Sample records for gram-positive antibacterial activity

  1. Antibacterial activity of oregano (Origanum vulgare Linn.) against gram positive bacteria.

    PubMed

    Saeed, Sabahat; Tariq, Perween

    2009-10-01

    The present investigation is focused on antibacterial potential of infusion, decoction and essential oil of oregano (Origanum vulgare) against 111 Gram-positive bacterial isolates belonging to 23 different species related to 3 genera. Infusion and essential oil exhibited antibacterial activity against Staphylococcus saprophyticus, S. aureus, Micrococcus roseus, M. kristinae, M. nishinomiyaensis, M. lylae, M. luteus, M. sedentarius, M. varians, Bacillus megaterium, B. thuringiensis, B. alvei, B. circulans, B. brevis, B. coagulans, B. pumilus, B. laterosporus, B. polymyxa, B. macerans, B. subtilis, B. firmus, B. cereus and B. lichiniformis. The infusion exhibited maximum activity against B. laterosporus (17.5 mm mean zone of inhibition+/-1.5 Standard deviation) followed by B. polymyxa (17.0 mm+/-2.0 SD) and essential oil of oregano exhibited maximum activity against S. saprophyticus (16.8 mm+/-1.8 SD) followed by B. circulans (14.5 mm+/-0.5 SD). While all these tested isolates were found resistant to decoction of oregano. PMID:19783523

  2. In Vitro and In Vivo Antibacterial Activities of Heteroaryl Isothiazolones against Resistant Gram-Positive Pathogens

    Microsoft Academic Search

    Michael J. Pucci; Jijun Cheng; Steven D. Podos; Christy L. Thoma; Jane A. Thanassi; Douglas D. Buechter; Gohar Mushtaq; Gerald A. Vigliotti; B. J. Bradbury; M. Deshpande

    2007-01-01

    The activities of several tricyclic heteroaryl isothiazolones (HITZs) against an assortment of gram-positive and gram-negative clinical isolates were assessed. These compounds target bacterial DNA replication and were found to possess broad-spectrum activities especially against gram-positive strains, including antibiotic- resistant staphylococci and streptococci. These included methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-nonsusceptible staphylococci, and quinolone-resistant strains. The HITZs were more active than the

  3. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria.

    PubMed

    Masadeh, Majed M; Karasneh, Ghadah A; Al-Akhras, Mohammad A; Albiss, Borhan A; Aljarah, Khaled M; Al-Azzam, Sayer I; Alzoubi, Karem H

    2015-05-01

    Metal oxide nanoparticles have been suggested as good candidates for the development of antibacterial agents. Cerium oxide (CeO2) and iron oxide (Fe2O3) nanoparticles have been utilized in a number of biomedical applications. Here, the antibacterial activity of CeO2 and Fe2O3 nanoparticles were evaluated on a panel of gram positive and gram negative bacteria in both the planktonic and biofilm cultures. Additionally, the effect of combining CeO2 and Fe2O3 nanoparticles with the broad spectrum antibiotic ciprofloxacin on tested bacteria was investigated. Thus, minimum inhibitory concentrations (MICs) of CeO2 and Fe2O3 nanoparticles that are required to inhibit bacterial planktonic growth and bacterial biofilm, were evaluated, and were compared to the MICs of the broad spectrum antibiotic ciprofloxacin alone or in the presence of CeO2 and Fe2O3 nanoparticles. Results of this study show that both CeO2 and Fe2O3 nanoparticles fail to inhibit bacterial growth and biofilm biomass for all the bacterial strains tested. Moreover, adding CeO2 or Fe2O3 nanoparticles to the broad spectrum antibiotic ciprofloxacin almost abolished its antibacterial activity. Results of this study suggest that CeO2 and Fe2O3 nanoparticles are not good candidates as antibacterial agents, and they could interfere with the activity of important antibiotics. PMID:24643389

  4. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    PubMed Central

    2014-01-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases. PMID:25136281

  5. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.

  6. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 ?g/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 ?g/ml), and phytosphingosine (MBC range, 3.3 to 62.5 ?g/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 ?g/ml). Sapienic acid (MBC range, 31.3 to 375.0 ?g/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 ?g/ml). Lauric acid (MBC range, 6.8 to 375.0 ?g/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 ?g/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  7. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 ?g/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 ?g/ml), and phytosphingosine (MBC range, 3.3 to 62.5 ?g/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 ?g/ml). Sapienic acid (MBC range, 31.3 to 375.0 ?g/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 ?g/ml). Lauric acid (MBC range, 6.8 to 375.0 ?g/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 ?g/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  8. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    PubMed Central

    2012-01-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg?=?0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a?=?b?=?9.435 Å, c?=?6.876 Å for xAg?=?0.05, a?=?b?=?9.443 Å, c?=?6.875 Å for xAg?=?0.2, and a?=?b?=?9.445 Å, c?=?6.877 Å for xAg?=?0.3 are in good agreement with the standard of a?=?b?=?9.418 Å, c?=?6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg?=?0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii). PMID:22721352

  9. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.

    PubMed

    Suganya, K S Uma; Govindaraju, K; Kumar, V Ganesh; Dhas, T Stalin; Karthick, V; Singaravelu, G; Elanchezhiyan, M

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ~ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. PMID:25492207

  10. In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; shirazi, Mohammad khabaz; Khan, Saeed Ahmad

    2013-01-01

    Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of 250 ?g/disc was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P< 0.05). Staphylococcus aureus was the most sensitive microorganism. The highest antibacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa) was exerted by formula number 2 (Table1). Conclusion: The results reveal the presence of antibacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLAN?) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant antibacterial effect of the present formulation, support ethno-pharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat infectious diseases.

  11. Discovery of a New Class of Non-?-lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive Antibacterial Activity

    PubMed Central

    2015-01-01

    Infections caused by hard-to-treat methicillin-resistant Staphylococcus aureus (MRSA) are a serious global public-health concern, as MRSA has become broadly resistant to many classes of antibiotics. We disclose herein the discovery of a new class of non-?-lactam antibiotics, the oxadiazoles, which inhibit penicillin-binding protein 2a (PBP2a) of MRSA. The oxadiazoles show bactericidal activity against vancomycin- and linezolid-resistant MRSA and other Gram-positive bacterial strains, in vivo efficacy in a mouse model of infection, and have 100% oral bioavailability. PMID:24517363

  12. Non-Aqueous Glycerol Monolaurate Gel Exhibits Antibacterial and Anti-Biofilm Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Mueller, Elizabeth A.; Schlievert, Patrick M.

    2015-01-01

    Background Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML), as solubilized in a non-aqueous vehicle (5% GML Gel), as a novel, broadly-active topical antimicrobial. The FDA has designated GML as generally recognized as safe for human use, and the compound is commonly used in the cosmetic and food industries. Methods In vitro, bacterial strains in broths and biofilms were exposed to GML Gel, and effects on bacterial colony-forming units (CFUs) were assessed. In vivo,subcutaneous incisions were made in New Zealand white rabbits; the incisions were closed with four sutures. Bacterial strains were painted onto the incision sites, and then GML Gel or placebo was liberally applied to cover the sites completely. Rabbits were allowed to awaken and were examined for CFUs as a function of exposure time. Results In vitro, GML Gel was bactericidal for all broth culture and biofilm organisms in <1 hour and <4 hour, respectively; no CFUs were detected after the entire 24 h test period. In vivo, GML Gel inhibited bacterial growth in the surgical incision sites, compared to no growth inhibition in controls. GML Gel significantly reduced inflammation, as viewed by lack of redness in and below the incision sites. Conclusions Our findings suggest that 5% GML Gel is useful as a potent topical antibacterial and anti-inflammatory agent for prevention of infections. PMID:25799455

  13. Development of a five-hour radiometric serum antibacterial assay for gram-positive cocci

    SciTech Connect

    Beckwith, D.G.; Guidon, P.T. Jr.

    1981-03-01

    A preliminary report on a 5-hr radiometric serum antibacterial assay (ABA) for Gram-positive cocci is presented. The method agreed within +- one twofold dilution with static ABA endpoints in 24/26 (92%) of the assays and with cidal ABA end-points in 23/26 (88%) of the assays performed.

  14. New potent antibacterials against Gram-positive multiresistant pathogens: effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles.

    PubMed

    Fortuna, Cosimo G; Berardozzi, Roberto; Bonaccorso, Carmela; Caltabiano, Gianluigi; Di Bari, Lorenzo; Goracci, Laura; Guarcello, Annalisa; Pace, Andrea; Palumbo Piccionello, Antonio; Pescitelli, Gennaro; Pierro, Paola; Lonati, Elena; Bulbarelli, Alessandra; Cocuzza, Clementina E A; Musumarra, Giuseppe; Musumeci, Rosario

    2014-12-15

    The effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles have been studied to design new potent antibacterials against Gram-positive multidrug-resistant pathogens. The adopted strategy involved a molecular modelling approach, the synthesis and biological evaluation of new designed compounds, enantiomers separation and absolute configuration assignment. Experimental determination of the antibacterial activity of the designed (S)-1-((3-(4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea and (S)-1-((3-(3-fluoro-4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea against multidrug resistant linezolid bacterial strains was higher than that of linezolid. PMID:25464880

  15. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    PubMed Central

    Azam, Ameer; Ahmed, Arham S; Oves, Mohammad; Khan, Mohammad S; Habib, Sami S; Memic, Adnan

    2012-01-01

    Background Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria. Methods and results Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3) were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. Conclusion Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3. PMID:23233805

  16. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50??L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3?mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0?mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  17. Potency and Bactericidal Activity of Iclaprim against Recent Clinical Gram-Positive Isolates?

    PubMed Central

    Sader, Helio S.; Fritsche, Thomas R.; Jones, Ronald N.

    2009-01-01

    The in vitro activity of iclaprim, a novel diaminopyrimidine derivative, was evaluated against 5,937 recent gram-positive clinical isolates collected in the United States and Europe. Iclaprim demonstrated potent activity against Staphylococcus aureus (including methicillin-resistant S. aureus [MRSA]), beta-hemolytic Streptococcus spp., and Enterococcus faecalis strains tested. In addition, iclaprim exhibited bactericidal activity against all S. aureus strains tested, including MRSA. PMID:19289528

  18. Comparable Evaluation of Orally Active Beta-Lactam Compounds in Ampicillin-Resistant Gram-Positive and Gram-Negative Rods: Role of Beta-Lactamases on Resistance

    Microsoft Academic Search

    Wolfgang Cullmann; Wolfgang Dick; Michaela Stieglitz; Wolfgang Opferkuch

    1988-01-01

    The antibacterial activity of the recently developed cephems cefixime and cefetamet-pivoxyl was evaluated in 408 gram-positive and gram-negative rods, all isolated recently from clinical specimens, and compared to that of other orally active agents such as ampicillin, amoxycillin + clavulanic acid, cefaclor, cefuroxime-axetil and to ceftriaxone. With regard to ampicillin-resistant Enterobacteriaceae ceftriaxone proved to be the most active agent, followed

  19. In vitro activity of the tribactam GV104326 against gram-positive, gram-negative, and anaerobic bacteria.

    PubMed Central

    Di Modugno, E; Erbetti, I; Ferrari, L; Galassi, G; Hammond, S M; Xerri, L

    1994-01-01

    GV104326 is the first member of a new class of antibiotics (tribactams) selected for development. It combines a particularly broad spectrum (including gram-negative and gram-positive aerobes and anaerobes) with high potency, resistance to beta-lactamases, and complete stability to dehydropeptidases. Comparative MICs were determined for GV104326 against 415 recent clinical isolates (including beta-lactamase producers), using representative antibacterial agents (imipenem, amoxicillin-clavulanic acid, cefpirome, ciprofloxacin, gentamicin, and erythromycin). GV104326 was particularly active against gram-positive bacteria; in general, its in vitro activity was equivalent to that of imipenem, equivalent to or better than that of amoxicillin-clavulanic acid, and superior to that of cefpirome, ciprofloxacin, and erythromycin. Against gram-negative bacteria, GV104326 possessed activity similar to that of imipenem and cefpirome against enterobacteria and Haemophilus spp. but its activity was superior to that of amoxicillin-clavulanic acid. GV104326 showed excellent antianaerobe activity. GV104326 was stable to all clinically relevant beta-lactamases and was rapidly lethal to susceptible bacteria. In Escherichia coli, GV104326 bound predominantly to PBPs 1a and 2 and at low concentrations osmotically stable round forms were observed. GV104326 showed an affinity for PBPs 2 and 4 of Staphylococcus aureus. PMID:7840571

  20. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein

    Microsoft Academic Search

    Tatiana Michel; Jean-Marc Reichhart; Jules A. Hoffmann; Julien Royet

    2001-01-01

    Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they

  1. Novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram positive activity and improved safety profile.

    PubMed

    Surivet, Jean-Philippe; Zumbrunn, Cornelia; Rueedi, Georg; Bur, Daniel; Bruyère, Thierry; Locher, Hans; Ritz, Daniel; Seiler, Peter; Kohl, Christopher; Ertel, Eric A; Hess, Patrick; Gauvin, Jean-Christophe; Mirre, Azely; Kaegi, Verena; Dos Santos, Marina; Kraemer, Stéphanie; Gaertner, Mika; Delers, Jonathan; Enderlin-Paput, Michel; Weiss, Maria; Sube, Romain; Hadana, Hakim; Keck, Wolfgang; Hubschwerlen, Christian

    2015-01-22

    Novel antibacterial drugs that are effective against infections caused by multidrug resistant pathogens are urgently needed. In a previous report, we have shown that tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. During the course of our optimization program, lead compound 5 was deprioritized due to adverse findings in cardiovascular safety studies. In the effort of mitigating these findings and optimizing further the pharmacological profile of this class of compounds, we have identified a subseries of tetrahydropyran-based molecules that are potent DNA gyrase and topoisomerase IV inhibitors and display excellent antibacterial activity against Gram positive pathogens, including clinically relevant resistant isolates. One representative of this class, compound 32d, elicited only weak inhibition of hERG K(+) channels and hNaV1.5 Na(+) channels, and no effects were observed on cardiovascular parameters in anesthetized guinea pigs. In vivo efficacy in animal infection models has been demonstrated against Staphylococcus aureus and Streptococcus pneumoniae strains. PMID:25494934

  2. Comparative in vitro activity of ceftobiprole against Gram-positive cocci.

    PubMed

    Betriu, Carmen; Culebras, Esther; Gómez, María; López-Fabal, Fátima; Rodríguez-Avial, Iciar; Picazo, Juan J

    2010-08-01

    The activity of ceftobiprole and comparator agents was evaluated against a collection of 880 isolates, comprising 200 meticillin-susceptible Staphylococcus aureus, 200 meticillin-resistant S. aureus, 180 coagulase-negative staphylococci blood isolates, 100 Streptococcuspneumoniae and 200 macrolide-resistant beta-haemolytic streptococci (100 Streptococcus pyogenes and 100 Streptococcus agalactiae). Ceftobiprole showed excellent activity against staphylococci (minimum inhibitory concentrations active against penicillin-resistant S. pneumoniae and macrolide-resistant beta-haemolytic streptococci, inhibiting 99.6% of all streptococci tested at Gram-positive pathogens. PMID:20554163

  3. In vitro activities of daptomycin (LY146032) and paldimycin (U-70,138F) against anaerobic gram-positive bacteria.

    PubMed

    Chow, A W; Cheng, N

    1988-05-01

    The in vitro activities of daptomycin (LY146032), paldimycin (U-70,138F), vancomycin, and penicillin G against 344 clinical isolates of anaerobic gram-positive bacteria were determined by an agar dilution method in calcium-supplemented (50 micrograms/ml) Wilkins-Chalgren medium, using an inoculum of 10(5) CFU. Daptomycin demonstrated excellent activity against a broad range of anaerobic gram-positive cocci and bacilli, including Peptostreptococcus, Eubacterium, Bifidobacterium, Actinomyces, Propionibacterium, and Lactobacillus species and Clostridium difficile. Highly resistant strains (MIC, greater than or equal to 64 micrograms/ml) were encountered sporadically from different genera, but these accounted for only 3% of all isolates tested. Vancomycin showed similar activity but was less active against Lactobacillus species and Peptostreptococcus prevotii. Paldimycin was inactive against most genera of anaerobic gram-positive bacteria. Overall, penicillin G remained the most broadly active agent against these isolates. PMID:2840019

  4. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    PubMed

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi. PMID:23095488

  5. In vitro activity of telavancin and comparators against selected groups of Gram-positive cocci.

    PubMed

    Hope, Russell; Chaudhry, Aiysha; Adkin, Rachael; Livermore, David M

    2013-03-01

    Telavancin is a novel, rapidly cidal, dual-action glycopeptide. This study examined its in vitro activity against relevant Gram-positive pathogens, comprising 99 meticillin-resistant Staphylococcus aureus (MRSA), 40 meticillin-susceptible S. aureus (MSSA), 79 coagulase-negative staphylococci (CoNS), 45 Enterococcus faecalis, 60 Enterococcus faecium, 40 ?-haemolytic streptococci and 60 Streptococcus pneumoniae. Except with VanA enterococci, telavancin MICs were tightly clustered and unimodal. Telavancin MICs for staphylococci ranged from ?0.03 mg/L to 0.5mg/L, with no shift for MRSA or MSSA in relation to vancomycin MIC. Nevertheless, and independently of species, CoNS with raised vancomycin MICs had reduced susceptibility to telavancin, however this was much more marked for teicoplanin. Modal telavancin MICs were 0.5mg/L and ?0.03 mg/L for glycopeptide-susceptible E. faecalis and E. faecium, respectively, with no rise for VanB isolates, but ranges rose to 4-16 mg/L and 1-4 mg/L for VanA isolates, respectively. Streptococci were consistently susceptible, with MICs of ?0.06 mg/L. Telavancin MICs by Etest agreed within 1 doubling dilution with those found previously by BSAC agar dilution in 96.2% of cases, although with slight bias towards lower values. In the few cases (13/345) where telavancin MICs by Etest were ?2 doubling dilutions different from those by agar dilution, the Etest value was always lower; this effect was greater for the other antibiotics tested. Telavancin had excellent activity, except against enterococci with VanA, with no erosion of this activity against MRSA with raised vancomycin MICs. MICs by Etest were nearly always within 1 dilution of those by BSAC agar dilution. PMID:23298432

  6. In Vitro Activity and Killing Effect of Uperin 3.6 against Gram-Positive Cocci Isolated from Immunocompromised Patients

    PubMed Central

    Giacometti, Andrea; Cirioni, Oscar; Kamysz, Wojciech; Silvestri, Carmela; Licci, Alberto; D'Amato, Giuseppina; Nadolski, Piotr; Riva, Alessandra; Lukasiak, Jerzy; Scalise, Giorgio

    2005-01-01

    The in vitro activity of uperin 3.6, alone or combined with six antibiotics, against gram-positive cocci, including Rhodococcus equi, methicillin-resistant staphylococci, and vancomycin-resistant enterococci, was investigated. All isolates were inhibited at concentrations of 1 to 16 mg/liter. Synergy was demonstrated when uperin 3.6 was combined with clarithromycin and doxycycline. PMID:16127075

  7. In Vitro Activity of Aurein 1.2 Alone and in Combination with Antibiotics against Gram-Positive Nosocomial Cocci?

    PubMed Central

    Giacometti, Andrea; Cirioni, Oscar; Riva, Alessandra; Kamysz, Wojciech; Silvestri, Carmela; Nadolski, Piotr; Della Vittoria, Agnese; ?ukasiak, Jerzy; Scalise, Giorgio

    2007-01-01

    This study was performed to evaluate the in vitro activity of the amphibian peptide aurein 1.2 and to investigate its interaction with six antibiotics against nosocomial gram-positive cocci. All isolates were inhibited at concentrations of 1 to 16 mg/liter. Synergy was demonstrated when aurein 1.2 was combined with clarithromycin and minocycline. PMID:17220421

  8. In Vitro Activity of Ozenoxacin against Quinolone-Susceptible and Quinolone-Resistant Gram-Positive Bacteria

    PubMed Central

    López, Y.; Tato, M.; Espinal, P.; Garcia-Alonso, F.; Gargallo-Viola, D.; Cantón, R.

    2013-01-01

    In vitro activity of ozenoxacin, a novel nonfluorinated topical (L. D. Saravolatz and J. Leggett, Clin. Infect. Dis. 37:1210–1215, 2003) quinolone, was compared with the activities of other quinolones against well-characterized quinolone-susceptible and quinolone-resistant Gram-positive bacteria. Ozenoxacin was 3-fold to 321-fold more active than other quinolones. Ozenoxacin could represent a first-in-class nonfluorinated quinolone for the topical treatment of a broad range of dermatological infections. PMID:24080666

  9. Bacteriocins of gram-positive bacteria.

    PubMed Central

    Jack, R W; Tagg, J R; Ray, B

    1995-01-01

    In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered. PMID:7603408

  10. In Vitro Activities of Dalbavancin and Nine Comparator Agents against Anaerobic Gram-Positive Species and Corynebacteria

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi; Tyrrell, Kerin; Fernandez, Helen T.

    2003-01-01

    Dalbavancin is a novel semisynthetic glycopeptide with enhanced activity against gram-positive species. Its comparative in vitro activities and those of nine comparator agents, including daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin, against 290 recent gram-positive clinical isolates strains, as determined by the NCCLS agar dilution method, were studied. The MICs of dalbavancin at which 90% of various isolates tested were inhibited were as follows: Actinomyces spp., 0.5 ?g/ml; Clostridium clostridioforme, 8 ?g/ml; C. difficile, 0.25 ?g/ml; C. innocuum, 0.25 ?g/ml; C. perfringens, 0.125 ?g/ml; C. ramosum, 1 ?g/ml; Eubacterium spp., 1 ?g/ml; Lactobacillus spp., >32 ?g/ml, Propionibacterium spp., 0.5 ?g/ml; and Peptostreptococcus spp., 0.25 ?g/ml. Dalbavancin was 1 to 3 dilutions more active than vancomycin against most strains. Dalbavancin exhibited excellent activity against gram-positive strains tested and warrants clinical evaluation. PMID:12760876

  11. Zulu medicinal plants with antibacterial activity

    Microsoft Academic Search

    Jonathan E. Kelmanson; Anna K. Jäger; Johannes van Staden

    2000-01-01

    Aqueous, methanolic and ethyl acetate extracts of 14 plants used in traditional Zulu medicine for treatment of ailments of an infectious nature were screened for antibacterial activity. Most of the activity detected was against Gram-positive bacteria. Tuber bark extracts of Dioscorea sylvatica had activity against Gram-negative Escherichia coli and extracts of Dioscorea dregeana, Cheilanthes viridis and Vernonia colorata were active

  12. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    NASA Astrophysics Data System (ADS)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6?m and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2. Besides being toxic at high concentrations, these species affect the electrophoretic interactions between clay and bacteria surfaces. Additionally, the cation exchange neutralizes the clay surface charge thus modifying further the behavior of particles in suspension. Therefore, we evaluated the clay and bacteria zeta potential (?) as an index for possible electrostatic forces and modeled the total interactions using DLVO theory. We suspended the particles in water equilibrated with clay (leachate). Results show that at pH 4, the ? of clays is -14 mV while it is -3mV for bacteria. The divalent ions and trivalent Aluminum, present in the AMZ leachate, compress the thickness of the double layer (hydration shell) thus decreasing electrostatic repulsion and allowing particles to come closer. The proximity of particles increases the probability of attractive forces to bind clays and cells. In summary, results indicate that a process other than simple chemical transfer from clay to bacteria is operating. The electrostatic attraction and physical proximity may enhance the toxic action of metals and interfere with the membrane properties or processes.

  13. Isolation of Highly Active Monoclonal Antibodies against Multiresistant Gram-Positive Bacteria.

    PubMed

    Rossmann, Friederike S; Laverde, Diana; Kropec, Andrea; Romero-Saavedra, Felipe; Meyer-Buehn, Melanie; Huebner, Johannes

    2015-01-01

    Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL) of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA). At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium), a mouse peritonitis model (using S. aureus Newman and LAC) and a rat endocarditis model (using E. faecalis 12030) and were shown to provide protection in all models at a concentration of 4 ?g/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials. PMID:25706415

  14. Antibacterial activity of amphiphilic tobramycin.

    PubMed

    Dhondikubeer, Ramesh; Bera, Smritilekha; Zhanel, George G; Schweizer, Frank

    2012-10-01

    Amphiphilic aminoglycoside antimicrobials are an emerging class of new antibacterial agents with novel modes of action. Previous studies have shown that amphiphilic neomycin-B and kanamycin-A analogs restore potent antibacterial activity against Gram-positive neomycin-B- and kanamycin-A-resistant organisms. In this paper, we investigated the antibacterial properties of a series of amphiphilic tobramycin analogs. We prepared tobramycin-lipid conjugates, as well as tobramycin-peptide triazole conjugates, and studied their antibacterial activities against a panel of Gram-positive and Gram-negative bacterial strains, including isolates obtained from Canadian hospitals. Our results demonstrate that the antibacterial activity of amphiphilic tobramycin is greatly affected by the length and nature of the hydrophobic lipid tail, whereas the nature of the polycationic headgroup or the number of cationic charges appear to be less important. Replacement of the hydrophobic tail by a fluorinated lipid confers good activity against two Pseudomonas strains and reduces hemolytic activity. However, susceptibility studies in the presence of bovine serum albumin indicate that all amphiphilic tobramycin analogs are strongly protein-bound, leading to a typical four- to eight-fold increase in MIC. PMID:22781280

  15. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    PubMed Central

    Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.

    2011-01-01

    Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4?,5?-O-dicaffeoylquinic acid (4?,5?-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3?,5?-ODCQA, 4?,5?-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4?,5?-ODCQA with pump inhibitory activity whereas 3?,5?-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4?,5?-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria. PMID:21483731

  16. Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities

    Microsoft Academic Search

    N. A. Awadh Ali; W.-D Jülich; C Kusnick; U Lindequist

    2001-01-01

    Ethanolic extracts of 20 selected plant species used by Yemeni traditional healers to treat infectious diseases were screened for their antibacterial activity against both Gram-positive and Gram-negative bacteria, as well as for cytotoxic activity. Fourteen of the ethanolic extracts showed variable degrees of antibacterial activity. The active ethanolic extracts were partitioned between ethyl acetate and water for a first separation.

  17. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  18. Production of a bacteriocin by a poultry derived Campylobacter jejuni isolate with antimicrobial activity against Clostridium perfringens and other Gram positive bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have purified a bacteriocin peptide (termed CUV-3), produced by a poultry cecal isolate of Campylobacter jejuni (strain CUV-3) with inhibitory activity against Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staphylococcus epidermidis and Listeria mon...

  19. Linezolid: A Pharmacoeconomic Review of its Use in Serious Gram-Positive Infections

    Microsoft Academic Search

    Greg L. Plosker; David P. Figgitt

    2005-01-01

    Linezolid (Zyvox(R)), the first available oxazolidinone antibacterial agent, has good activity against Gram-positive pathogens, including multidrug-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Randomised multicentre trials in patients with various types of serious Gram-positive infections showed that clinical cure rates with linezolid were similar to those with vancomycin or teicoplanin. In some subgroup analyses, which must

  20. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  1. Enhanced antibacterial activity in Hydra polyps lacking nerve cells.

    PubMed

    Kasahara, Shinji; Bosch, Thomas C G

    2003-02-01

    The nervous system evolved within cnidarians. When assessing antibacterial activity in the freshwater polyp Hydra, we observed a strong correlation between the number of neurons present and the antibacterial activity. Tissue lacking neurons had a drastically enhanced antibacterial activity against Gram-positive (Bacillus subtilis) and Gram-negative (E. coli) bacteria compared to control tissue. The results indicate direct and strong neural influences on immunity in the phylogenetically oldest animals having a nervous system. PMID:12543122

  2. Daptomycin Activity against Uncommonly Isolated Streptococcal and Other Gram-Positive Species Groups

    PubMed Central

    Flamm, Robert K.; Farrell, David J.; Jones, Ronald N.

    2013-01-01

    A total of 1,356 clinical isolates were tested against daptomycin by broth microdilution methods. Daptomycin was active against seven groups of viridans group streptococci (MIC50 and MIC90 values ranging from ?0.06 and ?0.06 ?g/ml [Streptococcus bovis and Streptococcus dysgalactiae] to 0.5 and 1 ?g/ml [Streptococcus mitis, Streptococcus oralis, and Streptococcus parasanguinis], respectively), beta-hemolytic streptococci serogroups C, F, and G (MIC50 and MIC90, ?0.06 to 0.25 and 0.12 to 0.25 ?g/ml, respectively), Corynebacterium spp. (MIC50 and MIC90, ?0.06 and 0.12 ?g/ml, respectively), and Micrococcus spp. (MIC50 and MIC90, ?0.06 and 0.25 ?g/ml, respectively). Listeria monocytogenes exhibited higher daptomycin MICs (MIC50 and MIC90, 2 and 4 ?g/ml, respectively) than other tested organisms. PMID:24080651

  3. In vitro activity of mersacidin (M87-1551), an investigational peptide antibiotic tested against gram-positive bloodstream isolates.

    PubMed

    Barrett, M S; Wenzel, R P; Jones, R N

    1992-01-01

    We measured the in vitro activity of mersacidin (formerly M87-1551) against 183 clinical isolates (vancomycin susceptible) and 12 additional vancomycin-resistant strains of Gram-positive bacteria. The activity for mersacidin increased an average twofold (range, 1.7- to 7.6-fold) in a calcium-enriched medium. The minimum inhibitory concentration (MIC)90 for mersacidin was 8-32 times higher than vancomycin for staphylococci, 4-64 times higher for enterococci, and up to 32 times higher for other organisms tested. The MIC90 for MDL 62873, a comparison compound, was less than or equal to 0.5 micrograms/ml for all species except Staphylococcus haemolyticus (MIC90, 4 micrograms/ml), and it was greater than or equal to 4-fold more active than vancomycin. Against selected vancomycin-resistant strains, mersacidin had MICs greater than or equal to 16 micrograms/ml for enterococci, 4-32 micrograms/ml for Pediococcus, and less than or equal to 2 micrograms/ml for Leuconostoc species. Mersacidin may have some clinical utility in documented infections caused by staphylococci, nonenteric streptococci, Pediococcus, and Leuconostoc. PMID:1424522

  4. Comparative In Vitro Activities of XRP 2868, Pristinamycin, Quinupristin-Dalfopristin, Vancomycin, Daptomycin, Linezolid, Clarithromycin, Telithromycin, Clindamycin, and Ampicillin against Anaerobic Gram-Positive Species, Actinomycetes, and Lactobacilli

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerin L.; Fernandez, Helen T.; Bryskier, Andre

    2005-01-01

    A comparative study of the in vitro activities of XRP 2868, a new oral streptogramin, against 266 anaerobic gram-positive clinical isolates using the agar dilution method showed that the XRP 2868 MICs for 95% (254 of 266) of isolates were ?0.5 ?g/ml. XRP 2868 MICs for only two strains, one being Clostridium clostridioforme (MIC, 16 ?g/ml) and the other being Clostridium difficile (MIC, 32 ?g/ml), were >2 ?g/ml. Depending on its pharmacokinetics and pharmacodynamics, XRP 2868 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation. PMID:15616322

  5. Antibacterial activity of traditional Australian medicinal plants

    Microsoft Academic Search

    Enzo A Palombo; Susan J Semple

    2001-01-01

    Fifty-six ethanolic extracts of various parts of 39 plants used in traditional Australian Aboriginal medicine were investigated for their antibacterial activities against four Gram-positive (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pyogenes) and four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhimurium) bacterial species. In a plate-hole diffusion assay, 12 extracts inhibited the growth of one or

  6. A poultry-intestinal isolate of Campylobacter jejuni produces a bacteriocin (CUV-3) active against a range of Gram positive bacterial pathogens including Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated bacteriocin, CUV-3, produced by a poultry cecal isolate of Campylobacter jejuni strain CUV-3 had inhibitory activity against several Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staph.epidermidis and Listeria monocytogenes. The pept...

  7. Lysis of gram-positive and gram-negative bacteria by antibacterial porous polymeric monolith formed in microfluidic biochips for sample preparation.

    PubMed

    Aly, Mohamed Aly Saad; Gauthier, Mario; Yeow, John

    2014-09-01

    Bacterial cell lysis is demonstrated using polymeric microfluidic biochips operating via a hybrid mechanical shearing/contact killing mechanism. These biochips are fabricated from a cross-linked poly(methyl methacrylate) (X-PMMA) substrate by well-controlled, high-throughput laser micromachining. The unreacted double bonds at the surface of X-PMMA provide covalent bonding for the formation of a porous polymeric monolith (PPM), thus contributing to the mechanical stability of the biochip and eliminating the need for surface treatment. The lysis efficiency of these biochips was tested for gram-positive (Enterococcus saccharolyticus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas fluorescens) and confirmed by off-chip PCR without further purification. The influence of the flow rate when pumping the bacterial suspension through the PPM, and of the hydrophobic-hydrophilic balance on the cell lysis efficiency was investigated at a cell concentration of 10(5) CFU/mL. It was shown that the contribution of contact killing to cell lysis was more important than that of mechanical shearing in the PPM. The biochip showed better lysis efficiency than the off-chip chemical, mechanical, and thermal lysis techniques used in this work. The biochip also acts as a filter that isolates cell debris and allows PCR-amplifiable DNA to pass through. The system performs more efficient lysis for gram-negative than for gram-positive bacteria. The biochip does not require chemical/enzymatic reagents, power consumption, or complicated design and fabrication processes, which makes it an attractive on-chip lysis device that can be used in sample preparation for genetics and point-of-care diagnostics. The biochips were reused for 20 lysis cycles without any evidence of physical damage to the PPM, significant performance degradation, or DNA carryover when they were back-flushed between cycles. The biochips efficiently lysed both gram-positive and gram-negative bacteria in about 35 min per lysis and PPM regeneration cycle. PMID:25059724

  8. Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria

    E-print Network

    systems (iii) causing damage in respiration, (iv) perturbation of cellular growth, and (v) interaction. Interference in bacterial cell replication is observed for both cellular strains when exposed to GSH stabilized and other cell constituents (ii) causing K+ loss from the membrane, with disruption of cellular transport

  9. Evaluation of gemifloxacin (SB265805, LB20304a): in vitro activity against over 6000 Gram-positive pathogens from diverse geographic areas

    Microsoft Academic Search

    Ronald N Jones; Michael A Pfaller; Meredith E Erwin

    2000-01-01

    Gemifloxacin (GEMI), formerly SB-265805 and LB20304, is a newer fluoroquinolone with broad-spectrum activity against a wide variety of bacterial pathogens. The present investigation extended earlier observations by sampling an additional 6790 Gram-positive organisms from more than 50 medical centres on three continents. The reference broth microdilution method with recommended medium supplements was used throughout. Selected results (number strains tested; MIC90

  10. Expanding the Use of a Fluorogenic Method to Determine Activity and Mode of Action of Bacillus thuringiensis Bacteriocins Against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    de la Fuente-Salcido, Norma M.; Barboza-Corona, J. Eleazar; Espino Monzón, A. N.; Pacheco Cano, R. D.; Balagurusamy, N.; Bideshi, Dennis K.; Salcedo-Hernández, Rubén

    2012-01-01

    Previously we described a rapid fluorogenic method to measure the activity of five bacteriocins produced by Mexican strains of Bacillus thuringiensis against B. cereus 183. Here we standardize this method to efficiently determine the activity of bacteriocins against both Gram-positive and Gram-negative bacteria. It was determined that the crucial parameter required to obtain reproducible results was the number of cells used in the assay, that is, ~4?×?108?cell/mL and ~7?×?108?cell/mL, respectively, for target Gram-positive and Gram-negative bacteria. Comparative analyses of the fluorogenic and traditional well-diffusion assays showed correlation coefficients of 0.88 to 0.99 and 0.83 to 0.99, respectively, for Gram-positive and Gram-negative bacteria. The fluorogenic method demonstrated that the five bacteriocins of B. thuringiensis have bacteriolytic and bacteriostatic activities against all microorganisms tested, including clinically significant bacteria such as Listeria monocytogenes, Proteus vulgaris, and Shigella flexneri reported previously to be resistant to the antimicrobials as determined using the well-diffusion protocol. These results demonstrate that the fluorogenic assay is a more sensitive, reliable, and rapid method when compared with the well-diffusion method and can easily be adapted in screening protocols for bacteriocin production by other microorganisms. PMID:22919330

  11. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights

    Microsoft Academic Search

    Hong Kyoon No; Na Young Park; Shin Ho Lee; Samuel P Meyers

    2002-01-01

    Antibacterial activities of six chitosans and six chitosan oligomers with different molecular weights (Mws) were examined against four gram-negative (Escherichia coli, Pseudomonas fluorescens, Salmonella typhimurium, and Vibrio parahaemolyticus) and seven gram-positive bacteria (Listeria monocytogenes, Bacillus megaterium, B. cereus, Staphylococcus aureus, Lactobacillus plantarum, L. brevis, and L. bulgaricus). Chitosans showed higher antibacterial activities than chitosan oligomers and markedly inhibited growth of

  12. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system.

    PubMed

    Racyte, Justina; Bernard, Séverine; Paulitsch-Fuchs, Astrid H; Yntema, Doekle R; Bruning, Harry; Rijnaarts, Huub H M

    2013-10-15

    Strong electric fields for disinfection of wastewaters have been employed already for several decades. An innovative approach combining low strength (7 V/cm) alternating electric fields with a granular activated carbon fluidized bed electrode (FBE) for disinfection was presented recently. For disinfection performance of FBE several pure microbial cultures were tested: Bacillus subtilis, Bacillus subtilis subsp. subtilis, Enterococcus faecalis as representatives from Gram positive bacteria and Erwinia carotovora, Pseudomonas luteola, Pseudomonas fluorescens and Escherichia coli YMc10 as representatives from Gram negative bacteria. The alternating electric field amplitude and shape were kept constant. Only the effect of alternating electric field frequency on disinfection performance was investigated. From the bacteria tested, the Gram negative strains were more susceptible and the Gram positive microorganisms were more resistant to FBE disinfection. The collected data indicate that the efficiency of disinfection is frequency and strain dependent. During 6 h of disinfection, the decrease above 2 Log units was achieved with P. luteola and E. coli at 10 kHz and at dual frequency shift keying (FSK) modulated signal with frequencies of 10 kHz and 140 kHz. FBE technology appears to offer a new way for selective bacterial disinfection, however further optimizations are needed on treatment duration, and energy input, to improve effectiveness. PMID:24012021

  13. In Vitro Activities of the Lipopeptides Palmitoyl (Pal)-Lys-Lys-NH2 and Pal-Lys-Lys Alone and in Combination with Antimicrobial Agents against Multiresistant Gram-Positive Cocci?

    PubMed Central

    Kamysz, Wojciech; Silvestri, Carmela; Cirioni, Oscar; Giacometti, Andrea; Licci, Alberto; Della Vittoria, Agnese; Okroj, Marcin; Scalise, Giorgio

    2007-01-01

    The in vitro activities of the lipopeptides palmitoyl (Pal)-Lys-Lys-NH2 and Pal-Lys-Lys against gram-positive cocci were investigated. Enterococci and streptococci demonstrated higher susceptibilities than staphylococci and Rhodococcus equi. A positive interaction was shown when the lipopeptides were combined with beta-lactams and vancomycin. These results suggest that lipopeptides are promising candidates for antimicrobial therapy for infections caused by gram-positive organisms. PMID:17060532

  14. In Vitro Activities of Daptomycin, Vancomycin, Quinupristin- Dalfopristin, Linezolid, and Five Other Antimicrobials against 307 Gram-Positive Anaerobic and 31 Corynebacterium Clinical Isolates

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerrin L.; Fernandez, Helen T.

    2003-01-01

    The activities of daptomycin, a cyclic lipopeptide, and eight other agents were determined against 338 strains of gram-positive anaerobic bacteria and corynebacteria by the NCCLS reference agar dilution method with supplemented brucella agar for the anaerobes and Mueller-Hinton agar for the corynebacteria. The daptomycin MICs determined on Ca2+-supplemented (50 mg/liter) brucella agar plates were one- to fourfold lower than those determined in unsupplemented media. Daptomycin was highly active (MICs, ?2 ?g/ml) against many strains including 36 of 37 peptostreptococci, 37 of 48 isolates of the Eubacterium group, and all strains of Propionibacterium spp., Clostridium perfringens, Clostridium difficile, and other Clostridium spp. It was fourfold or greater more active than vancomycin against Clostridium innocuum and 16 of 34 strains of vancomycin-resistant lactobacilli. Three strains of C. difficile for which quinupristin-dalfopristin and linezolid MICs were >8 ?g/ml were inhibited by <1 ?g of daptomycin per ml. Daptomycin MICs were ?4 ?g/ml for most strains of Clostridium clostridioforme, Clostridium paraputrificum, Clostridium tertium, and Clostridium ramosum; the isolates were generally more resistant to other antimicrobials. Daptomycin was two- to fourfold less active against Actinomyces spp. than vancomycin, quinupristin-dalfopristin, or linezolid. Twenty-nine of 31 strains of Corynebacterium spp., including Corynebacterium jeikeium, Corynebacterium amycolatum, and Corynebacterium pseudodiphtheriticum, were inhibited by ?0.25 ?g of daptomycin per ml. For two strains of “Corynebacterium aquaticum,” 8 ?g of daptomycin per ml was required for inhibition. Daptomycin demonstrated very good activities against a broad range of gram-positive organisms including vancomycin-resistant C. innocuum and lactobacillus strains and quinupristin-dalfopristin- and linezolid-resistant C. difficile strains. PMID:12499210

  15. Design and synthesis of novel antimicrobials with activity against Gram-positive bacteria and mycobacterial species, including M. tuberculosis

    PubMed Central

    Tiruveedhula, V.V.N. Phani Babu; Witzigmann, Christopher M.; Verma, Ranjit; Kabir, M. Shahjahan; Rott, Marc; Schwan, William R.; Medina-Bielski, Sara; Lane, Michelle; Close, William; Polanowski, Rebecca L.; Sherman, David; Monte, Aaron; Deschamps, Jeffrey R.; Cook, James M.

    2013-01-01

    The alarming increase in bacterial resistance over the last decade along with a dramatic decrease in new treatments for infections has led to problems in the healthcare industry. Tuberculosis (TB) is caused mainly by Mycobacterium tuberculosis which is responsible for 1.4 million deaths per year. A world-wide threat with HIV co-infected with multi and extensively drug-resistant strains of TB has emerged. In this regard, herein, novel acrylic acid ethyl ester derivatives were synthesized in simple, efficient routes and evaluated as potential agents against several Mycobacterium species. These were synthesized via a stereospecific process for structure activity relationship (SAR) studies. Minimum inhibitory concentration (MIC) assays indicated that esters 12, 13, and 20 exhibited greater in vitro activity against Mycobacterium smegmatis than rifampin, one of the current, first-line anti-mycobacterial chemotherapeutic agents. Based on these studies the acrylic ester 20 has been developed as a potential lead compound which was found to have an MIC value of 0.4 ?g/mL against Mycobacterium tuberculosis. The SAR and biological activity of this series is presented; a Michael – acceptor mechanism appears to be important for potent activity of this series of analogs. PMID:24200931

  16. Design and synthesis of novel antimicrobials with activity against Gram-positive bacteria and mycobacterial species, including M. tuberculosis.

    PubMed

    Tiruveedhula, V V N Phani Babu; Witzigmann, Christopher M; Verma, Ranjit; Kabir, M Shahjahan; Rott, Marc; Schwan, William R; Medina-Bielski, Sara; Lane, Michelle; Close, William; Polanowski, Rebecca L; Sherman, David; Monte, Aaron; Deschamps, Jeffrey R; Cook, James M

    2013-12-15

    The alarming increase in bacterial resistance over the last decade along with a dramatic decrease in new treatments for infections has led to problems in the healthcare industry. Tuberculosis (TB) is caused mainly by Mycobacterium tuberculosis which is responsible for 1.4 million deaths per year. A world-wide threat with HIV co-infected with multi and extensively drug-resistant strains of TB has emerged. In this regard, herein, novel acrylic acid ethyl ester derivatives were synthesized in simple, efficient routes and evaluated as potential agents against several Mycobacterium species. These were synthesized via a stereospecific process for structure activity relationship (SAR) studies. Minimum inhibitory concentration (MIC) assays indicated that esters 12, 13, and 20 exhibited greater in vitro activity against Mycobacterium smegmatis than rifampin, one of the current, first-line anti-mycobacterial chemotherapeutic agents. Based on these studies the acrylic ester 20 has been developed as a potential lead compound which was found to have an MIC value of 0.4 ?g/mL against Mycobacterium tuberculosis. The SAR and biological activity of this series is presented; a Michael-acceptor mechanism appears to be important for potent activity of this series of analogs. PMID:24200931

  17. In Vitro Activities of the New Semisynthetic Glycopeptide Telavancin (TD-6424), Vancomycin, Daptomycin, Linezolid, and Four Comparator Agents against Anaerobic Gram-Positive Species and Corynebacterium spp.

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerin L.; Fernandez, Helen T.

    2004-01-01

    Telavancin is a new semisynthetic glycopeptide anti-infective with multiple mechanisms of action, including inhibition of bacterial membrane phospholipid synthesis and inhibition of bacterial cell wall synthesis. We determined the in vitro activities of telavancin, vancomycin, daptomycin, linezolid, quinupristin-dalfopristin, imipenem, piperacillin-tazobactam, and ampicillin against 268 clinical isolates of anaerobic gram-positive organisms and 31 Corynebacterium strains using agar dilution methods according to National Committee for Clinical Laboratory Standards procedures. Plates with daptomycin were supplemented with Ca2+ to 50 mg/liter. The MICs at which 90% of isolates tested were inhibited (MIC90s) for telavancin and vancomycin were as follows: Actinomyces spp. (n = 45), 0.25 and 1 ?g/ml, respectively; Clostridium difficile (n = 14), 0.25 and 1 ?g/ml, respectively; Clostridium ramosum (n = 16), 1 and 4 ?g/ml, respectively; Clostridium innocuum (n = 15), 4 and 16 ?g/ml, respectively; Clostridium clostridioforme (n = 15), 8 and 1 ?g/ml, respectively; Eubacterium group (n = 33), 0.25 and 2 ?g/ml, respectively; Lactobacillus spp. (n = 26), 0.5 and 4 ?g/ml, respectively; Propionibacterium spp. (n = 34), 0.125 and 0.5 ?g/ml, respectively; Peptostreptococcus spp. (n = 52), 0.125 and 0.5 ?g/ml, respectively; and Corynebacterium spp. (n = 31), 0.03 and 0.5 ?g/ml, respectively. The activity of TD-6424 was similar to that of quinupristin-dalfopristin for most strains except C. clostridioforme and Lactobacillus casei, where quinupristin-dalfopristin was three- to fivefold more active. Daptomycin had decreased activity (MIC > 4 ?g/ml) against 14 strains of Actinomyces spp. and all C. ramosum, Eubacterium lentum, and Lactobacillus plantarum strains. Linezolid showed decreased activity (MIC > 4 ?g/ml) against C. ramosum, two strains of C. difficile, and 15 strains of Lactobacillus spp. Imipenem and piperacillin-tazobactam were active against >98% of strains. The MICs of ampicillin for eight Clostridium spp. and three strains of L. casei were >1 ?g/ml. The MIC90 of TD-6424 for all strains tested was ?2 ?g/ml. TD-6424 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation. PMID:15155214

  18. Characterization of a Novel Small Molecule That Potentiates ?-Lactam Activity against Gram-Positive and Gram-Negative Pathogens.

    PubMed

    Nair, Dhanalakshmi R; Monteiro, João M; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G; Cheung, Ambrose L

    2015-04-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a ?-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 ?g/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3'-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 10(8) CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  19. Investigation of the antibacterial activity of pioglitazone

    PubMed Central

    Masadeh, Majed M; Mhaidat, Nizar M; Al-Azzam, Sayer I; Alzoubi, Karem H

    2011-01-01

    Purpose: To evaluate the antibacterial potential of pioglitazone, a member of the thiazolidinediones class of drugs, against Gram-positive (Streptococcus pneumoniae) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. Methods: Susceptibility testing was done using the antibiotic disk diffusion method and the minimal inhibitory concentration (MIC) of pioglitazone was measured according to the broth micro incubation standard method. Results: Pioglitazone induced a dose-dependent antibacterial activity in which the optimal concentration was 80 ?M. Furthermore, results indicated that while E. coli was sensitive (MIC = 31.25 ± 3.87 mg/L) to pioglitazone-induced cytotoxicity, S. pneumoniae and K. pneumoniae were resistant (MIC = 62.5 ± 3.77 mg/L and MIC = 62.5 ± 4.14 mg/L, respectively). Moreover, pretreatment of bacteria with a suboptimal concentration of pioglitazone (40 ?M) before adding amoxicillin, cephalexin, co-trimoxazole, or ciprofloxacin enhanced the antibacterial activity of all agents except co-trimoxazole. This enhancing effect was particularly seen against K. pneumoniae. Conclusion: These results indicate the possibility of a new and potentially important pioglitazone effect and the authors’ ongoing studies aim to illustrate the mechanism(s) by which this antibacterial effect is induced. PMID:22087061

  20. ANTIBACTERIAL SCREENING OF CITRULLUS COLOCYNTHIS

    Microsoft Academic Search

    USMAN MEMON; ABDUL HAKEEM BROHI; SYED WASEEMUDDIN AHMED; IQBAL AZHAR; HUSAN BANO

    Crude ethanolic extracts of fruits, leaves, stems and roots of Citrulus colocynthis Schrad were examined for their antibacterial potentialities against Gram positive and Gram negative bacilli. Ethanolic extracts of fruits, leaves, stems and roots were found to be active against Gram positive bacilli, viz., Bacilus pumilus and Staphylococcus aureus, while fruit and root extracts in double strength gave positive results

  1. DNA gyrase (GyrB)\\/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity

    Microsoft Academic Search

    Stephen P. East; Clara Bantry White; Oliver Barker; Stephanie Barker; James Bennett; David Brown; E. Andrew Boyd; Christopher Brennan; Chandana Chowdhury; Ian Collins; Emmanuelle Convers-Reignier; Brian W. Dymock; Rowena Fletcher; David J. Haydon; Mihaly Gardiner; Stuart Hatcher; Peter Ingram; Paul Lancett; Paul Mortenson; Konstantinos Papadopoulos; Carol Smee; Helena B. Thomaides-Brears; Heather Tye; James Workman; Lloyd G. Czaplewski

    2009-01-01

    The synthesis and antibacterial activities of three chemotypes of DNA supercoiling inhibitors based on imidazolo[1,2-a]pyridine and [1,2,4]triazolo[1,5-a]pyridine scaffolds that target the ATPase subunits of DNA gyrase and topoisomerase IV (GyrB\\/ParE) is reported. The most potent scaffold was selected for optimization leading to a series with potent Gram-positive antibacterial activity and a low resistance frequency.

  2. In vitro antibacterial activity of some plant essential oils

    PubMed Central

    Prabuseenivasan, Seenivasan; Jayakumar, Manickkam; Ignacimuthu, Savarimuthu

    2006-01-01

    Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents. PMID:17134518

  3. Membrane active phenylalanine conjugated lipophilic norspermidine derivatives with selective antibacterial activity.

    PubMed

    Konai, Mohini M; Ghosh, Chandradhish; Yarlagadda, Venkateswarlu; Samaddar, Sandip; Haldar, Jayanta

    2014-11-26

    Natural and synthetic membrane active antibacterial agents offer hope as potential solutions to the problem of bacterial resistance as the membrane-active nature imparts low propensity for the development of resistance. In this report norspermidine based antibacterial molecules were developed that displayed excellent antibacterial activity against various wild-type bacteria (Gram-positive and Gram-negative) and drug-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and ?-lactam-resistant Klebsiella pneumoniae). In a novel structure-activity relationship study it has been shown how incorporation of an aromatic amino acid drastically improves selective antibacterial activity. Additionally, the effect of stereochemistry on activity, toxicity, and plasma stability has also been studied. These rapidly bactericidal, membrane active antibacterial compounds do not trigger development of resistance in bacteria and hence bear immense potential as therapeutic agents to tackle multidrug resistant bacterial infections. PMID:25335118

  4. Correlation between Major Constituents and Antibacterial Activities of Some Plant Essential Oils against Some Pathogenic Bacteria

    Microsoft Academic Search

    Neslihan Dikbas; Recep Kotan; Fatih Dadasoglu; Kenan Karagöz; Ramazan Çakmakci

    Five different plant essential oils (Satureja hortensis, Thymus sipyleus ssp. rosulans, Thymus haussknechtii, Origanum rotundifolium (cultured form) and Origanum acutidens (wild and cultured form)) and their two major constituents carvacarol and thymol were evaluated for antibacterial activity against food-borne Gram negative (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella enteritidis) and Gram positive bacteria (Bacillus subtilis, Streptococcus pyogenes and Enterococcus

  5. Amino acid modified xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections.

    PubMed

    Koh, Jun-Jie; Lin, Shuimu; Aung, Thet Tun; Lim, Fanghui; Zou, Hanxun; Bai, Yang; Li, Jianguo; Lin, Huifen; Pang, Li Mei; Koh, Wee Luan; Salleh, Shuhaida Mohamed; Lakshminarayanan, Rajamani; Zhou, Lei; Qiu, Shengxiang; Pervushin, Konstantin; Verma, Chandra; Tan, Donald T H; Cao, Derong; Liu, Shouping; Beuerman, Roger W

    2015-01-22

    Antibiotic resistance is a critical global health care crisis requiring urgent action to develop more effective antibiotics. Utilizing the hydrophobic scaffold of xanthone, we identified three components that mimicked the action of an antimicrobial cationic peptide to produce membrane-targeting antimicrobials. Compounds 5c and 6, which contain a hydrophobic xanthone core, lipophilic chains, and cationic amino acids, displayed very promising antimicrobial activity against multidrug-resistant Gram-positive bacteria, including MRSA and VRE, rapid time-kill, avoidance of antibiotic resistance, and low toxicity. The bacterial membrane selectivity of these molecules was comparable to that of several membrane-targeting antibiotics in clinical trials. 5c and 6 were effective in a mouse model of corneal infection by S. aureus and MRSA. Evidence is presented indicating that 5c and 6 target the negatively charged bacterial membrane via a combination of electrostatic and hydrophobic interactions. These results suggest that 5c and 6 have significant promise for combating life-threatening infections. PMID:25474410

  6. Update of the telavancin activity in vitro tested against a worldwide collection of Gram-positive clinical isolates (2013), when applying the revised susceptibility testing method.

    PubMed

    Mendes, Rodrigo E; Farrell, David J; Sader, Helio S; Streit, Jennifer M; Jones, Ronald N

    2015-04-01

    A revised broth microdilution susceptibility testing method for telavancin was approved by the Food and Drug Administration (FDA). Telavancin activity was assessed against Gram-positive pathogens collected worldwide (2013) using the revised method. A total of 12,346 isolates from 90 sites were included as part of the Telavancin International Surveillance Program for the Americas, Europe, and Asia-Pacific. Telavancin had MIC50 and MIC90 values of 0.03 and 0.06?g/mL, respectively, against staphylococci, regardless of methicillin susceptibility, and inhibited all Staphylococcus aureus at ?0.12?g/mL (revised FDA breakpoint). Telavancin was 8-fold more active than daptomycin (MIC50/90, 0.25/0.5?g/mL) and 16- to 32-fold more active than vancomycin (MIC50/90, 1/1?g/mL) and linezolid (MIC50/90, 1/1?g/mL) against methicillin-resistant S. aureus. All 692 vancomycin-susceptible Enterococcus faecalis were inhibited by telavancin (MIC50/90, 0.12/0.12?g/mL) at ?0.25?g/mL (FDA breakpoint), except for 1 strain (MIC, 0.5?g/mL). All Enterococcus faecium and E. faecalis with telavancin MIC values of ?0.5 and ?1?g/mL, respectively, had a VanA phenotype. A comparison data analysis based on the MIC90 demonstrated that telavancin was at least 8-fold more potent than comparators against vancomycin-susceptible enterococci. Streptococci showed telavancin MIC50 values of ?0.015?g/mL, except for Streptococcus agalactiae (MIC50, 0.03?g/mL). These in vitro results obtained by the recently approved susceptibility testing method establish a new benchmark of telavancin activity worldwide. PMID:25618421

  7. Antimicrobial activity of ceftobiprole against gram-negative and gram-positive pathogens: results from INVITA-A-CEFTO Brazilian study.

    PubMed

    Cereda, Rosângela Ferraz; Azevedo, Heber Dias; Girardello, Raquel; Xavier, Danilo Elias; Gales, Ana C

    2011-01-01

    Ceftobiprole is a broad-spectrum cephalosporin with potent activity against staphylococci, including those resistant to oxacillin, as well as against most gram-negative bacilli including Pseudomonas aeruginosa. In this study, the in vitro activity of ceftobiprole and comparator agents was tested against bacterial isolates recently collected from Brazilian private hospitals. A total of 336 unique bacterial isolates were collected from hospitalized patients between February 2008 and August 2009. Each hospital was asked to submit 100 single bacterial isolates responsible for causing blood, lower respiratory tract or skin and soft tissue infections. Bacterial identification was confirmed and antimicrobial susceptibility testing was performed using CLSI microdilution method at a central laboratory. The CLSI M100-S21 (2011) was used for interpretation of the antimicrobial susceptibility results. Among the 336 pathogens collected, 255 (75.9%) were gram-negative bacilli and 81 (24.1%) were gram-positive cocci. Although ceftobiprole MIC50 values for oxacillin resistant strains were two-fold higher than for methicillin susceptible S. aureus, ceftobiprole inhibited 100% of tested S. aureus at MICs < 4 µg/mL. Polymyxin B was the only agent to show potent activity against Acinetobacter spp. (MIC50/90, 0.5/1 µg/mL), and P. aeruginosa (MIC50/90, 1/2 µg/mL). Resistance to broad-spectrum cephalosporins varied from 55.3-68.5% and 14.3-28.5% among E. coli and Klebsiella spp. isolates, respectively; with ceftobiprole MIC50 > 6 µg/mL for both species. Our results showed that ceftobiprole has potent activity against staphylococci and E. faecalis, which was superior to that of vancomycin. Our data also indicates that ceftobiprole demonstrated potency comparable to that of cefepime and ceftazidime against key gram-negative species. PMID:21861004

  8. In vitro antibacterial activity of a new quinolone, NM394.

    PubMed Central

    Ozaki, M; Matsuda, M; Tomii, Y; Kimura, K; Kazuno, K; Kitano, M; Kise, M; Shibata, K; Otsuki, M; Nishino, T

    1991-01-01

    NM394 is a new 6-fluoroquinolone antibacterial agent with a tricyclic structure which has a bridge that connects the N-1 and C-2 positions of the quinolone. The antibacterial activity of NM394 against clinical isolates of staphylococci, streptococci, enterococci, members of the family Enterobacteriaceae, and Pseudomonas aeruginosa was equal to or one-half that of ciprofloxacin. NM394 was as active as ofloxacin against gram-positive bacteria and was two to eight times more active against gram-negative bacteria, including P. aeruginosa. NM394 was two to eight times more active than enoxacin against gram-positive and gram-negative bacteria. The MICs of NM394 against Escherichia coli and P. aeruginosa at pH 5.5 were reduced 4 to 16 times compared with those at pH 7.0. Ciprofloxacin, ofloxacin, and enoxacin were 2 to 32 times less active against these two bacteria and Staphylococcus aureus at an acidic pH than they were at pH 7.0. In the presence of 5 mM Mg2+, the MICs of all of these drugs increased 2 to 32 times, but they were only slightly affected by 5 mM Ca2+, type of medium, serum, or size of inoculum. NM394 showed potent bactericidal activity and inhibited the supercoiling activity of E. coli DNA gyrase. The in vitro antibacterial profile of NM394 is similar to that of other 6-fluoroquinolones. PMID:1667251

  9. In vitro activity of ceftaroline against gram-positive and gram-negative pathogens isolated from patients in Canadian hospitals in 2009.

    PubMed

    Karlowsky, James A; Adam, Heather J; Decorby, Melanie R; Lagacé-Wiens, Philippe R S; Hoban, Daryl J; Zhanel, George G

    2011-06-01

    The in vitro activities of ceftaroline and comparative agents were determined for a collection of the most frequently isolated bacterial pathogens from hospital-associated patients across Canada in 2009 as part of the ongoing CANWARD surveillance study. In total, 4,546 isolates from 15 sentinel Canadian hospital laboratories were tested using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Compared with other cephalosporins, including ceftobiprole, cefepime, and ceftriaxone, ceftaroline exhibited the greatest potency against methicillin-susceptible Staphylococcus aureus (MSSA), with a MIC?? of 0.25 ?g/ml. Ceftaroline also demonstrated greater potency than ceftobiprole against community-associated methicillin-resistant S. aureus (MRSA) (MIC??, 0.5 ?g/ml) and health care-associated MRSA (MIC??, 1 ?g/ml) and was at least 4-fold more active than other cephalosporins against Staphylococcus epidermidis; all isolates of MSSA and MRSA tested were susceptible to ceftaroline (MIC, ?1 ?g/ml). Against streptococci, including Streptococcus pneumoniae, ceftaroline MICs (MIC??, ?0.03 ?g/ml) were comparable to those of ceftobiprole; however, against penicillin-nonsusceptible, macrolide-nonsusceptible, and multidrug-nonsusceptible isolates of S. pneumoniae, ceftaroline demonstrated 2- to 4-fold and 4- to 16-fold more potent activities than those of ceftobiprole and ceftriaxone, respectively. All isolates of S. pneumoniae tested were susceptible to ceftaroline (MIC, ?0.25 ?g/ml). Among Gram-negative isolates, ceftaroline demonstrated potent activity (MIC??, ?0.5 ?g/ml) against Escherichia coli (92.2% of isolates were susceptible), Klebsiella pneumoniae (94.1% of isolates were susceptible), Proteus mirabilis (97.7% of isolates were susceptible), and Haemophilus influenzae (100% of isolates were susceptible). Ceftaroline demonstrated less potent activity (MIC??, ?4 ?g/ml) against Enterobacter spp., Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella oxytoca, Serratia marcescens, and Stenotrophomonas maltophilia. Overall, ceftaroline demonstrated potent in vitro activity against a recent collection of the most frequently encountered Gram-positive and Gram-negative isolates from patients attending hospitals across Canada in 2009. PMID:21402844

  10. Activation of the complement system generates antibacterial peptides

    PubMed Central

    Nordahl, Emma Andersson; Rydengård, Victoria; Nyberg, Patrik; Nitsche, D. Patric; Mörgelin, Matthias; Malmsten, Martin; Björck, Lars; Schmidtchen, Artur

    2004-01-01

    The complement system represents an evolutionary old and significant part of the innate immune system involved in protection against invading microorganisms. Here, we show that the anaphylatoxin C3a and its inactivated derivative C3a-desArg are antibacterial, demonstrating a previously unknown direct antimicrobial effect of complement activation. The C3a peptide, as well as functional epitopes in the sequence, efficiently killed the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and the Gram-positive Enterococcus faecalis. In mice, a C3a-derived peptide suppressed infection by Gram-positive Streptococcus pyogenes bacteria. Fluorescence and electron microscopy demonstrated that C3a binds to and induces breaks in bacterial membranes. C3a was also found to induce membrane leakage of liposomes. These findings provide an interesting link between the complement system and antimicrobial peptides, which are two important branches of innate immunity. PMID:15550543

  11. Gram-Positive Anaerobic Cocci

    PubMed Central

    Murdoch, D. A.

    1998-01-01

    Gram-positive anaerobic cocci (GPAC) are a heterogeneous group of organisms defined by their morphological appearance and their inability to grow in the presence of oxygen; most clinical isolates are identified to species in the genus Peptostreptococcus. GPAC are part of the normal flora of all mucocutaneous surfaces and are often isolated from infections such as deep organ abscesses, obstetric and gynecological sepsis, and intraoral infections. They have been little studied for several reasons, which include an inadequate classification, difficulties with laboratory identification, and the mixed nature of the infections from which they are usually isolated. Nucleic acid studies indicate that the classification is in need of radical revision at the genus level. Several species of Peptostreptococcus have recently been described, but others still await formal recognition. Identification has been based on carbohydrate fermentation tests, but most GPAC are asaccharolytic and use the products of protein degradation for their metabolism; the introduction of commercially available preformed enzyme kits affords a physiologically more appropriate method of identification, which is simple and relatively rapid and can be used in routine diagnostic laboratories. Recent reports have documented the isolation in pure culture of several species, notably Peptostreptococcus magnus, from serious infections. Studies of P. magnus have elucidated several virulence factors which correlate with the site of infection, and reveal some similarities to Staphylococcus aureus. P. micros is a strongly proteolytic species; it is increasingly recognized as an important pathogen in intraoral infections, particularly periodontitis, and mixed anaerobic deep-organ abscesses. Comparison of antibiotic susceptibility patterns reveals major differences between species. Penicillins are the antibiotics of choice, although some strains of P. anaerobius show broad-spectrum ?-lactam resistance. PMID:9457430

  12. Transformation of gram positive bacteria by sonoporation

    SciTech Connect

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  13. [Antibacterial activity of water soluble fraction from Scolopendra subspinipes mutilans].

    PubMed

    Ren, Wen-hua; Zhang, Shuang-quan; Song, Da-xiang; Zhou, Kai-ya

    2007-01-01

    The water soluble fraction (SWSF) of centipede Scolopendra subspinipes mautilans, injected with Escherichia coli K12 D31 for 3-4 days showed broad-spectrum antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. It showed strong antibacterial activity against E. coli K12D31 at different temperatures, pH and ionic strengths. It did not show any hemolytic and agglutination activities at the concentration below 600 microg/ml. After E. coli K12 D31 treated with SWSF, the ultrastructure showed that its outer cell wall was broken, surface collapsed and intracellular substances leaked out. PMID:17539295

  14. In vitro activity of gemifloxacin and contemporary oral antimicrobial agents against 27,247 Gram-positive and Gram-negative aerobic isolates: a global surveillance study

    Microsoft Academic Search

    S. K Bouchillon; D. J Hoban; J. L Johnson; B. M Johnson; D. L Butler; K. A Saunders; L. A Miller; J. A Poupard

    2004-01-01

    This study was a multi-centre, multi-country surveillance of 27,247 Gram-positive and Gram-negative isolates collected from 131 study centres in 44 countries from 1997 to 2000. MICs of gemifloxacin were compared with penicillin, amoxicillin-clavulanic acid, cefuroxime, azithromycin, clarithromycin, trimethoprim–sulphamethoxazole, ciprofloxacin, grepafloxacin and levofloxacin by broth microdilution. Penicillin resistance in Streptococcus pneumoniae was extremely high in the Middle East (65.6%), Africa (64.0%)

  15. Ceftriaxone activity against Gram-positive and Gram-negative pathogens isolated in US clinical microbiology laboratories from 1996 to 2000: results from The Surveillance Network® (TSN®) Database-USA

    Microsoft Academic Search

    J. A. Karlowsky; M. E. Jones; D. C. Mayfield; C. Thornsberry; D. F. Sahm

    2002-01-01

    Ceftriaxone was introduced into clinical practice in the USA in 1985 and was the first extended-spectrum (third-generation) cephalosporin approved for once-daily treatment of patients with Gram-positive or Gram-negative infections. Review of ceftriaxone activity is important given its continued use since the mid-1980s and reports of emerging resistance among all antimicrobial agent classes. We reviewed the activity of ceftriaxone and relevant

  16. Comparative In Vitro Activities of SMT19969, a New Antimicrobial Agent, against Clostridium difficile and 350 Gram-Positive and Gram-Negative Aerobic and Anaerobic Intestinal Flora Isolates

    PubMed Central

    Citron, Diane M.; Tyrrell, Kerin L.; Merriam, C. Vreni

    2013-01-01

    The comparative in vitro activity of SMT19969, a novel, narrow-spectrum, nonabsorbable agent, was studied against 50 ribotype-defined Clostridium difficile strains, 174 Gram-positive and 136 Gram-negative intestinal anaerobes, and 40 Gram-positive aerobes. SMT19969 was one dilution more active against C. difficile isolates (MIC range, 0.125 to 0.5 ?g/ml; MIC90, 0.25 ?g/ml), including ribotype 027 strains, than fidaxomicin (range, 0.06 to 1 ?g/ml; MIC90, 0.5 ?g/ml) and two to six dilutions lower than either vancomycin or metronidazole. SMT19969 and fidaxomicin were generally less active against Gram-negative anaerobes, especially the Bacteroides fragilis group species, than vancomycin and metronidazole, suggesting that SMT19969 has a lesser impact on the normal intestinal microbiota that maintain colonization resistance. SMT19969 showed limited activity against other Gram-positive anaerobes, including Bifidobacteria species, Eggerthella lenta, Finegoldia magna, and Peptostreptococcus anaerobius, with MIC90s of >512, >512, 64, and 64 ?g/ml, respectively. Clostridium species showed various levels of susceptibility, with C. innocuum being susceptible (MIC90, 1 ?g/ml) and C. ramosum and C. perfringens being nonsusceptible (MIC90, >512 ?g/ml). Activity against Lactobacillus spp. (range, 0.06 to >512 ?g/ml; MIC90, >512 ?g/ml) was comparable to that of fidaxomicin and varied by species and strain. Gram-positive aerobic cocci (Staphylococcus aureus, Enterococcus faecalis, E. faecium, and streptococci) showed high SMT19969 MIC90 values (128 to >512 ?g/ml). PMID:23877700

  17. Results of the surveillance of Tedizolid activity and resistance program: in vitro susceptibility of gram-positive pathogens collected in 2011 and 2012 from the United States and Europe.

    PubMed

    Sahm, Daniel F; Deane, Jennifer; Bien, Paul A; Locke, Jeffrey B; Zuill, Douglas E; Shaw, Karen J; Bartizal, Ken F

    2015-02-01

    The in vitro activity and spectrum of tedizolid and comparators were analyzed against 6884 Gram-positive clinical isolates collected from multiple US and European sites as part of the Surveillance of Tedizolid Activity and Resistance Program in 2011 and 2012. Organisms included 4499 Staphylococcus aureus, 537 coagulase-negative staphylococci (CoNS), 873 enterococci, and 975 ?-hemolytic streptococci. The MIC values that inhibited 90% of the isolates within each group (MIC90) were 0.25 ?g/mL for Staphylococcus epidermidis and ?-hemolytic streptococci and 0.5 ?g/mL for S. aureus, other CoNS, and enterococci. Of 16 isolates with elevated tedizolid or linezolid MIC values (intermediate or resistant isolates), 10 had mutations in the genes encoding 23S rRNA (primarily G2576T), 5 had mutations in the genes encoding ribosomal proteins L3 or L4, and 5 carried the cfr multidrug resistance gene. Overall, tedizolid showed excellent activity against Gram-positive bacteria and was at least 4-fold more potent than linezolid against wild-type and linezolid-resistant isolates. Given the low overall frequency of isolates that would be resistant to tedizolid at the proposed break point of 0.5 ?g/mL (0.19%) and potent activity against contemporary US and European isolates, tedizolid has the potential to serve as a valuable therapeutic option in the treatment of infections caused by Gram-positive pathogens. PMID:25488274

  18. Future treatment options for Gram-positive infections--looking ahead.

    PubMed

    Barton, E; MacGowan, A

    2009-12-01

    Multidrug-resistant Gram-positive infections remain a significant therapeutic problem, especially those due to Staphylococcus aureus. Antimicrobial choice is only one aspect of the management of these infections. New immunotherapies, exploitation of novel antibiotic targets, topical therapies and new drug delivery systems may have a future role in the management of S. aureus infection. At present, injectable antimicrobials are the main area of drug development and clinical interest. Since 1999, five anti-Gram-positive agents (moxifloxacin, quinupristin-dalfopristin, linezolid, daptomycin and tigecycline) have become available in the EU. At present, three other anti-Gram-positive agents are being considered by the European Medicines Agency (ceftobiprole, gemifloxacin and iclaprim), and a further four have completed phase III clinical trials (ceftaroline, dalbavancin, oritavancin and telavancin). The antibacterial spectra of these agents, their in vitro potencies, bactericidal activities and pharmacokinetics are well known. The safety profiles for those agents that have received regulatory approval and entered clinical practice are also firmly established. Most of the agents are pharmacodynamically promising and effective in clinical trials. As in the past, drug safety is likely to be a major determinant of which of the most recent drugs receive regulatory approval, and, in the long term, which agents will be successful in clinical practice. PMID:19917023

  19. [Synthesis and antibacterial activity of 7-(3-amino-4-alkoxyimino-1 -piperidyl) -quinolones].

    PubMed

    Wang, Xiu-Yun; Guo, Qiang; Wang, Yu-Cheng; Liu, Bing-Quan; Liu, Ming-Liang; Sun, Lan-Ying; Guo, Hui-Yuan

    2008-08-01

    To explore new agents of quinolone derivatives with high activity against Gram-positive and Gram-negative microorganisms, 7-(3-amino-4-alkoxyimino-1-piperidyl) quinolones were designed and synthesized, and their activity against Gram-positive and Gram- negative microorganisms were tested in vivo and in vitro. Twenty one target compounds were obtained. Their structures were established by 1H NMR, HRMS and X-ray crystallographic analysis. The target compounds possess different antimicrobial activities against both Gram-negative and Gram-positive microorganisms. Compounds 14a and 14m have broad spectral antibacterial activities. They show better antibacterial activities against 12 strains Gram-positive bacteria than three references. In particular, their activities against S. aureus and S. epidermidis (including MRSA and MRSE) were 4 - 16 times than that of gemifloxacin and balofloxacin, and 8 - 64 times than that of levofloxacin. The MIC values to S. aureus strains of compounds 14a and 14m were 0.25 - 1 mg x L(-1) and 0.125 - 1 mg x L(-1), to S. epidermidis strains were 0.5 - 4 mg x L(-1) and 1 - 8 mg x L(-1) respectively. The in vivo results showed that they have as good internal protection as gemifloxacin and moxifloxacin against systemic infection model in mice (P > 0.05). PMID:18956774

  20. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies

    NASA Astrophysics Data System (ADS)

    Boufas, Wahida; Dupont, Nathalie; Berredjem, Malika; Berrezag, Kamel; Becheker, Imène; Berredjem, Hajira; Aouf, Nour-Eddine

    2014-09-01

    A series of substituted sulfonamide derivatives were synthesized from chlorosulfonyl isocyanate (CSI) in tree steps (carbamoylation, sulfamoylation and deprotection). Antibacterial activity in vitro of some newly formed compounds investigated against clinical strains Gram-positive and Gram-negative: Escherichia coli and Staphylococcus aureus applying the method of dilution and minimal inhibition concentration (MIC) methods. These compounds have significant bacteriostatic activity with totalities of bacterial strains used. DFT calculations with B3LYP/6-31G(d) level have been used to analyze the electronic and geometric characteristics deduced for the stable structure of three compounds presenting conjugation between a nitrogen atom N through its lone pair and an aromatic ring next to it. The principal quantum chemical descriptors have been correlated with the antibacterial activity.

  1. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa

    PubMed Central

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa. PMID:25587332

  2. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.

    PubMed

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa. PMID:25587332

  3. Antimicrobial Resistance in Gram-Positive Bacteria

    Microsoft Academic Search

    Louis B. Rice

    2006-01-01

    Gram-positive bacteria are common causes of bloodstream and other infections in hospitalized patients in the United States, and the percentage of nosocomial bloodstream infections caused by antibiotic-resistant gram-positive bacteria is increasing. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are of particular concern. In the United States, approximately 60% of staphylococcal infections in the intensive care unit are now caused

  4. Antibacterial activity of Cichorium intybus

    Microsoft Academic Search

    J. Petrovic; A. Stanojkovic; Lj. Comic; S. Curcic

    2004-01-01

    Antibacterial activity of the water, ethanol and ethyl acetate extracts of Cichorium intybus was investigated. All the tested extracts showed antibacterial activity, the ethyl acetate extract being the most active. Water extract inhibits Agrobacterium radiobacter sp. tumefaciens, Erwinia carotovora, Pseudomonas fluorescens and P. aeruginosa.

  5. In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica.

    PubMed

    Kothari, Vijay; Seshadri, Sriram

    2010-01-01

    Extracts prepared from seeds of Manilkara zapota, Anona squamosa, and Tamarindus indica were screened for their antibacterial activity by disc diffusion and broth dilution methods. Acetone and methanol extracts of T. indica seeds were found active against both gram-positive and gram-negative organisms. MIC values of potent extracts against susceptible organisms ranged from 53-380 ?g/mL. Methanol extract of T. indica and acetone extract of M. zapota seeds were found to be bactericidal. PMID:21031260

  6. Suicin 90-1330 from a Nonvirulent Strain of Streptococcus suis: a Nisin-Related Lantibiotic Active on Gram-Positive Swine Pathogens

    PubMed Central

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will evaluate the ability of suicin 90-1330 or the producing strain to prevent experimental S. suis infections in pigs. PMID:24973067

  7. Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl groups from Angelica keiskei

    Microsoft Academic Search

    Kazuhiro Sugamoto; Yoh-ichi Matsusita; Kana Matsui; Chiaki Kurogi; Takanao Matsui

    2011-01-01

    Chalcones bearing prenyl or geranyl groups from Angelica keiskei, such as 4-hydroxyderricin (1a), xanthoangelol (1e), xanthoangelol F (1f), xanthoangelol H (2), deoxyxanthoangelol H (3), and deoxydihydroxanthoangelol H (4) and their derivatives were synthesized. From the evaluation of antibacterial activity of the synthesized chalcones, 1a, isobavachalcone (1b), 1e, 1f, bavachalcone (5a), and broussochalcone B (5b) were found to inhibit Gram-positive bacteria.

  8. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms

    Microsoft Academic Search

    Blaise Ouattara; Ronald E Simard; Richard A Holley; Gabriel J.-P Piette; André Bégin

    1997-01-01

    The antibacterial activity of selected fatty acids and essential oils was examined against two gram-negative (Pseudomonas fluorescens and Serratia liquefaciens), and four gram-positive (Brochothrix thermosphacta, Carnobacterium piscicola, Lactobacillus curvatus, and Lactobacillus sake) bacteria involved in meat spoilage. Various amounts of each preservative were added to brain heart infusion or MRS (deMan, Rogosa and Sharpe) agars, and the minimum inhibitory concentration

  9. In vitro evaluation of Datura innoxia (thorn-apple) for potential antibacterial activity.

    PubMed

    Kaushik, P; Goyal, Pankaj

    2008-09-01

    Various parts of Datura innoxia were examined for potential antibacterial activity by preparing their crude aqueous and organic extracts against Gram-negative bacteria (Escherichia coli and Salmonella typhi) and Gram-positive bacteria (Bacillus cereus, Bacillus subtilis and Staphylococcus aureus). The results of agar well diffusion assay indicated that the pattern of inhibition depends largely upon the plant part, solvent used for extraction and the organism tested. Extracts prepared from leaves were shown to have better efficacy than stem and root extracts. Organic extracts provided potent antibacterial activity as compared to aqueous extracts. Among all the extracts, methanolic extract was found most active against almost all the bacterial species tested. Gram-positive bacteria were found most sensitive as compared to Gram-negative bacteria. Staphylococcus aureus was signifi cantly inhibited by almost all the extracts even at very low MIC followed by other Gram-positives. For Escherichia coli (a Gram-negative bacterium), the end point was not reached for ethyl acetate extract while it was very high for other extracts. The study promises an interesting future for designing a potentially active antibacterial agent from Datura innoxia. PMID:23100734

  10. Accentuate the (Gram) positive Victor Nizet

    E-print Network

    Nizet, Victor

    research. Streptococcus pneumoniae (SPN) is a leading agent of pneumonia, meningitis and sepsis throughout January 2010 # Springer-Verlag 2010 Keywords Gram-positive bacteria . Streptococcus . Special issue [7]. The mechanisms of SPN invasion to produce lower respiratory tract, pneumonia, and meningitis

  11. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  12. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  13. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  14. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  15. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K.

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25 °C) and 60 °C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

  16. Selective growth promotion and growth inhibition of Gram-negative and Gram-positive bacteria by synthetic siderophore-?-lactam conjugates

    Microsoft Academic Search

    Ute Möllmann; Arun Ghosh; Eric K. Dolence; Julia A. Dolence; Manuka Ghosh; Marvin J. Miller; R. Reissbrodt

    1998-01-01

    Conjugates of a carbacephalosporin with hydroxamate, spermexatol, N,N-bis(2,3-dihydroxybenzoyl)-L-lysine, mixed catecholate\\/hydroxamate and cyanuric acid-based siderophores were investigated for their potential to promote growth of siderophore indicator strains of Gram-negative and Gram-positive bacteria under iron depleted conditions, for their antibacterial activity and for their ability to use iron transport path-ways to penetrate the Gram-negative bacterial outer membrane. The selective growth promotion of

  17. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    PubMed

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process. PMID:19335367

  18. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains

    PubMed Central

    Azam, Ameer; Ahmed, Arham S; Oves, M; Khan, MS; Memic, Adnan

    2012-01-01

    Background CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Here we synthesized different sized CuO nanoparticles and explored the size-dependent antibacterial activity of each CuO nanoparticles preparation. Methods CuO nanoparticles were synthesized using a gel combustion method. In this approach, cupric nitrate trihydrate and citric acid were dissolved in distilled water with a molar ratio of 1:1. The resulting solution was stirred at 100°C, until gel was formed. The gel was allowed to burn at 200°C to obtain amorphous powder, which was further annealed at different temperatures to obtain different size CuO nanoparticles. We then tested the antibacterial properties using well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods. Results XRD spectra confirmed the formation of single phase CuO nanoparticles. Crystallite size was found to increase with an increase in annealing temperature due to atomic diffusion. A minimum crystallite size of 20 nm was observed in the case of CuO nanoparticles annealed at 400°C. Transmission electron microscopy results corroborate well with XRD results. All CuO nanoparticles exhibited inhibitory effects against both Gram-positive and -negative bacteria. The size of the particles was correlated with its antibacterial activity. Conclusion The antibacterial activity of CuO nanoparticles was found to be size-dependent. In addition, the highly stable minimum-sized monodispersed copper oxide nanoparticles synthesized during this study demonstrated a significant increase in antibacterial activities against both Gram-positive and -negative bacterial strains. PMID:22848176

  19. In vitro and in vivo antibacterial activities of Q-35, a novel fluoroquinolone.

    PubMed

    Iwasaki, H; Miyazaki, S; Tsuji, A; Yamaguchi, K; Goto, S

    1995-01-01

    Q-35, a new fluoroquinolone, was evaluated for its in vitro and in vivo antibacterial activities. In vitro antibacterial activity against gram-positive bacteria was almost equal to that of sparfloxacin or tosufloxacin, but its activity against gram-negative bacteria was 2 times or more lower than that of other quinolones tested. In experimental septicemia, the in vivo activity of Q-35 reflected its in vitro antibacterial activity. In respiratory tract infections with Streptococcus pneumoniae TMS-3 in mice, Q-35 showed a therapeutic effect similar to sparfloxacin and tosufloxacin. Q-35 showed almost the same activity as that of ofloxacin in mice with pyelonephritic infection due to Escherichia coli TMS-3. The peak levels of Q-35 in murine serum, lungs and kidneys after a single oral administration were intermediate compared to those of tested quinolones. PMID:7758353

  20. Synthesis and in vitro antibacterial activity of quinolone/naphthyridone derivatives containing 3-alkoxyimino-4-(methyl)aminopiperidine scaffolds.

    PubMed

    Lv, Kai; Wu, Jinwei; Wang, Jian; Liu, Mingliang; Wei, Zengquan; Cao, Jue; Sun, Yexin; Guo, Huiyuan

    2013-03-15

    We report herein the synthesis of a series of 7-[3-alkoxyimino-4-(methyl)aminopiperidin-1-yl]quinolone/naphthyridone derivatives. In vitro antibacterial activity of these derivatives was evaluated against representative strains, and compared with ciprofloxacin (CPFX), levofloxacin (LVFX) and gemifloxacin (GMFX). The results reveal that all of the target compounds 19a-c and 20 have considerable Gram-positive activity, although they are generally less active than the reference drugs against the Gram-negative strains with some exceptions. Especially, novel compounds 19a2, 19a4 and 19a5 were found to show strong antibacterial activity (MICs: <0.008-0.5?g/mL) against all of the tested 15 Gram-positive strains including MRSA, LVFX- and GMFX-resistant MRSE, and CPFX-, LVFX- and GMFX-resistant MSSA. PMID:23402878

  1. Synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-methyl-3-methylaminopiperidin-1-yl)quinolones.

    PubMed

    Wan, Zhi-long; Chai, Yun; Liu, Ming-liang; Guo, Hui-yuan; Sun, Lan-ying

    2010-07-01

    To explore new agents of quinolone derivatives with high antibacterial activity, 7-(4-alkoxyimino-3-methyl-3-methylaminopiperidin-1-yl)quinolones were designed and synthesized, and their activity against gram-positive and gram-negative strains was tested in vitro. Sixteen target compounds were obtained. Their structures were established by 1H NMR, HRMS and X-ray crystallographic analysis. Compounds 14k and 14m-14o show good antibacterial activity against the tested five gram-positive strains and five gram-negative strains (MIC: 0.25-16 micromg x mL(-1)), of which the most active compound 14o is 8-fold more potent than levofloxacin against S. pneumoniae (MIC: 4 microg x mL(-1)), and comparable to levofloxacin against S. aureus, S. epidermidis, E. faecalis and E. coli (MIC: 0.25-1 microg x mL(-1)), but generally less potent than gemifloxacin. PMID:20931783

  2. Synthesis and antibacterial activity of of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Maliszewska, I.; Sadowski, Z.

    2009-01-01

    Silver nanoparticles have been known to have inhibitory and bactericidal effects but the antimicrobial mechanism have not been clearly revealed. Here, we report on the synthesis of metallic nanoparticles of silver using wild strains of Penicillium isolated from environment. Kinetics of the formation of nanosilver was monitored using the UV-Vis. TEM micrographs showed the formation of silver nanoparticles in the range 10-100 nm. Obtained Ag nanoparticles were evaluated for their antimicrobial activity against the gram-positive and gram-negative bacteria. As results, Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were effectively inhibited. Nanosilver is a promising candidate for development of future antibacterial therapies because of its wide spectrum of activity.

  3. Antibacterial Activities of Actinomycete Isolates Collected from Soils of Rajshahi, Bangladesh

    PubMed Central

    Rahman, Md. Ajijur; Islam, Mohammad Zahidul; Islam, Md. Anwar Ul

    2011-01-01

    This study was performed to isolate actinomycete colonies having antibacterial activity from soil samples collected from different places around Rajshahi, Bangladesh. Thirty actinomycete colonies were isolated in pure culture from five soil samples using Starch-casein-nitrate-agar medium. The isolates were grouped in five color series based on their aerial mycelia color and screened for their antibacterial activity against a range of test bacteria. Sixteen isolates (53.3%) were found to have moderate to high activity against four gram-positive and four gram-negative bacteria. Since many isolates showed inhibitory activity against indicator bacteria, it is suggestive that Bangladeshi soil could be an interesting source to explore for antibacterial secondary metabolites. PMID:21904683

  4. Synthesis and in vitro antibacterial activity of 7-(3-alkoxyimino-4-amino-4-methylpiperidin-1-yl) fluoroquinolone derivatives.

    PubMed

    Wang, Ju-Xian; Zhang, Yi-Bin; Liu, Ming-Liang; Wang, Bo; Chai, Yun; Li, Su-Jie; Guo, Hui-Yuan

    2011-06-01

    A series of novel 7-(3-alkoxyimino-4-amino-4-methylpiperidin-1-yl)fluoroquinolone derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity and cytotoxicity. All of the target compounds have potent antibacterial activity against the tested Gram-positive and Gram-negative strains, and exhibit good potency in inhibiting the growth of Staphylococcus aureus including MRSA, Staphylococcus epidermidis including MRSE and Streptococcus pneumoniae (MICs: 0.125-4 ?g/mL). Compound 22, with the best activity against Gram-positive strains, is 4-16 fold more potent than gemifloxacin, gatifloxacin and levofloxacin against Enterococcus faecalis, and 16- and 4-fold more potent than levofloxacin against S. epidermidis 09-6 and S. pneumoniae 08-4, respectively. PMID:21481984

  5. Activity of ceftaroline and comparator agents tested against contemporary Gram-positive and -negative (2011) isolates collected in Europe, Turkey, and Israel.

    PubMed

    Castanheira, Mariana; Jones, Ronald N; Sader, Helio S

    2014-08-01

    The activity of ceftaroline was tested against 8233 isolates mainly collected from bloodstream, urinary, respiratory and skin and soft tissue specimens in European medical centers during 2011. This cephalosporin displayed activity against Staphylococcus aureus (MIC(50), 0·25 mg/l), with greater activity against MRSA (MIC(50), 1 mg/l) than other ?-lactams tested. Against Streptococcus pneumoniae, including penicillin-resistant strains, other streptococcal groups and Haemophilus spp., ceftaroline was highly active and MIC90 values ranged from ?0·015 to 0·12 mg/l. Ceftaroline, like other cephalosporins, had limited activity against ESBL-phenotype Enterobacteriaceae, but showed good activity against isolates not displaying an ESBL-phenotype. Ceftaroline remains very active against MRSA and other organisms than could be associated with its approved indications in the EU (complicated skin and soft tissue infections and community-acquired pneumonia). PMID:24070006

  6. Antibacterial activity of leaves extracts of Trifolium alexandrinum Linn. against pathogenic bacteria causing tropical diseases

    PubMed Central

    Khan, Abdul Viqar; Ahmed, Qamar Uddin; Shukla, Indu; Khan, Athar Ali

    2012-01-01

    Objective To investigate antibacterial potential of Trifolium alexandrinum (T. alexandrinum) Linn. against seven gram positive and eleven gram negative hospital isolated human pathogenic bacterial strains responsible for many tropical diseases. Methods Non-polar and polar extracts of the leaves of T. alexandrinum i.e., hexane, dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH) and aqueous (AQ) extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were prepared to evaluate their antibacterial value. NCCL standards were strictly followed to perform antimicrobial disc susceptibility test using disc diffusion method. Results Polar extracts demonstrated significant antibacterial activity against tested pathogens. EtOAc and MeOH extracts showed maximum antibacterial activity with higher inhibition zone and were found effective against seventeen of the tested pathogens. While AQ plant extract inhibited the growth of sixteen of the test strains. EtOAc and MeOH plant extracts inhibited the growth of all seven gram positive and ten of the gram negative bacterial strains. Conclusions The present study strongly confirms the effectiveness of crude leaves extracts against tested human pathogenic bacterial strains causing several tropical diseases. Since Egyptian clover is used as a fodder plant, it could be helpful in controlling various infectious diseases associated with cattle as well. PMID:23569896

  7. Comparative In Vitro Activities of Ciprofloxacin, Gemifloxacin, Grepafloxacin, Moxifloxacin, Ofloxacin, Sparfloxacin, Trovafloxacin, and Other Antimicrobial Agents against Bloodstream Isolates of Gram-Positive Cocci

    Microsoft Academic Search

    DWIGHT HARDY; DANIEL AMSTERDAM; LIONEL A. MANDELL; COLEMAN ROTSTEIN

    2000-01-01

    The in vitro activity of gemifloxacin against 316 bloodstream isolates of staphylococci, pneumococci, and enterococci was compared with the activities of six fluoroquinolones and three other antimicrobial agents. Of the antimicrobial agents tested, gemifloxacin was the most potent against penicillin-intermediate and -resis- tant pneumococci, methicillin-susceptible and -resistant Staphylococcus epidermidis isolates, and coagulase- negative staphylococci. Due to the increasing penicillin resistance

  8. Antibacterial Activity of Sirodesmin PL Phytotoxin: Application to the Selection of Phytotoxin-Deficient Mutants

    PubMed Central

    Boudart, Georges

    1989-01-01

    Sirodesmin PL, a phytotoxin and mycotoxin produced by Leptosphaeria maculans, the causal agent of stem-canker disease of crucifers, exhibited antibacterial activity against gram-positive bacteria and particularly Bacillus subtilis. The importance of the disulfide bridge of the molecule in antibacterial activity was demonstrated. A simple and reliable bioassay based on the antibacterial activity of the toxin was performed for screening sirodesmin PL-deficient mutants when grown on solid culture medium. A mutant was selected and found to produce 3,700-fold less toxin than did the wild-type strain. A sensitive procedure for quantification of the toxin by high-pressure liquid chromatography was developed. Levels of product as low as 100 ng could be detected by this procedure. Images PMID:16347949

  9. In vitro activity of ceftobiprole against frequently encountered aerobic and facultative Gram-positive and Gram-negative bacterial pathogens: results of the CANWARD 2007-2009 study.

    PubMed

    Walkty, Andrew; Adam, Heather J; Laverdière, Michel; Karlowsky, James A; Hoban, Daryl J; Zhanel, George G

    2011-03-01

    The in vitro activity of ceftobiprole was evaluated against 15 011 clinical isolates obtained from patients in Canadian hospitals between 2007 and 2009. All Staphylococcus aureus were susceptible to ceftobiprole (MIC(90)'s for methicillin-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus of ? 1 ?g/mL and 2 ?g/mL, respectively). Ceftobiprole was active against penicillin-susceptible Streptococcus pneumoniae (MIC(90), ? 0.06 ?g/mL), penicillin-resistant Streptococcus pneumoniae (MIC(90), 0.5 ?g/mL), Streptococcus pyogenes (MIC(90), ? 0.06 ?g/mL), Staphylococcus epidermidis (MIC(90), ? 1 ?g/mL), and Enterococcus faecalis (MIC(90), ? 1 ?g/mL). Over 90% of Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Citrobacter freundii, Proteus mirabilis, and Serratia marcescens isolates were inhibited by a ceftobiprole concentration of ? 1 ?g/mL. Ceftobiprole was not active against extended-spectrum ?-lactamase-producing Escherichia coli and K. pneumoniae. The in vitro activity of ceftobiprole versus Pseudomonas aeruginosa was similar to that of cefepime (MIC(90), 16 ?g/mL). The broad spectrum of activity by ceftobiprole would support further study of this agent in the treatment of hospital-acquired infections. PMID:21353964

  10. Research Article Biological Sciences PHYTOCHEMICAL SCREENING AND ANTIBACTERIAL ACTIVITY OF METHANOL EXTRACT OF

    E-print Network

    Tridax Procumbens; Key Words

    The leaf of Tridax procumbens was collected, grounded and subjected to methanol for extraction with soxhlet apparatus. The extract was screened phytochemically for its chemical components. The presence of alkaloids, reducing compounds (carbohydrates), cardiac glycosides, flavonoids, saponins, terpenes and steroids was recorded. Antibacterial assay of the extract by the use of disk diffusion method revealed the extracts to have broad spectrum activity on grams positive, negative organisms respectively. The highest activity was shown in S. typhi S. flexineri and least activity on E.coli. The results shows that extract has bactericidal activity.

  11. Flomoxef showed excellent in vitro activity against clinically important gram-positive and gram-negative pathogens causing community- and hospital-associated infections.

    PubMed

    Yang, Qiwen; Zhang, Hui; Cheng, Jingwei; Xu, Zhipeng; Hou, Xin; Xu, Yingchun

    2015-04-01

    The objective of this study was to better understand the in vitro activity of flomoxef against clinical pathogens. A total of 545 clinical isolates, including Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, and Streptococcus pyogenes, were isolated consecutively from clinical specimens from Peking Union Medical College Hospital in 2013. MICs were determined using broth microdilution method. esbl and ampC genes were detected by polymerase chain reaction and sequencing. Flomoxef showed excellent activity against E. coli, K. pneumoniae, and P. mirabilis isolates, with susceptibility rate of 88.8%, 88.3%, and 97.7%, separately. Moreover, flomoxef exhibited great activity against extended-spectrum beta-lactamase (ESBL) producers, with MIC50/MIC90 of 0.125/(0.5-1) ?g/mL. Flomoxef showed MIC50/MIC90 of 0.5/0.5?g/mL against MSSA, 0.125/0.25?g/mL against S. pyogenes, and 2/16?g/mL against S. pneumoniae. In conclusion, flomoxef is one of the cephamycins showing excellent activity against ESBL-producing or ESBL-nonproducing E. coli, K. pneumoniae, and P. mirabilis and was also potent against MSSA, S. pyogenes, and S. pneumoniae. PMID:25641126

  12. Macrophage Migration Inhibitory Factor is a Critical Mediator of the Activation of Immune Cells by Exotoxins of Gram-Positive Bacteria

    Microsoft Academic Search

    Thierry Calandra; Lori A. Spiegel; Christine N. Metz; Richard Bucala

    1998-01-01

    Discovered in the early 1960s as a T cell cytokine, the protein mediator known as macrophage migration inhibitory factor (MIF) has been found recently to be a pituitary peptide released during the physiological stress response, a proinflammatory macrophage cytokine secreted after LPS stimulation, and a T cell product expressed as part of the antigen-dependent activation response. We report herein that

  13. Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens

    PubMed Central

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors. PMID:25369289

  14. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.

    PubMed

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors. PMID:25369289

  15. Antibacterial activity of 2-alkynoic fatty acids against multidrug resistant bacteria

    PubMed Central

    Sanabria-Ríos, David J.; Rivera-Torres, Yaritza; Maldonado-Domínguez, Gamalier; Domínguez, Idializ; Ríos, Camille; Díaz, Damarith; Rodríguez, José W.; Altieri-Rivera, Joanne S.; Ríos-Olivares, Eddy; Cintrón, Gabriel; Montano, Nashbly; Carballeira, Néstor M.

    2014-01-01

    The first study aimed at determining the structural characteristics needed to prepare antibacterial 2-alkynoic fatty acids (2-AFAs) was accomplished by synthesizing several 2-AFAs and other analogues in 18-76% overall yields. Among all the compounds tested, the 2-hexadecynoic acid (2-HDA) displayed the best overall antibacterial activity against Gram-positive Staphylococcus aureus (MIC = 15.6 ?g/mL), Staphylococcus saprophyticus (MIC = 15.5 ?g/mL), and Bacillus cereus (MIC = 31.3 ?g/mL), as well as against the Gram-negative Klebsiella pneumoniae (7.8 ?g/mL) and Pseudomonas aeruginosa (MIC = 125 ?g/mL). In addition, 2-HDA displayed significant antibacterial activity against methicillin-resistant S. aureus (MRSA) ATCC 43300 (MIC = 15.6 ?g/mL) and clinical isolates of MRSA (MIC = 3.9 ?g/mL). No direct relationship was found between the antibacterial activity of 2-AFAs and their critical micelle concentration (CMC) suggesting that the antibacterial properties of these fatty acids are not mediated by micelle formation. It was demonstrated that the presence of a triple bond at C-2 as well as the carboxylic acid moiety in 2-AFAs are important for their antibacterial activity. 2-HDA has the potential to be further evaluated for use in antibacterial formulations. PMID:24365283

  16. Phenol—water extracts of gram-positive listeria monocy togenes and gram-negative salmonella typhimurium . comparison of biological activities

    Microsoft Academic Search

    J. HOFMANa; M. Pospíšil; M. Mára; V. H?íbalová

    1985-01-01

    Using phenol—water extraction, a lipopeptidopolysacoharide complex (LPPS) was isolated fromListeria monocytogenes. Some biological and immunological properties of LPPS were compared with lipopolysaccharide isolated by the same procedure\\u000a fromSalmonella typhimurium. LPPS possesses low pyrogenicity, but the immunological activity is comparable with LPS: slightly lower adjuvant and polyolonal\\u000a stimulating effect, almost equal mitogenic effect on mouse spleen cells and higher mitogenic effect

  17. In Vitro Activities of Dalbavancin and 12 Other Agents against 329 Aerobic and Anaerobic Gram-Positive Isolates Recovered from Diabetic Foot Infections

    Microsoft Academic Search

    Ellie J. C. Goldstein; Diane M. Citron; Yumi A. Warren; Kerin L. Tyrrell; C. Vreni Merriam; Helen T. Fernandez

    2006-01-01

    Tests of dalbavancin's in vitro activity against 209 aerobic and 120 anaerobic isolates from pretreatment diabetic foot infections showed an MIC90 of <0.125 g\\/ml against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and 120 anaerobes (Clostridium perfringens, other clostridia, Peptoniphilus asaccharolyticus, Finegoldia magna, and Anaerococcus prevotii), compared to respective MIC90s for MSSA and MRSA of 0.5 and 1 g\\/ml

  18. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles.

    PubMed

    Song, Jooyoung; Kim, Hyunyoung; Jang, Yoonsun; Jang, Jyongsik

    2013-11-27

    This work describes the synthesis of silver/polyrhodanine-composite-decorated silica nanoparticles and their antibacterial activity. Polymerization of polyrhodanine proceeded preferentially on the surface of the silica nanoparticles where Ag(+) ions were located. In addition, the embedded Ag(+) ions were reduced to form metallic Ag nanoparticles; consequently, silver/polyrhodanine-composite nanoparticles (approximately 7 nm in diameter) were formed on the surface of the silica nanoparticles. The resulting nanostructure was investigated using electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The silver/polyrhodanine-nanocomposite-decorated silica nanoparticles exhibited excellent antimicrobial activity toward gram-negative Escherichia coli and gram-positive Staphylococcus aureus because of the antibacterial effects of the silver nanoparticles and the polyrhodanine. The silver/polyrhodanine-composite nanoparticles may therefore have potential for use as a long-term antibacterial agent. PMID:24156562

  19. Antibacterial activity of Pseudonocardia sp. JB05, a rare salty soil actinomycete against Staphylococcus aureus.

    PubMed

    Jafari, Nesa; Behroozi, Reza; Farajzadeh, Davoud; Farsi, Mohammad; Akbari-Noghabi, Kambiz

    2014-01-01

    Staphylococcus aureus is a Gram-positive bacterium that causes many harmful and life-threatening diseases. Some strains of this bacterium are resistant to available antibiotics. This study was designed to evaluate the ability of indigenous actinomycetes to produce antibacterial compounds against S. aureus and characterize the structure of the resultant antibacterial compounds. Therefore, a slightly modified agar well diffusion method was used to determine the antibacterial activity of actinomycete isolates against the test microorganisms. The bacterial extracts with antibacterial activity were fractionated by silica gel and G-25 sephadex column chromatography. Also, the active fractions were analyzed by thin layer chromatography. Finally, the partial structure of the resultant antibacterial compound was characterized by Fourier transform infrared spectroscopy. One of the isolates, which had a broad spectrum and high antibacterial activity, was designated as Pseudonocardia sp. JB05, based on the results of biochemical and 16S rDNA gene sequence analysis. Minimum inhibitory concentration for this bacterium was 40?AU?mL(-1) against S. aureus. The antibacterial activity of this bacterium was stable after autoclaving, 10% SDS, boiling, and proteinase K. Thin layer chromatography, using anthrone reagent, showed the presence of carbohydrates in the purified antibacterial compound. Finally, FT-IR spectrum of the active compound illustrated hydroxyl groups, hydrocarbon skeleton, and double bond of polygenic compounds in its structure. To the best of our knowledge, this is the first report describing the efficient antibacterial activity by a local strain of Pseudonocardia. The results presented in this work, although at the initial stage in bioactive product characterization, will possibly contribute toward the Pseudonocardia scale-up for the production and identification of the antibacterial compounds. PMID:25202705

  20. Antibacterial Activity of Pseudonocardia sp. JB05, a Rare Salty Soil Actinomycete against Staphylococcus aureus

    PubMed Central

    Jafari, Nesa; Behroozi, Reza; Farajzadeh, Davoud; Farsi, Mohammad; Akbari-Noghabi, Kambiz

    2014-01-01

    Staphylococcus aureus is a Gram-positive bacterium that causes many harmful and life-threatening diseases. Some strains of this bacterium are resistant to available antibiotics. This study was designed to evaluate the ability of indigenous actinomycetes to produce antibacterial compounds against S. aureus and characterize the structure of the resultant antibacterial compounds. Therefore, a slightly modified agar well diffusion method was used to determine the antibacterial activity of actinomycete isolates against the test microorganisms. The bacterial extracts with antibacterial activity were fractionated by silica gel and G-25 sephadex column chromatography. Also, the active fractions were analyzed by thin layer chromatography. Finally, the partial structure of the resultant antibacterial compound was characterized by Fourier transform infrared spectroscopy. One of the isolates, which had a broad spectrum and high antibacterial activity, was designated as Pseudonocardia sp. JB05, based on the results of biochemical and 16S rDNA gene sequence analysis. Minimum inhibitory concentration for this bacterium was 40?AU?mL?1 against S. aureus. The antibacterial activity of this bacterium was stable after autoclaving, 10% SDS, boiling, and proteinase K. Thin layer chromatography, using anthrone reagent, showed the presence of carbohydrates in the purified antibacterial compound. Finally, FT-IR spectrum of the active compound illustrated hydroxyl groups, hydrocarbon skeleton, and double bond of polygenic compounds in its structure. To the best of our knowledge, this is the first report describing the efficient antibacterial activity by a local strain of Pseudonocardia. The results presented in this work, although at the initial stage in bioactive product characterization, will possibly contribute toward the Pseudonocardia scale-up for the production and identification of the antibacterial compounds. PMID:25202705

  1. Synthesis, antibacterial, and antifungal activities of biolabile (E)-1-(4-morpholinophenyl)-3-aryl-prop-2-en-1-ones

    Microsoft Academic Search

    M. Gopalakrishnan; J. Thanusu; V. Kanagarajan; R. Govindaraju

    2009-01-01

    \\u000a Abstract  A collection of biolabile (E)-1-(4-morpholinophenyl)-3-aryl-prop-2-en-1-ones 8–13 are synthesized, characterized by melting point, elemental analysis, mass spectroscopy (MS), Fourier-transform infrared (FT-IR),\\u000a and 1H and 13C nuclear magnetic resonance (NMR) spectroscopic data and evaluated for their in vitro antibacterial and antifungal activities.\\u000a Compounds 8–13 exerted a wide range of antibacterial activities against all tested Gram-positive and Gram-negative bacterial strains. All\\u000a the compounds

  2. Antibacterial activity of some selected medicinal plants of Pakistan

    PubMed Central

    2011-01-01

    Background Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds. Methods The crude extracts and fractions of six medicinal important plants (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, Pistacia integerrima, Aesculus indica, and Toona ciliata) were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method. Results The crude extract of P. integerrima and A. indica were active against all tested bacterial strains (12-23 mm zone of inhibition). Other four plant's crude extracts (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, and Toona ciliata) were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of A. indica and P. integerrima crude extract showed maximum activity (19.66 and 16 mm, respectively) against B. subtilis, while the chloroform fractions of T. ciliata and D. salicifolia presented good antibacterial activities (13-17 mm zone of inhibition) against all the bacterial cultures tested. Conclusion The methanol fraction of Pistacia integerrima, chloroform fractions of Debregeasia salicifolia &Toona ciliata and aqueous fraction of Aesculus indica are suitable candidates for the development of novel antibacterial compounds. PMID:21718504

  3. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  4. Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against Gram-positive bacteria.

    PubMed

    Porto, Thiago Souza; Furtado, Niege A J C; Heleno, Vladimir C G; Martins, Carlos H G; Da Costa, Fernando B; Severiano, Marcela E; Silva, Aline N; Veneziani, Rodrigo C S; Ambrósio, Sérgio R

    2009-10-01

    The dichloromethane crude extract from the roots of Viguiera arenaria (VaDRE) has been employed in an antimicrobial screening against several bacteria responsible for human pathologies. The main diterpenes isolated from this extract, as well as two semi-synthetic pimarane derivatives, were also investigated for the pathogens that were significantly inhibited by the extract (MIC values lower than 100 microg mL(-1)). The VaDRE extract was significantly active only against Gram-positive microorganisms. The compounds ent-pimara-8(14),15-dien-19-oic acid (PA); PA sodium salt; ent-8(14),15-pimaradien-3beta-ol; ent-15-pimarene-8 beta,19-diol; and ent-8(14),15-pimaradien-3beta-acetoxy displayed the highest antibacterial activities (MIC values lower than 10 microg mL(-1) for most pathogens). In conclusion, our results suggest that pimaranes are an important class of natural products for further investigations in the search of new antibacterial agents. PMID:19524643

  5. Synthesis and antibacterial activities of acylide derivatives bearing an aryl-tetrazolyl chain

    PubMed Central

    Shan, Ling-Xing; Sun, Ping-Hua; Guo, Bao-Qin; Xu, Xing-Jun; Li, Zhi-Qiang; Sun, Jia-Zhi; Zhou, Shu-Feng; Chen, Wei-Min

    2014-01-01

    Seventeen acylides bearing an aryl-tetrazolyl alkyl-substituted side chain were synthesized, starting from clarithromycin, via several reactions including hydrolysis, acetylating, esterification, carbamylation, and Michael addition. The structures of all new compounds were confirmed by 1H nuclear magnetic resonance spectroscopy, 13C nuclear magnetic resonance spectroscopy, and mass spectrometry. All these synthesized acylides were evaluated for in vitro antimicrobial activities against gram-positive pathogens (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative pathogens (Pseudomonas aeruginosa, Escherichia coli), using the broth microdilution method. Results showed that compounds 10e, 10f, 10g, 10 h, 10o have good antibacterial activities. PMID:25284984

  6. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity.

    PubMed

    Kim, Bo Yeon; Jin, Byung Rae

    2015-04-01

    Apolipophorin III (apoLp-III) is involved in lipid transport and innate immunity in insects. In this study, an apoLp-III protein that exhibits antibacterial activity was identified in honeybees (Apis cerana). A. cerana apoLp-III cDNA encodes a 193 amino acid sequence that shares high identity with other members of the hymenopteran insect apoLp-III family. A. cerana apoLp-III is expressed constitutively in the fat body, epidermis, and venom gland and is detected as a 23-kDa protein. A. cerana apoLp-III expression is induced in the fat body after injection with Escherichia coli, Bacillus thuringiensis, or Beauveria bassiana. However, recombinant A. cerana apoLp-III (expressed in baculovirus-infected insect cells) binds directly to E. coli and B. thuringiensis but not to B. bassiana. Consistent with these findings, A. cerana apoLp-III exhibited antibacterial activity against both Gram-negative and Gram-positive bacteria. These results provide insight into the role of A. cerana apoLp-III during the innate immune response following bacterial infection. PMID:25483322

  7. Mode of antibacterial activity of Eclalbasaponin isolated from Eclipta alba.

    PubMed

    Ray, A; Bharali, P; Konwar, B K

    2013-12-01

    The present study was undertaken to evaluate the mode of antibacterial activity of Eclalbasaponin isolated from Eclipta alba, against selected Gram-positive and Gram-negative bacteria. The probable chemical structure was determined by using various spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy. The antibacterial activity was evaluated by well diffusion technique, pH sensitivity, chemotaxis, and crystal violet assays. Eclalbasaponin showed clear zone of inhibition against both Bacillus subtilis and Pseudomonas aeruginosa and exhibited growth inhibition at the pH range of 5.5-9.0. The isolated saponin exhibited its positive chemoattractant property for both bacterial strains. Results of crystal violet assay and the presence of UV-sensitive materials in the cell-free supernatant confirmed the cellular damages caused by the treatment of Eclalbasaponin. The release of intracellular proteins due to the membrane damage was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Changes in the cell surface structure and membrane disruption were further revealed by FTIR and scanning electron microscopy analysis. The present study suggests that the isolated saponin from E. alba causes the disruption of the bacterial cell membrane which leads to the loss of bacterial cell viability. PMID:24013881

  8. Evaluation of antioxidant and antibacterial activity of methanolic extracts of Gentiana kurroo royle

    PubMed Central

    Baba, Shoib A.; Malik, Shahid A.

    2014-01-01

    In this study our objective was to evaluate the antioxidant and antimicrobial activity of methanolic extracts of leaves and roots of Gentiana kurroo. The antioxidant activities of the extracts were examined using different biochemical assays namely diphenylpicrylhydrazyl (DPPH), nitroblue tetrazolium (NBT) and ferric reducing power (FRAP). In all the assays, root extract exhibited stronger antioxidant activity than that of leaves. The antibacterial activity of the extracts was also evaluated and MIC values were calculated by broth dilution method. Although, the extracts prevented the growth of both Gram positive and Gram negative bacteria, the MIC values of methanolic extract of the leaves were higher than those of the root extract. The antibacterial and antioxidant activity of the extracts was found to be positively associated with the total phenolic and flavonoid content of the extracts. PMID:25313286

  9. In Vitro Activity of Plazomicin against 5,015 Gram-Negative and Gram-Positive Clinical Isolates Obtained from Patients in Canadian Hospitals as Part of the CANWARD Study, 2011-2012

    PubMed Central

    Adam, H.; Baxter, M.; Denisuik, A.; Lagacé-Wiens, P.; Karlowsky, J. A.; Hoban, D. J.; Zhanel, G. G.

    2014-01-01

    Plazomicin is a next-generation aminoglycoside that is not affected by most clinically relevant aminoglycoside-modifying enzymes. The in vitro activities of plazomicin and comparator antimicrobials were evaluated against a collection of 5,015 bacterial isolates obtained from patients in Canadian hospitals between January 2011 and October 2012. Susceptibility testing was performed using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method, with MICs interpreted according to CLSI breakpoints, when available. Plazomicin demonstrated potent in vitro activity against members of the family Enterobacteriaceae, with all species except Proteus mirabilis having an MIC90 of ?1 ?g/ml. Plazomicin was active against aminoglycoside-nonsusceptible Escherichia coli, with MIC50 and MIC90 values identical to those for aminoglycoside-susceptible isolates. Furthermore, plazomicin demonstrated equivalent activities versus extended-spectrum ?-lactamase (ESBL)-producing and non-ESBL-producing E. coli and Klebsiella pneumoniae, with 90% of the isolates inhibited by an MIC of ?1 ?g/ml. The MIC50 and MIC90 values for plazomicin against Pseudomonas aeruginosa were 4 ?g/ml and 16 ?g/ml, respectively, compared with 4 ?g/ml and 8 ?g/ml, respectively, for amikacin. Plazomicin had an MIC50 of 8 ?g/ml and an MIC90 of 32 ?g/ml versus 64 multidrug-resistant P. aeruginosa isolates. Plazomicin was active against methicillin-susceptible and methicillin-resistant Staphylococcus aureus, with both having MIC50 and MIC90 values of 0.5 ?g/ml and 1 ?g/ml, respectively. In summary, plazomicin demonstrated potent in vitro activity against a diverse collection of Gram-negative bacilli and Gram-positive cocci obtained over a large geographic area. These data support further evaluation of plazomicin in the clinical setting. PMID:24550325

  10. Sortase enzymes in Gram-positive bacteria

    PubMed Central

    Spirig, Thomas; Weiner, Ethan M.; Clubb, Robert T.

    2013-01-01

    Summary In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on ‘pilin’ specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function. PMID:22026821

  11. Antimicrobial activity of isopteropodine.

    PubMed

    García, Rubén; Cayunao, Cesia; Bocic, Ronny; Backhouse, Nadine; Delporte, Carle; Zaldivar, Mercedes; Erazo, Silvia

    2005-01-01

    Bioassay-directed fractionation for the determination of antimicrobial activity of Uncaria tomentosa, has led to the isolation of isopteropodine (0.3%), a known Uncaria pentacyclic oxindol alkaloid that exhibited antibacterial activity against Gram positive bacteria. PMID:16042336

  12. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  13. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract.

    PubMed

    Nagajyothi, P C; Sreekanth, T V M; Lee, Jae-il; Lee, Kap Duk

    2014-01-01

    In the present study, silver nanoparticles (AgNPs) were rapidly synthesized from silver nitrate solution at room temperature using Inonotus obliquus extract. The mycogenic synthesized AgNPs were characterized by UV-Visible absorption spectroscopy, Fourier transform infrared (FTIR), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). SEM revealed mostly spherical nanoparticles ranging from 14.7 to 35.2nm in size. All AgNPs concentrations showed good ABT radical scavenging activity. Further, AgNPs showed effective antibacterial activity against both gram negative and gram positive bacteria and antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. The samples demonstrated considerably high antibacterial, and antiproliferative activities against bacterial strains and cell lines. PMID:24380885

  14. Biological Characterization of Novel Inhibitors of the Gram-Positive DNA Polymerase IIIC Enzyme

    Microsoft Academic Search

    Alexander Kuhl; Niels Svenstrup; Christoph Ladel; Michael Otteneder; Annegret Binas; Guido Schiffer; Michael Brands; Thomas Lampe; Karl Ziegelbauer; Helga Rubsamen-Waigmann; Dieter Haebich; Kerstin Ehlert

    2005-01-01

    Novel N-3-alkylated 6-anilinouracils have been identified as potent and selective inhibitors of bacterial DNA polymerase IIIC, the enzyme essential for the replication of chromosomal DNA in gram-positive bacteria. A nonradioactive assay measuring the enzymatic activity of the DNA polymerase IIIC in gram-positive bacteria has been assembled. The 6-anilinouracils described inhibited the polymerase IIIC enzyme at concentrations in the nanomolar range

  15. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst.

    PubMed

    Kucekova, Zdenka; Humpolicek, Petr; Kasparkova, Vera; Perecko, Tomas; Lehocký, Marián; Hauerlandová, Iva; Sáha, Petr; Stejskal, Jaroslav

    2014-04-01

    Polyaniline colloids rank among promising application forms of this conducting polymer. Cytotoxicity, antibacterial activity, and neutrophil oxidative burst tests were performed on cells treated with colloidal polyaniline dispersions. The antibacterial effect of colloidal polyaniline against gram-positive and gram-negative bacteria was most pronounced for Bacillus cereus and Escherichia coli, with a minimum inhibitory concentration of 3,500 ?g mL(-1). The data recorded on human keratinocyte (HaCaT) and a mouse embryonic fibroblast (NIH/3T3) cell lines using an MTT assay and flow cytometry indicated a concentration-dependent cytotoxicity of colloid, with the absence of cytotoxic effect at around 150 ?g mL(-1). The neutrophil oxidative burst test then showed that colloidal polyaniline, in concentrations <150 ?g mL(-1), was not able to stimulate the production of reactive oxygen species in neutrophils and whole human blood. However, it worked efficiently as a scavenger of those already formed. PMID:24534430

  16. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria. PMID:25686955

  17. Efficacy of telavancin, a lipoglycopeptide antibiotic, in experimental models of Gram-positive infection.

    PubMed

    Hegde, Sharath S; Janc, James W

    2014-12-01

    Telavancin is a parenteral lipoglycopeptide antibiotic with a dual mechanism of action contributing to bactericidal activity against multidrug-resistant Gram-positive pathogens. It has been approved for the treatment of complicated skin and skin structure infections due to susceptible Gram-positive bacteria and hospital-acquired/ventilator-associated bacterial pneumonia due to Staphylococcus aureus when other alternatives are unsuitable. Telavancin has been demonstrated to be efficacious in multiple animal models of soft tissue, cardiac, systemic, lung, bone, brain and device-associated infections involving clinically relevant Gram-positive pathogens, including methicillin-resistant S. aureus, glycopeptide-intermediate S. aureus, heterogeneous vancomycin-intermediate S. aureus and daptomycin non-susceptible methicillin-resistant S. aureus. The AUC0-24h/MIC ratio is the primary pharmacodynamically-linked pharmacokinetic parameter. The preclinical data for telavancin supports further investigative clinical evaluation of its efficacy in additional serious infections caused by susceptible Gram-positive pathogens. PMID:25382700

  18. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts.

    PubMed

    Al-Bayati, Firas A

    2008-03-28

    Essential oils (EOs) and methanol extracts obtained from aerial parts of Thymus vulgaris and Pimpinella anisum seeds were evaluated for their single and combined antibacterial activities against nine Gram-positive and Gram-negative pathogenic bacteria: Staphylococcus aureus, Bacillus cereus, Escherichia coli, Proteus vulgaris, Proteus mirabilis, Salmonella typhi, Salmonella typhimurium, Klebsiella pneumoniae and Pseudomonas aeruginosa. The essential oils and methanol extracts revealed promising antibacterial activities against most pathogens using broth microdilution method. Maximum activity of Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts (MIC 15.6 and 62.5mug/ml) were observed against Staphylococcus aureus, Bacillus cereus and Proteus vulgaris. Combinations of essential oils and methanol extracts showed an additive action against most tested pathogens especially Pseudomonas aeruginosa. PMID:18226481

  19. Acquired inducible antimicrobial resistance in Gram-positive bacteria

    PubMed Central

    Chancey, Scott T; Zähner, Dorothea; Stephens, David S

    2012-01-01

    A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often ‘silent’ spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide–lincosamide–streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of ?-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations. PMID:22913355

  20. Antibacterial and EGFR-tyrosine kinase inhibitory activities of polyhydroxylated xanthones from Garcinia succifolia.

    PubMed

    Duangsrisai, Susawat; Choowongkomon, Kiattawee; Bessa, Lucinda J; Costa, Paulo M; Amat, Nurmuhammat; Kijjoa, Anake

    2014-01-01

    Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae) led to the isolation of 1,5-dihydroxyxanthone (1), 1,7-dihydroxyxanthone (2), 1,3,7-trihydroxyxanthone (3), 1,5,6-trihydroxyxanthone (4), 1,6,7-trihydroxyxanthone (5), and 1,3,6,7-tetrahydroxyxanthone (6). All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633) and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853), and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1), as well as for their epidermal growth factor receptor (EGFR) of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4), 1,6,7-trihydroxy-(5), and 1,3,6,7-tetrahydroxyxanthones (6) exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2) showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1) and 1,7-dihydroxyxanthone (2) were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively. PMID:25460314

  1. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region.

    PubMed

    Silici, Sibel; Kutluca, Semiramis

    2005-05-13

    The chemical analysis and antibacterial activity of three types of propolis collected three different races of Apis mellifera bee in the same apiary were investigated. Propolis samples were investigated by GC/MS, 48 compounds were identified 32 being new for propolis. The compounds identified indicated that the main plant sources of propolis were Populus alba, Populus tremuloides and Salix alba. The antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans was evaluated. Ethanolic extracts of propolis samples showed high antibacterial activity against Gram-positive cocci (Staphylococcus aureus), but had a weak activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Candida albicans). Propolis sample collected by Apis mellifera caucasica showed a higher antibacterial activity than collected by Apis mellifera anatolica and Apis mellifera carnica. PMID:15848022

  2. Combination of Pantothenamides with Vanin Inhibitors as a Novel Antibiotic Strategy against Gram-Positive Bacteria

    PubMed Central

    Jansen, Patrick A. M.; Hermkens, Pedro H. H.; Zeeuwen, Patrick L. J. M.; Botman, Peter N. M.; Blaauw, Richard H.; Burghout, Peter; van Galen, Peter M.; Mouton, Johan W.; Rutjes, Floris P. J. T.

    2013-01-01

    The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activity in vitro, particularly against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents. PMID:23877685

  3. Combination of pantothenamides with vanin inhibitors as a novel antibiotic strategy against gram-positive bacteria.

    PubMed

    Jansen, Patrick A M; Hermkens, Pedro H H; Zeeuwen, Patrick L J M; Botman, Peter N M; Blaauw, Richard H; Burghout, Peter; van Galen, Peter M; Mouton, Johan W; Rutjes, Floris P J T; Schalkwijk, Joost

    2013-10-01

    The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activity in vitro, particularly against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents. PMID:23877685

  4. Plants used in Guatemala for the treatment of respiratory diseases. 1. Screening of 68 plants against gram-positive bacteria.

    PubMed

    Caceres, A; Alvarez, A V; Ovando, A E; Samayoa, B E

    1991-02-01

    Respiratory ailments are important causes of morbidity and mortality in developing countries. Ethnobotanical surveys and literature reviews conducted in Guatemala during 1986-88 showed that 234 plants from 75 families, most of them of American origin, have been used for the treatment of respiratory ailments. Three Gram-positive bacteria causing respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes) were used to screen 68 of the most commonly used plants for activity. Twenty-eight of these (41.2%) inhibited the growth of one or more of the bacteria tested. Staphylococcus aureus was inhibited by 18 of the plant extracts, while 7 extracts were effective against Streptococcus pyogenes. Plants of American origin which exhibited antibacterial activity were: Gnaphalium viscosum, Lippia alba, Lippia dulcis, Physalis philadelphica, Satureja brownei, Solanum nigrescens and Tagetes lucida. These preliminary in vitro results provide scientific basis for the use of these plants against bacterial respiratory infections. PMID:2023428

  5. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C F R

    2015-01-15

    Bioactivity of thyme has been described, but mostly related to its essential oils, while studies with aqueous extracts are scarce. Herein, the antioxidant and antibacterial properties of decoction, infusion and hydroalcoholic extract, as also their phenolic compounds, were evaluated and compared. Decoction showed the highest concentration of phenolic compounds (either phenolic acids or flavonoids), followed by infusion and hydroalcoholic extract. In general, the samples were effective against gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Enterococcus aerogenes, Proteus vulgaris and Enterobacter sakazakii) bacteria, with decoction presenting the most pronounced effect. This sample also displayed the highest radical scavenging activity and reducing power. Data obtained support the idea that compounds with strong antioxidant and antibacterial activities are also water-soluble. Furthermore, the use of thyme infusion and decoction, by both internal and external use, at recommended doses, is safe and no adverse reactions have been described. PMID:25148969

  6. Fabrication of pDMAEMA-coated silica nanoparticles and their enhanced antibacterial activity.

    PubMed

    Song, Jooyoung; Jung, Yujung; Lee, Inkyu; Jang, Jyongsik

    2013-10-01

    Thin pDMAEMA shells were formed on the surface of silica nanoparticles via vapor deposition polymerization. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and elemental analysis have been used to characterize the resulting pDMAEMA-coated silica nanoparticles. Electron microscopy studies reveal that the thin polymer shell is formed on the silica surface. In this work, the particle diameter can be controlled (from ~19 to ~69 nm) by varying the size of silica core. The antibacterial performance of the core-shell nanoparticles was investigated against both Gram-positive (Escherichia coli) and Gram-negative (Staphylococcus aureus) bacteria. Importantly, the nano-sized pDMAEMA particles presented antibacterial activity against both bacteria without additional quaternization due to its enlarged surface area. Additionally, the bactericidal efficiency was enhanced by reducing the particle size, because the expanded surface area of the cationic polymer nanoparticles provides more active sites that can kill the bacteria. PMID:23838333

  7. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry.

    PubMed

    Silva, Filomena; Ferreira, Susana; Queiroz, João A; Domingues, Fernanda C

    2011-10-01

    The aim of this work was to study the antibacterial effect of coriander (Coriandrum sativum) essential oil against Gram-positive and Gram-negative bacteria. Antibacterial susceptibility was evaluated using classical microbiological techniques concomitantly with the use of flow cytometry for the evaluation of cellular physiology. Our results showed that coriander oil has an effective antimicrobial activity against all bacteria tested. Also, coriander oil exhibited bactericidal activity against almost all bacteria tested, with the exception of Bacillus cereus and Enterococcus faecalis. Propidium iodide incorporation and concomitant loss of all other cellular functions such as efflux activity, respiratory activity and membrane potential seem to suggest that the primary mechanism of action of coriander oil is membrane damage, which leads to cell death. The results obtained herein further encourage the use of coriander oil in antibacterial formulations due to the fact that coriander oil effectively kills pathogenic bacteria related to foodborne diseases and hospital infections. PMID:21862758

  8. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity.

    PubMed

    Zhang, Wenjing; Shi, Xinhao; Huang, Jing; Zhang, Yixuan; Wu, Zirong; Xian, Yuezhong

    2012-10-01

    Bacitracin-conjugated superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles were prepared by click chemistry and their antibacterial activity was investigated. After functionalization with hydrophilic and biocompatible poly(acrylic acid), water-soluble Fe(3)O(4) nanoparticles were obtained. Propargylated Fe(3)O(4) nanoparticles were then synthesized by carbodiimide reaction of propargylamine with the carboxyl groups on the surface of the iron oxide nanoparticles. By further reaction with N(3)-bacitracin in a Cu(I)-catalyzed azide-alkyne cycloaddition, the magnetic Fe(3)O(4) nanoparticles were modified with the peptide bacitracin. The functionalized magnetic nanoparticles were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, TEM, zeta-potential analysis, FTIR spectroscopy and vibrating-sample magnetometry. Cell cytotoxicity tests indicate that bacitracin-conjugated Fe(3)O(4) nanoparticles show very low cytotoxicity to human fibroblast cells, even at relatively high concentrations. In view of the antibacterial activity of bacitracin, the biofunctionalized Fe(3)O(4) nanoparticles exhibit an antibacterial effect against both Gram-positive and Gram-negative organisms, which is even higher than that of bacitracin itself. The enhanced antibacterial activity of the magnetic nanocomposites allows the dosage and the side effects of the antibiotic to be reduced. Due to the antibacterial effect and magnetism, the bacitracin-functionalized magnetic nanoparticles have potential application in magnetic-targeting biomedical applications. PMID:22753190

  9. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  10. Methods for targetted mutagenesis in gram-positive bacteria

    SciTech Connect

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  11. Antibacterial activity of some Artemisia species extract.

    PubMed

    Poiat?, Antonia; Tuchilu?, Cristina; Iv?nescu, Bianca; Ionescu, A; Laz?r, M I

    2009-01-01

    The antimicrobial activities of ethanol, methanol and hexane extracts from Artemisia absinthium, Artemisia annua and Artemisia vulgaris were studied. Plant extracts were tested against five Gram-positive bacteria, two Gram-negative bacteria and one fungal strain. The results indicated that Artemisia annua alcoholic extracts are more effective against tested microorganisms. However, all plants extracts have moderate or no activity against Gram-negative bacteria. The obtained results confirm the justification of extracts of Artemisia species use in traditional medicine as treatment for microbial infections. PMID:20191854

  12. New antimicrobial approaches to gram positive respiratory infections.

    PubMed

    Liapikou, Adamantia; Cilloniz, Catia; Mensa, Josep; Torres, Antonio

    2014-05-27

    Nowadays, we face growing resistance among gram-positive and gram-negative pathogens that cause respiratory infection in the hospital and in the community. The spread of penicillin- and macrolide-resistant pneumococci, Community-acquired methicillin-resistant staphylococcus aureus (Ca-MRSA), the emergence of glycopeptide-resistant staphylococci underline the need for underline the need for therapeutic alternatives. A number of new therapeutic agents, with activity against the above Gram (+) respiratory pathogens, as ceftaroline, ceftopibrole, telavancin, tedizolid have become available, either in clinical trials or have been approved for clinical use. Especially, the development of new oral antibiotics, as nemonaxacin, omadacyclin, cethromycin and solithromycin will give a solution to the lack of oral drugs for outpatient treatment. In the future the clinician needs to optimize the use of old and new antibiotics to treat gram (+) respiratory serious infections. PMID:24878422

  13. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. PMID:24630312

  14. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Li, Huimin; He, Xiaoxiao; Wang, Kemin; Hu, Jianbing; Tan, Weihong; Zhang, Shouchun; Yang, Xiaohai

    2007-07-01

    Bifunctional Fe3O4@Ag nanoparticles with both superparamagnetic and antibacterial properties were prepared by reducing silver nitrate on the surface of Fe3O4 nanoparticles using the water-in-oil microemulsion method. Formation of well-dispersed nanoparticles with sizes of 60 ± 20 nm was confirmed by transmission electron microscopy and dynamic light scattering. X-ray diffraction patterns and UV-visible spectroscopy indicated that both Fe3O4 and silver are present in the same particle. The superparamagnetism of Fe3O4@Ag nanoparticles was confirmed with a vibrating sample magnetometer. Their antibacterial activity was evaluated by means of minimum inhibitory concentration value, flow cytometry, and antibacterial rate assays. The results showed that Fe3O4@Ag nanoparticles presented good antibacterial performance against Escherichia coli (gram-negative bacteria), Staphylococcus epidermidis (gram-positive bacteria) and Bacillus subtilis (spore bacteria). Furthermore, Fe3O4@Ag nanoparticles can be easily removed from water by using a magnetic field to avoid contamination of surroundings. Reclaimed Fe3O4@Ag nanoparticles can still have antibacterial capability and can be reused.

  15. Antibacterial activity in bovine lactoferrin-derived peptides.

    PubMed Central

    Hoek, K S; Milne, J M; Grieve, P A; Dionysius, D A; Smith, R

    1997-01-01

    Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified, one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf, one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond. These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ion-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC). They were characterized by N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination. Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques. This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 microM or less. Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC. Subfragment 1 (residues 1 to 10) was active against most of the test microorganisms at concentrations of 10 to 50 microM. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 microM. These antibacterial studies indicate that the activity of lactoferricin is mainly, but not wholly, due to its N-terminal region. PMID:8980754

  16. Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles.

    PubMed

    Chen, Fei; Shi, Zhilong; Neoh, K G; Kang, E T

    2009-09-01

    Essential oils are known to possess antimicrobial and antioxidant activity while chitosan is a biocompatible polymer with antibacterial activity against a broad spectrum of bacteria. In this work, nanoparticles with both antioxidant and antibacterial properties were prepared by grafting eugenol and carvacrol (two components of essential oils) on chitosan nanoparticles. Aldehyde groups were first introduced in eugenol and carvacrol, and the grafting of these oils to chitosan nanoparticles was carried out via the Schiff base reaction. The surface concentration of the grafted essential oil components was determined by X-ray photoelectron spectroscopy (XPS). The antioxidant activities of the carvacrol-grafted chitosan nanoparticles (CHCA NPs) and the eugenol-grafted chitosan nanoparticles (CHEU NPs) were assayed with diphenylpicrylhydrazyl (DPPH). Antibacterial assays were carried out with a representative gram-negative bacterium, Escherichia coli (E. coli) and a gram-positive bacterium, Staphylococcus aureus (S. aureus). The grafted eugenol and carvacrol conferred antioxidant activity to the chitosan nanoparticles, and the essential oil component-grafted chitosan nanoparticles achieved an antibacterial activity equivalent to or better than that of the unmodified chitosan nanoparticles. Cytotoxicity assays using 3T3 mouse fibroblast showed that the cytotoxicity of CHEU NPs and CHCA NPs were significant lower than those of the pure essential oils. PMID:19408318

  17. Novel antibacterial polypeptide produced by Lactobacillus paracasei strain NRRL B-50314

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated as laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. The crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic a...

  18. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  19. [Synthesis and antibacterial activity of imidazothiadiazoles and heterocyclic-amine Mannich-base hydrochloride].

    PubMed

    Hu, Guo-qiang; Hou, Li-li; Xie, Song-qiang; Huang, Wen-long; Zhang, Hui-bin

    2008-09-01

    To optimize the synthetic method and antibacterial activity of fused heterocyclic thiadiazole compounds, cyclocondensation of 2-(4-methoxyphenyl)-5-amino-1,3,4-thiadiazole (2) with alpha-chloro-4-chloro acetophenone (3) resulted in a key intermediate (4), 6 -(4-chlorophenyl)-2-(4-methoxyphenyl)-imidazo-[2,1-b][1,3,4]thiadiazole, which was carried out an nucleophilic substitution with substituted piperazine to give the corresponding free bases of piperazine (5a-5c), then followed by Mannich reaction with heterocyclicamines and formaldehyde to yield the corresponding Mannich bases, (1a-11) as respective hydrochloride salts. The structures were confirmed by IR, 1H NMR, MS and elemental analysis and the antibacterial activities in vitro of fifteen newly synthesized compounds were also tested against Gram positive bacteria and Gram negative bacteria with the standard 2-fold agar dilution method. The antibacterial results showed that the introduction of a polar group resulted in the enhancement of antibacterial activity in vitro. Thus, the structures of these fused compounds could further be investigated. PMID:19048783

  20. Design, synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-aminomethylpiperidin-1-yl)fluoroquinolone derivatives.

    PubMed

    Chai, Yun; Wang, Jian; Liu, Mingliang; Yi, Hong; Sun, Lanying; You, Xuefu; Guo, Huiyuan

    2011-06-01

    We report herein the design and synthesis of novel 7-(4-alkoxyimino-3-aminomethylpiperidin-1-yl) fluoroquinolone derivatives. The antibacterial activity of the newly synthesized compounds was evaluated and compared with gemifloxacin, levofloxacin and ciprofloxacin. Results reveal that compounds 10, 16, and 17 have good activity against all of the tested gram-positive organisms including drug-resistance strains (MICs: 0.125-4 ?g/mL). In addition, compounds 16 and 17 (MICs: 4 ?g/mL) were 2- to 8-fold more potent than the reference drugs against Pseudomonas aeruginosa. PMID:21515052

  1. Clinical implications of nosocomial gram-positive bacteremia and superimposed antimicrobial resistance.

    PubMed

    Linden, P K

    1998-05-29

    The coexistence of a pathogen population with an ever-increasing resistance to many antibiotics and a patient population characterized by increasingly complex clinical problems has contributed to an increase in the bloodstream infections associated with gram-positive bacteria. This serious therapeutic challenge has already been associated with an increase in infection-related morbidity and mortality, a prolongation of hospital stays, and an escalation of healthcare costs. Vancomycin resistance, long prevalent among the enterococci, has emerged in strains of Staphylococcus aureus. Several cases of infection caused by S. aureus strains with intermediate-level resistance to vancomycin (MIC=8 microg/mL) have recently been reported. As glycopeptide resistance accelerates among the gram-positive bacteria, so does the potential for adverse clinical consequences associated with bloodstream infections caused by these pathogens. The patients least able to tolerate the effects of uncontrolled bloodstream infections are also those at the highest risk for the development of infections caused by glycopeptide-resistant pathogens. In this at-risk population, a poor outcome may be anticipated if effective antibiotic therapy is unavailable. Appropriate rationing of vancomycin and other antimicrobial agents that increase the selection of antibiotic-resistant strains of gram-positive bacteria and the rapid development of novel antimicrobial agents with reliable gram-positive activity must be immediate priorities if the threat posed by glycopeptide-resistant gram-positive pathogens is to be countered. PMID:9684655

  2. The Antibacterial Activity of Cassia fistula Organic Extracts

    PubMed Central

    Seyyednejad, Seyyed Mansour; Motamedi, Hossein; Vafei, Mouzhan; Bakhtiari, Ameneh

    2014-01-01

    Background: Cassia fistula, is a flowering plant and a member of Fabaceae family. Its leaves are compound of 4 - 8 pairs of opposite leaflets. There are many Cassia species around the world which are used in herbal medicine. Objectives: This study was designed to examine in vitro anti-bacterial activity of methanolic and ethanolic extracts of C. fistula native to Khuzestan, Iran. Materials and Methods: The microbial inhibitory effect of methanolic and ethanolic extracts of C. fistula was tested on 3 Gram positive: Bacillus cereus, Staphylococcus aureus and S. epidermidis and 5 Gram negative: Salmonella Typhi, Kelebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis bacterial species using disc diffusion method at various concentrations. The minimum inhibitory and bactericidal concentrations (MIC and MBC) were measured by the tube dilution assay. Results: The extract of C. fistula was effective against B. cereus, S. aureus, S. epidermidis, E. coli and K. pneumoniae. The most susceptible microorganisms to ethanolic and methanolic extracts were E. coli and K. pneumoniae, respectively. Also B. cereus and S. aureus showed the least sensitivity to ethanolic and methanolic extracts, respectively. The MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) of ethanolic extracts against S. aureus, E. coli, S. epidermidis and K. pneumoniae were also determined. Conclusions: With respect to the obtained results and regarding to the daily increase of the resistant microbial strains to the commercial antibiotics, it can be concluded that these extracts can be proper candidates of antibacterial substance against pathogenic bacterial species especially S. aureus, E. coli, K. pneumoniae and S. epidermidis. PMID:25147664

  3. Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles

    PubMed Central

    Bondarenko, Olesja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Kahru, Anne

    2013-01-01

    Background It is generally accepted that antibacterial properties of Ag nanoparticles (AgNPs) are dictated by their dissolved fraction. However, dissolution-based concept alone does not fully explain the toxic potency of nanoparticulate silver compared to silver ions. Methodology/Principal Findings Herein, we demonstrated that the direct contact between bacterial cell and AgNPs' surface enhanced the toxicity of nanosilver. More specifically, cell-NP contact increased the cellular uptake of particle-associated Ag ions – the single and ultimate cause of toxicity. To prove that, we evaluated the toxicity of three different AgNPs (uncoated, PVP-coated and protein-coated) to six bacterial strains: Gram-negative Escherichia coli, Pseudomonas fluorescens, P. putida and P. aeruginosa and Gram-positive Bacillus subtilis and Staphylococcus aureus. While the toxicity of AgNO3 to these bacteria varied only slightly (the 4-h EC50 ranged from 0.3 to 1.2 mg Ag/l), the 4-h EC50 values of protein-coated AgNPs for various bacterial strains differed remarkably, from 0.35 to 46 mg Ag/l. By systematically comparing the intracellular and extracellular free Ag+ liberated from AgNPs, we demonstrated that not only extracellular dissolution in the bacterial test environment but also additional dissolution taking place at the particle-cell interface played an essential role in antibacterial action of AgNPs. The role of the NP-cell contact in dictating the antibacterial activity of Ag-NPs was additionally proven by the following observations: (i) separation of bacterial cells from AgNPs by particle-impermeable membrane (cut-off 20 kDa, ?4 nm) significantly reduced the toxicity of AgNPs and (ii) P. aeruginosa cells which tended to attach onto AgNPs, exhibited the highest sensitivity to all forms of nanoparticulate Ag. Conclusions/Significance Our findings provide new insights into the mode of antibacterial action of nanosilver and explain some discrepancies in this field, showing that “Ag-ion” and “particle-specific” mechanisms are not controversial but, rather, are two faces of the same coin. PMID:23737965

  4. A novel synthetic peptide from a tomato defensin exhibits antibacterial activities against Helicobacter pylori.

    PubMed

    Rigano, M M; Romanelli, A; Fulgione, A; Nocerino, N; D'Agostino, N; Avitabile, C; Frusciante, L; Barone, A; Capuano, F; Capparelli, R

    2012-12-01

    Defensins are a class of cysteine-rich proteins, which exert broad spectrum antimicrobial activity. In this work, we used a bioinformatic approach to identify putative defensins in the tomato genome. Fifteen proteins had a mature peptide that includes the well-conserved tetradisulfide array. We selected a representative member of the tomato defensin family; we chemically synthesized its ?-motif and tested its antimicrobial activity. Here, we demonstrate that the synthetic peptide exhibits potent antibacterial activity against Gram-positive bacteria, such as Staphylococcus aureus A170, Staphylococcus epidermidis, and Listeria monocytogenes, and Gram-negative bacteria, including Salmonella enterica serovar Paratyphi, Escherichia coli, and Helicobacter pylori. In addition, the synthetic peptide shows minimal (<5%) hemolytic activity and absence of cytotoxic effects against THP-1 cells. Finally, SolyC exerts an anti-inflammatory activity in vitro, as it downregulates the level of the proinflammatory cytokines TNF-? and IFN-?. PMID:23124812

  5. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves

    PubMed Central

    Akter, Kazi Nahid; Karmakar, Palash; Das, Abhijit; Anonna, Shamima Nasrin; Shoma, Sharmin Akter; Sattar, Mohammad Mafruhi

    2014-01-01

    Objective: The study was conducted to investigate the antibacterial and anthelmintic activities and to determine total phenolic contents of methanolic extract of Piper betel leaves. Materials and Methods: The extract was subjected to assay for antibacterial activity using both gram positive and gram negative bacterial strains through disc diffusion method; anthelmintic activity with the determination of paralysis and death time using earthworm (Pheritima posthuma) at five different concentrations and the determination of total phenolic contents using the Folin-ciocalteau method. Results: The extract showed significant (p<0.01) zone of inhibitions against gram positive Staphylococcus aureus [(6.77±0.25) mm] and Gram negative Escherichia coli [(8.53±0.25) mm], Salmonella typhi [(5.20±0.26) mm], Shigella dysenteriae [(11.20±0.26) mm] compared to positive control Azithromycin (ranging from 20.10±0.17 to 25.20±0.35 mm) while no zone inhibitory activity was found for both the extract and the standard drug against Gram positive Bacillus cereus. The extract also showed potent anthelmintic activity requiring less time for paralysis and death compared to the standard drug albendazole (10 mg/ml). At concentrations 10, 20, 40, 60 and 80 mg/ml, leaves extract showed paralysis at mean time of 9.83±0.60, 8.50±0.29, 6.60±0.17, 6.20±0.44 and 4.16±0.60; death at 11.33±0.88, 9.67±0.33, 7.83±0.17, 7.16±0.60 and 5.16±0.72 minutes, respectively. Whereas the standard drug showed paralysis and death at 19.33±0.71 and 51.00±0.23 minutes respectively. The extract confirmed the higher concentration of phenolic contents (124.42±0.14 mg of GAE /g of extract) when screened for total phenolic compounds. Conclusion: As results confirmed potential antibacterial and anthelmintic activities of Piper betel leaves extract, therefore it may be processed for further drug research. PMID:25386394

  6. Antibacterial activities of novel nicotinic acid hydrazides and their conversion into N-acetyl-1,3,4-oxadiazoles.

    PubMed

    Morjan, Rami Y; Mkadmh, Ahmed M; Beadham, Ian; Elmanama, Abdelrauof A; Mattar, Mohammed R; Raftery, James; Pritchard, Robin G; Awadallah, Adel M; Gardiner, John M

    2014-12-15

    Synthesis of a series of novel N-acylhydrazones of nicotinic acid hydrazides 3a-j via condensation of nicotinic acid hydrazide 1 with the corresponding aldehydes and ketones is described. The series 3a-j was evaluated for in vitro antibacterial activity against two gram negative (Pseudomonas aeruginosa and Klebsiella pneumoniae) and two gram positive (Streptococcus pneumoniae and Staphylococcus aureus) bacteria. The zone of inhibition was measured using the disk diffusion method, and in vitro minimum inhibitory concentration indicating that compounds 3a and 3e were effective against P. aeruginosa with MICs of 0.220 and 0.195 ?g respectively. PMID:25454271

  7. Synthesis and in vitro antibacterial activity of gemifloxacin derivatives containing a substituted benzyloxime moiety.

    PubMed

    Feng, Lianshun; Lv, Kai; Liu, Mingliang; Wang, Shuo; Zhao, Jing; You, Xuefu; Li, Sujie; Cao, Jue; Guo, Huiyuan

    2012-09-01

    A series of novel gemifloxacin (GMFX) derivatives containing a substituted benzyloxime moiety with remarkable improvement in lipophilicity were synthesized. The target compounds evaluated for their in vitro antibacterial activity against representative strains. Our results reveal that most of the target compounds have considerable potency against all of the tested gram-positive strains including MRSA and MRSE (MIC: <0.008-8 ?g/mL), although they are generally less active than the references against the gram-negative strains. In particular, compound 11l (MIC: <0.008-4 ?g/mL) was found to be 8-2048 and 2-128 times more potent than levofloxacin (LVFX) and GMFX against the gram-positive strains, respectively. Moreover, against MRSA clinical isolates, 11l (MIC(90): 1 ?g/mL) is 8-fold more active than GMFX, and 2-fold more active than GMFX and moxifloxacin against MRSE clinical isolates (MIC(90): 4 ?g/mL). PMID:22841282

  8. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities.

    PubMed

    Younes, Islem; Sellimi, Sabrine; Rinaudo, Marguerite; Jellouli, Kemel; Nasri, Moncef

    2014-08-18

    The results given in the literature are conflicting when considering the relationship between antimicrobial activity and chitosan characteristics. To be able to clarify, we prepared fifteen homogeneous chitosans with different acetylation degrees (DA) and molecular weights (MW) by reacetylation of a fully deacetylated chitin under homogeneous conditions. They were tested at different pH values for their antimicrobial activities against four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi), four Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus) and three fungi (Aspergillus niger, Fusarium oxysporum and Alternaria solani). Chitosans markedly inhibited growth of most bacteria and fungi tested, although the inhibitory effect depends on the type of microorganism and on the chitosan characteristics (DA and MW) with minimum inhibitory concentrations in the range of 0.001 to 0.1 w%. Considering chitosan efficiency on bacteria, our series of data clearly show that the lower DA and the lower pH give the larger efficiency. Antibacterial activity was further enhanced for Gram-negative bacteria with decreasing MW, whereas, opposite effect was observed with the Gram-positive. Concerning the antifungal activity, the influence of chitosan characteristics was dependent on the particular type of fungus. Fungal growth decreased with increasing MW for F. oxysporum and decreasing DA for A. solani, but no MW or DA dependences were observed with A. niger. PMID:24929684

  9. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of Angelica keiskei KOIDZUMI.

    PubMed

    Inamori, Y; Baba, K; Tsujibo, H; Taniguchi, M; Nakata, K; Kozawa, M

    1991-06-01

    Two chalcones, xanthoangelol (I) and 4-hydroxyderricin (II), isolated from the root of Angelica keiskei KOIDZUMI (Umbelliferae) showed antibacterial activity against gram-positive pathogenic bacteria. The activity of I on Micrococcus luteus IFO-12708 (minimum inhibitory concentration (MIC), 0.76 microgram/ml) was the same potency as that of gentamicin, which is used as a standard. Although the activity of both chalcones on plant-pathogenic bacteria was lower than that of streptomycin sulfate, used as a positive control, they also exhibited growth-inhibitory effects. The antibacterial activity of I isolated from Angelica keiskei KOIDZUMI is being reported here for the first time. The growth-inhibitory effect of II on plant-pathogenic bacteria is also reported for the first time in this paper. PMID:1934181

  10. Antibacterial acivity of the essential oil of lippie nodiflora.

    PubMed

    Balakrishna, K; Gopal, R H; Ramkumar, V; Rao, R B; Vasanth, S; Narayanappa, D

    1996-07-01

    The plant Lippia nodiflora (Family-Verbenaceae) has medicinal properties and particularly used as an antidandruff agent. The essential oil of the plant was tested for its antibacterial activity against both gram positive and Gram negative bacteria. It showed good activity and compared with standard neomycin sulphate. However, it was inactive in the case of shigella flexneri. PMID:22556775

  11. Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity

    PubMed Central

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A. C.; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  12. Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh

    PubMed Central

    Ullah, M. Obayed; Haque, Mahmuda; Urmi, Kaniz Fatima; Zulfiker, Abu Hasanat Md.; Anita, Elichea Synthi; Begum, Momtaj; Hamid, Kaiser

    2013-01-01

    Objective To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh. Methods The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria (both gram positive and gram negative). The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations (LC50) were determined at 95% confidence intervals by analyzing the data on a computer loaded with “Finney Programme”. Results All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains (zone of inhibition=5-28 mm). The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis (zone of inhibition=6-21 mm). All extracts exhibited considerable general toxicity towards brine shrimps. The LC50 value of the tested extracts was within the range of 8.447 to 60.323 µg/mL with respect to the positive control (vincristine sulphate) which was 0.91 µg/mL. Among all studied extracts, Xanthium indicum displayed the highest cytotoxic effect with LC50 value of 8.447 µg/mL. Conclusions The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents. PMID:23570009

  13. BACTERIOCINS OF GRAM-POSITIVE BACTERIA AND THEIR APPLICATION IN BIOTECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many Gram-positive bacteria produce small peptides (bacteriocins) that have antimicrobial activity. Some bacteriocins have a broad spectrum, but many are highly selective and can only inhibit closely related species or strains. Bacteriocin specificity is not well understood, but specific receptors...

  14. Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities.

    PubMed

    Xia, Likai; Idhayadhulla, Akber; Lee, Yong Rok; Kim, Sung Hong; Wee, Young-Jung

    2014-07-14

    With the aim of developing a general and practical method for library production, a novel and efficient two-phase microwave-assisted cascade reaction between isatins and ?-ketoamides in [Bmim]BF4/toluene was developed for the synthesis of pyrrolo[3,4-c]quinoline-1,3-diones. The features of this methodology are, the use of microwave-assisted rapid synthesis, mild reaction conditions, high yields, operational simplicity, facile product separation, and recyclability. Furthermore, the antibacterial activities of the pyrrolo[3,4-c]quinoline-1,3-dione derivatives produced were evaluated against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). These derivatives showed antibacterial activities against Gram-positive strains that were at least equivalent to that against Gram-negative strains. Compound 7{3,5} displayed the most potent antibacterial activity against P. aeruginosa (MIC = 0.5 ?g/mL) and greater activity than standard ampicillin (MIC = 1 ?g/mL). Compound 7{4,7} exhibited the best inhibitory activity against E. coli and E. aerogenes (MIC = 1 and 0.5 ?g/mL), compared with the standard ampicillin (both MICs = 1 ?g/mL). The synthesized pyrrolo[3,4-c]quinoline-1,3-diones are expected to be widely used as lead compounds for the development of new antibacterial agents. PMID:24749663

  15. Evaluation of antibacterial activity on different solvent extracts of Euphorbia caracasana Boiss and Euphorbia cotinifolia L. (Euphorbiaceae) collected in Venezuela (Evaluación de la actividad antibacteriana en extractos de diferentes solventes de Euphorbia caracasana Boiss y Euphorbia cotinifolia L. (Euphorbiaceae) recolectadas en Venezuela)

    Microsoft Academic Search

    Janne ROJAS; Judith VELASCO; Antonio MORALES; Tulia DÍAZ; Gina MECCIA

    2008-01-01

    In the present investigation the evaluation of the antibacterial activity of Euphorbia caracasana Boiss and Euphorbia cotinifolia L. has been evaluated against Gram positive and Gram negative bacteria using the disc diffusion agar method. E. caracasana and E. cotinifolia leaves were extracted with isopropyl alcohol. These extracts, after concentration, were fractionated by column chromatography and selected fractions, based on their

  16. Efficient one-pot protocol for diverse pyrazolylphosphonates by multi-component reactions: their antioxidant and antibacterial activities.

    PubMed

    Kang, So Rang; Lee, Yong Rok

    2015-05-01

    Efficient one-pot three-component reactions of pyrazolones with arylaldehydes and triethyl phosphite were carried out in the presence of ethylenediammonium diacetate as catalyst to synthesize biologically interesting pyrazolylphosphonate derivatives. This methodology offers several significant advantages such as environmentally benign character, the use of a mild catalyst, high yields, and ease of handling. The synthesized compounds were screened for their antioxidant and antibacterial activities. The result showed that compound 4d [Formula: see text] exhibited a strong free radical scavenger toward DPPH free radicals compared with standard BHT [Formula: see text]. In addition, compounds 4e and 4p showed potent antibacterial activities against Gram-negative bacteria of E. coli and compound 4o exhibited a potent activity against Gram-positive bacteria of S. aureus compared with standard Ampicillin. PMID:25652237

  17. In vitro antibacterial activity of selected medicinal plants from lower Himalayas.

    PubMed

    Zulqarnain; Rahim, Abdur; Ahmad, Khalid; Ullah, Faizan; Ullah, Hamid; Nishan, Umar

    2015-03-01

    The present studies cover antibacterial activity of the crude methanolic extracts of 11 medicinal plants viz. Adhatoda vasica, Bauhenia variegate, Bombax ceiba, Carrisa opaca, Caryopteris grata, Debregeasia salicifolia, Lantana camara, Melia azedarach, Phyllanthus emblica, Pinus roxburghii and Olea ferruginea collected from lower Himalayas against two Gram positive (Staphylococcus aureus, Micrococcus luteus) and two Gram negative (Escherichia coli, Pseudomonas aureginosa) bacterial strains. The extracts were applied at four different concentrations (120 mg/mL, 90mg/mL, 60mg/mL and 30mg/mL) in dimethyl sulfoxide (DMSO) by using agar well diffusion method. Antibacterial activities against Staphylococcus aureus and Micrococcus luteus were observed formethanolic extracts of all the above mentioned plants. Greater antibacterial activity against Pseudomonas aeruginosa was only exhibited by Phyllanthus emblica, Pinus roxburghii, Debregeasia salicifolia and Lantana camara. Escherichia coli was highly resistant to all the plant extracts at all concentrations. It is inferred that methanolic crude extracts of the above mentioned plantsexhibitantibacterial activities against pathogenic bacteria, which proved the ethnobotanical importance of the selected plants that indigenous people use for cure against various diseases. PMID:25730791

  18. Synthesis and structure-activity relationship of amidine derivatives of 3,4-ethylenedioxythiophene as novel antibacterial agents.

    PubMed

    Stoli?, Ivana; ?ip?i? Paljetak, Hana; Peri?, Mihaela; Matijaši?, Mario; Stepani?, Višnja; Verbanac, Donatella; Baji?, Miroslav

    2015-01-27

    Current antibacterial chemotherapeutics are facing an alarming increase in bacterial resistance pressuring the search for novel agents that would expand the available therapeutic arsenal against resistant bacterial pathogens. In line with these efforts, a series of 9 amidine derivatives of 3,4-ethylenedioxythiophene were synthesized and, together with 18 previously synthesized analogs, evaluated for their relative DNA binding affinity, in vitro antibacterial activities and preliminary in vitro safety profile. Encouraging antibacterial activity of several subclasses of tested amidine derivatives against Gram-positive (including resistant MRSA, MRSE, VRE strains) and Gram-negative bacterial strains was observed. The bis-phenyl derivatives were the most antibacterially active, while compound 19 from bis-benzimidazole class exhibited the widest spectrum of activity (with MIC of 4, 2, 0.5 and ?0.25 ?g/ml against laboratory strains of Staphyloccocus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Moraxella catarrhalis, respectively and 4-32 ?g/ml against clinical isolates of sensitive and resistant S. aureus, Staphylococcus epidermidis and Enterococcus faecium) and also demonstrated the strongest DNA binding affinity (?Tm of 15.4 °C). Asymmetrically designed compounds and carboxamide-amidines were, in general, less active. Molecular docking indicated that the shape of the 3,4-ethylenedioxythiophene derivatives and their ability to form multiple electrostatic and hydrogen bonds with DNA, corresponds to the binding modes of other minor-groove binders. Herein reported results encourage further investigation of this class of compounds as novel antibacterial DNA binding agents. PMID:25461312

  19. Preparation and Antibacterial Activity Evaluation of 18-?-glycyrrhetinic Acid Loaded PLGA Nanoparticles

    PubMed Central

    Darvishi, Behrad; Manoochehri, Saeed; Kamalinia, Golnaz; Samadi, Nasrin; Amini, Mohsen; Mostafavi, Seyyed Hossein; Maghazei, Shahab; Atyabi, Fatemeh; Dinarvand, Rassoul

    2015-01-01

    The aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-?-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanoparticles was examined against different gram-negative and gram-positive bacteria. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration of nanoparticles. Results demonstrated that physicochemical properties of nanoparticles were affected by the above mentioned parameters where nanoscale size particles ranging from 175 to 212 nm were achieved. The highest encapsulation efficiency (53.2 ± 2.4%) was obtained when the ratio of drug to polymer was 1:4. Zeta potential of the developed nanoparticles was fairly negative (-11±1.5). In-vitro release profile of nanoparticles showed two phases: an initial phase of burst release for 10 h followed by a slow release pattern up to the end. The antimicrobial results revealed that the nanoparticles were more effective than pure GLA against P. aeuroginosa, S. aureus and S. epidermidis. This improvement in antibacterial activity of GLA loaded nanoparticles when compared to pure GLA may be related to higher nanoparticles penetration into infected cells and a higher amount of GLA delivery in its site of action. Herein, it was shown that GLA loaded PLGA nanoparticles displayed appropriate physicochemical properties as well as an improved antimicrobial effect.

  20. Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species.

    PubMed

    Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

    2014-01-01

    This study focused on total phenolic content (TPC) and antioxidant and antibacterial activities of the leaves and stems of Passiflora quadrangularis, P. maliformis, and P. edulis extracted using three solvents: petroleum ether, acetone, and methanol. The maximum extraction yields of antioxidant components from the leaves and stems were isolated using methanol extracts of P. edulis (24.28%) and P. quadrangularis (9.76%), respectively. Among the leaf extracts, the methanol extract of P. maliformis had the significantly highest TPC and the strongest antioxidant activity, whereas among the stem extracts, the methanol extract of P. quadrangularis showed the highest phenolic amount and possessed the strongest antioxidant activity. The antibacterial properties of the Passiflora species were tested using the disc diffusion method against 10 human pathogenic bacteria. The largest inhibition zone was observed for the methanol extract of P. maliformis against B. subtilis. Generally, extracts from the Passiflora species exhibit distinct inhibition against Gram-positive but not Gram-negative bacteria. Based on the generated biplot, three clusters of bacteria were designated according to their performance towards the tested extracts. The present study revealed that methanol extracts of the Passiflora contain constituents with significant phenolic, antioxidant, and antibacterial properties for pharmaceutical and nutraceutical uses. PMID:25028673

  1. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study.

    PubMed

    Kora, Aruna Jyothi; Sashidhar, Rao Beedu

    2015-02-01

    Presently, silver nanoparticles produced by biological methods have received considerable significance owing to the natural abundance of renewable, cost-effective and biodegradable materials, thus implementing the green chemistry principles. Compared with the nanoparticles synthesized using chemical methods, most biogenic silver nanoparticles are protein capped, which imparts stability and biocompatibility, and enhanced antibacterial activity. In this study, we compared the antibacterial effect of two biogenic silver nanoparticles produced with natural plant gums: gum ghatti and gum olibanum against Gram-negative and Gram-positive bacteria. Bacterial interaction with nanoparticles was probed both in planktonic and biofilm modes of growth; employing solid agar and liquid broth assays for inhibition zone, antibiofilm activity, inhibition of growth kinetics, leakage of intracellular contents, membrane permeabilization and reactive oxygen species production. In addition, cytotoxicity of the biogenic nanoparticles was evaluated in HeLa cells, a human carcinoma cell line. Antibacterial activity and cytotoxicity of the silver nanoparticles synthesized with gum ghatti (Ag NP-GT) was greater than that produced with gum olibanum (Ag NP-OB). This could be attributed to the smaller size (5.7?nm), monodispersity and zeta potential of the Ag NP-GT. The study suggests that Ag NP-GT can be employed as a cytotoxic bactericidal agent, whereas Ag NP-OB (7.5?nm) as a biocompatible bactericidal agent. PMID:25138141

  2. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    PubMed

    Merriman, Joseph A; Nemeth, Kimberly A; Schlievert, Patrick M

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and ?-globin and ?-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized ?-globin chain peptides, synthetic variants of ?-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  3. Antibacterial Effect of the Adhering Human Lactobacillus acidophilus Strain LB

    Microsoft Academic Search

    MARIE-HELENE COCONNIER; VANESSA LIEVIN; MARIE-FRANCOISE BERNET-CAMARD; SYLVIE HUDAULT; ALAIN L. SERVIN

    1997-01-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Kleb- siella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria.

  4. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    NASA Astrophysics Data System (ADS)

    Boomi, Pandi; Prabu, Halliah Gurumallesh; Manisankar, Paramasivam; Ravikumar, Sundaram

    2014-05-01

    Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  5. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

    PubMed Central

    McBride, Shonna M.

    2014-01-01

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. PMID:25419466

  6. Screening genomes of Gram-positive bacteria for

    E-print Network

    Screening genomes of Gram-positive bacteria for double-glycine-motif- containing peptides Secreted-positive bacteria, the double-glycine (GG) motif plays a key role in many peptide secretion systems involved Microbiology Comment #12;peptides and class II bacteriocins, produced by streptococci and lactic acid bacteria

  7. Electrospun nano-fiber mats containing cationic cellulose derivatives and poly (vinyl alcohol) with antibacterial activity.

    PubMed

    Jia, Baoquan; Zhou, Jinping; Zhang, Lina

    2011-08-16

    Nano-fibrous mats have been successfully prepared by electrospinning of the blend solutions of cationic cellulose derivatives (PQ-4) and polyvinyl alcohol (PVA). Effects of the blending ratio and applied voltage on the morphology and diameter of the electrospun nano-fibers were investigated. The average diameter of the PQ-4/PVA blend fibers was in the range of 150-250 nm. The electrospinning process became instable and the fiber diameter distribution broadened with increasing PQ-4 content and applied voltage. The antibacterial activity of electrospun PQ-4/PVA blend mats against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus indicated potential for biomedical use. PMID:21600569

  8. Antifungal and Antibacterial Metabolites from a French Poplar Type Propolis

    PubMed Central

    Boisard, Séverine; Le Ray, Anne-Marie; Landreau, Anne; Kempf, Marie; Cassisa, Viviane; Flurin, Catherine; Richomme, Pascal

    2015-01-01

    During this study, the in vitro antifungal and antibacterial activities of different extracts (aqueous and organic) obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains: Candida albicans, C. glabrata, and Aspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains including Staphylococcus aureus. Organic extracts showed a significant antifungal activity against C. albicans and C. glabrata (MIC80 between 16 and 31?µg/mL) but only a weak activity towards A. fumigatus (MIC80 = 250?µg/mL). DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially against S. aureus (SA) and several of its methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains (MIC100 30–97?µg/mL). A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study.

  9. Antibacterial Activity of Retinaldehyde against Propionibacterium acnes

    Microsoft Academic Search

    M. Pechère; J.-C. Pechèreb; L. Germaniera

    1999-01-01

    Background: Retinaldehyde has been shown to exert antibacterial activity in vitro. Aim: This study evaluates the effect of retinaldehyde on Propionibacterium acnes both in vivo and in vitro. Methods: Microbial minimal inhibitory concentrations (MICs) of retinaldehyde and retinoic acid were determined on reference strains of P. acnes. In vivo activity of daily topical application of 0.05% retinaldehyde on the P.

  10. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    PubMed

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications. PMID:25762191

  11. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    NASA Astrophysics Data System (ADS)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10703h

  12. Priming the tooth surface with chlorhexidine and antibacterial activity of resin cement

    PubMed Central

    Saini, Monika; Singh, Yashpal; Garg, Rishabh; Pandey, Anita

    2013-01-01

    AIM: To evaluate the effect of priming the tooth surface with 2% chlorhexidine gluconate on antibacterial activity of resin cement. METHODS: Ten patients in whom a single missing tooth was present on both the right and left side in the upper or lower arch were selected. Two fixed partial dentures (FPDs) in each patient on the right and left side were planned. Each FPD was assigned either to the control or test group. In the control group, FPD was luted with resin cement and in the test group, the tooth surface was primed with 2% chlorhexidine gluconate before luting with resin cement. Bacteriological samples were collected at base line level, as the patient came to the outpatient department before the start of any treatment, 5 wk prior to cementation of FPD and at 13 wk (8 wk after final cementation). Microbiological processing of all samples was done and the results were statistically analyzed. RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy periodontal site, whereas in the control group, a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident by the fact that the anaerobic bacteria percentage in the control sample is 57% and 15% in the test sample after 13 wk, whereas the aerobic/facultative bacteria percentage is 43% in the control sample and 85% in the test sample after 13 wk. The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the percentage of gram positive bacteria in the control sample is 39% and in the test sample is 80% after 13 wk. The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test sample after 13 wk. CONCLUSION: The present study demonstrated that priming the tooth surface with 2% chlorhexidine gluconate may enhance antibacterial activity of the resin cement. PMID:24340277

  13. Antibacterial Activity of Honey on Cariogenic Bacteria

    PubMed Central

    Ahmadi – Motamayel, Fatemeh; Hendi, Seyedeh Sare; Alikhani, Mohammad Yusof; Khamverdi, Zahra

    2013-01-01

    Objective: Honey has antibacterial activity. The aim of this study was to evaluate the antibacterial activity of honey on Streptococcus mutans and Lactobacillus. Materials and Methods: In this in vitro study, solutions containing 0%, 5%, 10%, 20%, 50% and 100%(w/v) of natural Hamadan honey were prepared. Each blood (nutrient) agar plate was then filled with dilutions of the honey. The strains of bacteria were inoculated in blood agar for 24 hours at 37°C and were adjusted according to the McFarland scale (10×10 cfumcl?1). All assays were repeated 10 times for each of the honey concentrations. Data were analyzed by non parametric Chi-Square test. Statistical significance was set at ?=0.05. Results: Significant antibacterial activity was detected for honey on Streptococcus mutans in concentrations more than 20% and on Lactobacillus in 100% concentration (P<0.05). Conclusion: It seems that antibacterial activity of honey could be used for prevention and reduction of dental caries. PMID:23724198

  14. Antibacterial activity of some medicinal plant extracts

    Microsoft Academic Search

    Anupam Ghosh; Bidus Kanti Das; Arup Roy; Biplab Mandal; Goutam Chandra

    2008-01-01

    Antibacterial activity of hot aqueous and methanolic extracts prepared from six plants (Terminallia chebula, Terminallia bellerica, Phyllanthus emblica, Punica granatum, Lawsonia alba and Mikania micrantha) used in traditional folk medicines of India were screened against five pathogenic bacteria (Staphylococcus aureus MTCC 2940, Bacillus subtilis MTCC 441, Escherichia coli MTCC 739, Proteus vulgaris MTCC 426 and Enterobacter aerogenes MTCC 111). The

  15. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    PubMed Central

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 ?g/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 ?g/ml and 15.88 ?g/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising of more than 50% of total phenolic compounds detected in each cultivar. Conclusions The present study showed that the tested pomegranate peels exhibited strong antibacterial, antioxidant and tyrosinase-inhibition activities. These results suggest that pomegranate fruit peel could be exploited as a potential source of natural antimicrobial and antioxidant agents as well as tyrosinase inhibitors. PMID:23110485

  16. Antimicrobial Resistance Among Epidemiologically Important Gram-Positive Bacteria

    Microsoft Academic Search

    Cassandra D. Salgado

    \\u000a The emergence of antimicrobial resistance among clinically relevant bacteria has resulted in profound changes in the approach\\u000a to treatment of infections caused by these pathogens. This chapter will focus on three epidemiologically important gram-positive\\u000a bacteria: Streptococcus pneumoniae, Staphylococcus aureus, and Enterococcus species. Common infections due to these organisms, common resistance mechanisms, and available treatment options will be\\u000a reviewed.

  17. Synthesis and antibacterial activity of monocyclic 3-carboxamide tetramic acids

    PubMed Central

    Jeong, Yong-Chul

    2013-01-01

    Summary A chemical library of carboxamide-substituted tetramates designed by analogy with antibacterial natural products, a method for their rapid construction, and the evaluation of their antibacterial activity is reported. PMID:24204399

  18. Antibacterial activity of a cell wall hydrolase from Lactobacillus paracasei NRRL B-50314 produced by recombinant Bacillus megaterium.

    PubMed

    Liu, Siqing; Rich, Joseph O; Anderson, Amber

    2015-02-01

    The cell-free supernatant (CFS) from Lactobacillus paracasei NRRL B-50314 culture has been previously reported as containing antibacterial activity against a wide variety of Gram-positive bacteria. The CFS protein gel slice corresponding to antibacterial activities was subjected to trypsin digestion and ion trap MASS (Gel/LC-MS/MS) analysis. BlastP search of the resulted IQAVISIAEQQIGKP sequence led to a hypothetical cell-wall associated hydrolase (designated as CWH here) from Lactobacillus paracasei ATCC 25302. Further analyses of CWH revealed that the IQAVISIAEQQIGKP belongs to a highly conserved region of the NlpC/P60 superfamily. The L. paracasei NRRL B-50314 CWH gene, cloned in pStrepHIS1525CWH477, was introduced into Bacillus megaterium MS 941. The production of CWH477 protein was induced by xylose. The CWH477 protein was purified by using NiNTA column, and elution fraction E2 showed highest antibacterial activity. This study and bioinformatics analyses suggested that the antibacterial activity of CWH could originate from its cell wall degrading enzymatic function. PMID:25533632

  19. Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and residual antibacterial activity of the transformation mixtures.

    PubMed

    Cvan?arová, Monika; Moeder, Monika; Filipová, Alena; Reemtsma, Thorsten; Cajthaml, Tomáš

    2013-12-17

    Flumequine, a fluoroquinolone antibiotic, is applied preferably in veterinary medicine, for stock breeding and treatment of aquacultures. Formation of drug resistance is a matter of general concern when antibiotics such as flumquine occur in the environment. Thus, biodegradation of flumequine in solution was investigated using five different ligninolytic fungi. Irpex lacteus, Dichomitus squalens, and Trametes versicolor proved most efficient and transformed more than 90% of flumequine within 6 or even 3 days. Panus tigrinus and Pleurotus ostreatus required up to 14 days to remove >90% of flumequine. Analyses of the metabolites by liquid chromatography-mass spectrometry suggest different transformation pathways for the different fungal strains. Structure proposals were elaborated for 8 metabolites. 7-Hydroxy-flumequine and flumequine ethyl ester were identified as common metabolites produced by all ligninolytic fungi. The largest variety of metabolites was formed by D. squalens. Residual antibacterial activity of the metabolite mixtures was tested using gram-positive and gram-negative bacteria. While for the less efficient P. tigrinus and P. ostreatus cultures the antibacterial activities corresponded to the residual concentrations of flumequine, a remarkable antibacterial activity remained in the D. squalens cultures although flumequine was transformed to more than 90%. Obviously, antibacterially active transformation products were formed by this fungal strain. PMID:24261869

  20. Conjugative type IV secretion systems in Gram-positive bacteria

    PubMed Central

    Goessweiner-Mohr, Nikolaus; Arends, Karsten; Keller, Walter; Grohmann, Elisabeth

    2013-01-01

    Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport. PMID:24129002

  1. Structural biology of gram-positive bacterial adhesins

    PubMed Central

    Vengadesan, Krishnan; Narayana, Sthanam V L

    2011-01-01

    The structural biology of Gram-positive cell surface adhesins is an emerging field of research, whereas Gram-negative pilus assembly and anchoring have been extensively investigated and are well understood. Gram-positive surface proteins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and individual proteins that assemble into long, hair-like organelles known as pili have similar features at the primary sequence level as well as at the tertiary structural level. Some of these conserved features are essential for their transportation from the cytoplasm and for cell wall anchoring. More importantly, the MSCRAMMs and the individual pilins are assembled with building blocks that are variants of structural modules used for human immunoglobulins. MSCRAMMs target the host's extracellular matrix proteins, such as collagen, fibrinogen, and fibronectin, and they have received considerable attention from structural biologists in the last decade, who have primarily been interested in understanding their interactions with host tissue. The recent focus is on the newly discovered pili of Gram-positive bacteria, and in this review, we highlight the advances in understanding of the individual pilus constituents and their associations and stress the similarities between the individual pilins and surface proteins. PMID:21404359

  2. Architecture and assembly of the Gram-positive cell wall

    PubMed Central

    Beeby, Morgan; Gumbart, James C.; Roux, Benoît; Jensen, Grant J.

    2013-01-01

    The bacterial cell wall is a mesh polymer of peptidoglycan – linear glycan strands crosslinked by flexible peptides – that determines cell shape and provides physical protection. While the glycan strands in thin “Gram-negative” peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker “Gram-positive” form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an “inside-to-outside” assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram-positive cell walls run circumferentially around the cell just as they do in Gram-negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram-positive peptidoglycan is an important antibiotic target crucial to the viability of several important rod-shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile. PMID:23600697

  3. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens

    PubMed Central

    Van Tyne, Daria; Gilmore, Michael S.

    2014-01-01

    SUMMARY Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis. PMID:25544937

  4. Synthesis, characterization and antibacterial activity of biodegradable films prepared from Schiff bases of zein.

    PubMed

    Soliman, E A; Khalil, A A; Deraz, S F; El-Fawal, G; Elrahman, S Abd

    2014-10-01

    Pure zein is known to be very hydrophobic, but is still inappropriate for coating and film applications because of their brittle nature. In an attempt to improve the flexibility and the antimicrobial activity of these coatings and films, Chemical modification of zein through forming Schiff bases with different phenolic aldhydes was tried. Influence of this modifications on mechanical, topographical, wetting properties and antimicrobial activity of zein films were evaluated. The chemical structure of the Schiff bases films were characterized by ATR-FTIR spectroscopy. The results indicate an improvement in mechanical properties with chemically modification of zein to form Schiff bases leading to a reduction in the elastic modulus. An increase in the elongation at break has been observed, but with slight influence on tensile strength. Plasticized zein films have similar initial contact angle (?40°). An increase in reaction temperature and time increases film's affinity towards water. As shown by contact angle measurements, a noticeable relation was found between film composition and the hydrophilicity. Surface topography also varied by forming Schiff bases, becoming rougher than zein-based films. The antibacterial activities of zein and Schiff bases of zein-based films were investigated against gram-positive bacteria (Listeria innocua, Listeria monocytogenes, Bacillus cereus and Clostridium sporogenes) and gram-negative bacteria (Escherichia coli, Yersinia enterocolitica and Salmonella enterica). It was found that the antibacterial activity of the Schiff bases-based films was more effective than that of zein-based films. PMID:25328181

  5. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract

    PubMed Central

    Mohadjerani, Maryam; Tavakoli, Rahmatollah; Hosseinzadeh, Rahman

    2014-01-01

    Objectives: The objective of this study was to analyze the fatty acid content, antioxidant, and antibacterial activities of hydro-methanolic extract of Adonis wolgensis L. (A. wolgensis L.) growing wild in north of Iran. Materials and Methods: Oils of A. wolgensis L. was obtained by means of Soxhlet apparatus from leaves and stems. Methyl esters were derived from the oily mixtures by trans-esterification process and were analyzed by GC/FID and GC/MS systems. Phenolic compounds extraction was done with aqueous methanol (90%). This extract was investigated for antioxidant activity using DPPH radical scavenging and reducing power methods and was also tested against a panel of microorganisms. Results: Linolenic acid (45.83%) and oleic acid (47.54%) were the most abundant fatty acids in leaves and stems, respectively. Hydro-methanolic extract with the high amount of total phenolics (9.20 ±0.011 mg GAE per dry matter) was the potent antioxidant in the assays. Results obtained from measurements of MIC for extract, indicated that E. coli, S. aureus, and S. enteritidis were the most sensitive microorganisms tested, but no activity was observed against Gram-positive microorganism (B. subtilis). Conclusion: The results obtained from the present study indicated that the oil of A. wolgensis leaves and stems contained a high source of poly-unsaturated fatty acids (PUFAs). These results also showed that hydro-methanolic extract of this plant contained significant antioxidant and antibacterial activities. PMID:25050298

  6. Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic - salinomycin.

    PubMed

    Antoszczak, Micha?; Popiel, Katarzyna; Stefa?ska, Joanna; Wietrzyk, Joanna; Maj, Ewa; Janczak, Jan; Michalska, Greta; Brzezinski, Bogumil; Huczy?ski, Adam

    2014-04-01

    A series of 12 novel ester derivatives of naturally occurring polyether antibiotic - salinomycin were synthesized, characterised by spectroscopic method and evaluated for their in vitro antibacterial activity and cytotoxicity. The new esters were demonstrated to form complexes with monovalent and divalent metal cation of 1:1 stoichiometry in contrast to the salinomycin which forms only complexes with monovalent cations. All the obtained compounds show potent antiproliferative activity against human cancer cell lines and a good selectivity index for cancer versus mammalian cells. Additionally, 3 compounds showed higher antiproliferative activity against the drug-resistant cancer cells and lower toxicity towards normal cells than those of unmodified salinomycin and standard anticancer drugs such as cisplatin and doxorubicin. Some of the synthesized compounds showed good inhibitory activity against Staphylococcus strains and clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE). These studies show that salinomycin esters are interesting scaffolds for the development of novel anticancer and Gram-positive antibacterial agents. PMID:24602789

  7. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay.

    PubMed

    Motshekga, Sarah C; Ray, Suprakas S; Onyango, Maurice S; Momba, Maggie N B

    2013-11-15

    Composites of silver-zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9-30 nm and 15-70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water. PMID:24076479

  8. Honey: its medicinal property and antibacterial activity

    PubMed Central

    Mandal, Manisha Deb; Mandal, Shyamapada

    2011-01-01

    Indeed, medicinal importance of honey has been documented in the world's oldest medical literatures, and since the ancient times, it has been known to possess antimicrobial property as well as wound-healing activity. The healing property of honey is due to the fact that it offers antibacterial activity, maintains a moist wound condition, and its high viscosity helps to provide a protective barrier to prevent infection. Its immunomodulatory property is relevant to wound repair too. The antimicrobial activity in most honeys is due to the enzymatic production of hydrogen peroxide. However, another kind of honey, called non-peroxide honey (viz., manuka honey), displays significant antibacterial effects even when the hydrogen peroxide activity is blocked. Its mechanism may be related to the low pH level of honey and its high sugar content (high osmolarity) that is enough to hinder the growth of microbes. The medical grade honeys have potent in vitro bactericidal activity against antibiotic-resistant bacteria causing several life-threatening infections to humans. But, there is a large variation in the antimicrobial activity of some natural honeys, which is due to spatial and temporal variation in sources of nectar. Thus, identification and characterization of the active principle(s) may provide valuable information on the quality and possible therapeutic potential of honeys (against several health disorders of humans), and hence we discussed the medicinal property of honeys with emphasis on their antibacterial activities. PMID:23569748

  9. Thieno[2,3-d]pyrimidinedione derivatives as antibacterial agents

    PubMed Central

    Dewal, Mahender B.; Wani, Amit S.; Vidaillac, Celine; Oupicky, David; Rybak, Michael J.

    2012-01-01

    Several thieno[2,3-d]pyrimidinediones have been synthesized and examined for antibacterial activity against a range of Gram-positive and Gram-negative pathogens. Two compounds displayed potent activity (2–16 mg/L) against multi-drug resistant Gram-positive organisms, including methicillin, vancomycin-intermediate, and vancomycin-resistant Staphylococcus aureus (MRSA, VISA, VRSA) and vancomycin-resistant enterococci (VRE). Only one of these agents possessed moderate activity (16–32 mg/L) against Gram-negative strains. An examination of the cytotoxicity of these agents revealed that they displayed low toxicity (40–50 mg/L) against mammalian cell and very low hemolytic activity (2–7%). Taken together, these studies suggest that thieno[2,3-d]pyrimidinediones are interesting scaffolds for the development of novel Gram-positive antibacterial agents. PMID:22405289

  10. Considering the antibacterial activity of Zataria multiflora Boiss essential oil treated with gamma-irradiation in vitro and in vivo systems

    NASA Astrophysics Data System (ADS)

    Faezeh, Fatema; Salome, Dini; Abolfazl, Dadkhah; Reza, Zolfaghari Mohammad

    2015-01-01

    The aim of the present study was to evaluate the antibacterial activities of essential oils (EOs) obtained from the aerial parts of Zataria multiflora Boiss against Bacillus cereus, Pseudomonas aeroginosa, Escherichia coli and Staphylococcus aureus by in vivo and in vitro methods. Also, the effects of gamma-irradiation (0, 10 and 25 kGy) as a new microbial decontamination on the antibacterial activities of Z. multiflora were examined. For this purpose, the collected herbs were exposed to radiation at doses of 0, 10 and 25 kGy following essential oil (EOs) extraction by steam distillation. Then, the in vitro antibacterial potency of the irradiated and non-irradiated oils was determined by using disc diffusion, agar well diffusion and MIC and MBC determination assays. The in vivo antibacterial activity was also studied in sepsis model induced by CLP surgery by Colony forming units (CFUs) determination. The results showed that the extracted oils were discovered to be effective against all the gram positive and gram negative pathogens in vitro system. In addition, the oil significantly diminished the increased CFU count observed in CLP group. Moreover, the irradiated samples were found to possess the antibacterial activities as the non-irradiated ones both in vitro and in vivo systems. These data indicated the potential use of gamma-irradiation as a safe technique for preservation of Z. multiflora as a medicinal plant with effective antibacterial activities.

  11. Synthetic Teichoic Acid Conjugate Vaccine against Nosocomial Gram-Positive Bacteria

    PubMed Central

    Laverde, Diana; Wobser, Dominique; Romero-Saavedra, Felipe; Hogendorf, Wouter; van der Marel, Gijsbert; Berthold, Martin; Kropec, Andrea; Codee, Jeroen; Huebner, Johannes

    2014-01-01

    Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria. PMID:25333799

  12. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates.

    PubMed

    Dey, Diganta; Ray, Ratnamala; Hazra, Banasri

    2014-07-01

    Multi-drug resistant Mycobacterium tuberculosis and other bacterial pathogens represent a major threat to human health. In view of the critical need to augment the current drug regime, we have investigated therapeutic potential of five quinonoids, viz. emodin, diospyrin, plumbagin, menadione and thymoquinone, derived from natural products. The antimicrobial activity of quinonoids was evaluated against a broad panel of multi-drug and extensively drug-resistant tuberculosis (M/XDR-TB) strains, rapid growing mycobacteria and other bacterial isolates, some of which were producers of ?-lactamase, Extended-spectrum ?-lactamase (ESBL), AmpC ?-lactamase, metallo-beta-lactamase (MBL) enzymes, as well as their drug-sensitive ATCC counterparts. All the tested quinones exhibited antimycobacterial and broad spectrum antibacterial activity, particularly against M. tuberculosis (lowest MIC 0.25?µg/mL) and Gram-positive bacteria (lowest MIC <4?µg/mL) of clinical origin. The order of antitubercular activity of the tested quinonoids was plumbagin?>?emodin?~?menadione?~?thymoquinone?>?diospyrin, whereas their antibacterial efficacy was plumbagin?>?menadione?~?thymoquinone?>?diospyrin?>?emodin. Furthermore, this is the first evaluation performed on these quinonoids against a broad panel of drug-resistant and drug-sensitive clinical isolates, to the best of our knowledge. PMID:24318724

  13. Antibacterial, cytotoxicity and anticoagulant activities from Hypnea esperi and Caulerpa prolifera marine algae.

    PubMed

    Selim, Samy; Amin, Abeer; Hassan, Sherif; Hagazey, Mohamed

    2015-03-01

    Extracts from 2 algal species (Hypnea esperi and Caulerpa prolifera) from Suez Canal region, Egypt were screened for the production of antibacterial compounds against some pathogenic bacteria. The bacteria tested included Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Aeromonas hydrophila, Bacillus subtilis and Staphylococcus aureus. Algal species displayed antibacterial activity. The methanolic extracts showed variable response by producing various zones of inhibition against studied bacteria. The tested Gram-negative bacteria were less affected by studied algal extracts than Gram-positive bacteria. We determined some biopotentials properties such as cytotoxicity and anticoagulant activity of most potent algal active extracts. The secondary metabolites of only Hypnea esperi algal extract effectively prevented the blood clotting to the extent of 120 seconds. Minimum inhibitory concentration (MIC) indicated that all potent tested algal extract C inhibits Bacillus subtilis and Staphylococcus aureus. Minimum bactericidal concentration (MBC) was between 1 and 1.4mg/ml. The algal isolates from Egypt have been found showing promising results against infectious bacteria instead of some synthetic antibiotics. PMID:25730785

  14. Antibacterial Activity of Lantana camara Linn and Lantana montevidensis Brig Extracts from Cariri-Ceará, Brazil.

    PubMed

    Barreto, Fs; Sousa, Eo; Campos, Ar; Costa, Jgm; Rodrigues, Ffg

    2010-01-01

    The use of medicinal plants with therapeutics properties represents a secular tradition in different cultures, mainly in underdeveloped countries. Lantana camara Linn and Lantana montevidensis Briq (Verbenaceae) found in tropical and subtropical areas around the world are popularly known as "camará" or "chumbinho." In popular medicines, both plants are used as antipyretic and carminative and in the treatment of respiratory system infections. In this study, the antibacterial activity of the ethanolic extracts of L. camara and L. montevidensis leaves and roots against gram-positive and gram-negative strains standard and multi-resistant bacteria isolated from clinical material are presented. In order to determine the minimal inhibitory concentration (MIC), the microdilution method was used. The extracts demonstrated antibacterial activity against all tested bacteria, but the L. montevidensis fresh leaves extract present the best result against P. aeruginosa (MIC 8 ?g/mL) and against multi-resistant E. coli (Ec 27) (MIC 16 ?g/mL). These results drive new researches with both species in order to isolate the constituents responsible for the activity. PMID:21331189

  15. Antibacterial Activity of Lantana camara Linn and Lantana montevidensis Brig Extracts from Cariri-Ceará, Brazil

    PubMed Central

    Barreto, FS; Sousa, EO; Campos, AR; Costa, JGM; Rodrigues, FFG

    2010-01-01

    The use of medicinal plants with therapeutics properties represents a secular tradition in different cultures, mainly in underdeveloped countries. Lantana camara Linn and Lantana montevidensis Briq (Verbenaceae) found in tropical and subtropical areas around the world are popularly known as “camará” or “chumbinho.” In popular medicines, both plants are used as antipyretic and carminative and in the treatment of respiratory system infections. In this study, the antibacterial activity of the ethanolic extracts of L. camara and L. montevidensis leaves and roots against gram-positive and gram-negative strains standard and multi-resistant bacteria isolated from clinical material are presented. In order to determine the minimal inhibitory concentration (MIC), the microdilution method was used. The extracts demonstrated antibacterial activity against all tested bacteria, but the L. montevidensis fresh leaves extract present the best result against P. aeruginosa (MIC 8 ?g/mL) and against multi-resistant E. coli (Ec 27) (MIC 16 ?g/mL). These results drive new researches with both species in order to isolate the constituents responsible for the activity. PMID:21331189

  16. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family.

    PubMed

    Mnayer, Dima; Fabiano-Tixier, Anne-Sylvie; Petitcolas, Emmanuel; Hamieh, Tayssir; Nehme, Nancy; Ferrant, Christine; Fernandez, Xavier; Chemat, Farid

    2014-01-01

    Six essential oils (EOs) from the Alliaceae family, namely garlic (Allium sativum), onion (Allium cepa), leek (Allium porrum), Chinese chive (Allium tuberosum), shallot (Allium ascalonicum) and chive (Allium schoenoprasum) were characterized by GC and GC-MS and evaluated for their functional food properties. Antibacterial properties were tested on five food-borne pathogens: Two Gram-positive Staphylococcus aureus (ATCC 25923), Listeria monocytogenes (ATCC 19115) and three Gram-negative Salmonella Typhimurium (ATCC 14028), Escherichia coli (ATCC 8739) and Campylobacter jejuni (ATCC 33291) bacteria. Antioxidant and radical-scavenging properties were tested by means of Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Garlic, Chinese chive and onion EOs had the highest antibacterial activity whereas shallot and leek EOs were the strongest antioxidants. Heating caused a decrease in the antioxidant activity of these Eos, as shown in the Total Polar Materials (TPM) test. Suggestions on relationships between chemical composition and biological activities are presented. Results show that the EOs could be of value in the food industry as alternatives to synthetic antioxidants. PMID:25470273

  17. Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity.

    PubMed

    Niño, Jaime; Mosquera, Oscar M; Correa, Yaned M

    2012-12-01

    On a global scale, people have used plants to treat diseases and infections, and this has raised interest on the plant biodiversity potencial in the search of antimicrobial principles. In this work, 75 crude n-hexanes, dichloromethane and methanol extracts from the aerial parts of 25 plants belonging to four botanical families (Asteraceae, Euphorbiaceae, Rubiaceae and Solanaceae), collected at the Natural Regional Park Ucumari (Risaralda, Colombia), were evaluated for their antibacterial and antifungal activities by the agar well diffusion method. The antibacterial activities were assayed against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis, and three Gram-negative ones named, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. In addition, the same plant extracts were tested against the yeast Candida albicans and the fungi Aspergillus fumigatus and Fusarium solani. Overall, the plant extracts examined displayed better bactericide rather than fungicide activities. In general, the best antibacterial activity was showed by the plant extracts from the Rubiaceae family, followed in order by the extracts from the Euphorbiaceae and Solanaceae ones. It is important to emphasize the great activity displayed by the methanol extract of Alchornea coelophylla (Euphorbiaceae) that inhibited four out of five bacteria tested (B. Subtilis, P. aeruginosa, S. aureus and E. coli). Furthermore, the best Minimal Inhibitory Concentration for the extracts with antifungal activities were displayed by the dichloromethane extracts from Acalypha diversifolia and Euphorbia sp (Euphorbiaceae). The most susceptible fungus evaluated was F. Solani since 60% and 20% of the dichloromethane and methanol extracts evaluated inhibited the growth of this phytopathogenic fungus. The antimicrobial activity of the different plant extracts examined in this work could be related to the secondary metabolites contents and their interaction and susceptibility of pathogenic microorganism evaluated. PMID:23342508

  18. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  19. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  20. Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities.

    PubMed

    Maffioli, Sonia I; Monciardini, Paolo; Catacchio, Bruno; Mazzetti, Carlo; Münch, Daniela; Brunati, Cristina; Sahl, Hans-Georg; Donadio, Stefano

    2015-04-17

    Lantibiotics, an abbreviation for "lanthionine-containing antibiotics", interfere with bacterial metabolism by a mechanism not exploited by the antibiotics currently in clinical use. Thus, they have aroused interest as a source for new therapeutic agents because they can overcome existing resistance mechanisms. Starting from fermentation broth extracts preselected from a high-throughput screening program for discovering cell-wall inhibitors, we isolated a series of related class I lantibiotics produced by different genera of actinomycetes. Analytical techniques together with explorative chemistry have been used to establish their structures: the newly described compounds share a common 24 aa sequence with the previously reported lantibiotic planosporicin (aka 97518), differing at positions 4, 6, and 14. All of these compounds maintain an overall -1 charge at physiological pH. While all of these lantibiotics display modest antibacterial activity, their potency can be substantially modulated by progressively eliminating the negative charges, with the most active compounds carrying basic amide derivatives of the two carboxylates originally present in the natural compounds. Interestingly, both natural and chemically modified lantibiotics target the key biosynthetic intermediate lipid II, but the former compounds do not bind as effectively as the latter in vivo. Remarkably, the basic derivatives display an antibacterial potency and a killing effect similar to those of NAI-107, a distantly related actinomycete-produced class I lantibiotic which lacks altogether carboxyl groups and which is a promising clinical candidate for treating Gram-positive infections caused by multi-drug-resistant pathogens. PMID:25574687

  1. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China.

    PubMed

    Xia, Dao-Zong; Yu, Xin-Fen; Zhu, Zhuo-Ying; Zou, Zhuang-Dan

    2011-12-01

    The total phenolic and flavonoid, antioxidant and antibacterial activities of six Sonchus wild vegetables (Sonchus oleraceus L., Sonchus arvensis L., Sonchus asper (L.) Hill., Sonchus uliginosus M.B., Sonchus brachyotus DC. and Sonchus lingianus Shih) in China were investigated. The results revealed that S. arvensis extract and S. oleraceus extract contained the highest amount of phenolic and flavonoid, respectively. Among the methanol extracts of six Sonchus species, S. arvensis extract exhibited the highest radical (DPPH and ABTS+ scavenging power and lipid peroxidation inhibitory power. It also exhibited the highest reducing power at 500?µg?mL?¹ by A (700)?=?0.80. The results of antibacterial test indicated that the S. oleraceus extract showed higher activity than the other five Sonchus wild vegetables extracts, both in Gram-negative bacteria (Escherichia coli, Salmonella enterica and Vibrio parahaemolyticus) and in a Gram-positive bacterium (Staphylococcus aureus). These results indicate that Sonchus wild food plants might be applicable in natural medicine and healthy food. PMID:21793765

  2. Antibacterial activity against ?- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: fractional Inhibitory Concentration Index (FICI) determination

    PubMed Central

    2012-01-01

    Background The present study reports the antibacterial capacity of alkaloid compounds in combination with Methicillin and Ampicillin-resistants bacteria isolated from clinical samples. The resistance of different bacteria strains to the current antibacterial agents, their toxicity and the cost of the treatment have led to the development of natural products against the bacteria resistant infections when applied in combination with conventional antimicrobial drugs. Method The antibacterial assays in this study were performed by using inhibition zone diameters, MIC, MBC methods, the time-kill assay and the Fractional Inhibitory Concentration Index (FICI) determination. On the whole, fifteen Gram-positive bacterial strains (MRSA/ARSA) were used. Negative control was prepared using discs impregnated with 10 % DMSO in water and commercially available Methicillin and Ampicillin from Alkom Laboratories LTD were used as positive reference standards for all bacterial strains. Results We noticed that the highest activities were founded with the combination of alkaloid compounds and conventional antibiotics against all bacteria strains. Then, results showed that after 7 h exposition there was no viable microorganism in the initial inoculums. Conclusion The results of this study showed that alkaloid compounds in combination with conventional antibiotics (Methicillin, Ampicillin) exhibited antimicrobial effects against microorganisms tested. These results validate the ethno-botanical use of Cienfuegosia digitata Cav. (Malvaceae) in Burkina Faso. Moreover, this study demonstrates the potential of this herbaceous as a source of antibacterial agent that could be effectively used for future health care purposes. PMID:22716026

  3. Terrestrial actinomycetes from diverse locations of Uttarakhnad, India: Isolation and screening for their antibacterial activity

    PubMed Central

    Kumar, Vijay; Bisht, Gajraj Singh; Gusain, Omprakash

    2013-01-01

    Background and Objective Uttarakhand region is less explored, but possess a great biodiversity. This diversity can be explored for isolation and characterization of new actinomycetes strains for seeking antimicrobial molecules. It can therefore be predicted that novel bioactive metabolite producing actinomycetes can be discovered to combat multidrug resistant bacterial pathogens. Materials and Methods Variations in the viable count of actinomycetes were accessed in different altitudes. Actinomycetes were isolated, indentified and screened for their antibacterial activity. Results The highest viable counts of actinomycetes were recorded in valleys followed by mid hills and high hills. A total of 512 actinomycetes were isolated which were found to belong the 14 different genera of actinomycetes. Mainly the genus Streptomyces was dominant in all the soil samples. Out of 512 isolates recovered, 23.44% exhibited antibacterial activity against one or more tested bacterial pathogens. Of these 56.67% showed activity against Gram-positive bacteria, 26.67% against Gram-negative bacteria while 16.67% showed broad spectrum activity. Isolate DV1S and GR9a-5 showed highest antibacterial properties against several multi-drug resistant bacterial pathogens and were identified using polyphasic approach. DV1S and GR9a-5 were found to be most closely related with S. massasporeus NBRC 12796T and Nocardia nova JCM 6044T respectively. Conclusion The results of this study strongly support the idea that the viable count of actinomycetes varied greatly with altitude. The actinomycetes species isolated from valleys, mid hills and high hills possess significant capacity to produce compounds which are active against several drug resistant bacterial pathogens. PMID:24475340

  4. Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon.

    PubMed

    Teli, M D; Sheikh, Javed

    2012-06-01

    Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes. PMID:22522048

  5. Type IV Pili in Gram-Positive Bacteria

    PubMed Central

    Craig, Lisa

    2013-01-01

    SUMMARY Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species. PMID:24006467

  6. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity.

    PubMed

    Aramwit, Pornanong; Bang, Nipaporn; Ratanavaraporn, Juthamas; Ekgasit, Sanong

    2014-01-01

    In this study, a 'green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO- and NH2?+ groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications. PMID:24533676

  7. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    PubMed Central

    2014-01-01

    In this study, a ‘green chemistry’ approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO? and NH2?+ groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications. PMID:24533676

  8. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88?mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  9. Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh.

    PubMed

    Diao, Wen-Rui; Zhang, Liang-Liang; Feng, Sai-Sai; Xu, Jian-Guo

    2014-10-01

    Amomum kravanh is widely cultivated and used as a culinary spice. In this work, the chemical composition of the essential oil obtained by hydrodistillation of A. kravanh fruits was analyzed by gas chromatography-mass spectrometry, and 34 components were identified. 1,8-Cineole (68.42%) was found to be the major component, followed by ?-pinene (5.71%), ?-terpinene (2.63%), and ?-pinene (2.41%). The results of antibacterial tests showed that the sensitivities to the essential oil of different foodborne pathogens tested were different based on the Oxford cup method, MIC, and MBC assays, and the essential oil exhibited the best antibacterial activity against Bacillus subtilis, a gram-positive bacterium, and Escherichia coli, a gram-negative bacterium. Growth in the presence of Amomum kravanh at the MIC, as measured by monitoring optical density over time, demonstrated that the essential oil was bacteriostatic after 12 h to both B. subtilis and E. coli. Observations of cell membrane permeability, cell constituent release assay, and transmission electron microscopy indicated that this essential oil may disrupt the cell wall and cell membrane permeability, leading to leakage of intracellular constituents in both B. subtilis and E. coli. PMID:25285491

  10. Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss

    PubMed Central

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88?mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50?mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  11. Glucosamine sulfate--environmental antibacterial activity.

    PubMed

    Rozin, Alexander P

    2009-10-01

    We have recently showed antibacterial activity against E. coli in vitro of a trademark Mega-Gluflex-containing glucosamine sulfate (GS) and chondroitin sulfate (CS). The purpose of this study was to examine the antibacterial activity of GS as a new trademark Arthryl (Manufacturer Rottapharm Ltd, Ireland; Distributor in Israel Rafa Laboratories Ltd) in vitro. We used cabbage and chicken broths and milk (every media of 20 ml) left opened for 1 week with and without Arthryl supplements 1,500 mg, the content of one package of the medication. A similar volume (20 ml) is ingested in taking the medication. Experiments with three repeatable results were taken for consideration. Arthryl inhibited environmental bacterial colonies' growth in every media but fungi growth was not impaired. Milk stayed liquid for the whole week with supplement of the Arthryl compared with sour milk transformation without Arthryl. Sample B showed inhibitory properties of the bacterial colonies on the fungi growth. The sample with Arthryl showed progressive growth of fungi without bacterial growth after 10 days of follow up compared with bacterial growth on media without Arthryl. Glucosamine sulfate as a new trademark Arthryl has environmental antibacterial properties but does not inhibit growth of fungal colonies. PMID:19495827

  12. Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect.

    PubMed

    Yu, Lan-ping; Sun, Bo-guang; Li, Jun; Sun, Li

    2013-01-01

    Lysozyme is a key component of the innate immune system and plays an important role in antibacterial infection. In this study, we analyzed the expression and activity of a chicken-type (c-type) lysozyme (named SmLysC) from turbot (Scophthalmus maximus). SmLysC is composed of 143 residues and shares 67-90% overall sequence identities with the c-type lysozymes of a number of teleost fish. SmLysC possesses a typical c-type lysozyme domain, which contains the conserved residues E50 and D67 that form the putative catalytic site. SmLysC expression was detected, in increasing order, in head kidney, gill, heart, muscle, brain, spleen, blood, and liver. Bacterial infection caused significant inductions of SmLysC expression in head kidney, spleen, and liver in a time-dependent manner. Immunoblot analysis indicated that SmLysC has a subcellular localization in the extracellular milieu. Recombinant SmLysC (rSmLysC) was able to bind to bacterial cells and inhibit bacterial growth. Enzyme assay showed that the optimal temperature and pH of rSmLysC were 37 °C and pH 6.0 respectively. In contrast to rSmLysC, the mutant protein rSmLysCM1, which bears alanine substitutions at E50 and D67, displayed drastically reduced bacteriolytic activity. rSmLysC was able to inhibit the growth of several fish bacterial pathogens in a manner that depended on the dose of the protein; however, Gram-positive bacteria were in general more sensitive to rSmLysC than Gram-negative bacteria. Together these results indicate that SmLysC is a functional lysozyme that is likely to participate in innate immune defense against extracellular bacterial pathogens, in particular those of Gram-positive nature. PMID:23063540

  13. Chemical composition and in vitro antioxidant and antibacterial activity of Heracleum transcaucasicum and Heracleum anisactis roots essential oil

    PubMed Central

    Torbati, Mohammadali; Nazemiyeh, Hossein; Lotfipour, Farzaneh; Nemati, Mahboob; Asnaashari, Solmaz; Fathiazad, Fatemeh

    2014-01-01

    Introduction: In vitro antioxidant and antibacterial activity and volatile compositions of two Heracleum species (Apiaceae) including Heracleum transcaucasicum and Heracleum anisactis roots Essential Oil (EO) were investigated. Methods: The volatile compositions of EOs were analyzed by GC/Mass spectroscopy. To detect the antioxidant activity of essential oils TLC-bioautography and DPPH radical scavenging assay by spectrophotometry was performed. Additionally, the antibacterial activity of two essential oils were studied and compared against four pathogenic bacteria by agar disc diffusion method and MIC values of the EOs were determined using the broth dilution method. Results: Myristicin was the dominant component in both EOs. It was identified as 96.87% and 95.15% of the essential oil composition of H. transcaucasicum and H. anisactis roots, respectively. The TLC-bioautography showed antioxidant spots in both EOs and IC50 of H. anisactis and H. transcaucasicum EO was found to be 54 ?g × ml (-1) and 77 ?g × ml (-1), respectively. Regarding the antimicrobial assay, H. anisactis EO exhibited weak to moderate antibacterial activity against gram-positive bacteria and also Escherichia coli, whereas the essential oil from H. transcaucasicum was inactive. Conclusion: Based on the results from this study, both tested EOs mainly consist of myristicin. Despite the presence of myristicin with known antibacterial property, the EO from H. transcacausicum showed no antibacterial activity. Thus it is supposed that the biological activity of plants is remarkably linked to the extracts’ chemical profile and intercomponents’ synergistic or antagonistic effect could play a crucial role in bioactivity of EOs and other plant extracts. PMID:25035849

  14. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity.

    PubMed

    Díaz-Roa, Andrea; Gaona, María A; Segura, Nydia A; Suárez, Diana; Patarroyo, Manuel A; Bello, Felio J

    2014-08-01

    The most important mechanism for combating infection using larval therapy depends on larval excretions and secretions (ES). The present work was aimed at evaluating Sarconesiopsis magellanica (Diptera: Calliphoridae) ES antibacterial activity in six bacterial strains (three Gram-positive and three Gram-negative) and comparing this to the effect of Lucilia sericata-derived ES. Antibacterial activity at 50?g/mL minimum inhibitory concentration (MIC) was observed for Staphylococcus epidermidis ATCC-12228 and Staphylococcus aureus ATCC-29213 strains, when the turbidimetry test involving S. magellanica ES was used; the rest of the bacterial strains (Staphylococcus aureus ATCC-6538, Pseudomonas aeruginosa ATCC-10145, Pseudomonas aeruginosa ATCC-9027 and Pseudomonas aeruginosa ATCC-27853) were inhibited at a 100?g/mL MIC. Twice the amount was required to inhibit the aforementioned bacteria with L. sericata-derived ES using this same technique; a similar trend was observed when the agar diffusion method was used instead. Furthermore, when the previously established MIC for each bacterial strain was used, their colonies became reduced following 1-6h incubation with S. magellanica derived ES, whilst the reduction occurred from 2 to 6hours with those from L. sericata. Although the MIC for each strain obtained with ciprofloxacin was lower than those established when using either blowfly derived-ES, the gradual reduction of the colonies occurred at a longer incubation time (6h or more). The results showed that S. magellanica ES antibacterial activity was more potent and effective, compared to that of L. sericata-derived ES. PMID:24754920

  15. In Vitro Antibacterial Activity of Galls of Quercus infectoria Olivier against Oral Pathogens

    PubMed Central

    Basri, Dayang Fredalina; Tan, Liy Si; Shafiei, Zaleha; Zin, Noraziah Mohamad

    2012-01-01

    The galls of Quercus infectoria are commonly used in Malay traditional medicine to treat wound infections after childbirth. In India, they are employed traditionally as dental applications such as that in treatment of toothache and gingivitis. The aim of the present study was to evaluate the antibacterial activity of galls of Quercus infectoria Olivier against oral bacteria which are known to cause dental caries and periodontitis. Methanol and acetone extracts were screened against two Gram-positive bacteria (Streptococcus mutans ATCC 25175 and Streptococcus salivarius ATCC 13419) and two Gram-negative bacteria (Porphyromonas gingivalis ATCC 33277 and Fusobacterium nucleatum ATCC 25586). The screening test of antibacterial activity was performed using agar-well diffusion method. Subsequently, minimum inhibitory concentration (MIC) was determined by using twofold serial microdilution method at a concentration ranging between 0.01?mg/mL and 5?mg/mL. Minimum bactericidal concentration (MBC) was obtained by subculturing microtiter wells which showed no changes in colour of the indicator after incubation. Both extracts showed inhibition zones which did not differ significantly (P < 0.05) against each tested bacteria. Among all tested bacteria, S. salivarius was the most susceptible. The MIC ranges for methanol and acetone extracts were the same, between 0.16 and 0.63?mg/mL. The MBC value, for methanol and acetone extracts, was in the ranges 0.31–1.25?mg/mL and 0.31–2.50?mg/mL, respectively. Both extracts of Q. infectoria galls exhibited similar antibacterial activity against oral pathogens. Thus, the galls may be considered as effective phytotherapeutic agents for the prevention of oral pathogens. PMID:22203875

  16. Antibacterial Activity of Murrayaquinone A and 6-Methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione

    PubMed Central

    Chakraborty, Biswanath; Chakraborty, Suchandra; Saha, Chandan

    2014-01-01

    The antibacterial activity of Murrayaquinone A (10), a naturally occurring carbazoloquinone alkaloid, and 6-methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione (11), a synthetic carbazoloquinone, both obtained during the development of the synthesis of Carbazomycin G, having unique quinone moiety, was studied against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas sp.) bacteria. Compound 10 showed antibacterial activities against both of Escherichia coli and Staphylococcus aureus whereas compound 11 indicated the activity against Staphylococcus aureus only. Both compounds 10 and 11 exhibited minimum inhibitory concentration (MIC) of 50??g?mL?1 against Staphylococcus aureus. PMID:24963299

  17. Antibacterial Activities and In Vitro Anti-Inflammatory (Membrane Stability) Properties of Methanolic Extracts of Gardenia coronaria Leaves

    PubMed Central

    Jainul, Mohammed Abdullah; Faruq, Kazi Omar; Islam, Atiqul

    2014-01-01

    This work is carried out with Gardenia coronaria leaves that belong to the family Rubiaceae, which is a small-to-medium-sized but tall, deciduous tree, 7.6–9?m high on an average. Leaves are used for the treatment of rheumatic pain and bronchitis. The leaf of the plant consists of coronalolide, coronalolic acid, coronalolide methyl ester, ethyl coronalolate acetate triterpenes (secocycloartanes), and so forth. Methanol extract from the leaves of Gardenia coronaria was completely screened for membrane stability and antibacterial activity. The lower concentrations of Methanolic leaf extract of Gardenia coronaria gave good antimicrobial and anti-inflammatory activity, but higher concentrations gave relatively more projecting antibacterial activity in vitro as compared with Kanamycin. The crude drug's anti-inflammatory effects were compared with those of Aspirin as positive control. The Methanolic extracts of Gardenia coronaria leaves possessed a broad spectrum antibacterial activity against a variety of both Gram-negative and Gram-positive organisms like Streptococcus agalactiae, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Shigella sonnei, Shigella boydii, and Proteus mirabilis, with a zone of inhibition from 10 to 16?mm. The extract also showed good membrane stability to be considered as having significant anti-inflammatory action. PMID:24695677

  18. Antibacterial activity of dentinal bonding agents.

    PubMed

    Emilson, C G; Bergenholtz, G

    1993-07-01

    The susceptibility of five bacterial species to seven dentinal bonding agents was examined in vitro. Agar diffusion tests using filterpaper disks containing 10 microL each of conditioner, primer, or resin were performed on blood agar and mitis salivarius bacitracin agar. Chlorhexidine (0.2%) was used as a positive control. After incubation, zones of inhibited bacterial growth were measured. Of all the compounds tested, Gluma cleanser and Gluma etchant showed the strongest growth inhibition for all bacterial strains. No antibacterial effect was noted for Prisma Universal Bond 2 and Superlux Universal Bond 2 systems. The primers of Gluma, Denthesive, and Scotchbond 2 displayed antibacterial activity that, in some cases, was comparable to that of 0.2% chlorhexidine. Zones of inhibition were seen for the resin materials of Scotchbond 2 and Tripton with Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus. No inhibition was seen after these resins were cured, whereas the antibacterial effect of XR-Bond on S sanguis and A viscosus was not affected by light curing. PMID:8210322

  19. In vitro screening of Circium arvense for potential antibacterial and antifungal activities.

    PubMed

    Khan, Arifullah; Amin, Adnan; Khan, Muhammad Ayaz; Ali, Irshad

    2011-10-01

    The antimicrobial activities of Circium arvense extracts were evaluated against two human gram positive (Staphylococcus aureus, Micrococcus luteus) and four gram negative pathogen (Escherichia coli, pseudomonas aeruginosa, Enterobacter, Klebsiella pneumoniae). The Methanol extracts of Circium arvense were used to obtain various fractions (X1) n-hexane, (X2) chloroform, (X3) ethyl acetate and (X4) n-butanol. The agar well diffusion assay and agar dilution susceptibility testing were carried out to determine the zone of inhibitions and the minimum inhibitory concentration respectively. Antifungal activity was employed by agar well diffusion method. The Ampicilline, Ofloxacine and Itraconazole were used as standard agents. Almost all fractions exhibited more or less antimicrobial activity. The X2 (Chloroform) fraction was reported as highly active fraction with good antimicrobial activity MIC 0.312 mg/ml against staphylococcus areous. The MBC values of fraction X2 (chloroform) was 2 times the MIC. Similarly all fractions exhibited good inhibitory activities against Aspergillus niger. The fraction X1(n-hexane) was found highly active 6(±0.11), followed by X2 (chloroform) fraction 5 (±0.17). Present study provides a base to explore the antimicrobial potential of Circium arvense. It is concluded that the Circium arvense having potential antibacterial and antifungal activities, irrespective of fact that the MIC values reported were high. Further investigations are recommended to exploit the hidden medicinal value of plant. PMID:21959814

  20. Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: Characterization and expression pattern

    Microsoft Academic Search

    Pikul Jiravanichpaisal; So Young Lee; Young-A Kim; Tove Andrén; Irene Söderhäll

    2007-01-01

    A 14 amino acid residues proline\\/arginine-rich antibacterial peptide designated as astacidin 2 was purified and characterized from hemocytes of the freshwater crayfish, Pacifastacus leniusculus. Astacidin 2 has a broad range of antibacterial activity against both Gram-positive and Gram-negative bacteria. The primary sequence of astacidin 2 is RPRPNYRPRPIYRP with an amidated C-terminal and the molecular mass is 1838Da determined by mass

  1. Essential oils: their antibacterial properties and potential applications in foods—a review

    Microsoft Academic Search

    Sara Burt

    2004-01-01

    In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 ?l ml?1. Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde

  2. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity.

    PubMed

    Okafor, Florence; Janen, Afef; Kukhtareva, Tatiana; Edwards, Vernessa; Curley, Michael

    2013-10-01

    Our research focused on the production, characterization and application of silver nanoparticles (AgNPs), which can be utilized in biomedical research and environmental cleaning applications. We used an environmentally friendly extracellular biosynthetic technique for the production of the AgNPs. The reducing agents used to produce the nanoparticles were from aqueous extracts made from the leaves of various plants. Synthesis of colloidal AgNPs was monitored by UV-Visible spectroscopy. The UV-Visible spectrum showed a peak between 417 and 425 nm corresponding to the Plasmon absorbance of the AgNPs. The characterization of the AgNPs such as their size and shape was performed by Atom Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques which indicated a size range of 3 to 15 nm. The anti-bacterial activity of AgNPs was investigated at concentrations between 2 and 15 ppm for Gram-negative and Gram-positive bacteria. Staphylococcus aureus and Kocuria rhizophila, Bacillus thuringiensis (Gram-positive organisms); Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium (Gram-negative organisms) were exposed to AgNPs using Bioscreen C. The results indicated that AgNPs at a concentration of 2 and 4 ppm, inhibited bacterial growth. Preliminary evaluation of cytotoxicity of biosynthesized silver nanoparticles was accomplished using the InQ™ Cell Research System instrument with HEK 293 cells. This investigation demonstrated that silver nanoparticles with a concentration of 2 ppm and 4 ppm were not toxic for human healthy cells, but inhibit bacterial growth. PMID:24157517

  3. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity

    PubMed Central

    Okafor, Florence; Janen, Afef; Kukhtareva, Tatiana; Edwards, Vernessa; Curley, Michael

    2013-01-01

    Our research focused on the production, characterization and application of silver nanoparticles (AgNPs), which can be utilized in biomedical research and environmental cleaning applications. We used an environmentally friendly extracellular biosynthetic technique for the production of the AgNPs. The reducing agents used to produce the nanoparticles were from aqueous extracts made from the leaves of various plants. Synthesis of colloidal AgNPs was monitored by UV-Visible spectroscopy. The UV-Visible spectrum showed a peak between 417 and 425 nm corresponding to the Plasmon absorbance of the AgNPs. The characterization of the AgNPs such as their size and shape was performed by Atom Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques which indicated a size range of 3 to 15 nm. The anti-bacterial activity of AgNPs was investigated at concentrations between 2 and 15 ppm for Gram-negative and Gram-positive bacteria. Staphylococcus aureus and Kocuria rhizophila, Bacillus thuringiensis (Gram-positive organisms); Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium (Gram-negative organisms) were exposed to AgNPs using Bioscreen C. The results indicated that AgNPs at a concentration of 2 and 4 ppm, inhibited bacterial growth. Preliminary evaluation of cytotoxicity of biosynthesized silver nanoparticles was accomplished using the InQ™ Cell Research System instrument with HEK 293 cells. This investigation demonstrated that silver nanoparticles with a concentration of 2 ppm and 4 ppm were not toxic for human healthy cells, but inhibit bacterial growth. PMID:24157517

  4. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles.

    PubMed

    Padmos, J Daniel; Boudreau, Robert T M; Weaver, Donald F; Zhang, Peng

    2015-03-31

    Silver nanoparticles (Ag NPs) have attracted much attention in the past decade because of their unique physicochemical properties and notable antibacterial activities. In particular, thiol-protected Ag NPs have come to the forefront of metal nanoparticle studies, as they have been shown to possess high stability and interesting structure-property relationships. However, a clear correlation between thiol-protecting ligands, the resulting Ag NP surface structure, and their antibacterial properties has yet to be determined. Here, a multielement (Ag and S), multi-edge (Ag K-edge, Ag L3-edge, S K-edge) X-ray absorption spectroscopy (XAS) methodology was used to identify the structure and composition of Ag NPs protected with cysteine. XAS characterization was carried out on similar-sized Ag NPs protected with poly(vinylpyrrolidone) (PVP), in order to provide a valid comparison of the ligand effect on surface structure. The PVP-Ag NPs showed a metallic Ag surface and composition, consistent with metal NPs protected by weak protecting ligands. On the other hand, the Cys-Ag NPs exhibited a distinct surface shell of silver sulfide, which is remarkably different than previously studied Cys-Ag NPs. The minimum inhibitory concentration (MIC) of both types of Ag NPs against Gram-positive (+) and Gram-negative (-) bacteria were tested, including Staphylococcus aureus (+), Escherichia coli (-), and Pseudomonas aeruginosa (-). It was found that the MICs of the Cys-Ag NPs were significantly lower than the PVP-Ag NPs for each bacteria, implicating the influence of the sulfidized surface structure. Overall, this work shows the effect of ligand on the surface structure of Ag NPs, as well as the importance of surface structure in controlling antibacterial activity. PMID:25773131

  5. Characterization of the antibacterial activity and the chemical components of the volatile oil of the leaves of Rubus parvifolius L.

    PubMed

    Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong

    2012-01-01

    Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity. PMID:22732887

  6. Fibrinogen-binding proteins of Gram-positive bacteria.

    PubMed

    Rivera, Jose; Vannakambadi, Ganesh; Höök, Magnus; Speziale, Pietro

    2007-09-01

    Fibrinogen (Fg), the major clotting protein in blood plasma, plays key roles in blood coagulation and thrombosis. In addition, this 340 kD glycoprotein is a stress inducible protein; its synthesis is dramatically upregulated during inflammation or under exposure to stress such systemic infections. This regulation of Fg expression indicates that Fg also participates in the host defense system against infections. In fact, a number of reported studies have demonstrated the involvement of both the intrinsic and extrinsic pathways of coagulation; the thrombotic and the fibrinolytic systems in the pathophysiology of infectious diseases. It is, therefore, perhaps not surprising that many pathogenic bacteria can interact with Fg and manipulate its biology. This review focuses on the major Fg-binding proteins (Fgbps) from Gram-positive bacteria with an emphasis on those that are known to have an effect on coagulation and thrombosis. PMID:17849038

  7. In Vitro Activity of Ceftaroline-Avibactam against Gram-Negative and Gram-Positive Pathogens Isolated from Patients in Canadian Hospitals from 2010 to 2012: Results from the CANWARD Surveillance Study

    PubMed Central

    Adam, Heather J.; Baxter, Melanie R.; Lagacé-Wiens, Philippe R. S.; Walkty, Andrew J.; Hoban, Daryl J.; Zhanel, George G.

    2013-01-01

    The in vitro activities of ceftaroline-avibactam, ceftaroline, and comparative agents were determined for a collection of bacterial pathogens frequently isolated from patients seeking care at 15 Canadian hospitals from January 2010 to December 2012. In total, 9,758 isolates were tested by using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method (document M07-A9, 2012), with MICs interpreted by using CLSI breakpoints (document M100-S23, 2013). Ceftaroline-avibactam demonstrated potent activity (MIC90, ?0.5 ?g/ml) against Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, Enterobacter cloacae, Enterobacter aerogenes, Serratia marcescens, Morganella morganii, Citrobacter freundii, and Haemophilus influenzae; >99% of isolates of E. coli, K. pneumoniae, K. oxytoca, P. mirabilis, M. morganii, C. freundii, and H. influenzae were susceptible to ceftaroline-avibactam according to CLSI MIC interpretative criteria for ceftaroline. Ceftaroline was less active than ceftaroline-avibactam against all species of Enterobacteriaceae tested, with rates of susceptibility ranging from 93.9% (P. mirabilis) to 54.0% (S. marcescens). All isolates of methicillin-susceptible Staphylococcus aureus (MIC90, 0.25 ?g/ml) and 99.6% of methicillin-resistant S. aureus isolates (MIC90, 1 ?g/ml) were susceptible to ceftaroline; the addition of avibactam to ceftaroline did not alter its activity against staphylococci or streptococci. All isolates of Streptococcus pneumoniae (MIC90, 0.03 ?g/ml), Streptococcus pyogenes (MIC90, ?0.03 ?g/ml), and Streptococcus agalactiae (MIC90, 0.015 ?g/ml) tested were susceptible to ceftaroline. We conclude that combining avibactam with ceftaroline expanded its spectrum of activity to include most isolates of Enterobacteriaceae resistant to third-generation cephalosporins, including extended-spectrum ?-lactamase (ESBL)- and AmpC-producing E. coli and ESBL-producing K. pneumoniae, while maintaining potent activity against staphylococci and streptococci. PMID:23979759

  8. Injectable bioadhesive hydrogels with innate antibacterial properties

    NASA Astrophysics Data System (ADS)

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-06-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde and branched polyethylenimine. These adhesives kill both Gram-negative and Gram-positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5?wt% oxidized dextran and 6.9?wt% polyethylenimine sets within seconds forming a mechanically rigid (~\

  9. Screening seeds of Scottish plants for antibacterial activity

    Microsoft Academic Search

    Yashodharan Kumarasamy; Philip John Cox; Marcel Jaspars; Lutfun Nahar; Satyajit Dey Sarker

    2002-01-01

    Based on ethnopharmacological and taxonomic information, seeds of 21 Scottish plant species from 14 different families were obtained from authentic seed suppliers. Their n-hexane, dichloromethane and methanol extracts were assessed for antibacterial activity against 11 pathogenic bacterial species. Methanol extracts of 11 plant species showed significant antibacterial activity. Malva moschata and Prunus padus were active against five bacterial species, Reseda

  10. Antibacterial Activity of Leptadenia reticulata (Retz.) Wight. & Arn. (Asclepidaceae).

    PubMed

    Kalidass, C; Glory, M; Borgio, Francis; Manickam, V S

    2009-04-01

    Leptadenia reticulata of Asclepidaceae family is a shrub, originally property of Petroleum ether, Alcohol & Chloroform extract of L. reticulata. The antimicrobial testing was carried out by "Disc diffusion method". Amongst the tested three extracts, chloroform extract showed high antimicrobial activity against E. coli, alcoholic extract showed high antibacterial activity against Pseudomonas aeruginosa, while Petroleum ether extract showed antibacterial activity against Klebsilla pneumonae. PMID:22557325

  11. Antibacterial Activity of Leptadenia reticulata (Retz.) Wight. & Arn. (Asclepidaceae)

    PubMed Central

    Kalidass, C.; Glory, M.; Borgio, Francis; Manickam, V S

    2009-01-01

    Leptadenia reticulata of Asclepidaceae family is a shrub, originally property of Petroleum ether, Alcohol & Chloroform extract of L. reticulata. The antimicrobial testing was carried out by “Disc diffusion method”. Amongst the tested three extracts, chloroform extract showed high antimicrobial activity against E. coli, alcoholic extract showed high antibacterial activity against Pseudomonas aeruginosa, while Petroleum ether extract showed antibacterial activity against Klebsilla pneumonae PMID:22557325

  12. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel.

    PubMed

    Zhang, Dan; Ren, Ling; Zhang, Yang; Xue, Nan; Yang, Ke; Zhong, Ming

    2013-05-01

    To evaluate the possibility of an alternative to the traditional orthodontic stainless steel implants, the antibacterial activity against Porphyromonas gingivalis (P. gingivalis) and the related cytotoxicity of a type 304 Cu bearing antibacterial stainless steel were studied. The results indicated that the antibacterial stainless steel showed excellent antibacterial property against P. gingivalis, compared with the control steel (a purchased medical grade 304 stainless steel). Compared to the control steel, there were fewer bacteria on the surface of the antibacterial stainless steel, with significant difference in morphology. The cytotoxicities of the antibacterial stainless steel to both MG-63 and KB cells were all grade 1, the same as those of the control steel. There were no significant differences in the apoptosis rates on MG-63 and KB cells between the antibacterial stainless steel and the control steel. This study demonstrates that the antibacterial stainless steel is possible to reduce the incidence of implant-related infections and can be a more suitable material for the micro-implant than the conventional stainless steel in orthodontic treatment. PMID:23352947

  13. Synthesis, characterization and magnetic properties of hematite (?-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Rafi, M. Mohamed; Ahmed, K. Syed Zameer; Nazeer, K. Prem; Siva Kumar, D.; Thamilselvan, M.

    2015-04-01

    The present study is to synthesize iron oxide nanoparticles on different polysaccharide templates calcined at controlled temperature, characterizing them for spectroscopic and magnetic studies leading to evaluate their antibacterial property. The synthesized iron oxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer. The iron oxide nanoparticles were tested for antibacterial activity against gram-positive and gram-negative bacterial species. The XRD confirms the crystalline nature of iron oxide nanoparticles with the mean crystallite size of 10 nm. The functional groups of the synthesized iron oxide nanoparticles were 547, 543 and 544 cm-1 characterizing the Fe-O and the broad bands at 3,398, 3,439 and 3,427 cm-1 were attributed to the stretching vibrations of hydroxyl group absorbed by iron oxide nanoparticles. HRTEM analyses revealed that the average particle size of the hematite nanoparticles are about 85, 92 and 77 nm for AF, DF and GF, respectively, which was a coincident with the results obtained from the HRSEM analysis. Magnetic measurement exhibited ferromagnetic behavior of the ?-Fe2O3 at the room temperature with higher coercivity of H C = 2,303, 2,333 and 1,019 Oe for AF, DF and GF, respectively. Antibacterial test showed the inhibition against Aeromonas hydrophila and Escherichia coli with significant antagonistic activity.

  14. Synthesis and Antibacterial Activity of Novel 4-Bromo-1H-Indazole Derivatives as FtsZ Inhibitors.

    PubMed

    Wang, Yi; Yan, Mi; Ma, Ruixin; Ma, Shutao

    2015-04-01

    A series of novel 4-bromo-1H-indazole derivatives as filamentous temperature-sensitive protein Z (FtsZ) inhibitors were designed, synthesized, and assayed for their in vitro antibacterial activity against various phenotypes of Gram-positive and Gram-negative bacteria and their cell division inhibitory activity. The results indicated that this series showed better antibacterial activity against Staphylococcus epidermidis and penicillin-susceptible Streptococcus pyogenes than the other tested strains. Among them, compounds 12 and 18 exhibited 256-fold and 256-fold more potent activity than 3-methoxybenzamide (3-MBA) against penicillin-resistant Staphylococcus aureus, and compound 18 showed 64-fold better activity than 3-MBA but 4-fold weaker activity than ciprofloxacin in the inhibition of S. aureus ATCC29213. Particularly, compound 9 presented the best activity (4?µg/mL) against S. pyogenes PS, being 32-fold, 32-fold, and 2-fold more active than 3-MBA, curcumin, and ciprofloxacin, respectively, but it was four times less active than oxacillin sodium. In addition, some synthesized compounds displayed moderate inhibition of cell division against S. aureus ATCC25923, Escherichia coli ATCC25922, and Pseudomonas aeruginosa ATCC27853, sharing a minimum cell division concentration of 128?µg/mL. PMID:25773717

  15. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr.

    PubMed Central

    Reizer, J; Sutrina, S L; Saier, M H; Stewart, G C; Peterkofsky, A; Reddy, P

    1989-01-01

    The bacterial phosphotransferase system (PTS) catalyzes the transport and phosphorylation of its sugar substrates. The protein-kinase-catalyzed phosphorylation of serine 46 in the phosphocarrier protein, HPr, inhibits PTS activity, but neither the mechanism of this inhibition nor its physiological significance is known. Site-specific HPr mutants were constructed in which serine 46 was replaced by alanine (S46A), threonine (S46T), tyrosine (S46Y) or aspartate (S46D). The purified S46D protein exhibited markedly lower Vmax and higher Km values than the wild-type, S46T or S46A protein for the phosphoryl transfer reactions involving HPr(His approximately P). Interactions of HPr with the enzymes catalyzing phosphoryl transfer to and from HPr regulated the kinase-catalyzed reaction. These results establish the inhibitory effect of a negative charge at position 46 on PTS-mediated phosphoryl transfer and suggest that HPr is phosphorylated on both histidyl and seryl residues by enzymes that recognize its tertiary rather than its primary structure. In vivo studies showed that a negative charge on residue 46 of HPr strongly inhibits PTS-mediated sugar uptake, but that competition of two PTS permeases for HPr(His approximately P) is quantitatively more important to the regulation of PTS function than serine 46 phosphorylation. Images PMID:2507315

  16. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves

    PubMed Central

    Rodrigues, Fabiola F. G.; Oliveira, Liana G. S.; Rodrigues, Fábio F. G.; Saraiva, Manuele E.; Almeida, Sheyla C. X.; Cabral, Mario E. S.; Campos, Adriana R.; Costa, Jose Galberto M.

    2012-01-01

    Background: Cordia verbenacea is a Brazilian coastal shrub popularly known as “erva baleeira”. The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as ?-caryophyllene (25.4%), bicyclogermacrene (11.3%), ?-cadinene (9.%) and ?-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. Materials and Methods: The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 ?g/ml). Results: The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 ?g/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 ?g/ml) in all strains tested. Conclusion: The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens. PMID:22923954

  17. Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway.

    PubMed

    Tadesse, Margey; Gulliksen, Bjørn; Strøm, Morten B; Styrvold, Olaf B; Haug, Tor

    2008-11-01

    Benthic marine invertebrates collected from sub-Arctic regions of northern Norway, were found to be a promising source of novel bioactive compounds against human and fish pathogenic bacteria and fungi. Lyophilized material from seven species of ascidians, six sponges and one soft alcyonid coral were extracted with 60% acidified acetonitrile (ACN). After separation into an ACN-rich phase (ACN-extract) and an aqueous phase, and subsequent solid-phase extraction of the aqueous phase, fractions differing in polarity were obtained and screened for antibacterial and antifungal activities, along with the more lipophilic ACN-extracts. Antimicrobial activity was determined against two gram-negative, two gram-positive bacteria, and two strains of fungi. Notably, all the invertebrate species in the study showed activity against all four strains of bacteria and the two strains of fungi. In general, the aqueous fractions displayed highest antimicrobial activity, and the most potent extracts were obtained from the colonial ascidian Synoicum pulmonaria which displayed activity against bacteria and fungi at a concentration of 0.02 mg/ml; the lowest concentration tested. PMID:18621054

  18. Antibacterial activity of northern Ontario medicinal plant extracts

    E-print Network

    Qin, Wensheng

    Antibacterial activity of northern Ontario medicinal plant extracts Haider M. Hassan1 , Zi. and Qin, W. 2014. Antibacterial activity of northern Ontario medicinal plant extracts. Can. J. Plant Sci strumarium L. medicinal plants was analyzed through the hole-plate diffusion, minimum inhibitory

  19. Screening of some Palestinian medicinal plants for antibacterial activity

    Microsoft Academic Search

    T Essawi; M Srour

    2000-01-01

    Antibacterial activity of organic and aqueous extracts of 15 Palestinian medicinal plants were carried against eight different species of bacteria: Bacillus subtilis, two Escherichia coli species, Staphylococcus aureus (methicillin resistant), two S. aureus (methicillin sensitive) species, Pseudomonas aeruginosa, and Enterococcus fecalis. Of the 15 plants tested, eight showed antibacterial activity. Each plant species has unique against different bacteria. The most

  20. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France.

    PubMed

    Schmidt, Erich; Wanner, Jürgen; Hiiferl, Martina; Jirovetz, Leopold; Buchbauer, Gerhard; Gochev, Velizar; Girova, Tania; Stoyanova, Albena; Geissler, Margit

    2012-08-01

    The essential oils of four chemotypes of Thymus vulgaris L. (Lamiaceae) were analyzed for their composition and antibacterial activity to assess their different properties. GC-MS and GC-FID analyses revealed that the essentials oils can be classified into the chemotypes thymol (41.0% thymol), geraniol (26.4% geraniol), linalool (72.5% linalool) and 4-thujanol/terpinen-4-ol (42.2% cis- and 7.3% trans-sabinene hydrate, 6.5 % terpinen-4-ol). The olfactory examination confirmed the explicit differences between these chemotypes. Furthermore, antibacterial activity was investigated against several strains of two Gram-positive (Brochothrix thermosphacta and Staphylococcus aureus) and four Gram-negative food-borne bacteria (Escherichia coli, Salmonella abony, Pseudomonas aeruginosa and P. fragi). All essential oil samples were demonstrated to be highly effective against Gram-positive strains, whereas the impact on Gram-negative microorganisms was significantly smaller, but still considerable. The results obtained indicate that, despite their different properties, the essential oils of selected T. vulgaris chemotypes are potent antimicrobials to be employed as useful additives in food products as well as for therapeutic applications. PMID:22978238

  1. Antibacterial Activity of Eravacycline (TP-434), a Novel Fluorocycline, against Hospital and Community Pathogens

    PubMed Central

    O'Brien, W.; Fyfe, C.; Grossman, T. H.

    2013-01-01

    Eravacycline (TP-434 or 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline) is a novel fluorocycline that was evaluated for antimicrobial activity against panels of recently isolated aerobic and anaerobic Gram-negative and Gram-positive bacteria. Eravacycline showed potent broad-spectrum activity against 90% of the isolates (MIC90) in each panel at concentrations ranging from ?0.008 to 2 ?g/ml for all species panels except those of Pseudomonas aeruginosa and Burkholderia cenocepacia (MIC90 values of 32 ?g/ml for both organisms). The antibacterial activity of eravacycline was minimally affected by expression of tetracycline-specific efflux and ribosomal protection mechanisms in clinical isolates. Furthermore, eravacycline was active against multidrug-resistant bacteria, including those expressing extended-spectrum ?-lactamases and mechanisms conferring resistance to other classes of antibiotics, including carbapenem resistance. Eravacycline has the potential to be a promising new intravenous (i.v.)/oral antibiotic for the empirical treatment of complicated hospital/health care infections and moderate-to-severe community-acquired infections. PMID:23979750

  2. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes.

    PubMed

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  3. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    PubMed Central

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  4. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria

    PubMed Central

    2010-01-01

    Background The six organic solvent extracts of Artemisia nilagirica were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains. Methods The agar disk diffusion method was used to study the antibacterial activity of A. nilagirica extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 ?g/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in A. nilagirica. Results All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for Klebsiella pneumoniae, Enterococcus faecalis and Staphylococcus aureus. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 ?g/ml and the methanol extract exhibited a higher inhibition activity against Escherichia coli, Yersinia enterocolitica, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa (32 ?g/ml), Bacillus subtilis (64 ?g/ml) and Shigella flaxneri (128 ?g/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids. Conclusion All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the A. nilagirica extracts. Hence, the isolation and purification of therapeutic potential compounds from A. nilagirica could be used as an effective source against bacterial diseases in human and plants. PMID:20109237

  5. Problems associated with the direct viable count procedure applied to gram-positive bacteria.

    PubMed

    Regnault, B; Martin-Delautre, S; Grimont, P A

    2000-04-10

    Despite the numerous advantages of fluorescent in situ hybridization (FISH) for identifying a single bacterial cell with 16S rRNA probes, problems are encountered with starving bacteria in natural samples. The original direct viable count procedure (DVC) includes a revivification step in the presence of an antibiotic inhibiting cell division. Cells elongate and accumulate ribosomes. This results in a natural amplification of 16S rRNA molecules (target of FISH). However, it is limited to gram-negative bacteria which are sensitive to nalidixic acid. The objective of this study was to develop a procedure for estimating the number of metabolically active gram-positive Staphylococcus aureus and Enterococcus faecalis cells by the use of a method which combines the number of substrate-responsive cells and their identification by FISH. It was observed that no single published DVC method could apply to taxonomically different gram-positive bacteria. Since cells were not counted, the revivification step in presence of nalidixic acid will be referred to as revivification without cell division. For each species, different low-nutrient media and complex media, different fluoroquinolones and beta-lactam antibiotics, concentrations of antibiotics, combinations of antibiotics, temperature and time were evaluated using bacteria in different physiological states and in natural samples. Enumeration of bacteria by plate counts and direct FISH were compared. The improved procedure should yield information about the physiological state, the taxonomic identity, and the enumeration of viable gram-positive bacteria. The application of DVC to an entire ecosystem is presently still a challenge. PMID:10791758

  6. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder.

    PubMed

    Zhang, Yatao; Chen, Yifeng; Zhang, Haoqin; Zhang, Bing; Liu, Jindun

    2013-01-01

    Halloysite nanotubes (HNTs), natural nanotube, have been developed as a support for loading of antibacterial agents. Firstly, HNTs were modified by silane coupling agent (KH-792). And then, modified HNTs were immersed in silver nitrate solution and a complex reaction between the two amino groups of KH-792 and silver ions formed, leading to large clusters on the surface of HNTs. Finally, these silver containing clusters were converted into silver nanoparticles (Ag NPs) with about 5nm diameter by reduction process. A new antibacterial agent, Ag NPs/HNTs, was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy-energy dispersive X-ray analysis (STEM-EDX). The antibacterial test indicated that Ag NPs/HNTs showed good antibacterial performance against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). PMID:23123339

  7. Glycopeptide resistance in gram-positive cocci: a review.

    PubMed

    Sujatha, S; Praharaj, Ira

    2012-01-01

    Vancomycin-resistant enterococci (VRE) have emerged as important nosocomial pathogens in the past two decades all over the world and have seriously limited the choices available to clinicians for treating infections caused by these agents. Methicillin-resistant Staphylococcus aureus, perhaps the most notorious among the nosocomial pathogens, was till recently susceptible to vancomycin and the other glycopeptides. Emergence of vancomycin nonsusceptible strains of S. aureus has led to a worrisome scenario where the options available for treating serious infections due to these organisms are very limited and not well evaluated. Vancomycin resistance in clinically significant isolates of coagulase-negative staphylococci is also on the rise in many setups. This paper aims to highlight the genetic basis of vancomycin resistance in Enterococcus species and S. aureus. It also focuses on important considerations in detection of vancomycin resistance in these gram-positive bacteria. The problem of glycopeptide resistance in clinical isolates of coagulase-negative staphylococci and the phenomenon of vancomycin tolerance seen in some strains of Streptococcus pneumoniae has also been discussed. Finally, therapeutic options available and being developed against these pathogens have also found a mention. PMID:22778729

  8. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin

    PubMed Central

    Araújo, Sthéfane G.; Alves, Lucas F.; Pinto, Maria Eduarda A.; Oliveira, Graziela T.; Siqueira, Ezequias P.; Ribeiro, Rosy I. M. A.; Ferreira, Jaqueline M. S.; Lima, Luciana A. R. S.

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  9. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin.

    PubMed

    Araújo, Sthéfane G; Alves, Lucas F; Pinto, Maria Eduarda A; Oliveira, Graziela T; Siqueira, Ezequias P; Ribeiro, Rosy I M A; Ferreira, Jaqueline M S; Lima, Luciana A R S

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  10. Cobra Cytotoxins: Structural Organization and Antibacterial Activity

    PubMed Central

    Dubovskii, P. V.; Utkin, Y. N.

    2014-01-01

    Cardiotoxins (cytotoxins, CT) are ?-structured proteins isolated from the venom of cobra. They consist of 59–61 amino acid residues, whose antiparallel chains form three ‘fingers’. In contrast to neurotoxins with an overall similar fold, CTs are amphiphilic. The amphiphilicity is caused by positively charged lysine and arginine residues flanking the tips of the loops that consist primarily of hydrophobic amino acids. A similar distribution of amino acid residues is typical for linear (without disulfide bonds) cationic cytolytic peptides from the venoms of other snakes and insects. Many of them are now considered to be lead compounds in combatting bacterial infections and cancer. In the present review, we summarize the data on the antibacterial activity of CTs and compare it to the activity of linear peptides. PMID:25349711

  11. Assessment of the in vitro Efficacy of the Novel Antimicrobial Peptide CECT7121 against Human Gram-Positive Bacteria from Serious Infections Refractory to Treatment

    Microsoft Academic Search

    M. D. Sparo; D. G. Jones; S. F. Sánchez Bruni

    2009-01-01

    Background: Resistant Gram-positive bacteria are causing increasing concern in clinical practice. This work investigated theefficacy of AP-CECT7121 (an antimicrobial peptide isolated from an environmental strain of Enterococcus faecalis CECT7121) against various pathogenic Gram-positive bacteria. Methods: Strains were isolated from intensive care unit patients unresponsive to standard antibiotic treatments. Inhibitory activity of AP-CECT7121 was assessed using the agar-well diffusion method. The

  12. Soluble bacterial constituents down-regulate secretion of IL-12 in response to intact Gram-positive bacteria.

    PubMed

    Barkman, Cecilia; Martner, Anna; Hessle, Christina; Wold, Agnes E

    2008-01-01

    Intact Gram-positive bacteria induce production of large amounts of IL-12 from freshly isolated human monocytes. Here the bacterial structures and signalling pathways involved were studied and compared with those leading to IL-6 production, and to IL-12 production in response to LPS after IFN-gamma pre-treatment. Intact bifidobacteria induced massive production of IL-12 (1 ng/ml) and IL-6 (>30 ng/ml) from human PBMC, whereas fragmented bifidobacteria induced IL-6, but no IL-12. IL-12 production induced by intact bifidobacteria was inhibited by pre-treatment with bifidobacterial sonicate, peptidoglycan, muramyl dipeptide, lipoteichoic acid, the soluble TLR2 agonist Pam(3)Cys-SK(4), or anti-TLR2 antibodies. Blocking of phagocytosis by cytochalasin, inhibition of the JNK or NF-kappaB pathways or treatment with Wortmannin also reduced the IL-12 response to intact Gram-positive bacteria. LPS induced moderate levels of IL-12 (0.31 ng/ml), but only from IFN-gamma pre-treated PBMC. This IL-12 production was enhanced by Wortmannin and unaffected by blocking the JNK pathway. Thus, intact Gram-positive bacteria trigger monocyte production of large amounts of IL-12 via a distinct pathway that is turned off by fragmented Gram-positive bacteria. This may be a physiological feedback, since such fragments may signal that further activation of the phagocyte via the IL-12/IFN-gamma loop is unnecessary. PMID:18832044

  13. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities

    PubMed Central

    Ebrahimiasl, Saeideh; Zakaria, Azmi; Kassim, Anuar; Basri, Sri Norleha

    2015-01-01

    An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO–Ppy/CS and ITO–Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs. PMID:25565815

  14. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities.

    PubMed

    Ebrahimiasl, Saeideh; Zakaria, Azmi; Kassim, Anuar; Basri, Sri Norleha

    2015-01-01

    An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO-Ppy/CS and ITO-Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs. PMID:25565815

  15. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2015-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 ?M to 88 ?M. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity.

  16. [Mobilization transfer of the pUB110 plasmid between gram-positive bacteria].

    PubMed

    Kozlova, E V; Aminov, R I; Boronin, A M

    1991-09-01

    The three factor crosses between the donor strain Bacillus subtilis 168 harbouring the plasmid pUB102-4, Bacillus thuringiensis strain carrying the mobilizing plasmid pAM beta 1 and recipient strain Lactobacillus fermenti were conducted in order to elaborate the optimal conditions of the plasmid pUB102-4 mobilization for transfer into gram-positive microorganisms and to elucidate the possible expression of endogluconase genes in a lactobacillus strain. The Lactobacillus fermenti transconjugants carrying the pUB102-4 plasmid were obtained in the three factor reciprocal crosses with the streptococcus recipient strain and Bacillus subtilis recipients. The presence of the plasmids in transconjugants was confirmed by colony hybridization with the [32P]-labelled plasmid DNA and KMC-ase activity in transconjugant cells. The proposed system of crosses using the high copy number plasmid derivatives of pUB110 mobilized with high frequency by the pAM beta 1 plasmid demonstrates the possibility to increase the circle of gram-positive host bacteria avoiding time and labour consuming operations. PMID:1745269

  17. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils.

    PubMed

    Salem, Mohamed Z M; Ashmawy, Nader A; Elansary, Hosam O; El-Settawy, Ahmed A

    2015-04-01

    The chemical composition of the essential oil from the leaves of Eucalyptus camaldulensis, Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala grown in northern Egypt was analysed by using GC-FID and GC-MS techniques. The antibacterial (agar disc diffusion and minimum inhibitory concentration methods) and antioxidant activities (2,2'-diphenypicrylhydrazyl) were examined. The main oils constituents were 1,8-cineole (21.75%), ?-pinene (20.51%) and methyleugenol (6.10%) in E. camaldulensis; spathulenol (37.46%), p-cymene (17.20%) and crypton (8.88%) in E. gomphocephala; spathulenol (18.37%), p-cymene (19.38%) and crypton (16.91%) in E. camaldulensis var. obtusa. The essential oils from the leaves of Eucalyptus spp. exhibited considerable antibacterial activity against Gram-positive and Gram-negative bacteria. The values of total antioxidant activity were 70 ± 3.13%, 50 ± 3.34% and 84 ± 4.64% for E. camaldulensis, E. camaldulensis var. obtusa and E. gomphocephala, respectively. The highest antioxidant activity value of 84 ± 4.64% could be attributed to the high amount of spathulenol (37.46%). PMID:25421867

  18. Essential oil composition and antibacterial activity of Origanum vulgare subsp. glandulosum Desf. at different phenological stages.

    PubMed

    Béjaoui, Afef; Chaabane, Hédia; Jemli, Maroua; Boulila, Abdennacer; Boussaid, Mohamed

    2013-12-01

    Variation in the quantity and quality of the essential oil (EO) of wild population of Origanum vulgare at different phenological stages, including vegetative, late vegetative, and flowering set, is reported. The oils of air-dried samples were obtained by hydrodistillation. The yield of oils (w/w%) at different stages were in the order of late vegetative (2.0%), early vegetative (1.7%), and flowering (0.6%) set. The oils were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). In total, 36, 33, and 16 components were identified and quantified in vegetative, late vegetative, and flowering set, representing 94.47%, 95.91%, and 99.62% of the oil, respectively. Carvacrol was the major compound in all samples. The ranges of major constituents were as follows: carvacrol (61.08-83.37%), p-cymene (3.02-9.87%), and ?-terpinene (4.13-6.34%). Antibacterial activity of the oils was tested against three Gram-positive and two Gram-negative bacteria by the disc diffusion method and determining their diameter of inhibition and the minimum inhibitory concentration (MIC) values. The inhibition zones and MIC values for bacterial strains, which were sensitive to the EO of O. vulgare subsp. glandulosum, were in the range of 9-36 mm and 125-600 ?g/mL, respectively. The oils of various phenological stages showed high activity against all tested bacteria, of which Bacillus subtilis was the most sensitive and resistant strain, respectively. Thus, they represent an inexpensive source of natural antibacterial substances that exhibited potential for use in pathogenic systems. PMID:24320986

  19. Essential Oil Composition and Antibacterial Activity of Origanum vulgare subsp. glandulosum Desf. at Different Phenological Stages

    PubMed Central

    Chaabane, Hédia; Jemli, Maroua; Boulila, Abdennacer; Boussaid, Mohamed

    2013-01-01

    Abstract Variation in the quantity and quality of the essential oil (EO) of wild population of Origanum vulgare at different phenological stages, including vegetative, late vegetative, and flowering set, is reported. The oils of air-dried samples were obtained by hydrodistillation. The yield of oils (w/w%) at different stages were in the order of late vegetative (2.0%), early vegetative (1.7%), and flowering (0.6%) set. The oils were analyzed by gas chromatography (GC) and GC–mass spectrometry (GC-MS). In total, 36, 33, and 16 components were identified and quantified in vegetative, late vegetative, and flowering set, representing 94.47%, 95.91%, and 99.62% of the oil, respectively. Carvacrol was the major compound in all samples. The ranges of major constituents were as follows: carvacrol (61.08–83.37%), p-cymene (3.02–9.87%), and ?-terpinene (4.13–6.34%). Antibacterial activity of the oils was tested against three Gram-positive and two Gram-negative bacteria by the disc diffusion method and determining their diameter of inhibition and the minimum inhibitory concentration (MIC) values. The inhibition zones and MIC values for bacterial strains, which were sensitive to the EO of O. vulgare subsp. glandulosum, were in the range of 9–36?mm and 125–600??g/mL, respectively. The oils of various phenological stages showed high activity against all tested bacteria, of which Bacillus subtilis was the most sensitive and resistant strain, respectively. Thus, they represent an inexpensive source of natural antibacterial substances that exhibited potential for use in pathogenic systems. PMID:24320986

  20. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation

    PubMed Central

    2011-01-01

    Background Thymoquinone is an active principle of Nigella sativa seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections. Methods The antibacterial activity of Thymoquinone (TQ) and its biofilm inhibition potencies were investigated on 11 human pathogenic bacteria. The growth and development of the biofilm were assessed using the crystal violet (CV) and the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. Results TQ exhibited a significant bactericidal activity against the majority of the tested bacteria (MICs values ranged from 8 to 32 ?g/ml) especially Gram positive cocci (Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510). Crystal violet assay demonstrated that the minimum biofilm inhibition concentration (BIC50) was reached with 22 and 60 ?g/ml for Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510 respectively. In addition our data revealed that cells oxidative activity was influenced by TQ supplementation. In the same way, TQ prevented cell adhesion to glass slides surface. Conclusion The ability of TQ to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential. PMID:21489272

  1. Phytochemical constituents and antibacterial activity of some green leafy vegetables

    PubMed Central

    Bhat, Ramesa Shafi; Al-Daihan, Sooad

    2014-01-01

    Objective To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains. Methods Disc diffusion method was used to determine the antibacterial activity, while kanamycin was used as a reference antibiotic. The phytochemical screening of the extracts was performed using standard methods. Results All methanol extracts were found active against all the test bacterial strains. Overall maximum extracts shows antibacterial activity which range from 6 to 15 mm. Proteins and carbohydrates was found in all the green leaves, whereas alkaloid, steroids, saponins, flavonoids, tannins were found in most of the test samples. Conclusions The obtain result suggests that green leafy vegetables have moderate antibacterial activity and contain various pharmacologically active compounds and thus provide the scientific basis for the traditional uses of the studied vegetables in the treatment of bacterial infections. PMID:25182436

  2. Silver(I) complexes of N-methylbenzothiazole-2-thione: Synthesis, structures and antibacterial activity.

    PubMed

    Aslanidis, P; Hatzidimitriou, A G; Andreadou, E G; Pantazaki, A A; Voulgarakis, N

    2015-05-01

    Three silver(I) complexes containing N-methylbenzothiazole-2-thione (mbtt) have been prepared and structurally characterized by X-ray single-crystal analysis. Silver(I) nitrate, and silver(I) triflate react with mbtt to give homoleptic complexes of formula [(mbtt)2Ag(?-mbtt)2Ag(mbtt)2](NO3)2 (1) and [Ag(mbtt)3](CF3SO3) (2) respectively, while silver(I) chloride gives the binuclear halide-bridged [(mbtt)2Ag(?2-Cl)2Ag(mbtt)2] (3). In the binuclear complex 1 the two metal ions, separated by 3.73Å from each other, are doubly bridged by the exocyclic S-atoms of two mbtt ligands, with the tetrahedral environment around each silver ion being completed by the S-atoms of two terminally bonded mbtt units. Compound 2 is mononuclear with the metal ion surrounded by the exocyclic S-atoms of three mbtt ligands in a nearly ideal trigonal planar arrangement. The new complexes showed significant in vitro antibacterial activity against certain Gram-positive and Gram-negative bacterial strains. PMID:25746261

  3. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-01-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  4. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-04-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  5. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Sadeghi, Babak; Rostami, Amir; Momeni, S. S.

    2015-01-01

    In the present work, we describe the synthesis of silver nanoparticles (Ag-NPs) using seed aqueous extract of Pistacia atlantica (PA) and its antibacterial activity. UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDAX) were performed to ascertain the formation of Ag-NPs. It was observed that the growths of Ag-NPs are stopped within 35 min of reaction time. The synthesized Ag-NPs were characterized by a peak at 446 nm in the UV-visible spectrum. XRD confirmed the crystalline nature of the nanoparticles of 27 nm size. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg’s reflections of cubic structure of metallic silver, respectively. The FTIR result clearly showed that the extracts containing OH as a functional group act in capping the nanoparticles synthesis. Antibacterial activities of Ag-NPs were tested against the growth of Gram-positive (S. aureus) using SEM. The inhibition was observed in the Ag-NPs against S. aureus. The results suggest that the synthesized Ag-NPs act as an effective antibacterial agent. It is confirmed that Ag-NPs are capable of rendering high antibacterial efficacy and hence has a great potential in the preparation of used drugs against bacterial diseases. The scanning electron microscopy (SEM), indicated that, the most strains of S. aureus was damaged and extensively disappeared by addition of Ag-NPs. The results confirmed that the (PA) is a very good eco friendly and nontoxic source for the synthesis of Ag-NPs as compared to the conventional chemical/physical methods.

  6. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.

    PubMed

    Sadeghi, Babak; Rostami, Amir; Momeni, S S

    2015-01-01

    In the present work, we describe the synthesis of silver nanoparticles (Ag-NPs) using seed aqueous extract of Pistacia atlantica (PA) and its antibacterial activity. UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDAX) were performed to ascertain the formation of Ag-NPs. It was observed that the growths of Ag-NPs are stopped within 35 min of reaction time. The synthesized Ag-NPs were characterized by a peak at 446 nm in the UV-visible spectrum. XRD confirmed the crystalline nature of the nanoparticles of 27 nm size. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic silver, respectively. The FTIR result clearly showed that the extracts containing OH as a functional group act in capping the nanoparticles synthesis. Antibacterial activities of Ag-NPs were tested against the growth of Gram-positive (S. aureus) using SEM. The inhibition was observed in the Ag-NPs against S. aureus. The results suggest that the synthesized Ag-NPs act as an effective antibacterial agent. It is confirmed that Ag-NPs are capable of rendering high antibacterial efficacy and hence has a great potential in the preparation of used drugs against bacterial diseases. The scanning electron microscopy (SEM), indicated that, the most strains of S. aureus was damaged and extensively disappeared by addition of Ag-NPs. The results confirmed that the (PA) is a very good eco friendly and nontoxic source for the synthesis of Ag-NPs as compared to the conventional chemical/physical methods. PMID:25022505

  7. Synthesis, spectroscopic characterization, structural studies and antibacterial and antitumor activities of diorganotin complexes with 3-methoxysalicylaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Khandani, Marzieh; Sedaghat, Tahereh; Erfani, Nasrollah; Haghshenas, Mohammad Reza; Khavasi, Hamid Reza

    2013-04-01

    Three organotin(IV) complexes, Ph2Sn(mstsc) (1), Me2Sn(mstsc) (2) and Bu2Sn(mstsc) (3), have been synthesized from reaction of R2SnCl2 (R = Ph, Me and Bu) with 3-methoxysalicylaldehyde thiosemicarbazone (H2mstsc). The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C and 119Sn NMR spectroscopy. The structures of 2 and 3 have been also confirmed by X-ray crystallography. On the basis of spectral and structural data thiosemicarbazone acts as a tridentate dianionic ligand and coordinates to tin through phenolic oxygen, the azomethine nitrogen and thiolate sulfur atoms. The metal coordination geometry for 2 and 3 is described as distorted square pyramid and the crystal lattices are stabilized by intermolecular hydrogen bands. On the basis of 119Sn NMR data, coordination number of tin retains five in solution. The in vitro antibacterial activity of ligand and its complexes has been evaluated against one Gram-positive and three Gram-negative bacteria. Complex 2 exhibited good activity along with the standard antibacterial drugs. The in vitro cytotoxicities of the synthesized compounds against Jurkat cells were evaluated by the standard WST-1 assay. The activity decreases in the order 3 > 1 > 2 = H2mstsc.

  8. Synthesis and in vitro antibacterial activity of 7-(3-alkoxyimino-4-methyl-4-methylaminopiperidin-1-yl)-fluoroquinolone derivatives.

    PubMed

    Zhang, Yi-Bin; Feng, Lian-Shun; You, Xue-Fu; Guo, Qiang; Guo, Hui-Yuan; Liu, Ming-Liang

    2010-03-01

    A series of novel 7-(3-alkoxyimino-4-methyl-4-methylaminopiperidin-1-yl)fluoroquinolone derivatives were designed, synthesized, and characterized by 1H-NMR, MS, and HRMS. These fluoroquinolones were evaluated for their in-vitro antibacterial activity against representative Gram-positive and Gram-negative strains. Generally, all of the target compounds have considerable antibacterial activity against the tested forty strains, and exhibit exceptional potency in inhibiting the growth of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) ATCC33591 (MICs: 0.06 to 2 microg/mL). In particular, compounds 14, 19, 28, and 29 are fourfold more potent than ciprofloxacin against MSSA 08-49. Compounds 23, 26, and 27 are twofold more potent than ciprofloxacin against MRSA ATCC33591 and MSSA ATCC29213. In addition, compound 14 exhibits excellent activity (MIC: 0.06 microg/mL) against Acinetobactes calcoaceticus, which is two- to 16-fold more potent than the reference drugs gemifloxacin, levofloxacin, and ciprofloxacin. PMID:20186866

  9. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract.

    PubMed

    Ramesh, P S; Kokila, T; Geetha, D

    2015-05-01

    A green straight forward method of synthesizing silver nanoparticles (AgNPs) in an aqueous medium was designed using Emblica officinalis (EO) fruit extract as stabilizer and reducer. The formation of AgNPs depends on the effect of extract concentration and pH were studied. The AgNPs was synthesized using E.officinalis (fruit extract) and nanoparticles were characterized using UV-Vis spectrophotometer, the presence of biomolecules of E.officinalis capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg's law and confirmed the crystalline nature of silver nanoparticles. From XRD the average size of AgNPs was found to be around 15nm. AFM has proved to be very helpful in the determination and verification of various morphological features and parameters. EO fruit extract mediated AgNPs was synthesized and confirmed through kinetic behavior of nanoparticles. The shape of the bio-synthesized AgNPs was spherical. Potent biomolecules of E.officinalis such as polyphenols, glucose, and fructose was capped with AgNPs which reduces the toxicity. The synthesized AgNPs were tested for its antibacterial activity against the isolates by disc diffusion method. The obtained results confirmed that the E.officinalis fruit extract is a very good bioreductant for the synthesis of AgNPs. It was investigated that the synthesized AgNPs showed inhibition and had significant antibacterial against both gram-positive and gram-negative bacterial strains. PMID:25710891

  10. Molecular characterization of a novel hepcidin (HepcD) from Camelus dromedarius. Synthetic peptide forms exhibit antibacterial activity.

    PubMed

    Boumaiza, Mohamed; Ezzine, Aymen; Jaouen, Maryse; Sari, Marie-Agnes; Marzouki, Mohamed Nejib

    2014-09-01

    Hepcidin is a cysteine-rich peptide widely characterized in immunological processes and antimicrobial activity in several vertebrate species. Obviously, this hormone plays a central role in the regulation of systemic iron homeostasis. However, its role in camelids' immune response and whether it is involved in antibacterial immunity have not yet been proven. In this study, we characterized the Arabian camel hepcidin nucleotide sequence with an open reading frame of 252 bp encoding an 83-amino acid preprohepcidin peptide. Eight cysteine key residues conserved in all mammalian hepcidin sequences were identified. The model structure analysis of hepcidin-25 peptide showed a high homology structure and sequence identity to the human hepcidin. Two different hepcidin-25 analogs manually synthesized by SPPS shared significant cytotoxic capacity toward the Gram-negative bacterium Escherichia coli American Type Culture Collection (ATCC) 8739 as well as the Gram-positive bacteria Bacillus subtilis ATCC 11779 and Staphylococcus aureus ATCC 6538 in vitro. The three disulfide bridges hepcidin analog demonstrated bactericidal activity, against B.?subtilis ATCC 11779 and S.?aureus ATCC 6538 strains, at the concentration of 15 ?M (50 µg/ml) or above at pH 6.2. This result correlates with the revealed structural features suggesting that camel hepcidin is proposed to be involved in antibacterial process of innate immune response. PMID:24895313

  11. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  12. Antibacterial and anti-inflammatory activities of mycelia of a medicinal mushroom from Taiwan, Taiwanofungus salmoneus (higher Basidiomycetes).

    PubMed

    Chiang, Shen-Shih; Wang, Li-Ting; Chen, Shin-Yu; Mau, Jeng-Leun

    2013-01-01

    Taiwanofungus salmoneus (T.T. Chang et W.N. Chou) Sheng H. Wu et al. (shiang-shan-chih), is a medicinal fungus indigenous to Taiwan. The mycelium was prepared from submerged culture and its ethanolic and hot-water extracts were used to study its antibacterial and anti-inflammatory activities. Gram-positive species (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) and gram-negative species (Escherichia coli and Salmonella typhimurium) of bacteria were used. In addition to the inhibitory zone, minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) also were determined. The ethanolic extracts showed higher inhibitory and bactericidal activities (MIC and MBC: 6.25-12.50 mg/ml) than the hot-water extracts (MIC and MBC: 25-50 mg/mL). In the anti-inflammatory test, the extracts were tested on lipopolysaccharide-induced nitric oxide and tumor necrosis factor- ? production in RAW 264.7 cells. The values of the inhibition concentration at 50% of nitric oxide production were 18.2 and 14.2 ?g/mL for the hot-water and ethanolic extracts, respectively. The 50% inhibitory concentration values of tumor necrosis factor- ? production were 4.99 and 7.13 ?g/mL for the hot-water and ethanolic extracts, respectively. On the basis of the results obtained, the mycelia could be used as an antibacterial and anti-inflammatory supplement. PMID:23510283

  13. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.

    PubMed

    Matai, Ishita; Sachdev, Abhay; Dubey, Poornima; Kumar, S Uday; Bhushan, Bharat; Gopinath, P

    2014-03-01

    Emergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. Ag-ZnO nanocomposites of varied molar ratios were synthesized by simple microwave assisted reactions in the absence of surfactants. The crystalline behavior, composition and morphological analysis of the prepared powders were evaluated by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and atomic absorption spectrophotometry (AAS). Particle size measurements were carried out by transmission electron microscopy (TEM). Staphylococcus aureus and recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli were selected as Gram-positive and Gram-negative model systems respectively and the bactericidal activity of Ag-ZnO nanocomposite was studied. The minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the nanocomposite against the model systems were determined by visual turbidity analysis and optical density analysis. Qualitative and quantitative assessments of its antibacterial effects were performed by fluorescent microscopy, fluorescent spectroscopy and Gram staining measurements. Changes in cellular morphology were examined by atomic force microscopy (AFM), FE-SEM and TEM. Finally, on the basis of the present investigation and previously published reports, a plausible antibacterial mechanism of Ag-ZnO nanocomposites was proposed. PMID:24412348

  14. Proteolytically activated anti-bacterial hydrogel microspheres

    PubMed Central

    Buhrman, Jason S.; Cook, Laura C.; Rayahin, Jamie E.; Federle, Michael J.; Gemeinhart, Richard A.

    2013-01-01

    Hydrogels are finding increased clinical utility as advances continue to exploit their favorable material properties. Hydrogels can be adapted for many applications, including surface coatings and drug delivery. Anti-infectious surfaces and delivery systems that actively destroy invading organisms are alternative ways to exploit the favorable material properties offered by hydrogels. Sterilization techniques are commonly employed to ensure the materials are non-infectious upon placement, but sterilization is not absolute and infections are still expected. Natural, anti-bacterial proteins have been discovered which have the potential to act as anti-infectious agents; however, the proteins are toxic and need localized release to have therapeutic efficacy without toxicity. In these studies, we explore the use of the glutathione s-transferase (GST) to anchor the bactericidal peptide, melittin, to the surface of poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We show that therapeutic levels of protein can be anchored to the surface of the microspheres using the GST anchor. We compared the therapeutic efficacy of recombinant melittin released from PEGDA microspheres to melittin. We found that, when released by an activating enzyme, thrombin, recombinant melittin efficiently inhibits growth of the pathogenic bacterium Streptococcus pyogenes as effectively as melittin created by solid phase peptide synthesis. We conclude that a GST protein anchor can be used to immobilize functional protein to PEGDA microspheres and the protein will remain immobilized under physiological conditions until the protein is enzymatically released. PMID:23816641

  15. Gas chromatography-mass spectroscopy analysis of bioactive petalostigma extracts: Toxicity, antibacterial and antiviral activities

    PubMed Central

    Kalt, F. R.; Cock, I. E.

    2014-01-01

    Background: Petalostigma pubescens and Petalostigma triloculare were common components of pharmacopeia's of multiple Australian Aboriginal tribal groupings which traditionally inhabited the areas in which they grow. Among these groups, they had a myriad of medicinal uses in treating a wide variety of bacterial, fungal and viral infections. This study was undertaken to test P. pubescens and P. triloculare leaf and fruit extracts for the ability to inhibit bacterial and viral growth and thus validate Australian Aboriginal usage of these plants in treating bacterial and fungal diseases. Materials and Methods: P. pubescens, and P. triloculare leaves and fruit were extracted and tested for antimicrobial, antiviral activity and toxicity. The bioactive extracts were further examined by RP-HPLC and GC-MS to identify the component compounds. Results: The methanol, water and ethyl acetate leaf and fruit extracts of displayed potent antibacterial activity. The methanol and ethyl acetate extracts displayed the broadest specificity, inhibiting the growth of 10 of the 14 bacteria tested (71%) for the leaf extract and 9 of the 14 bacteria tested (64%) for the fruit extracts. The water extracts also had broad spectrum antibacterial activity, inhibiting the growth of 8 (57%) and 7 (50%) of the 14 bacteria tested, respectively. All antibacterial extracts were approximately equally effective against Gram-positive and Gram-negative bacteria, inhibiting the growth of 50-75% of the bacteria tested. The methanol, water and ethyl acetate extracts also displayed antiviral activity in the MS2 plaque reduction assay. The methanol and water extracts inhibited 26.6-49.0% and 85.4-97.2% of MS2 plaque formation, respectively, with the fruit extracts being more potent inhibitors. All ethyl acetate extracts inhibited 100% of MS2 plaque formation. All extracts were also non-toxic or of low toxicity. Analysis of these extracts by RP-HPLC showed that the P. triloculare ethyl acetate fruit extract was the least complex of the bioactive extracts. Subsequent analysis of this extract by GC-MS revealed that it contained 9 main compounds: acetic acid; 2,2-dimethoxybutane; 4-methyl-1,3-dioxane; decane; unadecane; 2-furanmethanol; 1,2-benzenediol; 1,2,3-benzenetriol; and benzoic acid. Conclusion: These studies validate Australian Aboriginal therapeutic usage of Petalostigma species and indicate their medicinal potential. PMID:24914307

  16. The Effect of Substituent, Degree of Acetylation and Positioning of the Cationic Charge on the Antibacterial Activity of Quaternary Chitosan Derivatives

    PubMed Central

    Sahariah, Priyanka; Gaware, Vivek S.; Lieder, Ramona; Jónsdóttir, Sigríður; Hjálmarsdóttir, Martha Á.; Sigurjonsson, Olafur E.; Másson, Már

    2014-01-01

    A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group’s structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7–23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed. PMID:25196937

  17. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities

    NASA Astrophysics Data System (ADS)

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-01

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2- and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.

  18. The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives.

    PubMed

    Sahariah, Priyanka; Gaware, Vivek S; Lieder, Ramona; Jónsdóttir, Sigríður; Hjálmarsdóttir, Martha Á; Sigurjonsson, Olafur E; Másson, Már

    2014-08-01

    A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group's structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7-23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed. PMID:25196937

  19. Variation in antibacterial and anti-inflammatory activity of different growth forms of Malva parviflora and evidence for synergism of the anti-inflammatory compounds.

    PubMed

    Shale, T L; Stirk, W A; van Staden, J

    2005-01-01

    Malva parviflora leaves and roots were collected from five sites within the Qacha's Nek District in Lesotho. These plants had two distinct growth forms--upright and prostrate. Hexane, methanol and water extracts were made from the plant material and tested for antibacterial and anti-inflammatory activity using the disc diffusion and cyclooxygenase-1 (Cox-1) bioassays, respectively. Hexane, methanol and water extracts made from Malva parviflora with a prostrate growth form inhibited the growth of Gram-positive and Gram-negative bacteria, while extracts made from plants with an upright growth form inhibited the growth of Gram-positive bacteria only. Cox-1 anti-inflammatory activity of hexane, methanol and water extracts did not show any variation between the two growth forms. The hexane extracts of both the leaves and roots were the most inhibitory. The water extracts had the least inhibitory activity. Bioassay-guided fractionation of the root dichloromethane extract showed that Cox-1 anti-inflammatory activity was caused by at least two compounds that acted synergistically to produce the biological effect. PMID:15588684

  20. Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages

    Microsoft Academic Search

    B. Martín; M. Garriga; M. Hugas; S. Bover-Cid; M. T. Veciana-Nogués; T. Aymerich

    2006-01-01

    The population of Gram-positive catalase-positive cocci from slightly fermented sausages was characterized at species and strain level by molecular techniques and some technological and hygienic aspects were also considered. Staphylococcus xylosus was the predominant species (80.8%) followed by Staphylococcus warneri (8.3%), Staphylococcus epidermidis (5.8%) Staphylococcus carnosus (4.6%), and Kocuria varians (0.4%). Proteolytic activity was observed in 23% of the isolates.

  1. Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains

    Microsoft Academic Search

    2004-01-01

    We have conjugated dodecyl and octadecyl fatty acids to the N-terminus of SC4, a potently bactericidal, helix-forming peptide 12-mer (KLFKRHLKWKII), and examined the bactericidal acti- vities of the resultant SC4 'peptide-amphiphile' molecules. SC4 peptide-amphiphiles showed up to a 30-fold increase in bacter- icidal activity against Gram-positive strains (Staphylococcus aureus, Streptococcus pyogenes and Bacillus anthracis), inclu- ding S. aureus strains resistant

  2. A Toll-Like Receptor 2Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria

    Microsoft Academic Search

    Philippe Georgel; Karine Crozat; Xavier Lauth; Evgenia Makrantonaki; Holger Seltmann; Sosathya Sovath; Kasper Hoebe; Xin Du; Sophie Rutschmann; Zhengfan Jiang; Timothy Bigby; Victor Nizet; Christos C. Zouboulis; Bruce Beutler

    2005-01-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL\\/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2) (K. Takeda and S. Akira, Cell. Microbiol. 5:143-153, 2003). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme

  3. Sonodynamic Excitation of Rose Bengal for Eradication of Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Nakonechny, Faina; Nisnevitch, Michael; Nitzan, Yeshayahu; Nisnevitch, Marina

    2013-01-01

    Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28?kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The net sonodynamic effect was calculated as a 3-4 log10 reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories. PMID:23509759

  4. Sonodynamic excitation of Rose Bengal for eradication of gram-positive and gram-negative bacteria.

    PubMed

    Nakonechny, Faina; Nisnevitch, Michael; Nitzan, Yeshayahu; Nisnevitch, Marina

    2013-01-01

    Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28?kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of gram-positive Staphylococcus aureus and gram-negative Escherichia coli. The net sonodynamic effect was calculated as a 3-4 log10 reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories. PMID:23509759

  5. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    PubMed

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture. PMID:25440998

  6. Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions

    NASA Astrophysics Data System (ADS)

    Ni, Hong-wei; Zhang, Han-shuang; Chen, Rong-sheng; Zhan, Wei-ting; Huo, Kai-fu; Zuo, Zhen-yu

    2012-04-01

    Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli ( E. coli) and Gram-positive Staphylococcus aureus ( S. aureus) at a total implantation dose of 2×1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS. The implanted layer was characterized by X-ray photoelectron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.

  7. Antibacterial and antifungal activity of Indonesian ethnomedical plants.

    PubMed

    Goun, E; Cunningham, G; Chu, D; Nguyen, C; Miles, D

    2003-09-01

    Methylene chloride and methanol extracts of 20 Indonesian plants with ethnomedical uses have been assessed for in vitro antibacterial and antifungal properties by disk diffusion method. Extracts of the six plants: Terminalia catappa, Swietenia mahagoni Jacq., Phyllanthus acuminatus, Ipomoea spp., Tylophora asthmatica and Hyptis brevipes demonstrated high activity in this bioassay system. These findings should stimulate the search for novel, natural product such as new antibacterial and antifungal agents. PMID:12946723

  8. Antibacterial Activity of Nanocomposites of Copper and Cellulose

    PubMed Central

    Pinto, Ricardo J. B.; Daina, Sara; Neto, Carlos Pascoal; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  9. Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria.

    PubMed

    Hegde, Sharath S; Reyes, Noe; Wiens, Tania; Vanasse, Nicole; Skinner, Robert; McCullough, Julia; Kaniga, Koné; Pace, John; Thomas, Roger; Shaw, Jeng-Pyng; Obedencio, Glen; Judice, J Kevin

    2004-08-01

    Telavancin (TD-6424) is a novel lipoglycopeptide that produces rapid and concentration-dependent killing of clinically relevant gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacodynamics of telavancin in the mouse neutropenic thigh (MNT) and mouse subcutaneous infection (MSI) animal models. Pharmacokinetic-pharmacodynamic studies in the MNT model demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio was the best predictor of efficacy. Telavancin produced dose-dependent reduction of thigh titers of several organisms, including methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), penicillin-susceptible and -resistant strains of Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecalis. The 50% effective dose (ED50) estimates for telavancin ranged from 0.5 to 6.6 mg/kg of body weight (administered intravenously), and titers were reduced by up to 3 log10 CFU/g from pretreatment values. Against MRSA ATCC 33591, telavancin was 4- and 30-fold more potent (on an ED50 basis) than vancomycin and linezolid, respectively. Against MSSA ATCC 13709, telavancin was 16- and 40-fold more potent than vancomycin and nafcillin, respectively. Telavancin, vancomycin, and linezolid were all efficacious and more potent against MRSA ATCC 33591 in the MSI model compared to the MNT model. This deviation in potency was, however, disproportionately greater for vancomycin and linezolid than for telavancin, suggesting that activity of telavancin is less affected by the immune status. The findings of these studies collectively suggest that once-daily dosing of telavancin may provide an effective approach for the treatment of clinically relevant infections with gram-positive organisms. PMID:15273119

  10. Injectable Bioadhesive Hydrogels with Innate Antibacterial Properties

    PubMed Central

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-01-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here, we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde (PDA) and branched polyethylenimine (PEI). These adhesives kill both Gram-negative and Gram–positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt % oxidized dextran and 6.9 wt % PEI sets within seconds forming a mechanically rigid (~1700 Pa) gel offering a maximum adhesive stress of ~ 2.8 kPa. A murine infection model showed that the adhesive is capable of killing S. pyogenes introduced subcutaneously at the bioadhesive’s surface, with minimal inflammatory response. The adhesive was also effective in a cecal ligation and puncture model, preventing sepsis and significantly improving survival. These bioadhesives represent novel, inherently antibacterial materials for wound filling applications. PMID:24958189

  11. Cytotoxic, antioxidant and antibacterial activities of Varthemia iphionoides Boiss. extracts

    Microsoft Academic Search

    Maher M. Al-Dabbas; Toshihiko Suganuma; Kanefumi Kitahara; De-Xing Hou; Makoto Fujii

    2006-01-01

    The hexane, ethyl acetate, chloroform, ethanol and water extracts of aerial parts of Varthemia, Varthemia iphionoides, were investigated for cytotoxic activity against human myelocytic leukemia (HL-60) cells; DPPH radical-scavenging activity; antioxidative activity in the linoleic acid system; reducing power; antibacterial activity; the contents of phenolic compounds. A pronounced cytotoxic effect on human leukemia (HL-60) cells was shown in the hexane,

  12. Antibacterial activity in the hemolymph of myriapods (Arthropoda).

    PubMed

    Xylander, W E; Nevermann, L

    1990-09-01

    The hemolymphs of two diplopod (Chicobolus sp. and Rhapidostreptus virgator) and two chilopod species (Lithobius forficatus and Scolopendra cingulata) were tested for the presence of antibacterial substances using Petri dish tests. The native hemolymph of all species had substances acting on living Micrococcus luteus, whereas only Rhapidostreptus, Scolopendra, and Lithobius were effective against lyophilized Micrococcus. The antibacterial activity against living Micrococcus increased after inoculation with bacteria (Enterobacter cloacae beta-12) in Chicobolus and Rhapidostreptus and also against lyophilized Micrococcus in the latter. Thus, these effects appear to be inducible. None of the myriapods tested had any bacteriostatic effect on Escherichia coli D-31 whereas the growth of gram-negative E. cloacae was inhibited. The antibacterial substances in the diplopod species were unstable when heated but were resistant to freezing. At least two antibacterial substances (a lysozyme-like one and another substance) are considered to occur in Myriapoda. PMID:2273286

  13. Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges

    Microsoft Academic Search

    Yanjuan Xin; Manmadhan Kanagasabhapathy; Dorte Janussen; Song Xue; Wei Zhang

    Gram-positive bacteria, specifically actinobacteria and members of the order Bacillales, are well-known producers of important\\u000a secondary metabolites. Little is known about the diversity of Gram-positive bacteria associated with Antarctic deep-sea sponges.\\u000a In this study, cultivation-based approaches were applied to investigate the Gram-positive bacteria associated with the Antarctic\\u000a sponges Rossella nuda, Rossella racovitzae (Porifera: Hexactinellida), and Myxilla mollis, Homaxinella balfourensis, Radiella

  14. Studies on the antibacterial activity of dodecylglycerol

    SciTech Connect

    Brissette, J.L.

    1985-01-01

    The antimicrobial activity of lipids has been known for many years, with dodecanoylglycerol (dodecanoic acid esterified to glycerol) being one of the most potential. However, the antibacterial potency of dodecylglycerol (DDG), the corresponding 1-O-alkyl glycerol ether, is considerably greater. The superior efficacy of DDG can be attributed, at least in part, to the greater chemical and metabolic stability of the ether bond as compared to esters. In an attempt towards elucidating the mode of action of DDG, the effect of DDG on bacterial lipid metabolism was examined using Streptococcus mutans BHT, a tolerant bacterium. The metabolic fate of the ether was also determined with the use of three radioactive tracers, /sup 14/C-glycerol, /sup 32/Pi, and /sup 14/C-DDG. Treatment of exponentially growing cultures of S. mutans BHI with growth inhibitory concentrations of DDG (10 and 20 ..mu..g/ml) inhibited the incorporation of /sup 14/C-glycerol into lipid. In vivo studies using /sup 14/C-DDG showed that the /sup 14/C-ether was readily incorporated almost exclusively into phosphatidic (PA) and lysophosphatidic (LPA) acids. When cells prelabelled with either /sup 14/C-glycerol or /sup 32/Pi were exposed to 10 and 20 /sup +/g/ml DDG for 2 h, the accumulation of PA and diphosphatidylglycerol (diPG) was greatly stimulated. However, diPG accumulated at the expense of its precursor, glycerol, which greatly decreased. These data suggest that the ether-containing PA inhibits the synthesis of CDP-diglyceride. Moreover, these results clearly demonstrate that DDG functions as a metabolic rather than physical effector, disputing the conventional notion that bactericidal lipids act as detergents, physically dissolving the cellular envelope.

  15. Antimicrobial-resistant gram-positive bacteria in PD peritonitis and the newer antibiotics used to treat them.

    PubMed

    Salzer, William

    2005-01-01

    The incidence of resistant gram-positive bacteria in nosocomial and, more recently, community-acquired infections is increasing. Staphylococci, because of their natural habitat on the skin, have always been the leading cause of peritonitis in patients receiving peritoneal dialysis (PD). These organisms have demonstrated a remarkable ability to develop resistance to antibiotics, first with penicillin, then antistaphylococcal penicillins (methicillin-resistant Staphylococcus aureus), and more recently, strains expressing resistance to vancomycin (vancomycin-intermediate and vancomycin-resistant S. aureus) have emerged. Enterococci are normal inhabitants of the gastrointestinal tract and occasionally cause PD peritonitis. In the past 15 years, vancomycin-resistant enterococci have emerged as significant pathogens in many areas. In the past 5 years, novel antibiotics that have activity on gram-positive bacteria, including vancomycin-resistant strains, have become available. The problem of resistant gram-positive bacteria in PD peritonitis, their therapy, and the role of these newer agents, quinupristin/dalfopristin, linezolid, and daptomycin, are reviewed. PMID:16022084

  16. Surface multiheme c-type cytochromes from Thermincola potens: Implications for dissimilatory metal reduction by Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D.

    2011-12-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they have been shown to be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or the humic substances analog, anthraquinone-2,6-disulfonate (AQDS). The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS and that several MHCs are localized to the cell wall or cell surface of T. potens. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results are the first direct evidence for cell-wall associated cytochromes and MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  17. Antibacterial effect of novel synthesized sulfated ?-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating.

    PubMed

    Selvam, S; Rajiv Gandhi, R; Suresh, J; Gowri, S; Ravikumar, S; Sundrarajan, M

    2012-09-15

    Sulfated ?-cyclodextrin was synthesized from sulfonation of ?-cyclodextrin and sulfated polymer was crosslinked with cotton fabric using ethylenediaminetetraacetic acid as crosslinker. ZnO, TiO(2) and Ag nanoparticles were prepared and characterized by XRD, UV, DLS, SEM and PSA. The prepared nanoparticles were coated on crosslinked cotton fabric. The crosslinking and nanoparticles coating effects of cotton fabrics were studied by FTIR and SEM analysis. The antibacterial test was done against gram positive Staphylococcus aureus and gram negative Escherichia coli bacterium. PMID:22627018

  18. Screening seeds of Scottish plants for antibacterial activity.

    PubMed

    Kumarasamy, Yashodharan; Cox, Philip John; Jaspars, Marcel; Nahar, Lutfun; Sarker, Satyajit Dey

    2002-11-01

    Based on ethnopharmacological and taxonomic information, seeds of 21 Scottish plant species from 14 different families were obtained from authentic seed suppliers. Their n-hexane, dichloromethane and methanol extracts were assessed for antibacterial activity against 11 pathogenic bacterial species. Methanol extracts of 11 plant species showed significant antibacterial activity. Malva moschata and Prunus padus were active against five bacterial species, Reseda lutea against four, Centaurium erythraea and Crithmum maritimum against three, Calluna vulgaris against two, and Armeria maritima, Centaurea scabiosa, Daucus carota, Rosa canina and Stellaria holostea against one bacterial species. C. erythraea and P. padus were also active against methicillin resistant Staphylococcus aureus. PMID:12413709

  19. In Vitro and In Vivo Properties of Ro 63-9141, a Novel Broad-Spectrum Cephalosporin with Activity against Methicillin-Resistant Staphylococci

    Microsoft Academic Search

    PAUL HEBEISEN; INGRID HEINZE-KRAUSS; PETER ANGEHRN; PETER HOHL; MALCOLM G. P. PAGE; R. L. Then

    2001-01-01

    Ro 63-9141 is a new member of the pyrrolidinone-3-ylidenemethyl cephem series of cephalosporins. Its anti- bacterial spectrum was evaluated against significant gram-positive and gram-negative pathogens in compar- ison with those of reference drugs, including cefotaxime, cefepime, meropenem, and ciprofloxacin. Ro 63-9141 showed high antibacterial in vitro activity against gram-positive bacteria except ampicillin-resistant entero- cocci, particularly vancomycin-resistant strains of Enterococcus faecium.

  20. Synthesis and antibacterial activities of antibacterial peptides with a spiropyran fluorescence probe.

    PubMed

    Chen, Lei; Zhu, Yu; Yang, Danling; Zou, Rongfeng; Wu, Junchen; Tian, He

    2014-01-01

    In this report, antibacterial peptides 1-3 were prepared with a spiropyran fluorescence probe. The probe exhibits a change in fluorescence when isomerized from a colorless spiro-form (spiropyran, Sp) to a colored open-form (merocyanine, Mc) under different chemical environments, which can be used to study the mechanism of antimicrobial activity. Peptides 1-3 exhibit a marked decrease in antimicrobial activity with increasing alkyl chain length. This is likely due to the Sp-Mc isomers in different polar environments forming different aggregate sizes in TBS, as demonstrated by time-dependent dynamic light scattering (DLS). Moreover, peptides 1-3 exhibited low cytotoxicity and hemolytic activity. These probe-modified peptides may provide a novel approach to study the effect of structural changes on antibacterial activity, thus facilitating the design of new antimicrobial agents to combat bacterial infection. PMID:25358905

  1. Synthesis and Antibacterial Activities of Antibacterial Peptides with a Spiropyran Fluorescence Probe

    PubMed Central

    Chen, Lei; Zhu, Yu; Yang, Danling; Zou, Rongfeng; Wu, Junchen; Tian, He

    2014-01-01

    In this report, antibacterial peptides1-3 were prepared with a spiropyran fluorescence probe. The probe exhibits a change in fluorescence when isomerized from a colorless spiro-form (spiropyran, Sp) to a colored open-form (merocyanine, Mc) under different chemical environments, which can be used to study the mechanism of antimicrobial activity. Peptides 1-3 exhibit a marked decrease in antimicrobial activity with increasing alkyl chain length. This is likely due to the Sp-Mc isomers in different polar environments forming different aggregate sizes in TBS, as demonstrated by time-dependent dynamic light scattering (DLS). Moreover, peptides 1-3 exhibited low cytotoxicity and hemolytic activity. These probe-modified peptides may provide a novel approach to study the effect of structural changes on antibacterial activity, thus facilitating the design of new antimicrobial agents to combat bacterial infection. PMID:25358905

  2. Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes.

    PubMed

    Hang, Ruiqiang; Gao, Ang; Huang, Xiaobo; Wang, Xiaoguang; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-06-01

    TiO2 nanotubes (NTs) have favorable biological properties, but the poor antibacterial activity limits their application especially in orthopedics fields. In this article, Cu-Ti-O nanotubes with different Cu contents are fabricated on sputtered TiCu films. Scanning electron microscopy reveals the NTs can be formed on sputtered TiCu films when the Cu content is less than 14.6 at %. X-ray photoelectron spectroscopy results indicate the NTs are consist of CuO mixed with TiO2 and the Cu content in NTs decreases dramatically compared with that in TiCu films. Biological experiments show that although these NTs have poor release antibacterial activity, their contact antibacterial activity has proven to be excellent, indicating the NT surface can effectively inhibit biomaterial-associated infections. The cytocompatibility of the NTs is closely related to the Cu content and when its content is relatively low (1.01 at %), there is no appreciable cytotoxicity. So Cu-Ti-O NTs with 1 at % Cu may be suitable to achieve proper antibacterial activity and desired cytocompatibility. The Cu-Ti-O NTs integrate the favorable antibacterial activity of Cu and excellent biological properties of TiO2 NTs therefore have potential applications in orthopedics, dentistry, and other biomedical fields. PMID:23907848

  3. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area

    PubMed Central

    Sotiriou, Georgios A.; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E.

    2013-01-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  4. Antibacterial Activity, Penicillinase Stability and Inducing Ability of Different Penicillins

    Microsoft Academic Search

    R. KNOX; J. T. SMITH

    1962-01-01

    SUMMARY There are now at least three main types of antibacterial activity shown by different penicillins-the ordinary penicillin G type, the type shown by methicillin active against penicillinase-producing staphylococci and the. ' broad spectrum ' type of activity shown by a-aminobenzylpenicillin. The inducing capacity of different penicillins can be measured by the con- centration required for maximal or half maximal

  5. Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans.

    PubMed

    Xia, Likai; Idhayadhulla, Akber; Lee, Yong Rok; Wee, Young-Jung; Kim, Sung Hong

    2014-10-30

    Novel 5-hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans (7a-k) were synthesized using ceric ammonium nitrate (CAN)-catalyzed formal [3 + 2] cycloaddition. Synthesized compounds were evaluated for their tyrosinase inhibitory, antioxidant, and antibacterial activities. A modified spectrophotometric method using l-DOPA as substrate was used to determine tyrosinase inhibitory activities, and a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was used to evaluate antioxidant properties. Antibacterial activities against gram-negative Escherichia coli (KCTC-1924) and gram-positive Staphylococcus aureus (KCTC-1916) were evaluated using the disc diffusion technique. Of the synthesized compounds, 7b with a 4-acetyl and an electron-enriched dihydronaphthofuran ring showed the highest tyrosinase-inhibition activity (IC50 = 8.91 ?g/mL), which was comparable with that of standard kojic acid (IC50 = 10.16 ?g/mL), potent antioxidant activity (IC50 = 3.33 ?g/mL), which was comparable with that of BHT (IC50 = 34.67 ?g/mL), and excellent antibacterial activities (MICs: 0.50 ?g/mL against E. coli and S. aureus strains). A mechanistic analysis of 7b demonstrated that its tyrosinase inhibitory activity was reversible and competitive. Compounds 7c and 7d showed potent antioxidant activities (IC50: 6.30 and 5.01 ?g/mL), and compound 7d also exhibited potent inhibitory activity against E. coli with a MIC of 0.5 ?g/mL. Furthermore, compounds 7a, 7e, 7f, and 7i showed potent antibacterial activities against S. aureus with MICs of 0.5 ?g/mL, which was comparable to that of ampicillin (MIC = 0.5 ?g/mL). PMID:25218909

  6. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections

    PubMed Central

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections. PMID:24516424

  7. Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    Microsoft Academic Search

    Lu Lin; Houhui Song; Yuetong Ji; Zhili He; Yunting Pu; Jizhong Zhou; Jian Xu

    2010-01-01

    BackgroundThermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes.Methodology\\/Principal FindingsHere we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over

  8. Antibiotic-Resistant Gram-Positive Cocci: Implications for Surgical Practice

    Microsoft Academic Search

    Philip S. Barie

    1998-01-01

    . Gram-positive infections are causing more serious infections than ever before in surgical patients, who are increasingly\\u000a aged, ill, and debilitated. Invasive procedures disrupt natural barriers to bacterial invasion, and indwelling catheters may\\u000a act as conduits for infection. The use of broad-spectrum antibiotics selects for the emergence of resistant pathogens. Potential\\u000a sites of nosocomial gram-positive infections include the urinary tract,

  9. Quorum sensing by peptide pheromones and two component signal transduction systems in Gram-positive bacteria

    Microsoft Academic Search

    Michiel Kleerebezem; Luis E. N. Quadri; Oscar P. Kuipers; Willem M. de Vos

    1997-01-01

    Cell-density-dependent gene expression appears to be widely spread in bacteria. This quorum-sensing phenomenon has been well established in Gram-negative bacteria, where N-acyl homoserine lactones are the diffusible communication molecules that modulate cell-density-dependent phenotypes. Similarly, a variety of processes are known to be regulated in a cell-density- or growth-phase-dependent manner in Gram-positive bacteria. Examples of such quorum-sensing modes in Gram-positive bacteria

  10. Rapid method for distinction of gram-negative from gram-positive bacteria

    Microsoft Academic Search

    T. Gregersen

    1978-01-01

    A rapid method for distinction between gram-negative and grampositive bacteria by means of a 3% solution of potassium hydroxide is tested on 71 gram-positive and 55 gram-negative bacterial strains. The method proved reliable with one exception only, a Bacillus macerans strain. That strain was definately gram-negative on staining. Other Bacillus strains were proved gram-positive by the test, even those being

  11. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    PubMed Central

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  12. Synthesis and antibacterial activity of analogs of 5-arylidene-3-(4-methylcoumarin-7-yloxyacetylamino)-2-thioxo-1,3-thiazoli-din-4-one.

    PubMed

    Cong, Nguyen Tien; Nhan, Huynh Thi; Van Hung, Luong; Thang, Tran Dinh; Kuo, Ping-Chung

    2014-01-01

    In an effort to develop new antimicrobial agents, 3-(4-methylcoumarin-7-yloxyacetylamino)-2-thioxo-1,3-thiazolidin-4-one (4) was synthesized by reaction of thiocarbonylbisthioglycolic acid with ethyl (4-methyl-2-oxo-2H-chromen-7-yloxy)aceto- hydrazide (3), which was prepared in turn from 7-hydroxy-4-methylcoumarin (1). The condensation of compound 4 with different aromatic aldehydes afforded a series of 5-(arylidene)-3-(4-methylcoumarin-7-yloxyacetyl-amino)-2-thioxo-1,3-thiozolidin-4-one analogs 5a-h. The structures of these synthetic compounds were elucidated on the basis of IR, 1H-NMR and 13C-NMR spectral data and ESI-MS spectrometric analysis. Compounds 5a-h were examined for their antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. PMID:25255757

  13. Antibacterial activity of synthetic curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA).

    PubMed

    Vilekar, Prachi; King, Catherine; Lagisetty, Pallavi; Awasthi, Vibhudutta; Awasthi, Shanjana

    2014-04-01

    Curcumin is well known for its antimicrobial and anti-inflammatory properties. However, since systemic absorption and bioavailability of curcumin from gastrointestinal tract is considerably poor, synthetic curcuminoids are being developed as better alternatives. Two curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA), were included in this study. We investigated the antibacterial activity of EF24 and EF2DTPA against Gram-negative (Escherichia coli) and Gram-positive (Enterococcus faecalis, Staphylococcus aureus) bacteria. We also studied the effects of EF24 and EF2DTPA on uptake and localization of pHrodo-labeled E. coli in the acidic compartments (phagolysosomes) of dendritic cells (DCs) under in vitro conditions. Our results demonstrate that treatment with EF24 and EF2DTPA directly suppresses the bacterial growth. However, these compounds do not affect the bacterial uptake or localization in the DCs. PMID:24532443

  14. Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(II), Ni(II), and Co(II) Complexes

    PubMed Central

    Khan, Salman A.; Asiri, Abdullah M.; Al-Amry, Khalid; Malik, Maqsood Ahmad

    2014-01-01

    Metal complexes were prepared by the reaction of thiosemicarbazone with CuCl2, NiCl2, CoCl2, Cu(OAc)2, Ni(OAc)2, and Co(OAc)2. The thiosemicarbazone coordinates to metal through the thionic sulfur and the azomethine nitrogen. The thiosemicarbazone was obtained by the thiosemicarbazide with 3-acetyl-2,5-dimethylthiophene. The identities of these compounds were elucidated by IR, 1H, 13C-NMR, and GC-MS spectroscopic methods and elemental analyses. The antibacterial activity of these compounds was first tested in vitro by the disc diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined by using chloramphenicol as reference drug. The results showed that compound 1.1 is better inhibitor of both types of tested bacteria as compared to chloramphenicol. PMID:24523641

  15. Design, synthesis, and in vitro antibacterial activity of fluoroquinolone derivatives containing a chiral 3-(alkoxyimino)-2-(aminomethyl)azetidine moiety.

    PubMed

    Lv, Kai; Sun, Yexin; Sun, Lanyin; Wei, Zengquan; Guo, Huiyuan; Wu, Jinwei; Liu, Mingliang

    2012-07-01

    A series of novel (R)/(S)-7-(3-alkoxyimino-2-aminomethyl-1-azetidinyl)fluoroquinolone derivatives were synthesized and evaluated for their in vitro antibacterial activity against representative strains. Our results reveal that 12 of the target compounds generally show better activity (MIC: <0.008-0.5 ?g mL(-1)) against the tested Gram-positive strains including MRSA and MRSE than levofloxacin (LVFX, MIC: 0.125-8 ?g mL(-1)). Their activity is similar to that of gemifloxacin (GMFX, MIC: <0.008-4 ?g mL(-1)). However, they are generally less active than the two reference drugs against Gram-negative strains. Moreover, against clinical strains of S. aureus including MRSA and S. epidermidis including MRSE, the MIC(50) values (0.06-16 ?g mL(-1)) and MIC(90) values (0.5-32 ?g mL(-1)) of compounds 16 w, y, and z are 2-8- and 2-16-fold less than LVFX, respectively, and 16 w (MIC(90) range: 0.5-4 ?g mL(-1)) was also found to be more active than GMFX (MIC(90) range: 1-8 ?g mL(-1)). PMID:22639240

  16. Antimicrobial activity of Rubus chamaemorus leaves.

    PubMed

    Thiem, B; Go?li?ska, O

    2004-01-01

    The antibacterial activity of Rubus chamaemorus leaf butanolic fraction of the methanol extract and ellagic acid was evaluated against some Gram-positive and Gram-negative bacteria. Antimycotic activity was assayed against Candida albicans. MICs and MBCs were determined by broth dilution test and by disc diffusion method. PMID:14693229

  17. Antibacterial activities of some mosses including Hylocomium splendens from South Western British Columbia

    Microsoft Academic Search

    S. J. Kang; S. H. Kim; P. Liu; E. Jovel; G. H. N. Towers

    2007-01-01

    The antibacterial activity of methanol extracts of ten moss species and fractions prepared from 80% methanol extract of Hylocomium splendens were evaluated by disk diffusion method. Nine moss species showed antibacterial activity against Gram (+) bacteria, in particular H. splendens and its ethyl acetate fractions showed stronger activity. Enhancement of antibacterial activity against Staphylococci by UV-A light irradiation was demonstrated

  18. Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin.

    PubMed

    Antoszczak, Micha?; Maj, Ewa; Stefa?ska, Joanna; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczy?ski, Adam

    2014-04-01

    A series of 11 novel amides of salinomycin were synthesized for the first time. All the obtained compounds were found to show potent antiproliferative activity against human cancer cell lines including the drug-resistant cancer cells. Four new salinomycin derivatives revealed good antibacterial activity against clinical isolates of methicillin-resistant Staphylococcus epidermidis (MRSE). PMID:24631190

  19. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts

    Microsoft Academic Search

    Iris C. Zampini; Marta A. Vattuone; Maria I. Isla

    2005-01-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia

  20. Antibacterial Activity of Enrofloxacin and Ciprofloxacin Derivatives of ?-Octaarginine.

    PubMed

    Purkayastha, Nirupam; Capone, Stefania; Beck, Albert K; Seebach, Dieter; Leeds, Jennifer; Thompson, Katherine; Moser, Heinz E

    2015-02-01

    ?(3) -Octaarginine chains were attached to the functional groups NH and CO2 H of the antibacterial fluoroquinolones ciprofloxacin (?1) and enrofloxacin (?2), respectively, in order to find out whether the activity increases by attachment of the polycationic, cell-penetrating peptide (CPP) moiety. For comparison, simple amides, 3-5, of the two antimicrobial compounds and ?(3) -octaarginine amide (?R8 ) were included in the antibacterial susceptibility tests to clarify the impact of chemical modification on the microbiological activity of either scaffold (Table). PMID:25676502

  1. Antibacterial activity of various leaf extracts of Merremia emarginata

    PubMed Central

    Elumalai, EK; Ramachandran, M; Thirumalai, T; Vinothkumar, P

    2011-01-01

    Objective To investigate the antibacterial activity and phytochemical screening of the aqueous, methanol and petroleum ether leaf extracts of Merremia emarginata (M. emarginata). Methods The antibacterial activity of leaf extracts of M. emarginata were evaluated by agar well diffusion method against four selected bacterial species. Results The presence of tannins, flavonoids, amino acids, starch, glycosides and carbohydrates in the different leaf extracts was established. The methanol extract was more effective against Bacillus cereus and Escherichia coli, whereas aqueous extract was more effective against Staphylococcus aureus and Pseudomonas aeruginosa. Conclusions : The results in the present study suggest that M. emarginata leaf can be used in treating diseases caused by the tested organisms. PMID:23569802

  2. Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other gram-positive bacteria.

    PubMed Central

    Hagedorn, S R; Bradley, G; Chapman, P J

    1985-01-01

    Maleylpyruvate, the ring fission product of gentisic acid, was found to be isomerized to fumarylpyruvate without a requirement for glutathione by an enzyme activity found in cell extracts of m-hydroxybenzoate-grown Bacillus megaterium 410. The isomerization reaction was detected as a shift in the absorbance maximum from 330 nm, the maximum for maleylpyruvate, to 345 nm, the maximum for fumarylpyruvate, when assayed at pH 8.0. Ammonium sulfate precipitation and dialysis of B. megaterium cell extracts resolved the isomerase activity from low-molecular-weight compounds such as glutathione but did not eliminate the isomerase activity. Iodoacetate and p-chloromercuribenzoate were potent inhibitors of the isomerase from B. megaterium. However, N-ethylmaleimide and iodoacetamide did not significantly inhibit this activity. In addition, fumaric acid was demonstrated as a product of gentisate oxidation by dialyzed cell extracts of B. megaterium. Glutathione-independent maleylpyruvate isomerases with properties similar to the isomerase found in B. megaterium were also found in other genera of gram-positive organisms. Eleven different organisms representing the genera Bacillus, Arthrobacter, Corynebacterium, Nocardia, and Rhodococcus were all found to possess this novel type of glutathione-independent maleylpyruvate isomerase. PMID:3926749

  3. Preparation and antibacterial activity of oligosaccharides derived from dandelion.

    PubMed

    Qian, Li; Zhou, Yan; Teng, Zhaolin; Du, Chun-Ling; Tian, Changrong

    2014-03-01

    In this study, we prepared oligosaccharides from dandelion (Taraxacum officinale) by hydrolysis with hydrogen peroxide (H2O2) and investigated their antibacterial activity. The optimum hydrolysis conditions, as determined using the response surface methodology, were as follows: reaction time, 5.12h; reaction temperature, 65.53 °C and H2O2 concentration, 3.16%. Under these conditions, the maximum yield of the oligosaccharides reached 25.43%. The sugar content in the sample was 96.8%, and the average degree of polymerisation was approximately 9. The oligosaccharides showed high antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, indicating that dandelion-derived oligosaccharides have the potential to be used as antibacterial agents. PMID:24368113

  4. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines

    PubMed Central

    Parhi, Ajit K.; Zhang, Yongzheng; Saionz, Kurt W.; Pradhan, Padmanava; Kaul, Malvika; Trivedi, Kalkal; Pilch, Daniel S.; LaVoie, Edmond J.

    2014-01-01

    Several phenyl substituted naphthalenes and isoquinolines have been identified as antibacterial agents that inhibit FtsZ-Zing formation. In the present study we evaluated the antibacterial of several phenyl substituted quinoxalines, quinazolines and 1,5-naphthyridines against methicillin-sensitive and methicillin-resistant Staphylococcus aureus and vancomycin-sensitive and vancomycin-resistant Enterococcus faecalis. Some of the more active compounds against S. aureus were evaluated for their effect on FtsZ protein polymerization. Further studies were also performed to assess their relative bactericidal and bacteriostatic activities. The notable differences observed between nonquaternized and quaternized quinoxaline derivatives suggest that differing mechanisms of action are associated with their antibacterial properties. PMID:23891185

  5. Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus

    PubMed Central

    Desbois, Andrew P.; Lawlor, Keelan C.

    2013-01-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32–1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15–30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-?-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, ?-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  6. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus.

    PubMed

    Desbois, Andrew P; Lawlor, Keelan C

    2013-11-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-?-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, ?-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  7. Antibacterial activity of some actinomycetes from Tamil Nadu, India

    PubMed Central

    Kumar, Pachaiyappan Saravana; Raj, John Poonga Preetam; Duraipandiyan, Veeramuthu; Ignacimuthu, Savarimuthu

    2012-01-01

    Objective To isolate novel actinomycetes and to evaluate their antibacterial activity. Methods Three soil samples were collected from Vengodu (village) in Kanchipuram district, Tamil Nadu, India. Actinomycetes were isolated using serial dilution and plating method on actinomycetes isolation agar. Results Totally 35 isolates were obtained on the basis of colony characteristics on actinomycetes isolation agar. All the isolates were screened for antibacterial activity by cross streak method. Medium and optimization of day were done for the potent strains using Nathan's agar well diffusion method. Isolation of bioactive compounds from significant active isolates was done by using different media. The most active isolate VAS 10 was identified as Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) using 16s rRNA sequence method. The hexane, ethyl acetate, dichloromethane and butanol extracts of VAS 10 were tested against bacteria. The maximum antibacterial activity was observed in dichloromethane and ethyl acetate; maximum zones of inhibition were observed against Enterococcus durans. The rRNA secondary structure and the restriction sites of Actinobacterium Loyola VAS 10 were predicted using Genebee and NEBCutter online tools respectively. Conclusions The present study showed that among the isolated actinomycetes, Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) showed good antibacterial activity against the tested bacteria. PMID:23593572

  8. Screening of the leaves of three Nigerian medicinal plants for antibacterial activity

    Microsoft Academic Search

    Patience O. Adomi

    The leaves of three plants, Alstonia boonei, Morinda lucida and Petiveria alliacea, and latex of A. boonei were screened for antibacterial activity. In evaluating antibacterial activity, both aqueous and ethanol extracts of the plants were used. Agar well diffusion method was used to determine the antibacterial activity of the plants. Among the bacterial screened, Pseudomonas aeruginosa was the most resistant

  9. In vitro antibacterial activity of Tabernaemontana alternifolia (Roxb) stem bark aqueous extracts against clinical isolates of methicillin resistant Staphylococcus aureus

    PubMed Central

    2013-01-01

    Background The rise of antibiotic resistance among methicillin resistant Staphylococcus aureus (MRSA), have caused concerns for the treatment of MRSA infections. Hence, search for an alternative therapy for these infections is inevitable. Folk Indian medicine refers to the use of leaf and stem bark powder of Tabernaemontana alternifolia (Roxb) in treatment of skin infections, but no scientific report establishes its antibacterial activity. Methods Direct aqueous extracts and sequential aqueous extracts of the stem bark of T. alternifolia (using petroleum ether and ethyl acetate as other solvents) were prepared by soxhlet extraction. The antibiotic sensitivity profiles of the clinical isolates were determined against 18 antibiotics using disc diffusion method. The isolates were identified by 16S rRNA gene sequencing. The methicillin resistance among S. aureus (MRSA) was confirmed by PCR amplification of mecA gene. The disc diffusion method was used to determine the antibacterial activity of the extracts. The micro-dilution method was used to determine the minimum inhibitory concentration (MIC) of the extract against the test organism. To further evaluate the therapeutic potential of the extract, cell cytotoxicity was checked on Vero cells by MTT assay. Chemical profiling of the extract was done by HPTLC method. Results The aqueous extracts of T. alternifolia stem bark exhibited antibacterial activity against Gram-positive microorganisms, particularly against clinical isolates of MRSA and vancomycin resistant S. aureus (VRSA). The minimum inhibitory concentration (MIC) of extract against the isolates ranged from 600–800 ?g/ml. The extract did not exhibit cytotoxic activity against Vero cells even at the concentration of 4 mg/ml. The chemical profiling revealed presence of alkaloids, flavonoids, coumarins, saponins and steroids. Petroleum ether and ethyl acetate extracts did not exhibit antibacterial activity. Conclusion Our results offer a scientific basis for the traditional use of T. alternifolia in the treatment of skin infections, showing that the plant extract has an enormous potential as a prospective alternative therapy against MRSA skin infections. The present study lays the basis for future studies, to validate the possible use of T. alternifolia as a candidate in the treatment of MRSA infections. PMID:24066905

  10. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  11. Gram-Positive Bacteria Are Potent Inducers of Monocytic Interleukin-12 (IL-12) while Gram-Negative Bacteria Preferentially Stimulate IL-10 Production

    PubMed Central

    Hessle, Christina; Andersson, Bengt; Wold, Agnes E.

    2000-01-01

    Interleukin-10 (IL-10) and IL-12 are two cytokines secreted by monocytes/macrophages in response to bacterial products which have largely opposite effects on the immune system. IL-12 activates cytotoxicity and gamma interferon (IFN-?) secretion by T cells and NK cells, whereas IL-10 inhibits these functions. In the present study, the capacities of gram-positive and gram-negative bacteria to induce IL-10 and IL-12 were compared. Monocytes from blood donors were stimulated with UV-killed bacteria from each of seven gram-positive and seven gram-negative bacterial species representing both aerobic and anaerobic commensals and pathogens. Gram-positive bacteria induced much more IL-12 than did gram-negative bacteria (median, 3,500 versus 120 pg/ml at an optimal dose of 25 bacteria/cell; P < 0.001), whereas gram-negative bacteria preferentially stimulated secretion of IL-10 (650 versus 200 pg/ml; P < 0.001). Gram-positive species also induced stronger major histocompatibility complex class II-restricted IFN-? production in unfractionated blood mononuclear cells than did gram-negative species (12,000 versus 3,600 pg/ml; P < 0.001). The poor IL-12-inducing capacity of gram-negative bacteria was not remediated by addition of blocking anti-IL-10 antibodies to the cultures. No isolated bacterial component could be identified that mimicked the potent induction of IL-12 by whole gram-positive bacteria, whereas purified LPS induced IL-10. The results suggest that gram-positive bacteria induce a cytokine pattern that promotes Th1 effector functions. PMID:10816515

  12. [Triclocarban antibacterial activity on resistant staphylococci, streptococci, and enterococci].

    PubMed

    Drugeon, H-B; Rouveix, B; Michaud-Nerard, A

    2012-06-01

    Triclocarban is an antiseptic of the anilide family. Its antibacterial activity was re-assessed in vitro against various susceptible and antibiotic resistant staphylococcus, streptococcus, and enterococcus strains. The results of this study show that, in vitro, the effectiveness of triclocarban antibacterial is maintained at very low MICs ranging from 0.5 to 8 mg/L for the various resistant strains studied. Triclocarban remains still very effective for the treatment of either initially bacterial skin and mucosal infections, or skin and mucosal at risk of super infection. PMID:22626523

  13. Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

    SciTech Connect

    Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

    2003-12-01

    Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in the optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans although B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. For successful production of ethanol from pyruvate, both pyruvate decarboxylase (PDC) and alcohol dehydrogenase (AHD) need to be produced at optimal levels in these biocatalysts. A plasmid containing the S. ventriculi pdc gene and the adh gene from geobacillus stearothermophilus was constructed using plasmid pWH1520 that was successfully used for expression of pdc in B. megaterium. The resulting portable ethanol (PET) plasmid, pJAM423, was transformed into B. megaterium. After xylose induction, a significant fraction of cell cytoplasm was composed of the S. ventriculi PDC and G. stearothermophilus ADH proteins. In preliminary experiments, the amount of ethanol produced by b. megaterium with plasmid pJAM423 was about twice (20 mM) of the bacterium without the plasmid. These results show that the PET operon is functional in B. megaterium but high level ethanol production needs further genetic and metabolic engineering. A genetic transfer system for the second generation biocatalysts needs to be developed for transferring the plasmid pJAM423 and its derivatives for engineering these organisms for ethanol production from biomass derived sugars and cellulose to ethanol. One of the new biocatalysts, strain P4-102B was found to be transformable with plasmids and the method for introducing plasmid pJAM423 into this strain and expression of the encoded DNA is being optimized. These new second generation biocatalysts have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource for production of fuels and chemicals.

  14. [Interpretive reading of the antibiogram in gram positive cocci].

    PubMed

    Torres, Carmen; Cercenado, Emilia

    2010-10-01

    Resistance to methicillin in Staphylococcus is related to the expression of the mecA gene, and involves resistance to all beta-lactams, with the exception of the new cephalosporins, ceftobiprole and ceftaroline. Breakpoints for interpretation of this mechanism differ in S. aureus and in coagulase-negative species. For macrolides-lincosamides-streptogramins B, (MLS(B)) the most frequent mechanism among resistant strains is expression of methylases (erm genes). Topoisomerase changes caused by point mutations and expression of the efflux pump NorA determine resistance to quinolones, but there are great differences in the activity of different compounds, which makes interpretative reading difficult. Strains of S. aureus with intermediate susceptibility to glycopeptides (GISA strains) have been described, as well as highly-vancomycin-resistant isolates (vanA isolates). In Spain, there is a high percentage of S. pneumoniae strains intermediate or resistant to penicillin, and a low percentage of strains intermediate or resistant to third generation cephalosporins, due to mutations in genes encoding penicillin-binding proteins. The most frequent phenotype of resistance to MLS(B) in this species is caused by methylase production. Resistance to quinolones is still uncommon, and is mainly related to mutations in parC/parE (low level) and in gyrA. It is important to detect low level resistance due to its clinical implications. No strains of S. pyogenes resistant to penicillin have yet been described. In Spain the most common phenotype of resistance to macrolides in S. pyogenes is determined by efflux pumps (mef genes), affecting 14- and 15-membered macrolides. E. faecalis is usually susceptible to ampicillin, in contrast to E. faecium. Enterococci show intrinsic low-level resistance to aminoglycosides, but still remain susceptible to the combination of these antimicrobials and cell-wall active agents. Strains expressing different aminoglycoside-modifying enzymes (high-level resistance) became resistant to the combination. Glycopeptide-resistant strains of enterococci are uncommon in Spain, but nosocomial outbreaks due to vanA enterococci and case reports due to vanB2 enterococci have been recently reported. PMID:20400208

  15. Antibacterial Activity of Fullerene Water Suspensions: Effects of

    E-print Network

    Alvarez, Pedro J.

    on fullerene derivatives show both positive and negative health effects, depending upon the derivativeAntibacterial Activity of Fullerene Water Suspensions: Effects of Preparation Method and Particle organisms and in the environment to determine how C60 can be safely used and disposed. Introduction Since

  16. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  17. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid.

    PubMed Central

    Dunne, D W; Resnick, D; Greenberg, J; Krieger, M; Joiner, K A

    1994-01-01

    Macrophage scavenger receptors exhibit unusually broad binding specificity for polyanionic ligands and have been implicated in atherosclerosis and various host defense functions. Using a radiolabeled, secreted form of the type I bovine macrophage scavenger receptor in an in vitro binding assay, we have found that this receptor binds to intact Gram-positive bacteria, including Streptococcus pyogenes, Streptococcus agalactiae, Staphylococcus aureus, Enterococcus hirae, and Listeria monocytogenes. Competition binding studies using purified lipoteichoic acid, an anionic polymer expressed on the surface of most Gram-positive bacteria, show that lipoteichoic acids are scavenger receptor ligands and probably mediate binding of the receptor to Gram-positive bacteria. Lipoteichoic acids, for which no host cell receptors have previously been identified, are implicated in the pathogenesis of septic shock due to Gram-positive bacteria. Scavenger receptors may participate in host defense by clearing lipoteichoic acid and/or intact bacteria from tissues and the circulation during Gram-positive sepsis. Since scavenger receptors have been previously shown to bind to and facilitate bloodstream clearance of Gram-negative bacterial endotoxin (lipopolysaccharide), these receptors may provide a general mechanism for macrophage recognition and internalization of pathogens and their cell surface components. Images PMID:8127896

  18. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone.

    PubMed

    Hoshino, Kazuki; Inoue, Kazue; Murakami, Yoichi; Kurosaka, Yuichi; Namba, Kenji; Kashimoto, Yoshinori; Uoyama, Saori; Okumura, Ryo; Higuchi, Saito; Otani, Tsuyoshi

    2008-01-01

    DC-159a is a new 8-methoxy fluoroquinolone that possesses a broad spectrum of antibacterial activity, with extended activity against gram-positive pathogens, especially streptococci and staphylococci from patients with community-acquired infections. DC-159a showed activity against Streptococcus spp. (MIC(90), 0.12 microg/ml) and inhibited the growth of 90% of levofloxacin-intermediate and -resistant strains at 1 microg/ml. The MIC 90s of DC-159a against Staphylococcus spp. were 0.5 microg/ml or less. Against quinolone- and methicillin-resistant Staphylococcus aureus strains, however, the MIC 90 of DC-159a was 8 microg/ml. DC-159a was the most active against Enterococcus spp. (MIC 90, 4 to 8 microg/ml) and was more active than the marketed fluoroquinolones, such as levofloxacin, ciprofloxacin, and moxifloxacin. The MIC 90s of DC-159a against Haemophilus influenzae, Moraxella catarrhalis, and Klebsiella pneumoniae were 0.015, 0.06, and 0.25 microg/ml, respectively. The activity of DC-159a against Mycoplasma pneumoniae was eightfold more potent than that of levofloxacin. The MICs of DC-159a against Chlamydophila pneumoniae were comparable to those of moxifloxacin, and DC-159a was more potent than levofloxacin. The MIC 90s of DC-159a against Peptostreptococcus spp., Clostridium difficile, and Bacteroides fragilis were 0.5, 4, and 2 microg/ml, respectively; and among the quinolones tested it showed the highest level of activity against anaerobic organisms. DC-159a demonstrated rapid bactericidal activity against quinolone-resistant Streptococcus pneumoniae strains both in vitro and in vivo. In vitro, DC-159a showed faster killing than moxifloxacin and garenoxacin. The bactericidal activity of DC-159a in a murine muscle infection model was revealed to be superior to that of moxifloxacin. These activities carried over to the in vivo efficacy in the murine pneumonia model, in which treatment with DC-159a led to bactericidal activity superior to those of the other agents tested. PMID:17938194

  19. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  20. Antibacterial Activity of the Alkaloid-Enriched Extract from Prosopis juliflora Pods and Its Influence on in Vitro Ruminal Digestion

    PubMed Central

    dos Santos, Edilene T.; Pereira, Mara Lúcia A.; da Silva, Camilla Flávia P.G.; Souza-Neta, Lourdes C.; Geris, Regina; Martins, Dirceu; Santana, Antônio Euzébio G.; Barbosa, Luiz Cláudio A.; Silva, Herymá Giovane O.; Freitas, Giovana C.; Figueiredo, Mauro P.; de Oliveira, Fernando F.; Batista, Ronan

    2013-01-01

    The purpose of this study was to assess the in vitro antimicrobial activity of alkaloid-enriched extracts from Prosopis juliflora (Fabaceae) pods in order to evaluate them as feed additives for ruminants. As only the basic chloroformic extract (BCE), whose main constituents were juliprosopine (juliflorine), prosoflorine and juliprosine, showed Gram-positive antibacterial activity against Micrococcus luteus (MIC = 25 ?g/mL), Staphylococcus aureus (MIC = 50 ?g/mL) and Streptococcus mutans (MIC = 50 ?g/mL), its influence on ruminal digestion was evaluated using a semi-automated in vitro gas production technique, with monensin as the positive control. Results showed that BCE has decreased gas production as efficiently as monensin after 36 h of fermentation, revealing its positive influence on gas production during ruminal digestion. Since P. juliflora is a very affordable plant, this study points out this alkaloid enriched extract from the pods of Prosopis juliflora as a potential feed additive to decrease gas production during ruminal digestion. PMID:23595000

  1. Antibacterial activity of plant extracts from Brazil against fish pathogenic bacteria

    PubMed Central

    Castro, S.B.R.; Leal, C.A.G.; Freire, F.R.; Carvalho, D.A.; Oliveira, D.F.; Figueiredo, H.C.P.

    2008-01-01

    The aim of this work was to evaluate the antibacterial activity of Brazilian plants extracts against fish pathogenic bacteria. Forty six methanolic extracts were screened to identify their antibacterial properties against Streptococcus agalactiae, Flavobacterium columnare and Aeromonas hydrophila. Thirty one extracts showed antibacterial activity. PMID:24031303

  2. Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria.

    PubMed

    Artini, M; Papa, R; Cellini, A; Tilotta, M; Barbato, G; Koverech, A; Selan, L

    2014-01-01

    Betamethasone is an anti-inflammatory steroid drug used in cases of anaphylactic and allergic reactions, of Alzheimer and Addison diseases and in soft tissue injuries. It modulates gene expression for anti-inflammatory activity suppressing the immune system response. This latter effect might decrease the effectiveness of immune system response against microbial infections. Corticosteroids, in fact, mask some symptoms of infection and during their use superimposed infections may occur. Thus, the use of glucocorticoids in patients with sepsis remains extremely controversial. In this study we analyzed the in vitro effect of a commercial formulation of betamethasone (Bentelan) on several Gram positive and Gram negative bacteria of clinical relevance. It was found to be an inhibitor of the growth of most of the strains examined. Also the effect of betamethasone in combination with some classes of antibiotics was evaluated. Antibiotic-steroid combination therapy is, in such cases, superior to antibiotic-alone treatment to impair bacterial growths. Such effect was essentially not at all observable on Staphylococcus aureus or Coagulase Negative Staphylococci (CoNS). PMID:25572750

  3. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology.

    PubMed

    Friedman, Adam; Blecher, Karin; Sanchez, David; Tuckman-Vernon, Chaim; Gialanella, Philip; Friedman, Joel M; Martinez, Luis R; Nosanchuk, Joshua D

    2011-01-01

    The rapidly evolving crisis of antibiotic resistance among microorganisms has contributed to the rise of patient morbidity and mortality from nosocomial and community-acquired infections. Therefore, innovative antimicrobial technology targeting mechanisms to which the bacteria are unlikely to evolve resistance is urgently needed. We have previously described a nitric oxide-releasing nanoparticle (NO-np) with efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii in vitro and in murine wound and abscess models. Although the prior findings suggest that the NO-np can be a useful therapeutic for skin and soft tissue infections, the antimicrobial spectrum of NO-np has yet to be fully elucidated. In the current study, we investigated the efficacy of a NO-np against several Gram-positive and -negative clinical isolates. We found that the NO-np were uniformly active against all of the Streptococcus pyogenes, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates examined, including strains that were both sensitive and resistant to commonly used antibiotics. We concluded that the NO-np have the potential to serve as a novel broad spectrum antimicrobial agent. PMID:21577055

  4. [Resistance to "last resort" antibiotics in Gram-positive cocci: The post-vancomycin era].

    PubMed

    Rincón, Sandra; Panesso, Diana; Díaz, Lorena; Carvajal, Lina P; Reyes, Jinnethe; Munita, José M; Arias, César A

    2014-04-01

    New therapeutic alternatives have been developed in the last years for the treatment of multidrug-resistant Gram-positive infections. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are considered a therapeutic challenge due to failures and lack of reliable antimicrobial options. Despite concerns related to the use of vancomycin in the treatment of severe MRSA infections in specific clinical scenarios, there is a paucity of solid clinical evidence that support the use of alternative agents (when compared to vancomycin). Linezolid, daptomycin and tigecycline are antibiotics approved in the last decade and newer cephalosporins (such as ceftaroline and ceftobiprole) and novel glycopeptides (dalvavancin, telavancin and oritavancin) have reached clinical approval or are in the late stages of clinical development. This review focuses on discussing these newer antibiotics used in the "post-vancomycin" era with emphasis on relevant chemical characteristics, spectrum of antimicrobial activity, mechanisms of action and resistance, as well as their clinical utility. PMID:24968051

  5. Antibacterial, antifungal and antitumoral activities of Micromycetes. I. Preliminary study.

    PubMed

    Steiman, R; Bartoli, M H; Seigle-Murandi, F; Boitard, M; Beriel, H; Villard, J

    1989-10-01

    The ability of 211 strains of Micromycetes to produce antibiotic, antifungal and antitumoral compounds has been investigated in vitro using test strains and P 388 leukemia cells. Cytotoxicity was determined on Vero cells. Convenient activities were obtained depending on the taxonomic group. Finally, 17 strains of Micromycetes were selected for their antibacterial or antifungal activities and 12 for their antitumoral properties. Investigations are in progress concerning these activities. PMID:2586333

  6. Vancomycin-resistant gram-positive bacteria isolated from human sources.

    PubMed Central

    Ruoff, K L; Kuritzkes, D R; Wolfson, J S; Ferraro, M J

    1988-01-01

    Recent reports of infections with vancomycin-resistant gram-positive bacteria prompted us to study vancomycin-resistant isolates from human sources to characterize the types of bacteria displaying this phenotype. Thirty-six vancomycin-resistant gram-positive isolates, 14 from clinical specimens and 22 from stool samples, were identified. These isolates were tentatively identified as Lactobacillus spp. (25 strains), Leuconostoc spp. (6 strains), and Pediococcus spp. (3 strains) on the basis of morphology and physiological tests. Two isolates of indeterminate morphology could not be unambiguously assigned to a genus. Four isolates of vancomycin-resistant lactobacilli from normally sterile body sites were considered to be clinically significant. Vancomycin-resistant gram-positive bacteria may represent an emerging class of nosocomial pathogens. Better methods for distinguishing the various genera in the clinical microbiology laboratory are needed. PMID:3182995

  7. Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure.

    PubMed

    Kang, Hae Joo; Coulibaly, Fasséli; Clow, Fiona; Proft, Thomas; Baker, Edward N

    2007-12-01

    Many bacterial pathogens have long, slender pili through which they adhere to host cells. The crystal structure of the major pilin subunit from the Gram-positive human pathogen Streptococcus pyogenes at 2.2 angstroms resolution reveals an extended structure comprising two all-beta domains. The molecules associate in columns through the crystal, with each carboxyl terminus adjacent to a conserved lysine of the next molecule. This lysine forms the isopeptide bonds that link the subunits in native pili, validating the relevance of the crystal assembly. Each subunit contains two lysine-asparagine isopeptide bonds generated by an intramolecular reaction, and we find evidence for similar isopeptide bonds in other cell surface proteins of Gram-positive bacteria. The present structure explains the strength and stability of such Gram-positive pili and could facilitate vaccine development. PMID:18063798

  8. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  9. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity.

    PubMed

    Shameli, Kamyar; Bin Ahmad, Mansor; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  10. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  11. Essential oils and crude extracts from Chrysanthemum trifurcatum leaves, stems and roots: chemical composition and antibacterial activity.

    PubMed

    Sassi, Ahlem Ben; Skhiri, Fethia Harzallah; Chraief, Imed; Bourgougnon, Nathalie; Hammami, Mohamed; Aouni, Mahjoub

    2014-01-01

    The essential oils from the leaves, stems and roots of Chrysanthemum trifurcatum (Desf.) Batt. and Trab. var. macrocephalum (viv.) were obtained by hydrodistillation and their chemical compositions were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), in order to get insight into similarities and differences as to their active composition. A total of fifty compounds were identified, constituting 97.84%, 99.02% and 98.20% of total oil composition of the leaves, stems and roots, respectively. Monoterpene hydrocarbons were shown to be the main group of constituents of the leaves and stems parts in the ratio of 67.88% and 51.29%, respectively. But, the major group in the roots oil was found to be sesquiterpene hydrocarbons (70.30%). The main compounds in leaves oil were limonene (26.83%), ?-terpinene (19.68%), ?-pinene (9.7%) and ?-terpenyl acetate (7.16%). The stems oil, contains mainly limonene (32.91%), 4-terpenyl acetate (16.33%) and ?-terpinene (5.93%), whereas the main compounds in roots oil were ?-calacorene (25.98%), ?-cedrene (16.55%), ?-bourbobene (14.91%), elemol (7.45%) and 2-hexenal (6.88%). The crude organic extracts of leaves, stems and roots, obtained by maceration with solvents of increasing polarity: petroleum ether, ethyl acetate and methanol, contained tannins, flavonoids and alkaloids. Meanwhile, essential oils and organic extracts were tested for antibacterial activities against eight Gram-positive and Gram-negative strains, using a microdilution method. The oil and methanolic extact from C. trifurcatum leaves showed a great potential of antibacterial effect against Bacillus subtilis and Staphylococcus epidermidis, with an IC50 range of 31.25-62.5 µg/ml. PMID:24881771

  12. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  13. Protection from Lethal Gram-Positive Infection by Macrophage Scavenger Receptor–Dependent Phagocytosis

    PubMed Central

    Thomas, Christian A.; Li, Yongmei; Kodama, Tatsuhiko; Suzuki, Hiroshi; Silverstein, Samuel C.; El Khoury, Joseph

    2000-01-01

    Infections with gram-positive bacteria are a major cause of morbidity and mortality in humans. Opsonin-dependent phagocytosis plays a major role in protection against and recovery from gram-positive infections. Inborn and acquired defects in opsonin generation and/or recognition by phagocytes are associated with an increased susceptibility to bacterial infections. In contrast, the physiological significance of opsonin-independent phagocytosis is unknown. Type I and II class A scavenger receptors (SR-AI/II) recognize a variety of polyanions including bacterial cell wall products such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA), suggesting a role for SR-AI/II in innate immunity to bacterial infections. Here, we show that SR-AI/II–deficient mice (MSR-A?/?) are more susceptible to intraperitoneal infection with a prototypic gram-positive pathogen, Staphylococcus aureus, than MSR-A+/+ control mice. MSR-A?/? mice display an impaired ability to clear bacteria from the site of infection despite normal killing of S. aureus by neutrophils and die as a result of disseminated infection. Opsonin-independent phagocytosis of gram-positive bacteria by MSR-A?/? macrophages is significantly decreased although their phagocytic machinery is intact. Peritoneal macrophages from control mice phagocytose a variety of gram-positive bacteria in an SR-AI/II–dependent manner. Our findings demonstrate that SR-AI/II mediate opsonin-independent phagocytosis of gram-positive bacteria, and provide the first evidence that opsonin-independent phagocytosis plays a critical role in host defense against bacterial infections in vivo. PMID:10620613

  14. Antibacterial activity of Nymphaea nouchali (Burm. f) flower

    PubMed Central

    2013-01-01

    Background The present work aimed to find out the antibacterial activity of Nymphaea nouchali flower on human and plant pathogenic bacteria. Methods Antibacterial potency of methanol, acetone, ethyl acetate and petroleum spirit extracts of Nymphaea nouchali flower has been tested against four human pathogenic bacteria Bacillus subtilis (FO 3026) Escherichia coli (IFO 3007), Klebsiella pneumonia (ATTC 10031) and Sarcina lutea (IFO 3232) and one plant pathogenic bacterium Xanthomonas campestris (IAM 1671) by disc diffusion assay. Zone of inhibition produced by different extracts against the test bacteria was measured and compared with standard antibiotic disc. Results Methanol extract possessed better antibacterial activity against two pathogenic bacteria, B. subtilis (FO 3026) and S. lutea (IFO 3232) than commercial antibiotic nalidixic acid. Acetone extract showed moderate sensitivity whereas B. subtilis (FO 3026), S. lutea (IFO 3232) and X. campestris (IAM 1671) showed resistance to ethyl acetate and petroleum spirit extracts. The minimum inhibitory concentrations of various extracts were ranged between 128–2048 ?gml-1. Conclusions Nymphaea nouchali flower could be a potential candidate for future development of novel broad spectrum antibacterial herbal formulation. PMID:24099586

  15. Evaluation of the Antibacterial Activity of Patchouli Oil

    PubMed Central

    Yang, Xian; Zhang, Xue; Yang, Shui-Ping; Liu, Wei-Qi

    2013-01-01

    In the present study, the antimicrobial tests of patchouli oil were studied by using molecular docking technology and antimicrobial test in vitro. Five biological macromolecule enzymes, required by the bacteria in the process of biosynthesis were selected as target molecules. Five antibiotics benzylpenicillin, sulfadiazine, trimethoprim, rifampicin and ciprofloxacin, which are generally acknowledged as antibacterial drugs, were selected as reference compounds. The 3 three-dimensional (3D) structures of the 5 reference compounds and 26 compounds from patchouli oil were established by using surflex-dock software (8.1). And the 3D structures of five biological macromolecule enzymes derived from Protein Data Bank (PDB). Molecular docking was carried out between the 31 chemical compounds (ligands) and the 5 enzymes (receptors) by using surflex-dock function. Furthermore, the antibacterial effects of 31 chemical compounds were investigated by the scoring function after molecular docking was completed. By comparing the scoring result of 26 compounds in patchouli oil with 5 compared components, we inferred antibacterial activity in about 26 compounds in patchouli oil. On the other hand, six frequently-used pathogenic bacteria were selected for antimicrobial test in vitro, patchouli oil and its two major compounds: (-)-patchouli alcohol and pogostone, which their contents exceeded 60% in patchouli oil samples, were selected antibacterial agents. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were also determined. Molecular docking technology and antimicrobial test in vitro proved that patchouli oil had strong antimicrobial effects. Particularly, pogostone and (-)-patchouli alcohol have potent antimicrobial activity. PMID:24250637

  16. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development

    PubMed Central

    Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung

    2010-01-01

    Various cell-surface multisubunit protein polymers, known as pili or fimbriae, have a pivotal role in the colonization of specific host tissues by many pathogenic bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria assemble pili by a distinct mechanism involving a transpeptidase called sortase. Sortase crosslinks individual pilin monomers and ultimately joins the resulting covalent polymer to the cell-wall peptidoglycan. Here we review current knowledge of this mechanism and the roles of Gram-positive pili in the colonization of specific host tissues, modulation of host immune responses and the development of bacterial biofilms. PMID:18083568

  17. Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs

    PubMed Central

    Viswanathan, V.; Phadatare, A. G.; Mukne, Alka

    2014-01-01

    Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus. PMID:25035540

  18. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  19. High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens

    Microsoft Academic Search

    Zhiru Tang; Youming Zhang; Adrian Francis Stewart; Meimei Geng; Xiangsha Tang; Qiang Tu; Yulong Yin

    2010-01-01

    Bovine lactoferricin (LFC) and bovine lactoferrampin (LFA) are two active fragments located in the N1-domain of bovine lactoferrin. Recent studies suggested that LFC and LFA have broad-spectrum activity against Gram-positive and Gram-negative bacteria. To date, LFC and LFA have usually been produced from milk. We report here the high-level expression, purification and characterization of LFC and LFA using the Photorhabdus

  20. Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.

    PubMed

    Vuci?, Dragana M; Petkovi?, Miroslav R; Rodi?-Grabovac, Branka B; Stefanovi?, Olgica D; Vasi?, Sava M; Comi?, Ljiljana R

    2013-01-01

    Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity. PMID:24383325

  1. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae).

    PubMed

    Comini, L R; Montoya, S C Núñez; Páez, P L; Argüello, Gustavo A; Albesa, I; Cabrera, J L

    2011-02-01

    Photosensitizing anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae), namely soranjidiol, rubiadin, damnacanthal and 5,5'-bisoranjidiol, showed antibacterial activity (bacteriostatic/bactericide) on Staphylococcus aureus. The mechanism of action seems to involve an increase in the levels of superoxide anion (O(2)(·-)) and/or singlet molecular oxygen ((1)O(2)). Moreover, the effect of actinic irradiation as a boosting agent for the production of both reactive species of oxygen as well as its influence on antibacterial activity was assessed. The routine susceptibility assay (minimum inhibitory concentration determination) was carried out by means of the broth macrodilution method. Bactericide activity was determined counting the colony-forming units per milliliter (cfu/mL) in plate. The O(2)(·-) production was determined by means of an indirect photobiological assay (Nitroblue Tetrazolium test), and the production of (1)O(2) was followed using an indirect steady-state method, with methionine as the (1)O(2) chemical quencher. PMID:20965744

  2. Antibacterial Activity of the Purified Peroxidase from Human Parotid Saliva

    PubMed Central

    Slowey, R. R.; Eidelman, S.; Klebanoff, S. J.

    1968-01-01

    The peroxidase of human parotid saliva has been purified by concentration, gel filtration on Sephadex G-200, and ion exchange chromatography on Amberlite CG-50. The purified product was devoid of amylase activity, lysozyme activity, and immunoglobulin A (IgA). However, it had an inhibitory effect on the growth of Lactobacillus acidophilus in complete growth medium and on lysine accumulation by L. acidophilus in a buffer-glucose medium, when combined with thiocyanate ions. The concentrations of peroxidase and thiocyanate ions employed were within the range found in saliva. The fractions which contained IgA did not have an anti-bacterial effect on L. acidophilus under the conditions employed. Parotid saliva also contained low molecular weight inhibitors of peroxidase activity. These studies support the involvement of the salivary peroxidase in an antibacterial system in saliva. PMID:4183966

  3. Caenorhabditis elegans Immune Conditioning with the Probiotic Bacterium Lactobacillus acidophilus Strain NCFM Enhances Gram-Positive Immune Responses

    PubMed Central

    2012-01-01

    Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the ?-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits. PMID:22585961

  4. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria

    E-print Network

    Gent, Universiteit

    were able to transfer in vitro this resistance to Enterococcus faecalis at frequencies ranging from to transfer the tet(M) gene to other Gram-positive bacteria, including Enterococcus faecalis, Lactococcus strains were used: (i) E. faecalis JH2-2 [14] was grown in brain heart infusion 0378-1097 / 03 / $22.00 Ã?

  5. Construction and evaluation of multisite recombinatorial (Gateway) cloning vectors for Gram-positive bacteria

    PubMed Central

    Perehinec, Tania M; Qazi, Saara NA; Gaddipati, Sanyasi R; Salisbury, Vyvyan; Rees, Catherine ED; Hill, Philip J

    2007-01-01

    Background The Gateway recombinatorial cloning system allows easy and rapid joining of DNA fragments. Here we report the construction and evaluation of three different Gram-positive vectors that can be used with the Multisite Gateway cloning system to rapidly produce new gene arrangements in plasmid constructs for use in a variety of Gram-positive bacteria. Results Comparison of patterns of reporter gene expression with conventionally constructed clones show that the presence of residual recombination (att) sites does not have an effect on patterns of gene expression, although overall levels of gene expression may vary. Rapid construction of these new vectors allowed vector/gene combinations to be optimized following evaluation of plasmid constructs in different bacterial cells and demonstrates the benefits of plasmid construction using Gateway cloning. Conclusion The residual att sites present after Gateway cloning did not affect patterns of promoter induction in Gram-positive bacteria and there was no evidence of differences in mRNA stability of transcripts. However overall levels of gene expression may be reduced, possibly due to some post-transcriptional event. The new vectors described here allow faster, more efficient cloning in range of Gram-positive bacteria. PMID:17880697

  6. Transformations of the gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we developed an electrotransformation method for use with the Gram-positive bacterium Paenibacillus larvae—a deadly pathogen of honey bees. The method is substantially different from the only other electroporation method for a Paenibacillus species found in the literature. Using the ty...

  7. Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria

    Microsoft Academic Search

    Emmanuelle Charpentier; Ana I. Anton; Peter Barry; Berenice Alfonso; Yuan Fang; Richard P. Novick

    2004-01-01

    Virulent bacterial strains have developed complex metabolic and regulatory pathways to enable them to thrive in the in vivo environment during infection. Understanding how the regula- tory networks operate requires manipulation of many genes and expressing them temporally and spatially at different levels or under separate regulatory controls. In the case of gram- positive bacteria including staphylococci, the introduction of

  8. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces

    Microsoft Academic Search

    Sabeel P. Valappil; Aldo R. Boccaccini; Christopher Bucke; Ipsita Roy

    2007-01-01

    Gram-positive bacteria, notably Bacillus and Streptomyces, have been used extensively in industry. However, these microorganisms have not yet been exploited for the production of the biodegradable polymers, polyhydroxyalkanoates (PHAs). Although PHAs have many potential applications, the cost of production means that medical applications are currently the main area of use. Gram-negative bacteria, currently the only commercial source of PHAs, have

  9. Microarray-Based Detection of 90 Antibiotic Resistance Genes of Gram-Positive Bacteria

    Microsoft Academic Search

    Vincent Perreten; Lorianne Vorlet-Fawer; Peter Slickers; Ralf Ehricht; Peter Kuhnert; Joachim Frey

    2005-01-01

    A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length

  10. Spectroscopic studies and antibacterial activities of some new 16-membered octaazamacrocyclic complexes derived from thiocarbohydrazide and pentane-2,4-dione

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Kumar, Krishan; Chopra, Rimpi Mehani ne'e.

    2011-02-01

    A series of macrocyclic complexes of the type [M(C 12H 20N 8S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by template condensation of thiocarbohydrazide and pentane-2,4-dione in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR, IR, EPR and MS spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antibacterial activities against some Gram-positive bacterial strains, i.e., Bacillus subtilis, Bacillus stearothermophilus and two Gram-negative bacterial strains, i.e., Escherichia coli, Pseudomonas putida. The results obtained were compared with standard antibiotics, Chloramphenicol and Streptomycin and found that some of the synthesized complexes show good antibacterial activities as compared to the standard antibiotics.

  11. Antibacterial Activity of a Cardanol from Thai Apis mellifera Propolis

    PubMed Central

    Boonsai, Pattaraporn; Phuwapraisirisan, Preecha; Chanchao, Chanpen

    2014-01-01

    Background: Propolis is a sticky, dark brown resinous residue made by bees that is derived from plant resins. It is used to construct and repair the nest, and in addition possesses several diverse bioactivities. Here, propolis from Apis mellifera from Nan province, Thailand, was tested for antibacterial activity against Gram+ve (Staphylococcus aureus and Paenibacillus larvae) and Gram-ve (Escherichia coli) bacteria. Materials and methods: The three bacterial isolates were confirmed for species designation by Gram staining and analysis of the partial sequence of 16S rDNA. Propolis was sequentially extracted by methanol, dichloromethane and hexane. The antibacterial activity was determined by agar well diffusion and microbroth dilution assays using streptomycin as a positive control. The most active crude extract was further purified by quick column and adsorption chromatography. The apparent purity of each bioactive fraction was tested by thin layer chromatography. The chemical structure of the isolated bioactive compound was analyzed by nuclear magnetic resonance (NMR). Results: Crude methanol extract of propolis showed the best antibacterial activity with a minimum inhibition concentration (MIC) value of 5 mg/mL for S. aureus and E. coli and 6.25 mg/mL for P. larvae. After quick column chromatography, only three active fractions were inhibitory to the growth of S. aureus and E. coli with MIC values of 6.25 and 31.3 µg/mL, respectively. Further adsorption chromatography yielded one pure bioactive fraction (A1A) with an IC50 value of 0.175 µg/mL for E. coli and 0.683 µg/mL for P. larvae, and was determined to be cardanol by NMR analysis. Scanning and transmission electron microscopy analysis revealed unusual shaped (especially in dividing cells), damaged and dead cells in cardanol-treated E. coli. Conclusion: Thai propolis contains a promising antibacterial agent. PMID:24578609

  12. Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

    PubMed Central

    Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung

    2011-01-01

    The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 ?g/ml to 5000 ?g/ml. The lowest MIC (0.6 ?g/ml) and MBC (1.22 ?g/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548

  13. Antibacterial activity of a pepsin-derived bovine hemoglobin fragment

    Microsoft Academic Search

    R. Froidevaux; F. Krier; N. Nedjar-Arroume; D. Vercaigne-Marko; E. Kosciarz; C. Ruckebusch; P. Dhulster; D. Guillochon

    2001-01-01

    Peptic digestion of bovine hemoglobin yields a fragment with antibacterial activity. This peptide was purified to homogeneity by a two-step procedure including anion exchange chromatography and preparative reversed-phase HPLC. Mass determination and fragmentation indicated that this peptide corresponded to the 1–23 fragment of the ? chain of hemoglobin. The minimum inhibitory concentration and mode of action of this peptide towards

  14. Potential Role for Telavancin in Bacteremic Infections Due to Gram-Positive Pathogens: Focus on Staphylococcus aureus.

    PubMed

    Corey, G Ralph; Rubinstein, Ethan; Stryjewski, Martin E; Bassetti, Matteo; Barriere, Steven L

    2015-03-01

    Staphylococcus aureus bacteremia (SAB) is one of the most common serious bacterial infections and the most frequent invasive infection due to methicillin-resistant S. aureus (MRSA). Treatment is challenging, particularly for MRSA, because of limited treatment options. Telavancin is a bactericidal lipoglycopeptide antibiotic that is active against a range of clinically relevant gram-positive pathogens including MRSA. In experimental animal models of sepsis telavancin was shown to be more effective than vancomycin. In clinically evaluable patients enrolled in a pilot study of uncomplicated SAB, cure rates were 88% for telavancin and 89% for standard therapy. Among patients with infection due to only gram-positive pathogens enrolled in the 2 phase 3 studies of telavancin for treatment of hospital-acquired pneumonia, cure rates for those with bacteremic S. aureus pneumonia were 41% (9/22, telavancin) and 40% (10/25, vancomycin) with identical mortality rates. These data support further evaluation of telavancin in larger, prospective studies of SAB. PMID:25472944

  15. Potential Role for Telavancin in Bacteremic Infections Due to Gram-Positive Pathogens: Focus on Staphylococcus aureus

    PubMed Central

    Corey, G. Ralph; Rubinstein, Ethan; Stryjewski, Martin E.; Bassetti, Matteo; Barriere, Steven L.

    2015-01-01

    Staphylococcus aureus bacteremia (SAB) is one of the most common serious bacterial infections and the most frequent invasive infection due to methicillin-resistant S. aureus (MRSA). Treatment is challenging, particularly for MRSA, because of limited treatment options. Telavancin is a bactericidal lipoglycopeptide antibiotic that is active against a range of clinically relevant gram-positive pathogens including MRSA. In experimental animal models of sepsis telavancin was shown to be more effective than vancomycin. In clinically evaluable patients enrolled in a pilot study of uncomplicated SAB, cure rates were 88% for telavancin and 89% for standard therapy. Among patients with infection due to only gram-positive pathogens enrolled in the 2 phase 3 studies of telavancin for treatment of hospital-acquired pneumonia, cure rates for those with bacteremic S. aureus pneumonia were 41% (9/22, telavancin) and 40% (10/25, vancomycin) with identical mortality rates. These data support further evaluation of telavancin in larger, prospective studies of SAB. PMID:25472944

  16. The Antibacterial Activity of Honey Derived from Australian Flora

    PubMed Central

    Irish, Julie; Blair, Shona; Carter, Dee A.

    2011-01-01

    Chronic wound infections and antibiotic resistance are driving interest in antimicrobial treatments that have generally been considered complementary, including antimicrobially active honey. Australia has unique native flora and produces honey with a wide range of different physicochemical properties. In this study we surveyed 477 honey samples, derived from native and exotic plants from various regions of Australia, for their antibacterial activity using an established screening protocol. A level of activity considered potentially therapeutically useful was found in 274 (57%) of the honey samples, with exceptional activity seen in samples derived from marri (Corymbia calophylla), jarrah (Eucalyptus marginata) and jellybush (Leptospermum polygalifolium). In most cases the antibacterial activity was attributable to hydrogen peroxide produced by the bee-derived enzyme glucose oxidase. Non-hydrogen peroxide activity was detected in 80 (16.8%) samples, and was most consistently seen in honey produced from Leptospermum spp. Testing over time found the hydrogen peroxide-dependent activity in honey decreased, in some cases by 100%, and this activity was more stable at 4°C than at 25°C. In contrast, the non-hydrogen peroxide activity of Leptospermum honey samples increased, and this was greatest in samples stored at 25°C. The stability of non-peroxide activity from other honeys was more variable, suggesting this activity may have a different cause. We conclude that many Australian honeys have clinical potential, and that further studies into the composition and stability of their active constituents are warranted. PMID:21464891

  17. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    NASA Astrophysics Data System (ADS)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  18. Antibacterial activities of some mosses including Hylocomium splendens from South Western British Columbia.

    PubMed

    Kang, S J; Kim, S H; Liu, P; Jovel, E; Towers, G H N

    2007-07-01

    The antibacterial activity of methanol extracts of ten moss species and fractions prepared from 80% methanol extract of Hylocomium splendens were evaluated by disk diffusion method. Nine moss species showed antibacterial activity against Gram (+) bacteria, in particular H. splendens and its ethyl acetate fractions showed stronger activity. Enhancement of antibacterial activity against Staphylococci by UV-A light irradiation was demonstrated in the extracts of Bartramia pomiformis, Ceratodon purpureus and Neckera douglasii. PMID:17553633

  19. Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099).

    PubMed

    Basarab, Gregory S; Hill, Pamela J; Garner, C Edwin; Hull, Ken; Green, Oluyinka; Sherer, Brian A; Dangel, P Brian; Manchester, John I; Bist, Shanta; Hauck, Sheila; Zhou, Fei; Uria-Nickelsen, Maria; Illingworth, Ruth; Alm, Richard; Rooney, Mike; Eakin, Ann E

    2014-07-24

    AZD5099 (compound 63) is an antibacterial agent that entered phase 1 clinical trials targeting infections caused by Gram-positive and fastidious Gram-negative bacteria. It was derived from previously reported pyrrolamide antibacterials and a fragment-based approach targeting the ATP binding site of bacterial type II topoisomerases. The program described herein varied a 3-piperidine substituent and incorporated 4-thiazole substituents that form a seven-membered ring intramolecular hydrogen bond with a 5-position carboxylic acid. Improved antibacterial activity and lower in vivo clearances were achieved. The lower clearances were attributed, in part, to reduced recognition by the multidrug resistant transporter Mrp2. Compound 63 showed notable efficacy in a mouse neutropenic Staphylococcus aureus infection model. Resistance frequency versus the drug was low, and reports of clinical resistance due to alteration of the target are few. Hence, 63 could offer a novel treatment for serious issues of resistance to currently used antibacterials. PMID:24959892

  20. Seasonal effect on Brazilian propolis antibacterial activity

    Microsoft Academic Search

    J. M Sforcin; A Fernandes; C. A. M Lopes; V Bankova; S. R. C Funari

    2000-01-01

    The behavior of microorganisms towards the antibiotic action of propolis has been widely investigated. Since reports dealing with seasonal effect on propolis activity are not available, this assay was carried out aiming to observe the in vitro antimicrobial activity of propolis, collected during the four seasons, on bacterial strains isolated from human infections. Dilution of ethanolic extract of propolis (EEP)

  1. Ubiquitous detection of gram-positive bacteria with bioorthogonal magnetofluorescent nanoparticles.

    PubMed

    Chung, Hyun Jung; Reiner, Thomas; Budin, Ghyslain; Min, Changwook; Liong, Monty; Issadore, David; Lee, Hakho; Weissleder, Ralph

    2011-11-22

    The ability to rapidly diagnose gram-positive pathogenic bacteria would have far reaching biomedical and technological applications. Here we describe the bioorthogonal modification of small molecule antibiotics (vancomycin and daptomycin), which bind to the cell wall of gram-positive bacteria. The bound antibiotics conjugates can be reacted orthogonally with tetrazine-modified nanoparticles, via an almost instantaneous cycloaddition, which subsequently renders the bacteria detectable by optical or magnetic sensing. We show that this approach is specific, selective, fast and biocompatible. Furthermore, it can be adapted to the detection of intracellular pathogens. Importantly, this strategy enables detection of entire classes of bacteria, a feat that is difficult to achieve using current antibody approaches. Compared to covalent nanoparticle conjugates, our bioorthogonal method demonstrated 1-2 orders of magnitude greater sensitivity. This bioorthogonal labeling method could ultimately be applied to a variety of other small molecules with specificity for infectious pathogens, enabling their detection and diagnosis. PMID:21967150

  2. Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria

    PubMed Central

    Schneewind, Olaf

    2014-01-01

    Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria. PMID:24415723

  3. Chapter 7 Culture media for non-sporulating Gram-positive food spoilage bacteria

    Microsoft Academic Search

    W. H. Holzapfel

    1995-01-01

    The spoilage association especially of protein-rich foods can be dominated by Gram-positive bacteria, notably lactic acid bacteria (LAB) which affect vacuum packaged refrigerated processed meats and some dairy products.New food ecosystems are being created by novel packaging and processing technologies, resulting in spoilage associations differing from those previously reported. In addition, improvement in identifica-tion methods, allow the detection and isolation

  4. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections

    PubMed Central

    Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8?ng/mL, interquartile range (IQR) 3.4–44.1) bacteremias was significantly higher than in Gram-positive (2.1?ng/mL, IQR 0.6–7.6) or fungal (0.5?ng/mL, IQR 0.4–1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725–0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8?ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6?ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1?ng/mL, IQR 5.9–48.5 versus 3.5?ng/mL, IQR 0.8–21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies. PMID:25852221

  5. Identification of Aerobic Gram-Positive Bacilli by Use of Vitek MS

    PubMed Central

    Navas, Maria; Pincus, David H.; Wilkey, Kathy; Sercia, Linda; LaSalvia, Margaret; Wilson, Deborah; Procop, Gary W.

    2014-01-01

    The accuracy of Vitek MS mass spectrometric identifications was assessed for 206 clinically significant isolates of aerobic Gram-positive bacilli representing 20 genera and 38 species. The Vitek MS identifications were correct for 85% of the isolates (56.3% to the species level, 28.6% limited to the genus level), with misidentifications occurring for 7.3% of the isolates. PMID:24501030

  6. Effect of microwave irradiation on cellular disintegration of Gram positive and negative cells

    Microsoft Academic Search

    Bi Wen Zhou; Seung Gu Shin; KwangHyun Hwang; Johng-Hwa Ahn; Seokhwan Hwang

    2010-01-01

    This research investigated the effect of microwave irradiation (MWI) on cell disintegration in municipal secondary sludge\\u000a (MSS). A representative MSS Gram-positive bacterium (Bacillus subtilis) and Gram-negative bacteria (Acinetobacter calcoaceticus and Pseudomonas aeruginosa) were pure cultured separately and treated using MWI. Compared to untreated controls, MWI significantly increased the soluble\\u000a chemical oxygen demand (COD) (1.8–4.0-fold), soluble protein concentration (1.1–1.8-fold), and soluble

  7. Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure

    Microsoft Academic Search

    F Marchal; H Robert; N Merbahi; C Fontagné-Faucher; M Yousfi; C E Romain; O Eichwald; C Rondel; B Gabriel

    2012-01-01

    This work is devoted to the evaluation of the efficiency of a new low-temperature plasma jet driven in ambient air by a dc-corona discharge to inactivate adherent cells and biofilms of Gram-positive bacteria. The selected microorganisms were lactic acid bacteria, a Weissella confusa strain which has the particularity to excrete a polysaccharide polymer (dextran) when sucrose is present. Both adherent

  8. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis

    Microsoft Academic Search

    F. Kunst; N. Ogasawara; I. Moszer; A. M. Albertini; G. Alloni; V. Azevedo; M. G. Bertero; P. Bessières; A. Bolotin; S. Borchert; R. Borriss; L. Boursier; A. Brans; M. Braun; S. C. Brignell; S. Bron; S. Brouillet; C. V. Bruschi; B. Caldwell; V. Capuano; N. M. Carter; S.-K. Choi; J.-J. Codani; I. F. Connerton; N. J. Cummings; R. A. Daniel; F. Denizot; K. M. Devine; A. Düsterhöft; S. D. Ehrlich; P. T. Emmerson; K. D. Entian; J. Errington; C. Fabret; E. Ferrari; D. Foulger; C. Fritz; M. Fujita; Y. Fujita; S. Fuma; A. Galizzi; N. Galleron; S.-Y. Ghim; P. Glaser; A. Goffeau; E. J. Golightly; G. Grandi; G. Guiseppi; B. J. Guy; K. Haga; J. Haiech; C. R. Harwood; A. Hénaut; H. Hilbert; S. Holsappel; S. Hosono; M.-F. Hullo; M. Itaya; L. Jones; B. Joris; D. Karamata; Y. Kasahara; M. Klaerr-Blanchard; C. Klein; Y. Kobayashi; P. Koetter; G. Koningstein; S. Krogh; M. Kumano; K. Kurita; A. Lapidus; S. Lardinois; J. Lauber; V. Lazarevic; S.-M. Lee; A. Levine; H. Liu; S. Masuda; C. Mauël; C. Médigue; N. Medina; R. P. Mellado; M. Mizuno; D. Moestl; S. Nakai; M. Noback; D. Noone; M. O'Reilly; K. Ogawa; A. Ogiwara; B. Oudega; S.-H. Park; V. Parro; T. M. Pohl; D. Portetelle; S. Porwollik; A. M. Prescott; E. Presecan; P. Pujic; B. Purnelle; G. Rapoport; M. Rieger; S. Reynolds; C. Rivolta; E. Rocha; B. Roche; M. Rose; Y. Sadaie; T. Sato; E. Scanlan; S. Schleich; R. Schroeter; F. Scoffone; J. Sekiguchi; A. Sekowska; S. J. Seror; P. Serror; B.-S. Shin; B. Soldo; A. Sorokin; E. Tacconi; T. Takagi; H. Takahashi; K. Takemaru; M. Takeuchi; A. Tamakoshi; T. Tanaka; P. Terpstra; A. Tognoni; V. Tosato; S. Uchiyama; M. Vandenbol; F. Vannier; A. Vassarotti; A. Viari; R. Wambutt; E. Wedler; H. Wedler; T. Weitzenegger; P. Winters; A. Wipat; H. Yamamoto; K. Yamane; K. Yasumoto; K. Yata; K. Yoshida; H.-F. Yoshikawa; E. Zumstein; H. Yoshikawa; A. Danchin

    1997-01-01

    Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large

  9. The complete genome sequence of the gram-positive bacterium Bacillus subtilis

    Microsoft Academic Search

    F. Kunst; N. Ogasawara; I. Moszer; A. M. Albertini; G. Alloni; V. Azevedo; M. G. Bertero; P. Bessières; A. Bolotin; S. Borchert; R. Borriss; L. Boursier; A. Brans; M. Braun; S. C. Brignell; S. Bron; S. Brouillet; C. V. Bruschi; B. Caldwell; V. Capuano; N. M. Carter; S.-K. Choi; J.-J. Codani; I. F. Connerton; A. Danchin

    1997-01-01

    Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large

  10. Antibacterial activity of novel naphthoquiones derivatives

    Microsoft Academic Search

    Yongseog Chung; Ren shu Quan; Hyeon Mo Chang; Soo Han Kwon; Soon-Ja Kim; Young-Sam Im; Kyeong Seob Shin; Kyung-Do Park; Hak-Kyo Lee; Joong-Kook Choi

    2009-01-01

    l,4-naphthoquinone moiety is Known to confer numerous molecules with distinct-hiological activities including anti -mycobacterial,\\u000a anticancer and anti-inflammatory activities. Vitamin K2, doxorubicin and mitomycin are among the few examples of this class\\u000a of chemicals used in the treatment of bleeding, lymphoma and carcinoma respectively. Although the exact action mechanism of\\u000a these molecules is still under investigation, proposed mechanisms include their interact

  11. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolormmi_7261 943..957

    E-print Network

    Palmer, Tracy

    Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces of the cyto- plasmic membrane. Here we identify lipoproteins in the model Gram-positive bacterium Streptomyces coelicolor using bioinformatics coupled with pro- teomic and downstream analysis. We report that Streptomyces

  12. (Aminophosphane)gold(I) and silver(I) complexes as antibacterial agents.

    PubMed

    Ortego, Lourdes; Gonzalo-Asensio, Jesús; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2015-05-01

    This manuscript describes the synthesis of new Au(I) and Ag(I) complexes with aminophosphane ligands and a study of their antibacterial activity against Gram-negative Salmonella enterica serovar typhimurium and Escherichia coli and Gram-positive Listeria monocytogenes and Staphylococcus aureus. The bactericidal assays revealed the effectiveness of these compounds on paradigm Gram-negative and Gram-positive pathogens, showing a moderate antimicrobial activity, comparable with the antibiotics of reference, for all gold(I) complexes and the silver(I) complexes without coordinated PPh3 groups. For those complexes that were found to show inhibitory activity, serial dilutions in liquid broth method were performed for determination of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). PMID:25706322

  13. Multiple Responses of Gram-Positive and Gram-Negative Bacteria to Mixture of Hydrocarbons

    PubMed Central

    Marilena L?z?roaie, Mihaela

    2010-01-01

    Most of our knowledge about pollutants and the way they are biodegraded in the environment has previously been shaped by laboratory studies using hydrocarbon-degrading bacterial strains isolated from polluted sites. In present study Gram-positive (Mycobacterium sp. IBBPo1, Oerskovia sp. IBBPo2, Corynebacterium sp. IBBPo3) and Gram-negative (Chryseomonas sp. IBBPo7, Pseudomonas sp. IBBPo10, Burkholderia sp. IBBPo12) bacteria, isolated from oily sludge, were found to be able to tolerate pure and mixture of saturated hydrocarbons, as well as pure and mixture of monoaromatic and polyaromatic hydrocarbons. Isolated Gram-negative bacteria were more tolerant to mixture of saturated (n-hexane, n-hexadecane, cyclohexane), monoaromatic (benzene, toluene, ethylbenzene) and polyaromatic (naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons than Gram-positive bacteria. There were observed cellular and molecular modifications induced by mixture of saturated, monoaromatic and polyaromatic hydrocarbons to Gram-positive and Gram-negative bacteria. These modifications differ from one strain to another and even for the same bacterial strain, according to the nature of hydrophobic substrate. PMID:24031541

  14. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  15. Chemical constituents and antibacterial activity of Melastoma malabathricum L.

    PubMed

    Wong, Keng-Chong; Hag Ali, Dafaalla Mohamed; Boey, Peng-Lim

    2012-01-01

    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2?-hydroxyursolic acid (2), asiatic acid (3), ?-sitosterol 3-O-?-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-?-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-?-L-rhamnopyranoside (7), kaempferol 3-O-?-D-glucopyranoside (8), kaempferol 3-O-?-D-galactopyranoside (9), kaempferol 3-O-(2?,6?-di-O-E-p-coumaryl)-?-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety. PMID:21834640

  16. Antibacterial activity of raspberry cordial in vitro.

    PubMed

    Ryan, T; Wilkinson, J M; Cavanagh, H M

    2001-12-01

    Raspberry juice cordial has a long anecdotal use in Australia for the prophylaxis and treatment of gastroenteritis in livestock, cage birds and humans. The antimicrobial properties of raspberry juice cordial, raspberry juice, raspberry leaf extract and a commercial brand of raspberry leaf tea were investigated against five human pathogenic bacteria and two fungi. Raspberry cordial and juice were found to significantly reduce the growth of several species of bacteria, including Salmonella, Shigella and E. coli, but demonstrated no antifungal activity. No antimicrobial activity was detected in the leaf extract or tea. PMID:11798288

  17. The alternating pattern of stereochemistry in the nonactin macrocycle is required for antibacterial activity and efficient ion binding

    PubMed Central

    Kusche, Brian R.; Smith, Adrienne E.; McGuirl, Michele A.; Priestley, Nigel D.

    2010-01-01

    Nonactin is a polyketide antibiotic produced by Streptomyces griseus ETH A7796. It is active against a range of Gram positive organisms, acting as an ionophore that has a high selectivity for K+ ions. Among the polyketides, nonactin has a unique structure. It is a 32-membered, cyclic tetraester generated from four monomers of nonactic acid, two of which are (+)-nonactic acid and two of which are (?)-nonactic acid. The monomers are arranged (+)-(?)-(+)-(?) in the macrocycle so that nonactin has S4 symmetry and is achiral. As the structure of nonactin is unique, so is the biosynthesis of the compound. There is much evidence that after an early achiral intermediate, there are two mirror image biosynthesis pathways, one for the synthesis of each enantiomer of nonactic acid. Emerging evidence suggests that the two pathways arose from gene duplication followed by divergent evolution. The central question, therefore, raised by both the structure and the biosynthesis of nonactin concerns the benefit, if any, to the producing organism in initially selecting for, and then maintaining, two independent pathways for nonactic acid synthesis and for generating only the achiral diastereoisomer of nonactin. To understand why achiral nonactin is the naturally generated diastereoisomer we prepared through synthesis two alternate diastereoisomers of nonactin, one prepared solely from (+)-nonactic acid and one prepared solely from (?)-nonactic acid, referred to here as ‘all-(+)-nonactin’ and ‘all-(?)-nonactin’ respectively. Both all-(+)-nonactin and all-(?)-nonactin were more than 500-fold less active against Gram positive organisms than nonactin confirming that the biosynthesis of both nonactic acid enantiomers, and their incorporation into nonactin, is necessary for biological activity. To understand the lack of antibacterial activity we used isothermal calorimetry to measure the association constant Ka, ?G, ?H and ?S of formation for the K+, Na+ and NH4+ complexes of nonactin and all-(?)-nonactin. The natural diastereoisomer had a high selectivity for K+ to which it bound approximately 880-fold better than all-(?)-nonactin. We used a picrate partitioning assay to confirm that all-(?)-nonactin, unlike nonactin, could not partition K+ ions into organic solvent. To complement the thermodynamic data we used a simple experimental model to mimic ion transport. Using two concentric glass tubes we arranged for two aqueous samples to be separated by a CHCl3 layer. By following the co-transport of picrate anion from one aqueous layer to the other, through the organic phase, we were able to measure the rates of K+ transport that were facilitated by the ionophores. Whereas nonactin allowed for efficient K+ transport, all-(?)-nonactin was completely ineffective. Modeling of the K+ complexes of nonactin and all-(?)-nonactin suggested that only in the case of the natural diastereoisomer, where the monomer stereochemistry is alternated around the macrocycle, can the hydrogen atoms at C3 and C6 of each monomer be on the inside of the cavity occupied by the ion. The latter conformation is unavailable to all-(?)-nonactin and so steric interactions prevent the closing of the macrocycle around the ion sufficiently to form optimum K–O bond lengths. The data show conclusively that both enantiomers of nonactic acid are needed for the formation of an ionophore that has antibacterial activity, can selectively and strongly bind K+, can allow for the partitioning of K+ into an organic phase and that can support the transport of K+ across a membrane model. The requirement for both enantiomers of nonactic acid to be present in the nonactin structure for the latter to have activity is reflected in the fact that S. griseus has maintained two, mirror image biosynthesis pathways. PMID:19902940

  18. Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds

    PubMed Central

    Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana

    2014-01-01

    The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249

  19. A detailed study of antibacterial 3-acyltetramic acids and 3-acylpiperidine-2,4-diones.

    PubMed

    Jeong, Yong-Chul; Bikadi, Zsolt; Hazai, Eszter; Moloney, Mark G

    2014-08-01

    Inspired by the core fragment of antibacterial natural products such as streptolydigin, 3-acyltetramic acids and 3-acylpiperidine-2,4-diones have been synthesised from the core heterocycle by direct acylation with the substituted carboxylic acids using a strategy which permits ready access to a structurally diverse compound library. The antibacterial activity of these systems has been established against a panel of Gram-positive and Gram-negative bacteria, with activity mostly against the former, which in some cases is very potent. Data consistent with modes of action against undecaprenylpyrophosphate synthase (UPPS) and/or RNA polymerase (RNAP) for a small subset of the library has been obtained. The most active compounds have been shown to exhibit binding at known binding sites of streptolydigin and myxopyronin at UPPS and RNAP. These systems offer potential for their antibacterial activity, and further demonstrate the use of natural products as biologically validated starting points for drug discovery. PMID:24838989

  20. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge

    Microsoft Academic Search

    Delphine Destoumieux; Marcello Muñoz; Céline Cosseau; Jenny Rodriguez; Philippe Bulet; Michel Comps; Evelyne Bachère

    2000-01-01

    Penaeidins are members of a new family of antimicrobial peptides isolated from a crustacean, which present both Gram-positive antibacterial and antifungal activities. We have studied the localization of synthesis and storage of penaeidins in the shrimp Penaeus vannamei. The distribution of penaeidin transcripts and peptides in various tissues reveals that penaeidins are constitutively synthesized and stored in the shrimp haemocytes.

  1. Antibacterial and Antifungal Activity of Benztropolone

    Microsoft Academic Search

    A. J. Baillie; G. G. Freeman; J. W. COOK; A. R. SOMERVILLE

    1950-01-01

    FOLLOWING the suggestion of Dewar1, it is now generally accepted that the mould metabolic products, stipitatic acid, puberulic acid and puberulonic acid are derivatives of tropolone2. Erdtman and Gripenberg3 have shown that alpha-, beta- and gamma-thujaplicins from Thuja plicata, the western red cedar tree, are, respectively, alpha-, beta- and gamma-isopropyltropolones. gamma-Thujaplicin was found to possess fungicidal activity; when spores of

  2. In vitro antibacterial effect of wasp (Vespa orientalis) venom

    PubMed Central

    2014-01-01

    Background The emergence of antibacterial resistance against several classes of antibiotics is an inevitable consequence of drug overuse. As antimicrobial resistance spreads throughout the globe, new substances will always be necessary to fight against multidrug-resistant microorganisms. Venoms of many animals have recently gained attention in the search for new antimicrobials to treat infectious diseases. Thefore, the present study aimed to study the antibacterial effects of wasp (Vespa orientalis) crude venom. Two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram-negative ones (Escherichia coli and Klesiella pneumonia) were compared for their sensitivity to the venom by determining the inhibition zone (Kirby-Bauer method) and minimum inhibitory concentration (MIC). A microbroth kinetic system based on continuous monitoring of changes in the optical density of bacterial growth was also used for determination of antimicrobial activity. Results The venom exhibited a well-recognized antimicrobial property against the tested bacterial strains. The inhibition zones were determined to be 12.6, 22.7, 22.4 and 10.2 mm for S. aureus, B. subtilis, E. coli and K. pneumonia, respectively. The corresponding MIC values were determined to be 64, 8, 64 and 128 ?g/mL, respectively. The MIC50 and MIC90 values of the venom were respectively determined to be 63.6 and 107 ?g/mL for S. aureus, 4.3 and 7.0 ?g/mL for B. subtilis, 45.3 and 65.7 ?g/mL for E. coli and 74.4 and 119.2 ?g/mL for K. pneumonia. Gram-positive bacteria were generally more sensitive to the venom than gram-negative ones. Conclusions Results revealed that the venom markedly inhibits the growth of both gram-positive and gram-negative bacteria and could be considered a potential source for developing new antibacterial drugs. PMID:24955088

  3. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity

    Microsoft Academic Search

    Ekambaram Ramesh; Rathna Durga R. S. Manian; Ragavachary Raghunathan; Shilpakala Sainath; Malathi Raghunathan

    2009-01-01

    Synthesis of a series of novel tetrahydroquinoline annulated heterocycles has been accomplished by intramolecular imino and bisimino Diels–Alder reaction. These compounds were evaluated for their antibacterial activity. All the synthetic compounds, exhibited good antibacterial activity against microorganisms of which one of them 7 was found to be as active as the antibiotic ciplofloxacin and is found to have MIC value

  4. Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones.

    PubMed

    Chohan, Zahid H; Rauf, Abdul; Naseer, Muhammad M; Somra, Muhammad A; Supuran, Claudiu T

    2006-04-01

    A series of antibacterial and antifungal sulfonamide (sulfanilamide, sulfaguanidine, sulfamethaxozole, 4-aminoethylbenzene-sulfonamide and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide) derived chromones, previously reported as inhibitors of carbonic anhydrase, have been screened for in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexener) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. All compounds (1)-(5) showed significant antibacterial activity against all four Gram-negative species and both Gram-positive species. However, three of them, (1), (4) and (5), were found to be comparatively much more active compared to (2) and (3). Of these, (5) was found to be the most active one. For antifungal activity, generally compounds (1) and (2) showed significant activity against more than three strains whereas (3)-(5) also showed significant activity against varied fungal strains. In the brine shrimp bioassay for in-vitro cytotoxic properties, only two compounds, (4) and (5) displayed potent cytotoxic activity, LD50 = 2.732 x 10(-4)M) and LD50 = 2.290 x 10(-4)M) respectively, against Artemia salina. PMID:16789431

  5. Antibacterial activities and antioxidant capacity of Aloe vera

    PubMed Central

    2013-01-01

    Background The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods. Results Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts. Conclusion Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes. PMID:23870710

  6. Antibacterial activity of ordered gold nanorod arrays.

    PubMed

    Zhu, Yuejing; Ramasamy, Mohankandhasamy; Yi, Dong Kee

    2014-09-10

    Well-packed two- and three-dimensional (2D and 3D) gold nanorod (AuNR) arrays were fabricated using confined convective arraying techniques. The array density could be controlled by changing the concentration of the gold nanorods solution, the velocity of the moving substrate, and the environment air-temperature. The hydrophilic behavior of glass substrates before and after surface modification was studied through contact angle measurements. The affinity and alignment of the AuNR arrays with varying nanorod concentrations and the resulting different array densities were studied using field emission scanning electron microscopy (FE-SEM). Under stable laser intensity irradiation, the photothermal response of the prepared arrays was measured using a thermocouple and the results were analyzed quantitatively. Synthesized AuNR arrays were added to Escherichia coli (E. coli) suspensions and evaluated for photothermal bactericidal activity before and after laser irradiation. The results showed promising bactericidal effect. The severity of pathogen destruction was measured and quantified using fluorescence microscopy, bioatomic force microscopy (Bio-AFM) and flow cytometry techniques. These results indicated that the fabricated AuNR arrays at higher concentrations were highly capable of complete bacterial destruction by photothermal effect compared to the low concentration AuNR arrays. Subsequent laser irradiation of the AuNR arrays resulted in rapid photoheating with remarkable bactericidal activity, which could be used for water treatment to produce microbe-free water. PMID:25148531

  7. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF CEPHRADINE METAL COMPLEXES: PART I COMPLEXES WITH MAGNESIUM, CALCIUM, CHROMIUM AND MANGANESE

    Microsoft Academic Search

    NAJMA SULTANA; M. SAEED ARAYNE; M. AFZAL

    2003-01-01

    Cephradine is included among the first generation cephalosporins, which is active against a wide range of Gram-positive and Gram-negative bacteria including penicillinase- producing Staphylococci. Since the presence of complexing ligand may affect the bioavailability of a metal in the blood or tissues, therefore, in order to study the probable interaction of cephradine with essential and trace elements present in human

  8. Isolation and Characterization of Gram-Positive Biosurfactant-Producing Halothermophilic Bacilli From Iranian Petroleum Reservoirs

    PubMed Central

    Zargari, Saeed; Ramezani, Amin; Ostvar, Sassan; Rezaei, Rasool; Niazi, Ali; Ayatollahi, Shahab

    2014-01-01

    Background: Petroleum reservoirs have long been known as the hosts of extremophilic microorganisms. Some of these microorganisms are known for their potential biotechnological applications, particularly production of extra and intracellular polymers and enzymes. Objectives: Here, 14 petroleum liquid samples from southern Iranian oil reservoirs were screened for presence of biosurfactant?producing halothermophiles. Materials and Methods: Mixture of the reservoir fluid samples with a minimal growth medium was incubated under an N2 atmosphere in 40°C; 0.5 mL samples were transferred from the aqueous phase to agar plates after 72 hours of incubation; 100 mL cell cultures were prepared using the MSS-1 (mineral salt solution 1) liquid medium with 5% (w/v) NaCl. The time-course samples were analyzed by recording the absorbance at 600 nm using a spectrophotometer. Incubation was carried out in 40°C with mild shaking in aerobic conditions. Thermotolerance was evaluated by growing the isolates at 40, 50, 60 and 70°C with varying NaCl concentrations of 5% and 10% (w/v). Halotolerance was evaluated using NaCl concentrations of 5%, 10%, 12.5% and 15% (w/v) and incubating them at 40°C under aerobic and anaerobic conditions. Different phenotypic characteristics were evaluated, as outlined in Bergey's manual of determinative bacteriology. Comparing 16S rDNA sequences is one of the most powerful tools for classification of microorganisms. Results: Among 34 isolates, 10 demonstrated biosurfactant production and growth at temperatures between 40°C and 70°C in saline media containing 5%?15% w/v NaCl. Using partial 16S rDNA sequencing (and amplified ribosomal DNA restriction analysis [ARDRA]) and biochemical tests (API tests 20E and 50 CHB), all the 10 isolates proved to be facultative anaerobic, Gram-positive moderate thermohalophiles of the genus Bacillus (B. thermoglucosidasius, B. thermodenitrificans, B. thermoleovorans, B. stearothermophilus and B. licheniformis), exhibiting surface-active behaviors. Conclusions: General patterns include decreasing the thermotolerance with increasing the salt concentrations and also more halotolerance in the aerobic environment compared with anaerobic conditions. The results demonstrated that Iranian petroleum reservoirs enjoy a source of indigenous extremophilic microorganisms with potential applications in microbial enhanced oil recovery and commercial enzyme production. PMID:25485045

  9. Antiplasmodial and antibacterial activity of compounds isolated from Ormocarpum trichocarpum.

    PubMed

    Chukwujekwu, Jude C; de Kock, Carmen A; Smith, Peter J; van Heerden, Fanie R; van Staden, Johannes

    2012-11-01

    Using activity-guided fractionation based on in vitro antibacterial assays, five biflavonoids, among them two new ones, were isolated from the aerial parts of Ormocarpum trichocarpum. The isolated compounds showed MIC values in the range of 4.0 to 136.7?µM against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia and IC50 values in the range of 4.30 to 94.32?µM against the chloroquine-sensitive D10 Plasmodium falciparum strain. PMID:23059633

  10. Synthesis, Spectral and Antibacterial Studies of Copper(II) Tetraaza Macrocyclic Complexes

    PubMed Central

    Reddy, Puchakayala Muralidhar; Rohini, Rondla; Krishna, Edulla Ravi; Hu, Anren; Ravinder, Vadde

    2012-01-01

    A novel family of tetraaza macrocyclic Cu(II) complexes [CuLX2] (where L = N4 donor macrocyclic ligands) and (X = Cl?, NO3 ?) have been synthesized and characterized by elemental analysis, magnetic moments, IR, EPR, mass, electronic spectra and thermal studies. The magnetic moments and electronic spectral studies suggest square planar geometry for [Cu(DBACDT)]Cl2 and [Cu(DBACDT)](NO3)2 complexes and distorted octahedral geometry to the rest of the ten complexes. The biological activity of all these complexes against gram-positive and gram-negative bacteria was compared with the activity of existing commercial antibacterial compounds like Linezolid and Cefaclor. Six complexes out of twelve were found to be most potent against both gram-positive as well as gram-negative bacteria due to the presence of thio group in the coordinated ligands. PMID:22606024

  11. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa.

    PubMed

    Auranwiwat, Chiramet; Trisuwan, Kongkiat; Saiai, Aroonchai; Pyne, Stephen G; Ritthiwigrom, Thunwadee

    2014-10-01

    A phytochemical investigation of the acetone extract from the immature fruits of Garcinia cowa led to the isolation of two novel tetraoxygenated xanthones, garcicowanones A (1) and B (2), together with eight known tetraoxygeanted xanthones. Their structures were determined by spectroscopic analysis. All isolated compounds were evaluated for their antibacterial activity against Bacillus cereus TISTR 688, Bacillus subtilis TISTR 008, Micrococcus luteus TISTR 884, Staphylococcus aureus TISTR 1466, Escherichia coli TISTR 780, Pseudomonas aeruginosa TISTR 781, Salmonella typhimurium TISTR 292 and Staphylococcus epidermidis ATCC 12228. ?-Mangostin showed potent activity (MIC 0.25-1 ?g/mL) against three Gram-positive strains and garcicowanone A and ?-mangostin exhibited strong antibacterial activity against B. cereus with the same MIC values of 0.25 ?g/mL. PMID:25110196

  12. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes.

    PubMed

    Heumann, D; Barras, C; Severin, A; Glauser, M P; Tomasz, A

    1994-07-01

    Purified cell walls representing a wide variety in teichoic acid and peptidoglycan structure prepared from eight different gram-positive bacterial species induced the production of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 from human monocytes in the presence of 10% plasma or serum. Significant amounts of cytokines began to be produced at concentrations above 100 ng to 1 microgram of cell walls per ml, with maximal production requiring 10 to 100 micrograms of cell wall material per ml. In the absence of plasma, the cytokine-inducing capacity of cell wall preparations was lower by at least an order of magnitude. The serum-derived cofactor was inactivated by heating at 90 degrees C for 30 min, suggesting that the activity is associated with a protein. On the other hand, replacement of normal with hypogammaglobulinemic plasma, inactivation of complement (at 56 degrees C), and blockade by the monoclonal antibody MY4 of the CD14 receptors on monocytes did not inhibit the production of TNF-alpha induced by whole cell walls. Cell walls also stimulated production of TNF-alpha induced by whole cell walls. Cell walls also stimulated production of TNF-alpha in the presence of polymyxin B, and macrophages derived from the lipopolysaccharide-insensitive cell line of C3He/HeJ mice also produced this cytokine when stimulated by cell walls. Both peptidoglycan and the soluble glycan-teichoic acid component prepared by an enzymatic method from the same wall preparation exhibited a serum-dependent induction of TNF-alpha from monocytes, while stem peptides and disacharride peptides had only poor, if any, activity. Cell walls may contribute to the septic shock induced by gram-positive bacteria. PMID:7516310

  13. Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages.

    PubMed

    Martín, B; Garriga, M; Hugas, M; Bover-Cid, S; Veciana-Nogués, M T; Aymerich, T

    2006-03-15

    The population of Gram-positive catalase-positive cocci from slightly fermented sausages was characterized at species and strain level by molecular techniques and some technological and hygienic aspects were also considered. Staphylococcus xylosus was the predominant species (80.8%) followed by Staphylococcus warneri (8.3%), Staphylococcus epidermidis (5.8%) Staphylococcus carnosus (4.6%), and Kocuria varians (0.4%). Proteolytic activity was observed in 23% of the isolates. The species with the highest percentage of proteolytic strains was S. warneri. Lipolytic activity was found in 45.8% of the isolates and S. xylosus was the species with the highest percentage of lipolytic isolates. Biogenic amine production was not widely distributed (only 14.6% of the isolates). Tyramine was the most intense amine produced, although by only 4.6% of the isolates. Phenylethylamine was more frequently detected (10.8% of isolates) but at lower levels. Some strains also produced putrescine (3.3%), cadaverine (2.9%), histamine (1.3%) and tryptamine (0.4%). All isolates were susceptible to linezolid and vancomicin and over 70% were resistant to penicillin G, ampicillin and sulphonamides. Most of the mecA+ strains (only 4.6% of isolates) also displayed resistance to multiple antibiotics. A reduced enterotoxigenic potential was found. Only 3.3% of isolates showed staphylococcal enterotoxins genes, all identified as entC gene. The combination of RAPD-PCR and plasmid profiling allowed the discrimination of 208 different profiles among the 240 Gram-positive catalase-positive cocci characterized, indicating a great genetic variability. PMID:16297478

  14. Structure–Activity Relationship Study of the Cleistriosides and Cleistetrosides for Antibacterial/Anticancer Activity

    PubMed Central

    2012-01-01

    Two known cleistriosides and six known cleistetrosides were synthesized and evaluated for anticancer and antibacterial activities. This study, for the first time, reports anticancer activity and comprehensively the antibacterial activity for these oligosaccharide natural products. In addition, two new unnatural cleistetroside analogues were synthesized and tested. Biological activities for the 10 oligosaccharides against B. subtilis were found to range between 4 and >64 ?M and for NCI-H460 human lung cancer epithelial cells between 7.5 and 90.9 ?M. Similar activities were found for seven of the oligosaccharides against the NCI panel of 60 cell lines. The degree of acylation and location of the specific acetate groups had significant effects on the anticancer and antibacterial activity of both the cleistriosides and the cleistetrosides. PMID:23543830

  15. Synthesis of Fe3O4 nanoparticles and its antibacterial application

    NASA Astrophysics Data System (ADS)

    Prabhu, Y. T.; Rao, K. Venkateswara; Kumari, B. Siva; Kumar, Vemula Sesha Sai; Pavani, Tambur

    2015-02-01

    The Present work outlines the antibacterial activity of Fe3O4 nanoparticles synthesized through chemical combustion method where ferric nitrate is used as precursor material and urea as fuel with the assistant of Tween 80, a non-ionic surfactant. The obtained Fe3O4 nanoparticles were characterized by X-ray diffraction, differential thermal analysis/thermo gravimetric analysis (DTA/TGA), particle size analyzer, SEM with EDAX and TEM. Various parameters such as dislocation density, micro strain, analysis of weight loss and surface morphological studies were calculated. The particle size was calculated from XRD and it was found to be 33-40 nm. Using well diffusion method antibacterial activity of Fe3O4 nanoparticles was tested against gram-positive and gram-negative Staphylococus aureus, Xanthomonas, Escherichia coli and Proteus vulgaris. Fe3O4 nanoparticles exhibited strong antibacterial activity against bacterial species.

  16. Efficient synthesis of anacardic acid analogues and their antibacterial activities.

    PubMed

    Mamidyala, Sreeman K; Ramu, Soumya; Huang, Johnny X; Robertson, Avril A B; Cooper, Matthew A

    2013-03-15

    Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity. PMID:23416004

  17. Molecular cloning, expression, purification and characterization of vitellogenin in scallop Patinopecten yessoensis with special emphasis on its antibacterial activity.

    PubMed

    Wu, Biao; Liu, Zhihong; Zhou, Liqing; Ji, Guangdong; Yang, Aiguo

    2015-04-01

    Vitellogenin (Vg), the major precursor of the egg-yolk proteins, has been found to play an immune role in fish and protochordate amphioxus, however, no study on the immune function of Vg in invertebrates has ever been studied before. In this study, the complete cDNA of Vg was identified from the scallop Patinopecten yessoensis (termed PyVg). The cDNA contained an open reading frame (ORF) of 6888?bp, encoding a polypeptide of 2295 amino acid protein, which had an N-terminal signal peptide followed by the mature Vg. The mature Vg had the domains Vitellogenin_N, domain of unknown function 1943 (DUF1943) and von Willebrand factor type D domain (VWD) as well as the consensus cleavage site (R-X-R/K-R) and conserved motif (KTIGNAG). Tissue distribution assay revealed that PyVg transcripts were predominantly present in the ovary and hepatopancreas, and its expression profile in ovary well reflected the annual cycle of vitellogenesis. Interestingly, bacterial challenge caused a significant change in PyVg expression, hinting an involvement of PyVg in the acute phase response in P. yessoensis. Consistently, recombinant DUF1943 and VWD domains both could interact with LTA and LPS on bacterial wall, and purified native PyVg displayed a broad-spectrum antibacterial activity against both Gram-negative (Escherichia coli and Vibrio anguillarum) and Gram-positive bacteria (Staphylococcus aureus). Overall, these data indicate that Vg is a pattern recognition molecule with bacterial growth-inhibiting activity in the scallop. PMID:25499034

  18. Antibacterial activity of thyme and lavender essential oils.

    PubMed

    Sienkiewicz, Monika; ?ysakowska, Monika; Cie?wierz, Julita; Denys, Pawe?; Kowalczyk, Edward

    2011-11-01

    Strong antiseptic activity of essential oils has been known for a long time. The antibacterial activity of oils was tested against clinical bacterial strains of Staphylococcus, Enterococcus, Escherichia and Pseudomonas genera. The agar diffusion method was used for microbial growth inhibition at various concentrations of the oils from T. vulgaris and L. angustifolia. Susceptibility testing to antibiotics and chemotherapeutics was carried out using disc-diffusion method. 120 strains of bacteria isolated from patients with infections of oral cavity, respiratory, genitourinary tracts and from hospital environment were investigated. The results of experiments showed that the oil from T. vulgaris exhibited extremely strong activity against all of the clinical strains. Thyme oil demonstrated a good efficacy against antibiotics resistant strains of the tested bacteria. Lavender oil has been less activity against clinical strains of Staphylococcus, Enterococcus and Escherichia genus. The worst results have been observed against all strains of Pseudomonas aeruginosa. PMID:22313307

  19. The antibacterial activity of phytochemically characterised fractions from Folium Syringae.

    PubMed

    Zhou, Zhengyuan; Han, Na; Liu, Zhihui; Wang, Jinling; Xia, Huanzhang; Miao, Dezu; Li, Wei; Yin, Jun

    2014-01-01

    To identify the most active antimicrobial fraction of Folium Syringae, four common pathogens were used in an in vitro screening. The results indicated that the combination of the 30% and 60% ethanol fraction (FSC) obtained from the water extraction was the most active fraction with a minimal inhibitory concentration of 0.65 mg mL(-1). FSC was also found to be able to protect mice from a lethal infection of Staphylococcus aureus at clinical dosage (0.2 g kg(-1)) with a survival rate of 83.3%. The antibacterial activity of FSC was then tested using the serum pharmacology method which revealed that FSC exhibits a more long-lasting activity than the positive control (levofloxacin hydrochloride). The main components were confirmed to be iridoid glycosides and flavones by HPLC-MS analysis. PMID:24805057

  20. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer

    PubMed Central

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-01-01

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications. PMID:24619247

  1. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-01

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  2. Antibacterial activity of certain plant extracts against bacterial wilt of tomato

    Microsoft Academic Search

    K. A. M. Abo-Elyousr; M. R. Asran

    2009-01-01

    Five isolates of Ralstonia solanacearum were isolated from a naturally wilted root of tomato plants grown in Assiut governorate. The antibacterial activity of extract of Datura, Garlic and Nerium were tested in controlling R. solanacearum in vitro and in vivo. Garlic exhibited the strongest antibacterial activity against bacterial wilt in vitro and in vivo followed by Datura and then Nerium.

  3. Synthesis and in vitro evaluation of the antitubercular and antibacterial activity of novel oxazolidinones bearing octahydrocyclopenta[c]pyrrol-2-yl moieties.

    PubMed

    Bhattarai, Deepak; Lee, Ju-hyeon; Seo, Seon Hee; Nam, Ghilsoo; Choo, Hyunah; Kang, Soon Bang; Kwak, Jin-Hwan; Oh, Taegwon; Cho, Sang-Nae; Pae, Ae Nim; Kim, Eunice Eunkyeong; Jeong, Nakcheol; Keum, Gyochang

    2014-01-01

    A novel series of oxazolidinone-class antimicrobial agents with 5-substituted octahydrocyclopenta[c]pyrrole moieties at the C-ring of linezolid and an acetamide or 1,2,3-triazole ring as the C-5 side chain of the oxazolidinone ring were prepared. The resulting series of compounds were evaluated for in vitro antimicrobial activity against Mycobacterium tuberculosis and a panel of clinically important resistant Gram-positive and -negative bacteria. Among them, endo-alcohol 2a and exo-alcohol 2b showed potent inhibitory activity against M. tuberculosis H37Rv, which was superior to that of linezolid. Several analogues in this series showed potent in vitro antibacterial activity against the clinically important vancomycin-resistant bacteria and showed similar or better potency against linezolid-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains. The hydroxyl group in the azabicyclic C-ring interacted with the same hydrophobic pocket as linezolid based on a docking study. Selected compounds with high antimicrobial activity showed good human microsomal stability and low CYP isozyme and monoamine oxidase (MAO) inhibition. PMID:25297523

  4. Synthesis, characterization, antibacterial activities and carbonic anhydrase enzyme inhibitor effects of new arylsulfonylhydrazone and their Ni(II), Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma

    2010-01-01

    Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.

  5. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems

    PubMed Central

    Rodionov, Dmitry A.; Vitreschak, Alexey G.; Mironov, Andrey A.; Gelfand, Mikhail S.

    2004-01-01

    Regulation of the methionine biosynthesis and transport genes in bacteria is rather diverse and involves two RNA-level regulatory systems and at least three DNA-level systems. In particular, the methionine metabolism in Gram-positive bacteria was known to be controlled by the S-box and T-box mechanisms, both acting on the level of premature termination of transcription. Using comparative analysis of genes, operons and regulatory elements, we described the methionine metabolic pathway and the methionine regulons in available genomes of Gram-positive bacteria. A large number of methionine-specific RNA elements were identified. S-boxes were shown to be widely distributed in Bacillales and Clostridia, whereas methionine-specific T-boxes occurred mostly in Lactobacillales. A candidate binding signal (MET-box) for a hypothetical methionine regulator, possibly MtaR, was identified in Streptococcaceae, the only family in the Bacillus/Clostridium group of Gram-positive bacteria having neither S-boxes, nor methionine-specific T-boxes. Positional analysis of methionine-specific regulatory sites complemented by genome context analysis lead to identification of new members of the methionine regulon, both enzymes and transporters, and reconstruction of the methionine metabolism in various bacterial genomes. In particular, we found candidate transporters for methionine (MetT) and methylthioribose (MtnABC), as well as new enzymes forming the S-adenosylmethionine recycling pathway. Methionine biosynthetic enzymes in various bacterial species are quite variable. In particular, Oceanobacillus iheyensis possibly uses a homolog of the betaine–homocysteine methyltransferase bhmT gene from vertebrates to substitute missing bacterial-type methionine synthases. PMID:15215334

  6. Mechanical Consequences of Cell-Wall Turnover in the Elongation of a Gram-Positive Bacterium

    PubMed Central

    Misra, Gaurav; Rojas, Enrique R.; Gopinathan, Ajay; Huang, Kerwyn Casey

    2013-01-01

    A common feature of walled organisms is their exposure to osmotic forces that challenge the mechanical integrity of cells while driving elongation. Most bacteria rely on their cell wall to bear osmotic stress and determine cell shape. Wall thickness can vary greatly among species, with Gram-positive bacteria having a thicker wall than Gram-negative bacteria. How wall dimensions and mechanical properties are regulated and how they affect growth have not yet been elucidated. To investigate the regulation of wall thickness in the rod-shaped Gram-positive bacterium Bacillus subtilis, we analyzed exponentially growing cells in different media. Using transmission electron and epifluorescence microscopy, we found that wall thickness and strain were maintained even between media that yielded a threefold change in growth rate. To probe mechanisms of elongation, we developed a biophysical model of the Gram-positive wall that balances the mechanical effects of synthesis of new material and removal of old material through hydrolysis. Our results suggest that cells can vary their growth rate without changing wall thickness or strain by maintaining a constant ratio of synthesis and hydrolysis rates. Our model also indicates that steady growth requires wall turnover on the same timescale as elongation, which can be driven primarily by hydrolysis rather than insertion. This perspective of turnover-driven elongation provides mechanistic insight into previous experiments involving mutants whose growth rate was accelerated by the addition of lysozyme or autolysin. Our approach provides a general framework for deconstructing shape maintenance in cells with thick walls by integrating wall mechanics with the kinetics and regulation of synthesis and turnover. PMID:23746506

  7. Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes

    PubMed Central

    Kovach, Alexander R.; Hoff, Kirsten E.; Canty, John T.; Orans, Jillian

    2014-01-01

    Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNA-binding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Gram-positive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of all other known Hfq structures. The U6 RNA binds on the “proximal face” in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U6 with high affinity. In contrast, the longer oligo-uridine, U16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU)3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces. PMID:25150227

  8. Design, synthesis, antibacterial evaluation and docking study of novel 2-hydroxy-3-(nitroimidazolyl)-propyl-derived quinolone.

    PubMed

    Li, Qing; Xing, Junhao; Cheng, Haibo; Wang, Hui; Wang, Jing; Wang, Shuai; Zhou, Jinpei; Zhang, Huibin

    2015-01-01

    A novel series of 2-hydroxy-3-(nitroimidazolyl)-propyl-derived quinolones 6a-o were synthesized and evaluated for their in vitro antibacterial activity. Most of the target compounds exhibited potent activity against Gram-positive strains. Among them, moxifloxacin analog 6n displayed the most potent activity against Gram-positive strains including S. epidermidis (MIC = 0.06 ?g/mL), MSSE (MIC = 0.125 ?g/mL), MRSE (MIC = 0.03 ?g/mL), S. aureus (MIC = 0.125 ?g/mL), MSSA (MIC = 0.125 ?g/mL), (MIC = 2 ?g/mL). Its activity against MRSA was eightfold more potent than reference drug gatifloxacin. Finally, docking study of the target compound 6n revealed that the binding model of quinolone nucleus was similar to that of gatifloxacin and the 2-hydroxy-3-(nitroimidazolyl)-propyl group formed two additional hydrogen bonds. PMID:25048811

  9. Antibacterial Activity of Mangrove Leaf Extracts against Human Pathogens.

    PubMed

    Sahoo, G; Mulla, N S S; Ansari, Z A; Mohandass, C

    2012-07-01

    The antibacterial activity of leaf extract of mangroves, namely, Rhizophora mucronata, Sonneratia alba and Exoecaria agallocha from Chorao island, Goa was investigated against human bacterial pathogens Staphylococcus aureus, Streptococcus sp., Salmonella typhi, Proteus vulgaris and Proteus mirabilis. As compared to aqueous, ethanol extract showed broad-spectrum activity. The multidrug-resistant (MDR) bacteria Salmonella typhi was inhibited by the ethanol extract of S. alba leaf whereas the other two resistant bacteria Staphylococcus aureus and Streptococcus sp. were inhibited by the ethanol extract of leaves of all the species. The aqueous extract of S. alba and E. agallocha showed their activity against P. vulgaris and P. mirabilis, respectively. Phytochemical analysis revealed the presence of saponins, glycosides, tannins, flavonoids, phenol and volatile oils in the leaves of mangroves. Further studies using different solvents for extraction are necessary to confirm that mangroves are a better source for the development of novel antibiotics. PMID:23626390

  10. Antibacterial Activity of Mangrove Leaf Extracts against Human Pathogens

    PubMed Central

    Sahoo, G.; Mulla, N. S. S.; Ansari, Z. A.; Mohandass, C.

    2012-01-01

    The antibacterial activity of leaf extract of mangroves, namely, Rhizophora mucronata, Sonneratia alba and Exoecaria agallocha from Chorao island, Goa was investigated against human bacterial pathogens Staphylococcus aureus, Streptococcus sp., Salmonella typhi, Proteus vulgaris and Proteus mirabilis. As compared to aqueous, ethanol extract showed broad-spectrum activity. The multidrug-resistant (MDR) bacteria Salmonella typhi was inhibited by the ethanol extract of S. alba leaf whereas the other two resistant bacteria Staphylococcus aureus and Streptococcus sp. were inhibited by the ethanol extract of leaves of all the species. The aqueous extract of S. alba and E. agallocha showed their activity against P. vulgaris and P. mirabilis, respectively. Phytochemical analysis revealed the presence of saponins, glycosides, tannins, flavonoids, phenol and volatile oils in the leaves of mangroves. Further studies using different solvents for extraction are necessary to confirm that mangroves are a better source for the development of novel antibiotics. PMID:23626390

  11. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments

    PubMed Central

    Aüllo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

    2013-01-01

    Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review. PMID:24348471

  12. Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose.

    PubMed

    Missoum, Karim; Sadocco, Patrizia; Causio, Jessica; Belgacem, Mohamed Naceur; Bras, Julien

    2014-12-01

    Nanofibrillated cellulose (NFC) and their derivatives were prepared using three chemical surface modification strategies. All grafting was characterized by FTIR and contact angle measurements in order to evaluate the efficiency of grafting. Antibacterial activities of neat and grafted samples were investigated against two kinds of bacteria (i.e. Gram+ (Staphylococcus aureus) and Gram- (Klebsiella pneumoniae)). All the grafted samples displayed promising results with at least bacteriostatic effect or bactericidal properties. They also strongly enhanced the photo-catalytic antimicrobial effect of TiO2. This study proves that it is better to use grafted NFC either alone or for functionalization with TiO2 if anti-bacterial properties are desired. The cellulose backbone is known to be easily biodegradable in different biodegradation conditions and environments. The chemical surface modifications applied on NFC in the present work did not negatively influence this valuable property of cellulose but help for monitoring this property, which could be very useful for paper, packaging and composites. PMID:25491853

  13. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle.

    PubMed

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 ?g/mL, 7.3 ?g/mL, 3 ?g/mL and 12 ?g/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 ?g/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  14. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle

    PubMed Central

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 ?g/mL, 7.3 ?g/mL, 3 ?g/mL and 12 ?g/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 ?g/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  15. Porphyrin-based honeycomb films and their antibacterial activity.

    PubMed

    Wang, Yanran; Liu, Yan; Li, Guihua; Hao, Jingcheng

    2014-06-10

    Micrometer-sized porous honeycomb-patterned thin films based on hybrid complexes formed via electrostatic interaction between Mn(III) meso-tetra(4-sulfonatophenyl) porphine chloride (an acid form, {MnTPPS}) and dimethyldioctadecylammonium bromide (DODMABr). The morphology of the microporous thin films can be well regulated by controlling the concentration of MnTPPS-DODMA complexes, DODMABr, and polystyrene (PS), respectively. The formation of the microporous thin films was largely influenced by different solvents. The well-ordered microporous films of MnTPPS-DODMA complexes exhibit a more efficient antibacterial activity under visible light than those of hybrid complexes of nanoparticles modified with DODMABr, implying that well-ordered microporous films containing porphyrin composition can improve photochemical activity and more dominance in applications in biological medicine fields. PMID:24846091

  16. Antibacterial activity of some medicinal plants grown in Jordan.

    PubMed

    Masadeh, Majed Mohammad; Alkofahi, Ahmad Suleiman; Tumah, Haitham Najeeb; Mhaidat, Nizar Mahmoud; Alzoubi, Karem Hasan

    2013-03-01

    In the present study, we evaluated the antimicrobial activity of 16 Jordanian medicinal plant extracts against four reference bacteria; Staphylococcus aureus, Enterobacter faecalis, Escherichia coli, and Salmonella typhi. For that purpose, whole plants were extracted and antimicrobial susceptibility testing and minimum inhibitory concentration (MIC) were determined. Ethanolic extracts of most medicinal plants exerted a dose-dependent cytotoxiciy against different reference bacteria. Origanum syriaca, Varthemia iphionoides, Psidium guajava, Sarcopoterium spinosa plant extracts were most active against S. aureus (MIC; 70 ?g/mL), E. faecalis (MIC; 130 ?g/mL), E. coli (MIC; 153 ?g/mL), and S. typhi (MIC; 110 ?g/mL), respectively. Results indicate that medicinal plants grown in Jordan might be a valuable source of starting materials for the extraction and/or isolation of new antibacterial agents. PMID:23455195

  17. Influence of glucosamine on oligochitosan solubility and antibacterial activity.

    PubMed

    Blagodatskikh, Inesa V; Kulikov, Sergey N; Vyshivannaya, Oxana V; Bezrodnykh, Evgeniya A; Yamskov, Igor A; Tikhonov, Vladimir E

    2013-11-15

    Light scattering studies indicate that oligochitosan (short-chain chitosan) solutions contain aggregates at pH values below the critical pH of phase separation, while at or above this point the gel phase coexists with the aggregate solution. This work demonstrates for the first time that the presence of D-glucosamine in an oligochitosan solution shifts the critical pH to a higher value and improves the oligochitosan antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermis in neutral and slightly alkaline aqueous media. By comparing the results of light scattering studies and antimicrobial assays one can conclude that the antimicrobial activity of oligochitosan is dependent on its unimolecular form, not its supramolecular structures. The widening of the homogeneity region of an oligochitosan solution could lead to promising biomedical applications. PMID:24056011

  18. NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins

    PubMed Central

    2011-01-01

    Background Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. Results Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. Conclusions The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/ PMID:21235786

  19. Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds

    PubMed Central

    Ishihara, Shingo; Bitner, Jessica J.; Farley, Greg H.

    2014-01-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a birdbanding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens. PMID:23224296

  20. Optimization of Fluorescent Tools for Cell Biology Studies in Gram-Positive Bacteria

    PubMed Central

    Henriques, Mafalda X.; Gomes, João Paulo; Filipe, Sérgio R.

    2014-01-01

    The understanding of how Gram-positive bacteria divide and ensure the correct localization of different molecular machineries, such as those involved in the synthesis of the bacterial cell surface, is crucial to design strategies to fight bacterial infections. In order to determine the correct subcellular localization of fluorescent proteins in Streptococcus pneumoniae, we have previously described tools to express derivatives of four fluorescent proteins, mCherry, Citrine, CFP and GFP, to levels that allow visualization by fluorescence microscopy, by fusing the first ten amino acids of the S. pneumoniae protein Wze (the i-tag), upstream of the fluorescent protein. Here, we report that these tools can also be used in other Gram-positive bacteria, namely Lactococcus lactis, Staphylococcus aureus and Bacillus subtilis, possibly due to optimized translation rates. Additionally, we have optimized the i-tag by testing the effect of the first ten amino acids of other pneumococcal proteins in the increased expression of the fluorescent protein Citrine. We found that manipulating the structure and stability of the 5? end of the mRNA molecule, which may influence the accessibility of the ribosome, is determinant to ensure the expression of a strong fluorescent signal. PMID:25464377

  1. Agreement Between Deoxyribonucleic Acid Base Composition and Taxometric Classification of Gram-Positive Cocci1

    PubMed Central

    Silvestri, L. G.; Hill, L. R.

    1965-01-01

    Silvestri, L. G. (Università Statale, Milan, Italy), and L. R. Hill. Agreement between deoxyribonucleic acid base composition and taxometric classification of gram-positive cocci. J. Bacteriol. 90:136–140. 1965.—It had been previously proposed, from taxometric analyses, that gram-positive, catalase-positive cocci be divided into two subgroups. Thirteen strains, representative of both subgroups, were examined for deoxyribonucleic acid (DNA) base composition, determined from melting temperatures. Per cent GC (guanine + cytosine/total bases) values fell into two groups: 30.8 to 36.5% GC and 69 to 75% GC. Strains with low per cent GC values belonged to the Staphylococcus aureus–S. saprophyticus–S. lactis taxometric subgroups, and those with high per cent GC values belonged to the S. roseus–S. afermentans subgroup. The hypothetical nature of any classification is emphasized, and, in the present work, the hypothesis derived from taxometric analyses of division into two subgroups is confirmed by the study of DNA base ratios. The two subgroups correspond, respectively, to the genera Staphylococcus and Micrococcus. PMID:16562008

  2. Identification of gram-negative and gram-positive bacteria by fluorescence studies

    NASA Astrophysics Data System (ADS)

    Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian

    2011-03-01

    Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched in addition of water, even a very thin layer, which confirms that the observed spectral features originate from the outer parts of the bacteria. These results allow to conclude that the fluorescence spectroscopy can be used as a method for studying the membranes of the bacteria and eventually to discriminate between gram positive and gram negative bacteria. The pulsed experiments show that the fluorescence lifetime is in the sub-microsecond range. The results indicate that the observed spectra are superposition of the emission with different lifetimes.

  3. Antibacterial Activity of Selected Medicinal Plants from Parangipettai Coastal Regions; Southeast Coast of India

    Microsoft Academic Search

    K. Devi; G. Karthikai Devi; G. Thirumaran; R. Arumugam; P. Anantharaman

    2009-01-01

    The present study deals with the leaf extracts of 4 coastal living medicinal plants Viz., Ocimum canum, Acalypha indica, Eclipta alba and Lawsonia inermis for their antibacterial potential. The maximum antibacterial activity was observed with Acalypha indica and Lawsonia inermis against tested pathogens. Proteus mirabilis, Shigella dysenteriae and Staphylococus aureus were found susceptible to all the extracts. Methanol and chloroform

  4. Characterisation of antibacterial activity of peptides isolated from the venom of the spider

    E-print Network

    Richner, Heinz

    ; Spider venom 1. Introduction Due to the development of antibiotic-resistant bacteria, antibacterial in the last years in a large diversity of animals. The peptides are supposed to lyse the cells by formation with antibacterial activity have been found in the whole animal kingdom, from bacteria and dierent insect orders

  5. Disinfection of gram-negative and gram-positive bacteria using D ynaJ ets® hydrodynamic cavitating jets

    Microsoft Academic Search

    Gregory Loraine; Georges Chahine; Chao-Tsung Hsiao; Jin-Keun Choi; Patrick Aley

    Cavitating jet technologies (DynaJets®) were investigated as a means of disinfection of gram-negative Escherichia coli, Klebsiellapneumoniae, Pseudomonas syringae, and Pseudomonas aeruginosa, and gram-positive Bacillus subtilis. The hydrodynamic cavitating jets were found to be very effective in reducing the concentrations of all of these species. In general, the observed rates of disinfection of gram-negative species were higher than for gram-positive species.

  6. Antibacterial properties of tualang honey and its effect in burn wound management: a comparative study

    PubMed Central

    2010-01-01

    Background The use of honey as a natural product of Apis spp. for burn treatment has been widely applied for centuries. Tualang honey has been reported to have antibacterial properties against various microorganisms, including those from burn-related diagnoses, and is cheaper and easier to be absorbed by Aquacel dressing. The aim of this study is to evaluate the potential antibacterial properties of tualang honey dressing and to determine its effectiveness as a partial thickness burn wound dressing. Methods In order to quantitate the bioburden of the swabs, pour plates were performed to obtain the colony count (CFU/ml). Swabs obtained from burn wounds were streaked on blood agar and MacConkey agar for bacterial isolation and identification. Later, antibacterial activity of Aquacel-tualang honey, Aquacel-Manuka honey, Aquacel-Ag and Aquacel- plain dressings against bacteria isolated from patients were tested (in-vitro) to see the effectiveness of those dressings by zone of inhibition assays. Results Seven organisms were isolated. Four types of Gram-negative bacteria, namely Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas spp. and Acinetobacter spp., and three Gram-positive bacteria, namely Staphylococcus aureus, coagulase-negative Staphylococcus aureus (CONS) and Streptococcus spp., were isolated. Total bacterial count decreased on day 6 and onwards. In the in-vitro antibacterial study, Aquacel-Ag and Aquacel-Manuka honey dressings gave better zone of inhibition for Gram positive bacteria compared to Aquacel-Tualang honey dressing. However, comparable results were obtained against Gram negative bacteria tested with Aquacel-Manuka honey and Aquacel-Tualang honey dressing. Conclusions Tualang honey has a bactericidal as well as bacteriostatic effect. It is useful as a dressing, as it is easier to apply and is less sticky compared to Manuka honey. However, for Gram positive bacteria, tualang honey is not as effective as usual care products such as silver-based dressing or medical grade honey dressing. PMID:20576085

  7. Antibacterial Activity of RU 64004 (HMR 3004), a Novel Ketolide Derivative Active against Respiratory Pathogens

    Microsoft Academic Search

    CONSTANTIN AGOURIDAS; ALAIN BONNEFOY; JEAN FRANCOIS CHANTOT

    The antibacterial activity of RU 64004, a new ketolide, was evaluated against more than 600 bacterial strains and was compared with those of various macrolides and pristinamycin. RU 64004 had good activity against multiresistant pneumococci, whether they were erythromycin A resistant or not, including penicillin-resistant strains. RU 64004 inhibited 90% of pneumococci resistant to erythromycin A and penicillin G at

  8. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells.

    PubMed

    Moghaddam, Mehrdad Moosazadeh; Barjini, Kamal Azizi; Ramandi, Mahdi Fasihi; Amani, Jafar

    2014-05-01

    With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin-melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2-128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3-24 and 0.5-16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8-16 and 4-16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80-90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 ?M (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %. PMID:24323118

  9. In vitro evaluation of antibacterial and immunomodulatory activities of Pelargonium reniforme, Pelargonium sidoides and the related herbal drug preparation EPs 7630.

    PubMed

    Kolodziej, Herbert; Kiderlen, Albrecht F

    2007-01-01

    The importance of Pelargonium species, most notably Pelargonium reniforme and Pelargonium sidoides, in traditional medicine in the Southern African region is well documented. Nowadays, a modern aqueous-ethanolic formulation of the roots of P. sidoides (EPs) 7630) is successfully employed for the treatment of ear, nose and throat disorders as well as respiratory tract infections. To provide a scientific basis of its present utilization in phytomedicine, EPs 7630, extracts and isolated constituents of the titled Pelargoniums with emphasis on P. sidoides were evaluated for antibacterial activity and for their effects on nonspecific immune functions. The samples exhibited merely moderate direct antibacterial capabilities against a spectrum of Gram-positive and Gram-negative bacteria. Functional bioassays including an in vitro model for intracellular diseases, a fibroblast-lysis assay (tumour necrosis factor (TNF) activity), a fibroblast-virus protection assay (IFN activity) and a biochemical assay for nitric oxides revealed significant immunomodulatory properties. Gene expression experiments (iNOS, IFN-alpha, IFN-gamma, TNF-alpha, Interleukin (IL)-1, IL-10, IL12, IL-18) not only confirmed functional data, they also clearly showed differences in the response of infected macrophages when compared to that of noninfected cells. ELISA confirmed the protein production of TNF-alpha, IL-1alpha and IL-12, while FACS analyses reaffirmed the cytokines IL-1alpha and IL-12 at the singular cell level. The current data provide convincing support for the improvement of immune functions at various levels, hence, validating the medicinal uses of EPs 7630. Despite considerable efforts, the remedial effects cannot yet be related to a chemically defined principle. PMID:17188480

  10. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  11. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut

    PubMed Central

    2014-01-01

    Background The triatomine, Rhodnius prolixus, is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. It has a strictly blood-sucking habit in all life stages, ingesting large amounts of blood from vertebrate hosts from which it can acquire pathogenic microorganisms. In this context, the production of antimicrobial peptides (AMPs) in the midgut of the insect is vital to control possible infection, and to maintain the microbiota already present in the digestive tract. Methods In the present work, we studied the antimicrobial activity of the Rhodnius prolixus midgut in vitro against the Gram-negative and Gram-positive bacteria Escherichia coli and Staphylococcus aureus, respectively. We also analysed the abundance of mRNAs encoding for defensins, prolixicin and lysozymes in the midgut of insects orally infected by these bacteria at 1 and 7 days after feeding. Results Our results showed that the anterior midgut contents contain a higher inducible antibacterial activity than those of the posterior midgut. We observed that the main AMP encoding mRNAs in the anterior midgut, 7 days after a blood meal, were for lysozyme A, B, defensin C and prolixicin while in the posterior midgut lysozyme B and prolixicin transcripts predominated. Conclusion Our findings suggest that R. prolixus modulates AMP gene expression upon ingestion of bacteria with patterns that are distinct and dependent upon the species of bacteria responsible for infection. PMID:24885969

  12. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7.

    PubMed

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-01

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits. PMID:25613692

  13. Mechanism of action of recombinant Acc-royalisin from royal jelly of Chinese honeybee against gram-positive bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Chinese honeybee Apis cerana...

  14. Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    PubMed Central

    Pal, Subrata

    2014-01-01

    Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of the T. indiensis Fe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI) reduction as well. PMID:25180173

  15. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate.

    PubMed

    Sayilkan, Funda; Asiltürk, Meltem; Kiraz, Nadir; Burunkaya, Esin; Arpaç, Ertu?rul; Sayilkan, Hikmet

    2009-03-15

    Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect. PMID:18656312

  16. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein.

    PubMed

    Ghequire, Maarten G K; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-08-01

    Bacteriocins of the LlpA family have previously been characterized in the ?-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this ?-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent. PMID:23737242

  17. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara.

    PubMed

    Zeng, Wei-Cai; He, Qiang; Sun, Qun; Zhong, Kai; Gao, Hong

    2012-02-01

    The antibacterial activity of water-soluble extract from pine needles of Cedrus deodara (WEC) was evaluated on five food-borne bacteria, and its related mechanism was investigated by transmission electron microscope. In vitro antibacterial assay showed that WEC possesses a remarkable antibacterial activity against tested food-borne bacteria including Escherichia coli, Proteus vulgaris, Staphylococcus aureus, Bacillus subtilis and Bacillus cereus, with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values in the ranges of 0.78-12.5 mg/ml and 1.56-25mg/ml, respectively. In a food system of fresh-squeezed tomato juice, WEC was observed to possess an effective capacity to control the total counts of viable bacteria. Shikimic acid was isolated from WEC and identified as the main antibacterial compound. All results of our study suggested that WEC might be a new potential source of natural antibacterial agents applicable to food. PMID:22104118

  18. Cyclooxygenase inhibiting and anti-bacterial activities of South African Erythrina species

    Microsoft Academic Search

    Candice C. N Pillay; Anna K Jäger; Dulcie A Mulholland; J van Staden

    2001-01-01

    Aqueous, ethanolic and ethyl acetate extracts of the bark and leaves of five South African Erythrina species Erythrina caffra, Erythrina humeana, Erythrina latissima, Erythrina lysistemon and Erythrina zeyheri were screened for prostaglandin synthesis-inhibitory and anti-bacterial activity. The bark generally displayed higher activity than the leaves in both bioassays. The highest cyclooxygenase inhibiting activity and anti-bacterial activity was recorded for the

  19. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea).

    PubMed

    Haug, Tor; Kjuul, Anita K; Styrvold, Olaf B; Sandsdalen, Erling; Olsen, Ørjan M; Stensvåg, Klara

    2002-10-01

    A search for antibacterial activity in different body parts of the green sea urchin Strongylocentrotus droebachiensis, the common starfish Asterias rubens, and the sea cucumber Cucumaria frondosa was conducted. Antibacterial activity was detected in extracts from several tissues in all species tested, but mainly in the coelomocyte and body wall extracts. Relatively high antibacterial activity could also be detected in gastrointestinal organs and eggs from A. rubens and in eggs from C. frondosa. Differences between active extracts regarding hydrophobicity and sensitivity to heat and proteinase K treatment indicated that several different compounds were responsible for the antibacterial activities detected. Lysozyme-like activity could be detected in several tissues from A. rubens. Haemolytic activity could be detected in all species tested, especially in the body wall extracts. Results from the current study suggest that marine echinoderms are a potential source for the discovery of novel antibiotics. PMID:12445793

  20. [Retrospective analysis of the Gram-positive bacteria-infected cases in the Department of Hematology].

    PubMed

    Jing, Yu; Bo, Jian; Zhao, Yu; Li, Hong-Hua; Wang, Shu-Hong; Huang, Wen-Rong; Wang, Quan-Shun

    2013-10-01

    This study was purposed to evaluate the efficacy and safety of linezolid, vancomycin and teicoplanin for the treatment of patients infected by Gram-positive bacteria in the Department of Hematology by retrospective analysis. The patients with fever in our department from January to December in 2011 were selected for blood culture with Gram-positive bacteria and treated with linezolid, vancomycin or teicoplanin alone.Various parameters were recorded before and after treatment, such as fever time, respiratory symptoms, physical signs, radiographic changes, blood and biochemical routine, and adverse reactions. The efficacy and safety of linezolid, vancomycin and teicoplanin were compared according to the fever abating time, bacterial clearance rate, clinical efficiencies and adverse events. The patients were divided into linezolid group (15 patients), vancomycin group (17 patients) and teicoplanin group (20 patients). The results showed that the mean time of fever abating in linezolid group was (4.43 ± 3.15)d, bacterial clearance rate and clinical efficiency in linezolid group were 55.56% and 86.67%, respectively. The above three data in vancomycin group were (6.83 ± 4.67)d, 54.54% and 76.47% respectively, and were (5.57 ± 4.16)d, 41.67% and 80.00% in teicoplanin group respectively. There was no statistically significant difference between three groups (P > 0.05). There were one case of diarrhea and two cases of thrombocytopenia in the linezolid group, and one case of nausea and two cases of creatinine increase in the vancomycin group. There were three cases of thrombocytopenia in the teicoplanin group. The thrombocytopenia in five cases and the hemogram drop in patients with leukemia after treatment were overlapped, their drug treatment did not stop, but their thrombocytopoiesis recovered to normal-level, thus the drug treatment were considered as no relation with thrombocytopenia. It is concluded that the treatment efficacy between linezolid, vancomycin and teicoplanin for Gram-positive bacterial infections is not statistically different, but linezolid maybe have advantage over vancomycin and teicoplanin in fever abating time, bacterial clearance rate and clinical efficiency. PMID:24156452

  1. Studies on Properties of Rice Straw/Polymer Nanocomposites Based on Polycaprolactone and Fe3O4 Nanoparticles and Evaluation of Antibacterial Activity

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Shameli, Kamyar; Saki, Elnaz; Kalantari, Katayoon

    2014-01-01

    Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/PCL-NCs) have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA) as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL. PMID:25318051

  2. Antibacterial activity of extract, fractions and four compounds extracted from Piper solmsianum C. DC. VAR. solmsianum (Piperaceae).

    PubMed

    Campos, Marina P; Cechinel Filho, Valdir; Silva, Rosi Z; Yunes, Rosendo A; Monache, Franco D; Cruz, Alexandre Bella

    2007-01-01

    Piper solmsianum C. DC. var. solmsianum (Piperaceae) is a shrub commonly found in areas with wet tropical soils. Other Piper species have been used in folk medicine as antitumoral and antiseptic agents. We studied the crude methanolic extract, some organic fractions and compounds isolated from this plant for possible antimicrobial activity against Gram-positive and Gram-negative bacteria. The bioautographic assays disclosed three inhibition zones. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined showing excellent activity, particularly against the Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus, Staphylococcus saprophyticus and Streptococcus agalactiae). It appears that the antimicrobial activity of Piper solmsianum is related mainly to the presence of conocarpan and eupomatenoid-5 (neolignans). However another, as yet unidentified, active compound could also be extracted from the plant. PMID:17542481

  3. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria.

    PubMed

    Iauk, L; Lo Bue, A M; Milazzo, I; Rapisarda, A; Blandino, G

    2003-06-01

    This study was performed to evaluate the antibacterial activity of Althaea officinalis L. roots, Arnica montana L. flowers, Calendula officinalis L. flowers, Hamamelis virginiana L. leaves, Illicium verum Hook. fruits and Melissa officinalis L. leaves, against anaerobic and facultative aerobic periodontal bacteria: Porphyromonas gingivalis, Prevotella spp., Fusobacterium nucleatum, Capnocytophaga gingivalis, Veilonella parvula, Eikenella corrodens, Peptostreptococcus micros and Actinomyces odontolyticus. The methanol extracts of H. virginiana and A. montana and, to a lesser extent, A. officinalis were shown to possess an inhibiting activity (MIC < or = 2048 mg/L) against many of the species tested. In comparison, M. officinalis and C. officinalis extracts had a lower inhibiting activity (MIC > or = 2048 mg/L) against all the tested species with the exception of Prevotella sp. Illicium verum methanol extract was not very active though it had a particular good activity against E. corrodens. The results suggest the use of the alcohol extracts of H. virginiana, A. montana and A. officinalis for topical medications in periodontal prophylactics. PMID:12820224

  4. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence

    PubMed Central

    Burnside, Kellie; Rajagopal, Lakshmi

    2011-01-01

    Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections. PMID:21797690

  5. Transformation of the Gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation.

    PubMed

    Murray, K Daniel; Aronstein, Katherine A

    2008-10-01

    In this study we developed an electrotransformation method for use with the Gram-positive bacterium Paenibacillus larvae-a deadly pathogen of honey bees. Combining multiple Bacillus electrotransformation methods to generate an initial protocol, we then optimized the following parameters for use with P. larvae: cell density of culture at harvest time, contents of the washing/electroporation solution, field strength of the electrical pulse, recovery growth medium, and recovery time period. With the optimized method, we achieved an average transformation efficiency of 1.9x10(5) transformants/mug DNA. The method is substantially different from the only other electrotransformation method for a Paenibacillus species found in the literature. This work should facilitate the study of the several previously discovered natural plasmids of P. larvae, and is a step toward developing a genetic system for this species. PMID:18687369

  6. Buffering Capacity and Membrane H+ Conductance of Neutrophilic and Alkalophilic Gram-Positive Bacteria

    PubMed Central

    Rius, Núria; Lorén, José G.

    1998-01-01

    Buffering capacity and membrane H+ conductance were examined in three gram-positive bacteria, Staphylococcus aureus, Bacillus subtilis, and Bacillus alcalophilus. An acid pulse technique was used to measure both parameters. The buffering capacity and membrane H+ conductance of B. alcalophilus are influenced by the pH of the medium and the culture conditions. Suspensions of B. alcalophilus cells from both H. A. medium and l-malate medium cultures grown at pH 10.5 exhibited higher values for these parameters than cells grown at pH 8.5. B. alcalophilus grown aerobically had a lower buffering capacity and a lower membrane conductance for protons than the neutrophilic bacteria S. aureus and B. subtilis. Fermenting cells exhibited significantly higher values for both variables than respiring cells. PMID:9546171

  7. Antimicrobial susceptibility of gram-positive udder pathogens from bovine mastitis milk in Switzerland.

    PubMed

    Overesch, G; Stephan, R; Perreten, V

    2013-06-01

    We evaluated the susceptibility of the gram-positive mastitis pathogens S. aureus, Str. uberis, Str. dysgalactiae, E. faecalis and L. garviae to antibiotics that are of epidemiological interest or are critically important for mastitis therapy and human medicine. Penicillin resistance was found to be most frequent in S. aureus, and nearly 5 % of the Str. uberis strains displayed a decreased susceptibility to this antibiotic. Resistance to aminoglycosides and macrolides was also detected in the strains tested. The detection of methicillin-resistant S. aureus (MRSA) and of a ciprofloxacin-resistant Str. dysgalactiae isolate corroborated the emergence of mastitis pathogens resistant to critically important antibiotics and underscores the importance of susceptibility testing prior to antibiotic therapy. The monitoring of antibiotic susceptibility patterns and antibiogram analyses are strongly recommended for targeted antimicrobial treatment and to avoid the unnecessary use of the latest generation of antibiotics. PMID:23732380

  8. Bacteriophage endolysins: A novel anti-infective to control Gram-positive pathogens

    PubMed Central

    Fischetti, Vincent A.

    2010-01-01

    Endolysins (or lysins) are highly evolved enzymes produced by bacteriophage (phage for short) to digest the bacterial cell wall for phage progeny release. In Gram-positive bacteria, small quantities of purified recombinant lysin added externally results in immediate lysis causing log-fold death of the target bacterium. Lysins have been used successfully in a variety of animal models to control pathogenic antibiotic-resistant bacteria found on mucosal surfaces and infected tissues. Their specificity for the pathogen without disturbing the normal flora, the low chance of bacterial resistance, and their ability to kill colonizing pathogens on mucosal surfaces, a capacity previously unavailable, make them ideal anti-infectives in an age of mounting resistance. Here we review the current literature showing the effectiveness of these enzymes in controlling a variety of infections. PMID:20452280

  9. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria.

    PubMed

    Grumezescu, Alexandru Mihai; Gestal, Monica Cartelle; Holban, Alina Maria; Grumezescu, Valentina; Vasile, Bogdan Stefan; Mogoant?, Lauren?iu; Iordache, Florin; Bleotu, Coralia; Mogo?anu, George Dan

    2014-01-01

    This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release. PMID:24759068

  10. Bactericidal Activity of Methanol Extracts of Crabapple Mangrove Tree (Sonneratia caseolaris Linn.) Against Multi-Drug Resistant Pathogens

    PubMed Central

    Yompakdee, C.; Thunyaharn, S.; Phaechamud, T.

    2012-01-01

    The crabapple mangrove tree, Sonneratia caseolaris Linn. (Family: Sonneratiaceae), is one of the foreshore plants found in estuarine and tidal creek areas and mangrove forests. Bark and fruit extracts from this plant have previously been shown to have an anti-oxidative or cytotoxic effect, whereas flower extracts of this plant exhibited an antimicrobial activity against some bacteria. According to the traditional folklore, it is medicinally used as an astringent and antiseptic. Hence, this investigation was carried out on the extract of the leaves, pneumatophore and different parts of the flower or fruit (stamen, calyx, meat of fruit, persistent calyx of fruit and seeds) for antibacterial activity using the broth microdilution method. The antibacterial activity was evaluated against five antibiotic-sensitive species (three Gram-positive and two Gram-negative bacteria) and six drug-resistant species (Gram-positive i.e. Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium and Gram-negative i.e. Extended-spectrum beta-lactamase-Escherichia coli, multidrug-resistant–Pseudomonas aeruginosa and Acenetobacter baumannii). The methanol extracts from all tested parts of the crabapple mangrove tree exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria, but was mainly a bactericidal against the Gram-negative bacteria, including the multidrug-resistant strains, when compared with only bacteriostatic on the Gram-positive bacteria. Using Soxhlet apparatus, the extracts obtained by sequential extraction with hexane, dichloromethane and ethyl acetate revealed no discernable antibacterial activity and only slightly, if at all, reduced the antibacterial activity of the subsequently obtained methanol extract. Therefore, the active antibacterial compounds of the crabapple mangrove tree should have a rather polar structure. PMID:23441048

  11. Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene

    PubMed Central

    Dharne, M.S.; Gupta, A.K.; Rangrez, A.Y.; Ghate, H.V.; Patole, M.S.; Shouche, Y.S.

    2008-01-01

    Flesh flies (Diptera: Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo ?-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo ?-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. PMID:24031236

  12. Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    PubMed Central

    Ji, Yuetong; He, Zhili; Pu, Yunting; Zhou, Jizhong; Xu, Jian

    2010-01-01

    Background Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. Methodology/Principal Findings Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum ?-1,4-glucanase gene were delivered into X514 with an efficiency of 6×102 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign ?-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. Conclusions/Significance In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically. PMID:20838444

  13. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity.

    PubMed

    Ramesh, Ekambaram; Manian, Rathna Durga R S; Raghunathan, Ragavachary; Sainath, Shilpakala; Raghunathan, Malathi

    2009-01-15

    Synthesis of a series of novel tetrahydroquinoline annulated heterocycles has been accomplished by intramolecular imino and bisimino Diels-Alder reaction. These compounds were evaluated for their antibacterial activity. All the synthetic compounds, exhibited good antibacterial activity against microorganisms of which one of them 7 was found to be as active as the antibiotic ciplofloxacin and is found to have MIC value of 2.5 mg/mL against Escherichia coli. PMID:19097914

  14. Chemical composition and antibacterial activity of Gongronema latifolium

    PubMed Central

    Eleyinmi, Afolabi F.

    2007-01-01

    Chemical composition of Gongronema latifolium leaves was determined using standard methods. Aqueous and methanol G. latifolium extracts were tested against thirteen pathogenic bacterial isolates. Crude protein, lipid extract, ash, crude fibre and nitrogen free extractives obtained are: 27.2%, 6.07%, 11.6%, 10.8% and 44.3% dry matter respectively. Potassium, sodium, calcium, phosphorus and cobalt contents are 332, 110, 115, 125 and 116 mg/kg respectively. Dominant essential amino acids are leucine, valine and phenylalanine. Aspartic acid, glutamic acid and glycine are 13.8%, 11.9% and 10.3% respectively of total amino acid. Saturated and unsaturated fatty acids are 50.2% and 39.4% of the oil respectively. Palmitic acid makes up 36% of the total fatty acid. Extracts show no activity against E. faecalis, Y. enterolytica, E. aerogenes, B. cereus and E. agglomerans. Methanol extracts were active against S. enteritidis, S. cholerasius ser typhimurium and P. aeruginosa (minimum inhibitory concentration (MIC) 1 mg; zone of growth inhibition 7, 6.5 and 7 mm respectively). Aqueous extracts show activity against E. coli (MIC 5 mg) and P. aeruginosa (MIC 1 mg) while methanol extracts are active against P. aeruginosa and L. monocytogenes. G. latifolium has potential food and antibacterial uses. PMID:17542064

  15. Antibacterial activities in various tissues of the horse mussel, Modiolus modiolus.

    PubMed

    Haug, Tor; Stensvåg, Klara; Olsen M, Ørjan M; Sandsdalen, Erling; Styrvold, Olaf B

    2004-02-01

    A search for antibacterial activity in different organs/tissues of the horse mussel, Modiolus modiolus, was conducted. Dried samples were extracted with 60% (v/v) acetonitrile, containing 0.1% (v/v) trifluoroacetic acid. Due to high salt content, two liquid phases were obtained; an acetonitrile-rich phase (ACN extract) and an aqueous phase. The aqueous phase was further subjected to solid phase extraction (SPE). Eluates from SPE and ACN extracts were tested for antibacterial, lysozyme, and toxic activity. Antibacterial activity was demonstrated in extracts from several tissues, including plasma, haemocytes, labial palps, byssus, mantle, and gills. Some of the extracts were sensitive to proteinase K treatment, indicating antibacterial peptides and/or proteins. Lysozyme-like activity and toxic activity against Artemia salina nauplii was detected in fractions from the gills, mantle, muscle, and haemocytes. Results from this study indicate that M. modiolus is a promising source for identifying novel drug lead compounds. PMID:15050841

  16. Design and synthesis of quinazoline carboxylates against Gram-positive, Gram-negative, fungal pathogenic strains, and Mycobacterium tuberculosis

    Pu