a very important source of biological as well as of cultural diversity, as testified by the wide range of derived fermented products. A trend that is increasingly attracting bakery industries as well as consumers is the use of non-conventional flours for the production of novel products, characterised by peculiar flavour and better nutritional value. Lactic acid bacteria microbiota of several non-wheat cereals and pseudo-cereals has been recently deeply investigated with the aim of studying the biodiversity and finding starter cultures for sourdough fermentation. Currently, the use of ancient or ethnic grains is mainly limited to traditional typical foods and the bread making process is not well standardised with consequent negative effects on the final properties. The challenge in fermenting such grains is represented by the necessity to combine good technology and sensory properties with nutritional/health benefits. The choice of the starter cultures has a critical impact on the final quality of cereal-based products, and strains that dominate and outcompete contaminants should be applied for specific sourdough fermentations. In this sense, screening and characterisation of the lactic acid bacteria microbiota is very useful in the improvement of a peculiar flour, from both a nutritional and technological point of view. PMID:24230473

  7. Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough.

    PubMed

    Galle, Sandra; Schwab, Clarissa; Arendt, Elke K; Gänzle, Michael G

    2011-05-01

    Hydrocolloids improve the volume, texture, and shelf life of bread. Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) during sourdough fermentation can replace hydrocolloids. It was the aim of this study to determine whether heteropolysaccharides (HePS) synthesized intracellularly from sugar nucleotides by glycosyltransferases are produced in wheat and gluten-free sorghum sourdough at effective levels. The HePS-producing strains Lactobacillus casei FUA3185, L. casei FUA3186, and Lactobacillus buchneri FUA3154 were used; Weissella cibaria 10M producing no EPS in the absence of sucrose served as control strain. Cell suspensions of L. buchneri in MRS showed the highest viscosity at low shear rate. Glycosyltransferase genes responsible of HePS formation in LAB were expressed in sorghum and wheat sourdough. However, only HePS produced by L. buchneri influenced the rheological properties of sorghum sourdoughs but not of wheat sourdoughs. Sorghum sourdough fermented with L. buchneri exhibited a low |G*| compared to the control, indicating a decrease in resistance to deformation. An increase in tan δ indicated decreased elasticity. The use of LAB producing HePS expands the diversity of EPS and increases the variety of cultures for use in baking. PMID:21356463

  8. Added ingredients affect the microbiota and biochemical characteristics of durum wheat type-I sourdough.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; De Angelis, Maria; Gobbetti, Marco

    2016-12-01

    This study aimed at understanding the effect of additional ingredients (baker's yeast, macerated pears, grape must, honey, or water from macerated pears) on the microbiota and biochemical characteristics of durum wheat-based sourdough. One dough prepared using only flour was used as the control (control-dough). Compared to the control-dough, doughs containing additional ingredients showed higher (P < 0.05) cell numbers of lactic acid bacteria after the first fermentation. Constant pH of ca. 4.0 was found after two (macerated pears or water pears-doughs) to seven (control-dough) back-slopping steps. The use of additional ingredients caused lower microbial diversity, after the first fermentation and in mature sourdoughs. Regardless of the type of ingredient used, OTU belonging to the genus Lactobacillus represented more than 95% of the total Firmicutes in mature sourdoughs. Some metabolic capacities of microbial community of the mature sourdoughs were linked to the additional ingredient. Based on culture-dependent method, Lactobacillus plantarum and Saccharomyces cerevisiae dominated in all the sourdoughs. However, the sourdoughs showed different strains of these two species. Other lactic acid bacterium species were associated to baker's yeast, grape must and macerated pears. The different microbial composition was correlated (r > 0.7, P < 0.05) with several biochemical characteristics of the sourdoughs (e.g., free amino acids and their derivatives). PMID:27554152

  9. Kefir immobilized on corn grains as biocatalyst for lactic acid fermentation and sourdough bread making.

    PubMed

    Plessas, Stavros; Alexopoulos, Athanasios; Bekatorou, Argyro; Bezirtzoglou, Eugenia

    2012-12-01

    The natural mixed culture kefir was immobilized on boiled corn grains to produce an efficient biocatalyst for lactic acid fermentation with direct applications in food production, such as sourdough bread making. The immobilized biocatalyst was initially evaluated for its efficiency for lactic acid production by fermentation of cheese whey at various temperatures. The immobilized cells increased the fermentation rate and enhanced lactic acid production compared to free kefir cells. Maximum lactic acid yield (68.8 g/100 g) and lactic acid productivity (12.6 g/L per day) were obtained during fermentation by immobilized cells at 37 °C. The immobilized biocatalyst was then assessed as culture for sourdough bread making. The produced sourdough breads had satisfactory specific loaf volumes and good sensory characteristics. Specifically, bread made by addition of 60% w/w sourdough containing kefir immobilized on corn was more resistant regarding mould spoilage (appearance during the 11(th) day), probably due to higher lactic acid produced (2.86 g/Kg of bread) compared to the control samples. The sourdough breads made with the immobilized biocatalyst had aroma profiles similar to that of the control samples as shown by headspace SPME GC-MS analysis. PMID:23170776

  10. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours.

    PubMed

    Taccari, Manuela; Aquilanti, Lucia; Polverigiani, Serena; Osimani, Andrea; Garofalo, Cristiana; Milanović, Vesna; Clementi, Francesca

    2016-08-01

    The fermentation of type I sourdough was studied for 20 d with daily back-slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture-dependent and culture-independent PCR-DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed. PMID:27332783

  11. The Acute Impact of Ingestion of Sourdough and Whole-Grain Breads on Blood Glucose, Insulin, and Incretins in Overweight and Obese Men

    PubMed Central

    Mofidi, Anita; Ferraro, Zachary M.; Stewart, Katherine A.; Tulk, Hilary M. F.; Robinson, Lindsay E.; Duncan, Alison M.; Graham, Terry E.

    2012-01-01

    Consumption of whole-grain and sourdough breads is associated with improved glucose homeostasis. We examined the impact of commercial breads on biomarkers of glucose homeostasis in subjects at risk for glucose intolerance. In a randomized, crossover study, overweight or obese males ingested 11-grain, sprouted-grain, 12-grain, sourdough, or white bread on different occasions, matched for available carbohydrate (50 g) in part 1 (n = 12) and bread mass (107 g) in part 2 (n = 11), and blood glucose, insulin and glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were determined for 3 h. In part 1, glucose response for sprouted-grain was lower than 11-grain, sourdough, and white breads. Insulin area under the curve (AUC) for sourdough and white was lower than 11-grain and sprouted-grain breads. GLP-1 response to sourdough was lower than all breads. In part 2, glucose and insulin AUC for sourdough was greater than 11-grain, sprouted-grain, and 12-grain breads. Sprouted-grain bread improved glycemia by lowering glucose response and increasing GLP-1 response. In overweight and obese men, the glycemic response to sprouted grain bread was reduced in both parts 1 and 2 while the other whole-grain test breads did not improve metabolic responses in the acute postprandial state. PMID:22474577

  12. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough.

    PubMed

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Peyer, Lorenzo C; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    This study was undertaken to assess the antifungal performance of three different Lactobacillus species.Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species.However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions. PMID:26481620

  13. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread.

    PubMed

    Rizzello, Carlo Giuseppe; Calasso, Maria; Campanella, Daniela; De Angelis, Maria; Gobbetti, Marco

    2014-06-16

    This study aimed at investigating the addition of legume (chickpea, lentil and bean) flours to wheat flour bread. Type I sourdough containing legumes or wheat-legume flours were prepared and propagated (back slopped) in laboratory, according to traditional protocols that are routinely used for making typical Italian breads. Based on kinetic of acidification and culture-dependent data, the wheat-legume sourdough was further characterized and selected for bread making. As determined by RAPD-PCR and partial sequencing of 16S rDNA gene analyses, lactic acid bacteria in wheat-legume sourdough included Lactobacillus plantarum, Lactobacillus sanfranciscensis, Leuconostoc mesenteroides, Lactobacillus fermentum, Weissella cibaria, Lactobacillus pentosus, Lactobacillus coryneformis, Lactobacillus rossiae, Lactobacillus brevis, Lactobacillus parabuchneri and Lactobacillus paraplantarum. Two breads containing 15% (w/w) of legume (chickpea, lentil and bean) flours were produced using selected wheat-legume sourdough (WLSB) and traditional wheat sourdough (WSB). Compared to wheat yeasted bread (WYB), the level of total free amino acids (FAA) was higher in WSB and WLSB. Phytase and antioxidant activities were the highest in WLSB. Compared to bread WYB, the addition of legume flours decreased the in vitro protein digestibility (IVPD) (WYB versus WSB). However, the dough fermentation with WSLB favored an increase of IVPD. According to the levels of carbohydrates, dietary fibers and resistant starch, WSB and WLSB showed lower values of hydrolysis index (HI) compared to WYB. As showed by texture and image analyses and sensory evaluation of breads, a good acceptability was found for WSB and, especially, WLSB breads. PMID:24794619

  14. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters.

    PubMed

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-02-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g(-1). Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation. PMID

  15. Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads.

    PubMed

    Pontonio, Erica; Nionelli, Luana; Curiel, José Antonio; Sadeghi, Alireza; Di Cagno, Raffaella; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2015-05-01

    This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions. PMID:25583343

  16. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten.

    PubMed

    Engström, Niklas; Sandberg, Ann-Sofie; Scheers, Nathalie

    2015-04-01

    The enzyme transglutaminase 2 (TG2) plays a crucial role in the initiation of celiac disease by catalyzing the deamidation of gluten peptides. In susceptible individuals, the deamidated peptides initiate an immune response leading to celiac disease. Several studies have addressed lactic fermentation plus addition of enzymes as a means to degrade gluten in order to prevent adverse response in celiacs. Processing for complete gluten degradation is often harsh and is not likely to yield products that are of comparable characteristics as their gluten-containing counterparts. We are concerned that incomplete degradation of gluten may have adverse effects because it leads to more available TG2-binding sites on gluten peptides. Therefore, we have investigated how lactic acid fermentation affects the potential binding of TG2 to gluten protein in wheat flour by means of estimating TG2-mediated transamidation in addition to measuring the available TG2-binding motif QLP, in α2-gliadin. We show that lactic fermentation of wheat flour, as slurry or as part of sourdough bread, did not decrease the TG2-mediated transamidation, in the presence of a primary amine, to an efficient level (73%-102% of unfermented flour). Nor did the lactic fermentation decrease the available TG2 binding motif QLP in α2-gliadin to a sufficient extent in sourdough bread (73%-122% of unfermented control) to be useful for celiac safe food. PMID:25816160

  17. Sourdough Fermentation of Wheat Flour does not Prevent the Interaction of Transglutaminase 2 with α2-Gliadin or Gluten

    PubMed Central

    Engström, Niklas; Sandberg, Ann-Sofie; Scheers, Nathalie

    2015-01-01

    The enzyme transglutaminase 2 (TG2) plays a crucial role in the initiation of celiac disease by catalyzing the deamidation of gluten peptides. In susceptible individuals, the deamidated peptides initiate an immune response leading to celiac disease. Several studies have addressed lactic fermentation plus addition of enzymes as a means to degrade gluten in order to prevent adverse response in celiacs. Processing for complete gluten degradation is often harsh and is not likely to yield products that are of comparable characteristics as their gluten-containing counterparts. We are concerned that incomplete degradation of gluten may have adverse effects because it leads to more available TG2-binding sites on gluten peptides. Therefore, we have investigated how lactic acid fermentation affects the potential binding of TG2 to gluten protein in wheat flour by means of estimating TG2-mediated transamidation in addition to measuring the available TG2-binding motif QLP, in α2-gliadin. We show that lactic fermentation of wheat flour, as slurry or as part of sourdough bread, did not decrease the TG2-mediated transamidation, in the presence of a primary amine, to an efficient level (73%–102% of unfermented flour). Nor did the lactic fermentation decrease the available TG2 binding motif QLP in α2-gliadin to a sufficient extent in sourdough bread (73%–122% of unfermented control) to be useful for celiac safe food. PMID:25816160

  18. Prebiotic Content of Bread Prepared with Flour from Immature Wheat Grain and Selected Dextran-Producing Lactic Acid Bacteria

    PubMed Central

    Ventorino, Valeria; Cavella, Silvana; Fagnano, Massimo; Brugno, Rachele

    2013-01-01

    In the last few years the need to produce food with added value has fueled the search for new ingredients and health-promoting compounds. In particular, to improve the quality of bakery products with distinct nutritional properties, the identification of new raw materials, appropriate technologies, and specific microbial strains is necessary. In this study, different doughs were prepared, with 10% and 20% flour from immature wheat grain blended with type “0 America” wheat flour. Immature flour was obtained from durum wheat grains harvested 1 to 2 weeks after anthesis. Doughs were obtained by both the straight-dough and sourdough processes. Two selected exopolysaccharide-producing strains of lactic acid bacteria (LAB), Leuconostoc lactis A95 and Lactobacillus curvatus 69B2, were used as starters. Immature flour contained 2.21 g/100 g (dry weight) of fructo-oligosaccharides. Twenty percent immature flour in dough resulted in a shorter leavening time (4.23 ± 0.03 h) than with the control and dough with 10% immature flour. The total titratable acidity of sourdough with 20% immature flour was higher (12.75 ± 0.15 ml 0.1 N NaOH) than in the control and sourdough with 10% immature wheat flour (9.20 ml 0.1 N NaOH). Molecular analysis showed that all samples contained three LAB species identified as L. lactis, L. curvatus, and Pediococcus acidilactici. A larger amount of exopolysaccharide was found in sourdough obtained with 20% immature flour (5.33 ± 0.032 g/kg), positively influencing the exopolysaccharide content of the bread prepared by the sourdough process (1.70 ± 0.03 g/kg). The addition of 20% immature flour also led to a greater presence of fructo-oligosaccharides in the bread (900 mg/100 g dry weight), which improved its nutritional characteristics. While bread volume decreased as the concentration of immature wheat flour increased, its mechanical characteristics (stress at a strain of 30%) were the same in all samples obtained with different percentages

  19. Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ

    PubMed Central

    2013-01-01

    Background In the last decade, several studies described the promising cytotoxic activity of fermented wheat germ towards cancer cell lines and during in vivo clinical trials. Recent data suggested that the antiproliferative, antimetastatic and immunological effects of this preparation are mainly attributed to quinones. This study aimed at exploiting the potential of sourdough lactic acid bacteria fermentation to release 2-methoxy benzoquinone, and 2,6-dimethoxybenzoquinone, which are naturally present in wheat germ as glycosylated and non-physiologically active form. Results Preliminarily, forty strains of lactic acid bacteria, previously isolated from wheat germ, were in vitro screened based on β-glucosidase activity. Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 were selected based on the highest enzyme activity and on technology features. These strains were used in combination to ferment wheat germ. Raw wheat germ, without bacterial inoculum, was subjected to the same incubation and used as the control. The sourdough fermented wheat germ was characterized based on microbiological, physico-chemical and biochemical features. During incubation, the release of the non-glycosylated and physiologically active 2-methoxy benzoquinone, and 2,6-dimethoxybenzoquinone was almost completed during 24 h. Compared to the control, the concentration of the above bioactive compounds increased almost 4 and 6-folds. Both raw wheat germ (control) and sourdough fermented wheat germ were ex vivo assayed for the anti-proliferative activity towards various cell lines of germ cell tumor, colon carcinoma and ovarian carcinoma. While no effect was found for the raw wheat germ, the sourdough fermented preparation markedly and variously affected the human tumor cell lines. The values of IC50 ranged from 0.105 ± 0.005 to 0.556 ± 0.071 mg/ml, with a median value of IC50 of 0.302 mg/ml. Conclusions These results are comparable to those found for other well

  20. Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-12-01

    Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions. PMID:25084651

  1. Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials.

    PubMed

    Ripari, Valery; Gänzle, Michael G; Berardi, Enrico

    2016-09-01

    The preparation of sourdough in bakeries may include the use of inocula, e.g. fruits, flowers or rumen cuts to accelerate the process of selection of suitable microorganisms. The aim of this work was to investigate the effect of these inocula on the microbial evolution in sourdoughs. First, the microbiota of nineteen traditional sourdoughs that were initially started with diverse inocula was identified. Second, de novo sourdoughs were started with plant materials and the evolution of sourdough microbiota was investigated by culture, and by high-resolution melting curve quantitative PCR (HRM-qPCR). This study developed a new protocol for HRM-qPCR analysis of yeast microbiota in sourdough, and indicates this independent culture method suitable for characterization of yeasts. Microbiota of traditional sourdoughs were largely independent from the use of inoculum, however, Acetobacter spp. were identified only in sourdoughs started with apple flowers or apple pulp. In de novo sourdoughs started with plant materials, microbiota rapidly stabilized, and were characterized by Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus graminis, or Lactobacillus rossiae, and Saccharomyces cerevisiae as dominant species. Competition experiments revealed that the ecological fitness of L. plantarum, L. graminis, and L. rossiae in wheat or rye malt sourdoughs was lower when compared to L. sanfranciscensis, demonstrating that their presence in de novo sourdoughs reflects dispersal limitation. In conclusion, establishment of microbiota in de novo sourdoughs is dispersal limited. This study provides scientific support for the artisanal practice to inoculate de novo sourdoughs with flowers, berries, or related plant material. PMID:27240218

  2. Antifungal Activity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread ▿

    PubMed Central

    Coda, Rossana; Cassone, Angela; Rizzello, Carlo G.; Nionelli, Luana; Cardinali, Gianluigi; Gobbetti, Marco

    2011-01-01

    This study aimed at investigating the antifungal activity of Wickerhamomyces anomalus and sourdough lactic acid bacteria to extend the shelf life of wheat flour bread. The antifungal activity was assayed by agar diffusion, growth rate inhibition, and conidial germination assays, using Penicillium roqueforti DPPMAF1 as the indicator fungus. Sourdough fermented by Lactobacillus plantarum 1A7 (S1A7) and dough fermented by W. anomalus LCF1695 (D1695) were selected and characterized. The water/salt-soluble extract of S1A7 was partially purified, and several novel antifungal peptides, encrypted into sequences of Oryza sativa proteins, were identified. The water/salt-soluble extract of D1695 contained ethanol and, especially, ethyl acetate as inhibitory compounds. As shown by growth inhibition assays, both water/salt-soluble extracts had a large inhibitory spectrum, with some differences, toward the most common fungi isolated from bakeries. Bread making at a pilot plant was carried out with S1A7, D1695, or a sourdough started with a combination of both strains (S1A7-1695). Slices of the bread manufactured with S1A7-1695 did not show contamination by fungi until 28 days of storage in polyethylene bags at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. The effect of sourdough fermentation with W. anomalus LCF1695 was also assessed based on rheology and sensory properties. PMID:21441340

  3. Inheritance of grain proteins in wheat.

    PubMed

    Kraljević-Balalić, M; Stajner, D; Gašić, O

    1982-06-01

    Diallel crosses between five divergent vulgare wheat cultivars were made in order to evaluate the mode of inheritance and combining ability of grain proteins. Significant differences in grain protein content were found between cultivars and their hybrids. It was established that the inheritance of seed protein in the F1 generation included both additive and non-additive gene action. PMID:24270758

  4. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  5. Organic Wheat Farming Improves Grain Zinc Concentration

    PubMed Central

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  6. The effect of consumption of selenium enriched rye/wheat sourdough bread on the body's selenium status.

    PubMed

    Bryszewska, Malgorzata A; Ambroziak, Wojciech; Langford, Nicola J; Baxter, Malcolm J; Colyer, Alison; Lewis, D John

    2007-09-01

    The potential of selenium-enriched rye/wheat sourdough bread as a route for supplementing dietary selenium intakes is reported. In addition to their normal diets, 24 female volunteers (24 to 25 years old) were fed either selenium-enriched bread or non-enriched bread each day (68.02 and 0.84 microg selenium day(-1) respectively) for 4 weeks. The chemical form of the selenium in the bread had been characterised using HPLC-ICP-MS, which showed that 42% of the extractable selenium was present as selenomethionine. Plasma selenium levels and plasma platelet glutathione peroxidase (GPx1) activity were measured in the volunteers' blood over a 6-week period. A statistically significant difference (p = 0.001) was observed in the mean percentage change data, calculated from the plasma selenium level measurements for the enriched and control group, over the duration of the study. A comparable difference was not observed for the platelet GPx1 activity (p = 0.756), over the same period. Two weeks after cessation of the feeding stage, i.e., at t = 6 weeks, the mean percentage change value for the selenium plasma levels in the enriched group was still significantly elevated, suggesting that the absorbed selenium had been incorporated into the body's selenium reserves, and was then being slowly released back into the volunteers' blood. PMID:17721822

  7. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  8. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.

    PubMed

    García-Mantrana, Izaskun; Yebra, María J; Haros, Monika; Monedero, Vicente

    2016-01-01

    Phytases are enzymes capable of sequentially dephosphorylating phytic acid to products of lower chelating capacity and higher solubility, abolishing its inhibitory effect on intestinal mineral absorption. Genetic constructions were made for expressing two phytases from bifidobacteria in Lactobacillus casei under the control of a nisin-inducible promoter. L. casei was able of producing, exporting and anchoring to the cell wall the phytase of Bifidobacterium pseudocatenulatum. The phytase from Bifidobacterium longum spp. infantis was also produced, although at low levels. L. casei expressing any of these phytases completely degraded phytic acid (2mM) to lower myo-inositol phosphates when grown in MRS medium. Owing to the general absence of phytase activity in lactobacilli and to the high phytate content of whole grains, the constructed L. casei strains were applied as starter in a bread making process using whole-grain flour. L. casei developed in sourdoughs by fermenting the existing carbohydrates giving place to an acidification. In this food model system the contribution of L. casei strains expressing phytases to phytate hydrolysis was low, and the phytate degradation was mainly produced by activation of the cereal endogenous phytase as a consequence of the drop in pH. This work shows the capacity of lactobacilli to be modified in order to produce enzymes with relevance in food technology processes. The ability of these strains in reducing the phytate content in fermented food products must be evaluated in further models. PMID:26384212

  9. Grain and vegetative biomass reduction by the Russian wheat aphid in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a severe pest of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), other small grains, and grasses. Although the Russian wheat aphid is a significant pest of small grains, its feeding effects on grain yield and vegetative biomass in ...

  10. Grain hardness: a major determinant of Wheat Quality (A Review)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat quality is a complex term and depends upon intended use for specific products. The major determinants of wheat quality are grain hardness, protein content and gluten strength. Endosperm texture in wheat is the single most important and defining quality characteristic, which determines wheat cl...

  11. Characterization of the Bread Made with Durum Wheat Semolina Rendered Gluten Free by Sourdough Biotechnology in Comparison with Commercial Gluten-Free Products.

    PubMed

    Rizzello, Carlo Giuseppe; Montemurro, Marco; Gobbetti, Marco

    2016-09-01

    Durum wheat semolina was fermented with sourdough lactic acid bacteria and fungal proteases aiming at a complete gluten hydrolysis. The gluten-free (GF) semolina, added with naturally GF ingredients and structuring agents, was used to produce bread (rendered GF bread; rGFB) at industrial level. An integrated approach including the characterization of the main chemical, nutritional, structural, and sensory features was used to compare rGFB to a gluten-containing bread and to 5 commercial naturally GF breads. High-performance liquid chromatography was used for free amino acids (FAAs), organic acids, and ethanol analysis. A methanolic extract was used for determining total phenols and antioxidant activity. The bread characterization also included the analysis of dietary fibers, mycotoxins, vitamins, and heavy metals. Beyond chemical analysis, nutritional profile was evaluated considering the in vitro protein digestibility and the predicted glycemic index, while the instrumental texture profile analysis was performed to investigate the structure and the physical/mechanical properties of the baked goods. Beyond the huge potential of market expansion, the main advantages of durum wheat semolina rendered GF can be resumed in the high availability of FAAs, the high protein digestibility, the low starch hydrolysis index, and the better technological properties of bread compared to the commercial GF products currently present on the market. Vitamins, minerals, and dietary fiber profiles are comparable to those of gluten-containing wheat bread. Also the sensory profile, determined by a panel test, can be considered the most similar to those of conventional baked goods, showing all the sourdough bread classic attributes. PMID:27505458

  12. Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation.

    PubMed

    Mamhoud, Asma; Nionelli, Luana; Bouzaine, Taroub; Hamdi, Moktar; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2016-05-16

    Wheat bread is the most popular staple food consumed in Tunisia and, despite the niche production of some typical breads (e.g. Tabouna, Mlawi, Mtabga), the major part is currently produced with baker's yeast at industrial or, mainly, at artisanal level, while the use of sourdough fermentation is rarely reported. Considering the growing national demand for cereal baked goods, it can be hypothesized that sourdough fermentation through the use of selected lactic acid bacteria as starters could improve the overall quality and the diversification of local products. Different cereal grains were collected from the regions of Ariana, Bizerta, Beja Nabeul, and Seliana, and the autochthonous lactic acid bacteria were isolated, identified, characterized and selected on the basis of the kinetics of acidification, the proteolytic activity, and the quotient of fermentation. Lactobacillus curvatus MA2, Pediococcus pentosaceus OA2, and Pediococcus acidilactici O1A1 were used together as mixed starter to obtain a selected sourdough. According to the backslopping procedure, a type I sourdough was made from a Tunisian flour (spontaneous sourdough). Compared to the use of the spontaneous sourdough, the one obtained with selected and mixed starters by a unique fermentation step, favored the increase of the concentrations of organic acids, phenols, and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities, that increased ca. 20% compared to the control. Moreover, the selected starters improved the in vitro protein digestibility (ca. 82% when selected sourdough was used), textural and sensory features of the breads, as determined by textural profile analysis and panel test, respectively. This study aimed at exploiting the potential of selected autochthonous lactic acid bacteria and extending the use of a sourdough (type II), thanks to the set-up of a two-step fermentation protocol designed for application at the

  13. Metatranscriptome Analysis for Insight into Whole-Ecosystem Gene Expression during Spontaneous Wheat and Spelt Sourdough Fermentations ▿

    PubMed Central

    Weckx, Stefan; Allemeersch, Joke; Van der Meulen, Roel; Vrancken, Gino; Huys, Geert; Vandamme, Peter; Van Hummelen, Paul; De Vuyst, Luc

    2011-01-01

    Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, including sourdough-derived products. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Triggered by the considerable amount of LAB genomic information that became available during the last decade, transcriptome and, by extension, metatranscriptome studies have become one of the most appropriate research approaches to study whole-ecosystem gene expression in more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory with an in-house-developed LAB functional gene microarray. For data analysis, a new algorithm was developed to calculate a net expression profile for each of the represented genes, allowing use of the microarray analysis beyond the species level. In addition, metabolite target analyses were performed on the sourdough samples to relate gene expression with metabolite production. The results revealed the activation of different key metabolic pathways, the ability to use carbohydrates other than glucose (e.g., starch and maltose), and the conversion of amino acids as a contribution to redox equilibrium and flavor compound generation in LAB during sourdough fermentation. PMID:21097589

  14. Nutritional profile of whole grain soft wheat flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole grain wheat flour is used in baking products to increase fiber content and to provide vitamins from the bran layers of the kernel. We surveyed whole grain soft flour samples from North America to determine the nutritional profile using recently revised fiber quantification protocols, CODEX 20...

  15. Starch Biosynthesis in Developing Wheat Grain 1

    PubMed Central

    Keeling, Peter L.; Wood, John R.; Tyson, R. Huw; Bridges, Ian G.

    1988-01-01

    We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in

  16. Characterization of lipids in wheat grain as probed by microspectrofluorometry

    NASA Astrophysics Data System (ADS)

    Saadi, Abdelbasset; Piot, Olivier; Charonov, Serguei; Meunier, Jean-Claude; Manfait, Michel

    1999-05-01

    The baking quality and storage stability of white flour are affected by its non-starch lipids content, and by the proportions of non-polar and polar lipids classes. At present, information on the lipids composition in the various parts of the wheat grain is scarce and their redistribution in the flour millstreams after milling is not well understood. Here we have implemented a novel method based on microspectrofluorometry to investigate lipids distribution in the wheat kernel. This technique has already been a proven tool to study primary fluorescence in wheat grain. For this study Nile Red was introduced as a fluorescent stain to map lipids in different compartments of a wheat transverse section. Microspectrofluorometry allows in situ characterization of lipids material in transverse cut of wheat grain. Florescence spectra were recorded and decomposed into the principal spectral components which can in turn be approximated to the real lipid materials of the wheat. Using these models, spectral fluorescence imaging was performed allowing the spatial organization of lipids in the wheat sections to be obtained.

  17. Evaluating a wheat grazing model for managing wheat grain and beef production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Model evaluation and validation are prerequisite to its successful application. The objective of this paper is to evaluate the ability of the newly developed wheat grazing model to predict fall-winter forage and grain yields of winter wheat (Triticum aestivum L.) as well as daily weight gains per st...

  18. Quantitative high-resolution melting PCR analysis for monitoring of fermentation microbiota in sourdough.

    PubMed

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    Current methods of monitoring the microbial ecology of food fermentation system are generally labor intensive and/or time consuming. This study developed two methods based on high-resolution melting curves (HRM) to monitor sourdough microbiota during fermentation and to investigate the effect of cereal substrate on microbial ecology. A strain cocktail of Lactobacillus fermentum FUA3165, Lactobacillus plantarum FUA3309, Lactobacillus paracasei FUA3166 and Lactobacillus reuteri FUA3168 was used to ferment red (Town and PAN8609) and white (commercial and Segaolane) sorghum sourdough, and wheat sourdough. The microbial composition of sourdoughs was determined by plate count and HRM-qPCR to differentiate at the species level. The resistance of each species to sorghum phenolic extract was measured. There was no difference in microbial composition among the four sorghum sourdoughs, with L. fermentum FUA3165 in all sourdoughs. The competiveness of the strains in sorghum sourdoughs corresponded to their resistance to sorghum phenolic extract. In a second experiment, five L. reuteri strains, the human-lineage strains FUA3400 and 3401 isolated from wheat sourdough, the rodent-lineage strain FUA5448 isolated from rye sourdough and the sorghum isolates FUA3168 and 3324, were used to ferment wheat, rye and sorghum sourdoughs. The microbial composition of sourdoughs was determined by plate counts and HRM-qPCR to different L. reuteri strains representing different host-adapted lineages. No difference among different substrates was observed; indicating cereal type had no selective effect on sourdough microbial ecology. In conclusion, HRM-qPCR assays were established as rapid and highly specific tool for monitoring of sourdough microbiota. The ability to distinguish highly similar microbes in samples containing only few genotypes makes HRM-qPCR suitable for quality control in other food fermentation systems. The presence of phenolic compounds in sorghum sourdough favored organisms

  19. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

    PubMed Central

    Chatzav, Merav; Peleg, Zvi; Ozturk, Levent; Yazici, Atilla; Fahima, Tzion; Cakmak, Ismail; Saranga, Yehoshua

    2010-01-01

    Background and Aims Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. Methods A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. Key Results Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. Conclusions Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool. PMID

  20. Studies on Maximum Yield of Wheat and Other Small Grains in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Albrechtsen, R. S.; Campbell, W. F.; Dewey, W. G.

    1982-01-01

    Maximum yield of wheat and perhaps other small grains under controlled environmental conditions; cultivars, photosynthesis, nutrient levels, and humidity and plant water potential; promoting grain maturation; cross gradient chamber design; and single celled clonal multiplication of wheat plants are outlined.

  1. Endosperm and Amyloplast Proteomes of Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in proteomics and genomics have improved our understanding of the gluten proteins, a complex and functionally important protein group. Proteomic approaches also have been used to identify other proteins that may play roles in wheat flour functionality, to assign genes for gluten proteins to...

  2. Storage conditions affecting increase in falling number of soft red winter wheat grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by malting, by incubating wheat stalks,...

  3. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture.

    PubMed

    Visioli, Giovanna; Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  4. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  5. Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread.

    PubMed

    Arendt, Elke K; Moroni, Alice; Zannini, Emanuele

    2011-08-30

    Celiac disease (CD) is an immune-mediated disease, triggered in genetically susceptible individuals by ingesting gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the estimated prevalence of CD is around 1 % of the population in the western world and medical nutritional therapy (MNT) is the only accepted treatment for celiac disease. To date, the replacement of gluten in bread presents a significant technological challenge for the cereal scientist due to the low baking performance of gluten free products (GF). The increasing demand by the consumer for high quality gluten-free (GF) bread, clean labels and natural products is rising. Sourdough has been used since ancient times for the production of rye and wheat bread, its universal usage can be attributed to the improved quality, nutritional properties and shelf life of sourdough based breads. Consequently, the exploitation of sourdough for the production of GF breads appears tempting. This review will highlight how sourdough LAB can be an efficient cell factory for delivering functional biomolecules and food ingredients to enhance the quality of gluten free bread. PMID:21995616

  6. Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread

    PubMed Central

    2011-01-01

    Celiac disease (CD) is an immune-mediated disease, triggered in genetically susceptible individuals by ingesting gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the estimated prevalence of CD is around 1 % of the population in the western world and medical nutritional therapy (MNT) is the only accepted treatment for celiac disease. To date, the replacement of gluten in bread presents a significant technological challenge for the cereal scientist due to the low baking performance of gluten free products (GF). The increasing demand by the consumer for high quality gluten-free (GF) bread, clean labels and natural products is rising. Sourdough has been used since ancient times for the production of rye and wheat bread, its universal usage can be attributed to the improved quality, nutritional properties and shelf life of sourdough based breads. Consequently, the exploitation of sourdough for the production of GF breads appears tempting. This review will highlight how sourdough LAB can be an efficient cell factory for delivering functional biomolecules and food ingredients to enhance the quality of gluten free bread. PMID:21995616

  7. New evidence for grain specific C4 photosynthesis in wheat.

    PubMed

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2016-01-01

    The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security. PMID:27530078

  8. New evidence for grain specific C4 photosynthesis in wheat

    PubMed Central

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2016-01-01

    The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security. PMID:27530078

  9. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    PubMed Central

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  10. Transport rates and concentration gradients during grain filling in wheat

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1986-04-01

    Short-term mass transport rates into wheat ears were calculated at mid grain fill from /sup 32/PO/sub 4/ translocation velocities and sieve tube sap concentrations in the peduncle. Over a wide range of velocities (8.5 to 170 cm/hr), sieve tube sap concentrations (514 to 1050 milliosmolal) and grains per ear (20 to 54 in intact ears, as few as 7 in partially degrained ears), there were no evident differences in the rate of mass transport per grain through the peduncle. Increased sieve tube sap concentration was accompanied in the endosperm cavity sap by increased sucrose concentration, but amino acid concentration and total osmolality remained essentially constant. Thus the rate of transport into the grains appeared to remain constant in spite of altered concentration gradients across the crease tissues of the grain and changing sucrose concentration in the endosperm cavity. The constancy of endosperm cavity sap osmolality suggests that osmoregulatory processes in the grain may play a role in regulating transport rate into the grain.

  11. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten.

    PubMed

    Rizzello, Carlo Giuseppe; Curiel, José Antonio; Nionelli, Luana; Vincentini, Olimpia; Di Cagno, Raffaella; Silano, Marco; Gobbetti, Marco; Coda, Rossana

    2014-02-01

    This study was aimed at combining the highest degradation of gluten during wheat flour fermentation with good structural and sensory features of the related bread. As estimated by R5-ELISA, the degree of degradation of immune reactive gluten was ca. 28%. Two-dimensional electrophoresis and RP-FPLC analyses showed marked variations of the protein fractions compared to the untreated flour. The comparison was also extended to in vitro effect of the peptic/tryptic-digests towards K562 and T84 cells. The flour with the intermediate content of gluten (ICG) was used for bread making, and compared to whole gluten (WG) bread. The chemical, structural and sensory features of the ICG bread approached those of the bread made with WG flour. The protein digestibility of the ICG bread was higher than that from WG flour. Also the nutritional quality, as estimated by different indexes, was the highest for ICG bread. PMID:24230474

  12. Cadmium in wheat grain: its nature and fate after ingestion

    SciTech Connect

    Wagner, G.J.; Nulty, E.; LeFevre, M.

    1984-01-01

    Cadmium intake in humans derives primarily from vegetable foods, yet the extent to which the chemical form and dose of cadmium in such foods influences the fate and toxicity of this metal is poorly understood. We have compared the fate in mice of trace levels-approximating that in agriculturally produced grain-and high levels of cadmium supplied as wheat grain with that of cadmium supplied as CdCl/sub 2/. The amounts and forms of the metal in kidney and liver, target organs in cadmium accumulation, were compared. Results indicate that, in mice, cadmium orally administered as grain and that as CdCl/sub 2/ have a similar fate in terms of organ distribution and the nature of the Cd-forms in kidney and liver. A low dose of either form resulted in higher kidney versus liver cadmium. Preliminary characterization studies indicate that cadmium in wheat grain occurs primarily as an 11,000-dalton, aqueous-soluble complex, which is not inducible by cadmium. 23 references, 3 figures, 1 table.

  13. Proteomic Approach to Identify Nuclear Proteins in Wheat Grain.

    PubMed

    Bancel, Emmanuelle; Bonnot, Titouan; Davanture, Marlène; Branlard, Gérard; Zivy, Michel; Martre, Pierre

    2015-10-01

    The nuclear proteome of the grain of the two cultivated wheat species Triticum aestivum (hexaploid wheat; genomes A, B, and D) and T. monococcum (diploid wheat; genome A) was analyzed in two early stages of development using shotgun-based proteomics. A procedure was optimized to purify nuclei, and an improved protein sample preparation was developed to efficiently remove nonprotein substances (starch and nucleic acids). A total of 797 proteins corresponding to 528 unique proteins were identified, 36% of which were classified in functional groups related to DNA and RNA metabolism. A large number (107 proteins) of unknown functions and hypothetical proteins were also found. Some identified proteins may be multifunctional and may present multiple localizations. On the basis of the MS/MS analysis, 368 proteins were present in the two species, and in two stages of development, some qualitative differences between species and stages of development were also found. All of these data illustrate the dynamic function of the grain nucleus in the early stages of development. PMID:26228564

  14. Enzymatic and bacterial conversions during sourdough fermentation.

    PubMed

    Gänzle, Michael G

    2014-02-01

    Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds. PMID:24230468

  15. [The β-amylase polymorphism of winter common wheat grains].

    PubMed

    Netsvetaev, V P; Akinshina, O V; Bondarenko, L S; Motorina, I P

    2012-02-01

    The polymorphism of winter common wheat with respect to β-amylase isoenzymes has been analyzed using electrophoresis in polyacrylamide gel (PAAG) buffered with a Tris-glycine system (pH 8.3). Seven β-amylase isoenzymes have been found in wheat cultivars and the breeding stock. Isoenzymes A, B, and C are the most frequent in Russian and Ukrainian cultivars (51.7 4.7, 30.7 3.8, and 11.9 2.5%, respectively). Two alleles of the β-Amy-D1 locus of the long arm of chromosome 4D have been identified. The substrate-enzyme affine effect can be used to locate the zones of activity of this enzyme by means of staining for proteins. It has been determined that β-amylase zymotypes may play a role in the aggregating capacity of the grain protein complex via the formation of S-S bonds. PMID:22567995

  16. Ozone effects on wheat grain quality - a summary.

    PubMed

    Broberg, Malin C; Feng, Zhaozhong; Xin, Yue; Pleijel, Håkan

    2015-02-01

    We synthesized the effects of ozone on wheat quality based on 42 experiments performed in Asia, Europe and North America. Data were analysed using meta-analysis and by deriving response functions between observed effects and daytime ozone concentration. There was a strong negative effect on 1000-grain weight and weaker but significant negative effects on starch concentration and volume weight. For protein and several nutritionally important minerals (K, Mg, Ca, P, Zn, Mn, Cu) concentration was significantly increased, but yields were significantly decreased by ozone. For other minerals (Fe, S, Na) effects were not significant or results inconclusive. The concentration and yield of potentially toxic Cd were negatively affected by ozone. Some baking properties (Zeleny value, Hagberg falling number) were positively influenced by ozone. Effects were similar in different exposure systems and for spring and winter wheat. Ozone effects on quality should be considered in future assessments of food security/safety. PMID:25577485

  17. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat.

    PubMed

    Pan, D; Mionetto, A; Tiscornia, S; Bettucci, L

    2015-08-01

    In Uruguay, Fusarium graminearum is the most common species that infects wheat and is responsible for Fusarium head blight (FHB) and contamination of grain with deoxynivalenol (DON). The aim of this work was to select bacterial endophytes isolated from wheat grain to evaluate their antagonistic ability against F. graminearum and DON production in vitro and under field conditions. Four strains identified as Bacillus megaterium (BM1) and Bacillus subtilis (BS43, BSM0 y BSM2) significantly reduced fungal growth and spore germination of F. graminearum. This antagonist activity remained unchanged after the bacterial cultures were heat treated. Under field conditions, treatments with antagonist BM1 was the most effective, reducing the FHB incidence and severity by 93 and 54 %, respectively, and the production of DON by 89.3 %. PMID:25956808

  18. Effect of polyamines on the grain filling of wheat under drought stress.

    PubMed

    Liu, Yang; Liang, Haiyan; Lv, Xiaokang; Liu, Didi; Wen, Xiaoxia; Liao, Yuncheng

    2016-03-01

    Drought inhibits wheat grain filling. Polyamines (PAs) are closely associated with plant resistance due to drought and grain filling of cereals. However, little is known about the effect of PAs on the grain filling of wheat under drought stress. This study investigated whether and how PAs are involved in regulating wheat grain filling under drought stress. Two wheat genotypes differing in drought resistance were used, and endogenous PA levels were measured during grain filling under different water treatments. Additionally, external PAs were used, and the variation of hormone levels in grains was measured during grain filling under drought stress. The results indicated that spermidine (Spd) and spermine (Spm) relieve the inhibition caused by drought stress, and putrescine (Put) has the opposite effect. The higher activities of S-adenosylmethionine decarboxylase and Spd synthase in grains promotes the synthetic route from Put to Spd and Spm and notably increases the free Spd and Spm concentrations in grains, which promotes grain filling and drought resistance in wheat. The effect of PA on the grain filling of wheat under drought stress was closely related to the endogenous ethylene (ETH), zeatin (Z) + zeatin riboside (ZR) and abscisic acid (ABA). Spd and Spm significantly increased the Z + ZR and ABA concentrations and decreased the ETH evolution rate in grains, which promoted wheat grain filling under drought. Put significantly increased the ETH evolution rate, which led to excessive ABA accumulation in grains, subsequently aggravating the inhibition of drought on wheat grain filling. This means that the interaction of hormones, rather than the action of a single hormone, was involved in the regulation of wheat grain filling under drought. PMID:26812255

  19. Prediction of winter wheat grain protein content by ASTER image

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Song, Xiaoyu; Wang, Jihua; Wang, Zhijie; Zhao, Chunjiang

    2008-10-01

    The Advanced technology in space-borne determination of grain crude protein content (CP) by remote sensing can help optimize the strategies for buyers in aiding purchasing decisions, and help farmers to maximize the grain output by adjusting field nitrogen (N) fertilizer inputs. We performed field experiments to study the relationship between grain quality indicators and foliar nitrogen concentration (FNC). FNC at anthesis stage was significantly correlated with CP, while spectral vegetation index was significantly correlated to FNC. Based on the relationships among nitrogen reflectance index (NRI), FNC and CP, a model for CP prediction was developed. NRI was able to evaluate FNC with a higher coefficient of determination of R2=0.7302. The method developed in this study could contribute towards developing optimal procedures for evaluating wheat grain quality by ASTER image at anthesis stage. The RMSE was 0.893 % for ASTER image model, and the R2 was 0.7194. It is thus feasible to forecast grain quality by NRI derived from ASTER image.

  20. Reduced Height (Rht) Alleles Affect Wheat Grain Quality

    PubMed Central

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0–450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  1. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    PubMed

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  2. Comparative Transcriptional Profiling of Two Wheat Genotypes, with Contrasting Levels of Minerals in Grains, Shows Expression Differences during Grain Filling

    PubMed Central

    Singh, Sudhir P.; Jeet, Raja; Kumar, Jitendra; Shukla, Vishnu; Srivastava, Rakesh; Mantri, Shrikant S.; Tuli, Rakesh

    2014-01-01

    Wheat is one of the most important cereal crops in the world. To identify the candidate genes for mineral accumulation, it is important to examine differential transcriptome between wheat genotypes, with contrasting levels of minerals in grains. A transcriptional comparison of developing grains was carried out between two wheat genotypes- Triticum aestivum Cv. WL711 (low grain mineral), and T. aestivum L. IITR26 (high grain mineral), using Affymetrix GeneChip Wheat Genome Array. The study identified a total of 580 probe sets as differentially expressed (with log2 fold change of ≥2 at p≤0.01) between the two genotypes, during grain filling. Transcripts with significant differences in induction or repression between the two genotypes included genes related to metal homeostasis, metal tolerance, lignin and flavonoid biosynthesis, amino acid and protein transport, vacuolar-sorting receptor, aquaporins, and stress responses. Meta-analysis revealed spatial and temporal signatures of a majority of the differentially regulated transcripts. PMID:25364903

  3. A wheat grazing model for simulating grain and beef production: model evaluation and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the major livestock-cropping enterprises in the southern Great Palins is the grazing of winter wheat (Triticum aestivum L.) in the fall and winter and harvesting grain in June. For example, nearly one million hectares of winter wheat were grazed in 2000 in Oklahoma. Grazing winter wheat duri...

  4. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs.

    PubMed

    Moroni, Alice V; Arendt, Elke K; Dal Bello, Fabio

    2011-05-01

    In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production. PMID:21356457

  5. Ground Wheat Grain for Midlactation Cows: Challenging a Common Wisdom

    PubMed Central

    Nikkhah, A.; Amiri, F.; Amanloo, H.

    2012-01-01

    The objective was to determine the effects of ground wheat grain (GW) inclusion rate, grinding extent (GE), and their interaction on lactating cow performance. Eight midlactation cows in 3 × 4 m individual boxes were used in a 4 × 4 replicated Latin square design study with 4 21 d periods. GW was fed at either 10% or 20% of diet dry matter (DM), as either finer or coarser particles. DM intake increased and net energy for lactation (NEL) intake tended to increase when GW was fed at 10% instead of 20% of diet DM. Milk energy yield, milk solids content and yield, and urine pH were unaffected. Fecal pH tended to increase at 20% versus 10% GW. Total tract apparent NDF, but not DM, digestibility tended to be greater for coarsely than finely GW and tended to be greater at 10% versus 20% GW. GW at 10% versus 20% of diet DM decreased blood BHBA and increased blood concentrations of total proteins and albumin. Data provide novel evidence that both finely and coarsely ground WG can be safely fed up to 20% midlactation cows. Commercial accessibility and cost will determine feeding preference of wheat grain to dairy cows. PMID:22666094

  6. Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads.

    PubMed

    Wolter, Anika; Hager, Anna-Sophie; Zannini, Emanuele; Czerny, Michael; Arendt, Elke K

    2014-02-17

    Breads based on gluten-free buckwheat, quinoa, sorghum and teff flours were produced with addition of 20% sourdough fermented with exopolysaccharide (EPS) producing Weissella cibaria MG1. Wheat bread was baked as a reference. Dough rheology, bread quality parameters and sensory properties of the sourdough-containing breads were compared to sourdough non-containing control breads of the respective flour. The specific volume remained unaffected by sourdough application. In buckwheat, sorghum, teff and wheat sourdough breads acidification increased crumb porosity compared to control breads. Crumb hardness was significantly reduced in buckwheat (-122%), teff (-29%), quinoa (-21%) and wheat sourdough breads (-122%). The staling rate was significantly reduced in buckwheat, teff and wheat sourdough breads. Water activity of the sourdough containing bread crumb was not influenced by the presence of EPS. Due to the presence of exopolysaccharides (EPS) and influence of acidification, the dough strength, AF, as measured by oscillation tests decreased significantly in sourdough-containing buckwheat, sorghum and wheat dough, but increased in sourdough-containing quinoa and teff dough. Microbial shelf-life was significantly prolonged neither for gluten-free sourdough nor for wheat sourdough breads. Scanning electron microscopy of control and sourdough bread crumbs did not show differences concerning structural starch features. In addition, the aroma of most bread was not improved by sourdough addition. PMID:24361837

  7. Impact of wheat grain selenium content variation on milling and bread baking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se) is an essential nutrient associated with reduced cancer risk. High levels of Se can accumulate in wheat grain, but it is not clear if this impacts milling or baking. Low and high Se hard red winter wheat grain from the same cultivar was milled and used for bread-baking studies and Se a...

  8. Biomarker of whole grain wheat intake associated lower BMI in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkylresorcinols (AR) are phenolic lipids in the bran fraction of some whole grains (wheat, rye and barley). Plasma AR reflect recent intake of these whole grains. We examined the cross-sectional associations between plasma AR (measured by LCMS/ MS), whole wheat intake, and body mass index (BMI) in ...

  9. Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are regarded as prebiotics, with potentially beneficial effects on human health. This study aimed to examine genetic variation in wheat grain fructan content using an improved analytical method. The method involves extracting fructans from wheat grain followed by enzymatic hydrolysis to bre...

  10. Internal structure of carbonized wheat (Triticum spp.) grains-relationships to kernel texture and ploidy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of wheat grains to the genus level is problematic in many archaeobotanical samples, yet this is key to better understanding wheat phylogeny and agricultural trajectories. This study was conducted to see if the pronounced differences in kernel texture (grain hardness) which exist a...

  11. CO2-induced changes in mineral stoichiometry of wheat grains

    NASA Astrophysics Data System (ADS)

    Broberg, Malin; Pleijel, Håkan; Högy, Petra

    2016-04-01

    A comprehensive review of experiments with elevated CO2 (eCO2) presenting data on grain mineral concentration in wheat grain was made. Data were collected both from FACE (Free-Air CO2 Enrichment) and OTC (Open-Top Chamber) experiments. Analysis was made i) by deriving response functions for the relative effect on yield and mineral concentration in relation to CO2 concentration, ii) meta-analysis to test the magnitude and significance of observed effects and iii) comparison of the CO2 effect on the accumulation of different minerals in relation to accumulation of biomass and accumulation of N. Data were obtained for the following minerals: N, Zn, Mn, K, Ca, Mg, P, Fe, S, Cr, Cu, Cd and Na. In addition, data for starch, the dominating carbohydrate of wheat grain, were extracted. The responses ranged from near zero effects to strong negative effects of eCO2 on mineral concentration. The order of effect size was the following (from largest to smallest effect) for the different elements: Fe, Ca, S, Zn, Cd, N, Mg, Mn, P, Cu, Cr, K and Na. Particularly strong negative impacts of eCO2 were found in the essential mineral elements Fe, S, Ca, Zn and Mg. Especially Fe, Zn and Mg are nutrients for which deficiency in humans is a problem in todaýs world. The rather large differences in response of different elements indicated that the CO2-induced responses cannot be explained by a simple growth dilution model. Rather, uptake and transport mechanisms may have to be considered in greater detail, as well as the link of different elements with the uptake of nitrogen, the quantitatively dominating mineral nutrient, to explain the observed pattern. No effect of eCO2 on starch concentration could be demonstrated. This substantiates the rejection of a simple dilution model, since one would expect starch concentrations to be elevated in order to explain reduced mineral concentrations by carbohydrate dilution. The concentrations of toxic Cd was negatively affected, in principle a

  12. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    PubMed

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change. PMID:26111197

  13. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants. PMID:25982979

  14. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm.

    PubMed

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability. PMID:25775191

  15. Genetic Dissection of Grain Size and Grain Number Trade-Offs in CIMMYT Wheat Germplasm

    PubMed Central

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F.; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability. PMID:25775191

  16. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. PMID:26725507

  17. Glycemic index of grain amaranth, wheat and rice in NIDDM subjects.

    PubMed

    Chaturvedi, A; Sarojini, G; Nirmala, G; Nirmalamma, N; Satyanarayana, D

    1997-01-01

    Glycemic index of grain amaranth, wheat and rice preparations was studied in non-insulin dependent diabetic subjects. Diets containing 50 g carbohydrate equivalent were given and post-prandial blood glucose estimated at different intervals. Glycemic index calculated for different experimental diets showed that GI of amaranth-wheat composite flour diet (25:75) was the least (65.6%) followed by wheat diet (65.7%), rice diet (69.2%), amaranth-wheat flour 50:50 (75.5%), and popped amaranth in milk (97.3%). Therefore 25:75 combination of amaranth and wheat, wheat and rice can be considered low GI food, 50:50 grain amaranth and wheat medium GI food and popped amaranth and milk combination high GI food. PMID:9201751

  18. Winter wheat growth and grain protein uniformity monitoring through remotely sensed data

    NASA Astrophysics Data System (ADS)

    Song, Xiaoyu; Wang, Jihua; Huang, Wenjiang

    2010-10-01

    An uneven growing winter wheat will be slower to reach full ground cover and will be lead to uneven yield and quality for cropland. The traditional investigation of crop uniformity is mainly depends on manpower. Remote sensing technique is a potentially useful tool for monitoring the crop uniformity status for it can provide an area global view for entire field within the crop growth season with scathelessness. The objective of this study was to use remote sensing imagery to evaluate the crop growth uniformity, as well as the yield and grain quality variation for a winter wheat study area. One Quickbird image on winter wheat booting stage was collected and processed to monitoring the uniformity of wheat growth. The results indicated that the spectrum parameters of Quickbird image can reflect the spatial uniformity of winter wheat growth in the study areas. Meanwhile the spatial uniformity of wheat growth in early stage can reflect the uniformity of yield and grain quality. The wheat growth information at the booting stage has strong positive correlations with yield, and strong negative correlation with grain protein. The correlation coefficient between OSAVI (optimized soil adjusted vegetation index) and wheat yield was 0.536. It was -0.531 for GNDVI (Greeness-normalized difference vegetation index) and grain protein content. The study also indicated that diverse spectrum parameters had different sensitivity to the wheat growth spatial variance. So it is feasible to use remote sensing data to investigate the crop growth and quality spatial uniformity.

  19. Genotypic variation of zinc and selenium concentration in grains of Brazilian wheat lines.

    PubMed

    Souza, Guilherme A; Hart, Jonathan J; Carvalho, Janice G; Rutzke, Michael A; Albrecht, Júlio César; Guilherme, Luiz Roberto G; Kochian, Leon V; Li, Li

    2014-07-01

    Exploration of genetic resources for micronutrient concentrations facilitates the breeding of nutrient-dense crops, which is increasingly seen as an additional, sustainable strategy to combat global micronutrient deficiency. In this work, we evaluated genotypic variation in grain nutrient concentrations of 20 Brazil wheat (Triticum aestivum L.) accessions in response to zinc (Zn) and Zn plus selenium (Se) treatment. Zn and Se concentrations in grains exhibited 2- and 1.5-fold difference, respectively, between these wheat accessions. A variation of up to 3-fold enhancement of grain Zn concentration was observed when additionally Zn was supplied, indicating a wide range capacity of the wheat lines in accumulating Zn in grains. Moreover, grain Zn concentration was further enhanced in some lines following supply of Zn plus Se, showing stimulative effect by Se and the feasibility of simultaneous biofortification of Zn and Se in grains of some wheat lines. In addition, Se supply with Zn improved the accumulation of another important micronutrient, iron (Fe), in grains of half of these wheat lines, suggesting a beneficial role of simultaneous biofortification of Zn with Se. The significant diversity in these wheat accessions offers genetic potential for developing cultivars with better ability to accumulate important micronutrients in grains. PMID:24908503

  20. Heavy metal and trace element concentrations in wheat grains: assessment of potential non-carcinogenic health hazard through their consumption.

    PubMed

    Bermudez, Gonzalo M A; Jasan, Raquel; Plá, Rita; Pignata, María Luisa

    2011-10-15

    Heavy metal and trace element concentrations were examined in wheat grains and straw to elucidate associations between air pollution sources and soil variables. The mean wheat grain concentrations of Cr, Cu, Fe, Mn and Zn surpassed the tolerance limits stated in the international legislation for wheat grain and foodstuffs. When topsoil Ba, Co, Cr and Zn concentrations were higher than the legislation thresholds for agricultural and residential soils, wheat grain concentrations were also increased. In addition, Cr, Cu, Mn, Ni, Pb, and Zn revealed an immobilization effect of a cement plant and the atmospheric deposition input, with Cd in wheat grains being associated with a cement plant and industrial waste incinerator. The health risks arising from wheat grain consumption indicated that the inhabitants of Argentina are experiencing significant non-carcinogenic risks (Hazard Index = 3.311), especially when consuming wheat grains affected by metallurgical or chemical factories, as well as by air transportation from big cities. PMID:21835546

  1. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) grain quality traits that are controlled by quantitative traits loci (QTLs) define suitable growing areas and potential end-use products of a wheat cultivar. To dissect the QTLs for these traits including protein content (GPC), test weight (TW), single kernel characteriz...

  2. NEW FUSARIUM HEAD BLIGHT RESISTANCE SPRING WHEAT GERMPLASM IDENTIFIED IN THE USDA NATIONAL SMALL GRAIN COLLECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is one of the most destructive wheat diseases worldwide. Sources of FHB resistance are limited. The objectives of this study were to screen selected spring wheat accessions in the USDA National Small Grains Collection for FHB reactions using FHB index, visual scabby kernel...

  3. A wheat grazing model for simulating grain and beef production: Part II - model validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Model evaluation is a prerequisite to its adoption and successful application. The objective of this paper is to evaluate the ability of a newly developed wheat grazing model to predict fall-winter forage and grain yields of winter wheat (Triticum aestivum L.) as well as daily weight gains per steer...

  4. A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing the nutritional value of food crops is a sensible strategy for improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat QTL associated with increased grain protein, Zn and Fe contents. The ancestral wild wheat allele encodes a NAC transcription factor ...

  5. A wheat grazing model for simulating grain and beef production: Part 1 - model development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is a common practice to grow winter wheat (Triticum aestivum L.) as a dual-purpose crop in the U.S. Southern Great Plains to capitalize added value by cattle production. Management of the dual-purpose wheat is complex because of the interactions and tradeoffs between grain and beef production. ...

  6. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fine and coarse bran particles of a hard red and a hard white wheat were used to study the influences of bran hydration and physical treatments such as autoclaving and freezing as well as their combinations on the dough properties and bread-baking quality of whole grain wheat flour (WWF). For both h...

  7. WHEAT RESEARCH IN THE U.S. GRAIN MARKETING RESEARCH LABORATORY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review was written for readers of the Annual Wheat Newsletter, Volume 48. It mainly summarizes activities on wheat research during 2001 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes 26 technical abstracts of research accomplishments and news items from two res...

  8. Genetic diversity among wheat accessions from the USDA National Small Grains Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accessions of Triticum aestivum subsp. aestivum from the USDA-ARS National Small Grains Collection (NSGC) are a resource for wheat scientists worldwide. The genetic diversity of the wheat core subset, representing approximately 10% of the collection’s 42138 T. aestivum accessions, was examined using...

  9. MARKERS ASSOCIATED WITH A QTL FOR GRAIN YIELD IN WHEAT UNDER DROUGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a major abiotic stress that adversely affects wheat production in many regions of the world. The objective of this study was to identify quantitative trait loci (QTL) controlling grain yield and yield components under reduced moisture. A cross between common wheat cultivars ‘Dharwar Dry’ ...

  10. Bran characteristics and bread-baking quality of whole grain wheat flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  11. Wheat grain consumption and selection by inbred and outbred strains of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its commensal relationship, agricultural cereal seeds, including wheat (Triticum aestivum L.), represent a primary food for the house mouse (Mus musculus L.). C57BL/6J mice exert strong selection and consumption preferences among different varieties of wheat grains. The present study examined...

  12. The Wheat Grain Contains Pectic Domains Exhibiting Specific Spatial and Development-Associated Distribution

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Bouchet, Brigitte; Alvarado, Camille; Bakan, Bénédicte; Guillon, Fabienne

    2014-01-01

    Cell walls are complex structures surrounding plant cells with a composition that varies among species and even within a species between organs, cell types and development stages. For years, cell walls in wheat grains were described as simple walls consisting mostly of arabinoxylans and mixed-linked beta glucans. Proteomic and transcriptomic studies identified enzyme families involved in the synthesis of many more cell wall polysaccharides in the wheat grains. Here we describe the discovery of pectic domains in wheat grain using monoclonal antibodies and enzymatic treatment to degrade the major cell wall polymers. Distinct spatial distributions were observed for rhamnogalacturonan I present in the endosperm and mostly in the aleurone layer and homogalacturonan especially found in the outer layers, and tight developmental regulations were unveiled. We also uncovered a massive deposition of homogalacturonan via large vesicular bodies in the seed coat (testa) beneath a thick cuticle during development. Our findings raise questions about the function of pectin in wheat grain. PMID:24586916

  13. The Dietary Intake of Wheat and other Cereal Grains and Their Role in Inflammation

    PubMed Central

    de Punder, Karin; Pruimboom, Leo

    2013-01-01

    Wheat is one of the most consumed cereal grains worldwide and makes up a substantial part of the human diet. Although government-supported dietary guidelines in Europe and the U.S.A advise individuals to eat adequate amounts of (whole) grain products per day, cereal grains contain “anti-nutrients,” such as wheat gluten and wheat lectin, that in humans can elicit dysfunction and disease. In this review we discuss evidence from in vitro, in vivo and human intervention studies that describe how the consumption of wheat, but also other cereal grains, can contribute to the manifestation of chronic inflammation and autoimmune diseases by increasing intestinal permeability and initiating a pro-inflammatory immune response. PMID:23482055

  14. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.

    PubMed

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. PMID:25015888

  15. Effect of Lineage-Specific Metabolic Traits of Lactobacillus reuteri on Sourdough Microbial Ecology

    PubMed Central

    Lin, Xiaoxi B.

    2014-01-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. PMID:25015888

  16. The dynamics of protein body formation in developing wheat grain.

    PubMed

    Moore, Katie L; Tosi, Paola; Palmer, Richard; Hawkesford, Malcolm J; Grovenor, Chris R M; Shewry, Peter R

    2016-09-01

    Wheat is a major source of protein in the diets of humans and livestock but we know little about the mechanisms that determine the patterns of protein synthesis in the developing endosperm. We have used a combination of enrichment with (15) N glutamine and NanoSIMS imaging to establish that the substrate required for protein synthesis is transported radially from its point of entrance in the endosperm cavity across the starchy endosperm tissues, before becoming concentrated in the cells immediately below the aleurone layer. This transport occurs continuously during grain development but may be slower in the later stages. Although older starchy endosperm cells tend to contain larger protein deposits formed by the fusion of small protein bodies, small highly enriched protein bodies may also be present in the same cells. This shows a continuous process of protein body initiation, in both older and younger starchy endosperm cells and in all regions of the tissue. Immunolabeling with specific antibodies shows that the patterns of enrichment are not related to the contents of gluten proteins in the protein bodies. In addition to providing new information on the dynamics of protein deposition, the study demonstrates the wider utility of NanoSIMS and isotope labelling for studying complex developmental processes in plant tissues. PMID:26898533

  17. Study on grain quality forecasting method and indicators by using hyperspectral data in wheat

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Wang, Jihua; Liu, Liangyun; Wang, Zhijie; Tan, Changwei; Song, Xiaoyu; Wang, Jingdi

    2005-01-01

    Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, et al. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significant correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict of grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established for forecasting grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.

  18. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat.

    PubMed

    Merchuk-Ovnat, Lianne; Fahima, Tzion; Krugman, Tamar; Saranga, Yehoshua

    2016-10-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving drought resistance in domesticated wheat. Nevertheless, wild germplasm has not been widely used in wheat breeding for abiotic stress resilience. In the current study, a near isogenic line NIL-7A-B-2, introgressed with a drought-related QTL from wild emmer wheat on chromosome 7A, and its recurrent parent, bread wheat cv. BarNir, were investigated under four environments across 2 years-water-limited and well-watered conditions in a rain-protected screen-house (Year 1) and two commercial open field plots under ample precipitation (Year 2). NIL-7A-B-2 exhibited an advantage over BarNir in grain yield and biomass production under most environments. Further physiological analyses suggested that enhanced photosynthetic capacity and photochemistry combined with higher flag leaf area are among the factors underlying the improved productivity of NIL-7A-B-2. These were coupled with improved sink capacity in NIL-7A-B-2, manifested by greater yield components than its parental line. This study provides further support for our previous findings that introgression of wild emmer QTL alleles, using marker assisted selection, can enhance grain yield and biomass production across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of yield and drought resistance. PMID:27593460

  19. Optical-mechanical system for on-combine segregation of wheat by grain protein concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain segregation by grain protein concentration (GPC) may help growers maximize revenues in markets that offer protein premiums. Our objective was to develop an on-combine system for automatically segregating wheat (Triticum aestivum L.) by GPC during harvest. A multispectral optical sensor scans...

  20. Effect of wheat NAM genes on remobilization of Fe and Zn and translocation of minerals to grain during grain fill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are interested in understanding mineral translocation to seeds to improve their nutritional value. We compared a transgenic wheat (NAM RNAi knock-down) that exhibits low grain Fe and Zn concentrations with its isogenic control to quantify the effects of NAM genes on mineral remobilization from v...

  1. Wheat ABA-insensitive mutants result in reduced grain dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the isolation of wheat mutants in the hard red spring Scarlet resulting in reduced sensitivity to the plant hormone abscisic acid (ABA) during seed germination. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature seeds. Wheat sensitivity t...

  2. [Bread from the bioactivated wheat grain with the raised nutrition value].

    PubMed

    Ponomareva, E I; Alekhina, N N; Bakaeva, I A

    2016-01-01

    Bread from the bioactivated grain of wheat differs in high content of dietary fibers, minerals and vitamins compared to traditional types of bread, but, despite this, it has low protein and lysine content. The aim of the study was the development of bread with the raised nutritional value from the bioactivated wheat grain by use of flour from cake of wheat germ (6.5%). It has been established that the flour from wheat germ has protein biological value (77.4%) and the amino acid score according to lysine (100.3%) above 12 and 40.5%, respectively, compared with those from bioactivated wheat. During calculation of nutritive, biological and energy value of products from the bioactivated wheat grain it is revealed that the biological value of bread from wheat germ flour slightly exceeded the biological value of the bread without its addition and amounted to 70.80%, due to a high protein content and a balanced amino acid composition. The protein content in the test sample of bakery products was 19.0% higher than the control, phosphorus - 13.0%, zinc - 50.0%. PMID:27455607

  3. Characterization of Proteins from Grain of Different Bread and Durum Wheat Genotypes

    PubMed Central

    Žilić, Slađana; Barać, Miroljub; Pešić, Mirjana; Dodig, Dejan; Ignjatović-Micić, Dragana

    2011-01-01

    The classical Osborne wheat protein fractions (albumins, globulins, gliadins, and glutenins), as well as several proteins from each of the four subunits of gliadin using SDS-PAGE analyses, were determined in the grain of five bread (T. aestivum L.) and five durum wheat (T. durum Desf.) genotypes. In addition, content of tryptophan and wet gluten were analyzed. Gliadins and glutenins comprise from 58.17% to 65.27% and 56.25% to 64.48% of total proteins and as such account for both quantity and quality of the bread and durum wheat grain proteins, respectively. The ratio of gliadin/total glutenin varied from 0.49 to 1.01 and 0.57 to 1.06 among the bread and durum genotypes, respectively. According to SDS-PAGE analysis, bread wheat genotypes had a higher concentration of α + β + γ-subunits of gliadin (on average 61.54% of extractable proteins) than durum wheat (on average 55.32% of extractable proteins). However, low concentration of ω-subunit was found in both bread (0.50% to 2.53% of extractable proteins) and durum (3.65% to 6.99% of extractable proteins) wheat genotypes. On average, durum wheat contained significantly higher amounts of tryptophan and wet gluten (0.163% dry weight (d.w.) and 26.96% d.w., respectively) than bread wheat (0.147% d.w. and 24.18% d.w., respectively). PMID:22016634

  4. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of the developing wheat (Triticum aestivum L.) grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature during grain fill reduces wheat yield and alters flour quality. Starchy endosperm cell morphology was investigated in wheat (Triticum aestivum L. ‘Butte 86’) grain produced under a 24/17 °C or 37/28 °C day/night regimen imposed from anthesis to maturity to identify changes in cell s...

  5. Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development

    PubMed Central

    Zhang, Ning; Chen, Feng; Huo, Wang; Cui, Dangqun

    2015-01-01

    Proteomic approaches were applied in four grain developmental stages of the Chinese bread wheat Yunong 201 and its ethyl methanesulfonate (EMS) mutant line Yunong 3114. 2-DE and tandem MALDI-TOF/TOF-MS analyzed proteome characteristics during middle and late grain development of the Chinese bread wheat Yunong 201 and its EMS mutant line Yunong 3114 with larger grain sizes. We identified 130 differentially accumulated protein spots representing 88 unique proteins, and four main expression patterns displayed a dynamic description of middle and late grain formation. Those identified protein species participated in eight biochemical processes: stress/defense, carbohydrate metabolism, protein synthesis/assembly/degradation, storage proteins, energy production and transportation, photosynthesis, transcription/translation, signal transduction. Comparative proteomic characterization demonstrated 12 protein spots that co-accumulated in the two wheat cultivars with different expression patterns, and six cultivar-specific protein spots including serpin, small heat shock protein, β-amylase, α-amylase inhibitor, dimeric α-amylase inhibitor precursor, and cold regulated protein. These cultivar-specific protein spots possibly resulted in differential yield-related traits of the two wheat cultivars. Our results provide valuable information for dissection of molecular and genetics basis of yield-related traits in bread wheat and the proteomic characterization in this study could also provide insights in the biology of middle and late grain development. PMID:26442048

  6. Bioavailability to rats of iron in six varieties of wheat grain intrinsically labeled with radioiron

    SciTech Connect

    House, W.A.; Welch, R.M.

    1987-03-01

    Bioavailability to anemic rats of iron in six varieties of wheat grain was assessed by a whole-body radioassay procedure. Intrinsically labeled kernels were harvested from plants grown in /sup 59/Fe-labeled nutrient solutions. The varieties used were selected from 18 varieties of field-grown wheat grain that were analyzed for iron, protein and phytate content. Concentrations of iron, phytate and protein in grain of field-grown varieties ranged from 34 to 55 ppm, 0.7 to 1.2% dry wt and 11.3 to 15.4% dry wt, respectively. In grain from varieties grown in nutrient solutions, iron, phytate and protein concentrations ranged from 35 to 50 ppm, 1 to 1.2% dry wt, and 13.8 to 16.8% dry wt, respectively. Depending on the variety of intrinsically labeled grain fed in test meals to anemic rats (hemoglobin averaged 5.8 g/dL), absorption of /sup 59/Fe ranged from about 62 to 74% of the dose; differences among varieties were not significant (P greater than 0.05). Rats fed /sup 59/Fe-labeled FeCl/sub 3/ absorbed about 71% of the dose, which was similar to the average amount (69% of dose) absorbed by rats fed wheat. We concluded that selection of wheat varieties for increased yield or protein content has not adversely affected the bioavailability of iron in the grain.

  7. Chilean flour and wheat grain: tracing their origin using near infrared spectroscopy and chemometrics.

    PubMed

    González-Martín, Ma Inmaculada; Wells Moncada, Guillermo; González-Pérez, Claudio; Zapata San Martín, Nelson; López-González, Fernando; Lobos Ortega, Iris; Hernández-Hierro, Jose-Miguel

    2014-02-15

    Instrumental techniques such a near-infrared spectroscopy (NIRS) are used in industry to monitor and establish product composition and quality. As occurs with other food industries, the Chilean flour industry needs simple, rapid techniques to objectively assess the origin of different products, which is often related to their quality. In this sense, NIRS has been used in combination with chemometric methods to predict the geographic origin of wheat grain and flour samples produced in different regions of Chile. Here, the spectral data obtained with NIRS were analysed using a supervised pattern recognition method, Discriminat Partial Least Squares (DPLS). The method correctly classified 76% of the wheat grain samples and between 90% and 96% of the flour samples according to their geographic origin. The results show that NIRS, together with chemometric methods, provides a rapid tool for the classification of wheat grain and flour samples according to their geographic origin. PMID:24128548

  8. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  9. Early prediction of wheat quality: analysis during grain development using mass spectrometry and multivariate data analysis.

    PubMed

    Ghirardo, Andrea; Sørensen, Helle Aagaard; Petersen, Marianne; Jacobsen, Susanne; Søndergaard, Ib

    2005-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and multivariate data analysis have been used for the determination of wheat quality at different stages of grain development. Wheat varieties with one of two different end-use qualities (i.e. suitable or not suitable for bread-making purposes) were investigated. The samples were collected from grains from 15 until 45 days post-anthesis (dpa). Gluten proteins from wheat grains were extracted and subsequently analysed by mass spectrometry. Discrimination partial least-squares regression and soft independent modelling of class analogy were used to determine the quality of new and unknown wheat samples. With these methods, we were able to predict correctly the end-use qualities at every stage investigated. This new fast technique, based on the rapidity of mass spectrometry combined with the objectivity of multivariate data analysis, offers a method that can replace the traditional rather time-consuming ones such as gel electrophoresis. This study focused on the determination of wheat quality at 15 dpa, when the grain is due for harvest 1 month later. PMID:15655793

  10. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat

    PubMed Central

    Rebetzke, G. J.; Bonnett, D. G.; Reynolds, M. P.

    2016-01-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned–awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38–7.93 t ha−1) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned–awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (–5%) and increased frequency (+0.8%) of small, shrivelled grains (‘screenings’) to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced

  11. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat.

    PubMed

    Rebetzke, G J; Bonnett, D G; Reynolds, M P

    2016-04-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned-awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38-7.93 t ha(-1)) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned-awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (-5%) and increased frequency (+0.8%) of small, shrivelled grains ('screenings') to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced screenings. PMID

  12. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours.

    PubMed

    Wolter, A; Hager, A-S; Zannini, E; Galle, S; Gänzle, M G; Waters, D M; Arendt, E K

    2014-02-01

    This study determined exopolysaccharide (EPS) production by Weissella cibaria MG1 in sourdoughs prepared from gluten-free flours (buckwheat, oat, quinoa and teff), as well as wheat flour. Sourdoughs (SD) were fermented without sucrose, or by replacing 10% flour with sucrose to support EPS production. The amount of EPS depended on the substrate: high amounts of EPS corresponding to low amounts of oligosaccharides were found in buckwheat (4.2 g EPS/kg SD) and quinoa sourdoughs (3.2 g EPS/kg SD); in contrast, no EPS but panose-series oligosaccharides (PSO) were detected in wheat sourdoughs. Organic acid production, carbohydrates and rheological changes during fermentation were compared to the EPS negative control without added sucrose. Corresponding to the higher mineral content of the flours, sourdoughs from quinoa, teff and buckwheat had higher buffering capacity than wheat. Fermentable carbohydrates in buckwheat, teff and quinoa flours promoted W. cibaria growth; indicating why W. cibaria failed to grow in oat sourdoughs. Endogenous proteolytic activity was highest in quinoa flour; α-amylase activity was highest in wheat and teff flours. Protein degradation during fermentation was most extensive in quinoa and teff SD reducing protein peaks 18-29, 30-41 and 43-55 kDa extensively. Rheological analyses revealed decreased dough strength (AF) after fermentation, especially in sucrose-supplemented buckwheat sourdoughs correlating with amounts of EPS. High EPS production correlated with high protein, fermentable sugars (glucose, maltose, fructose), and mineral contents in quinoa flour. In conclusion, W. cibaria MG1 is a suitable starter culture for sourdough fermentation of buckwheat, quinoa and teff flour. PMID:24230472

  13. Effect of wheat (Triticum aestivum L.) grain color and hardness on the consumption preference of a mouse model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Wheat (Triticum aestivum L.) grain is a staple food and provides necessary nutrients for human health and nutrition. Yet, flavor differences among wheat varieties are not well understood. Grain flavor and consumption preference can be examined using the house mouse (Mus musculus L.) as a...

  14. Evaluation of Wheat Chromosome Translocation Lines for High Temperature Stress Tolerance at Grain Filling Stage

    PubMed Central

    Pradhan, Gautam Prasad; Prasad, P. V. Vara

    2015-01-01

    High temperature (HT, heat) stress is detrimental to wheat (Triticum aestivum L.) production. Wild relatives of bread wheat may offer sources of HT stress tolerance genes because they grow in stressed habitats. Wheat chromosome translocation lines, produced by introgressing small segments of chromosome from wild relatives to bread wheat, were evaluated for tolerance to HT stress during the grain filling stage. Sixteen translocation lines and four wheat cultivars were grown at optimum temperature (OT) of 22/14°C (day/night). Ten days after anthesis, half of the plants were exposed to HT stress of 34/26°C for 16 d, and other half remained at OT. Results showed that HT stress decreased grain yield by 43% compared with OT. Decrease in individual grain weight (by 44%) was the main reason for yield decline at HT. High temperature stress had adverse effects on leaf chlorophyll content and Fv/Fm; and a significant decrease in Fv/Fm was associated with a decline in individual grain weight. Based on the heat response (heat susceptibility indices, HSIs) of physiological and yield traits to each other and to yield HSI, TA5594, TA5617, and TA5088 were highly tolerant and TA5637 and TA5640 were highly susceptible to HT stress. Our results suggest that change in Fv/Fm is a highly useful trait in screening genotypes for HT stress tolerance. This study showed that there is genetic variability among wheat chromosome translocation lines for HT stress tolerance at the grain filling stage and we suggest further screening of a larger set of translocation lines. PMID:25719199

  15. Evaluation of Wheat Growth Monitoring Methods Based on Hyperspectral Data of Later Grain Filling and Heading Stages in Western Australia

    NASA Astrophysics Data System (ADS)

    Nakanishi, T.; Imai, Y.; Morita, T.; Akamatsu, Y.; Odagawa, S.; Takeda, T.; Kashimura, O.

    2012-07-01

    This study estimated the wheat yield, quality, and growth conditions using hyperspectral data of the later grain filling and heading stages. The study area is located in the suburbs of Mullewa, Western Australia. Various data used included spectral reflectance of wheat measured from the ground and those measured using airborne sensors, wheat growth conditions data, such as LAI, SPAD values, and wheat height, and sample analysis data, including biomass, grain nitrogen content rate, leaf nitrogen content rate, and ash content, of the later grain filling and heading stages. This study consisted of (1) selection of estimation items regarding the wheat yield, quality, and growth conditions by correlation analysis of sample data, (2) definition of estimate equations for selected items, (3) verification of estimation accuracy, and (4) development of estimation maps. As a result, head moisture, which is related to the wheat growth conditions, was well estimated using hyperspectral data of the later grain filling stage. At the same time, grain weight, which is related to the wheat yield, and grain nitrogen content rate and ash content, which are related to the wheat quality, were well estimated using hyperspectral data of the heading stage. This study implies that it is possible to visualize the wheat yield, quality, and growth conditions on a regional scale using hyperspectral data.

  16. Prevalence and impact of single-strain starter cultures of lactic acid bacteria on metabolite formation in sourdough.

    PubMed

    Ravyts, Frédéric; De Vuyst, Luc

    2011-09-01

    Flavour of type II sourdoughs is influenced by the ingredients, processing conditions, and starter culture composition. It is, however, not fully clear to what extent different sourdough lactic acid bacteria (LAB) contribute to flavour. Therefore, two types of flour (rye and wheat) and different LAB starter culture strains were used to prepare sourdoughs, thereby leaving the yeast microbiota uncontrolled. All LAB starter culture strains tested were shown to be prevalent and to acidify the flour/water mixture to pH values between 3.1 and 3.9 after 24h of fermentation. Multiple aldehydes, alcohols, ketones, and carboxylic acids were produced by the sourdough-associated microbiota throughout the fermentation period. Based on the organoleptic evaluation of breads produced with these sourdoughs, five LAB strains were selected to perform prolonged wheat and rye fermentations as to their capacity to result in an acidic (Lactobacillus fermentum IMDO 130101, Lactobacillus plantarum IMDO 130201, and Lactobacillus crustorum LMG 23699), buttermilk-like (Lactobacillus amylovorus DCE 471), or fruity flavour (Lactobacillus sakei CG1). Upon prolonged fermentation, higher metabolite concentrations were produced. For instance, L. sakei CG1 produced the highest amounts of 3-methyl-1-butanol, which was further converted into 3-methylbutyl acetate. The latter compound resulted in a fruity banana flavour after 48h of fermentation, probably due to yeast interference. Rye fermentations resulted in sourdoughs richer in volatiles than wheat, including 3-methyl-1-butanol, 2-phenylethanol, and ethyl acetate. PMID:21645811

  17. Salt stress increases content and size of glutenin macropolymers in wheat grain.

    PubMed

    Zhang, Xiaxiang; Shi, Zhiqiang; Tian, Youjia; Zhou, Qin; Cai, Jian; Dai, Tingbo; Cao, Weixing; Pu, Hanchun; Jiang, Dong

    2016-04-15

    Addition of salt solution in making wheat dough improves viscoelasticity. However, the effect of native salt fortification on dough quality is unclear. Here, wheat plants were subjected to post-anthesis salt stress to modify salt ion content in grains. The contents of Na(+) and K(+), high-molecular-weight glutenin subunits (HMW-GS), glutenin macropolyers (GMP) and amino acids in mature grains were measured. As NaCl concentration in soil increased, grain yield decreased while Na(+) and K(+) contents increased. The contents of amino acids, HMW-GS and GMP in grains also increased, especially when NaCl concentration exceeded 0.45%. Fraction of GMP larger than 10 μm was also increased. Na(+) and K(+) contents were significantly positively correlated to GMP and total HMW-GS contents, and to large GMP fraction. PMID:26616983

  18. Quantification of Wheat Grain Arabinoxylans Using a Phloroglucinol Colorimetric Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arabinoxylans (AX) play a critical role in end-use quality and nutrition of wheat (Triticum aestivum L.). An efficient, accurate method of AX quantification is desirable as AX plays an important role in processing, end use quality and human health. The objective of this work was to evaluate a stand...

  19. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.

    PubMed

    Liu, Ke; Lv, Jialong; Dai, Yunchao; Zhang, Hong; Cao, Yingfei

    2016-01-01

    The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22) were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF) to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops) and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils. PMID:27518712

  20. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain

    PubMed Central

    Liu, Ke; Lv, Jialong; Dai, Yunchao; Zhang, Hong; Cao, Yingfei

    2016-01-01

    The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22) were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF) to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops) and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils. PMID:27518712

  1. Organic cultivation of Triticum turgidum subsp. durum is reflected in the flour-sourdough fermentation-bread axis.

    PubMed

    Rizzello, Carlo Giuseppe; Cavoski, Ivana; Turk, Jelena; Ercolini, Danilo; Nionelli, Luana; Pontonio, Erica; De Angelis, Maria; De Filippis, Francesca; Gobbetti, Marco; Di Cagno, Raffaella

    2015-05-01

    Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis. PMID:25724957

  2. Organic Cultivation of Triticum turgidum subsp. durum Is Reflected in the Flour-Sourdough Fermentation-Bread Axis

    PubMed Central

    Rizzello, Carlo Giuseppe; Cavoski, Ivana; Turk, Jelena; Ercolini, Danilo; Nionelli, Luana; Pontonio, Erica; De Angelis, Maria; De Filippis, Francesca; Gobbetti, Marco

    2015-01-01

    Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis. PMID:25724957

  3. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development

    PubMed Central

    Chetouhi, Cherif; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges

    2014-01-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains. PMID:25663750

  4. GSP-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D.

    PubMed Central

    Jolly, C J; Glenn, G M; Rahman, S

    1996-01-01

    An important determinant of wheat grain quality is the hardness of the grain. The trait is controlled by a major locus, Ha, on the short arm of chromosome 5D. Purified starch granules from soft-grained wheats have associated with them 15-kDa polypeptides called grain softness proteins (GSPs) or "friabilins." Genes that encode one family of closely related GSP polypeptides - GSP-1 genes - were mapped using chromosome substitution lines to the group 5 chromosomes. An F2 population segregating for hard and soft alleles at the Ha locus on a near-isogenic background was used in a single-seed study of the inheritance of grain softness and of GSP-1 alleles. Grain softness versus grain hardness was inherited in a 3:1 ratio. The presence versus absence of GSPs in single seed starch preparations was coinherited with grain softness versus hardness. This showed that grain softness is primarily determined by seed, and not by maternal, genotype. In addition, no recombination was detected in 44 F2 plants between GSP-1 restriction fragment length polymorphisms and Ha alleles. Differences between hard and soft wheat grains in membrane structure and lipid extractability have been described and, of the three characterized proteins that are part of the mixture of 15-kDa polypeptides called GSPs, at least two, and probably all three, are proteins that bind polar lipids. The data are interpreted to suggest that the Ha locus may encode one or more members of a large family of lipid-binding proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8637887

  5. Increasing total and biologically active chromium in wheat grain and spinach by spraying with chromium salts

    SciTech Connect

    Vicini, F.A.; Ellis, B.G.

    1981-06-01

    Recently, chromium has been shown to be necessary for glucose metabolism in man. But most plant species greatly restrict the uptake of Cr. This study was conducted to determine if both total and biologically active Cr could be increased in wheat grain or spinach by spraying the plants with either Cr/sub 2/(SO/sub 4/)/sub 3/ or Cr-EDTA. Concentrations of Cr in wheat grain were about doubled in a greenhouse experiment by spraying with either Cr source. Biologically active Cr (estimated by extraction with ethanol or NH/sub 4/OH) was increased from about 40 to greater than 50% of total Cr when wheat was sprayed with Cr salts. Total Cr in spinach leaves was increased by as much as 10-fold by spraying, with the sulfate source being more effective than the EDTA.

  6. Selecting soft wheat genotypes for whole grain cookies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved nutrition and reduction in obesity for North American populations require increasing the dietary use of whole grain cereal products. In most snack foods, whole grain products are difficult to manufacture because the presence of bran increases the water absorption and decreases the baking q...

  7. Computing wheat nitrogen requirements from grain yield and protein maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  8. Computing wheat nitrogen requirements from grain yield and protein maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  9. Managing grain protein content by remote sensing in winter wheat

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Wang, Jihua; Song, Xiaoyu; Zhao, Chunjiang; Liu, Liangyun

    2007-10-01

    Advanced site-specific determination of grain protein content by remote sensing can provide opportunities to optimize the strategies for purchasing and pricing grain, and to maximize the grain output by adjusting field inputs. Field experiments were performed to study the relationship between grain quality indicators and foliar nitrogen concentration. Foliar nitrogen concentration at the anthesis stage is suggested to be significantly correlated with grain protein content, while spectral vegetation index is significantly correlated to foliar nitrogen concentration around the anthesis stage. Based on the relationships among nitrogen reflectance index (NRI), foliar nitrogen concentration, and grain protein content, a statistical evaluation model of grain protein content was developed. NRI proved to be able to evaluate foliar nitrogen concentration with a coefficient of determination of R2= 0.7302 in year 2002. The relationship between measured and remote sensing derived foliar nitrogen concentration had a coefficient of determination of R2=0.7279 in year 2003. The results mentioned above indicate that the inversion of foliar nitrogen concentration and the evaluation of grain protein content by NRI are surprisingly good.

  10. The protein fraction from wheat-based dried distiller's grain with solubles (DDGS): extraction and valorization

    PubMed Central

    Villegas-Torres, M.F.; Ward, J.M.; Lye, G.J.

    2015-01-01

    Nowadays there is worldwide interest in developing a sustainable economy where biobased chemicals are the lead actors. Various potential feedstocks are available including glycerol, rapeseed meal and municipal solid waste (MSW). For biorefinery applications the byproduct streams from distilleries and bioethanol plants, such as wheat-based dried distiller's grain with solubles (DDGS), are particularly attractive, as they do not compete for land use. Wheat DDGS is rich in polymeric sugars, proteins and oils, making it ideal as a current animal feed, but also a future substrate for the synthesis of fine and commodity chemicals. This review focuses on the extraction and valorization of the protein fraction of wheat DDGS as this has received comparatively little attention to date. Since wheat DDGS production is expected to increase greatly in the near future, as a consequence of expansion of the bioethanol industry in the UK, strategies to valorize the component fractions of DDGS are urgently needed. PMID:25644639

  11. The protein fraction from wheat-based dried distiller's grain with solubles (DDGS): extraction and valorization.

    PubMed

    Villegas-Torres, M F; Ward, J M; Lye, G J

    2015-12-25

    Nowadays there is worldwide interest in developing a sustainable economy where biobased chemicals are the lead actors. Various potential feedstocks are available including glycerol, rapeseed meal and municipal solid waste (MSW). For biorefinery applications the byproduct streams from distilleries and bioethanol plants, such as wheat-based dried distiller's grain with solubles (DDGS), are particularly attractive, as they do not compete for land use. Wheat DDGS is rich in polymeric sugars, proteins and oils, making it ideal as a current animal feed, but also a future substrate for the synthesis of fine and commodity chemicals. This review focuses on the extraction and valorization of the protein fraction of wheat DDGS as this has received comparatively little attention to date. Since wheat DDGS production is expected to increase greatly in the near future, as a consequence of expansion of the bioethanol industry in the UK, strategies to valorize the component fractions of DDGS are urgently needed. PMID:25644639

  12. A review of the occurrence of grain softness protein-1 genes in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is pr...

  13. Fortifying Chapathis, an Asian Whole Wheat Unleavened Bread, using Corn Distillers Dried Grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chapathi, an unleavened whole wheat flat bread, is widely consumed in Southern Asia. To improve the nutritional qualities of this product, we have investigated fortifying chapathi with different levels of corn-based distillers dried grains with solubles (DDGS). Food grade DDGS is an alternative sour...

  14. Quantification of Tilletia indica teliospores in sori of commercially harvested wheat grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Karnal bunt caused by Tilletia indica is a minor disease of wheat that has caused considerable international quarantine concerns. Knowledge of the number of teliospores in sori of diseased grains is needed to provide information for the development of pest risk assessments. Eight to fourteen disea...

  15. Modeling Biomass Allocation and Grain Yield in Bread and Durum Wheat under Abiotic Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry matter (DM) partitioning into stems, leaves, and seed of two wheat (Triticum aestivum and T. durum) genotypes (A and D, respectively) in response to multiple abiotic stresses were quantified and their impact on kernel weight (KW, mg kernel**-1) and grain yield (GY, Mg ha**-1) was evaluated in a ...

  16. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS marker...

  17. Utilizing existing sensor technology to predict spring wheat grain nitrogen concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obtaining optimum grain N concentration and yield in spring wheat (Triticum aestivum L.) can be problematic without proper nitrogen (N) fertilizer management. Sensor-based technologies have been used for an accurate and precise application of fertilizers. This technology has also been used to predic...

  18. A comprehensive survey of soft wheat grain quality in United States germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) quality is dependent upon both genetic and environmental factors, which work in combination to produce specific grain, milling, and baking characteristics. Along with these genetic and environmental factors, the adaptation of the genetics to the given growing environment...

  19. Breeding and Characterization of Hexaploid Wheats with Nil Levels of Grain Polyphenol Oxidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) is a ubiquitous enzyme in plants, responsible for many browning reactions and reduction of food product quality. In common (bread) wheat, PPO occurs in the external layers of grain, often is carried into flour via milling, and can be responsible for the discoloration of whe...

  20. Degree of starchy endosperm separation from bran as a milling quality trait of wheat grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour yield is an important quality trait of wheat, especially for flour millers because it directly affects profitability. In addition to the grain characteristics and milling conditions known to affect flour yield, easy and clean separation of starchy endosperm from bran during milling could have ...

  1. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain

    PubMed Central

    Bonnot, Titouan; Bancel, Emmanuelle; Chambon, Christophe; Boudet, Julie; Branlard, Gérard; Martre, Pierre

    2015-01-01

    Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999. PMID:26579155

  2. Effect of low dose gamma irradiation on plant and grain nutrition of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, Partha Sarathi

    2010-08-01

    We recently reported the use of low dose gamma irradiation to improve plant vigor, grain development and yield attributes of wheat ( Singh and Datta, 2010). Further, we report here the results of a field experiment conducted to assess the effect of gamma irradiation at 0, 0.01, 0.03, 0.05, 0.07 and 0.1 kGy on flag leaf area, stomatal conductance, transpiration and photosynthetic rate and plant and grain nutritional quality. Gamma irradiation improved plant nutrition but did not improve the nutritional quality of grains particularly relating to micronutrients. Grain carotene, a precursor for vitamin A, was higher in irradiated grains. Low grain micronutrients seem to be caused by a limitation in the source to sink nutrient translocation rather than in the nutrient uptake capacity of the plant root.

  3. Microbiological quality of wheat grain and flour from two mills in Queensland, Australia.

    PubMed

    Eglezos, Sofroni

    2010-08-01

    A baseline investigation of the microbiological quality of wheat grain and flour from two mills in Queensland, Australia, was undertaken in order to assess the capacity of these two mills to meet microbiological criteria specified by a customer for raw, non-heat-treated flour. This baseline testing was performed over the 2006 to 2007 wheat season. Three hundred fifty flour samples were monitored for yeast, mold, and Bacillus cereus, 300 for Escherichia coli, 150 for Salmonella, and 100 for aerobic plate count. Fifty grain samples were analyzed for yeast, mold, E. coli, Salmonella, and B. cereus. There was a single isolation of Salmonella Give in unscreened wheat. The yeast, mold, E. coli, and B. cereus prevalences were 56, 40, 2.0, and 4.0% for grain and 71, 17, 0.7, and <0.3% for flour, respectively. Of the positive samples, the means were 3.7, 2.7, 0.6, and 2.1 for grain, and 3.0, 2.8, and 0.8 log CFU/g for flour. The mean of the aerobic plate count was 4.2 log CFU/g with a 95th percentile count of 4.6 log CFU/g. A microbiological quality baseline of wheat grain and flour from these two Queensland mills has been determined. These data in a specific sense assist the two mills to assess their capacity to meet microbiological criteria, and in a general sense provide at least a limited snapshot of Queensland wheat and flour quality for risk assessments being carried out to evaluate the safety of plant and plant products. PMID:20819368

  4. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    PubMed Central

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  5. Deciphering the roles of specific wheat grain proteins in flour functionality, allergenic potential and the response of the grain to the growth environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the wheat gluten proteins, the omega-5 gliadins show some of the most notable changes in response to post-anthesis fertilizer or high temperatures during grain development. These proteins are also associated with the serious food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). RN...

  6. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  7. Locally weighted regression for accessing a database containing wheat grain NIR transmission spectra and grain quality parameters

    NASA Astrophysics Data System (ADS)

    Archibald, Douglas D.; Funk, David B.; Barton, Franklin E., II

    1999-01-01

    Networks of NIR transmission spectrometers operating in the range 850 to 1050 nm are used worldwide to determine wheat grain quality parameters such as protein content. These instrumental system often require maintenance of calibrations for each grain class, and updating of calibrations for each crop year. In order to facilitate annual updates nd eliminate the need for multiple wheat class calibration models, this laboratory is pursuing a modeling strategy that uses locally weighted regression (LWR) to access a spectral database. With LWR, the calibration model defines the procedure to access the database and calculate the prediction, and this model can potentially remain the same for all classes and crop years. Incorporation of new sample variation is accomplished by new additions to the spectral database. Details are presented on development of an NIR model for determination of protein in multiple wheat-classes using the LWR approach with Y- distance weighting. This model is compared with a linear partial least-squares regression model spanning the same diverse set of samples. Initial steps were taken to validate these models with spectra measured on seven instruments at two remote locations.

  8. Identification and sequence analysis of grain softness protein in selected wheat, rye and triticale.

    PubMed

    Kharrazi, M A S; Bobojonov, V

    2012-01-01

    Grain softness protein (GSP) is an important protein for overcoming milling and grain defenses in the innate immunity systems of cereals. The objective of this study was to evaluate and understand GSP sequences in selected wheat, rye and triticale. Using sequences for this gene from a sequence database, we performed clustering analysis to compare the sequences obtained from 3 germplasms with other studied sequences for GSP. The maximum difference between the Hirmand GSP genotype in wheat and the database sequences was 23% in EF109396 and EF109399. Most amino acid variation between the GSP sequences involved the same amino acids. The Nikita rye GSP gene showed 64% identity with DQ269918 and AY667063. The isoelectric point in the GSP of wheat and Lasko triticale was significantly higher than that of rye GSP. In addition, parameters such as optical density, grand average of hydrophobicity, percentage of hydrophobicity and hydrophilic amino acids, and number of alpha helices and beta sheets in GSP were similar in wheat and triticale but not in wheat and rye. PMID:22869084

  9. Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina.

    PubMed

    Palacios, S A; Susca, A; Haidukowski, M; Stea, G; Cendoya, E; Ramírez, M L; Chulze, S N; Farnochi, M C; Moretti, A; Torres, A M

    2015-05-18

    Fusarium proliferatum is a member of the Fusarium fujikuroi species complex (FFSC) involved in the maize ear rot together with Fusarium verticillioides, which is a very closely related species. Recently, different studies have detected natural fumonisin contamination in wheat kernels and most of them have shown that the main species isolated was F. proliferatum. Fusarium strains obtained from freshly harvested durum wheat samples (2008 to 2011 harvest seasons) from Argentina were characterized through a phylogenetic analysis based on translation elongation factor-1 alpha (EF-1α) and calmodulin (CaM) genes, determination of mating type alleles, and evaluation of fumonisin production capability. The strains were identified as F. proliferatum (72%), F. verticillioides (24%) and other Fusarium species. The ratio of mating type alleles (MAT-1 and MAT-2) obtained for both main populations suggests possible occurrence of sexual reproduction in the wheat fields, although this seems more frequent in F. proliferatum. Phylogenetic analysis revealed greater nucleotide variability in F. proliferatum strains than in F. verticillioides, however this was not related to origin, host or harvest year. The fumonisin-producing ability was detected in 92% of the strains isolated from durum wheat grains. These results indicate that F. proliferatum and F. verticillioides, among the fumonisin producing species, frequently contaminate durum wheat grains in Argentina, presenting a high risk for human and animal health. PMID:25732000

  10. Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil.

    PubMed

    Tralamazza, Sabina Moser; Bemvenuti, Renata Heidtmann; Zorzete, Patrícia; de Souza Garcia, Fábio; Corrêa, Benedito

    2016-04-01

    This study investigated the fungal diversity and presence of deoxynivalenol and zearalenone in 150 samples of freshly harvested wheat grains collected in three regions of Brazil (Sao Paulo, Parana, and Rio Grande do Sul). Analysis of the mycobiota showed a predominance of Alternaria sp., Fusarium sp. and Epicoccum sp. Microdochium nivale (23%), a fungus rarely found in Brazilian crops, was detected in Sao Paulo. Four members of the Fusarium graminearum species complex were isolated: F. graminearum s.s. (37%), Fusarium meridionale (46%), Fusarium cortaderiae (13%), and Fusarium austroamericanum (3%). Toxin analysis revealed 99% contamination with deoxynivalenol (mean 706 μg/kg). The frequency of zearalenone varied greatly across regions: wheat grains from Rio Grande do Sul (84%) and Sao Paulo (12%) had median concentrations of 70.9 and 57.9 μg/kg, respectively. ZEA was not detected in the samples from Parana. A total of six samples were above the maximum tolerated level recommended by the European Commission for ZEA in wheat grains. This study provided new insights into the natural mycobiota of Brazilian wheat, demonstrating contamination of most samples with deoxynivalenol and high frequency of zearalenone in samples from Rio Grande do Sul. PMID:26593513

  11. The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition.

    PubMed

    Nikolic, Miroslav; Nikolic, Nina; Kostic, Ljiljana; Pavlovic, Jelena; Bosnic, Predrag; Stevic, Nenad; Savic, Jasna; Hristov, Nikola

    2016-05-15

    The deficiency of zinc (Zn) and iron (Fe) is a global issue causing not only considerable yield losses of food crops but also serious health problems. We have analysed Zn and Fe concentrations in the grains of two bread wheat cultivars along native gradient of micronutrient availability throughout Serbia. Although only 13% of the soil samples were Zn deficient and none was Fe deficient, the levels of these micronutrients in grain were rather low (median values of 21 mg kg(-1) for Zn and 36 mg kg(-1) for Fe), and even less adequate in white flour. Moreover, excessive P fertilization of calcareous soils in the major wheat growing areas strongly correlated with lower grain concentration of Zn. Our results imply that a latent Zn deficiency in wheat grain poses a high risk for grain quality relevant to human health in Serbia, where wheat bread is a staple food. PMID:26925726

  12. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination.

    PubMed

    Colgrave, Michelle L; Goswami, Hareshwar; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A; Tanner, Gregory J

    2015-06-01

    Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV < 10%), showed linearity (R(2) > 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy. PMID:25873154

  13. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach.

    PubMed

    Verma, Shailender Kumar; Kumar, Satish; Sheikh, Imran; Malik, Sachin; Mathpal, Priyanka; Chugh, Vishal; Kumar, Sundip; Prasad, Ramasare; Dhaliwal, Harcharan Singh

    2016-03-01

    Purpose To transfer the 2S chromosomal fragment(s) of Aegilops kotschyi (2S(k)) into the bread wheat genome which could lead to the biofortification of wheat with high grain iron and zinc content. Materials and methods Wheat-Ae. kotschyi 2A/2S(k) substitution lines with high grain iron and zinc content were used to transfer the gene/loci for high grain Fe and Zn content into wheat using seed irradiation approach. Results Bread wheat plants derived from 40 krad-irradiated seeds showed the presence of univalents and multivalents during meiotic metaphase-I. Genomic in situ hybridization analysis of seed irradiation hybrid F2 seedlings showed several terminal and interstitial signals indicated the introgression of Ae. kotschyi chromosome segments. This proves the efficacy of seed radiation hybrid approach in gene transfer experiments. All the radiation-treated hybrid plants with high grain Fe and Zn content were analyzed with wheat group 2 chromosome-specific polymorphic simple sequence repeat markers to identify the introgression of small alien chromosome fragment(s). Conclusion Radiation-induced hybrids showed more than 65% increase in grain iron and 54% increase in Zn contents with better harvest index than the elite wheat cultivar WL711 indicating effective and compensating translocations of 2S(k) fragments into wheat genome. PMID:26883304

  14. Effect of High Temperature on Albumin and Globulin Accumulation in the Endosperm Proteome of the Developing Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high temperature during grain fill on albumin and globulin accumulation profiles was investigated in the endosperm of developing wheat (Triticum aestivum, L. cv. Butte 86) grain. Albumins and globulins were isolated from endosperm of grain grown under a moderate (24°C/17°C, day/night) ...

  15. Grain-Quality attributes for cereals other than wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereals are grass species that are the primary source of food for humankind and important source of animal feed. Energy in the form of starch is their leading contribution but they are also important sources of protein, lipid, vitamins and minerals. Cereal grains are all processed to varying degrees...

  16. Cereals: Overview of uses: accent on wheat grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereals are grass species that are the primary source of food for humankind. Energy in the form of starch is their leading contribution but they are also important sources of protein, lipid, vitamins and minerals. Cereal grains are all processed to varying degrees, and made into a limitless array of...

  17. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  18. [Effects of long-term rotation on the nutritional quality of wheat grain protein on dryland of Loess Plateau, Northwest China].

    PubMed

    Cai, Yan; Hao, Ming-De

    2013-05-01

    A long-term experiment was conducted on the dryland of Loess Plateau to study the effects of three typical rotation systems, including wheat-sainfoin rotation, wheat-pea rotation, and wheat-maize rotation, on the nutritional quality of wheat grain protein. Rotation system and the cropping years of rotated plants affected the nutritional quality of wheat grain protein in varying degrees. As compared with continuous wheat cropping, wheat-sainfoin rotation made the nutritional quality of wheat grain protein relatively stable, and the essential amino acid content, amino acid score, amino acid ratio coefficient, chemical score, and amino acid index of the protein all relatively high, being able to be adopted as a cropping system to product high quality protein wheat in Loess Plateau. Under wheat-pea rotation, the nutritional quality of wheat grain protein after 1-year pea cropping was relatively high, but the essential amino acid content of wheat grain protein after 2-year pea cropping was relatively low, and several essential amino acid scores and chemical score of the grain protein were lower than those under continuous wheat cropping. Furthermore, the essential amino acid index was 12.2% lower than that under continuous wheat cropping. Therefore, wheat-pea rotation showed a relatively low nutritional quality of wheat grain protein. Under wheat-maize rotation, the nutritional quality of wheat grain protein was also relatively stable, but the crude protein and essential amino acid contents and amino acid balance level were lower than those under continuous wheat cropping. PMID:24015555

  19. The effects of zinc fertilization on cadmium concentration in wheat grain

    SciTech Connect

    Oliver, D.P.; Tiller, K.G.; Merry, R.H.

    1994-07-01

    Although the effect of Zn in soil on Cd uptake by plants has been studied extensively there appears to be no consensus in the literature about the interactions. Furthermore, the majority of investigations have studied soils containing elevated concentrations of Cd or Zn as a result of pollution, e.g., the application of sewage sludge to the soil. The accumulation of Cd by wheat (Triticum aestivum L.) grain grown at nine sites across South Australia was investigated. Applications of low rates of Zn fertilizer (up to 5.0 kg Zn ha{sup -1}) were found to markedly decrease the Cd concentration in wheat grain grown in areas of marginal to severe Zn deficiency. No further significant decreases in Cd concentration in grain occurred at higher rates of applied Zn. Effectiveness of applied Zn on grain Cd concentration decreased with time since application. Grain Cd concentrations decreased with fresh and residual applications of Zn fertilizer (up to 5.0 kg Zn ha{sup -1}). Soil tests may provide useful guides to situations where Cd concentrations in grain may be beneficially decreased by Zn applications. 25 refs., 4 figs., 4 tabs.

  20. The Relationship of Red and Photographic Infrared Spectral Data to Grain Yield Variation Within a Winter Wheat Field

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1979-01-01

    Two band hand-held radiometer data from a winter wheat field, collected on 21 dates during the spring growing season, were correlated within field final grain yield. Significant linear relationships were found between various combinations of the red and photographic infrared radiance data collected and the grain yield. The spectral data explained approximately 64 percent of the within field grain yield variation. This variation in grain yield could not be explained using meteorological data as these were similar for all areas of the wheat field. Most importantly, data collected early in the spring were highly correlated with grain yield, a five week time window existed from stem elongation through antheses in which the spectral data were most highly correlated with grain yield, and manifestations of wheat canopy water stress were readily apparent in the spectral data.

  1. A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input1

    PubMed Central

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. PMID:25489021

  2. A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain

    NASA Astrophysics Data System (ADS)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H.; Ratcliffe, N. M.; Sivanand, P. S.; Spencer-Phillips, P. T. N.

    2003-04-01

    Sensors based on composites of metal oxides were fabricated and tested extensively under high-humidity and high-flow conditions with exposure to vapours reported to increase in the headspace of wheat grain (Triticum aestivum cv Hereward) colonized by fungi. The sensors that exhibited high sensitivity to target vapours combined with high stability were selected for inclusion into a four-sensor array prototype system. A sampling protocol aligned to parallel gas chromatography-mass spectrometry and human olfactory assessment studies was established for use with the sensor system. The sensor system was utilized to assess irradiated wheat samples that had been conditioned to 25% moisture content and inoculated with pathogens known to cause spoilage of grain in storage. These included the fungi Penicillium aurantiogriseum, Penicillium vulpinum, Penicillium verrucosum, Fusarium culmorum, Aspergillus niger, and Aspergillus flavus and the actinomycete, Streptomyces griseus. The sensor system successfully tracked the progress of the infections from a very early stage and the results were compared with human olfactory assessment panels run concurrently. A series of dilution studies were undertaken using previously infected grain mixed with sound grain, to improve the sensitivity and maximize the differentiation of the sensor system. An optimum set of conditions including incubation temperature, incubation time, sampling time, and flow rate were ascertained utilizing this method. The sensor system differentiated samples of sound grain from samples of sound grain with 1% (w/w) fungus infected grain added. Following laboratory trials, the prototype sensor system was evaluated in a commercial wheat grain intake facility. Thresholds calculated from laboratory tests were used to differentiate between sound and infected samples (classified by intake laboratory technicians) collected routinely from trucks delivering grain for use in food manufacture. All samples identified as having

  3. The distal portion of wheat (Triticum aestivum L.) chromosome 5D short arm controls endosperm vitreosity and grain hardness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kernel vitreosity is an important trait of wheat grain, but its complete developmental control is not known. We developed back-cross seven (BC7) near isogenic lines in the soft white spring wheat cultivar Alpowa that possess or lack the distal portion of chromosome 5D short arm. This deletion was de...

  4. Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW) ABSTRACT Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) can negatively impact end-use quality and seed viability at planting. Due to preferences for white ...

  5. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel wheat lines with altered flour compositions can be used to decipher the roles of specific gluten proteins in flour quality. Grain proteins from transgenic wheat lines in which genes encoding the omega-5 gliadins were silenced by RNA interference (RNAi) were analyzed in detail by quantitative 2...

  6. Tillage and cattle grazing effects on soil properties and grain yields in a dryland wheat-sorghum-fallow rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) and grain sorghum [Sorghum bicolor (L.) Moench] are grown in a dryland three-year wheat-sorghum-fallow (WSF) rotation in the U.S. Southern High Plains. Cattle- grazing has been integrated into the WSF cropping system as a means to intensify dryland production when using ...

  7. Evaluation of assembly strategies using RNA-seq data associated with grain development of wheat (Triticum aestivum L.).

    PubMed

    Li, Huai-Zhu; Gao, Xiang; Li, Xiao-Yan; Chen, Qi-Jiao; Dong, Jian; Zhao, Wan-Chun

    2013-01-01

    Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes. However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a high-quality transcriptome from RNA sequencing data. PMID:24349528

  8. Evidence of decreasing mineral density in wheat grain over the last 160 years.

    PubMed

    Fan, Ming-Sheng; Zhao, Fang-Jie; Fairweather-Tait, Susan J; Poulton, Paul R; Dunham, Sarah J; McGrath, Steve P

    2008-01-01

    Wheat is an important source of minerals such as iron, zinc, copper and magnesium in the UK diet. The dietary intake of these nutrients has fallen in recent years because of a combination of reduced energy requirements associated with sedentary lifestyles and changes in dietary patterns associated with lower micronutrient density in the diet. Recent publications using data from food composition tables indicate a downward trend in the mineral content of foods and it has been suggested that intensive farming practices may result in soil depletion of minerals. The aim of our study was to evaluate changes in the mineral concentration of wheat using a robust approach to establish whether trends are due to plant factors (e.g. cultivar, yield) or changes in soil nutrient concentration. The mineral concentration of archived wheat grain and soil samples from the Broadbalk Wheat Experiment (established in 1843 at Rothamsted, UK) was determined and trends over time examined in relation to cultivar, yield, and harvest index. The concentrations of zinc, iron, copper and magnesium remained stable between 1845 and the mid 1960s, but since then have decreased significantly, which coincided with the introduction of semi-dwarf, high-yielding cultivars. In comparison, the concentrations in soil have either increased or remained stable. Similarly decreasing trends were observed in different treatments receiving no fertilizers, inorganic fertilizers or organic manure. Multiple regression analysis showed that both increasing yield and harvest index were highly significant factors that explained the downward trend in grain mineral concentration. PMID:19013359

  9. [Freeze resistance analysis of different wheat cultivars based on the relationships between physiological indices and grain yield].

    PubMed

    Wang, Shu-Gang; Wang, Zhen-Lin; Wang, Ping; Wang, Hai-Wei; Huang, Wei; Wu, Yu-Guo; Yin, Yan-Ping

    2011-06-01

    A pot experiment with twenty wheat cultivars was conducted to investigate the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and the MDA, soluble protein and soluble sugar contents of functional leaves as well as the grain yield, 1000-grain weight, and grain morphological characters under low temperature stress. Low temperature (-4 degrees C) stress at stem elongation stage resulted in the changes of grain morphology and yield characters. For most of test cultivars, their grain length-width ratio, grain roundness, and sterile spikelets increased, and their grain equivalent diameter, grain area, 1000-grain weight, and grain yield decreased. Path analysis indicated that after treated with low temperature at stem elongation stage, the SOD activity and soluble sugar content of functional leaves, especially the SOD activity (direct path coefficient -0. 578) , were the dominant factors affecting grain yield. Taking the percentage of decreased grain yield due to low temperature stress as the assessment criterion, the test twenty winter wheat cultivars were divided into three groups. Cultivars Jimai 19, Jimai 20, Liangxing 99, Shannong 1135, Shannong 8355, Taishan 23, Taishan 9818, Wennong 6, and Yannong 21 belonged to high freeze resistance group, cultivars Linmai 2, Weimai 8, Yannong 19, and Zimai 12 were of low freeze resistance group, and the other seven cultivars belonged to medium freeze resistance group. The seedling stage comprehensive assessment index (D value) had a significant negative correlation with the percentage of decreased grain yield (r = -0. 512*), suggesting that the stronger freeze resistance of wheat at seedling stage was beneficial to the higher wheat grain yield, and seedling stage was the critical period to be selected to identify the freeze resistance of wheat. PMID:21941748

  10. Candidate Genes Expressed in Tolerant Common Wheat With Resistant to English Grain Aphid.

    PubMed

    Luo, Kun; Zhang, Gaisheng; Wang, Chunping; Ouellet, Thérèse; Wu, Jingjing; Zhu, Qidi; Zhao, Huiyan

    2014-10-01

    The English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), is a common worldwide pest of wheat (Triticum aestivum L.). The use of improved resistant cultivars by the farmers is the most effective and environmentally friendly method to control this aphid in the field. The winter wheat genotypes 98-10-35 and Amigo are resistant to S. avenae. To identify genes responsible for resistance to S. avenae in these genotypes, differential-display reverse transcription-polymerase chain reaction was used to identify the corresponding differentially expressed sequences in current study. Two backcross progenies were obtained by crossing the two resistant genotypes with the susceptible genotype 1376. Six potential expected-differential bands were sequenced. Lengths of the expressed sequence tags ranged from 128 to 532 bp. Although these expressed sequences were likely associated with S. avenae resistance, there was one expressed sequence tag located on 7DL chromosome, and its potential function may associate with the ability to maintain photosynthesis in wheat. That serves as an active way for tolerant common wheat with resistant to S. avenae. Cloning the full length of these sequences would help us thoroughly understand the mechanism of wheat resistance to S. avenae and be valuable for breeding cultivars with S. avenae resistance. PMID:26309289

  11. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae.

    PubMed

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-Lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the 'Amigo' variety had the lowest palatability to S. avenae alatae of all varieties. 'Tm' (Triticum monococcum), 'Astron,' 'Xanthus,' 'Ww2730,' and 'Batis' varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, 'Amigo,' 'Xiaoyan22,' and some '186Tm' samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for '98-10-35,' 'Xiaoyan22,' 'Tp,' 'Tam200,' 'PI high,' and other '186Tm' samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to 'Xinong1376,' because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of laboratory and long-term field experiments in targeted planting

  12. The Role of Phytic Acid in the Wheat Grain 1

    PubMed Central

    Williams, S. G.

    1970-01-01

    The concentrations of adenosine triphosphate and phytic acid in testa, embryo plus scutellum, aleurone, and endosperm fractions from grain of Triticum vulgare cv. Insignia have been determined during development under both normal conditions and those of water stress. Phytic acid was not detected in the endosperm. In the embryo plus scutellum and aleurone fractions there was a rapid build-up of phytic acid, but the adenosine triphosphate level did not change markedly at this time. These results are not consistent with physiological roles previously suggested for phytic acid other than the role of phytin as a phosphorus and cation store for the germinating seed. PMID:16657322

  13. Differences of Starch Granule Distribution in Grains from Different Spikelet Positions in Winter Wheat

    PubMed Central

    Yu, Anling; Li, Yong; Ni, Yingli; Yang, Weibing; Yang, Dongqing; Cui, Zhengyong; Wang, Zhenlin; Yin, Yanping

    2014-01-01

    Wheat starch development is a complex process and is markedly difference by changes in spikelet spatial position. The present study deals with endosperm starch granule distribution and spatial position during filling development. The study was conducted with pure starch isolated from wheat (Triticum aestivum L.), Jimai20 and Shannong1391, at 7–35 days after anthesis (DAA). The results showed that grain number, spikelet weight and grain weight per spikelet in different spatial position showed parabolic changes. Upper spikelets had highest starch and amylose content followed by basal spikelets, then middle spikelets. The paper also suggested the volume percents of B-type and A-type granule in grain of middle spikelets were remarkably higher and lower than those of basal and upper spikelets, respectively. However, no significant difference occurred in the number percents of the two type granule. The ratio of amylase to amylopectin was positively correlated with the volume proportion of 22.8–42.8 µm, but was negatively related to the volume proportion of <9.9 µm. The results indicated that the formation and distribution of starch granules were affected significantly by spikelet position, and grains at upper and basal spikelet had the potential of increasing grain weight through increasing the volume of B-type granules. PMID:25514032

  14. Nitrogen and Water Stress Impact on Hard Red Spring Wheat Crop Reflectance, Yield and Grain Quality

    NASA Astrophysics Data System (ADS)

    Reese, C. L.; Clay, D. E.; Beck, D.; Clay, S. A.; Seielstad, G.

    2007-12-01

    Water and nitrogen stress impact hard red spring wheat (Triticum aestivum) crop reflectance, yield and grain quality. To minimize yield losses from nitrogen (N) and water stress, it is essential to apply appropriate N in relation to water stress. The objective of this experiment was to determine the influence of N and water stress on hard red spring wheat crop reflectance, yield, and grain quality. Complete randomized block experiments were conducted in 2003, 2004 and 2004 in dryland and irrigated fields at three locations in central South Dakota. Treatments consisted of N rates and N application at different growth stages. Nitrogen fertilizer rates ranged from 0 to 200 kg ha-1. Nitrogen fertilizer application times were (1) planting; (2) planting and tillering (Feekes 2 -3) or (3) tillering (Feekes 2 -3). Reflectance data was collected using a Cropscan and a CropCircle radiometer. Reflectance data was collected at bare soil, tillering (Feekes 2-3) and flag leaf (Feekes 9-10). Carbon 13 isotopic discrimination (Ä) was used to determine yield loss to nitrogen or water stress. Reflectance data was compared to yield and Ä values or grain quality and Ä values. Correlation of crop reflectance (measured at the different growth stages and by the different radiometers) with yield loss to nitrogen or water and grain quality will be presented. Information presented will be used to make corrective nitrogen treatments and improve marketing decisions as related to grain quality.

  15. Early detection of germinated wheat grains using terahertz image and chemometrics

    PubMed Central

    Jiang, Yuying; Ge, Hongyi; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-01-01

    In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h. PMID:26892180

  16. Early detection of germinated wheat grains using terahertz image and chemometrics.

    PubMed

    Jiang, Yuying; Ge, Hongyi; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-01-01

    In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h. PMID:26892180

  17. Early detection of germinated wheat grains using terahertz image and chemometrics

    NASA Astrophysics Data System (ADS)

    Jiang, Yuying; Ge, Hongyi; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-02-01

    In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h.

  18. Ileal and total tract digestibility of wet and dried wheat distillers grain products in growing pigs.

    PubMed

    Lyberg, K; Borling, J; Lindberg, J E

    2012-12-01

    The apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients were evaluated in 2 commercially available products: wheat (Triticum aestivum) wet distillers grain with solubles (WDGS) and wheat dried distillers grain with solubles (DDGS). Two diets included (DM basis) 50% basal diet with either 50% WDGS (W) or 50% DDGS (D). The basal diet included corn (Zea mays) starch, sugar, vitamins, and minerals. Seven castrated male pigs with post valve T-cecum cannulas were fed the diets according to a changeover design during two 14-d periods. In a pre- and postperiod, casein was given as the only protein source with the basal diet to estimate endogenous losses of N and AA for calculation of standardized ileal digestibility (SID). The AID of OM did not differ between diets, but ATTD of OM was higher (P < 0.05) for diet W. The AID (76.2 vs. 68.9%), SID, and ATTD of CP was higher (P < 0.05) in diet W than diet D. The SID for Lys (75.7 vs. 51.8%) and Met (75.8 vs. 70.1%) was higher (P < 0.01) in WDGS than DDGS. In conclusion, drying of wheat distillers grain products can markedly lower ileal digestibility of Lys and Met whereas negative effects on energy value are small. PMID:23365306

  19. [Effects of water-nitrogen interaction on the contents and components of protein and starch in wheat grains].

    PubMed

    Fu, Xue-Li; Wang, Chen-Yang; Guo, Tian-Cai; Zhu, Yun-Ji; Ma, Dong-Yun; Wang, Yong-Hua

    2008-02-01

    With wheat cultivars Yumai 34 (strong-gluten wheat) and Yumai 50 (weak-gluten wheat) as test materials, a field experiment was conducted to study the effects of three irrigation treatments (irrigation at jointing stage, at jointing and grain-filling stages, and at jointing, grain-filling, and pre-maturing stages), three nitrogen application rates (0, 150, and 270 kg x hm(-2)), and their combinations on the contents and components of protein and starch in wheat grains. The results showed that for strong-gluten wheat cultivar Yumai 34, applying 270 kg x hm(-2) of N increased the total content of protein and the contents of albumin, gliadin and glutelin, and enhanced the glutelin/gliadin ratio. This application rate of nitrogen also increased the total content of starch and the content of amylopectin, and decreased the amylose/amylopetin ratio. For weak-gluten wheat cultivar Yumai 50, applying 150 kg x hm(-2) of N increased the contents of albumin and gliadin, and decreased the contents of globulin and glutelin and the glutelin/gliadin ratio. The amylopectin and starch contents also increased when the N application rate was 150 kg x hm(-2). Non-N fertilization or applying 270 kg x hm(-2) of N decreased the accumulation of protein and starch, and resulted in a decrease of grain yield. Among the irrigation treatments, irrigation at jointing and grain-filling stages promoted the accumulation of protein and starch in grains and increased the grain yield, while the other two treatments were unbeneficial to the accumulation of protein and starch and decreased the grain yield. Applying 270 kg x hm(-2) and 150 kg x hm(-2) of N combined with irrigation at jointing and grain-filling stages was the ideal management regime for the high yield and good quality of strong- and weak-gluten wheat cultivars, respectively. PMID:18464637

  20. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis

    PubMed Central

    2014-01-01

    Background Grain size and shape greatly influence grain weight which ultimately enhances grain yield in wheat. Digital imaging (DI) based phenomic characterization can capture the three dimensional variation in grain size and shape than has hitherto been possible. In this study, we report the results from using digital imaging of grain size and shape to understand the relationship among different components of this trait, their contribution to enhance grain weight, and to identify genomic regions (QTLs) controlling grain morphology using genome wide association mapping with high density diversity array technology (DArT) and allele-specific markers. Results Significant positive correlations were observed between grain weight and grain size measurements such as grain length (r = 0.43), width, thickness (r = 0.64) and factor from density (FFD) (r = 0.69). A total of 231 synthetic hexaploid wheats (SHWs) were grouped into five different sub-clusters by Bayesian structure analysis using unlinked DArT markers. Linkage disequilibrium (LD) decay was observed among DArT loci > 10 cM distance and approximately 28% marker pairs were in significant LD. In total, 197 loci over 60 chromosomal regions and 79 loci over 31 chromosomal regions were associated with grain morphology by genome wide analysis using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. They were mainly distributed on homoeologous group 2, 3, 6 and 7 chromosomes. Twenty eight marker-trait associations (MTAs) on the D genome chromosomes 2D, 3D and 6D may carry novel alleles with potential to enhance grain weight due to the use of untapped wild accessions of Aegilops tauschii. Statistical simulations showed that favorable alleles for thousand kernel weight (TKW), grain length, width and thickness have additive genetic effects. Allelic variations for known genes controlling grain size and weight, viz. TaCwi-2A, TaSus-2B, TaCKX6-3D and TaGw2-6A, were also associated

  1. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    PubMed

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat. PMID:17721773

  2. Differential Expression of Durum Wheat Gluten Proteome under Water Stress during Grain Filling.

    PubMed

    Giuliani, Marcella Michela; Palermo, Carmen; De Santis, Michele Andrea; Mentana, Annalisa; Pompa, Marianna; Giuzio, Luigia; Masci, Stefania; Centonze, Diego; Flagella, Zina

    2015-07-29

    Environmental stress during grain filling may affect wheat protein composition, thus influencing its final quality. A proteomic approach was used to evaluate changes in storage protein composition under water stress of two Italian durum wheat (Triticum turgidum ssp. durum) cultivars, Ciccio and Svevo. The high-molecular-weight glutenin region increased progressively in both cultivars and under two water regimens. The L48-35 region, corresponding to low-molecular-weight (LMW) glutenin subunits, increased slightly during grain development and decreased under water stress in both cultivars. In particular, an s-type LMW related to superior technological quality was down-expressed in the early-mid period in Svevo and in the mid-late period in Ciccio. Finally, the L<35 region, corresponding to gliadin-like proteins, decreased slightly during grain development and increased under stress in both cultivars. Several α-gliadins, associated with immunological potential, increased their expression under water stress, especially in Svevo in the early-mid stage of grain filling. PMID:26138860

  3. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Montemurro, Marco; Gobbetti, Marco

    2016-06-01

    Lactic acid bacteria were isolated and identified from quinoa flour, spontaneously fermented quinoa dough, and type I quinoa sourdough. Strains were further selected based on acidification and proteolytic activities. Selected Lactobacillus plantarum T6B10 and Lactobacillus rossiae T0A16 were used as mixed starter to get quinoa sourdough. Compared to non-fermented flour, organic acids, free amino acids, soluble fibers, total phenols, phytase and antioxidant activities, and in vitro protein digestibility markedly increased during fermentation. A wheat bread was made using 20% (w/w) of quinoa sourdough, and compared to baker's yeast wheat breads manufactured with or without quinoa flour. The use of quinoa sourdough improved the chemical, textural, and sensory features of wheat bread, showing better performances compared to the use of quinoa flour. Protein digestibility and quality, and the rate of starch hydrolysis were also nutritional features that markedly improved using quinoa sourdough as an ingredient. This study exploited the potential of quinoa flour through sourdough fermentation. A number of advantages encouraged the manufacture of novel and healthy leavened baked goods. PMID:26919812

  4. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. PMID:26453720

  5. Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads.

    PubMed

    Wolter, Anika; Hager, Anna-Sophie; Zannini, Emanuele; Arendt, Elke K

    2014-03-01

    Gluten-free flours (buckwheat, quinoa, sorghum and teff) were fermented using obligate heterofermentative strain Weissella cibaria MG1 (Wc) and facultative heterofermentative Lactobacillus plantarum FST1.7 (Lp). Starch hydrolysis of breads with and without sourdough (controls) was analyzed in vitro using enzymatic digestion followed by dialysis (10-11 kDa). Hydrolysis indices as well as predicted glycemic indices (pGI) were calculated from reducing sugars released into the dialysate. Amounts of resistant starch (RS; % of total starch) were determined by enzymatic digestion. Upon sourdough addition, RS significantly decreased in buckwheat (Wc 1.28%, Lp 1.44%) and teff sourdough breads (Wc 0.87%, Lp 0.98%) in comparison to their controls (2.01% and 1.92%, respectively). However, no correlation was found with starch hydrolysis. Predicted GIs were reduced upon sourdough addition in wheat (ctrl 100; Wc 85; Lp 76) in comparison to control breads. This was not the case in most gluten-free breads with the exception of sorghum (ctrl 72; Lp 69) and teff sourdough breads (ctrl 74; Lp 68). In contrast, increased pGIs were found in quinoa (ctrl 95; Wc 106; Lp 103) and buckwheat sourdough breads (ctrl 80; Wc 89; Lp 86). PMID:24492829

  6. Effects of high NH+4 on K+ uptake, culm mechanical strength and grain filling in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Wang, Fahong; Liu, Jia; Feng, Bo; Si, Jisheng; Zhang, Bin; Li, Shengdong; Li, Huawei

    2014-01-01

    It is well established that a high external NH+4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH+4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m−2) and high (30 g N m−2) supplies of NH+4 in the presence or absence of additional K+ (6 g K2O m−2) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH+4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH+4. The additional provision of K+ considerably alleviated these negative effects of high NH+4, resulting in a 19.41–26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH+4. This study indicates that the effects of high NH+4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat. PMID:25566278

  7. Occurrence of Fusarium spp. and fumonisins in stored wheat grains marketed in Iran.

    PubMed

    Chehri, Khosrow; Jahromi, Saeed Tamadoni; Reddy, Kasa R N; Abbasi, Saeed; Salleh, Baharuddin

    2010-12-01

    Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F.verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15-155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12-86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13-64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg). PMID:22069576

  8. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content.

    PubMed

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L; Paradiso, Annalisa; Gu, Yong Q; Blanco, Antonio; de Pinto, Maria C; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes. PMID:27468287

  9. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content

    PubMed Central

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L.; Paradiso, Annalisa; Gu, Yong Q.; Blanco, Antonio; de Pinto, Maria C.; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes. PMID:27468287

  10. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some durum wheat (Triticum turgidum L. var durum) cultivars have the genetic propensity to accumulate cadmium (Cd) in the grain. A major gene controlling grain Cd concentration designated as Cdu1 has been reported on 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknow...

  11. Use of student’s t statistic as a phenotype of relative consumption preference of wheat (Triticum aestivum L.) grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-grain wheat (Triticum aestivum L.) products provide essential nutrients to humans, but bran attributes may hinder consumption. Differences in grain attributes including flabor/aroma can be indentified using the house mouse (Mus musculus L.) as a model system. A potential application of this mo...

  12. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NAM-B1 gene is a NAC transcription factor that affects grain nutrient concentrations in wheat (Triticum aestivum). An RNAi line with reduced expression of NAM genes has lower grain protein, iron (Fe), and zinc (Zn) concentrations. To determine whether decreased remobilization, lower plant uptak...

  13. New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature, water and fertilizer have complex and interacting effects on wheat grain development, yield and flour quality. Transcript and protein profiling studies have provided insight into molecular processes in the grain and are now being used in conjunction with controlled growth experiments to...

  14. Specific adaptation and genetic progress for grain yield in Great Plains hard winter wheats, 1987-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meeting the food demands of a growing world population will become increasingly difficult should the rate of genetic improvement in grain yield of wheat (Triticum aestivum L.) and other grain crops decelerate. Data from USDA-ARS coordinated long-term regional performance nurseries was used to exami...

  15. Effect of High Temperature on Albumin and Globulin Accumulation in the Endosperm Proteome of the Developing Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high temperature during grain fill on the accumulation of KCl-soluble/methanol-insoluble albumins and globulins was investigated in the endosperm of developing wheat (Triticum aestivum, L. cv. Butte 86) grain. Plants were grown under a moderate (24°C/17°C, day/night) or a high temperat...

  16. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties.

    PubMed

    Ral, Jean-Philippe; Whan, Alex; Larroque, Oscar; Leyne, Emmett; Pritchard, Jeni; Dielen, Anne-Sophie; Howitt, Crispin A; Morell, Matthew K; Newberry, Marcus

    2016-01-01

    Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality. PMID:26010869

  17. A kinetic and microautoradiographic study of sup 14 C-sucrose translocation into developing wheat grains

    SciTech Connect

    Ning Wang; Fisher, D.B. )

    1991-05-01

    The kinetics of {sup 14}C-photosynthate import by developing wheat grains was followed after pulse-labeling the flag leaf with {sup 14}CO{sub 2}. Samples were collected from four successive points along the transport pathway to and within the grain: exuding aphid stylets on the peduncle, exuding grain pedicels, the grain crease tissues, and the liquid contents of the endosperm cavity. In addition, microautoradiographs were prepared of the grain crease tissues during movement of the {sup 14}C pulse into the grain. At all times, sucrose accounted for 93 to 97% of the total {sup 14}C present at all four sampling sites. The main features of the {sup 14}C kinetics could be accounted for by a simple compartmental model consisting of sucrose pools in series. Microautoradiographs of the crease tissues showed fairly uniform labeling of vascular parenchyma at all times, with a sharp gradient in labeling across the chalaza to the nucellus. Thus the principal resistance to post-phloem solute transport through the maternal tissues appears to be in the symplastic pathway across the chalaza.

  18. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Ramos, I.; Pataco, I. M.; Mourinho, M. P.; Lidon, F.; Reboredo, F.; Pessoa, M. F.; Carvalho, M. L.; Santos, J. P.; Guerra, M.

    2016-06-01

    Micro X-ray fluorescence has been used to obtain elemental maps of biofortified wheat grains. Two varieties of wheat were used in the study, Triticum aestivum L. and Triticum durum desf. Two treatments, with different nutrient concentration, were applied to the plants during the whole plant growth cycle. From the obtained elemental maps it was possible to extract information regarding the plant's physiological processes under the biofortification procedures. Both macro and micronutrients were mapped, providing useful insight into the posterior food processing mechanisms of this biofortified staple food. We have also shown that these kind of studies can now be performed with laboratory benchtop apparatus, rather than using synchrotron radiation, increasing the overall attractiveness of micro X-ray fluorescence in the study of highly heterogeneous biological samples.

  19. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    PubMed Central

    Borrill, Philippa; Connorton, James M.; Balk, Janneke; Miller, Anthony J.; Sanders, Dale; Uauy, Cristobal

    2014-01-01

    Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat. PMID:24600464

  20. Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones

    PubMed Central

    Saint Pierre, C.; Burgueño, J.; Crossa, J.; Fuentes Dávila, G.; Figueroa López, P.; Solís Moya, E.; Ireta Moreno, J.; Hernández Muela, V. M.; Zamora Villa, V. M.; Vikram, P.; Mathews, K.; Sansaloni, C.; Sehgal, D.; Jarquin, D.; Wenzl, P.; Singh, Sukhwinder

    2016-01-01

    Genomic and pedigree predictions for grain yield and agronomic traits were carried out using high density molecular data on a set of 803 spring wheat lines that were evaluated in 5 sites characterized by several environmental co-variables. Seven statistical models were tested using two random cross-validations schemes. Two other prediction problems were studied, namely predicting the lines’ performance at one site with another (pairwise-site) and at untested sites (leave-one-site-out). Grain yield ranged from 3.7 to 9.0 t ha−1 across sites. The best predictability was observed when genotypic and pedigree data were included in the models and their interaction with sites and the environmental co-variables. The leave-one-site-out increased average prediction accuracy over pairwise-site for all the traits, specifically from 0.27 to 0.36 for grain yield. Days to anthesis, maturity, and plant height predictions had high heritability and gave the highest accuracy for prediction models. Genomic and pedigree models coupled with environmental co-variables gave high prediction accuracy due to high genetic correlation between sites. This study provides an example of model prediction considering climate data along-with genomic and pedigree information. Such comprehensive models can be used to achieve rapid enhancement of wheat yield enhancement in current and future climate change scenario. PMID:27311707

  1. Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones.

    PubMed

    Saint Pierre, C; Burgueño, J; Crossa, J; Fuentes Dávila, G; Figueroa López, P; Solís Moya, E; Ireta Moreno, J; Hernández Muela, V M; Zamora Villa, V M; Vikram, P; Mathews, K; Sansaloni, C; Sehgal, D; Jarquin, D; Wenzl, P; Singh, Sukhwinder

    2016-01-01

    Genomic and pedigree predictions for grain yield and agronomic traits were carried out using high density molecular data on a set of 803 spring wheat lines that were evaluated in 5 sites characterized by several environmental co-variables. Seven statistical models were tested using two random cross-validations schemes. Two other prediction problems were studied, namely predicting the lines' performance at one site with another (pairwise-site) and at untested sites (leave-one-site-out). Grain yield ranged from 3.7 to 9.0 t ha(-1) across sites. The best predictability was observed when genotypic and pedigree data were included in the models and their interaction with sites and the environmental co-variables. The leave-one-site-out increased average prediction accuracy over pairwise-site for all the traits, specifically from 0.27 to 0.36 for grain yield. Days to anthesis, maturity, and plant height predictions had high heritability and gave the highest accuracy for prediction models. Genomic and pedigree models coupled with environmental co-variables gave high prediction accuracy due to high genetic correlation between sites. This study provides an example of model prediction considering climate data along-with genomic and pedigree information. Such comprehensive models can be used to achieve rapid enhancement of wheat yield enhancement in current and future climate change scenario. PMID:27311707

  2. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron

    PubMed Central

    Tuli, Rakesh

    2013-01-01

    Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops. PMID:23918965

  3. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron.

    PubMed

    Singh, Sudhir P; Vogel-Mikuš, Katarina; Arčon, Iztok; Vavpetič, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

    2013-08-01

    Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops. PMID:23918965

  4. Contributions of Root WSC during Grain Filling in Wheat under Drought

    PubMed Central

    Zhang, Jingjuan; Dell, Bernard; Ma, Wujun; Vergauwen, Rudy; Zhang, Xinmin; Oteri, Tina; Foreman, Andrew; Laird, Damian; Van den Ende, Wim

    2016-01-01

    As the first organ in plants to sense water-deficit in the soil, roots have important roles for improving crop adaption to water limited environments. Stem water soluble carbohydrates (WSC) are a major carbon source for grain filling under drought conditions. The contributions of root WSC during grain filling under drought has not been revealed. Wheat parental lines of Westonia, Kauz and their derived four double haploid (DH) lines, namely, DH 125, DH 139, DH 307, and DH 338 were used in a field drought experiment with four replications. Through measurements of the root and stem WSC components, and the associated enzyme activities during grain filling, we identified that the levels of root WSC and fructan were one third of the levels in stems. In particular, root glucose and 6-kestose levels were one third of the stem, while the root fructose and bifurcose level were almost half of the stem and sucrose level was two third of the stem. The accumulation and the degradation patterns of root fructan levels were similar to that in the stem, especially under drought. Correlations between root fructan levels and grain assimilation were highly significant, indicating that under terminal drought, root WSC represents a redistributed carbon source for grain filling rather than deep rooting. The significantly higher root sucrose levels under drought suggest that sucrose may act as a signal under drought stress. As compared with stem fructose levels, the earlier increased root fructose levels in DH 307, DH 139, and DH 338 provided agile response to drought stress. Our root results further confirmed that β-(2–6) linkages predominate in wheat with patterns of 6-kestose being closely correlated with overall fructan patterns. Further research will focus on the roles of 6-FEH during fructan remobilization in stems. PMID:27446134

  5. Impact of improved information on the structure of world grain trade. [wheat

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The benefits to be derived by the United States from improvements in global grain crop forecasting capability are discussed. The improvements in forecasting accuracy, which are a result of the use of satellite technology in conjunction with existing ground based estimating procedures are described. The degree of forecasting accuracy to be obtained from satellite technology is also examined. Specific emphasis is placed on wheat production in seven countries/regions: the United States; Canada; Argentina; Australia; Western Europe; the USSR; and all other countries in a group.

  6. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    PubMed Central

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  7. [Effects of cultivation patterns on the radiation use and grain yield of winter wheat].

    PubMed

    Wang, Yue-chao; Li, Chuan-xing; Dai, Xing-long; Zhou, Xiao-yan; Zhang, Yu; Li, Hua-ying; He, Ming-rong

    2015-09-01

    Taking winter wheat cultivar 'Tainong 18' as test material, this paper set three treatments, local farmer's traditional cultivation pattern (FP), super high yield pattern (SH) and high yield high efficiency pattern ( HH) to investigate the effects of cultivation patterns on the intercepted photosynthetically active radiation (IPAR), PAR use efficiency (RUE), dry matter (DM) accumulation, harvest index (HI), grain yield and fertilizers' partial factor productivity (PFP) in 2012-2013. The results showed that IPAR, RUE and DM accumulation of the total growth stage and grain yield under SH pattern were significantly higher than those under FP pattern. IPAR of the total growth stage under HH pattern was lower than that under FP pattern, but RUE, DM accumulation and HI were significantly higher than that under FP pattern, so grain yield was higher than that under FP pattern. The grain yields under HH pattern were respectively decreased by 3.8% and 2.8% under high and low fertility levels compared that under SH pattern, while the PFP of N, P and K under HH pattern were averagely 26.4%, 68.5% and 92.6% higher than those under SH pattern, respectively. In conclusion, HH pattern, with the characteristics of 'reducing fertilizer', 'increasing planting density' and 'delaying sowing date', was the recommended cultivation pattern under the condition similar to this experiment balancing the grain yield, radiation use and fertilizer use. PMID:26785552

  8. Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth.

    PubMed

    Bowerman, Andrew F; Newberry, Marcus; Dielen, Anne-Sophie; Whan, Alex; Larroque, Oscar; Pritchard, Jenifer; Gubler, Frank; Howitt, Crispin A; Pogson, Barry J; Morell, Matthew K; Ral, Jean-Philippe

    2016-01-01

    Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species. PMID:25989474

  9. Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases.

    PubMed

    Suneja, Yadhu; Gupta, Anil K; Sharma, Achla; Bains, Navtej S

    2015-04-01

    Wheat, staple food crop of the world, is sensitive to drought, especially during the grain-filling period. Water soluble carbohydrates (WSCs), stem reserve mobilization and higher invertase activity in the developing grains are important biochemical traits for breeding wheat to enhance tolerance to terminal drought. These traits were studied for three accessions of Triticum dicoccoides(a tetraploid wheat progenitor species) - acc 7054 (EC 171812), acc 7079 (EC 171837) and acc 14004 (G-194-3 M-6 M) selected previously on the basis of grain filling characteristics. Check wheat cultivars- PBW-343 (a popular bread wheat cultivar for irrigated environments) and C-306 (widely adapted variety for rain-fed agriculture) were also included in this set. Analysis of variance revealed significant genotypic differences for the content of water soluble carbohydrates, activity of acid invertase and alkaline invertase. Acc 7079 was found to be a very efficient mobilizer of water soluble carbohydrates (236.43 mg g(-1) peduncle DW) when averaged over irrigated and rain-fed conditions. Acid invertase activity revealed marked genotypic differences between wild and cultivated wheats. Alkaline invertase activity was highest in Acc 7079 when pooled across both the environments. On the whole, acc 7079 qualifies as a suitable donor for enhancing tolerance of bread wheat to terminal drought. The association of physio-biochemical differences observed with grain filling attributes on one hand and molecular markers on the other could be of use in improving wheat for water stress conditions. PMID:25964711

  10. Wheat grain quality under enhanced tropospheric CO{sub 2} and O{sub 3} concentrations

    SciTech Connect

    Rudorff, B.F.T.; Mulchi, C.L.; Fenny, P.

    1996-11-01

    It is expected that the progressive increase of tropospheric trace gases such as CO{sub 2} and O{sub 3} will have a significant impact on agricultural production. The single and combined effects of CO{sub 2} enrichment and tropospheric O{sub 3} on grain quality characteristics in soft red winter wheat (Triticum aestivum L.) were examined in field studies using 3 m in diam. open-top chambers. Wheat cultivars {open_quotes}Massey{close_quotes} (1991) and {open_quotes}Saluda{close_quotes} (1992) were exposed to two CO{sub 2} concentrations (350 vs. 500 {mu}mol CO{sub 2} mol{sup {minus}1}; 12 h d{sup {minus}1}) in combination with two O{sub 3} regimes (charcoal-filtered air vs. ambient air + 40 {plus_minus} 20 nmol O{sub 3} mol{sup {minus}1}, 7 h d{sup {minus}1}; Monday to Friday) from late March until maturity in June. Grain quality characteristics investigated included: test weight, milling and baking quality, flour yield, protein content, softness equivalent, alkaline water retention capacity, and cookie diameter. In general, exposure of plants to either elevated CO{sub 2} or weekly chronic O{sub 3} episodes caused only small changes in grain quality. Milling and baking quality score were not significantly changed in response to treatments in both years. Flour yield was increased by elevated CO{sub 2} but this increase was counteracted when elevated CO{sub 2} was combined with chronic O{sub 3} exposure. Flour protein contents were increased by enhanced O{sub 3} under elevated CO{sub 2}. Although the single effect of either CO{sub 2} enrichment or chronic O{sub 3} exposure had some impact o grain quality characteristics, it was noted that the combined effect of these gases was minor. It is likely that the concomitant increase of CO{sub 2} and O{sub 3} in the troposphere will have no significant impact on wheat grain quality. 25 refs., 1 fig., 2 tabs.

  11. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.

    PubMed

    Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M

    2016-03-01

    Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat. PMID:26573314

  12. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain.

    PubMed

    Waters, Brian M; Uauy, Cristobal; Dubcovsky, Jorge; Grusak, Michael A

    2009-01-01

    The NAM-B1 gene is a NAC transcription factor that affects grain nutrient concentrations in wheat (Triticum aestivum). An RNAi line with reduced expression of NAM genes has lower grain protein, iron (Fe), and zinc (Zn) concentrations. To determine whether decreased remobilization, lower plant uptake, or decreased partitioning to grain are responsible for this phenotype, mineral dynamics were quantified in wheat tissues throughout grain development. Control and RNAi wheat were grown in potting mix and hydroponics. Mineral (Ca, Cu, Fe, K, Mg, Mn, P, S, and Zn) and nitrogen (N) contents of organs were determined at regular intervals to quantify the net remobilization from vegetative tissues and the accumulation of nutrients in grain. Total nutrient accumulation was similar between lines, but grain Fe, Zn, and N were at lower concentrations in the NAM knockdown line. In potting mix, net remobilization of N, Fe, and Zn from vegetative tissues was impaired in the RNAi line. In hydroponics with ample nutrients, net remobilization was not observed, but grain Fe and Zn contents and concentrations remained lower in the RNAi line. When Fe or Zn was withheld post-anthesis, both lines demonstrated remobilization. These results suggest that a major effect of the NAM genes is an increased efflux of nutrients from the vegetative tissues and a higher partitioning of nutrients to grain. PMID:19858116

  13. Green manure addition to soil increases grain zinc concentration in bread wheat.

    PubMed

    Aghili, Forough; Gamper, Hannes A; Eikenberg, Jost; Khoshgoftarmanesh, Amir H; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738

  14. Green Manure Addition to Soil Increases Grain Zinc Concentration in Bread Wheat

    PubMed Central

    Aghili, Forough; Gamper, Hannes A.; Eikenberg, Jost; Khoshgoftarmanesh, Amir H.; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg−1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg−1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg−1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)−1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)−1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738

  15. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance.

    PubMed

    Walter, Stephanie; Kahla, Amal; Arunachalam, Chanemoughasoundharam; Perochon, Alexandre; Khan, Mojibur R; Scofield, Steven R; Doohan, Fiona M

    2015-05-01

    The mycotoxin deoxynivalenol (DON) acts as a disease virulence factor for Fusarium fungi, and tolerance of DON enhances wheat resistance to Fusarium head blight (FHB) disease. Two variants of an ATP-binding cassette (ABC) family C transporter gene were cloned from DON-treated wheat mRNA, namely TaABCC3.1 and TaABCC3.2. These represent two of three putative genes identified on chromosomes 3A, 3B, and 3D of the wheat genome sequence. Variant TaABCC3.1 represents the DON-responsive transcript previously associated with DON resistance in wheat. PCR-based mapping and in silico sequence analyses located TaABCC3.1 to the short arm of wheat chromosome 3B (not within the FHB resistance quantitative trait locus Fhb1). In silico analyses of microarray data indicated that TaABCC3 genes are expressed in reproductive tissue and roots, and in response to the DON producer Fusarium graminearum. Gene expression studies showed that TaABCC3.1 is activated as part of the early host response to DON and in response to the FHB defence hormone jasmonic acid. Virus-induced gene silencing (VIGS) confirmed that TaABCC3 genes contributed to DON tolerance. VIGS was performed using two independent viral construct applications: one specifically targeted TaABCC3.1 for silencing, while the other targeted this gene and the chromosome 3A homeologue. In both instances, VIGS resulted in more toxin-induced discoloration of spikelets, compared with the DON effects in non-silenced spikelets at 14 d after toxin treatment (≥2.2-fold increase, P<0.05). Silencing by both VIGS constructs enhanced head ripening, and especially so in DON-treated heads. VIGS of TaABCC3 genes also reduced the grain number by more than 28% (P<0.05), both with and without DON treatment, and the effects were greater for the construct that targeted the two homeologues. Hence, DON-responsive TaABCC3 genes warrant further study to determine their potential as disease resistance breeding targets and their function in grain formation

  16. Enhancement of wheat grain antioxidant activity by solid state fermentation with Grifola spp.

    PubMed

    Postemsky, Pablo; Curvetto, Néstor

    2014-05-01

    Grifola frondosa, Grifola gargal, and Grifola sordulenta are edible and medicinal mushrooms with antioxidant properties. To obtain wheat flour (Wf ) with a higher antioxidant activity than the one exhibited by regular Wf, solid state fermentation (SSF) of wheat grains with mycelia of those Grifola spp. was used to obtain biotransformed wheat grain (BWG) flour. The methanolic extract of control Wf and BWG flour of G. gargal, G. sordulenta, and G. frondosa (GfWG, GgWG, and GsWG, respectively) were studied for their radical scavenging (RS) activity against 2,2-diphenyl-1-picrylhydracyl (DPPH) and their Fe(III) reducing power (RP). The values for RS-EC50 decreased in BWG flour, therefore presenting a higher antioxidant activity: GgWG (0.56 mg/mL), GfWG (0.81 mg/mL), and GsWG (5.80 mg/mL) in comparison to Wf (57.60 mg/mL). The antioxidant content for this RS activity in terms of ascorbic acid content (RS-EQAA) was highest in GfWG, followed by GgWG and GsWG (71.73, 14.46, and 3.02 mg/g, respectively) and lowest in Wf (0.25 mg/g). The RP-EC50 values in GgWG, GfWG, and GsWG were low (0.55, 0.64, and 4.20 mg/mL, respectively) with respect to Wf (55.00 mg/mL). Compared with Wf (0.56 mg/g), the RP capacity in terms of ascorbic acid content (RP-EQAA) was very high in GfWG (193.67 mg/g) followed by GgWG and GsWG (31.42 and 8.74 mg/g, respectively). The high content in gallic acid equivalents was consistent with RS-EQ(AA) and RP-EQ(AA) contents. TLC revealed that antioxidant activity in BWG could be related to the presence of phenolic compounds. Thus, a valuable food alternative can easily be obtained with wheat grains, that is, by markedly increasing their antioxidant value through SSF with Grifola spp. PMID:24552201

  17. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    PubMed

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  18. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Jamme, F.; Robert, R; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of {Beta}-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of {Beta}-glucan is found in periclinal cell walls close to the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.

  19. Identification of Fusarium graminearum infection severity of wheat grains by digitally aided spectroscopy

    NASA Astrophysics Data System (ADS)

    Makkai, Géza; Erostyák, János; Mesterházy, Ákos

    2013-05-01

    The Fusarium head blight caused mostly by Fusarium graminearum (F.g.) is the most important disease of wheat because it not only leads to yield loss, but the toxin contamination makes the yield harvested. First, visual assessment of the heads was made, then the ratio of Fusarium damaged kernels (FDK) becomes the attention, and since introduction of the toxin limits for wheat, the deoxynivalenol contamination has gained significance. However, the FDK has a greater practical significance, as the identification of Fusarium damaged kernels is the precondition of their separation.For this reason a more exact and more sensitive method was developed by using updated spectroscopy methods. The infection sensitive spectral index (ISSI) function has been developed to characterize spectral features of images of grains with different infection severities. The green and red color ranges could be best used in this analysis. It was also found that the way how different spectra from different grains or samples can be normalized and compared. This histogram analyzing method uses scanned images and it seems to be useful in describing the infection severity of heterogeneous samples better than available before.This might serve as scientific background to develop new instruments for rapid tests.

  20. Wheat Grain Filling Is Limited by Grain Filling Capacity rather than the Duration of Flag Leaf Photosynthesis: A Case Study Using NAM RNAi Plants

    PubMed Central

    Borrill, Philippa; Fahy, Brendan; Smith, Alison M.; Uauy, Cristobal

    2015-01-01

    It has been proposed that delayed leaf senescence can extend grain filling duration and thus increase yields in cereal crops. We found that wheat (Triticum aestivum) NAM RNAi plants with delayed senescence carried out 40% more flag leaf photosynthesis after anthesis than control plants, but had the same rate and duration of starch accumulation during grain filling and the same final grain weight. The additional photosynthate available in NAM RNAi plants was in part stored as fructans in the stems, whereas stem fructans were remobilised during grain filling in control plants. In both genotypes, activity of starch synthase was limiting for starch synthesis in the later stages of grain filling. We suggest that in order to realise the potential yield gains offered by delayed leaf senescence, this trait should be combined with increased grain filling capacity. PMID:26241955

  1. Variations in Protein Concentration and Nitrogen Sources in Different Positions of Grain in Wheat

    PubMed Central

    Li, Xiangnan; Zhou, Longjing; Liu, Fulai; Zhou, Qin; Cai, Jian; Wang, Xiao; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    The distribution patterns of total protein and protein components in different layers of wheat grain were investigated using the pearling technique, and the sources of different protein components and pearling fractions were identified using 15N isotope tracing methods. It was found that N absorbed from jointing to anthesis (JA) and remobilized to the grain after anthesis was the principal source of grain N, especially in the outer layer. For albumin and globulin, the amount of N absorbed during different stages all showed a decreasing trend from the surface layer to the center part. Whereas, for globulin and glutenin, the N absorbed after anthesis accounted for the main part indicating that for storage protein, the utilization of N assimilated after anthesis is greater than that of the stored N assimilated before anthesis. It is concluded that manipulation of the N application rate during different growth stages could be an effective approach to modulate the distribution of protein fractions in pearled grains for specific end-uses. PMID:27446169

  2. Investigations of spectral separability of small grains, early season wheat detection, and multicrop inventory planning. [North Dakota and Kansas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Gleason, J. M.

    1977-01-01

    The author has identified the following significant results. LANDSAT data from seven 5 by 6 segments having crop type information were analyzed to determine the potential for spectral separation of spring wheat from other small grains as an alternative to the primary LACIE procedure for estimating spring wheat acreage. Within segment field-center, classification accuracies for spring wheat vs. barley tended to be best in mid-July when crop color changes were in progress. When correlations were made for differences in atmospheric haze, data from several segments could be aggregated, and results that approached within segment accuracies were obtained for selected dates. LACIE field measurement spectral reflectance data provided information on both wheat development patterns and the importance of various agronomic factors on wheat reflectance, the most important being availability of soil moisture. To investigate early season detection for winter wheat, reflectance of developing wheat patterns was simulated through reflectance modeling and was analyzed along with field measured reflectance from a Kansas site. The green component development of the wheat field was analyzed as a function of data throughout the season. A selected threshold was not crossed by all fields until mid-April. These reflectance data were shown to be consistent actual LANDSAT data.

  3. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells are altered by high temperature during grain fill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. ‘Butte 86’) was produced under a 24/17°C or 37/28°C day/nigh...

  4. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. "Butte 86") was produced under a 24/17°C or 37/28°C day/nigh...

  5. Trichothecene Genotypes of the Fusarium graminearum Species Complex Isolated from Brazilian Wheat Grains by Conventional and Quantitative PCR

    PubMed Central

    Tralamazza, Sabina M.; Braghini, Raquel; Corrêa, Benedito

    2016-01-01

    We compared two well-established methods, fungal isolation followed by conventional PCR and DNA analysis by quantitative PCR (qPCR), to define trichothecene genotypes in Brazilian wheat grains from different locations. For this purpose, after fungal isolation from 75 wheat samples, 100 isolates of the Fusarium graminearum species complex (FGSC) were genotyped by PCR to establish their trichothecene profile. For profiling by qPCR, DNA was extracted from the wheat samples and analyzed. The methods provided similar and divergent results. The FGSC isolates were classified as NIV (55%), 15-ADON (43%), and 3-ADON (2%). Analysis by qPCR showed 100% contamination with 15-ADON strains in all wheat samples, 80% contamination with the NIV genotype, and only 33.3% contamination with 3-ADON strains. Further analysis revealed that 96% of all quantified DNA was attributed to the 15-ADON profile, while 3.4% was attributed to NIV and only 0.06% to 3-ADON. A positive correlation was observed between 15-ADON genotype DNA concentration and deoxynivalenol (DON) content in the wheat samples. The high frequency of fungi, DNA levels and positive correlation with DON strongly indicate that 15-ADON producers are the main trichothecene genotype in Brazilian wheat grains. Surprisingly, although many isolates (55%) carried the NIV genotype and this genotype was identified in 80% of the wheat samples, only 3.4% of fungal DNA was in fact from NIV producers. Although, our findings showed that each method provided a different perspective about the trichothecene profile, DNA analysis by qPCR gave us new insight about fungal contamination levels in Brazilian wheat grains. Nevertheless, both techniques should be used to obtain more robust results. PMID:26973624

  6. [Effects of wheat-straw returning into paddy soil on dissolved organic carbon contents and rice grain yield].

    PubMed

    Xu, Ke; Liu, Meng; Chen, Jing-du; Gu, Hai-yan; Dai, Qi-gen; Ma, Ke-qiang; Jiang, Feng; He, Li

    2015-02-01

    A tank experiment using conventional rice cultivar Nanjing 44 as experimental material was conducted at the Experimental Farm of Yangzhou University to investigate the dynamics of wheat straw decomposition rate and the amount of carbon release in clay and sandy soils, as well as its effects on the content of dissolved organic carbon (DOC) and rice yield. The two rates of wheat straw returning were 0 and 6000 kg · hm(-2), and three N application levels were 0, 225, 300 kg · hm(-2). The results showed that, the rate of wheat straw decomposition and the amount of carbon release in clay and sandy soils were highest during the initial 30 days after wheat straw returning, and then slowed down after, which could be promoted by a higher level of nitrogen application. The rate of wheat straw decomposition and the amount of carbon release in clay soil were higher than that in sandy soil. The DOC content in soil increased gradually with wheat straw returning into paddy soil and at the twenty-fifth day, and then decreased gradually to a stable value. The DOC content at the soil depth of 15 cm was significantly increased by wheat straw returning, but not at the soil depth of 30 cm and 45 cm. It was concluded that wheat straw returning increased the DOC content in the soil depth of 0-15 cm mainly. N application decreased the DOC content and there was no difference between the two N application levels. Straw returning decreased the number of tillers in the early growth period, resulted in significantly reduced panicles per unit area, but increased spikelets per panicle, filled-grain percentages, 1000-grain mass, and then enhanced grain yield. PMID:26094457

  7. Trichothecene Genotypes of the Fusarium graminearum Species Complex Isolated from Brazilian Wheat Grains by Conventional and Quantitative PCR.

    PubMed

    Tralamazza, Sabina M; Braghini, Raquel; Corrêa, Benedito

    2016-01-01

    We compared two well-established methods, fungal isolation followed by conventional PCR and DNA analysis by quantitative PCR (qPCR), to define trichothecene genotypes in Brazilian wheat grains from different locations. For this purpose, after fungal isolation from 75 wheat samples, 100 isolates of the Fusarium graminearum species complex (FGSC) were genotyped by PCR to establish their trichothecene profile. For profiling by qPCR, DNA was extracted from the wheat samples and analyzed. The methods provided similar and divergent results. The FGSC isolates were classified as NIV (55%), 15-ADON (43%), and 3-ADON (2%). Analysis by qPCR showed 100% contamination with 15-ADON strains in all wheat samples, 80% contamination with the NIV genotype, and only 33.3% contamination with 3-ADON strains. Further analysis revealed that 96% of all quantified DNA was attributed to the 15-ADON profile, while 3.4% was attributed to NIV and only 0.06% to 3-ADON. A positive correlation was observed between 15-ADON genotype DNA concentration and deoxynivalenol (DON) content in the wheat samples. The high frequency of fungi, DNA levels and positive correlation with DON strongly indicate that 15-ADON producers are the main trichothecene genotype in Brazilian wheat grains. Surprisingly, although many isolates (55%) carried the NIV genotype and this genotype was identified in 80% of the wheat samples, only 3.4% of fungal DNA was in fact from NIV producers. Although, our findings showed that each method provided a different perspective about the trichothecene profile, DNA analysis by qPCR gave us new insight about fungal contamination levels in Brazilian wheat grains. Nevertheless, both techniques should be used to obtain more robust results. PMID:26973624

  8. Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains

    PubMed Central

    Marcotuli, Ilaria; Houston, Kelly; Schwerdt, Julian G.; Waugh, Robbie; Fincher, Geoffrey B.; Burton, Rachel A.; Blanco, Antonio; Gadaleta, Agata

    2016-01-01

    Non-starch polysaccharides (NSPs) have many health benefits, including immunomodulatory activity, lowering serum cholesterol, a faecal bulking effect, enhanced absorption of certain minerals, prebiotic effects and the amelioration of type II diabetes. The principal components of the NSP in cereal grains are (1,3;1,4)-β-glucans and arabinoxylans. Although (1,3;1,4)-β-glucan (hereafter called β-glucan) is not the most representative component of wheat cell walls, it is one of the most important types of soluble fibre in terms of its proven beneficial effects on human health. In the present work we explored the genetic variability of β-glucan content in grains from a tetraploid wheat collection that had been genotyped with a 90k-iSelect array, and combined this data to carry out an association analysis. The β-glucan content, expressed as a percentage w/w of grain dry weight, ranged from 0.18% to 0.89% across the collection. Our analysis identified seven genomic regions associated with β-glucan, located on chromosomes 1A, 2A (two), 2B, 5B and 7A (two), confirming the quantitative nature of this trait. Analysis of marker trait associations (MTAs) in syntenic regions of several grass species revealed putative candidate genes that might influence β-glucan levels in the endosperm, possibly via their participation in carbon partitioning. These include the glycosyl hydrolases endo-β-(1,4)-glucanase (cellulase), β-amylase, (1,4)-β-xylan endohydrolase, xylanase inhibitor protein I, isoamylase and the glycosyl transferase starch synthase II. PMID:27045166

  9. Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains.

    PubMed

    Marcotuli, Ilaria; Houston, Kelly; Schwerdt, Julian G; Waugh, Robbie; Fincher, Geoffrey B; Burton, Rachel A; Blanco, Antonio; Gadaleta, Agata

    2016-01-01

    Non-starch polysaccharides (NSPs) have many health benefits, including immunomodulatory activity, lowering serum cholesterol, a faecal bulking effect, enhanced absorption of certain minerals, prebiotic effects and the amelioration of type II diabetes. The principal components of the NSP in cereal grains are (1,3;1,4)-β-glucans and arabinoxylans. Although (1,3;1,4)-β-glucan (hereafter called β-glucan) is not the most representative component of wheat cell walls, it is one of the most important types of soluble fibre in terms of its proven beneficial effects on human health. In the present work we explored the genetic variability of β-glucan content in grains from a tetraploid wheat collection that had been genotyped with a 90k-iSelect array, and combined this data to carry out an association analysis. The β-glucan content, expressed as a percentage w/w of grain dry weight, ranged from 0.18% to 0.89% across the collection. Our analysis identified seven genomic regions associated with β-glucan, located on chromosomes 1A, 2A (two), 2B, 5B and 7A (two), confirming the quantitative nature of this trait. Analysis of marker trait associations (MTAs) in syntenic regions of several grass species revealed putative candidate genes that might influence β-glucan levels in the endosperm, possibly via their participation in carbon partitioning. These include the glycosyl hydrolases endo-β-(1,4)-glucanase (cellulase), β-amylase, (1,4)-β-xylan endohydrolase, xylanase inhibitor protein I, isoamylase and the glycosyl transferase starch synthase II. PMID:27045166

  10. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate. [Triticum aestivum

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1987-06-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and /sup 32/P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.

  11. Optimizing nitrogen management for soft red winter wheat yield, grain protein, and grain quality using precision agriculture and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Farrer, Dianne Carter

    The purpose of this research was to improve the management of soft red winter wheat (Triticum aestivum L.) in North Carolina. There were three issues addressed; the quality of the grain as affected by delayed harvest, explaining grain protein variability through nitrogen (N) management, and developing N recommendations at growth stage (GS) 30 using aerial color infrared (CIR) photography. The impact of delayed harvest on grain yield, test weight, grain protein, and 20 milling and baking quality parameters was studied in three trials in 2002 and three trials in 2003. Yield was significantly reduced in three out of five trials due to dry, warm environments, possibly indicating shattering. Test weights were significantly reduced in five out of six trials and were positively correlated to the number of precipitation events and to the number of days between harvests, indicating the negative effects of wetting and drying cycles. Grain protein was not affected by delayed harvest. Of the 20 quality parameters investigated, flour falling number, clear flour, and farinograph breakdown times were significantly reduced due to delayed harvest, while grain deoxynivalenol (DON) levels increased with a delayed harvest. Grain protein content in soft red winter wheat is highly variable across years and environments. A second study examined the effects of different nitrogen (N) fertilizer rates and times of application on grain protein variability. Seven different environments were utilized in this study. Though environment contributed about 23% of grain protein variability, the majority of that variability (52%) was attributed to N management. It was found that as grain protein levels increased at higher N rates, so did overall protein variability as indicated by the three stability indexes employed. In addition, applying the majority of total N at growth stage (GS) 30 decreased grain protein stability. Site-specific N management systems using remote sensing techniques can

  12. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Liu, Liangyun; Wang, Jihua; Huang, Wenjiang; Song, Xiaoyu; Li, Cunjun

    2005-05-01

    Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content ( R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis stage were potential indicators for grain protein content. The vegetation index, VI green, derived from the canopy spectral reflectance at green and red bands, was significantly correlated to the leaf nitrogen content at anthesis stage, and also highly significantly correlated to the final grain protein content ( R2 = 0.46). Secondly, the external conditions, such as irrigation, fertilization and temperature, had important influence on grain quality. Water stress at grain filling stage can increase grain protein content, and leaf water content is closely related to irrigation levels, therefore, the spectral indices correlated to leaf water content can be potential indicators for grain protein content. The spectral reflectance of TM channel 5 derived from canopy spectra or image data at grain filling stage was all significantly correlated to grain protein content ( R2 = 0.31 and 0.37, respectively). Finally, not only this study proved the feasibility of using remote sensing data to predict grain protein content, but it also provided a tentative prediction of the grain protein content in Beijing area using the reflectance image of TM channel 5.

  13. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. PMID:26032167

  14. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss. PMID:26785553

  15. Using 7 cm immobilized pH gradient strips to determine levels of clinically relevant proteins in wheat grain extracts

    PubMed Central

    Fekecsová, Sona; Danchenko, Maksym; Uvackova, Lubica; Skultety, Ludovit; Hajduch, Martin

    2015-01-01

    The aim of the work was to test a relatively simple proteomics approach based on phenol extraction and two-dimensional gel electrophoresis (2-DE) with 7 cm immobilized pH gradient strips for the determination of clinically relevant proteins in wheat grain. Using this approach, 157 2-DE spots were quantified in biological triplicate, out of which 55 were identified by matrix-assisted laser desorption/ionization – time of flight tandem mass spectrometry. Clinically relevant proteins associated with celiac disease, wheat dependent exercise induced anaphylaxis, baker’s asthma, and food allergy, were detected in 24 2-DE spots. However, alcohol-soluble gliadins were not detected with this approach. The comparison with a recent quantitative study suggested that gel-based and gel-free proteomics approaches are complementary for the detection and quantification of clinically relevant proteins in wheat grain. PMID:26124766

  16. LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs.

    PubMed

    Hu, Ying; Stromeck, Achim; Loponen, Jussi; Lopes-Lutz, Daise; Schieber, Andreas; Gänzle, Michael G

    2011-11-23

    This study quantified antiotensin I-converting enzyme (ACE) inhibitory peptides in rye malt sourdoughs supplemented with gluten proteins and fermented with six strains of Lactobacillus spp. Bioinformatic analysis of prolamins from barley, rye, and wheat demonstrated that the ACE inhibitory peptides LQP, LLP, VPP, and IPP are frequently encrypted in their primary sequence. These tripeptides were quantified by liquid chromatography-tandem mass spectrometry. Tripeptide levels in sourdoughs were generally higher as compared to the chemically acidified controls. Sourdoughs fermented with different strains showed different concentrations of LQP and LLP. These differences corresponded to strain-specific differences in PepO and PepN activities. The highest levels of peptides VPP, IPP, LQP, and LLP, 0.23, 0.71, 1.09, and 0.09 mmol (kg DM)(-1), respectively, were observed in rye malt: gluten sourdoughs fermented with Lactobacillus reuteri TMW 1.106 and added protease. These concentrations were 6-7 times higher as compared to sourdough without fungal protease and exceed the IC(50) by 100-1000-fold. PMID:21985248

  17. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions.

    PubMed

    Harth, Henning; Van Kerrebroeck, Simon; De Vuyst, Luc

    2016-07-01

    Barley flour is not commonly used for baking because of its negative effects on bread dough rheology and loaf volume. However, barley sourdoughs are promising ingredients to produce improved barley-based breads. Spontaneous barley sourdough fermentations were performed through backslopping (every 24h, 10days) under laboratory (fermentors, controlled temperature of 30°C, high dough yield of 400) and bakery conditions (open vessels, ambient temperature of 17-22°C, low dough yield of 200), making use of the same batch of flour. They differed in pH evolution, microbial community dynamics, and lactic acid bacteria (LAB) species composition. After ten backsloppings, the barley sourdoughs were characterized by the presence of the LAB species Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus brevis in the case of the laboratory productions (fast pH decrease, pH<4.0 after two backslopping steps), and of Leuconostoc citreum, Leuconostoc mesenteroides, Weissella confusa and Weissella cibaria in the case of the bakery productions (slow pH decrease, pH4.0 after eight backslopping steps). In both sourdough productions, Saccharomyces cerevisiae was the sole yeast species. Breads made with wheat flour supplemented with 20% (on flour basis) barley sourdough displayed a firmer texture, a smaller volume, and an acceptable flavour compared with all wheat-based reference breads. Hence, representative strains of the LAB species mentioned above, adapted to the environmental conditions they will be confronted with, may be selected as starter cultures for the production of stable barley sourdoughs and flavourful breads. PMID:27088869

  18. Gradual Incorporation of Whole Wheat Flour into Bread Products for Elementary School Children Improves Whole Grain Intake

    ERIC Educational Resources Information Center

    Rosen, Renee A.; Sadeghi, Lelia; Schroeder, Natalia; Reicks, Marla M.; Marquart, Len

    2008-01-01

    Purpose: Whole grain intake is associated with health benefits but current consumption by children is only about one-third of the recommended level. The purpose of this study was to test the feasibility of an innovative approach whereby the whole wheat content of bread products in school lunches was gradually increased to increase whole grain…

  19. Differentiation of whole grain and refined wheat (T. aestivum) flour using a fuzzy mass spectrometric fingerprinting and chemometric approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fuzzy mass spectrometric (MS) fingerprinting method combined with chemometric analysis was established to provide rapid discrimination between whole grain and refined wheat flour. Twenty one samples, including thirteen samples from three cultivars and eight from local grocery store, were studied....

  20. Genes Encoding the PR-4 Protein Wheatwin Are Developmentally Regulated in Wheat Grains and Respond to High Temperatures During Grainfill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequences encoding three wheatwins, including a novel protein not identified previously, were found among expressed sequence tags (ESTs) from grains from the US bread wheat Butte 86 and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to detect transcripts specific for...

  1. Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain.

    PubMed

    Ordaz-Ortiz, José Juan; Devaux, Marie-Françoise; Saulnier, Luc

    2005-10-19

    Arabinoxylans (AX) are cell wall polysaccharides of complex structure involved in many aspects of wheat flour end uses. The study of the variations of AX structure can lead to the identification of genes involved in their biosynthesis, and thus in the control of the various aspects of grain quality related to their presence. A method is proposed to identify AX variations directly in whole grain by enzymatic degradation. An endoxylanase from Trichoderma viride was used to extract AX from a collection of 20 wheat cultivars (Triticum aestivum L.). Enzymatic degradation products were analyzed by HPAEC and multivariate analysis techniques (principal component analysis, canonical correlation analysis, and cluster analysis) were applied to analyze chromatographic data. The method evidenced variations in the proportion of mono- and disubstitution of the xylan backbone by arabinose side chains, allowing classification of the different varieties according to the structural features of AX. A similar classification was obtained starting from flour or whole grain, indicating that the method was specific of AX from endosperm tissues. In conclusion, the method combining endoxylanase treatment of wheat grain and the analysis of degradation products, e.g., enzymatic fingerprinting, can be applied to collections of wheat cultivars, and possibly other cereals in order to establish quantitative trait loci related to the biosynthesis of AX. PMID:16218687

  2. Effects of Short Exposures to Spinosad-Treated Wheat or Maize on Four Stored-Grain Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of short exposures to spinosad-treated wheat and maize was evaluated against adults of four stored-product insects: the lesser grain borer, Rhyzopertha dominica (F.), the rice weevil, Sitophilus oryzae (L.), the red flour beetle, Tribolium castaneum (Herbst), and the psocid Lepinotus reti...

  3. Phenotypic plasticity of winter wheat heading date and grain yield across the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic plasticity describes the range of phenotypes produced by a single genotype under varying environmental conditions. We evaluated the extent of phenotypic variation and plasticity in thermal time to heading and grain yield in 299 hard winter wheat (Triticum aestivum L.) genotypes representa...

  4. A Comprehensive Genotype and Environment Assessment of Wheat Grain Ash Content in Oregon and Washington: Analysis of Variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive analysis of the variation in wheat grain ash content has not been conducted. This study assessed the relative contribution of genotype and environment to variation in ash content, with a particular aim of ascertaining the potential for manipulating the trait using contemporary adapt...

  5. A novel transcriptomic approach to identify candidate genes for grain quality traits in wheat.

    PubMed

    Wan, Yongfang; Underwood, Claudia; Toole, Geraldine; Skeggs, Peter; Zhu, Tong; Leverington, Michelle; Griffiths, Simon; Wheeler, Tim; Gooding, Mike; Poole, Rebecca; Edwards, Keith J; Gezan, Salvador; Welham, Sue; Snape, John; Mills, E N Clare; Mitchell, Rowan A C; Shewry, Peter R

    2009-06-01

    A novel methodology is described in which transcriptomics is combined with the measurement of bread-making quality and other agronomic traits for wheat genotypes grown in different environments (wet and cool or hot and dry conditions) to identify transcripts associated with these traits. Seven doubled haploid lines from the Spark x Rialto mapping population were selected to be matched for development and known alleles affecting quality. These were grown in polytunnels with different environments applied 14 days post-anthesis, and the whole experiment was repeated over 2 years. Transcriptomics using the wheat Affymetrix chip was carried out on whole caryopsis samples at two stages during grain filling. Transcript abundance was correlated with the traits for approximately 400 transcripts. About 30 of these were selected as being of most interest, and markers were derived from them and mapped using the population. Expression was identified as being under cis control for 11 of these and under trans control for 18. These transcripts are candidates for involvement in the biological processes which underlie genotypic variation in these traits. PMID:19490503

  6. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    PubMed Central

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  7. Epistasis and genotype-by-environment interaction of grain protein content in durum wheat

    PubMed Central

    2010-01-01

    Parental, F1 , F 2 , BC 1 and BC 2 generations of four crosses involving four cultivars of durum wheat (Triticum durum Desf.) were evaluated at two sites in Tunisia. A three-parameter model was found inadequate for all cases except crosses Chili x Cocorit 71 at site Sidi Thabet and Inrat 69 x Karim at both sites. In most cases a digenic epistatic model was sufficient to explain variation in generation means. Dominance effects (h) and additive x additive epistasis (i) (when significant) were more important than additive (d) effects and other epistatic components. Considering the genotype-by-environment interaction, the non-interactive model (m, d, h, e) was found adequate. Additive variance was higher than environmental variance in three crosses at both sites. The estimated values of narrow-sense heritability were dependent upon the cross and the sites and were 0%-85%. The results indicate that appropriate choice of environment and selection in later generations would increase grain protein content in durum wheat. PMID:21637615

  8. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application.

    PubMed

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru; Langridge, Peter

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  9. Quality and nutritional properties of pasta products enriched with immature wheat grain.

    PubMed

    Casiraghi, Maria Cristina; Pagani, Maria Ambrogina; Erba, Daniela; Marti, Alessandra; Cecchini, Cristina; D'Egidio, Maria Grazia

    2013-08-01

    In this study, nutritional and sensory properties of pasta enriched with 30% immature wheat grain (IWG), a natural source of fructo-oligosaccharides (FOS), are evaluated. Colour and cooking quality, nutritional value and glycaemic index (GI) of pasta were assessed in comparison with commercially enriched inulin and 100% wholewheat pastas. IWG integration induced deep changes in colour, without negatively affecting the cooking quality of pasta, and promoted nutritional quality by increasing the fibre content; IWG pasta presented a remarkable leaching of FOS in cooking water, thus providing only 1 g of FOS per serving. IWG pastas showed a GI of 67 (dried) and 79 (fresh), not significantly different from commercial pasta products. IWG can be considered an interesting ingredient to obtain functional products 'naturally enriched' in FOS and fibre. Results about FOS leaching suggest that, in dealing with functional effects, the actual prebiotic content should be carefully considered on food 'as eaten'. PMID:23373796

  10. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum.

    PubMed

    Winter, Mark; Koopmann, Birger; Döll, Katharina; Karlovsky, Petr; Kropf, Ute; Schlüter, Klaus; von Tiedemann, Andreas

    2013-07-01

    Factors limiting trichothecene contamination of mature wheat grains after Fusarium infection are of major interest in crop production. In addition to ear infection, systemic translocation of deoxynivalenol (DON) may contribute to mycotoxin levels in grains after stem base infection with toxigenic Fusarium spp. However, the exact and potential mechanisms regulating DON translocation into wheat grains from the plant base are still unknown. We analyzed two wheat cultivars differing in susceptibility to Fusarium head blight (FHB), which were infected at the stem base with Fusarium culmorum in climate chamber experiments. Fungal DNA was found only in the infected stem base tissue, whereas DON and its derivative, DON-3-glucoside (D3G), were detected in upper plant parts. Although infected stem bases contained more than 10,000 μg kg⁻¹ dry weight (DW) of DON and mean levels of DON after translocation in the ear and husks reached 1,900 μg kg⁻¹ DW, no DON or D3G was detectable in mature grains. D3G quantification revealed that DON detoxification took mainly place in the stem basis, where ≤ 50% of DON was metabolized into D3G. Enhanced expression of a gene putatively encoding a uridine diphosphate-glycosyltransferase (GenBank accession number FG985273) was observed in the stem base after infection with F. culmorum. Resistance to F. culmorum stem base infection, DON glycosylation in the stem base, and mycotoxin translocation were unrelated to cultivar resistance to FHB. Histological studies demonstrated that the vascular transport of DON labeled with fluorescein as a tracer from the peduncle to the grain was interrupted by a barrier zone at the interface between grain and rachilla, formerly described as "xylem discontinuity". This is the first study to demonstrate the effective control of influx of systemically translocated fungal mycotoxins into grains at the rachilla-seed interface by the xylem discontinuity tissue in wheat ears. PMID:23758328