Sample records for gram-positive cocci isolated

  1. Survival of gram positive anaerobic cocci on swabs and their isolation from the mouth and vagina.

    PubMed Central

    Smith, G L; Cumming, C G; Ross, P W

    1986-01-01

    The survival of Gram positive anaerobic cocci on plain cotton wool and albumin coated swabs held in various transport media was investigated. Results suggested that in most cases Amies', Stuart's and VMGII media do not offer any more protection to the bacteria than storing swabs dry in their containers. A technique was developed for the isolation and identification of Gram positive anaerobic cocci from the mouth and vagina, incorporating bicozamycin in the medium as a selective agent. Few strains were recovered from the oral cavity, but larger numbers were isolated from the vagina. Using a minimum number of antibiotic sensitivity and biochemical tests, including analysis of end products by gas-liquid chromatography, most isolates were identified to species level. PMID:3950035

  2. Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds

    PubMed Central

    Ishihara, Shingo; Bitner, Jessica J.; Farley, Greg H.

    2014-01-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a birdbanding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens. PMID:23224296

  3. Vancomycin-resistant gram-positive cocci isolated from the saliva of wild songbirds.

    PubMed

    Ishihara, Shingo; Bitner, Jessica J; Farley, Greg H; Gillock, Eric T

    2013-04-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a bird-banding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens.

  4. Moderately halophilic gram-positive cocci from hypersaline environments.

    PubMed

    Ventosa, A; Ramos-Cormenzana, A; Kocur, M

    1983-01-01

    38 strains of moderately halophilic Gram-positive, catalase-positive cocci were isolated from saline soils and the ponds of a solar saltern in Alicante (Spain). They were divided into three biochemically distinct groups. On the basis of the characteristics investigated the 25 strains of group I corresponded to Planococcus halophilus; the ten strains of group II were morphologically and biochemically similar to the species Sporosarcina halophila; group III, comprising three strains, differed strikingly from the previous groups in certain biochemical tests. These strains differed from the planococci and micrococci so far described and were tentatively designated as Planococcus sp. The results have shown that moderately halophilic Gram-positive, motile cocci, are frequent inhabitants of hypersaline environments. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  5. Changes of the Quinolones Resistance to Gram-positive Cocci Isolated during the Past 8 Years in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Jiancheng; Chen, Qihui; Yao, Hanxin; Zhou, Qi

    This study was to investigate the quinolones resistance to gram-positive cocci isolated in the First Bethune Hospital during the past 8 years. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). The rates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococci (MRCNS) were 50.8%∼83.3% and 79.4%∼81.5%during the past 8 years, respectively. In recent 8 years, the quinolones resistance to gram-positive cocci had increased. Monitoring of the quinolones resistance to gram-positive cocci should be strengthened. The change of the antimicrobial resistance should be investigated in order to guide rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  6. Chocolate agar, a differential medium for gram-positive cocci.

    PubMed Central

    Gunn, B A

    1984-01-01

    Reactions incurred on chocolate agar by gram-positive cocci were correlated with species identity. Darkening and clearing of the medium was usually associated with the species Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus simulans, and Streptococcus faecalis. Yellowing of chocolate agar was associated with alpha-hemolytic species of Streptococcus. The study demonstrated that reactions occurring on chocolate agar are useful in identifying gram-positive cocci. PMID:6490866

  7. Gram-positive, catalase-positive cocci from dry cured Iberian ham and their enterotoxigenic potential.

    PubMed Central

    Rodríguez, M; Núñez, F; Córdoba, J J; Bermúdez, E; Asensio, M A

    1996-01-01

    Iberian ham is an uncooked, cured meat product ripened under natural uncontrolled conditions for 18 to 24 months. Gram-positive, catalase-positive cocci are the main microbial population in Iberian ham for most of the ripening time. Since some of these organisms are able to produce enterotoxins, adequate characterization and toxicological study are needed. For this, 1,327 gram-positive, catalase-positive cocci, isolated from Iberian hams at different stages and locations, were characterized by physiological and biochemical tests. Selected isolates were further characterized by guanine-cytosine (G+C) content and restriction enzyme analysis of genes coding for 16S rRNA. The toxigenic potential of these organisms was tested with specific DNA gene probes for staphylococcal enterotoxins A, B, C, and D and confirmed by semiquantitative sandwich enzyme immunoassay. The majority of the isolates were identified as Staphylococcus spp. and Micrococcus spp. Non-identified gram-positive, catalase-positive cocci which were moderately halophilic and showed a 42 to 52% G+C content were detected. A great variety of staphylococcal strains were found within the different species at any sampling time. Two strains of Staphylococcus xylosus, one Staphylococcus cohnii strain, and four of the non-identified organisms with 42 to 52% G+C contents hybridized with some of the DNA probes for C and D staphylococcal enterotoxin genes. S. xylosus hybridizing with C-enterotoxin probe reacted with both C and D enterotoxins in the immunological test. In addition, enterotoxin D was confirmed in the nonidentified strains. Some toxigenic organisms were isolated from the final product, posing a health hazard for the consumer. PMID:8787389

  8. Gram-positive, motile, cluster-forming cocci as a cause of urinary infection

    PubMed Central

    Virtanen, S.

    1974-01-01

    One hundred and thirteen strains of motile, Gram-positive, catalase-positive, cluster-forming cocci were isolated from patients with urinary infection attending a private surgery. They constituted 1% of the total 11 302 positive cultures. The biochemical characteristics and the drug sensitivities of the strains are described. The significance of motility for organisms which cause urinary infections is pointed out. At the present time the organisms isolated are orphans in the controversial classification of staphylococci and micrococci. Images PMID:4852184

  9. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    PubMed

    Barnini, Simona; Ghelardi, Emilia; Brucculeri, Veronica; Morici, Paola; Lupetti, Antonella

    2015-06-18

    Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.

  10. Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese.

    PubMed

    Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2018-02-01

    Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.

  11. Gram-Positive Anaerobic Cocci

    PubMed Central

    Murdoch, D. A.

    1998-01-01

    Gram-positive anaerobic cocci (GPAC) are a heterogeneous group of organisms defined by their morphological appearance and their inability to grow in the presence of oxygen; most clinical isolates are identified to species in the genus Peptostreptococcus. GPAC are part of the normal flora of all mucocutaneous surfaces and are often isolated from infections such as deep organ abscesses, obstetric and gynecological sepsis, and intraoral infections. They have been little studied for several reasons, which include an inadequate classification, difficulties with laboratory identification, and the mixed nature of the infections from which they are usually isolated. Nucleic acid studies indicate that the classification is in need of radical revision at the genus level. Several species of Peptostreptococcus have recently been described, but others still await formal recognition. Identification has been based on carbohydrate fermentation tests, but most GPAC are asaccharolytic and use the products of protein degradation for their metabolism; the introduction of commercially available preformed enzyme kits affords a physiologically more appropriate method of identification, which is simple and relatively rapid and can be used in routine diagnostic laboratories. Recent reports have documented the isolation in pure culture of several species, notably Peptostreptococcus magnus, from serious infections. Studies of P. magnus have elucidated several virulence factors which correlate with the site of infection, and reveal some similarities to Staphylococcus aureus. P. micros is a strongly proteolytic species; it is increasingly recognized as an important pathogen in intraoral infections, particularly periodontitis, and mixed anaerobic deep-organ abscesses. Comparison of antibiotic susceptibility patterns reveals major differences between species. Penicillins are the antibiotics of choice, although some strains of P. anaerobius show broad-spectrum β-lactam resistance. PMID:9457430

  12. Gram-positive anaerobic cocci--commensals and opportunistic pathogens.

    PubMed

    Murphy, Elizabeth Carmel; Frick, Inga-Maria

    2013-07-01

    Among the Gram-positive anaerobic bacteria associated with clinical infections, the Gram-positive anaerobic cocci (GPAC) are the most prominent and account for approximately 25-30% of all isolated anaerobic bacteria from clinical specimens. Still, routine culture and identification of these slowly growing anaerobes to the species level has been limited in the diagnostic laboratory, mainly due to the requirement of prolonged incubation times and time-consuming phenotypic identification. In addition, GPAC are mostly isolated from polymicrobial infections with known pathogens and therefore their relevance has often been overlooked. However, through improvements in diagnostic and in particular molecular techniques, the isolation and identification of individual genera and species of GPAC associated with specific infections have been enhanced. Furthermore, the taxonomy of GPAC has undergone considerable changes over the years, mainly due to the development of molecular identification methods. Existing species have been renamed and novel species have been added, resulting in changes of the nomenclature. As the abundance and significance of GPAC in clinical infections grow, knowledge of virulence factors and antibiotic resistance patterns of different species becomes more important. The present review describes recent advances of GPAC and what is known of the biology and pathogenic effects of Anaerococcus, Finegoldia, Parvimonas, Peptoniphilus and Peptostreptococcus, the most important GPAC genera isolated from human infections. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Efficacy of direct Gram stain in differentiating staphylococci from streptococci in blood cultures positive for gram-positive cocci.

    PubMed Central

    Agger, W A; Maki, D G

    1978-01-01

    A preponderance of clusters seen on direct Gram stain of blood cultures positive for gram-positive cocci was 98% sensitive and 100% specific for identification of staphylococcal species or of Peptococcus. A preponderance of chains, pairs, or both was 100% sensitive and 98% specific for identifying streptococci. Further presumptive identification of either staphylococci or streptococci based on microscopic morphology was unreliable. The direct Gram stain is highly reliable for differentiating staphylococci from streptococci and should be of considerable value to clinicians selecting initial antimicrobial therapy. PMID:75888

  14. Agreement Between Deoxyribonucleic Acid Base Composition and Taxometric Classification of Gram-Positive Cocci1

    PubMed Central

    Silvestri, L. G.; Hill, L. R.

    1965-01-01

    Silvestri, L. G. (Università Statale, Milan, Italy), and L. R. Hill. Agreement between deoxyribonucleic acid base composition and taxometric classification of gram-positive cocci. J. Bacteriol. 90:136–140. 1965.—It had been previously proposed, from taxometric analyses, that gram-positive, catalase-positive cocci be divided into two subgroups. Thirteen strains, representative of both subgroups, were examined for deoxyribonucleic acid (DNA) base composition, determined from melting temperatures. Per cent GC (guanine + cytosine/total bases) values fell into two groups: 30.8 to 36.5% GC and 69 to 75% GC. Strains with low per cent GC values belonged to the Staphylococcus aureus–S. saprophyticus–S. lactis taxometric subgroups, and those with high per cent GC values belonged to the S. roseus–S. afermentans subgroup. The hypothetical nature of any classification is emphasized, and, in the present work, the hypothesis derived from taxometric analyses of division into two subgroups is confirmed by the study of DNA base ratios. The two subgroups correspond, respectively, to the genera Staphylococcus and Micrococcus. PMID:16562008

  15. Phage-inducible islands in the Gram-positive cocci.

    PubMed

    Martínez-Rubio, Roser; Quiles-Puchalt, Nuria; Martí, Miguel; Humphrey, Suzanne; Ram, Geeta; Smyth, Davida; Chen, John; Novick, Richard P; Penadés, José R

    2017-04-01

    The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci.

  16. Evaluation of the VITEK 2 System for Identification and Antimicrobial Susceptibility Testing of Medically Relevant Gram-Positive Cocci

    PubMed Central

    Ligozzi, Marco; Bernini, Cinzia; Bonora, Maria Grazia; de Fatima, Maria; Zuliani, Jessica; Fontana, Roberta

    2002-01-01

    A study was conducted to evaluate the new VITEK 2 system (bioMérieux) for identification and antibiotic susceptibility testing of gram-positive cocci. Clinical isolates of Staphylococcus aureus (n = 100), coagulase-negative staphylococci (CNS) (n = 100), Enterococcus spp. (n = 89), Streptococcus agalactiae (n = 29), and Streptococcus pneumoniae (n = 66) were examined with the ID-GPC identification card and with the AST-P515 (for staphylococci), AST-P516 (for enterococci and S. agalactiae) and AST-P506 (for pneumococci) susceptibility cards. The identification comparison methods were the API Staph for staphylococci and the API 20 Strep for streptococci and enterococci; for antimicrobial susceptibility testing, the agar dilution method according to the procedure of the National Committee for Clinical Laboratory Standards (NCCLS) was used. The VITEK 2 system correctly identified to the species level (only one choice or after simple supplementary tests) 99% of S. aureus, 96.5% of S. agalactiae, 96.9% of S. pneumoniae, 92.7% of Enterococcus faecalis, 91.3% of Staphylococcus haemolyticus, and 88% of Staphylococcus epidermidis but was least able to identify Enterococcus faecium (71.4% correct). More than 90% of gram-positive cocci were identified within 3 h. According to the NCCLS breakpoints, antimicrobial susceptibility testing with the VITEK 2 system gave 96% correct category agreement, 0.82% very major errors, 0.17% major errors, and 2.7% minor errors. Antimicrobial susceptibility testing showed category agreement from 94 to 100% for S. aureus, from 90 to 100% for CNS, from 91 to 100% for enterococci, from 96 to 100% for S. agalactiae, and from 91 to 100% for S. pneumoniae. Microorganism-antibiotic combinations that gave very major errors were CNS-erythromycin, CNS-oxacillin, enterococci-teicoplanin, and enterococci-high-concentration gentamicin. Major errors were observed for CNS-oxacillin and S. agalactiae-tetracycline combinations. In conclusion the results of

  17. Evaluation of the LightCycler Staphylococcus MGRADE Kits on Positive Blood Cultures That Contained Gram-Positive Cocci in Clusters

    PubMed Central

    Shrestha, Nabin K.; Tuohy, Marion J.; Padmanabhan, Ravindran A.; Hall, Gerri S.; Procop, Gary W.

    2005-01-01

    We evaluated the Roche LightCycler Staphylococcus MGRADE kits to differentiate between Staphylococcus aureus and coagulase-negative staphylococci in blood cultures growing clusters of gram-positive cocci. Testing 100 bottles (36 containing S. aureus), the assay was 100% sensitive and 98.44% specific for S. aureus and 100% sensitive and specific for coagulase-negative staphylococci. PMID:16333115

  18. A comparison of neonatal Gram-negative rod and Gram-positive cocci meningitis.

    PubMed

    Smith, P B; Cotten, C M; Garges, H P; Tiffany, K F; Lenfestey, R W; Moody, M A; Li, J S; Benjamin, D K

    2006-02-01

    Neonatal meningitis is an illness with potentially devastating consequences. Early identification of potential risk factors for Gram-negative rod (GNR) infections versus Gram-positive cocci (GPC) infection prior to obtaining final culture results is of value in order to appropriately guide expirical therapy. We sought to compare laboratory and clinical parameters of GNR and GPC meningitis in a cohort of term and premature infants. We evaluated lumbar punctures from neonates cared for at 150 neonatal intensive care units managed by the Pediatrix Medical Group Inc. We compared cerebrospinal fluid (CSF) parameters (white blood cell count, red blood cell count, glucose, and protein), demographics, and outcomes between infants with GNR and GPC meningitis. CSF cultures positive with coagulase-negative staphylococci were excluded. We identified 77 infants with GNR and 86 with GPC meningitis. There were no differences in gestational age, birth weight, infant sex, race, or rate of Caesarean section. GNR meningitis was more often diagnosed after the third postnatal day and was associated with higher white blood cell and red blood cell counts. GNR meningitis diagnosed in the first 3 days of life was associated with antepartum antibiotic exposure. No difference was noted in either CSF protein or glucose levels. After correcting for gestational age, there was no observed difference in mortality between infants infected with GNR or GPC. Compared to GPC meningitis, GNR meningitis was associated with several aspects of the clinical history and laboratory findings including older age of presentation, antepartum exposure to antibiotics, and elevated CSF white blood cell and red blood cell counts.

  19. Novel Imidazoline Antimicrobial Scaffold That Inhibits DNA Replication with Activity against Mycobacteria and Drug Resistant Gram-Positive Cocci

    PubMed Central

    2015-01-01

    Bacterial antimicrobial resistance is an escalating public health threat, yet the current antimicrobial pipeline remains alarmingly depleted, making the development of new antimicrobials an urgent need. Here, we identify a novel, potent, imidazoline antimicrobial compound, SKI-356313, with bactericidal activity against Mycobacterium tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine models of Streptococcus pneumoniae and MRSA infection and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole genome sequencing, and a novel target ID approach using real time imaging of core macromolecular biosynthesis, we show that SKI-356313 inhibits DNA replication and displaces the replisome from the bacterial nucleoid. These results identify a new antimicrobial scaffold with a novel mechanism of action and potential therapeutic utility against nonreplicating M. tuberculosis and antibiotic resistant Gram-positive cocci. PMID:25222597

  20. Evaluation of the LightCycler Staphylococcus M GRADE kits on positive blood cultures that contained gram-positive cocci in clusters.

    PubMed

    Shrestha, Nabin K; Tuohy, Marion J; Padmanabhan, Ravindran A; Hall, Gerri S; Procop, Gary W

    2005-12-01

    We evaluated the Roche LightCycler Staphylococcus M(GRADE) kits to differentiate between Staphylococcus aureus and coagulase-negative staphylococci in blood cultures growing clusters of gram-positive cocci. Testing 100 bottles (36 containing S. aureus), the assay was 100% sensitive and 98.44% specific for S. aureus and 100% sensitive and specific for coagulase-negative staphylococci.

  1. Comparative in-vitro activities of quinupristin-dalfopristin against Gram-positive bloodstream isolates.

    PubMed

    Schouten, M A; Hoogkamp-Korstanje, J A

    1997-08-01

    The in-vitro activity of quinupristin-dalfopristin was compared with those of vancomycin, teicoplanin, erythromycin, clarithromycin, rifampicin, imipenem, meropenem, ciprofloxacin and sparfloxacin against 414 bloodstream isolates of Gram-positive cocci. Quinupristin-dalfopristin inhibited strains of Streptococcus pyogenes and Streptococcus agalactiae at 0.12 mg/L, methicillin- and/or erythromycin-resistant Staphylococcus aureus and Staphylococcus epidermidis at 0.5 mg/L, Staphylococcus haemolyticus, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus mitis, Streptococcus bovis, Streptococcus sanguis and Streptococcus anginosus at 1 mg/L and Enterococcus faecalis at 8 mg/L.

  2. Differential staining of bacteria: gram stain.

    PubMed

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  3. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence

    PubMed Central

    Burnside, Kellie; Rajagopal, Lakshmi

    2011-01-01

    Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections. PMID:21797690

  4. In vitro activity of monoclonal and recombinant yeast killer toxin-like antibodies against antibiotic-resistant gram-positive cocci.

    PubMed Central

    Conti, S.; Magliani, W.; Arseni, S.; Dieci, E.; Frazzi, R.; Salati, A.; Varaldo, P. E.; Polonelli, L.

    2000-01-01

    BACKGROUND: Monoclonal (mAbKT) and recombinant single-chain (scFvKT) anti-idiotypic antibodies were produced to represent the internal image of a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity, including gram-positive cocci. Pathogenic eukaryotic and prokaryotic microorganisms, such as Candida albicans, Pneumocystis carinii, and a multidrug-resistant strain of Mycobacterium tuberculosis, presenting specific, although yet undefined, KT-cell wall receptors (KTR), have proven to be killed in vitro by mAbKT and scFvKT. mAbKT and scFvKT exert a therapeutic effect in vivo in experimental models of candidiasis and pneumocystosis by mimicking the functional activity of protective antibodies naturally produced in humans against KTR of infecting microorganisms. The swelling tide of concern over increasing bacterial resistance to antibiotic drugs gives the impetus to develop new therapeutic compounds against microbial threat. Thus, the in vitro bactericidal activity of mAbKT and scFvKT against gram-positive, drug-resistant cocci of major epidemiological interest was investigated. MATERIALS AND METHODS: mAbKT and scFvKT generated by hybridoma and DNA recombinant technology from the spleen lymphocytes of mice immunized with a KT-neutralizing monoclonal antibody (mAb KT4) were used in a conventional colony forming unit (CFU) assay to determine, from a qualitative point of view, their bactericidal activity against Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae strains. These bacterial strains are characterized by different patterns of resistance to antibiotics, including methicillin, vancomycin, and penicillin. RESULTS: According to the experimental conditions adopted, no bacterial isolate proved to be resistant to the activity of mAbKT and scFvKT. CONCLUSIONS: scFvKT exerted a microbicidal activity against multidrug resistant bacteria, which may represent the basis for the drug modeling

  5. Gram-positive rods prevailing in teeth with apical periodontitis undergoing root canal treatment.

    PubMed

    Chávez de Paz, L E; Molander, A; Dahlén, G

    2004-09-01

    To identify Gram-positive rods from root canals of teeth with apical periodontitis and to examine their associations with other species. Consecutive root canal samples (RCSs) from 139 teeth undergoing root canal treatment were analyzed prospectively for cultivable microbes. Gram-positive rods in the first RCS submitted after chemo-mechanical preparation were categorised to genus level by selective media and gas-liquid chromatography (GLC), and identified to species level by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Associations between organisms were measured by odds ratios (OR). In the first samples submitted a total of 158 Gram-positive rods, 115 Gram-positive cocci, 26 Gram-negative rods and 9 Gram-negative cocci, were identified. At genus levels Gram-positive rods were classified into: Lactobacillus spp. (38%), Olsenella spp. (18%), Propionibacterium spp. (13%), Actinomyces spp. (12%), Bifidobacterium spp. (13%) and Eubacterium spp. (6%). The most frequent species were Olsenella uli, Lactobacillus paracasei and Propionibacterium propionicum. In subsequent samples taken during treatment, Gram-positive rods were also identified, although the number of strains was considerably reduced. Positive associations were observed between members of the genus lactobacilli and Gram-positive cocci (OR>2). Olsenella uli and Lactobacillus spp. predominated over other Gram-positive rods. A possible association exists between Lactobacillus spp. and Gram-positive cocci in root canals of teeth with apical periodontitis receiving treatment.

  6. Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci

    PubMed Central

    Bascomb, Shoshana; Manafi, Mammad

    1998-01-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  7. Gram staining for the treatment of peritonsillar abscess.

    PubMed

    Takenaka, Yukinori; Takeda, Kazuya; Yoshii, Tadashi; Hashimoto, Michiko; Inohara, Hidenori

    2012-01-01

    Objective. To examine whether Gram staining can influence the choice of antibiotic for the treatment of peritonsillar abscess. Methods. Between 2005 and 2009, a total of 57 cases of peritonsillar abscess were analyzed with regard to cultured bacteria and Gram staining. Results. Only aerobes were cultured in 16% of cases, and only anaerobes were cultured in 51% of cases. Mixed growth of aerobes and anaerobes was observed in 21% of cases. The cultured bacteria were mainly aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. Phagocytosis of bacteria on Gram staining was observed in 9 cases. The bacteria cultured from these cases were aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. The sensitivity of Gram staining for the Gram-positive cocci and Gram-negative rods was 90% and 64%, respectively. The specificity of Gram staining for the Gram-positive cocci and Gram-negative rods was 62% and 76%, respectively. Most of the Gram-positive cocci were sensitive to penicillin, but some of anaerobic Gram-negative rods were resistant to penicillin. Conclusion. When Gram staining shows only Gram-positive cocci, penicillin is the treatment of choice. In other cases, antibiotics effective for the penicillin-resistant organisms should be used.

  8. Virulence arsenal of the most pathogenic species among the Gram-positive anaerobic cocci, Finegoldia magna.

    PubMed

    Boyanova, Lyudmila; Markovska, Rumyana; Mitov, Ivan

    2016-12-01

    This review focuses on the virulence arsenal of the most pathogenic species among Gram positive anaerobic cocci, Finegoldia magna according to recently published data from 2012 to 2016. Virulence factors like sortase dependent pili and F. magna adhesion factor (FAF) facilitate the start of the infection. Albumin binding protein (PAB) enhances F. magna survival. FAF, subtilisin-like extracellular serine protease (SufA) and superantigen protein L protect the bacteria from factors of innate defense system. SufA, capsule and tissue-destroying enzymes provide a deep penetration or spread of the infections and the protein L is associated with infection severity. Biofilm production results in infection chronification and complicated treatment as well as to persistence of multi-species biofilms. Resistance rates to quinolones (13.0->70%) and clindamycin (0-40.0%) are important, and resistance to penicillins (<4%), chloramphenicol (7.0%) and metronidazole (<7%) has been reported. F. magna should not be overlooked when present in monoinfections or mixed infections in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparative activity of ceftobiprole against Gram-positive and Gram-negative isolates from Europe and the Middle East: the CLASS study.

    PubMed

    Rossolini, Gian M; Dryden, Matthew S; Kozlov, Roman S; Quintana, Alvaro; Flamm, Robert K; Läuffer, Jörg M; Lee, Emma; Morrissey, Ian; CLASS Study Group

    2011-01-01

    to assess the in vitro activity of ceftobiprole and comparators against a recent collection of Gram-positive and Gram-negative pathogens, in order to detect potential changes in susceptibility patterns, and to evaluate the Etest assay for ceftobiprole susceptibility testing. contemporary Gram-positive and Gram-negative isolates (excluding extended-spectrum β-lactamase-producing isolates) from across Europe and the Middle East were collected, and their susceptibility to ceftobiprole, vancomycin, teicoplanin, linezolid, ceftazidime and cefepime was assessed using the Etest method. Quality testing [using Etest and broth microdilution (BMD)] was conducted at a central reference laboratory. some 5041 Gram-positive and 4026 Gram-negative isolates were included. Against Gram-positive isolates overall, ceftobiprole had the lowest MIC50 (0.5 mg/L), compared with 1 mg/L for its comparators (vancomycin, teicoplanin and linezolid). Against methicillin-resistant Staphylococcus aureus, all four agents had a similar MIC90 (2 mg/L), but ceftobiprole had a 4-fold better MIC90 (0.5 mg/L) against methicillin-susceptible strains. Only 38 Gram-positive isolates were confirmed as ceftobiprole resistant. Among Gram-negative strains, 86.9%, 91.7% and 95.2% were susceptible to ceftobiprole, ceftazidime and cefepime, respectively. Pseudomonas aeruginosa was less susceptible to all three antimicrobials than any other Gram-negative pathogen. There was generally good agreement between local Etest results and those obtained at the reference laboratory (for ceftobiprole: 86.8% with Gram-negatives; and 94.7% with Gram-positives), as well as between results obtained by BMD and Etest methods (for ceftobiprole: 98.2% with Gram-negatives; and 98.4% with Gram-positives). ceftobiprole exhibits in vitro activity against a wide range of Gram-positive and Gram-negative pathogens, including multidrug-resistant strains. No changes in its known susceptibility profile were identified.

  10. Patterns of isolation of common gram positive bacterial pathogens and their susceptibilities to antimicrobial agents in Jimma Hospital.

    PubMed

    Gebreselassie, Solomon

    2002-04-01

    Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic

  11. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    PubMed

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  12. Postantibiotic effect of ceftaroline against gram-positive organisms.

    PubMed

    Pankuch, G A; Appelbaum, P C

    2009-10-01

    The postantibiotic effects (PAEs), postantibiotic sub-MIC effects (PA-SMEs), and sub-MIC effects (SMEs) of ceftaroline, a novel injectable cephalosporin, were determined for 15 gram-positive organisms. The pneumococcal, staphylococcal, and enterococcal PAEs were 0.8 to 1.8 h, 0.7 to 2.2 h, and 0.2 to 1.1 h, respectively. The corresponding PA-SMEs (0.4 times the MIC) were 2.5 to 6.7 h, 2.9 to >0.0 h, and 7.9 to >10.3 h, respectively. The PA-SMEs were longer than the PAEs, suggesting that sub-MIC levels extend the PAE of ceftaroline against gram-positive cocci.

  13. Infective Endocarditis: Identification of Catalase-Negative, Gram-Positive Cocci from Blood Cultures by Partial 16S rRNA Gene Analysis and by Vitek 2 Examination.

    PubMed

    Abdul-Redha, Rawaa Jalil; Kemp, Michael; Bangsborg, Jette M; Arpi, Magnus; Christensen, Jens Jørgen

    2010-01-01

    Streptococci, enterococci and Streptococcus-like bacteria are frequent etiologic agents of infective endocarditis and correct species identification can be a laboratory challenge. Viridans streptococci (VS) not seldomly cause contamination of blood cultures. Vitek 2 and partial sequencing of the 16S rRNA gene were applied in order to compare the results of both methods. STRAINS ORIGINATED FROM TWO GROUPS OF PATIENTS: 149 strains from patients with infective endocarditis and 181 strains assessed as blood culture contaminants. Of the 330 strains, based on partial 16S rRNA gene sequencing results, 251 (76%) were VS strains, 10 (3%) were pyogenic streptococcal strains, 54 (16%) were E. faecalis strains and 15 (5%) strains belonged to a group of miscellaneous catalase-negative, Gram-positive cocci. Among VS strains, respectively, 220 (87,6%) and 31 (12,3%) obtained agreeing and non-agreeing identifications with the two methods with respect to allocation to the same VS group. Non-agreeing species identification mostly occurred among strains in the contaminant group, while for endocarditis strains notably fewer disagreeing results were observed.Only 67 of 150 strains in the mitis group strains obtained identical species identifications by the two methods. Most VS strains belonging to the groups of salivarius, anginosus, and mutans obtained agreeing species identifications with the two methods, while this only was the case for 13 of the 21 bovis strains. Pyogenic strains (n=10), Enterococcus faecalis strains (n=54) and a miscellaneous group of catalase-negative, Gram-positive cocci (n=15) seemed well identified by both methods, except that disagreements in identifications in the miscellaneous group of strains occurred for 6 of 15 strains.

  14. Antimicrobial resistance in Gram-positive bacteria from Timorese River Buffalo (Bubalus bubalis) skin microbiota.

    PubMed

    Oliveira, Manuela; Monteiro, José L; Rana, Sílvia; Vilela, Cristina L

    2010-06-01

    The Timorese River Buffalo (Bubalus bubalis) plays a major role in the East Timor economy, as it is an important source of animal protein in human nutrition. They are widely spread throughout the country and are in direct contact with the populations. In spite of this proximity, information on their microbiota is scarce. This work aimed at characterizing the skin microbiota of the East Timorese River Buffalo and its antimicrobial resistance profile. Skin swab samples were taken from 46 animals in surveys conducted in three farms located in "Suco de Nairete", Lospalos district, during July and August 2006. Bacteria were isolated and identified according to conventional microbiological procedures. A total of 456 isolates were obtained, including Gram-positive (n = 243) and Gram-negative (n = 213) bacteria. Due to their importance as potential pathogens and as vehicles for antimicrobial resistance transmission, Gram-positive cocci (n = 27) and bacilli (n = 77) isolates were further characterized, and their antimicrobial resistance profile determined by the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. This study shows the high bacterial diversity of B. bubalis skin microbiota, representing an important first step towards understanding its importance and epidemiologic role in animal health. It also points out the potential role of these animals as vectors of antimicrobial resistant bacteria dissemination and the importance of antimicrobial resistance monitoring in developing countries.

  15. [GEIPC-SEIMC (Study Group for Infections in the Critically Ill Patient of the Spanish Society for Infectious Diseases and Clinical Microbiology) and GTEI-SEMICYUC ( Working Group on Infectious Diseases of the Spanish Society of Intensive Medicine, Critical Care, and Coronary Units) recommendations for antibiotic treatment of gram-positive cocci infections in the critical patient].

    PubMed

    Astigarraga, P M Olaechea; Montero, J Garnacho; Cerrato, S Grau; Colomo, O Rodríguez; Martínez, M Palomar; Crespo, R Zaragoza; García-Paredes, P Muñoz; Cerdá, E Cerdá; Lerma, F Alvarez

    2007-01-01

    In recent years, an increment of infections caused by gram-positive cocci has been documented in nosocomial and hospital-acquired-infections. In diverse countries, a rapid development of resistance to common antibiotics against gram-positive cocci has been observed. This situation is exceptional in Spain but our country might be affected in the near future. New antimicrobials active against these multi-drug resistant pathogens are nowadays available. It is essential to improve our current knowledge about pharmacokinetic properties of traditional and new antimicrobials to maximize its effectiveness and to minimize toxicity. These issues are even more important in critically ill patients because inadequate empirical therapy is associated with therapeutic failure and a poor outcome. Experts representing two scientific societies (Grupo de estudio de Infecciones en el Paciente Crítico de la SEIMC and Grupo de trabajo de Enfermedades Infecciosas de la SEMICYUC) have elaborated a consensus document based on the current scientific evidence to summarize recommendations for the treatment of serious infections caused by gram-positive cocci in critically ill patients.

  16. In vitro activity of daptomycin against clinical isolates of Gram-positive bacteria.

    PubMed

    Piper, Kerryl E; Steckelberg, James M; Patel, Robin

    2005-08-01

    We determined the activity of daptomycin, a recently FDA-approved antimicrobial agent, against clinical isolates of Gram-positive bacteria, including viridans group streptococci (16 Streptococcus mitis species group, 12 S. mutans species group, 9 S. anginosus species group, 8 S. sanguinis species group, 5 S. salivarius species group) from patients with infective endocarditis, 32 methicillin-resistant Staphylococcus aureus, 32 high-level penicillin-resistant Streptococcus pneumoniae, 38 vancomycin-resistant enterococci (including 1 linezolid-resistant isolate), and the following unusual Gram-positive bacteria: 3 Listeria monocytogenes, 4 Erysipelothrix rhusiopathiae, 9 Corynebacterium species, 10 Abiotrophia/Granulicatella species, 2 Rothia (Stomatococcus) mucilaginosus, and 4 Gemella morbillorum. Daptomycin minimum inhibitory concentration (MIC)(90) values for the viridans group streptococci, methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and Enterococcus species were 0.5, 0.5, < or =0.125, and 4 microg/ml, respectively. The daptomycin MIC range for the unusual Gram-positive bacteria was < or =0.125-2 microg/ml. We conclude that daptomycin has in vitro activity against viridans group streptococci associated with endocarditis as well as against several types of unusual Gram-positive bacteria that can cause endocarditis.

  17. Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Alatoom, Adnan A; Cunningham, Scott A; Ihde, Sherry M; Mandrekar, Jayawant; Patel, Robin

    2011-08-01

    We evaluated Bruker Biotyper (version 2.0) matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 305 clinical isolates of staphylococci, streptococci, and related genera by comparing direct colony testing with preparatory extraction. Isolates were previously identified by use of phenotypic testing and/or 16S rRNA gene sequencing. Manufacturer-specified score cutoffs for genus- and species-level identification were used. After excluding 7 isolates not present in the Biotyper library, the Biotyper correctly identified 284 (95%) and 207 (69%) isolates to the genus and species levels, respectively, using extraction. By using direct colony testing, the Biotyper identified 168 (56%) and 60 (20%) isolates to the genus and species levels, respectively. Overall, more isolates were identified to the genus and species levels with preparatory extraction than with direct colony testing (P < 0.0001). The analysis was repeated after dividing the isolates into two subgroups, staphylococci, streptococci, and enterococci (n = 217) and "related genera" (n = 81). For the former subgroup, the extraction method resulted in the identification of 213 (98%) and 171 (79%) isolates to the genus and species levels, respectively, whereas the direct colony method identified 136 (63%) and 56 (26%) isolates to the genus and species levels, respectively. In contrast, for the subgroup of related genera, the extraction method identified 71 (88%) and 36 (44%) isolates to the genus and species levels, respectively, while the direct colony method identified 32 (40%) and 4 (5%) isolates to the genus and species levels, respectively. For both subgroups, preparatory extraction was superior to direct colony testing for the identification of isolates to the genus and species levels (P < 0.0001). Preparatory extraction is needed for the identification of a substantial proportion of Gram-positive cocci using the Biotyper method according to

  18. Gram-negative diabetic foot osteomyelitis: risk factors and clinical presentation.

    PubMed

    Aragón-Sánchez, Javier; Lipsky, Benjamin A; Lázaro-Martínez, Jose L

    2013-03-01

    Osteomyelitis frequently complicates infections in the feet of patients with diabetes. Gram-positive cocci, especially Staphylococcus aureus, are the most commonly isolated pathogens, but gram-negative bacteria also cause some cases of diabetic foot osteomyelitis (DFO). These gram-negatives require different antibiotic regimens than those commonly directed at gram-positives. There are, however, few data on factors related to their presence and how they influence the clinical picture. We conducted a retrospective study to determine the variables associated with the isolation of gram-negative bacteria from bone samples in cases of DFO and the clinical presentation of these infections. Among 341 cases of DFO, 150 had a gram-negative isolate (alone or combined with a gram-positive isolate) comprising 44.0% of all patients and 50.8% of those with a positive bone culture. Compared with gram-positive infections, wounds with gram-negative organisms more often had a fetid odor, necrotic tissue, signs of soft tissue infection accompanying osteomyelitis, and clinically severe infection. By multivariate analysis, the predictive variables related to an increased likelihood of isolating gram-negatives from bone samples were glycated hemoglobin <7% (odds ratio [OR] = 2.0, 95% confidence interval [CI] = 1.1-3.5) and a wound caused by traumatic injury (OR = 2.0, 95% CI = 1.0-3.9). Overall, patients whose bone samples contained gram-negatives had a statistically significantly higher prevalence of leukocytosis and higher white blood cell counts than those without gram-negatives. In conclusion, gram-negative organisms were isolated in nearly half of our cases of DFO and were associated with more severe infections, higher white blood cell counts, lower glycated hemoglobin levels, and wounds of traumatic etiology.

  19. [Estimation of activity of pharmakopeal disinfectants and antiseptics against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment].

    PubMed

    Grzybowska, Wanda; Młynarczyk, Grazyna; Młynarczyk, Andrzej; Bocian, Ewa; Luczak, Mirosław; Tyski, Stefan

    2007-01-01

    The MIC of nine different disinfectants and antiseptics were determined for the Gram-negative and Gram-positive bacteria. Strains originated from clinical specimens, drugs and environment. A sensitivity was determined against chlorhexidinum digluconate (Gram-negative: 0,625-80 mg/L, Gram-positive: 0,3-10 mg/L), benzalconium chloride (Gram-negative: 2,5-1280 mg/L, Gram-positive: 1,25-20 mg/L), salicilic acid (Gram-negative and Gram-positive: 400-1600 mg/L), benzoic acid (Gram-negative: 800-1600 mg/L, Gram-positive: 400-1 600 mg/L), boric acid (Gram-negative: 800-12 800 mg/L, Gram-positive: 1 600-6400 mg/L), chloramine B (Gram-negative: 1600-6400 mg/L, Gram-positive:800- 6400 mg/L), jodine (Gram-negative: 200-1600 mg/L, Gram-positive: 200-1600 mg/L), etacridine lactate (Gram-negative: 40 do > 20480 mg/L, Gram-positive: 40-1280 mg/L) and resorcine (Gram-negative: 1600-6400 mg/L, Gram-positive: 800-6400 mg/L). Diversified values of MIC for different strains were obtained, especially in the case of benzalconium chloride, etacridine lactate, chlorhexidinum digluconate, boric acid and iodine. Strains isolated from environment were usually more susceptible to examined compounds than clinical strains. The biggest diversification of sensitivity was observed among strains originated from drugs where besides sensitive appeared strains characterizing by very high MIC values of some substances, eg. boric acid.

  20. Misinterpretation of Gram Stain from the Stationary Growth Phase of Positive Blood Cultures for Brucella and Acinetobacter Species.

    PubMed

    Bazzi, Ali M; Al-Tawfiq, Jaffar A; Rabaan, Ali A

    2017-01-01

    Acinetobacter baumannii and Brucella species are Gram-negative organisms that are vulnerable to misinterpretation as Gram-positive or Gram-variable in blood cultures. We assess the random errors in gram stain interpretation to reduce the likelihood of such errors and therefore patient harm. Aerobic and anaerobic blood cultures from two patients in an acute care facility in Saudi Arabia were subjected to preliminary Gram-staining. In case 1, VITEK-2 Anaerobe Identification, repeat Gram staining from a blood agar plate, Remel BactiDrop™ Oxidase test, Urea Agar urease test and real-time PCR were used to confirm presence of Brucella and absence of Coryneform species. In case 2, repeat Gram- staining from the plate and the vials, VITEK-2 Gram-Negative Identification, real-time PCR and subculture on to Columbia agar, blood agar, and MacConkey agar were carried out to identify A. baumannii . In case 1, initially pleomorphic Gram-positive bacteria were identified. Coryneform species were suspected. Tiny growth was observed after 24 h on blood agar plates, and good growth by 48 h. Presence of Brucella species was ultimately confirmed. In case 2, preliminary Gram-stain results suggested giant Gram-positive oval cocci. Further testing over 18-24 h identified A. baumannii . Oxidase test from the plate and urease test from the culture vial is recommended after apparent identification of pleomorphic Gram-positive bacilli from blood culture, once tiny growth is observed, to distinguish Brucella from Corynebacterium species. If giant Gram-positive oval cocci are indicated by preliminary Gram-staining, it is recommended that the Gram stain be repeated from the plate after 4-6 h, or culture should be tested in Triple Sugar Iron (TSI) medium and the Gram stain repeated after 2-4 h incubation.

  1. The accuracy of Gram stain of respiratory specimens in excluding Staphylococcus aureus in ventilator-associated pneumonia.

    PubMed

    Gottesman, Tamar; Yossepowitch, Orit; Lerner, Evgenia; Schwartz-Harari, Orna; Soroksky, Arie; Yekutieli, Daniel; Dan, Michael

    2014-10-01

    To evaluate the Gram stain of deep tracheal aspirate as a tool to direct empiric antibiotic therapy, and more specifically as a tool to exclude the need for empiric antibiotic coverage against Staphylococcus aureus in ventilator-associated pneumonia (VAP). A prospective, single-center, observational, cohort study. All wards at a community hospital. Adult patients requiring mechanical ventilation, identified as having VAP in a 54-month prospective surveillance database. Sampling of lower airway secretions by deep endotracheal aspiration was taken from each patient who developed VAP. Samples were sent immediately for Gram stain and qualitative bacterial cultures. Demographic and relevant clinical data were collected; Gram stain, culture, and antibiotic susceptibility results were documented; and outcome was followed prospectively. The analysis included 114 consecutive patients with 115 episodes of VAP from June 2007 to January 2012. Sensitivity of Gram stain compared with culture was 90.47% for gram-positive cocci, 69.6% for gram-negative rods, and 50% for sterile cultures. Specificity was 82.5%, 77.8%, and 79%, respectively. Negative predictive value was high for gram-positive cocci (97%) and sterile cultures (96%) but low for gram-negative rods (20%). Acinetobacter baumanii (45%) and Pseudomonas aeruginosa (38 %) were the prevailing isolates. S aureus was found in 18.3% of the patients. Most isolates were multiresistant. Absence of gram-positive bacteria on Gram stain had a high negative predictive value. These data can be used to narrow the initial empiric antibiotic regimen and to avoid unnecessary exposure of patients to vancomycin and other antistaphyloccocal agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The affect of low-coherent light on microbial colony forming ability and morphology of some gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Popov, Denis E.; Tuchina, Elena S.; Chernova, Julia A.; Podshibyakin, Dmitry; Rudik, Dmitry V.; Samsonova, Maria; Gromov, Igor; Tuchin, Valery V.

    2005-06-01

    Gram-negative E. coli, gram-positive facultative anaerobe cocci Staphylococcus lugdensis, Micrococcus halobius, and Stomatococcus mucilaginosus as subjects of study were chosen. LEDs with spectrum maxima at 405 nm (without any exogenous sensitizer) and 660 nm (in conjunction with methylene blue) and power densities of 23 mW/cm2 and 5.7 mW/cm2 accordingly as continuous light sources were chosen. Photosensitized light's affect by methylene blue was studied on E. coli only. The original scheme of experiment set up was developed. It permits one to increase expositions quantity in each experiment for more certain trend's construction over dose curves and decrease parasite flora sowing. As a result of accomplished studies it was established that blue low-coherent light have unalike weak light's dose depending suppressing effect on cocci whereas red low-coherent light have a moderate dose-depended suppressing effect at low irradiation doses and a moderate dose-depended stimulating effect at high irradiation doses on sensitized by MeBlue E. coli. For all ofthis, but Staphylococcus morphology changes were observed.

  3. Rapid differentiation of cocci/mixed bacteria from rods in voided urine culture of women with uncomplicated urinary tract infections.

    PubMed

    Yang, Chun-Chun; Yang, Stephen Shei-Dei; Hung, Hui-Ching; Chiang, I-Ni; Peng, Chiung-Hui; Chang, Shang-Jen

    2017-09-01

    To evaluate the ability of laser flow cytometry to predict cocci/mixed growth in the pre-analytical phase of urine specimens. We retrospectively reviewed urine samples from women with uncomplicated urinary tract infections from urologic clinics for study. Urine analyses were performed with laser flow cytometry (UF1000i, Sysmex, Kobe, Japan) and then diagrams were generated (forward scatter vs. fluorescent light scatter). Each specimen (bacteria count >357 BACT/μL) was classified as either cocci bacteria or rods/mixed growth according to the diagrams. Standard urine cultures were performed, and the agreement between cultures and the UF1000i interpretations was analyzed with kappa statistics. Finally, 491 specimens met the criteria for analysis. Among the 376 specimens with single bacteria growth, there were 26 gram-positive cocci (13 Streptococci spp., 7 Staphylococci spp., 6 Enterococci spp.), 1 gram-positive rods (Corynebacterium spp.), and 349 gram-negative rods (273 Escherichia coli, 33 Klebsiella spp., 29 Proteus spp., 6 Citrobacter spp., 4 Enterobacter spp., 3 Pseudomonas spp., and 1 Providencia spp.). There were 115 specimens with two bacteria species or more that were regarded as mixed growth. Agreement of rods or cocci/mixed growth between the laser flow cytometry and urine cultures yielded a kappa value of 0.58. The positive and negative predictive rate of the UF1000i for cocci/mixed growth in voided urine culture was 81.8% and 84.7%, respectively. Through laser flow cytometry, we can predict growth of cocci/mixed growth in the pre-analytical phase of urine culture, thus avoiding unnecessary urine culture and waiting time. © 2016 Wiley Periodicals, Inc.

  4. 18 GHz electromagnetic field induces permeability of Gram-positive cocci.

    PubMed

    Nguyen, The Hong Phong; Shamis, Yury; Croft, Rodney J; Wood, Andrew; McIntosh, Robert L; Crawford, Russell J; Ivanova, Elena P

    2015-06-16

    The effect of electromagnetic field (EMF) exposures at the microwave (MW) frequency of 18 GHz, on four cocci, Planococcus maritimus KMM 3738, Staphylococcus aureus CIP 65.8(T), S. aureus ATCC 25923 and S. epidermidis ATCC 14990(T), was investigated. We demonstrate that exposing the bacteria to an EMF induced permeability in the bacterial membranes of all strains studied, as confirmed directly by transmission electron microscopy (TEM), and indirectly via the propidium iodide assay and the uptake of silica nanospheres. The cells remained permeable for at least nine minutes after EMF exposure. It was shown that all strains internalized 23.5 nm nanospheres, whereas the internalization of the 46.3 nm nanospheres differed amongst the bacterial strains (S. epidermidis ATCC 14990(T) ~  0%; Staphylococcus aureus CIP 65.8(T) S. aureus ATCC 25923, ~40%; Planococcus maritimus KMM 3738, ~ 80%). Cell viability experiments indicated that up to 84% of the cells exposed to the EMF remained viable. The morphology of the bacterial cells was not altered, as inferred from the scanning electron micrographs, however traces of leaked cytosolic fluids from the EMF exposed cells could be detected. EMF-induced permeabilization may represent an innovative, alternative cell permeability technique for applications in biomedical engineering, cell drug delivery and gene therapy.

  5. A new rapid method for direct antimicrobial susceptibility testing of bacteria from positive blood cultures.

    PubMed

    Barnini, Simona; Brucculeri, Veronica; Morici, Paola; Ghelardi, Emilia; Florio, Walter; Lupetti, Antonella

    2016-08-12

    Rapid identification and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections can lead to prompt appropriate antimicrobial therapy. To shorten species identification, in this study bacteria were recovered from monomicrobial blood cultures by serum separator tubes and spotted onto the target plate for direct MALDI-TOF MS identification. Proper antibiotics were selected for direct AST based on species identification. In order to obtain rapid AST results, bacteria were recovered from positive blood cultures by two different protocols: by serum separator tubes (further referred to as PR1), or after a short-term subculture in liquid medium (further referred to as PR2). The results were compared with those obtained by the method currently used in our laboratory consisting in identification by MALDI-TOF and AST by Vitek 2 or Sensititre on isolated colonies. The direct MALDI-TOF method concordantly identified with the current method 97.5 % of the Gram-negative bacteria and 96.1 % of the Gram-positive cocci contained in monomicrobial blood cultures. The direct AST by PR1 and PR2 for all isolate/antimicrobial agent combinations was concordant/correct with the current method for 87.8 and 90.5 % of Gram-negative bacteria and for 93.1 and 93.8 % of Gram-positive cocci, respectively. In particular, 100 % categorical agreement was found with levofloxacin for Enterobacteriaceae by both PR1 and PR2, and 99.0 and 100 % categorical agreement was observed with linezolid for Gram-positive cocci by PR1 and PR2, respectively. There was no significant difference in accuracy between PR1 and PR2 for Gram-negative bacteria and Gram-positive cocci. This newly described method seems promising for providing accurate AST results. Most importantly, these results would be available in a few hours from blood culture positivity, which would help clinicians to promptly confirm or streamline an effective antibiotic therapy in patients with bloodstream

  6. Use of MALDI-TOF Mass Spectrometry for the Fast Identification of Gram-Positive Fish Pathogens

    PubMed Central

    Assis, Gabriella B. N.; Pereira, Felipe L.; Zegarra, Alexandra U.; Tavares, Guilherme C.; Leal, Carlos A.; Figueiredo, Henrique C. P.

    2017-01-01

    Gram-positive cocci, such as Streptococcus agalactiae, Lactococcus garvieae, Streptococcus iniae, and Streptococcus dysgalactiae subsp. dysgalactiae, are found throughout the world, particularly in outbreaks in farmed fish, and are thus associated with high economic losses, especially in the cultivation of Nile Tilapia. The aim of this study was to evaluate the efficacy of matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) as an alternative for the diagnosis of these pathogens. One hundred and thirty-one isolates from Brazilian outbreaks assisted by the national authority were identified using a MALDI Biotyper from Bruker Daltonics. The results showed an agreement with respect to identification (Kappa = 1) between this technique and 16S ribosomal RNA gene sequencing for S. agalactiae and L. garvieae. However, for S. iniae and S. dysgalactiae subsp. dysgalactiae, perfect agreement was only achieved after the creation of a custom main spectra profile, as well as further comparisons with 16S ribosomal RNA and multilocus sequence analysis. MALDI-TOF MS was shown to be an efficient technology for the identification of these Gram-positive pathogens, yielding a quick and precise diagnosis. PMID:28848512

  7. The Causes of Post-Operative Meningitis: The Comparison Of Gram-Negative and Gram-Positive Pathogens.

    PubMed

    Kurtaran, Behice; Kuscu, Ferit; Ulu, Aslihan; Inal, Ayse Seza; Komur, Suheyla; Kibar, Filiz; Cetinalp, Nuri Eralp; Ozsoy, Kerem Mazhar; Arslan, Yusuf Kemal; Aksu, Hasan Salih; Tasova, Yesim

    2017-06-20

    In this study, we aim to determine the microbiological etiology in critically ill neurosurgical patients with nosocomial meningitis (NM) and show the impact of Gram-negative rods and differences of patient's characteristics, clinical and prognostic measures between Gram-negative and Gram-positive meningitis. In this prospective, one center study we reviewed all adult patients hospitalized during a 12-year period and identified pathogens isolated from post-neurosurgical cases of NM. Demographic, clinical, and treatment characteristics were noted from the medical records. Of the 134 bacterial NM patients, 78 were male and 56 were female, with a mean age of 46±15.9 and median age of 50 (18-80) years. 141 strains isolated; 82 (58.2%) were Gram negative, 59 (41.8%) were Gram positive. Most common isolated microorganism was Acinetobacter baumannii (%34.8). In comparison of mortality data shows that the patients who have meningitis with Gram-negative pathogens have higher mortality than with Gram positives (p=0.034). The duration between surgery and meningitis was shorter in Gram negative meningitis cases compared to others (p=0.045) but the duration between the diagnosis and death was shorter in Gram-positive meningitis cases compared to Gram negatives (p= 0.017). CSF protein and lactate level were higher and glucose level was lower in cases of NM with Gram negatives (p value were respectively, 0.022, 0.039 and 0.049). As conclusions; in NM, Gram-negative pathogens were seen more frequently; A.baumanni was the predominant pathogen; and NM caused by Gram negatives had worse clinical and laboratory characteristic and prognostic outcome than Gram positives.

  8. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.

    PubMed

    Smith, Kenneth P; Kang, Anthony D; Kirby, James E

    2018-03-01

    Microscopic interpretation of stained smears is one of the most operator-dependent and time-intensive activities in the clinical microbiology laboratory. Here, we investigated application of an automated image acquisition and convolutional neural network (CNN)-based approach for automated Gram stain classification. Using an automated microscopy platform, uncoverslipped slides were scanned with a 40× dry objective, generating images of sufficient resolution for interpretation. We collected 25,488 images from positive blood culture Gram stains prepared during routine clinical workup. These images were used to generate 100,213 crops containing Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or background (no cells). These categories were targeted for proof-of-concept development as they are associated with the majority of bloodstream infections. Our CNN model achieved a classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic (ROC) curve analysis indicated a robust ability to differentiate between categories with an area under the curve of >0.98 for each. After training and validation, we applied the classification algorithm to new images collected from 189 whole slides without human intervention. Sensitivity and specificity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and 97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative rods. Taken together, our data support a proof of concept for a fully automated classification methodology for blood-culture Gram stains. Importantly, the algorithm was highly adept at identifying image crops with organisms and could be used to present prescreened, classified crops to technologists to accelerate smear review. This concept could potentially be extended to all Gram stain interpretive activities in the clinical laboratory. Copyright © 2018 American Society for Microbiology.

  9. Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae.

    PubMed

    Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio; Leiva, Sergio

    2018-02-19

    Marine macroalgae are emerging as an untapped source of novel microbial diversity and, therefore, of new bioactive secondary metabolites. This study was aimed at assessing the diversity and antimicrobial activity of the culturable Gram-positive bacteria associated with the surface of three co-occurring Antarctic macroalgae. Specimens of Adenocystis utricularis (brown alga), Iridaea cordata (red alga) and Monostroma hariotii (green alga) were collected from the intertidal zone of King George Island, Antarctica. Gram-positive bacteria were investigated by cultivation-based methods and 16S rRNA gene sequencing, and screened for antimicrobial activity against a panel of pathogenic microorganisms. Isolates were found to belong to 12 families, with a dominance of Microbacteriaceae and Micrococcaceae. Seventeen genera of Actinobacteria and 2 of Firmicutes were cultured from the three macroalgae, containing 29 phylotypes. Three phylotypes within Actinobacteria were regarded as potentially novel species. Sixteen isolates belonging to the genera Agrococcus, Arthrobacter, Micrococcus, Pseudarthrobacter, Pseudonocardia, Sanguibacter, Staphylococcus, Streptomyces and Tessaracoccus exhibited antibiotic activity against at least one of the indicator strains. The bacterial phylotype composition was distinct among the three macroalgae species, suggesting that these macroalgae host species-specific Gram-positive associates. The results highlight the importance of Antarctic macroalgae as a rich source of Gram-positive bacterial diversity and potentially novel species, and a reservoir of bacteria producing biologically active compounds with pharmacological potential.

  10. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  11. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment.

    PubMed

    Lemmen, S W; Häfner, H; Zolldann, D; Stanzel, S; Lütticken, R

    2004-03-01

    We prospectively studied the difference in detection rates of multi-resistant Gram-positive and multi-resistant Gram-negative bacteria in the inanimate environment of patients harbouring these organisms. Up to 20 different locations around 190 patients were surveyed. Fifty-four patients were infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) and 136 with multi-resistant Gram-negative bacteria. The environmental detection rate for MRSA or VRE was 24.7% (174/705 samples) compared with 4.9% (89/1827 samples) for multi-resistant Gram-negative bacteria (P<0.001). Gram-positive bacteria were isolated more frequently than Gram-negatives from the hands of patients (P<0.001) and hospital personnel (P=0.1145). Environmental contamination did not differ between the intensive care units (ICUs) and the general wards (GWs), which is noteworthy because our ICUs are routinely disinfected twice a day, whereas GWs are cleaned just once a day with detergent. Current guidelines for the prevention of spread of multi-resistant bacteria in the hospital setting do not distinguish between Gram-positive and Gram-negative isolates. Our results suggest that the inanimate environment serves as a secondary source for MRSA and VRE, but less so for Gram-negative bacteria. Thus, strict contact isolation in a single room with complete barrier precautions is recommended for MRSA or VRE; however, for multi-resistant Gram-negative bacteria, contact isolation with barrier precautions for close contact but without a single room seems sufficient. This benefits not only the patients, but also the hospital by removing some of the strain placed on already over-stretched resources.

  12. 18 GHz electromagnetic field induces permeability of Gram-positive cocci

    PubMed Central

    Nguyen, The Hong Phong; Shamis, Yury; Croft, Rodney J.; Wood, Andrew; McIntosh, Robert L.; Crawford, Russell J.; Ivanova, Elena P.

    2015-01-01

    The effect of electromagnetic field (EMF) exposures at the microwave (MW) frequency of 18 GHz, on four cocci, Planococcus maritimus KMM 3738, Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923 and S. epidermidis ATCC 14990T, was investigated. We demonstrate that exposing the bacteria to an EMF induced permeability in the bacterial membranes of all strains studied, as confirmed directly by transmission electron microscopy (TEM), and indirectly via the propidium iodide assay and the uptake of silica nanospheres. The cells remained permeable for at least nine minutes after EMF exposure. It was shown that all strains internalized 23.5 nm nanospheres, whereas the internalization of the 46.3 nm nanospheres differed amongst the bacterial strains (S. epidermidis ATCC 14990T~ 0%; Staphylococcus aureus CIP 65.8T S. aureus ATCC 25923, ~40%; Planococcus maritimus KMM 3738, ~80%). Cell viability experiments indicated that up to 84% of the cells exposed to the EMF remained viable. The morphology of the bacterial cells was not altered, as inferred from the scanning electron micrographs, however traces of leaked cytosolic fluids from the EMF exposed cells could be detected. EMF-induced permeabilization may represent an innovative, alternative cell permeability technique for applications in biomedical engineering, cell drug delivery and gene therapy. PMID:26077933

  13. Identification and susceptibility testing of microorganism by direct inoculation from positive blood culture bottles by combining MALDI-TOF and Vitek-2 Compact is rapid and effective.

    PubMed

    Romero-Gómez, María-Pilar; Gómez-Gil, Rosa; Paño-Pardo, Jose Ramón; Mingorance, Jesús

    2012-12-01

    The objective of this study was to evaluate the reliability and accuracy of the combined use of MALDI-TOF MS bacterial identification and the Vitek-2 Compact antimicrobial susceptibility testing (AST) directly from positive blood cultures. Direct identification by MALDI-TOF MS and AST were performed in parallel to the standard methods in all positively flagged blood cultures bottles during the study period. Three hundred and twenty four monomicrobial positive blood cultures were included in the present study, with 257 Gram-negative and 67 Gram-positive isolates. MALDI-TOF MS identification directly from blood bottles reported the correct identification for Enterobacteriaceae in 97.7%, non-fermentative Gram-negative bacilli 75.0%, Staphylococcus aureus 75.8%, coagulase negative staphylococci 63.3% and enterococci 63.3%. A total 6156 isolate/antimicrobial agent combinations were tested. Enterobacteriaceae group and non-fermentative Gram-negative Bacilli showed an agreement of 96.67% and 92.30%, respectively, for the Gram-positive cocci the overall agreement found was 97.84%. We conclude that direct identification by MALDI-TOF and inoculation of Vitek-2 Compact AST with positive blood culture bottles yielded very good results and decreased time between initial inoculation of blood culture media and determination of the antibiotic susceptibility for Gram-negative rods and Gram-positive cocci causing bacteremia. Copyright © 2012 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. Gram stain microbiological pattern of upper extremities suppuration at Baptist Medical Centre, Ogbomoso Nigeria: a fifteen month review.

    PubMed

    Oke, A J; Olaolorun, D A; Meier, D E; Tarpley, J L

    2011-06-01

    Sixty-eight (68) patients with serious upper extremity suppurative infections, presenting within a period of fifteen (15) months, were prospectively studied clinically, Gram stain of aspirates/pus were performed, specimen cultured, planted, and where indicated glucose levels and haemoglobin genotype determined. Half of the patients had hand infections. Staphylococcus aureus was isolated from thirty-nine (39) patients. Gram Negative bacilli, including Salmonella were more isolated from patients with diabetes mellitus or Hgb SS or SC. The Gram stain results correlated with the culture result 90%. When Gram Positive cocci were demonstrated in the primary microscopic examination, cultures were not mandatory. When no organism was demonstrated on primary Gram stain or the patient was diabetic or a sickler, cultures of the specimens were done. The Gram stain, well performed, remains a useful, inexpensive, technologically appropriate laboratory test for abetting decision making in patients with upper extremity suppurative infections. Organisms encountered in this study included: Staphylococcus aureus, Streptococcus pyogenes, Salmonella typhi, Proteus mirabilis, Pseudomonas aeruginosa, and Coliforms.

  15. Survey of Extreme Solvent Tolerance in Gram-Positive Cocci: Membrane Fatty Acid Changes in Staphylococcus haemolyticus Grown in Toluene

    PubMed Central

    Nielsen, Lindsey E.; Kadavy, Dana R.; Rajagopal, Soumitra; Drijber, Rhae; Nickerson, Kenneth W.

    2005-01-01

    We exploited the unique ecological niche of oil fly larval guts to isolate a strain of Staphylococcus haemolyticus which may be the most solvent-tolerant gram-positive bacterium yet described. This organism is able to tolerate 100% toluene, benzene, and p-xylene on plate overlays and saturating levels of these solvents in monophasic liquid cultures. A comparison of membrane fatty acids by gas chromatography after growth in liquid media with and without toluene showed that in cells continuously exposed to solvent the proportion of anteiso fatty acids increased from 25.8 to 33.7% while the proportion of 20:0 straight-chain fatty acids decreased from 19.3 to 10.1%. No changes in the membrane phospholipid composition were noted. Thus, S. haemolyticus alters its membrane fluidity via fatty acid composition to become more fluid when it is exposed to solvent. This response is opposite that commonly found in gram-negative bacteria, which change their fatty acids so that the cytoplasmic membrane is less fluid. Extreme solvent tolerance in S. haemolyticus is not accompanied by abnormal resistance to anionic or cationic detergents. Finally, six strains of Staphylococcus aureus and five strains of Staphylococcus epidermidis, which were not obtained by solvent selection, also exhibited exceptional solvent tolerance. PMID:16151101

  16. Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene.

    PubMed

    Nielsen, Lindsey E; Kadavy, Dana R; Rajagopal, Soumitra; Drijber, Rhae; Nickerson, Kenneth W

    2005-09-01

    We exploited the unique ecological niche of oil fly larval guts to isolate a strain of Staphylococcus haemolyticus which may be the most solvent-tolerant gram-positive bacterium yet described. This organism is able to tolerate 100% toluene, benzene, and p-xylene on plate overlays and saturating levels of these solvents in monophasic liquid cultures. A comparison of membrane fatty acids by gas chromatography after growth in liquid media with and without toluene showed that in cells continuously exposed to solvent the proportion of anteiso fatty acids increased from 25.8 to 33.7% while the proportion of 20:0 straight-chain fatty acids decreased from 19.3 to 10.1%. No changes in the membrane phospholipid composition were noted. Thus, S. haemolyticus alters its membrane fluidity via fatty acid composition to become more fluid when it is exposed to solvent. This response is opposite that commonly found in gram-negative bacteria, which change their fatty acids so that the cytoplasmic membrane is less fluid. Extreme solvent tolerance in S. haemolyticus is not accompanied by abnormal resistance to anionic or cationic detergents. Finally, six strains of Staphylococcus aureus and five strains of Staphylococcus epidermidis, which were not obtained by solvent selection, also exhibited exceptional solvent tolerance.

  17. [Production of antibacterial substances by resident corynebacteria isolated from human skin].

    PubMed

    Kwaszewska, Anna; Szewczyk, Eligia M

    2007-01-01

    Coryneform bacteria, especially lipophilic species, form stable but not dominant population on a human skin. This position is probably controlled by secretion of bacteriocin-like substances, which act directly on coexisting bacteria. Among 118 investigated corynebacteria belonging to seven species/taxa and isolated from human skin, 90% possessed an ability to produce such substances. The spectrum of their activity was restricted to killing gram-positive bacteria, but along with corynebacteria it also covered cocci, with Staphylococcus aureus in this group. This feature was revealed better on low pH media (pH 5.6) and media with 1.5% NaCl for cocci, but on pH 7,4 for corynebacteria.

  18. In vitro activities of sitafloxacin (DU-6859a) and six other fluoroquinolones against 8,796 clinical bacterial isolates.

    PubMed

    Milatovic, D; Schmitz, F J; Brisse, S; Verhoef, J; Fluit, A C

    2000-04-01

    The in vitro activities of sitafloxacin, ciprofloxacin, trovafloxacin, levofloxacin, clinafloxacin, gatifloxacin, and moxifloxacin against 5,046 gram-negative bacteria, 3,344 gram-positive cocci, and 406 anaerobes were determined. Sitafloxacin was the most active agent against gram-positive cocci and anaerobes. Against Enterobacteriaceae and nonfermenters, its activity was either equivalent to or better than that of clinafloxacin.

  19. Isolation and determination of four potential antimicrobial components from Pseudomonas aeruginosa extracts

    PubMed Central

    Xu, Ling-Qing; Zeng, Jian-Wen; Jiang, Chong-He; Wang, Huan; Li, Yu-Zhen; Wen, Wei-Hong; Li, Jie-Hua; Wang, Feng; Ting, Wei-Jen; Sun, Zi-Yong; Huang, Chih-Yang

    2017-01-01

    Background: Pseudomonas aeruginosa can cause disease and also can be isolated from the skin of healthy people. Additionally, it exhibits certain antimicrobial effects against other microorganisms. Methods: We collected 60 strains of P. aeruginosa and screened their antimicrobial effects against Staphylococcus aureus (ATCC 25923) using the filter paper-disk method, the cross-streaking method and the co-culture method and then evaluated the antimicrobial activity of the chloroform-isolated S. aureus extracts against methicillin-resistant S. aureus (MRSA, Gram-positive cocci), vancomycin intermediate-resistant S. aureus (VISA, Gram-positive cocci), Corynebacterium spp. (CS, Gram-positive bacilli), Acinetobacter baumannii (AB, Gram-negative bacilli), Moraxella catarrhalis (MC, Gram-negative diplococcus), Candida albicans (CA, fungi), Candida tropicalis (CT, fungi), Candida glabrata (CG, fungi) and Candida parapsilosis (CP, fungi). Results: The PA06 and PA46 strains have strong antimicrobial effects. High-performance liquid chromatography (HPLC) analysis revealed that the major components of PA06 and PA46 that exhibit antimicrobial activity are functionally similar to phenazine-1-carboxylic acid (PCA) and pyocyanin. Preparative HPLC was performed to separate and isolate the 4 major potential antimicrobial components: PA06ER10, PA06ER16, PA06ER23 and PA06ER31. Further, the molecular masses of PA06ER10 (260.1), PA06ER16 (274.1), PA06ER23 (286.1) and PA06ER31 (318.2) were determined by electrospray ionization (ESI) mass spectrometry. Conclusion: P. aeruginosa can produce small molecules with potential antimicrobial activities against MRSA, VISA, CS, MC, CA, CT, CG and CP but not against AB. PMID:29200950

  20. Anaerococcus degenerii sp. nov., isolated from human clinical specimens.

    PubMed

    Veloo, A C M; Elgersma, P E; van Winkelhoff, A J

    2015-06-01

    Four clinical isolates of gram-positive strict anaerobic cocci were isolated from four different human mixed anaerobic infections. The taxonomical status of the four strains could not be established using standard identification techniques. The biochemical features of the strains were established and their taxonomic position was determined using 16S rRNA sequencing. The four strains form a homogeneous phenotypical and genotypical cluster. A new Anaerococcus species is proposed for these isolates: Anaerococcus degenerii sp. nov. The type strain is UMCG-104(T) = DSM29674(T) (accession number AM176528). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Endophthalmitis after penetrating keratoplasty: microbiologic spectrum and susceptibility of isolates.

    PubMed

    Kunimoto, Derek Y; Tasman, William; Rapuano, Christopher; Recchia, Franco; Busbee, Brandon; Pearlman, Robert; Belmont, Jonathan; Cohen, Elisabeth; Vander, James; Laibson, Peter; Raber, Irving

    2004-02-01

    To present the microbial spectrum and susceptibilities of isolates in endophthalmitis following penetrating keratoplasty. Interventional case series. The 1,074 consecutive cases of endophthalmitis presenting to Wills Eye Hospital between 1989 and 2000 were reviewed. Fourteen patients with endophthalmitis after penetrating keratoplasty were identified, and vitreous biopsy isolates from these patients were examined. Eleven (78.6%) of 14 vitreous samples were culture-positive, and two others (14.3%) had organisms viewed on pathology specimen, for a total of 13 (92.9%) organism-proven cases of endophthalmitis. Isolates included 10 (76.9%) gram-positive cocci (six Streptococcus sp., three Staphylococcus sp., one identified on pathology specimen only) and three (23.1%) gram-negative organisms (Proteus mirabilis, Serratia marcescens, one identified on pathology specimen only). Susceptibilities to organism-appropriate antibiotic testing are reported, including cefazolin (six of eight, 75.0%), ciprofloxacin (four of seven, 57.1%), nafcillin (four of six, 66.7%), and vancomycin (seven of seven, 100.0%). This is the largest series on microbial susceptibilities in postpenetrating keratoplasty endophthalmitis. We report a high percentage of culture-positivity, and a high incidence of gram-positive species, and in particular Streptococcus species, with all tested gram-positive organisms susceptible to vancomycin.

  2. Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria

    PubMed Central

    McTaggart, Tami L.; Beck, David A. C.; Setboonsarng, Usanisa; Shapiro, Nicole; Woyke, Tanja; Lidstrom, Mary E.; Kalyuzhnaya, Marina G.; Chistoserdova, Ludmila

    2015-01-01

    Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria. PMID:27682081

  3. Uncultivated Magnetotactic Cocci from Yuandadu Park in Beijing, China▿

    PubMed Central

    Lin, Wei; Pan, Yongxin

    2009-01-01

    In the present study, we investigated a group of uncultivated magnetotactic cocci, which was magnetically isolated from a freshwater pond in Beijing, China. Light and transmission electron microscopy showed that these cocci ranged from 1.5 to 2.5 μm and contained two to four chains of magnetite magnetosomes, which sometimes were partially disorganized. Overall, the size of the disorganized magnetosomes was significantly smaller than that arranged in chains. All characterized magnetosome crystals were elongated (shape factor = 0.64) and fall into the single-domain size range (30 to 115 nm). Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the enriched bacteria were a virtually homogeneous population and represented a novel lineage in the Alphaproteobacteria. The closest cultivated relative was magnetotactic coccoid strain MC-1 (88% sequence identity). First-order reversal curve diagrams revealed that these cocci had relatively strong magnetic interactions compared to the single-chain magnetotactic bacteria. Low-temperature magnetic measurements showed that the Verwey transition of them was ∼108 K, confirming magnetite magnetosomes, and the delta ratio δFC/δZFC was >2. Based on the structure, phylogenetic position and magnetic properties, the enriched magnetotactic cocci of Alphaproteobacteria are provisionally named as “Candidatus Magnetococcus yuandaducum.” PMID:19376904

  4. Evolution of sensitivity to fosfomycin in bacteria isolated in 1973, 1974 and 1975 in the Servicio de Microbiologia y Epidemiologia of the 'Clinica Puerta de Hierro', Madrid.

    PubMed

    Dámaso, D; Moreno-López, M; Martínez-Beltrán, J

    1977-01-01

    The bacteriostatic activity of fosfomycin was studied in vitro against 1,243 clinical isolations of gram-positive cocci and 4,086 isolations of gram-negative bacilli that were obtained in 1973, 1974 and in the period from January to May of 1975. MIC was determined by the agar diffusion method, quantifying it by means of the standard curve that was worked out with the strain of E. coli NCTC 10,418. A slight increase in resistance was observed in the gram-positive cocci: 64 mug/ml were inhibitory for 63% of the 249 isolations obtained in 1973, 59.1% of the 716 isolations obtained in 1974, and 57.5% of the 278 isolations from 1975. A slight loss of sensitivity was also observed in the gram-negative bacilli: the aforementioned concentration of fosfomycin inhibited 36% of the 742 isolations from 1973, 33.6% of the 2,387 isolations from 1974 and 32.6% of the 957 isolations from 1975. 933 g of this antibiotic were consumed in our hospital in 1973, 4,203 g in 1974 and 957 g in 1975. The consumption rate per patient per year was 0.15, 0.72 and 0.20 g, respectively. In conclusion, although no change was observed in the sensitivity of some bacterial strains to fosfomycin, the overall study indicates a slight decrease in the sensitivity, although it does not apparently have any relationship to the consumption of fosfomycin in our hospital.

  5. Isolation, identification and sensitivity pattern of microorganisms isolated from the urine of pregnant women.

    PubMed

    Karim, S; Khan, K I

    1994-01-01

    The present studies were conducted to detect and identify the microorganism from the urine of pregnant women having urinary tract infection. The antibiotic susceptibility of these isolated microorganisms was also determined. The microorganisms found responsible for the infection were bacteria, fungi, yeast and protozoa. Among the bacteria two were identified as Gram-positive cocci i.e. Staphylococcus aureus and S. epidermidis, the remaining two were Gram-negative bacilli which were Escherichia coil and Pseudomonas aeruginosa. The fungus was identified as AspelEillus niger and the yeast like fungus Candida albican. The only protozoan found in some of the urine samples was Trichomonas vaginalis. These isolated and identified microorganisms were more susceptible to Norfloxacin, Velosef, Minocin, Nitrofurantoin, Malidixic acid and Metronidazole whereas antibiotics Penbritin and Cefaloridine were least effective against these microorganisms.

  6. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains.

    PubMed

    Paredes-Páliz, Karina I; Caviedes, Miguel A; Doukkali, Bouchra; Mateos-Naranjo, Enrique; Rodríguez-Llorente, Ignacio D; Pajuelo, Eloísa

    2016-10-01

    The aim of our work was the isolation and characterization of bacteria from the rhizosphere of Spartina maritima in the metal contaminated Odiel estuary (Huelva, SW Spain). From 25 strains, 84 % were identified as gram-positive, particularly Staphylococcus and Bacillus. Gram-negative bacteria were represented by Pantoea and Salmonella. Salt and heavy metal tolerance, metal bioabsorption, plant growth promoting (PGP) properties, and biofilm formation were investigated in the bacterial collection. Despite the higher abundance of gram-positive bacteria, gram-negative isolates displayed higher tolerance toward metal(loid)s (As, Cu, Zn, and Pb) and greater metal biosorption, as deduced from ICP-OES and SEM-EDX analyses. Besides, they exhibited better PGP properties, which were retained in the presence of metals and the ability to form biofilms. Gram-negative strains Pantoea agglomerans RSO6 and RSO7, together with gram-positive Bacillus aryabhattai RSO25, were selected for a bacterial consortium aimed to inoculate S. maritima plants in metal polluted estuaries for phytoremediation purposes.

  7. The use of Gram stain and matrix-assisted laser desorption ionization time-of-flight mass spectrometry on positive blood culture: synergy between new and old technology.

    PubMed

    Fuglsang-Damgaard, David; Nielsen, Camilla Houlberg; Mandrup, Elisabeth; Fuursted, Kurt

    2011-10-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is promising as an alternative to more costly and cumbersome methods for direct identifications in blood cultures. We wanted to evaluate a simplified pre-treatment method for using MALDI-TOF-MS directly on positive blood cultures using BacT/Alert blood culture system, and to test an algorithm combining the result of the initial microscopy with the result suggested by MALDI-TOF-MS. Using the recommended cut-off score of 1.7 the best results were obtained among Gram-negative rods with correct identifications in 91% of Enterobacteriaceae, 83% in aerobic/non-fermentative Gram-negative rods, whereas results were more modest among Gram-positive cocci with correct identifications in 52% of Staphylococci, 54% in Enterococci and only 20% in Streptococci. Combining the results of Gram stain with the top reports by MALDI-TOF-MS, increased the sensitivity from 91% to 93% in the score range from 1.5 to 1.7 and from 48% to 85% in the score range from 1.3 to 1.5. Thus, using this strategy and accepting a cut-off at 1.3 instead of the suggested 1.7, overall sensitivity could be increased from 88.1% to 96.3%. MALDI-TOF-MS is an efficient method for direct routine identification of bacterial isolates in blood culture, especially when combined with the result of the Gram stain. © 2011 The Authors. APMIS © 2011 APMIS.

  8. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell▿†

    PubMed Central

    Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; Byrne-Bailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D.

    2011-01-01

    Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction. PMID:21908627

  10. Antimicrobial susceptibility trends among gram-positive and -negative clinical isolates collected between 2005 and 2012 in Mexico: results from the Tigecycline Evaluation and Surveillance Trial.

    PubMed

    Morfin-Otero, Rayo; Noriega, Eduardo Rodriguez; Dowzicky, Michael J

    2015-12-15

    The Tigecycline Evaluation and Surveillance Trial (T.E.S.T) is a global antimicrobial surveillance study of both gram-positive and gram-negative organisms. This report presents data on antimicrobial susceptibility among organisms collected in Mexico between 2005 and 2012 as part of T.E.S.T., and compares rates between 2005-2007 and 2008-2012. Each center in Mexico submitted at least 200 isolates per collection year; including 65 gram-positive isolates and 135 gram-negative isolates. Minimum inhibitory concentrations (MICs) were determined using Clinical Laboratory Standards Institute (CLSI) broth microdilution methodology and antimicrobial susceptibility was established using the 2013 CLSI-approved breakpoints. For tigecycline US Food and Drug Administration (FDA) breakpoints were applied. Isolates of E. coli and K. pneumoniae with a MIC for ceftriaxone of >1 mg/L were screened for ESBL production using the phenotypic confirmatory disk test according to CLSI guidelines. The rates of some key resistant phenotypes changed during this study: vancomycin resistance among Enterococcus faecium decreased from 28.6 % in 2005-2007 to 19.1 % in 2008-2012, while β-lactamase production among Haemophilus influenzae decreased from 37.6 to 18.9 %. Conversely, methicillin-resistant Staphylococcus aureus increased from 38.1 to 47.9 %, meropenem-resistant Acinetobacter spp. increased from 17.7 to 33.0 % and multidrug-resistant Acinetobacter spp. increased from 25.6 to 49.7 %. The prevalence of other resistant pathogens was stable over the study period, including extended-spectrum β-lactamase-positive Escherichia coli (39.0 %) and Klebsiella pneumoniae (25.0 %). The activity of tigecycline was maintained across the study years with MIC90s of ≤2 mg/L against Enterococcus spp., S. aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Enterobacter spp., E. coli, K. pneumoniae, Klebsiella oxytoca, Serratia marcescens, H. influenzae, and Acinetobacter spp. All gram-positive

  11. Gram staining.

    PubMed

    Coico, Richard

    2005-10-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  12. Gram staining.

    PubMed

    Coico, R

    2001-05-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  13. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Farrell, D. J.; Rhomberg, P. R.; Scangarella-Oman, N. E.; Sader, H. S.

    2017-01-01

    ABSTRACT Gepotidacin is a first-in-class, novel triazaacenaphthylene antibiotic that inhibits bacterial DNA replication and has in vitro activity against susceptible and drug-resistant pathogens. Reference in vitro methods were used to investigate the MICs and minimum bactericidal concentrations (MBCs) of gepotidacin and comparator agents for Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli. Gepotidacin in vitro activity was also evaluated by using time-kill kinetics and broth microdilution checkerboard methods for synergy testing and for postantibiotic and subinhibitory effects. The MIC90 of gepotidacin for 50 S. aureus (including methicillin-resistant S. aureus [MRSA]) and 50 S. pneumoniae (including penicillin-nonsusceptible) isolates was 0.5 μg/ml, and for E. coli (n = 25 isolates), it was 4 μg/ml. Gepotidacin was bactericidal against S. aureus, S. pneumoniae, and E. coli, with MBC/MIC ratios of ≤4 against 98, 98, and 88% of the isolates tested, respectively. Time-kill curves indicated that the bactericidal activity of gepotidacin was observed at 4× or 10× MIC at 24 h for all of the isolates. S. aureus regrowth was observed in the presence of gepotidacin, and the resulting gepotidacin MICs were 2- to 128-fold higher than the baseline gepotidacin MICs. Checkerboard analysis of gepotidacin combined with other antimicrobials demonstrated no occurrences of antagonism with agents from multiple antimicrobial classes. The most common interaction when testing gepotidacin was indifference (fractional inhibitory concentration index of >0.5 to ≤4; 82.7% for Gram-positive isolates and 82.6% for Gram-negative isolates). The postantibiotic effect (PAE) of gepotidacin was short when it was tested against S. aureus (≤0.6 h against MRSA and MSSA), and the PAE–sub-MIC effect (SME) was extended (>8 h; three isolates at 0.5× MIC). The PAE of levofloxacin was modest (0.0 to 2.4 h), and the PAE-SME observed varied from 1.2 to >9 h at 0.5× MIC

  14. In vitro activity of AT-4140 against clinical bacterial isolates.

    PubMed

    Kojima, T; Inoue, M; Mitsuhashi, S

    1989-11-01

    The activity of AT-4140, a new fluoroquinolone, was evaluated against a wide range of clinical bacterial isolates and compared with those of existing analogs. AT-4140 had a broad spectrum and a potent activity against gram-positive and -negative bacteria, including Legionella spp. and Bacteroides fragilis. The activity of AT-4140 against gram-positive and -negative cocci, including Acinetobacter calcoaceticus, was higher than those of ciprofloxacin, ofloxacin, and norfloxacin. Its activity against gram-negative rods was generally comparable to that of ciprofloxacin. Some isolates of methicillin-resistant Staphylococcus aureus (MIC of methicillin, greater than or equal to 12.5 micrograms/ml) were resistant to existing quinolones, but many of them were still susceptible to AT-4140 at concentrations below 0.39 micrograms/ml. The MICs of AT-4140, ciprofloxacin, ofloxacin, and norfloxacin for 90% of clinical isolates of methicillin-resistant S. aureus were 0.2, 12.5, 6.25, and 100 micrograms/ml, respectively. AT-4140 was bactericidal for each of 20 clinical isolates of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa at concentrations near the MICs. AT-4140 inhibited the supercoiling activity of DNA gyrase from E. coli.

  15. Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia.

    PubMed

    Seligman, Renato; Seligman, Beatriz Graeff Santos; Konkewicz, Loriane; Dos Santos, Rodrigo Pires

    2015-01-01

    The Gram stain can be used to direct initial empiric antimicrobial therapy when complete culture is not available. This rapid test could prevent the initiation of inappropriate therapy and adverse outcomes. However, several studies have attempted to determine the value of the Gram stain in the diagnosis and therapy of bacterial infection in different populations of patients with ventilator-associated pneumonia (VAP) with conflicting results. The objective of this study is to evaluate the accuracy of the Gram stain in predicting the existence of Staphylococcus aureus infections from cultures of patients suspected of having VAP. This prospective single-center open cohort study enrolled 399 patients from December 2005 to December 2010. Patients suspected of having VAP by ATS IDSA criteria were included. Respiratory secretion samples were collected by tracheal aspirate (TA) for standard bacterioscopic analysis by Gram stain and culture. Respiratory secretion samples collected by tracheal aspirates of 392 patients were analyzed by Gram stain and culture. When Gram-positive cocci were arranged in clusters, the sensitivity was 68.4%, specificity 97.8%, positive predictive value 88.1% and negative predictive value 92.8% for predicting the presence of Staphylococcus aureus in culture (p < 0.001). A tracheal aspirate Gram stain can be used to rule out the presence of Staphylococcus aureus in patients with a clinical diagnosis of VAP with a 92.8% Negative Predictive Value. Therefore, 7.2% of patients with Staphylococcus aureus would not be protected by an empiric treatment that limits antimicrobial coverage to Staphylococcus aureus only when Gram positive cocci in clusters are identified.

  16. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy.

    PubMed

    Paret, Mathews L; Sharma, Shiv K; Green, Lisa M; Alvarez, Anne M

    2010-04-01

    Raman spectra of Gram-positive and Gram-negative plant bacteria have been measured with micro-Raman spectrometers equipped with 785 and 514.5 nm lasers. The Gram-positive bacteria Microbacterium testaceum, Paenibacillus validus, and Clavibacter michiganensis subsp. michiganensis have strong carotenoid bands in the regions 1155-1157 cm(-1) and 1516-1522 cm(-1) that differentiate them from other tested Gram-negative bacteria. In the Raman spectrum of Gram-positive bacteria Bacillus megaterium excited with 785 nm laser, the Raman bands at 1157 and 1521 cm(-1) are weak in intensity compared to other Gram-positive bacteria, and these bands did not show significant resonance Raman enhancement in the spectrum recorded with 514.5 nm laser excitation. The Gram-positive bacteria could be separated from each other based on the bands associated with the in-phase C=C (v(1)) vibrations of the polyene chain of carotenoids. None of the Gram-negative bacteria tested had carotenoid bands. The bacteria in the genus Xanthomonas have a carotenoid-like pigment, xanthomonadin, identified in Xanthomonas axonopodis pv. dieffenbachiae, and it is a unique Raman marker for the bacteria. The representative bands for xanthomonadin were the C-C stretching (v(2)) vibrations of the polyene chain at 1135-1136 cm(-1) and the in-phase C=C (v(1)) vibrations of the polyene chain at 1529-1531 cm(-1), which were distinct from the carotenoid bands of other tested bacteria. The tyrosine peak in the region 1170-1175 cm(-1) was the only other marker present in Gram-negative bacteria that was absent in all tested Gram-positives. A strong-intensity exopolysaccharide-associated marker at 1551 cm(-1) is a distinguishable feature of Enterobacter cloacae. The Gram-negative Agrobacterium rhizogenes and Ralstonia solanacearum were differentiated from each other and other tested bacteria on the basis of presence or absence and relative intensities of peaks. The principal components analysis (PCA) of the spectra

  17. Identification of aerobic Gram-positive bacilli by use of Vitek MS.

    PubMed

    Navas, Maria; Pincus, David H; Wilkey, Kathy; Sercia, Linda; LaSalvia, Margaret; Wilson, Deborah; Procop, Gary W; Richter, Sandra S

    2014-04-01

    The accuracy of Vitek MS mass spectrometric identifications was assessed for 206 clinically significant isolates of aerobic Gram-positive bacilli representing 20 genera and 38 species. The Vitek MS identifications were correct for 85% of the isolates (56.3% to the species level, 28.6% limited to the genus level), with misidentifications occurring for 7.3% of the isolates.

  18. Production of deoxyribonuclease, ribonuclease, coagulase, and hemolysins by anaerobic gram-positive cocci.

    PubMed Central

    Marshall, R; Kaufman, A K

    1981-01-01

    Clinical isolates of Peptococcus and Peptostreptococcus species and Streptococcus intermedius strains were obtained from local hospitals. After confirmed identification, each isolate was tested for the in vitro production of deoxyribonuclease, ribonuclease, coagulase, and hemolysins. Of the 60 strains studied, 18 had enzymatic activity. The variability of enzyme production suggests that such assays are not suitable as an aid to identification of these organisms. PMID:7229018

  19. Identification of Aerobic Gram-Positive Bacilli by Use of Vitek MS

    PubMed Central

    Navas, Maria; Pincus, David H.; Wilkey, Kathy; Sercia, Linda; LaSalvia, Margaret; Wilson, Deborah; Procop, Gary W.

    2014-01-01

    The accuracy of Vitek MS mass spectrometric identifications was assessed for 206 clinically significant isolates of aerobic Gram-positive bacilli representing 20 genera and 38 species. The Vitek MS identifications were correct for 85% of the isolates (56.3% to the species level, 28.6% limited to the genus level), with misidentifications occurring for 7.3% of the isolates. PMID:24501030

  20. Potential Impact of Rapid Blood Culture Testing for Gram-Positive Bacteremia in Japan with the Verigene Gram-Positive Blood Culture Test

    PubMed Central

    Matsuda, Mari; Iguchi, Shigekazu; Mizutani, Tomonori; Hiramatsu, Keiichi; Tega-Ishii, Michiru; Sansaka, Kaori; Negishi, Kenta; Shimada, Kimie; Umemura, Jun; Notake, Shigeyuki; Yanagisawa, Hideji; Yabusaki, Reiko; Araoka, Hideki; Yoneyama, Akiko

    2017-01-01

    Background. Early detection of Gram-positive bacteremia and timely appropriate antimicrobial therapy are required for decreasing patient mortality. The purpose of our study was to evaluate the performance of the Verigene Gram-positive blood culture assay (BC-GP) in two special healthcare settings and determine the potential impact of rapid blood culture testing for Gram-positive bacteremia within the Japanese healthcare delivery system. Furthermore, the study included simulated blood cultures, which included a library of well-characterized methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) isolates reflecting different geographical regions in Japan. Methods. A total 347 BC-GP assays were performed on clinical and simulated blood cultures. BC-GP results were compared to results obtained by reference methods for genus/species identification and detection of resistance genes using molecular and MALDI-TOF MS methodologies. Results. For identification and detection of resistance genes at two clinical sites and simulated blood cultures, overall concordance of BC-GP with reference methods was 327/347 (94%). The time for identification and antimicrobial resistance detection by BC-GP was significantly shorter compared to routine testing especially at the cardiology hospital, which does not offer clinical microbiology services on weekends and holidays. Conclusion. BC-GP generated accurate identification and detection of resistance markers compared with routine laboratory methods for Gram-positive organisms in specialized clinical settings providing more rapid results than current routine testing. PMID:28316631

  1. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  2. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  3. Procalcitonin levels in gram-positive, gram-negative, and fungal bloodstream infections.

    PubMed

    Leli, Christian; Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4-44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6-7.6) or fungal (0.5 ng/mL, IQR 0.4-1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725-0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919-0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9-48.5 versus 3.5 ng/mL, IQR 0.8-21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.

  4. Identification of key genes in Gram-positive and Gram-negative sepsis using stochastic perturbation

    PubMed Central

    Li, Zhenliang; Zhang, Ying; Liu, Yaling; Liu, Yanchun; Li, Youyi

    2017-01-01

    Sepsis is an inflammatory response to pathogens (such as Gram-positive and Gram-negative bacteria), which has high morbidity and mortality in critically ill patients. The present study aimed to identify the key genes in Gram-positive and Gram-negative sepsis. GSE6535 was downloaded from Gene Expression Omnibus, containing 17 control samples, 18 Gram-positive samples and 25 Gram-negative samples. Subsequently, the limma package in R was used to screen the differentially expressed genes (DEGs). Hierarchical clustering was conducted for the specific DEGs in Gram-negative and Gram-negative samples using cluster software and the TreeView software. To analyze the correlation of samples at the gene level, a similarity network was constructed using Cytoscape software. Functional and pathway enrichment analyses were conducted for the DEGs using DAVID. Finally, stochastic perturbation was used to determine the significantly differential functions between Gram-positive and Gram-negative samples. A total of 340 and 485 DEGs were obtained in Gram-positive and Gram-negative samples, respectively. Hierarchical clustering revealed that there were significant differences between control and sepsis samples. In Gram-positive and Gram-negative samples, myeloid cell leukemia sequence 1 was associated with apoptosis and programmed cell death. Additionally, NADH:ubiquinone oxidoreductase subunit S4 was associated with mitochondrial respiratory chain complex I assembly. Stochastic perturbation analysis revealed that NADH:ubiquinone oxidoreductase subunit B2 (NDUFB2), NDUFB8 and ubiquinol-cytochrome c reductase hinge protein (UQCRH) were associated with cellular respiration in Gram-negative samples, whereas large tumor suppressor kinase 2 (LATS2) was associated with G1/S transition of the mitotic cell cycle in Gram-positive samples. NDUFB2, NDUFB8 and UQCRH may be biomarkers for Gram-negative sepsis, whereas LATS2 may be a biomarker for Gram-positive sepsis. These findings may promote the

  5. Microbiology of liver abscesses and the predictive value of abscess gram stain and associated blood cultures.

    PubMed

    Chemaly, Roy F; Hall, Gerri S; Keys, Thomas F; Procop, Gary W

    2003-08-01

    Although rare, pyogenic liver abscesses are potentially fatal. We evaluated the predictive value of Gram stain of liver abscess aspirates and temporally associated blood cultures. Gram stains detected bacteria in 79% of the liver abscesses tested. The sensitivity and specificity of Gram stain of the liver abscesses were 90% and 100% for Gram-positive cocci (GPC) and 52% and 94% for Gram-negative bacilli (GNB). The sensitivities of the blood cultures for any GPC and GNB present in the liver abscess were 30% and 39%, respectively. Although, Gram stains and blood cultures offer incomplete detection of the microbial contents of pyogenic liver abscesses, both tests should always accompany liver abscess cultures.

  6. Quinupristin-Dalfopristin Resistance in Streptococcus pneumoniae: Novel L22 Ribosomal Protein Mutation in Two Clinical Isolates from the SENTRY Antimicrobial Surveillance Program

    PubMed Central

    Jones, Ronald N.; Farrell, David J.; Morrissey, Ian

    2003-01-01

    Resistance to quinupristin-dalfopristin (Q/D) among gram-positive cocci has been very uncommon. Two clinical isolates among 8,837 (0.02%) Streptococcus pneumoniae isolates were discovered in 2001 to 2002 with Q/D MICs of 4 μg/ml. Each had a 5-amino-acid tandem duplication (RTAHI) in the L22 ribosomal protein gene (rplV) preventing synergistic ribosomal binding of the streptogramin combination. Similar gene duplication has been reported in Q/D-resistant Staphylococcus aureus. PMID:12878545

  7. Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes.

    PubMed

    Hessle, Christina C; Andersson, Bengt; Wold, Agnes E

    2003-12-01

    Gram-positive and Gram-negative bacteria induce different cytokine patterns in human mononuclear cells. We have seen that Gram-positives preferentially induce IL-12 and TNF-alpha, whereas Gram-negatives induce more IL-10, IL-6, and IL-8. In this study, we compared the capacity of these two groups of bacteria to induce PGE2. Monocytes stimulated with Gram-negative bacterial species induced much more PGE2 than did Gram-positive bacteria (5600 +/- 330 vs. 1700 +/- 670 pg/mL, p < 0.001). Blocking of COX-2 by NS398 abolished PGE2 production, but did not alter the cytokine patterns induced by Gram-positive and Gram-negative bacteria. We suggest that Gram-positive and Gram-negative bacteria may stimulate different innate effector functions; Gram-positive bacteria promoting cell-mediated effector functions whereas Gram-negative bacteria inducing mediators inhibiting the same.

  8. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections

    PubMed Central

    Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4–44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6–7.6) or fungal (0.5 ng/mL, IQR 0.4–1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725–0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9–48.5 versus 3.5 ng/mL, IQR 0.8–21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies. PMID:25852221

  9. Use of Positive Blood Cultures for Direct Identification and Susceptibility Testing with the Vitek 2 System

    PubMed Central

    de Cueto, Marina; Ceballos, Esther; Martinez-Martinez, Luis; Perea, Evelio J.; Pascual, Alvaro

    2004-01-01

    In order to further decrease the time lapse between initial inoculation of blood culture media and the reporting of results of identification and antimicrobial susceptibility tests for microorganisms causing bacteremia, we performed a prospective study in which specially processed fluid from positive blood culture bottles from Bactec 9240 (Becton Dickinson, Cockeysville, Md.) containing aerobic media were directly inoculated into Vitek 2 system cards (bio-Mérieux, France). Organism identification and susceptibility results were compared with those obtained from cards inoculated with a standardized bacterial suspension obtained following subculture to agar; 100 consecutive positive monomicrobic blood cultures, consisting of 50 gram-negative rods and 50 gram-positive cocci, were included in the study. For gram-negative organisms, 31 of the 50 (62%) showed complete agreement with the standard method for species identification, while none of the 50 gram-positive cocci were correctly identified by the direct method. For gram-negative rods, there were 50% categorical agreements between the direct and standard methods for all drugs tested. The very major error rate was 2.4%, and the major error rate was 0.6%. The overall error rate for gram-negatives was 6.6%. Complete agreement in clinical categories of all antimicrobial agents evaluated was obtained for 19 of 50 (38%) gram-positive cocci evaluated; the overall error rate was 8.4%, with 2.8% minor errors, 2.4% major errors, and 3.2% very major errors. These findings suggest that the Vitek 2 cards inoculated directly from positive Bactec 9240 bottles do not provide acceptable bacterial identification or susceptibility testing in comparison with corresponding cards tested by a standard method. PMID:15297523

  10. Species identification and susceptibility to 17 antibiotics of coagulase-negative staphylococci isolated from clinical specimens.

    PubMed

    Marsik, F J; Brake, S

    1982-04-01

    A total of 299 isolates of gram-positive, catalase-positive, coagulase-negative cocci were isolated from a variety of specimens collected from patients at a large university hospital, and 281 (94%) were identified as staphylococci by established methods. Using the scheme of Kloos and Schleifer, we determined the species of the coagulase-negative staphylococci. Staphylococcus epidermidis was the cause of all bacteremias and the most commonly isolated species from bone, joint, and wound infections. Staphylococcus haemolyticus was the second most common isolate from wound infections, and Staphylococcus saprophyticus was the most commonly isolated species from urinary tract infections. Antibiograms to 17 antimicrobial agents were performed by a microdilution technique, and the results revealed that S. epidermidis was resistant to a water spectrum of antimicrobial agents than the other species of staphylococci were.

  11. Species identification and susceptibility to 17 antibiotics of coagulase-negative staphylococci isolated from clinical specimens.

    PubMed Central

    Marsik, F J; Brake, S

    1982-01-01

    A total of 299 isolates of gram-positive, catalase-positive, coagulase-negative cocci were isolated from a variety of specimens collected from patients at a large university hospital, and 281 (94%) were identified as staphylococci by established methods. Using the scheme of Kloos and Schleifer, we determined the species of the coagulase-negative staphylococci. Staphylococcus epidermidis was the cause of all bacteremias and the most commonly isolated species from bone, joint, and wound infections. Staphylococcus haemolyticus was the second most common isolate from wound infections, and Staphylococcus saprophyticus was the most commonly isolated species from urinary tract infections. Antibiograms to 17 antimicrobial agents were performed by a microdilution technique, and the results revealed that S. epidermidis was resistant to a water spectrum of antimicrobial agents than the other species of staphylococci were. PMID:7068839

  12. Gram-positive Rod Surveillance for Early Anthrax Detection

    PubMed Central

    Begier, Elizabeth M.; Barrett, Nancy L.; Mshar, Patricia A.; Johnson, David G.

    2005-01-01

    Connecticut established telephone-based gram-positive rod (GPR) reporting primarily to detect inhalational anthrax cases more quickly. From March to December 2003, annualized incidence of blood isolates was 21.3/100,000 persons; reports included 293 Corynebacterium spp., 193 Bacillus spp., 73 Clostridium spp., 26 Lactobacillus spp., and 49 other genera. Around-the-clock GPR reporting has described GPR epidemiology and enhanced rapid communication with clinical laboratories. PMID:16229790

  13. Antibacterial activities of β-glucan (laminaran) against gram-negative and gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Chamidah, A.; Hardoko, Prihanto, A. A.

    2017-05-01

    This study aimed to determine the antibacterial activity of β-Glucan (laminaran) of LAE and LME extracts from brown algae Sargassum crassifolium using HPMS and Ultrasonication against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Salmonella typhimurium and Escherichia coli). The highest antibacterial activities of LME extract obtained using the HPMS method against Gram-positive bacteria (B. subtilis and S. aureus) were at 18:10 and 18.80 mm. The ultrasonication method showed a lower inhibition trend than the HPMS method, with MIC and MBC values of 250 mg/ml and 2-8 CFU/ml, respectively, in all Gram-negative and Gram-positive bacteria. The results showed that LME extract at a concentration of 250 mg/mL is bacteriostatic against Gram-positive and -negative bacteria.

  14. Isolating "Unknown" Bacteria in the Introductory Microbiology Laboratory: A New Selective Medium for Gram-Positives.

    ERIC Educational Resources Information Center

    McKillip, John L.; Drake, MaryAnne

    1999-01-01

    Describes the development, preparation, and use of a medium that can select against a wide variety of Gram-negative bacteria while still allowing growth and differentiation of a wide range of Gram-positives. (WRM)

  15. Transformation of gram positive bacteria by sonoporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng; Li, Yongchao

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  16. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. Published by Elsevier Ltd.

  17. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Strain NRRL B-41902 and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, gram-negative rods that formed cocci in late stationary phase. Subsequent to sequencing the 16S ribosomal RNA gene, it was found that strain NRRL B-41902 was...

  18. Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors.

    PubMed

    Teasdale, Margaret E; Donovan, Kellye A; Forschner-Dancause, Stephanie R; Rowley, David C

    2011-08-01

    Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive isolates from diverse habitats were tested for their ability to interfere with Vibrio harveyi bioluminescence, a cell signaling-regulated phenotype. Rapid assay methods were employed where environmental isolates were propagated alongside the reporter strain. "Actives" were defined as bacteria that interfered with bioluminescence without visible cell-killing effects (antibiotic activity). A total of 49 bacterial isolates interfered with bioluminescence production in the assays. Metabolite extracts were generated from cultures of the active isolates, and 28 reproduced the bioluminescence inhibition against V. harveyi. Of those 28, five extracts additionally inhibited violacein production by Chromobacterium violaceum. Chemical investigations revealed that phenethylamides and a cyclic dipeptide are two types of secondary metabolites responsible for the observed activities. The active bacterial isolates belonged primarily to either the genus Bacillus or Halobacillus. The results suggest that Gram-positive marine bacteria are worthy of further investigation for the discovery of quorum sensing antagonists.

  19. Evaluation of the Verigene Gram-Positive Blood Culture Nucleic Acid Test for Rapid Detection of Bacteria and Resistance Determinants

    PubMed Central

    Wojewoda, Christina M.; Sercia, Linda; Navas, Maria; Tuohy, Marion; Wilson, Deborah; Hall, Geraldine S.; Procop, Gary W.

    2013-01-01

    Rapid identification of pathogens from blood cultures can decrease lengths of stay and improve patient outcomes. We evaluated the accuracy of the Verigene Gram-positive blood culture (BC-GP) nucleic acid test for investigational use only (Nanosphere, Inc., Northbrook, IL) for the identification of Gram-positive bacteria from blood cultures. The detection of resistance genes (mecA in Staphylococcus aureus and Staphylococcus epidermidis and vanA or vanB in Enterococcus faecium and Enterococcus faecalis) by the BC-GP assay also was assessed. A total of 186 positive blood cultures (in BacT/Alert FA bottles) with Gram-positive cocci observed with Gram staining were analyzed using the BC-GP assay. The BC-GP results were compared with the identification and susceptibility profiles obtained with routine methods in the clinical laboratory. Discordant results were arbitrated with additional biochemical, cefoxitin disk, and repeat BC-GP testing. The initial BC-GP organism identification was concordant with routine method results for 94.6% of the blood cultures. Only 40% of the Streptococcus pneumoniae identifications were correct. The detection of the mecA gene for 69 blood cultures with only S. aureus or S. epidermidis was concordant with susceptibility testing results. For 3 of 6 cultures with multiple Staphylococcus spp., mecA detection was reported but was correlated with oxacillin resistance in a species other than S. aureus or S. epidermidis. The detection of vanA agreed with susceptibility testing results for 45 of 46 cultures with E. faecalis or E. faecium. Comparison of the mean times to results for each organism group showed that BC-GP results were available 31 to 42 h earlier than phenotypic identifications and 41 to 50 h earlier than susceptibility results. PMID:23596240

  20. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants.

    PubMed

    Wojewoda, Christina M; Sercia, Linda; Navas, Maria; Tuohy, Marion; Wilson, Deborah; Hall, Geraldine S; Procop, Gary W; Richter, Sandra S

    2013-07-01

    Rapid identification of pathogens from blood cultures can decrease lengths of stay and improve patient outcomes. We evaluated the accuracy of the Verigene Gram-positive blood culture (BC-GP) nucleic acid test for investigational use only (Nanosphere, Inc., Northbrook, IL) for the identification of Gram-positive bacteria from blood cultures. The detection of resistance genes (mecA in Staphylococcus aureus and Staphylococcus epidermidis and vanA or vanB in Enterococcus faecium and Enterococcus faecalis) by the BC-GP assay also was assessed. A total of 186 positive blood cultures (in BacT/Alert FA bottles) with Gram-positive cocci observed with Gram staining were analyzed using the BC-GP assay. The BC-GP results were compared with the identification and susceptibility profiles obtained with routine methods in the clinical laboratory. Discordant results were arbitrated with additional biochemical, cefoxitin disk, and repeat BC-GP testing. The initial BC-GP organism identification was concordant with routine method results for 94.6% of the blood cultures. Only 40% of the Streptococcus pneumoniae identifications were correct. The detection of the mecA gene for 69 blood cultures with only S. aureus or S. epidermidis was concordant with susceptibility testing results. For 3 of 6 cultures with multiple Staphylococcus spp., mecA detection was reported but was correlated with oxacillin resistance in a species other than S. aureus or S. epidermidis. The detection of vanA agreed with susceptibility testing results for 45 of 46 cultures with E. faecalis or E. faecium. Comparison of the mean times to results for each organism group showed that BC-GP results were available 31 to 42 h earlier than phenotypic identifications and 41 to 50 h earlier than susceptibility results.

  1. Diagnosing periprosthetic infection: false-positive intraoperative Gram stains.

    PubMed

    Oethinger, Margret; Warner, Debra K; Schindler, Susan A; Kobayashi, Hideo; Bauer, Thomas W

    2011-04-01

    Intraoperative Gram stains have a reported low sensitivity but high specificity when used to help diagnose periprosthetic infections. In early 2008, we recognized an unexpectedly high frequency of apparent false-positive Gram stains from revision arthroplasties. The purpose of this report is to describe the cause of these false-positive test results. We calculated the sensitivity and specificity of all intraoperative Gram stains submitted from revision arthroplasty cases during a 3-month interval using microbiologic cultures of the same samples as the gold standard. Methods of specimen harvesting, handling, transport, distribution, specimen processing including tissue grinding/macerating, Gram staining, and interpretation were studied. After a test modification, results of specimens were prospectively collected for a second 3-month interval, and the sensitivity and specificity of intraoperative Gram stains were calculated. The retrospective review of 269 Gram stains submitted from revision arthroplasties indicated historic sensitivity and specificity values of 23% and 92%, respectively. Systematic analysis of all steps of the procedure identified Gram-stained but nonviable bacteria in commercial broth reagents used as diluents for maceration of periprosthetic membranes before Gram staining and culture. Polymerase chain reaction and sequencing showed mixed bacterial DNA. Evaluation of 390 specimens after initiating standardized Millipore filtering of diluent fluid revealed a reduced number of positive Gram stains, yielding 9% sensitivity and 99% specificity. Clusters of false-positive Gram stains have been reported in other clinical conditions. They are apparently rare related to diagnosing periprosthetic infections but have severe consequences if used to guide treatment. Even occasional false-positive Gram stains should prompt review of laboratory methods. Our observations implicate dead bacteria in microbiologic reagents as potential sources of false-positive Gram

  2. Selective Imaging of Gram-Negative and Gram-Positive Microbiotas in the Mouse Gut.

    PubMed

    Wang, Wei; Zhu, Yuntao; Chen, Xing

    2017-08-01

    The diverse gut microbial communities are crucial for host health. How the interactions between microbial communities and between host and microbes influence the host, however, is not well understood. To facilitate gut microbiota research, selective imaging of specific groups of microbiotas in the gut is of great utility but remains technically challenging. Here we present a chemical approach that enables selective imaging of Gram-negative and Gram-positive microbiotas in the mouse gut by exploiting their distinctive cell wall components. Cell-selective labeling is achieved by the combined use of metabolic labeling of Gram-negative bacterial lipopolysaccharides with a clickable azidosugar and direct labeling of Gram-positive bacteria with a vancomycin-derivatized fluorescent probe. We demonstrated this strategy by two-color fluorescence imaging of Gram-negative and Gram-positive gut microbiotas in the mouse intestines. This chemical method should be broadly applicable to different gut microbiota research fields and other bacterial communities studied in microbiology.

  3. Bacterial Prevalence and Antibiotic Resistance in Clinical Isolates of Diabetic Foot Ulcers in the Northeast of Tamaulipas, Mexico.

    PubMed

    Sánchez-Sánchez, Mario; Cruz-Pulido, Wendy Lizeth; Bladinieres-Cámara, Eduardo; Alcalá-Durán, Rodrigo; Rivera-Sánchez, Gildardo; Bocanegra-García, Virgilio

    2017-06-01

    Diabetic foot ulcers (DFUs) are a serious and common problem in patients with diabetes mellitus and constitute one of the major causes of lower extremity amputation. The microbiological profile of DFUs depends on the acute or chronic character of the wound. Aerobic gram-positive cocci are the predominant organisms isolated from DFUs. Diabetic foot biopsies from patients admitted to the Angiology and Vascular Surgery Hospital of the Northeast, in Reynosa, Tamaulipas from December 2011 to April 2016 were analyzed. The samples were processed using standard microbiology techniques. Antimicrobial susceptibility testing was carried out according to the protocol established by the Clinical & Laboratory Standards Institute (CLSI). We obtained 246 bacterial isolates, based on the results of phenotypic resistance. The least effective antibiotics for gram-positive bacteria were penicillin and dicloxacillin; for gram-negative bacteria, cefalotin and penicillin were the least effective. Levofloxacin, cefalotin, and amikacin were the most effective antibiotics for gram-positive and negative bacteria, respectively. Enterobacter genus was significantly associated with muscle biopsies ( P = .011) and samples without growth were significantly associated with specimens of pyogenic origin ( P = .000). In 215 DFU samples, we found that Staphylococcus aureus was the most commonly isolated pathogen followed by Enterobacter sp. This is consistent with previous reports. Enterobacter species may play an important role in the colonization/infection of certain tissues; however, further studies are needed in this regard.

  4. In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi; Tyrrell, Kerin; Fernandez, Helen T

    2003-06-01

    Dalbavancin is a novel semisynthetic glycopeptide with enhanced activity against gram-positive species. Its comparative in vitro activities and those of nine comparator agents, including daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin, against 290 recent gram-positive clinical isolates strains, as determined by the NCCLS agar dilution method, were studied. The MICs of dalbavancin at which 90% of various isolates tested were inhibited were as follows: Actinomyces spp., 0.5 microg/ml; Clostridium clostridioforme, 8 microg/ml; C. difficile, 0.25 microg/ml; C. innocuum, 0.25 microg/ml; C. perfringens, 0.125 microg/ml; C. ramosum, 1 microg/ml; Eubacterium spp., 1 microg/ml; Lactobacillus spp., >32 microg/ml, Propionibacterium spp., 0.5 microg/ml; and Peptostreptococcus spp., 0.25 microg/ml. Dalbavancin was 1 to 3 dilutions more active than vancomycin against most strains. Dalbavancin exhibited excellent activity against gram-positive strains tested and warrants clinical evaluation.

  5. ESTABLISHING NORMAL FECAL FLORA IN WILD AUSTRALIAN PASSERINE BIRDS BY USE OF THE FECAL GRAM STAIN.

    PubMed

    Latham, Benjamin; Leishman, Alan; Martin, John; Phalen, David

    2017-09-01

    The purpose of this study was to determine the normal fecal bacterial and fungal flora and parasite prevalence in wild passerine birds found at the Australian Botanic Garden (Mount Annan, New South Wales). Wild passerine birds (n = 186) from 28 species were captured with mist nets. Fecal Gram stains (n = 155) were made from 26 species and analyzed for bacterial density, Gram stain morphology, and the presence of yeast. Fecal wet preparations (n = 139) were made from 24 passerine species and were analyzed for parasites. Our results showed that 81.9% of passerines sampled had bacteria present in their feces. The bacteria found were entirely Gram positive and consisted predominantly of cocci. Individuals that were caught on multiple occasions were found to have stable bacterial populations, apart from the red-browed finch (Neochmia temporalis). Insectivores had higher bacterial densities and cocci proportions than nectarivores had. Yeasts were rare in most species, with the exception of the bell miner (Manorina melanophrys) and noisy miner (Manorina melanocephala). The yeast, Macrorhabdus ornithogaster, and parasites were not observed in any fecal samples. These results will help practitioners to assess the health of Australian passerine species submitted for care or housed in zoological collections.

  6. A Synthetic Dual Drug Sideromycin Induces Gram-Negative Bacteria To Commit Suicide with a Gram-Positive Antibiotic.

    PubMed

    Liu, Rui; Miller, Patricia A; Vakulenko, Sergei B; Stewart, Nichole K; Boggess, William C; Miller, Marvin J

    2018-05-10

    Many antibiotics lack activity against Gram-negative bacteria because they cannot permeate the outer membrane or suffer from efflux and, in the case of β-lactams, are degraded by β-lactamases. Herein, we describe the synthesis and studies of a dual drug conjugate (1) of a siderophore linked to a cephalosporin with an attached oxazolidinone. The cephalosporin component of 1 is rapidly hydrolyzed by purified ADC-1 β-lactamase to release the oxazolidinone. Conjugate 1 is active against clinical isolates of Acinetobacter baumannii as well as strains producing large amounts of ADC-1 β-lactamase. Overall, the results are consistent with siderophore-mediated active uptake, inherent activity of the delivered dual drug, and in the presence of β-lactamases, intracellular release of the oxazolidinone upon cleavage of the cephalosporin to allow the freed oxazolidinone to inactivate its target. The ultimate result demonstrates that Gram-positive oxazolidinone antibiotics can be made to be effective against Gram-negative bacteria by β-lactamase triggered release.

  7. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract

    PubMed Central

    Kline, Kimberly A.; Lewis, Amanda L.

    2015-01-01

    Gram-positive bacteria are a common cause of urinary tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI. PMID:27227294

  8. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract.

    PubMed

    Kline, Kimberly A; Lewis, Amanda L

    2016-04-01

    Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.

  9. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  10. Endocarditis associated with cardiac catheterization due to a Gram-positive coccus designated Micrococcus mucilaginosus incertae sedis.

    PubMed Central

    Rubin, S J; Lyons, R W; Murcia, A J

    1978-01-01

    A gram-positive coccus, presently named Micrococcus mucilaginosus incertae sedis, was isolated from 14 blood cultures from a patient with endocarditis. The first positive blood culture was drawn 5 days after the patient underwent cardiac catheterization. PMID:670378

  11. Acceleration of Antimicrobial Susceptibility Testing of Positive Blood Cultures by Inoculation of Vitek 2 Cards with Briefly Incubated Solid Medium Cultures

    PubMed Central

    Idelevich, Evgeny A.; Schüle, Isabel; Grünastel, Barbara; Wüllenweber, Jörg; Peters, Georg

    2014-01-01

    Briefly incubated agar cultures from positive blood cultures were used for antimicrobial susceptibility testing (AST) by Vitek 2. The cultivation time until inoculation was 3.8 h for Gram-positive cocci and 2.4 h for Gram-negative rods. The error rates were low, providing early and reliable AST without additional time or cost expenditure. PMID:25165084

  12. In vitro activity of doripenem, a carbapenem for the treatment of challenging infections caused by gram-negative bacteria, against recent clinical isolates from the United States.

    PubMed

    Pillar, Chris M; Torres, Mohana K; Brown, Nina P; Shah, Dineshchandra; Sahm, Daniel F

    2008-12-01

    Doripenem, a 1beta-methylcarbapenem, is a broad-spectrum antibiotic approved for the treatment of complicated urinary tract and complicated intra-abdominal infections. An indication for hospital-acquired pneumonia including ventilator-associated pneumonia is pending. The current study examined the activity of doripenem against recent clinical isolates for the purposes of its ongoing clinical development and future longitudinal analysis. Doripenem and comparators were tested against 12,581 U.S. clinical isolates collected between 2005 and 2006 including isolates of Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pneumoniae, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. MICs (microg/ml) were established by broth microdilution. By MIC(90), doripenem was comparable to imipenem and meropenem in activity against S. aureus (methicillin susceptible, 0.06; resistant, 8) and S. pneumoniae (penicillin susceptible, < or =0.015; resistant, 1). Against ceftazidime-susceptible Enterobacteriaceae, the MIC(90) of doripenem (0.12) was comparable to that of meropenem (0.12) and superior to that of imipenem (2), though susceptibility of isolates exceeded 99% for all evaluated carbapenems. The activity of doripenem was not notably altered against ceftazidime-nonsusceptible or extended-spectrum beta-lactamase screen-positive Enterobacteriaceae. Doripenem was the most potent carbapenem tested against P. aeruginosa (MIC(90)/% susceptibility [%S]: ceftazidime susceptible = 2/92%S, nonsusceptible = 16/61%S; imipenem susceptible = 1/98.5%S, nonsusceptible = 8/56%S). Against imipenem-susceptible Acinetobacter spp., doripenem (MIC(90) = 2, 89.1%S) was twice as active by MIC(90) as were imipenem and meropenem. Overall, doripenem potency was comparable to those of meropenem and imipenem against gram-positive cocci and doripenem was equal or superior in activity to meropenem and imipenem against Enterobacteriaceae, including beta

  13. Higher platelet reactivity and platelet-monocyte complex formation in Gram-positive sepsis compared to Gram-negative sepsis.

    PubMed

    Tunjungputri, Rahajeng N; van de Heijden, Wouter; Urbanus, Rolf T; de Groot, Philip G; van der Ven, Andre; de Mast, Quirijn

    2017-09-01

    Platelets may play a role in the high risk for vascular complications in Gram-positive sepsis. We compared the platelet reactivity of 15 patients with Gram-positive sepsis, 17 with Gram-negative sepsis and 20 healthy controls using a whole blood flow cytometry-based assay. Patients with Gram-positive sepsis had the highest median fluorescence intensity (MFI) of the platelet membrane expression of P-selectin upon stimulation with high dose adenosine diphosphate (ADP; P = 0.002 vs. Gram-negative and P = 0.005 vs. control groups) and cross-linked collagen-related peptide (CRP-XL; P = 0.02 vs. Gram-negative and P = 0.0001 vs. control groups). The Gram-positive group also demonstrated significantly higher ADP-induced fibrinogen binding (P = 0.001), as wll as platelet-monocyte complex formation (P = 0.02), compared to the Gram-negative group and had the highest plasma levels of platelet factor 4, β-thromboglobulin and soluble P-selectin. In contrast, thrombin-antithrombin complex and C-reactive protein levels were comparable in both patient groups. In conclusion, common Gram-positive pathogens induce platelet hyperreactivity, which may contribute to a higher risk for vascular complications.

  14. Quantifying Glosair™ 400 efficacy for surface disinfection of American Type Culture Collection strains and micro-organisms recently isolated from intensive care unit patients.

    PubMed

    Herruzo, R; Vizcaíno, M J; Herruzo, I

    2014-07-01

    Microbial contamination of hospital surfaces may be a source of infection for hospitalized patients. We evaluated the efficacy of Glosair™ 400 against two American Type Culture Collection strains and 18 clinical isolates, placed on glass germ-carriers. Carriers were left to air-dry for 60 min and then exposed to a cycle before detection of any surviving micro-organisms. Antibiotic-susceptible Gram-negative bacilli were less susceptible (although not significantly) to this technique than resistant Gram-negative bacilli or Gram-positive cocci and yeasts (3, 3.4 and 4.6 log10 reduction, respectively). In conclusion, in areas that had not been cleaned, aerosolized hydrogen peroxide obtained >3 log10 mean destruction of patients' micro-organisms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    PubMed

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  16. Cytokine profile in severe gram-positive and gram-negative abdominal sepsis

    PubMed Central

    Surbatovic, Maja; Popovic, Nada; Vojvodic, Danilo; Milosevic, Ivan; Acimovic, Gordana; Stojicic, Milan; Veljovic, Milic; Jevdjic, Jasna; Djordjevic, Dragan; Radakovic, Sonja

    2015-01-01

    Sepsis is a principal cause of death in critical care units worldwide and consumes considerable healthcare resources. The aim of our study was to determine whether the early cytokine profile can discriminate between Gram-positive and Gram-negative bacteraemia (GPB and GNB, respectively) and to assess the prognostic value regarding outcome in critically ill patients with severe abdominal sepsis. The outcome measure was hospital mortality. Blood samples were obtained from 165 adult patients with confirmed severe abdominal sepsis. Levels of the proinflammatory mediators TNF-α, IL-8, IL-12 and IFN-γ and the anti-inflammatory mediators IL-1ra, IL-4, IL-10 and TGF-β1 were determined and correlated with the nature of the bacteria isolated from the blood culture and outcome. The cytokine profile in our study indicated that the TNF-α levels were 2-fold, IL-8 were 3.3-fold, IFN-γ were 13-fold, IL-1ra were 1.05-fold, IL-4 were 1.4-fold and IL-10 were 1.83-fold higher in the GNB group compared with the GPB group. The TNF-α levels were 4.7-fold, IL-8 were 4.6-fold, IL-1ra were 1.5-fold and IL-10 were 3.3-fold higher in the non-survivors compared with the survivors. PMID:26079127

  17. Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.

    PubMed

    Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

    2014-12-01

    This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Characterization of Staphylococcus spp. and Micrococcus spp. isolated from Iberian ham throughout the ripening process.

    PubMed

    Rodríguez, M; Núñez, F; Córdoba, J J; Sanabria, C; Bermúdez, E; Asensio, M A

    1994-12-01

    The Iberian dry cured ham is an uncooked meat product highly appreciated because of its characteristic flavour. This product is obtained from highly marbled Iberian pig hindlegs after 18-24 months of maturation under natural environmental conditions. The role of Micrococcaceae in the development of the aroma characteristics of this products remains unclear. Identification of Gram-positive, catalase-positive cocci isolated from Mannitol Salt Agar plates showed that Staphylococcus xylosus followed by Staphylococcus equorum are the predominant organisms, even after 16 months of maturing. A remarkable variety of types of both staphylococci and micrococci are detected at any sampling time. The metabolic activities of these organisms could contribute to the characteristics of the final product.

  19. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20more » of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.« less

  20. Methods for targetted mutagenesis in gram-positive bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  1. Lack of clinical utility of urine gram stain for suspected urinary tract infection in pediatric patients.

    PubMed

    Cantey, Joseph B; Gaviria-Agudelo, Claudia; McElvania TeKippe, Erin; Doern, Christopher D

    2015-04-01

    Urinary tract infection (UTI) is one of the most common infections in children. Urine culture remains the gold standard for diagnosis, but the utility of urine Gram stain relative to urinalysis (UA) is unclear. We reviewed 312 pediatric patients with suspected UTI who had urine culture, UA, and urine Gram stain performed from a single urine specimen. UA was considered positive if ≥10 leukocytes per oil immersion field were seen or if either nitrates or leukocyte esterase testing was positive. Urine Gram stain was considered positive if any organisms were seen. Sensitivity, specificity, and positive and negative predictive values were calculated using urine culture as the gold standard. Thirty-seven (12%) patients had a culture-proven UTI. Compared to urine Gram stain, UA had equal sensitivity (97.3% versus 97.5%) and higher specificity (85% versus 74%). Empirical therapy was prescribed before the Gram stain result was known in 40 (49%) patients and after in 42 (51%) patients. The antibiotics chosen did not differ between the two groups (P=0.81), nor did they differ for patients with Gram-negative rods on urine Gram stain compared to those with Gram-positive cocci (P=0.67). From these data, we conclude that UA has excellent negative predictive value that is not enhanced by urine Gram stain and that antibiotic selection did not vary based on the urine Gram stain result. In conclusion, the clinical utility of urine Gram stain does not warrant the time or cost it requires. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Lack of Clinical Utility of Urine Gram Stain for Suspected Urinary Tract Infection in Pediatric Patients

    PubMed Central

    Gaviria-Agudelo, Claudia; McElvania TeKippe, Erin; Doern, Christopher D.

    2015-01-01

    Urinary tract infection (UTI) is one of the most common infections in children. Urine culture remains the gold standard for diagnosis, but the utility of urine Gram stain relative to urinalysis (UA) is unclear. We reviewed 312 pediatric patients with suspected UTI who had urine culture, UA, and urine Gram stain performed from a single urine specimen. UA was considered positive if ≥10 leukocytes per oil immersion field were seen or if either nitrates or leukocyte esterase testing was positive. Urine Gram stain was considered positive if any organisms were seen. Sensitivity, specificity, and positive and negative predictive values were calculated using urine culture as the gold standard. Thirty-seven (12%) patients had a culture-proven UTI. Compared to urine Gram stain, UA had equal sensitivity (97.3% versus 97.5%) and higher specificity (85% versus 74%). Empirical therapy was prescribed before the Gram stain result was known in 40 (49%) patients and after in 42 (51%) patients. The antibiotics chosen did not differ between the two groups (P = 0.81), nor did they differ for patients with Gram-negative rods on urine Gram stain compared to those with Gram-positive cocci (P = 0.67). From these data, we conclude that UA has excellent negative predictive value that is not enhanced by urine Gram stain and that antibiotic selection did not vary based on the urine Gram stain result. In conclusion, the clinical utility of urine Gram stain does not warrant the time or cost it requires. PMID:25653411

  3. [Yearly changes in antibacterial activities of cefozopran against various clinical isolates between 1996 and 2000--I. Gram-positive bacteria].

    PubMed

    Suzuki, Yumiko; Nishinari, Chisato; Endo, Harumi; Tamura, Chieko; Jinbo, Keiko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2002-04-01

    The in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates obtained between 1996 and 2000 were yearly evaluated and compared with those of other cephems, oxacephems, carbapenems, and penicillins. Fifteen species, 1,062 strains, of Gram-positive bacteria were isolated from the clinical materials annually collected from January to December, and consisted of methicillin-susceptible Staphylococcus aureus (MSSA; n = 127), methicillin-resistant Staphylococcus aureus (MRSA; n = 123), Staphylococcus epidermidis (n = 104), Staphylococcus haemolyticus (n = 58), Streptococcus pyogenes (n = 100), Streptococcus agalactiae (n = 50), Streptococcus pneumoniae (n = 125), Enterococcus faecalis (n = 150), Enterococcus faecium (n = 50), Enterococcus avium (n = 50), and Peptostreptococcus spp. (P. anaerobius, P. asaccharolyticus, P. magnus, P. micros, P. prevotii; n = 125). CZOP possessed stable antibacterial activities against all strains tested throughout 5 years. The MIC90 of CZOP against MRSA and S. haemolyticus tended to decrease while against S. pneumoniae and Peptostreptococcus spp., tended to increase year by year. However, the MIC90 just changed a little and were consistent with the results from the studies performed until the new drug application approval. Increases in the MIC90 against S. pneumoniae were also observed with cefpirome (CPR), cefepime (CFPM), flomoxef (FMOX), sulbactam/cefoperazone (SBT/CPZ), and imipenem (IPM). Increases in the MIC90 against Peptostreptococcus spp. were also observed with ceftazidime (CAZ), CPR, CFPM, FMOX, SBT/CPZ, and IPM. The decreases in the sensitivities were not always considered to depend upon generation of resistant bacteria because the annual MIC range of each antibacterial agent was almost generally wide every year and the annual sensitivity of each strain to the agents extremely varied. In conclusion, the annual antibacterial activities of CZOP against the Gram-positive

  4. The in vitro activity of flomoxef compared to four other cephalosporins and imipenem.

    PubMed

    Shah, P M; Knothe, H

    1991-01-01

    The antibacterial activity of the oxacephalosporin flomoxef was evaluated in comparison to cefpirome, cefuzoname, cefotaxime, ceftazidime, and imipenem against fresh clinical isolates. Flomoxef is an antibiotic with strong antibacterial activity against staphylococci including methicillin-resistant strains and streptococci with the exception of Enterococcus faecalis and Enterococcus faecium. It is very active against gram-negative cocci and rods including gram-positive and gram-negative anaerobes. Against Pseudomonas sp. flomoxef has no activity.

  5. Comparison of methods for the identification of microorganisms isolated from blood cultures.

    PubMed

    Monteiro, Aydir Cecília Marinho; Fortaleza, Carlos Magno Castelo Branco; Ferreira, Adriano Martison; Cavalcante, Ricardo de Souza; Mondelli, Alessandro Lia; Bagagli, Eduardo; da Cunha, Maria de Lourdes Ribeiro de Souza

    2016-08-05

    Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK(®) 2 system, which is currently used in routine clinical microbiology laboratories. This study evaluated the accuracy of the VITEK(®) 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. The automated VITEK(®) 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). The performance of the VITEK(®) 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.

  6. Cyclic diguanylate signaling in Gram-positive bacteria

    PubMed Central

    Purcell, Erin B.; Tamayo, Rita

    2016-01-01

    The nucleotide second messenger 3′-5′ cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  7. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Type IV Pili in Gram-Positive Bacteria

    PubMed Central

    Craig, Lisa

    2013-01-01

    SUMMARY Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species. PMID:24006467

  9. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  10. Envelope Structures of Gram-Positive Bacteria

    PubMed Central

    Rajagopal, Mithila; Walker, Suzanne

    2016-01-01

    Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan, which is a well-established target for antibiotics, teichoic acids, capsular polysaccharides, surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis and important functions of major cell envelope components in Gram-positive bacteria. Possible targets for new antimicrobials will be noted. PMID:26919863

  11. Prognostic factors and monomicrobial necrotizing fasciitis: gram-positive versus gram-negative pathogens

    PubMed Central

    2011-01-01

    Background Monomicrobial necrotizing fasciitis is rapidly progressive and life-threatening. This study was undertaken to ascertain whether the clinical presentation and outcome for patients with this disease differ for those infected with a gram-positive as compared to gram-negative pathogen. Methods Forty-six patients with monomicrobial necrotizing fasciitis were examined retrospectively from November 2002 to January 2008. All patients received adequate broad-spectrum antibiotic therapy, aggressive resuscitation, prompt radical debridement and adjuvant hyperbaric oxygen therapy. Eleven patients were infected with a gram-positive pathogen (Group 1) and 35 patients with a gram-negative pathogen (Group 2). Results Group 2 was characterized by a higher incidence of hemorrhagic bullae and septic shock, higher APACHE II scores at 24 h post-admission, a higher rate of thrombocytopenia, and a higher prevalence of chronic liver dysfunction. Gouty arthritis was more prevalent in Group 1. For non-survivors, the incidences of chronic liver dysfunction, chronic renal failure and thrombocytopenia were higher in comparison with those for survivors. Lower level of serum albumin was also demonstrated in the non-survivors as compared to those in survivors. Conclusions Pre-existing chronic liver dysfunction, chronic renal failure, thrombocytopenia and hypoalbuminemia, and post-operative dependence on mechanical ventilation represent poor prognostic factors in monomicrobial necrotizing fasciitis. Patients with gram-negative monobacterial necrotizing fasciitis present with more fulminant sepsis. PMID:21208438

  12. Peptidoglycan turnover and recycling in Gram-positive bacteria.

    PubMed

    Reith, Jan; Mayer, Christoph

    2011-10-01

    Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.

  13. Draft Genome Sequence of Brevibacillus laterosporus OSY-I1, a Strain That Produces Brevibacillin, Which Combats Drug-Resistant Gram-Positive Bacteria

    PubMed Central

    Yang, Xu; Yesil, Mustafa; Xiaoli, Lingzi; Dudley, Edward G.

    2017-01-01

    ABSTRACT Brevibacillus laterosporus OSY-I1 is a Gram-positive spore-forming bacterium isolated from soil. The bacterium produces brevibacillin, an antimicrobial lipopeptide effective against several drug-resistant Gram-positive bacteria. Here, we present the draft genome sequence of the strain OSY-I1 and the gene cluster responsible for the biosynthesis of brevibacillin. PMID:29025947

  14. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. In Vitro Activities of Y-688, a New 7-Substituted Fluoroquinolone, against Anaerobic Bacteria

    PubMed Central

    MacGowan, A. P.; Bowker, K. E.; Wootton, M.; Holt, H. A.; Reeves, D. S.

    1998-01-01

    The in vitro activities of Y-688, a new 7-substituted fluoroquinolone derivative, against 317 nonduplicate anaerobic isolates were determined. Eighty-five percent of the Bacteroides fragilis group (n = 89) were inhibited by ≤2 mg of Y-688 per liter, while 78, 100, 89, and 98% of gram-negative bacilli (n = 135), gram-positive cocci (n = 59), and non-spore-forming (n = 58) and spore-forming (n = 51) gram-positive bacilli, respectively, were inhibited by ≤1 mg of Y-688 per liter. PMID:9527797

  16. Antiadhesion agents against Gram-positive pathogens.

    PubMed

    Cascioferro, Stella; Cusimano, Maria Grazia; Schillaci, Domenico

    2014-01-01

    A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.

  17. Environmental gram-positive mastitis treatment: in vitro sensitivity and bacteriologic cure.

    PubMed

    Cattell, M B; Dinsmore, R P; Belschner, A P; Carmen, J; Goodell, G

    2001-09-01

    A clinical trial was conducted in a large dairy herd to determine the efficacy of intramammary pirlimycin hydrochloride administration during lactation for bacteriologic clearance of gram-positive environmental clinical and subclinical mastitis infections. Quarters infected with environmental streptococci that received pirlimycin therapy (13/28) were 1.8 times more likely to resolve infection than untreated quarters (5/14). The small numbers of quarters infected with coagulase-negative staphylococci resulted in inadequate power to assess treatment differences in cure rate. Although the association was not statistically significant, quarters from cows with sensitive environmental streptococci isolates from composite samples (8/13) resolved infection with treatment at approximately twice the rate of treated quarters with resistant isolates (3/10).

  18. Identification of gram-negative and gram-positive bacteria by fluorescence studies

    NASA Astrophysics Data System (ADS)

    Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian

    2011-03-01

    Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched in addition of water, even a very thin layer, which confirms that the observed spectral features originate from the outer parts of the bacteria. These results allow to conclude that the fluorescence spectroscopy can be used as a method for studying the membranes of the bacteria and eventually to discriminate between gram positive and gram negative bacteria. The pulsed experiments show that the fluorescence lifetime is in the sub-microsecond range. The results indicate that the observed spectra are superposition of the emission with different lifetimes.

  19. Disinfection of gram-negative and gram-positive bacteria using DynaJets® hydrodynamic cavitating jets.

    PubMed

    Loraine, Gregory; Chahine, Georges; Hsiao, Chao-Tsung; Choi, Jin-Keun; Aley, Patrick

    2012-05-01

    Cavitating jet technologies (DynaJets®) were investigated as a means of disinfection of gram-negative Escherichia coli, Klebsiellapneumoniae, Pseudomonas syringae, and Pseudomonas aeruginosa, and gram-positive Bacillus subtilis. The hydrodynamic cavitating jets were found to be very effective in reducing the concentrations of all of these species. In general, the observed rates of disinfection of gram-negative species were higher than for gram-positive species. However, different gram-negative species also showed significant differences (P. syringae 6-log(10) reduction, P. aeruginosa 2-log(10) reduction) under the same conditions. Disinfection of E. coli repeatedly showed five orders of magnitude reduction in concentration within 45-60-min at low nozzle pressure (2.1 bar). Optimization of nozzle design and operating pressures increased disinfection rates per input energy by several orders of magnitude. The power efficiencies of the hydrodynamic cavitating jets were found to be 10-100 times greater than comparable ultrasonic systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Longitudinal surveillance on antibiogram of important Gram-positive pathogens in Southern China, 2001 to 2015.

    PubMed

    Xu, Zhenbo; Xie, Jinhong; Peters, Brian M; Li, Bing; Li, Lin; Yu, Guangchao; Shirtliff, Mark E

    2017-02-01

    A longitudinal surveillance aimed to investigate the antibiogram of three genus of important Gram-positive pathogens in Southern China during 2001-2015. A total of 3849 Staphylococcus, Enterococcus and Streptococcus strains were isolated from Southern China during 2001-2015. Bacteria identification was performed by colony morphology, Gram staining, the API commercial kit and the Vitek 2 automated system. Antimicrobial susceptibility testing was determined by disk diffusion method and MIC method. As sampling site was concerned, 51.4% of Staphylococcus strains were isolated from sputum, whereas urinary tract remained the dominant infection site among Enterococcus and Streptococcus. According to the antimicrobial susceptibility, three genus of important Gram-positive pathogens showed high resistance against erythromycin, tetracycline, ciprofloxacin and clindamycin. Resistance rates to penicillins (penicillin, oxacillin, ampicillin) were high as well, with the exception of E. faecalis and Streptococcus. Overall, resistance rates against methicillin (oxacillin) were 63.2% in S. aureus and 76.2% in coagulase-negative Staphylococcus (CNS), along with continuous increases during the study. VRSA and vancomycin-resistant coagulase-negative Staphylococcus only appeared in 2011-2015. Sight decline was obtained for the vancomycin resistance of E. faecalis, while vancomycin-resistant E. faecium only appeared in 2011-2015, with its intermediate rate decreasing. Significant decrease in penicillin-resistant Streptococcus pneumonia (PRSP) was observed during studied period. Glycopeptide antibiotic remained highly effective to Staphylococcus, Enterococcus and Streptococcus (resistance rates <5%). Despite decline obtained for some antibiotic agents resistance during 2001-2015, antimicrobial resistance among Gram-positive pathogens still remained high in Southern China. This study may aid in the guidance for appropriate therapeutic strategy of infections caused by nosocomial

  1. Biofilm formation in an ice cream plant.

    PubMed

    Gunduz, Gulten Tiryaki; Tuncel, Gunnur

    2006-01-01

    The sites of biofilm formation in an ice cream plant were investigated by sampling both the production line and the environment. Experiments were carried out twice within a 20-day period. First, stainless steel coupons were fixed to surfaces adjacent to food contact surfaces, the floor drains and the doormat. They were taken for the analysis of biofilm at three different production stages. Then, biofilm forming bacteria were enumerated and also presence of Listeria monocytogenes was monitored. Biofilm forming isolates were selected on the basis of colony morphology and Gram's reaction; Gram negative cocci and rod, Gram positive cocci and spore forming isolates were identified. Most of the biofilm formations were seen on the conveyor belt of a packaging machine 8 h after the beginning of the production, 6.5 x 10(3) cfu cm(-2). Most of the Gram negative bacteria identified belong to Enterobacteriaceae family such as Proteus, Enterobacter, Citrobacter, Shigella, Escherichia, Edwardsiella. The other Gram negative microflora included Aeromonas, Plesiomonas, Moraxella, Pseudomonas or Alcaligenes spp. were also isolated. Gram positive microflora of the ice cream plant included Staphyloccus, Bacillus, Listeria and lactic acid bacteria such as Streptococcus, Leuconostoc or Pediococcus spp. The results from this study highlighted the problems of spread of pathogens like Listeria and Shigella and spoilage bacteria. In the development of cleaning and disinfection procedures in ice cream plants, an awareness of these biofilm-forming bacteria is essential for the ice cream plants.

  2. Surveillance of iclaprim activity: In vitro susceptibility of gram-positive pathogens collected from 2012 to 2014 from the United States, Asia Pacific, Latin American and Europe.

    PubMed

    Huang, David B; File, Thomas M; Dryden, Matthew; Corey, G Ralph; Torres, Antoni; Wilcox, Mark H

    2018-04-01

    Iclaprim is a diaminopyrimidine, which inhibits bacterial dihydrofolate reductase, and it is highly active against Gram-positive pathogens including emerging drug-resistant pathogens. In vitro activity of iclaprim and comparators against 2814 Gram-positive clinical isolates from the United States, Asia Pacific, Latin American and Europe collected between 2012 and 2014 were tested. Susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Minimum inhibitory concentration (MIC) interpretations were based on CLSI and European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. MIC 50 /MIC 90 for all S. aureus, methicillin susceptible S. aureus, methicillin resistant S. aureus, beta-hemolytic streptococci, and Streptococcus pneumoniae were 0.06/0.12, 0.06/0.12, 0.06/0.5, 0.06/0.25, and 0.06/2μg/mL, respectively. Iclaprim was 8 to 32-fold more potent than trimethoprim, the only FDA approved dihydrofolate reductase inhibitor, against all Gram-positive isolates including resistant phenotypes. The MIC 90 of iclaprim was also lower than most of the comparators including linezolid and vancomycin against Gram-positive pathogens. Iclaprim demonstrated potent activity against a contemporary collection (2012-2014) of Gram-positive clinical isolates from the United States, Asia Pacific, Latin America and Europe. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Clinical evaluation of the Vitek ANI card for identification of anaerobic bacteria.

    PubMed Central

    Schreckenberger, P C; Celig, D M; Janda, W M

    1988-01-01

    An evaluation of the Vitek Anaerobe Identification (ANI) card was performed with 341 bacterial isolates, including 313 clinical isolates and 28 stock strains of anaerobic microorganisms. Identifications obtained with the ANI card were compared with those determined by conventional methods. The card identified 73.2% of 149 anaerobic gram-negative bacilli, 63.6% of 44 Clostridium spp., 65.8% of 38 anaerobic nonsporeforming gram-positive bacilli, and 69.1% of 110 anaerobic cocci, with no further testing required. When genus-level identifications were included, 83.9% of the anaerobic gram-negative bacilli, 70.5% of Clostridium spp., 73.7% of the anaerobic nonsporeforming gram-positive bacilli, and 73.6% of the anaerobic cocci were identified. Nineteen isolates (5.6%) produced identifications of good confidence but marginal separation or questionable biotype, in which the correct identification was listed with one or two other possible choices and extra tests were required and suggested. A total of 28 (8.2%) were not identified and 29 isolates (8.5%) were misidentified by the ANI card. Among the commonly isolated clinically significant anaerobes, the ANI card identified 100% of 55 Bacteroides fragilis and 100% of 8 Clostridium perfringens. Use of supplemental tests and expansion of the data base to include additional strains of organisms that are difficult to separate even with conventional methods may improve the accuracy of the ANI card as a method for identification of anaerobic bacteria in the clinical laboratory. PMID:3343321

  4. Evaluation of the Vitek 2 ANC card for identification of clinical isolates of anaerobic bacteria.

    PubMed

    Lee, E H L; Degener, J E; Welling, G W; Veloo, A C M

    2011-05-01

    An evaluation of the Vitek 2 ANC card (bioMérieux, Marcy l'Etoile, France) was performed with 301 anaerobic isolates. Each strain was identified by 16S rRNA gene sequencing, which is considered to be the reference method. The Vitek 2 ANC card correctly identified 239 (79.4%) of the 301 clinical isolates to the genus level, including 100 species that were not represented in the database. Correct species identification was obtained for 60.1% (181/301) of the clinical isolates. For the isolates not identified to the species level, a correct genus identification was obtained for 47.0% of them (47/100), and 16 were accurately designated not identified. Although the Vitek 2 ANC card allows the rapid and acceptable identification of the most common clinically important anaerobic bacteria within 6 h, improvement is required for the identification of members of the genera Fusobacterium, Prevotella, and Actinomyces and certain Gram-positive anaerobic cocci (GPAC).

  5. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  6. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--I. Gram-positive bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2002-02-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, and carbapenems. Changes in the bacterial sensitivity for CZOP were also evaluated with the resistance ratio calculated with breakpoint MIC. Sixteen species (1,913 strains) of Gram-positive bacteria were isolated from the clinical materials annually collected from 1996 to 2000, and consisted of methicillin-susceptible Staphylococcus aureus (MSSA; n = 178), methicillin-resistant S. aureus (MRSA; n = 199), methicillin-susceptible Staphylococcus epidermidis (MSSE; n = 98), methicillin-resistant S. epidermidis (MRSE; n = 164), Staphylococcus haemolyticus (n = 72), Staphylococcus saprophyticus (n = 28), Enterococcus faecalis (n = 206), Enterococcus faecium (n = 91), Enterococcus avium (n = 72), Streptococcus pyogenes (n = 133), Streptococcus agalactiae (n = 138), penicillin-susceptible Streptococcus pneumoniae (PSSP; n = 133), penicillin-intermediate resistant S. pneumoniae (PISP; n = 100), penicillin-resistant S. pneumoniae (PRSP; n = 29), Streptococcus milleri group (n = 135) and Peptostreptococcus spp. (n = 137). CZOP possessed comparable antibacterial activities against MSSA and MSSE to other cephems, and was also effective on MRSE but not on MRSA. An antibacterial activity of CZOP against S. saprophyticus was comparable to or higher than other cephems. CZOP, however, did not indicate an antibacterial activity against S. haemolyticus, just like other cephems. An antibacterial activity of CZOP against E. faecalis was comparable to cefpirome (CPR) and higher than other cephems. No antibacterial activity of CZOP against E. faecium and E. avium was observed, just like other drugs. An antibacterial activity of CZOP against S. pyogenes was as potent as that of cefotiam (CTM), cefepime (CFPM) and CPR, and that against S. agalactiae was

  7. Bacteremia Caused by Kocuria kristinae from Egypt: Are There More? A Case Report and Review of the Literature.

    PubMed

    Hassan, Reem M; Bassiouny, Dina M; Matar, Yomna

    2016-01-01

    Kocuria kristinae is opportunistic Gram-positive cocci from the family Micrococcaceae. It is usually considered part of the normal flora that rarely is isolated from clinical specimens. Here, we report a case of Kocuria kristinae bacteremia; to the best of our knowledge, this is the first report from Egypt.

  8. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    EPA Science Inventory

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  9. In vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive organisms: tigecycline Evaluation and Surveillance Trial 2004 to 2007.

    PubMed

    Garrison, Mark W; Mutters, Reinier; Dowzicky, Michael J

    2009-11-01

    The Tigecycline Evaluation and Surveillance Trial began in 2004 to monitor the in vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive pathogens. Against Gram negatives (n = 63 699), tigecycline MIC(90)'s ranged from 0.25 to 2 mg/L for Escherichia coli, Haemophilus influenzae, Acinetobacter baumannii, Klebsiella oxytoca, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens (but was > or =32 for Pseudomonas aeruginosa). Against Gram-positive organisms (n = 32 218), tigecycline MIC(90)'s were between 0.06 and 0.25 mg/L for Streptococcus pneumoniae, Enterococcus faecium, Streptococcus agalactiae, Staphylococcus aureus, and Enterococcus faecalis. The in vitro activity of tigecycline was maintained against resistant phenotypes, including multidrug-resistant A. baumannii (9.2% of isolates), extended-spectrum beta-lactamase-producing E. coli (7.0%) and K. pneumoniae (14.0%), beta-lactamase-producing H. influenzae (22.2%), methicillin-resistant S. aureus (44.5%), vancomycin-resistant E. faecium (45.9%) and E. faecalis (2.8%), and penicillin-resistant S. pneumoniae (13.8%). Tigecycline represents a welcome addition to the armamentarium against difficult to treat organisms.

  10. Gram-positive and gram-negative bacteria induce different patterns of cytokine production in human mononuclear cells irrespective of taxonomic relatedness.

    PubMed

    Skovbjerg, Susann; Martner, Anna; Hynsjö, Lars; Hessle, Christina; Olsen, Ingar; Dewhirst, Floyd E; Tham, Wilhelm; Wold, Agnes E

    2010-01-01

    Upon bacterial stimulation, tissue macrophages produce a variety of cytokines that orchestrate the immune response that clears the infection. We have shown that Gram-positives induce higher levels of interleukin-12 (IL-12), interferon-gamma (IFN-gamma), and tumor necrosis factor (TNF) from human peripheral blood mononuclear cells (PBMCs) than do Gram-negatives, which instead induce more of IL-6, IL-8, and IL-10. Here, we study whether these patterns follows or crosses taxonomic borders. PBMCs from blood donors were incubated with UV-inactivated bacteria representing 37 species from five phyla. IL-12, TNF, IL-1beta, IL-6, IL-8, and IL-10 were measured in the supernatants after 24 h and IFN-gamma after 5 days. Irrespective of phylogenetic position, Gram-positive bacteria induced much more IL-12 (nine times more on average) and IFN-gamma (seven times), more TNF (three times), and slightly more IL-1beta (1.5 times) than did Gram-negatives, which instead induced more IL-6 (1.5 times), IL-8 (1.9 times), and IL-10 (3.3 times) than did Gram-positives. A notable exception was the Gram-positive Listeria monocytogenes, which induced very little IL-12, IFN-gamma, and TNF. The results confirm the fundamental difference in innate immune responses to Gram-positive and Gram-negative bacteria, which crosses taxonomic borders and probably reflects differences in cell wall structure.

  11. In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate.

    PubMed

    Mengistu, Y; Erge, W; Bellete, B

    1999-05-01

    To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Prospective laboratory study. Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Clinical specimens from 443 hospital patients. Significant number of gram negative bacteria were not inhibited by chlorhexidine gluconate (0.02-0.05%) used for antisepsis. Four hundred and forty three strains of gram-negative bacteria were isolated from Tikur Anbessa Hospital patients. Escherichia coli (31.6%) and Klebsiella pneumoniae (23%) were the most frequently isolated bacteria followed by Proteus species (13.3%), Pseudomonas species (9.2%), and Citrobacter species (6.1%). Each organism was tested to chlorhexidine gluconate (CHG), minimum inhibitory concentration (MIC) ranging from 0.0001% to 1%w/v. All Salmonella species and E. coli were inhibited by CHG, MIC < or = 0.01%. Twenty nine per cent of Acinetobacter, 28% of K. pneumoniae and Enterobacter species and 19-25% of Pseudomonas, Proteus and Providencia species were only inhibited at high concentrations of CHG (> or = 0.1%). Our results showed that a significant number of the gram-negative bacterial isolates were not inhibited by CHG at the concentration used for disinfection of wounds or instruments (MIC 0.02-0.05% w/v). It is therefore important to select appropriate concentration of this disinfectant and rationally use it for disinfection and hospital hygiene. Continuing follow up and surveillance is also needed to detect resistant bacteria to chlorhexidine or other disinfectants in time.

  12. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens

    PubMed Central

    Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510

  13. Isolation and Characterization of Gram-Positive Biosurfactant-Producing Halothermophilic Bacilli From Iranian Petroleum Reservoirs

    PubMed Central

    Zargari, Saeed; Ramezani, Amin; Ostvar, Sassan; Rezaei, Rasool; Niazi, Ali; Ayatollahi, Shahab

    2014-01-01

    Background: Petroleum reservoirs have long been known as the hosts of extremophilic microorganisms. Some of these microorganisms are known for their potential biotechnological applications, particularly production of extra and intracellular polymers and enzymes. Objectives: Here, 14 petroleum liquid samples from southern Iranian oil reservoirs were screened for presence of biosurfactant‐producing halothermophiles. Materials and Methods: Mixture of the reservoir fluid samples with a minimal growth medium was incubated under an N2 atmosphere in 40°C; 0.5 mL samples were transferred from the aqueous phase to agar plates after 72 hours of incubation; 100 mL cell cultures were prepared using the MSS-1 (mineral salt solution 1) liquid medium with 5% (w/v) NaCl. The time-course samples were analyzed by recording the absorbance at 600 nm using a spectrophotometer. Incubation was carried out in 40°C with mild shaking in aerobic conditions. Thermotolerance was evaluated by growing the isolates at 40, 50, 60 and 70°C with varying NaCl concentrations of 5% and 10% (w/v). Halotolerance was evaluated using NaCl concentrations of 5%, 10%, 12.5% and 15% (w/v) and incubating them at 40°C under aerobic and anaerobic conditions. Different phenotypic characteristics were evaluated, as outlined in Bergey's manual of determinative bacteriology. Comparing 16S rDNA sequences is one of the most powerful tools for classification of microorganisms. Results: Among 34 isolates, 10 demonstrated biosurfactant production and growth at temperatures between 40°C and 70°C in saline media containing 5%‐15% w/v NaCl. Using partial 16S rDNA sequencing (and amplified ribosomal DNA restriction analysis [ARDRA]) and biochemical tests (API tests 20E and 50 CHB), all the 10 isolates proved to be facultative anaerobic, Gram-positive moderate thermohalophiles of the genus Bacillus (B. thermoglucosidasius, B. thermodenitrificans, B. thermoleovorans, B. stearothermophilus and B. licheniformis

  14. Quinolone-based antibacterial chemoprophylaxis in neutropenic patients: effect of augmented gram-positive activity on infectious morbidity. National Cancer Institute of Canada Clinical Trials Group.

    PubMed

    Bow, E J; Mandell, L A; Louie, T J; Feld, R; Palmer, M; Zee, B; Pater, J

    1996-08-01

    To determine whether augmented quinolone-based antibacterial prophylaxis in neutropenic patients with cancer reduces infections caused by gram-positive cocci and preserves the protective effect against aerobic gram-negative bacilli. Open, randomized, controlled, multicenter clinical trial. Centers participating in the National Cancer Institute of Canada Clinical Trials Group. 111 eligible and evaluable patients hospitalized for severe neutropenia (neutrophil count < 0.5 x 10(9)/L lasting at least 14 days) who were receiving cytotoxic therapy for acute leukemia or bone marrow autografting. One of three oral antibacterial prophylactic regimens (norfloxacin, 400 mg every 12 hours; ofloxacin, 400 mg every 12 hours; or ofloxacin, 400 mg, plus rifampin, 300 mg every 12 hours) beginning with cytotoxic therapy. Incidence and cause of suspected or proven infection. Microbiologically documented overall infection rates for norfloxacin, ofloxacin, and ofloxacin plus rifampin were 47%, 24%, and 9%, respectively (P < 0.001). Corresponding rates were 24%, 13%, and 3%, respectively for staphylococcal bacteremia (P = 0.03) and, 21%, 3%, and 3%, respectively for streptococcal bacteremia (P < 0.01). The pattern of bacteremia suggested that rifampin played a role in suppressing staphylococcal infection. Both ofloxacin alone and ofloxacin plus rifampin had a clinically significant antistreptococcal effect. Aerobic gram-negative rods were cleared from rectal surveillance cultures in all patients after a median of 5.5 days and caused infection in only one patient (0.9%). The reductions in the number of microbiologically documented infections among ofloxacin recipients and ofloxacin plus rifampin recipients were offset by concomitant increases in the number of unexplained fevers (24% of norfloxacin recipients, 53% of ofloxacin recipients, and 49% of ofloxacin plus rifampin recipients; P = 0.02). No statistically significant difference was found among the treatment arms with respect to the

  15. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    PubMed

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  16. Bacteremia Caused by Kocuria kristinae from Egypt: Are There More? A Case Report and Review of the Literature

    PubMed Central

    Bassiouny, Dina M.; Matar, Yomna

    2016-01-01

    Kocuria kristinae is opportunistic Gram-positive cocci from the family Micrococcaceae. It is usually considered part of the normal flora that rarely is isolated from clinical specimens. Here, we report a case of Kocuria kristinae bacteremia; to the best of our knowledge, this is the first report from Egypt. PMID:27872773

  17. Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane.

    PubMed

    Qiao, Yuan; Yang, Chuan; Coady, Daniel J; Ong, Zhan Yuin; Hedrick, James L; Yang, Yi-Yan

    2012-02-01

    The development of biodegradable antimicrobial polymers adds to the toolbox of attractive antimicrobial agents against antibiotic-resistant microbes. To this end, the potential of polycarbonate polymers as such materials were explored. A series of random polycarbonate polymers consisting of monomers MTC-OEt and MTC-CH(2)CH(3)Cl were designed and synthesized using metal-free organocatalytic ring-opening polymerization. Random polycarbonate polymers self-assembled in solution but appeared highly dynamic; such behaviors are desirable as ready disassembly of polymers at the microbial membrane facilitates membrane disruption. Their activities against clinically relevant Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (E.coli and Pseudomonas aeruginosa) revealed that the hydrophobic-hydrophilic composition balance in polymers are important to render antimicrobial potency. Scanning electron microscopy (SEM) studies indicated microbial cell surface damage after treatment with polymers, and confocal microscopy studies also showed entry of FITC-dextran dye in Escherichia coli as a result of membrane disruption. On the other hand, the polymers exhibited minimal toxicity against red blood cells in hemolysis tests. Therefore, these random polycarbonate polymers are promising antimicrobial agents against both Gram-positive and Gram-negative bacteria for various biomedical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria

    NASA Astrophysics Data System (ADS)

    Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.

    2017-10-01

    We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus ( Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus. [Figure not available: see fulltext.

  19. Class D β-lactamases do exist in Gram-positive bacteria

    PubMed Central

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde; Vakulenko, Sergei

    2015-01-01

    Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes. PMID:26551395

  20. Polymers for binding of the gram-positive oral pathogen Streptococcus mutans

    PubMed Central

    Magennis, Eugene P.; Francini, Nora; Mastrotto, Francesca; Catania, Rosa; Redhead, Martin; Fernandez-Trillo, Francisco; Bradshaw, David; Churchley, David; Winzer, Klaus; Alexander, Cameron

    2017-01-01

    Streptococcus mutans is the most significant pathogenic bacterium implicated in the formation of dental caries and, both directly and indirectly, has been associated with severe conditions such as multiple sclerosis, cerebrovascular and peripheral artery disease. Polymers able to selectively bind S. mutans and/or inhibit its adhesion to oral tissue in a non-lethal manner would offer possibilities for addressing pathogenicity without selecting for populations resistant against bactericidal agents. In the present work two libraries of 2-(dimethylamino)ethyl methacrylate (pDMAEMA)-based polymers were synthesized with various proportions of either N,N,N-trimethylethanaminium cationic- or sulfobetaine zwitterionic groups. These copolymers where initially tested as potential macromolecular ligands for S. mutans NCTC 10449, whilst Escherichia coli MG1655 was used as Gram-negative control bacteria. pDMAEMA-derived materials with high proportions of zwitterionic repeating units were found to be selective for S. mutans, in both isolated and S. mutans–E. coli mixed bacterial cultures. Fully sulfobetainized pDMAEMA was subsequently found to bind/cluster preferentially Gram-positive S. mutans and S. aureus compared to Gram negative E. coli and V. harveyi. A key initial stage of S. mutans pathogenesis involves a lectin-mediated adhesion to the tooth surface, thus the range of potential macromolecular ligands was further expanded by investigating two glycopolymers bearing α-mannopyranoside and β-galactopyranoside pendant units. Results with these polymers indicated that preferential binding to either S. mutans or E. coli can be obtained by modulating the glycosylation pattern of the chosen multivalent ligands without incurring unacceptable cytotoxicity in a model gastrointestinal cell line. Overall, our results allowed to identify a structure–property relationship for the potential antimicrobial polymers investigated, and suggest that preferential binding to Gram-positive S

  1. Multistep Resistance Development Studies of Ceftaroline in Gram-Positive and -Negative Bacteria▿

    PubMed Central

    Clark, Catherine; McGhee, Pamela; Appelbaum, Peter C.; Kosowska-Shick, Klaudia

    2011-01-01

    Ceftaroline, the active component of the prodrug ceftaroline fosamil, is a novel broad-spectrum cephalosporin with bactericidal activity against Gram-positive and -negative isolates. This study evaluated the potential for ceftaroline and comparator antibiotics to select for clones of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis with elevated MICs. S. pneumoniae and S. pyogenes isolates in the present study were highly susceptible to ceftaroline (MIC range, 0.004 to 0.25 μg/ml). No streptococcal strains yielded ceftaroline clones with increased MICs (defined as an increase in MIC of >4-fold) after 50 daily passages. Ceftaroline MICs for H. influenzae and M. catarrhalis were 0.06 to 2 μg/ml for four strains and 8 μg/ml for a β-lactamase-positive, efflux-positive H. influenzae with a mutation in L22. One H. influenzae clone with an increased ceftaroline MIC (quinolone-resistant, β-lactamase-positive) was recovered after 20 days. The ceftaroline MIC for this isolate increased 16-fold, from 0.06 to 1 μg/ml. MICs for S. aureus ranged from 0.25 to 1 μg/ml. No S. aureus isolates tested with ceftaroline had clones with increased MIC (>4-fold) after 50 passages. Two E. faecalis isolates tested had ceftaroline MICs increased from 1 to 8 μg/ml after 38 days and from 4 to 32 μg/ml after 41 days, respectively. The parental ceftaroline MIC for the one K. pneumoniae extended-spectrum β-lactamase-negative isolate tested was 0.5 μg/ml and did not change after 50 daily passages. PMID:21343467

  2. Rapid Discrimination of Gram-Positive and Gram-Negative Bacteria in Liquid Samples by Using NaOH-Sodium Dodecyl Sulfate Solution and Flow Cytometry

    PubMed Central

    Wada, Atsushi; Kono, Mari; Kawauchi, Sawako; Takagi, Yuri; Morikawa, Takashi; Funakoshi, Kunihiro

    2012-01-01

    Background For precise diagnosis of urinary tract infections (UTI), and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. Methodology/Principal Findings We employed the NaOH-sodium dodecyl sulfate (SDS) solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation) for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. Conclusions/Significance Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history of UTIs. The method

  3. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  4. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  5. Synthesis and structure-activity relationship of novel bisindole amidines active against MDR Gram-positive and Gram-negative bacteria.

    PubMed

    Liu, Yonghua; Hu, Xinxin; Wu, Yanbin; Zhang, Weixing; Chen, Xiaofang; You, Xuefu; Hu, Laixing

    2018-04-25

    A series of novel diamidines with N-substituents on an amidine N-atom were synthesized and evaluated for their cytotoxicity and in vitro antibacterial activity against a range of Gram-positive and Gram-negative bacterial strains. Based on structure-activity relationship, N-substituents with a branched chain and a shorter carbon chain on the amidine N-atom exhibited more promising activity against Gram-negative and MDR-Gram-positive bacteria; compounds 5c and 5i were the most powerful candidate compounds. Compound 5c showed greater efficacy than levofloxacin against most drug-resistant Gram-positive bacteria and exhibited broad-spectrum antibacterial activity against Gram-negative bacteria, with MIC values in the range of 2-16 μg/mL. Slightly more potent antibacterial activity against Klebsiella pneumoniae, Acinetobacter calcoaceticus, Enterobacter cloacae, and Proteus mirabilis was observed for 5i in comparison with 5c. Compound 5i also showed remarkable antibacterial activity against NDM-1-producing Gram-negative bacteria, with MIC values in the range of 2-4 μg/mL, and was superior to the reference drugs meropenem and levofloxacin. Effective antibacterial activity of 5i was also shown in vivo in a mouse model of Staphylococcus aureus MRSA strain, with an ED 50 values of 2.62 mg/kg. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Antibacterial Activity of Silver-Graphene Quantum Dots Nanocomposites Against Gram-Positive and Gram-Negative Bacteria

    NASA Technical Reports Server (NTRS)

    Makarov, Vladimir (Inventor); Habiba, Khaled (Inventor); Weiner, Brad R (Inventor); Morell, Gerardo (Inventor)

    2018-01-01

    The invention provides a composite of silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) using pulsed laser synthesis. The nanocomposites were functionalized with polyethylene glycol (PEG). A concentration of 150 .mu.g/mL of Ag-GQDs, a non-toxic level for human cells, exhibits strong antibacterial activity against both Gram-Positive and Gram-Negative Bacteria.

  7. Does negative-pressure wound therapy influence subjacent bacterial growth? A systematic review.

    PubMed

    Glass, Graeme E; Murphy, George R F; Nanchahal, Jagdeep

    2017-08-01

    Negative-pressure wound therapy is a ubiquitous wound management resource. The influence of NPWT on the bacterial bioburden of the subjacent wound remains unclear. We sought to examine the evidence. MEDLINE, Embase, PubMed, the Cochrane Database of Systematic Reviews and the Cochrane Controlled Trials Register were searched for articles quantitatively evaluating bacterial load under NPWT. Twenty-four studies met the inclusion criteria including 4 randomised controlled trials, 8 clinical series and 12 experimental studies. Twenty studies evaluated conventional NPWT, while 4 evaluated infiltration-based NPWT. While 8 studies using conventional NPWT failed to demonstrate an observable effect on bacterial load, 7 studies reported that NPWT was inherently bacteriostatic and 5 others reported species selectivity with suppression of non-fermentative gram-negative bacilli (NFGNB), including Pseudomonas spp. Simultaneously, there was some evidence of enhanced proliferation of gram-positive cocci where the niche was cleared of NFGNB. Two of the 4 studies using infiltration-based NPWT also reported selectively impaired proliferation of Pseudomonas spp. The assumption that NPWT suppresses bacterial proliferation is oversimplified. There is evidence that NPWT exhibits species selectivity, suppressing the proliferation of NFGNB. However, this may depopulate the niche for exploitation by gram-positive cocci. This, in turn, has implications for the use of NPWT where highly virulent strains of gram-positive cocci have been isolated and the duration of NPWT therapy and frequency of dressing changes. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  9. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  10. Forthcoming therapeutic perspectives for infections due to multidrug-resistant Gram-positive pathogens.

    PubMed

    Cornaglia, G; Rossolini, G M

    2009-03-01

    Multidrug resistance in Gram-positive pathogens emerged as a major therapeutic challenge over two decades ago. The worldwide spread of methicillin-resistant Staphylococcus aureus (MRSA), glycopeptide-resistant enterococci and other resistant Gram-positive pathogens had a major impact on antibiotic policies, and prompted the discovery and development of new antibiotics to combat difficult-to-treat infections caused by such pathogens. Several new antibiotics active against multidrug-resistant Gram-positive pathogens have recently been introduced into clinical practice, and the antibiotic pipeline contains additional anti-Gram-positive drugs at an advanced stage of development, including new glycopeptides (dalbavancin, oritavancin, and telavancin), new anti-MRSA beta-lactams (ceftobiprole), and new diaminopyrimidines (iclaprim). This article provides a brief overview of these upcoming agents, partially based on the material presented at the ESCMID Conference entitled 'Fighting infections due to multidrug-resistant Gram-positives' (Venice, Italy, 29-31 May 2008) and on the most recent literature.

  11. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    PubMed

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  12. RNases and Helicases in Gram-Positive Bacteria.

    PubMed

    Durand, Sylvain; Condon, Ciaran

    2018-04-01

    RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis , the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis , the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.

  13. Class D β-lactamases do exist in Gram-positive bacteria

    DOE PAGES

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; ...

    2015-11-09

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinctmore » structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.« less

  14. Class D β-lactamases do exist in Gram-positive bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinctmore » structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.« less

  15. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures.

    PubMed

    Kohlmann, Rebekka; Hoffmann, Alexander; Geis, Gabriele; Gatermann, Sören

    2015-01-01

    Rapid identification of the causative microorganism is a key element in appropriate antimicrobial therapy of bloodstream infections. Whereas traditional analysis of positive blood cultures requires subculture over at least 16-24h prior to pathogen identification by, e.g. matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), sample preparation procedures enabling direct MALDI-TOF MS, i.e. without preceding subculture, are associated with additional effort and costs. Hence, we integrated an alternative MALDI-TOF MS approach in diagnostic routine using a short incubation on a solid medium. Positive blood cultures were routinely plated on chocolate agar plates and incubated for 4h (37 °C, 5% CO2). Subsequently, MALDI-TOF MS using a Microflex LT instrument (Bruker Daltonics) and direct smear method was performed once per sample. For successful identification of bacteria at species level, score cut-off values were used as proposed by the manufacturer (≥ 2.0) and in a modified form (≥ 1.5 for MALDI-TOF MS results referring to Gram-positive cocci and ≥ 1.7 for MALDI-TOF MS results referring to bacteria other than Gram-positive cocci). Further data analysis also included an assessment of the clinical impact of the MALDI-TOF MS result. Applying the modified score cut-off values, our approach led to an overall correct species identification in 69.5% with misidentification in 3.4% (original cut-offs: 49.2% and 1.8%, respectively); for Gram-positive cocci, correct identification in 68.4% (100% for Staphylococcus aureus and enterococci, 80% for beta-hemolytic streptococci), for Gram-negative bacteria, correct identification in 97.6%. In polymicrobial blood cultures, in 72.7% one of the pathogens was correctly identified. Results were not reliable for Gram-positive rods and yeasts. The approach was easy to implement in diagnostic routine. In cases with available clinical data and successful pathogen identification, in 51.1% our

  16. Isolation, characterization, and biological properties of an endotoxin-like material from the gram-positive organism Listeria monocytogenes.

    PubMed

    Wexler, H; Oppenheim, J D

    1979-03-01

    The bacterial component responsible for the induction of transient cold agglutinin syndrome in rabbits after intravenous injection of heat-killed Listeria monocytogenes type 4B has been purified and biologically and chemically characterized. A purified immunoglobulin M cold agglutinin was prepared from high-titer sera resulting from the immunization of rabbits with heat-killed L. monocytogenes type 4B and was subsequently used to monitor the purification of the bacterial component responsible for its induction. The bacterial component was isolated from a hot phenol-water extract of lyophilized L. monocytogenes type 4B by multiple molecular sieve chromatography. Upon chemical analysis the purified material was found to be strikingly similar in chemical composition to gram-negative lipopolysaccharide endotoxins. The material contained 15% total fatty acid (of which 50% was beta-hydroxymyristic acid), 40 to 45% neutral sugar (glucose, galactose, and rhamnose), 11.5% amino sugar, 12% uronic acid, 2.5% 2-keto-3-deoxyoctonic acid, 2% heptose, 0.87% phosphorus, and 1.6% amino acid, thereby accounting for 85 to 90% of the weight of the component. Electron micrographs of the purified material were similar to those of lipopolysaccharide preparations from gram-negative organisms. The purified material exist in aqueous solutions as large aggregates, but can be dissociated into a single smaller subunit (3.1S) by dialysis against sodium dodecyl sulfate buffer. The listerial component was toxic and pyrogenic to rabbits, producing symptoms typical of gram-negative endotoxins. Activity in the limulus lysate gelation assay and in the carbocyanine dye assay provides a further link of this material with classical gram-negative endotoxins.

  17. Phoenix 100 versus Vitek 2 in the Identification of Gram-Positive and Gram-Negative Bacteria: a Comprehensive Meta-Analysis▿†

    PubMed Central

    Chatzigeorgiou, Kalliopi-Stavroula; Sergentanis, Theodoros N.; Tsiodras, Sotirios; Hamodrakas, Stavros J.; Bagos, Pantelis G.

    2011-01-01

    Phoenix 100 and Vitek 2 (operating with the current colorimetric cards) are commonly used in hospital laboratories for rapid identification of microorganisms. The present meta-analysis aims to evaluate and compare their performance on Gram-positive and Gram-negative bacteria. The MEDLINE database was searched up to October 2010 for the retrieval of relevant articles. Pooled correct identification rates were derived from random-effects models, using the arcsine transformation. Separate analyses were conducted at the genus and species levels; subanalyses and meta-regression were undertaken to reveal meaningful system- and study-related modifiers. A total of 29 (6,635 isolates) and 19 (4,363 isolates) articles were eligible for Phoenix and colorimetric Vitek 2, respectively. No significant differences were observed between Phoenix and Vitek 2 either at the genus (97.70% versus 97.59%, P = 0.919) or the species (92.51% versus 88.77%, P = 0.149) level. Studies conducted with conventional comparator methods tended to report significantly better results compared to those using molecular reference techniques. Speciation of Staphylococcus aureus was significantly more accurate in comparison to coagulase-negative staphylococci by both Phoenix (99.78% versus 88.42%, P < 0.00001) and Vitek 2 (98.22% versus 91.89%, P = 0.043). Vitek 2 also reached higher correct identification rates for Gram-negative fermenters versus nonfermenters at the genus (99.60% versus 95.90%, P = 0.004) and the species (97.42% versus 84.85%, P = 0.003) level. In conclusion, the accuracy of both systems seems modified by underlying sample- and comparator method-related parameters. Future simultaneous assessment of the instruments against molecular comparator procedures may facilitate interpretation of the current observations. PMID:21752980

  18. Mortality following blood culture in premature infants: increased with Gram-negative bacteremia and candidemia, but not Gram-positive bacteremia.

    PubMed

    Benjamin, Daniel K; DeLong, Elizabeth; Cotten, Charles M; Garges, Harmony P; Steinbach, William J; Clark, Reese H

    2004-03-01

    To describe survival following nosocomial bloodstream infections and quantify excess mortality associated with positive blood culture. Multicenter cohort study of premature infants. First blood culture was negative for 4648/5497 (78%) of the neonates--390/4648 (8%) died prior to discharge. Mortality prior to discharge was 19% in the 161 infants with Gram-negative rod (GNR) bacteremia, 8% in the 854 neonates with coagulase negative staphylococcus (CONS), 6% in the 169 infants infected with other Gram-positive bacteria (GP-o), and 26% in the 115 neonates with candidemia. The excess 7-day mortality was 0% for Gram-positive organisms and 83% for GNR bacteremia and candidemia. Using negative blood culture as referent, GNR [hazard ratio (HR)=2.61] and candidemia (HR=2.27) were associated with increased mortality; CONS (HR=1.08) and GP-o (HR=0.97) were not. Nosocomial GNR bacteremia and candidemia were associated with increased mortality but Gram-positive bacteremia was not.

  19. [New antimicrobials against Gram-positive organisms].

    PubMed

    Montejo, M

    2008-01-01

    Glycopeptides have been the antimicrobials most commonly used for infections by Gram-positive organisms and methicillin resistant S. aureus (MRSA). In recent years, however, glycopeptide resistance and tolerance have become a serious problem. Thus, enterococci highly resistant to vancomycin, vancomycin-intermediate/ resistant S. aureus (VISA), and vancomycin tolerance in S. aureus are found, and increased therapeutic failure and mortality are clinically reported with vancomycin MIC for S. aureus > or = 1.5-2 microg/mL. When faced with these organisms, we therefore need potent bactericidal antimicrobials that may be empirically administered, effective against susceptible and resistant pathogens, easily dosed, with few adverse effects and no significant interaction with other drugs, and that can be administered in an outpatient setting. In bacteremia by methicillin-susceptible S. aureus, use of vancomycin is associated to a greater failure and mortality rate as compared to semisynthetic penicillins. New treatment options for MRSA infections include daptomycin, linezolid, tygecycline, and quinupristin/dalfopristin. New anti-MRSA drugs are also under development, including glycopeptides (dalbavancin, telavancin, and oritavancin), ceftobiprole, and iclaprim. This paper reviews the new antimicrobials against Gram-positive organisms.

  20. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria.

    PubMed

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R

    2012-08-01

    Antimicrobial photodynamic therapy (APDT) employs a non-toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ((1) O(2), produced via Type II mechanism) and hydroxyl radical (HO(.), produced via Type I mechanism). This study examined the relative contributions of (1) O(2) and HO(.) to APDT killing of Gram-positive and Gram-negative bacteria. Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO(.) and (1) O(2) produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI-ce6). Dimethylthiourea is a HO(.) scavenger, while sodium azide (NaN(3)) is a quencher of (1) O(2). Both APDT and killing by Fenton reaction (chemical generation of HO(.)) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Conjugate PEI-ce6 mainly produced (1) O(2) (quenched by NaN(3)), while BB6 produced HO(.) in addition to (1) O(2) when NaN(3) potentiated probe activation. NaN(3) also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN(3) potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN(3) dose-dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN(3) almost failed to inhibit killing of Gram-positive bacteria. Azidyl radicals may be formed from NaN(3) and HO(.). It may be that Gram-negative bacteria are more susceptible to HO(.) while Gram-positive bacteria are more susceptible to (1) O(2). The differences in Na

  1. Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.

  2. Wide Distribution of Virulence Genes among Enterococcus faecium and Enterococcus faecalis Clinical Isolates

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species. PMID:25147855

  3. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria.

    PubMed

    Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M

    2016-06-01

    Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated Microarray-Based Nucleic Acid Test

    PubMed Central

    Buchan, Blake W.; Ginocchio, Christine C.; Manii, Ryhana; Cavagnolo, Robert; Pancholi, Preeti; Swyers, Lettie; Thomson, Richard B.; Anderson, Christopher; Kaul, Karen; Ledeboer, Nathan A.

    2013-01-01

    Background A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria. Methods and Findings 1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus. Conclusions The BC-GP test is a multiplex test capable of detecting most

  5. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces.

    PubMed

    Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J

    2017-10-01

    In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.

  6. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    PubMed

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  7. [Multidrug resistance E-ESKAPE strains isolated from blood cultures in patients with cancer].

    PubMed

    Velázquez-Acosta, Consuelo; Cornejo-Juárez, Patricia; Volkow-Fernández, Patricia

    2018-01-01

    To describe the trend of multidrug resistant (MDR) strains isolated from blood in patients with cancer from 2005 to 2015. 33 127 blood cultures were processed by retrospective analysis. Identification and antimicrobial sensitivity were performed through automated methods: WaLK away (Siemens Labora- tory Diagnostics) and BD Phoenix (Becton, Dickinson and Company). Resistant strains were determined according to the minimum inhibitory concentration, following the parameters of the Clinical and Laboratory Standards Institute (CLSI). Of 6 397 isolates, 5 604 (16.9%) were positive; 3 732 (58.4%) Gram- bacilli; 2 355 (36.9%) Gram+ cocci; 179 (2.7%) yeasts, and 126 (1.9%) Gram+ bacilli. Escherichia coli (n=1 591, 24.5%) was the most frequent bacteria, with 652 (41%) strains being extended-spectrum beta-lactamases producers (ESBL); of Enterococcus faecium (n=143, 2.1%), 45 (31.5%) were vancomycin resistant; of Staphylococcus aureus (n=571, 8.7%), 121 (21.2%) methicillin resistant (MRSA); of Klebsiella pneumoniae (n=367, 5.6%), 41 (11.2%) ESBL; of Acinetobacter baumanii (n=96, 1.4%), 23 (24%) MDR, and of Pseudomonas aeruginosa (n=384, 5.6%), 43 (11.2%) MDR. MDR strains were significantly more frequent in patients with hematological malignancies, compared to those with solid tumors: MRSA (OR=4.48, 95%CI 2.9-6.8), ESBL E. coli(OR=1.3, 95%CI 1.10-1.65) and MDR Acinetobacter baumanii (OR=3.2, 95%CI 1.2-8.3). We observed significantly higher isolations of E-ESPAKE MDR strains in patients with hematological malignancies.

  8. Rapid identification of pneumococci, enterococci, beta-haemolytic streptococci and S. aureus from positive blood cultures enabling early reports.

    PubMed

    Larsson, Marie C; Karlsson, Ewa; Woksepp, Hanna; Frölander, Kerstin; Mårtensson, Agneta; Rashed, Foad; Annika, Wistedt; Schön, Thomas; Serrander, Lena

    2014-03-19

    The aim of this study was to evaluate diagnostic tests in order to introduce a diagnostic strategy to identify the most common gram-positive bacteria (pneumococci, enterococci, β-haemolytic streptococci and S. aureus) found in blood cultures within 6 hours after signalling growth. The tube coagulase test was optimized and several latex agglutination tests were compared and evaluated before a validation period of 11 months was performed on consecutive positive blood culture patient samples from Kalmar County Hospital, Sweden. During the validation period 150 (91%) of a total of 166 gram-positive cocci (119 in clusters, 45 in chains or pairs and 2 undefined morphology) were correctly identified as S. aureus, CoNS, Pneumococci, Enterococci or group A streptococci (GAS), group B streptococci (GBS), group G streptococci (GGS) within 6 hours with a minimal increase in work-load and costs. The remaining samples (9%) were correctly identified during the next day. No samples were incorrectly grouped with this diagnostic strategy and no patient came to risk by early reporting. A simple strategy gives reliable and cost-effective reporting of >90% of the most common gram-positive cocci within 6 hours after a blood cultures become positive. The high specificity of the tests used makes preliminary reports reliable. The reports can be used to indicate the focus of infection and not the least, support faster administration of proper antimicrobial treatment for patients with serious bacterial infections.

  9. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on Gram-negative and Gram-positive bacteria

    PubMed Central

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R.

    2012-01-01

    Background and Objectives Antimicrobial photodynamic therapy (APDT) employs a nontoxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen (1O2, produced via Type II mechanism) and hydroxyl radical (HO•, produced via Type I mechanism). This study examined the relative contributions of 1O2 and HO• to APDT killing of Gram-positive and Gram-negative bacteria. Study Design/Materials and Methods Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO• and 1O2 produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI–ce6). Dimethylthiourea is a HO• scavenger, while sodium azide (NaN3) is a quencher of 1O2. Both APDT and killing by Fenton reaction (chemical generation of HO•) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enteroccoccus fecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa. Results Conjugate PEI-ce6 mainly produced 1O2 (quenched by NaN3), while BB6 produced HO• in addition to 1O2 when NaN3 potentiated probe activation. NaN3 also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN3 potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN3 dose dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN3 almost failed to inhibit killing of Gram-positive bacteria. Conclusion Azidyl radicals may be formed from NaN3 and HO•. It may be that Gram-negative bacteria are more susceptible to HO• while Gram-positive bacteria are more susceptible to

  10. Cystic neutrophilic granulomatous mastitis: an underappreciated pattern strongly associated with gram-positive bacilli.

    PubMed

    Renshaw, Andrew A; Derhagopian, Robert P; Gould, Edwin W

    2011-09-01

    Although granulomatous lobular mastitis is associated with gram-positive bacilli such as Corynebacterium, this association is not well known. We report 3 cases of mastitis caused by gram-positive bacilli. All 3 abscesses were suppurative with distinct enlarged cystic spaces in which rare gram-positive bacilli were identified. Two cases were also granulomatous. Cultures in all 3 cases were negative. All 3 patients recovered after biopsy and tetracycline-based therapy. Infection in the breast by gram-positive bacilli is associated with a distinct histologic pattern, including cystic spaces in the setting of neutrophilic/granulomatous inflammation that can be recognized and should prompt careful search for the organism within enlarged vacuoles.

  11. Antibacterial activity of oregano (Origanum vulgare Linn.) against gram positive bacteria.

    PubMed

    Saeed, Sabahat; Tariq, Perween

    2009-10-01

    The present investigation is focused on antibacterial potential of infusion, decoction and essential oil of oregano (Origanum vulgare) against 111 Gram-positive bacterial isolates belonging to 23 different species related to 3 genera. Infusion and essential oil exhibited antibacterial activity against Staphylococcus saprophyticus, S. aureus, Micrococcus roseus, M. kristinae, M. nishinomiyaensis, M. lylae, M. luteus, M. sedentarius, M. varians, Bacillus megaterium, B. thuringiensis, B. alvei, B. circulans, B. brevis, B. coagulans, B. pumilus, B. laterosporus, B. polymyxa, B. macerans, B. subtilis, B. firmus, B. cereus and B. lichiniformis. The infusion exhibited maximum activity against B. laterosporus (17.5 mm mean zone of inhibition+/-1.5 Standard deviation) followed by B. polymyxa (17.0 mm+/-2.0 SD) and essential oil of oregano exhibited maximum activity against S. saprophyticus (16.8 mm+/-1.8 SD) followed by B. circulans (14.5 mm+/-0.5 SD). While all these tested isolates were found resistant to decoction of oregano.

  12. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge.

    PubMed

    Mandal, Debasis; Kumar Dash, Sandeep; Das, Balaram; Chattopadhyay, Sourav; Ghosh, Totan; Das, Debasis; Roy, Somenath

    2016-10-01

    Recently bio-inspired experimental processes for synthesis of nanoparticles are receiving significant attention in nanobiotechnology. Silver nanoparticles (Ag NPs) have been used very frequently in recent times to the wounds, burns and bacterial infections caused by drug-resistant microorganisms. Though, the antibacterial effects of Ag NPs on some multi drug-resistant bacteria specially against Gram positive bacteria has been established, but further investigation is needed to elicit its effectiveness against Gram negatives and to identify the probable mechanism of action. Thus, the present study was conducted to synthesize Ag NPs using Andrographis paniculata leaf extract and to investigate its antibacterial efficacy. After synthesis process the biosynthesized nanoparticles were purified and characterized with the help of various physical measurement techniques which raveled their purity, stability and small size range. The antimicrobial activity of Ag NPs was determined against both Gram-positive Enterococcus faecalis and Gram-negative Proteus vulgaris. Results showed comparatively higher antibacterial efficacy of Ag NPs against Gram positive Enterococcus faecalis strains. It was found that greater difference in zeta potential values between Gram positive bacteria and Ag NPs triggers better internalization of the particles. Thus the cell surface charge played vital role in cell killing which was confirmed by surface zeta potential study. Finally it may be concluded that green synthesized Ag NPs using Andrographis paniculata leaf extract can be very useful against both multi drug resistant Gram-positive and Gram-negative bacteria. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Comparative in vitro activities of XRP 2868, pristinamycin, quinupristin-dalfopristin, vancomycin, daptomycin, linezolid, clarithromycin, telithromycin, clindamycin, and ampicillin against anaerobic gram-positive species, actinomycetes, and lactobacilli.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T; Bryskier, Andre

    2005-01-01

    A comparative study of the in vitro activities of XRP 2868, a new oral streptogramin, against 266 anaerobic gram-positive clinical isolates using the agar dilution method showed that the XRP 2868 MICs for 95% (254 of 266) of isolates were < or =0.5 microg/ml. XRP 2868 MICs for only two strains, one being Clostridium clostridioforme (MIC, 16 microg/ml) and the other being Clostridium difficile (MIC, 32 microg/ml), were >2 microg/ml. Depending on its pharmacokinetics and pharmacodynamics, XRP 2868 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation.

  14. Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land)

    NASA Technical Reports Server (NTRS)

    Siebert, J.; Hirsch, P.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Approximately 1500 cultures of microorganisms were isolated from rocks and soils of the Ross Desert (McMurdo-Dry Valleys). From these, 15 coccoid strains were chosen for more detailed investigation. They were characterized by morphological, physiological and chemotaxonomical properties. All isolates were Gram-positive, catalase-positive and nonmotile. Six strains showed red pigmentation and could be identified as members of the genera Micrococcus (M. roseus, M. agilis) or Deinococcus. In spite of their coccoid morphology, the remaining nine strains had to be associated with coryneform bacteria (Arthrobacter, Brevibacterium), because of their cell wall composition and G+C ratios. Most of the strains were psychrotrophic, but one strain was even obligately psychrophilic, with a temperature maximum below 20 degrees C. Red cocci had in vitro pH optima above 9.0 although they generally originated from acid samples. Most isolates showed a preference for sugar alcohols and organic acids, compounds which are commonly known to be released by lichens, molds and algae, the other components of the cryptoendolithic ecosystem. These properties indicate that our strains are autochthonous members of the natural Antarctic microbial population.

  15. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillo, Viviana; Abreu, Fernanda; Araujo, Ana C

    2014-01-01

    Although magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats, they are still considered fastidious microorganisms with regard to growth and cultivation with only a relatively low number of axenic cultures available to date. Here, we report the first axenic culture of an MTB isolated in the Southern Hemisphere (Itaipu Lagoon in Rio de Janeiro, Brazil). Cells of this new isolate are coccoid to ovoid in morphology and grow microaerophilically in semi-solid medium containing an oxygen concentration ([O2]) gradient either under chemoorganoheterotrophic or chemolithoautotrophic conditions. Each cell contains a single chain of approximately 10 elongated cuboctahedral magnetite (Fe3O4) magnetosomes. Phylogenetic analysismore » based on the 16S rRNA gene sequence shows that the coccoid MTB isolated in this study represents a new genus in the Alphaproteobacteria; the name Magnetofaba australis strain IT-1 is proposed. Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1. However, organization of the magnetosome genes differs from M. marinus.« less

  16. Incidence of Carbapenem-Resistant Gram Negatives in Italian Transplant Recipients: A Nationwide Surveillance Study

    PubMed Central

    Lanini, Simone; Costa, Alessandro Nanni; Puro, Vincenzo; Procaccio, Francesco; Grossi, Paolo Antonio; Vespasiano, Francesca; Ricci, Andrea; Vesconi, Sergio; Ison, Michael G.; Carmeli, Yehuda; Ippolito, Giuseppe

    2015-01-01

    Background Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients. Methods and Findings Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients’ mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively). Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days). Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%). Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s) positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days) during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not. Conclusion The isolation of gram-negative bacteria is most frequent among recipient with hospital stays

  17. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: a nationwide surveillance study.

    PubMed

    Lanini, Simone; Costa, Alessandro Nanni; Puro, Vincenzo; Procaccio, Francesco; Grossi, Paolo Antonio; Vespasiano, Francesca; Ricci, Andrea; Vesconi, Sergio; Ison, Michael G; Carmeli, Yehuda; Ippolito, Giuseppe

    2015-01-01

    Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients. Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients' mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively). Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days). Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%). Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s) positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days) during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not. The isolation of gram-negative bacteria is most frequent among recipient with hospital stays >48 hours prior to transplant and in those

  18. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  19. The comparison of pyrosequencing molecular Gram stain, culture, and conventional Gram stain for diagnosing orthopaedic infections.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Lieberman, Isador H; Krebs, Viktor; Togawa, Daisuke; Fujishiro, Takaaki; Procop, Gary W

    2006-08-01

    We have developed a combined real-time PCR and pyrosequencing assay that successfully differentiated the vast majority of gram-positive and gram-negative bacteria when bacterial isolates were tested. The purpose of this study was to evaluate this assay on clinical specimens obtained from orthopedic surgeries, and to prospectively compare the results of "molecular Gram stain" with culture and conventional direct Gram stain. Forty-five surgical specimens were obtained from patients who underwent orthopedic surgery procedures. The DNA was extracted and a set of broad-range PCR primers that targeted a part of the 16S rDNA gene was used for pan-bacterial PCR. The amplicons were submitted for pyrosequencing and the resulting molecular Gram stain characteristics were recorded. Culture and direct Gram staining were performed using standard methods for all cases. Surgical specimens were reviewed histologically for all cases that had a discrepancy between culture and molecular results. There was an 86.7% (39/45) agreement between the traditional and molecular methods. In 12/14 (85.7%) culture-proven cases of bacterial infection, molecular Gram stain characteristics were in agreement with the culture results, while the conventional Gram stain result was in agreement only for five cases (35.7%). In the 31 culture negative cases, 27 cases were also PCR negative, whereas 4 were PCR positive. Three of these were characterized as gram negative and one as gram positive by this molecular method. Molecular determination of the Gram stain characteristics of bacteria that cause orthopedic infections may be achieved, in most instances, by this method. Further studies are necessary to understand the clinical importance of PCR-positive/culture-negative results.

  20. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  1. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  2. Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice.

    PubMed

    Lee, Benjamin; Robinson, Keven M; McHugh, Kevin J; Scheller, Erich V; Mandalapu, Sivanarayana; Chen, Chen; Di, Y Peter; Clay, Michelle E; Enelow, Richard I; Dubin, Patricia J; Alcorn, John F

    2015-07-15

    Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection. Copyright © 2015 the American Physiological Society.

  3. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    PubMed Central

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  4. Comparative In Vitro Activities of XRP 2868, Pristinamycin, Quinupristin-Dalfopristin, Vancomycin, Daptomycin, Linezolid, Clarithromycin, Telithromycin, Clindamycin, and Ampicillin against Anaerobic Gram-Positive Species, Actinomycetes, and Lactobacilli

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerin L.; Fernandez, Helen T.; Bryskier, Andre

    2005-01-01

    A comparative study of the in vitro activities of XRP 2868, a new oral streptogramin, against 266 anaerobic gram-positive clinical isolates using the agar dilution method showed that the XRP 2868 MICs for 95% (254 of 266) of isolates were ≤0.5 μg/ml. XRP 2868 MICs for only two strains, one being Clostridium clostridioforme (MIC, 16 μg/ml) and the other being Clostridium difficile (MIC, 32 μg/ml), were >2 μg/ml. Depending on its pharmacokinetics and pharmacodynamics, XRP 2868 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation. PMID:15616322

  5. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system.

    PubMed

    McElvania Tekippe, Erin; Shuey, Sunni; Winkler, David W; Butler, Meghan A; Burnham, Carey-Ann D

    2013-05-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including "heavy" (H) and "light" (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or "score." We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS.

  6. Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System

    PubMed Central

    McElvania TeKippe, Erin; Shuey, Sunni; Winkler, David W.; Butler, Meghan A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including “heavy” (H) and “light” (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or “score.” We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS. PMID:23426925

  7. The First Report of Drug Resistant Bacteria Isolated from the Brown-Banded Cockroach, Supella longipalpa, in Ahvaz, South-western Iran

    PubMed Central

    Vazirianzadeh, Babak; Dehghani, Rouhullah; Mehdinejad, Manijeh; Sharififard, Mona; Nasirabadi, Nersi

    2014-01-01

    Background The brown-banded cockroach, Supella longipalpa is known as a carrier of pathogenic bacteria in urban environments, but its role is not well documented regarding the carriage of antibiotic-resistant pathogenic bacteria in Iran. The aim of this study was to determine the resistance bacteria isolated from the brown-banded cockroach in Ahvaz, south west of Iran. Methods: Totally 39 cockroaches were collected from kitchen area of houses and identified. All specimens were cultured to isolate the bacterial agents on blood agar and MacConky agar media. The microorganisms were identified using necessary differential and biochemical tests. Antimicrobial susceptibility tests were performed for isolated organisms by Kirby-Bauer’s disk diffusion according to NCLI guideline, using 18 antibiotics. Results: From the 39 collected S. langipalpa, 179 bacterial agents were isolated, 92 of alimentary ducts and 87 of external body surfaces. Isolated bacteria from cockroaches were identified as Enterobacter spp., Klebsiella spp., Citrobacter spp., Escherichia coli, Salmonella spp., Proteus spp., coagulase negative staphylococci, Serratia marcescens, Staphylococcus aureus, and Bacillus species. The pattern resistance rates were determined for gram negative bacilli and gram positive cocci regarding 18 antibiotics. Conclusion: The brown-banded cockroach can be involved in the spread of drug resistant bacteria and increases the possibility of contacting human environment to drug resistant bacteria. Therefore, the potential of removing this insect should be improved. This is the first original report of drug resistant bacteria isolated from the brown-banded cockroach of Iran. PMID:25629065

  8. Analysis of sepsis in allogeneic bone marrow transplant recipients: a single-center study.

    PubMed

    Mitsui, Hideki; Karasuno, Takahiro; Santo, Taisuke; Fukushima, Kentaro; Matsunaga, Hitomi; Nakamura, Hiroyuki; Hiraoka, Akira

    2003-09-01

    We reviewed the records of 235 consecutive recipients of allogeneic bone marrow transplantation (allo-BMT) at our center between February 1983 and October 2000. Sepsis occurred in 25 patients (10.6%) at a median of 10 days (range, 1-280 days) after BMT. Five of the 25 patients (20%) died of sepsis. Pathogens isolated from blood culture were gram-positive cocci in 19 patients, gram-negative rods in 7, fungi in 2, and others in 1 patient. Two pathogens were detected concomitantly in 4 patients. Univariate analysis revealed that risk factors for sepsis were selective gut decontamination using lomefloxacin hydrochloride and nystatin, an unrelated donor, HLA mismatched BMT, and stomatitis. Multivariate logistic regression analysis revealed that an unrelated donor was the only significant independent risk factor, with a relative risk of 5.432. In 12 of 25 patients with sepsis, the pathogens of sepsis were sensitive to antibiotics used for gut decontamination. Selective gut decontamination significantly increased the incidence of sepsis, especially that with gram-positive cocci, but not the mortality rate of sepsis, compared with total gut decontamination using vancomycin. We also found a significant relationship between pathogens isolated from blood culture and those isolated from surveillance cultures of stool, urine, and gargled water in the period before sepsis occurred. The present study revealed an independent risk factor for sepsis (unrelated donor), the feasibility of selective gut decontamination, and the importance of surveillance culture.

  9. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  10. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens

    PubMed Central

    García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.

    2016-01-01

    The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938

  11. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--I. Gram-positive bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2003-10-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, and carbapenems. Changes in the bacterial susceptibility for CZOP were also evaluated with the resistance ratio calculated with breakpoint MIC. Sixteen species (2,363 strains) of Gram-positive bacteria were isolated from the clinical materials annually collected from 1996 to 2001, and consisted of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), methicillin-resistant Staphylococcus epidermidis (MRSE), Staphylococcus haemolyticus, Staphylococcus saprophyticus, Enterococcus faecalis, Enterococcus faecium, Enterococcus avium, Streptococcus pyogenes, Streptococcus agalactiae, penicillin-susceptible Streptococcus pneumoniae (PSSP), penicillin-intermediate resistant S. pneumoniae (PISP), penicillin-resistant S. pneumoniae (PRSP), Streptococcus milleri group and Peptostreptococcus spp. The antibacterial activity of CZOP either against MSSA or MSSE was preferable (MIC90: 2 or 0.5 micrograms/mL) and comparable to those of other cephems. CZOP was also effective on MRSE (MIC90: 16 micrograms/mL) but not on MRSA. CZOP and other cephems had low antibacterial activity against S. haemolyticus (MIC90: 64 micrograms/mL). The antibacterial activity of CZOP against S. saprophyticus was comparable to or higher than those of other cephems, but the MIC90 of CZOP in 2001 was higher than those in 1996-2000 (32 vs 1-2 micrograms/mL). The antibacterial activity of CZOP against E. faecalis was comparable to that of cefpirome (CPR; MIC90: 16 micrograms/mL) and higher than those of other cephems. No antibacterial activity of CZOP against E. faecium and E. avium was observed, like other drugs. The antibacterial activity of CZOP against S. pyogenes

  12. Performance Evaluation of the Verigene Gram-Positive and Gram-Negative Blood Culture Test for Direct Identification of Bacteria and Their Resistance Determinants from Positive Blood Cultures in Hong Kong

    PubMed Central

    Siu, Gilman K. H.; Chen, Jonathan H. K.; Ng, T. K.; Lee, Rodney A.; Fung, Kitty S. C.; To, Sabrina W. C.; Wong, Barry K. C.; Cheung, Sherman; Wong, Ivan W. F.; Tam, Marble M. P.; Lee, Swing S. W.; Yam, W. C.

    2015-01-01

    Background A multicenter study was conducted to evaluate the diagnostic performance and the time to identifcation of the Verigene Blood Culture Test, the BC-GP and BC-GN assays, to identify both Gram-positive and Gram-negative bacteria and their drug resistance determinants directly from positive blood cultures collected in Hong Kong. Methods and Results A total of 364 blood cultures were prospectively collected from four public hospitals, in which 114 and 250 cultures yielded Gram-positive and Gram-negative bacteria, and were tested with the BC-GP and BC-GN assay respectively. The overall identification agreement for Gram-positive and Gram-negative bacteria were 89.6% and 90.5% in monomicrobial cultures and 62.5% and 53.6% in polymicrobial cultures, respectively. The sensitivities for most genus/species achieved at least 80% except Enterococcus spp. (60%), K.oxytoca (0%), K.pneumoniae (69.2%), whereas the specificities for all targets ranged from 98.9% to 100%. Of note, 50% (7/14) cultures containing K.pneumoniae that were missed by the BC-GN assay were subsequently identified as K.variicola. Approximately 5.5% (20/364) cultures contained non-target organisms, of which Aeromonas spp. accounted for 25% and are of particular concern. For drug resistance determination, the Verigene test showed 100% sensitivity for identification of MRSA, VRE and carbapenem resistant Acinetobacter, and 84.4% for ESBL-producing Enterobacteriaceae based on the positive detection of mecA, vanA, bla OXA and bla CTXM respectively. Conclusion Overall, the Verigene test provided acceptable accuracy for identification of bacteria and resistance markers with a range of turnaround time 40.5 to 99.2 h faster than conventional methods in our region. PMID:26431434

  13. TLR4-mediated podosome loss discriminates gram-negative from gram-positive bacteria in their capacity to induce dendritic cell migration and maturation.

    PubMed

    van Helden, Suzanne F G; van den Dries, Koen; Oud, Machteld M; Raymakers, Reinier A P; Netea, Mihai G; van Leeuwen, Frank N; Figdor, Carl G

    2010-02-01

    Chronic infections are caused by microorganisms that display effective immune evasion mechanisms. Dendritic cell (DC)-dependent T cell-mediated adaptive immunity is one of the mechanisms that have evolved to prevent the occurrence of chronic bacterial infections. In turn, bacterial pathogens have developed strategies to evade immune recognition. In this study, we show that gram-negative and gram-positive bacteria differ in their ability to activate DCs and that gram-negative bacteria are far more effective inducers of DC maturation. Moreover, we observed that only gram-negative bacteria can induce loss of adhesive podosome structures in DCs, a response necessary for the induction of effective DC migration. We demonstrate that the ability of gram-negative bacteria to trigger podosome turnover and induce DC migration reflects their capacity to selectively activate TLR4. Examining mice defective in TLR4 signaling, we show that this DC maturation and migration are mainly Toll/IL-1 receptor domain-containing adaptor-inducing IFNbeta-dependent. Furthermore, we show that these processes depend on the production of PGs by these DCs, suggesting a direct link between TLR4-mediated signaling and arachidonic metabolism. These findings demonstrate that gram-positive and gram-negative bacteria profoundly differ in their capacity to activate DCs. We propose that this inability of gram-positive bacteria to induce DC maturation and migration is part of the armamentarium necessary for avoiding the induction of an effective cellular immune response and may explain the frequent involvement of these pathogens in chronic infections.

  14. Streptohalobacillus salinus gen. nov., sp. nov., a moderately halophilic, Gram-positive, facultative anaerobe isolated from subsurface saline soil.

    PubMed

    Wang, Xiaowei; Xue, Yanfen; Ma, Yanhe

    2011-05-01

    A Gram-stain-positive, rod-shaped, non-sporulating, motile and moderately halophilic bacterium, designated strain H96B60(T), was isolated from a saline soil sample of the Qaidam basin, China. The strain was facultatively anaerobic. Major end products formed from glucose fermentation were acetate, ethanol and lactic acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The isoprenoid quinone component was menaquinone-6 (MK-6). The predominant cellular fatty acids were C(16: 0), anteiso-C(13 : 0) and anteiso-C(15 : 0). The genomic DNA G+C content of strain H96B60(T) was 36.2 mol%. Phylogenetic analysis based on comparative 16S rRNA gene sequences indicated that strain H96B60(T) represented a novel phyletic lineage within the family Bacillaceae and was related most closely to Halolactibacillus species (96.1-96.4 % similarity). Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain H96B60(T) is considered to represent a novel species of a new genus, for which the name Streptohalobacillus salinus gen. nov., sp. nov. is proposed. The type strain of Streptohalobacillus salinus is H96B60(T) ( = DSM 22440(T)  = CGMCC 1.7733(T)).

  15. In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms.

    PubMed

    Almer, Laurel S; Hoffrage, Jennifer B; Keller, Erika L; Flamm, Robert K; Shortridge, Virginia D

    2004-07-01

    In vitro activities of ABT-492, ciprofloxacin, levofloxacin, trovafloxacin, moxifloxacin, gatifloxacin, and gemifloxacin were compared. ABT-492 was more potent against quinolone-susceptible and -resistant gram-positive organisms, had activity similar to that of ciprofloxacin against certain members of the family Enterobacteriaceae, and had comparable activity against quinolone-susceptible, nonfermentative, gram-negative organisms. Bactericidal activity of ABT-492 was also evaluated.

  16. In Vitro and Bactericidal Activities of ABT-492, a Novel Fluoroquinolone, against Gram-Positive and Gram-Negative Organisms

    PubMed Central

    Almer, Laurel S.; Hoffrage, Jennifer B.; Keller, Erika L.; Flamm, Robert K.; Shortridge, Virginia D.

    2004-01-01

    In vitro activities of ABT-492, ciprofloxacin, levofloxacin, trovafloxacin, moxifloxacin, gatifloxacin, and gemifloxacin were compared. ABT-492 was more potent against quinolone-susceptible and -resistant gram-positive organisms, had activity similar to that of ciprofloxacin against certain members of the family Enterobacteriaceae, and had comparable activity against quinolone-susceptible, nonfermentative, gram-negative organisms. Bactericidal activity of ABT-492 was also evaluated. PMID:15215148

  17. Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov., isolated from the preen glands of Great Spotted Woodpeckers (Dendrocopos major).

    PubMed

    Braun, Markus Santhosh; Wang, Erjia; Zimmermann, Stefan; Boutin, Sébastien; Wink, Michael

    2018-01-01

    Two new species of Gram-positive cocci were isolated from the uropygial glands of wild woodpeckers (Dendrocopos major) originating from different locations in Germany. A polyphasic approach confirmed the affiliation of the isolates to the genus Kocuria. Phylogenetic analysis based on the 16S rRNA gene showed high degree of similarity to Kocuria koreensis DSM 23367 T (99.0% for both isolates). However, low ANIb values of <80% unequivocally separated the new species from K. koreensis. This finding was further corroborated by DNA fingerprinting and analysis of polar lipid profiles. Furthermore, growth characteristics, biochemical tests, MALDI-TOF MS analysis, and G+C contents clearly differentiated the isolates from their known relatives. Besides, the woodpecker isolates significantly differed from each other in their whole-cell protein profiles, DNA fingerprints, and ANIb values. In conclusion, the isolated microorganisms constitute members of two new species, for which the names Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov. are proposed. The type strains are 36 T (DSM 101740 T =LMG 29265 T ) and 257 T (=DSM 101741 T =LMG 29266 T ) for K. uropygialis sp. nov. and K. uropygioeca sp. nov., respectively. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia

    PubMed Central

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders. PMID:26522966

  19. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria

    PubMed Central

    Richter, Stefan G.; Elli, Derek; Kim, Hwan Keun; Hendrickx, Antoni P. A.; Sorg, Joseph A.; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    The current epidemic of infections caused by antibiotic-resistant Gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of Gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of Gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of Gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant Gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics. PMID:23401520

  20. Gram-negative and -positive bacteria differentiation in blood culture samples by headspace volatile compound analysis.

    PubMed

    Dolch, Michael E; Janitza, Silke; Boulesteix, Anne-Laure; Graßmann-Lichtenauer, Carola; Praun, Siegfried; Denzer, Wolfgang; Schelling, Gustav; Schubert, Sören

    2016-12-01

    Identification of microorganisms in positive blood cultures still relies on standard techniques such as Gram staining followed by culturing with definite microorganism identification. Alternatively, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or the analysis of headspace volatile compound (VC) composition produced by cultures can help to differentiate between microorganisms under experimental conditions. This study assessed the efficacy of volatile compound based microorganism differentiation into Gram-negatives and -positives in unselected positive blood culture samples from patients. Headspace gas samples of positive blood culture samples were transferred to sterilized, sealed, and evacuated 20 ml glass vials and stored at -30 °C until batch analysis. Headspace gas VC content analysis was carried out via an auto sampler connected to an ion-molecule reaction mass spectrometer (IMR-MS). Measurements covered a mass range from 16 to 135 u including CO2, H2, N2, and O2. Prediction rules for microorganism identification based on VC composition were derived using a training data set and evaluated using a validation data set within a random split validation procedure. One-hundred-fifty-two aerobic samples growing 27 Gram-negatives, 106 Gram-positives, and 19 fungi and 130 anaerobic samples growing 37 Gram-negatives, 91 Gram-positives, and two fungi were analysed. In anaerobic samples, ten discriminators were identified by the random forest method allowing for bacteria differentiation into Gram-negative and -positive (error rate: 16.7 % in validation data set). For aerobic samples the error rate was not better than random. In anaerobic blood culture samples of patients IMR-MS based headspace VC composition analysis facilitates bacteria differentiation into Gram-negative and -positive.

  1. Experience With Rapid Microarray-Based Diagnostic Technology and Antimicrobial Stewardship for Patients With Gram-Positive Bacteremia.

    PubMed

    Neuner, Elizabeth A; Pallotta, Andrea M; Lam, Simon W; Stowe, David; Gordon, Steven M; Procop, Gary W; Richter, Sandra S

    2016-11-01

    OBJECTIVE To describe the impact of rapid diagnostic microarray technology and antimicrobial stewardship for patients with Gram-positive blood cultures. DESIGN Retrospective pre-intervention/post-intervention study. SETTING A 1,200-bed academic medical center. PATIENTS Inpatients with blood cultures positive for Staphylococcus aureus, Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, S. pyogenes, S. agalactiae, S. anginosus, Streptococcus spp., and Listeria monocytogenes during the 6 months before and after implementation of Verigene Gram-positive blood culture microarray (BC-GP) with an antimicrobial stewardship intervention. METHODS Before the intervention, no rapid diagnostic technology was used or antimicrobial stewardship intervention was undertaken, except for the use of peptide nucleic acid fluorescent in situ hybridization and MRSA agar to identify staphylococcal isolates. After the intervention, all Gram-positive blood cultures underwent BC-GP microarray and the antimicrobial stewardship intervention consisting of real-time notification and pharmacist review. RESULTS In total, 513 patients with bacteremia were included in this study: 280 patients with S. aureus, 150 patients with enterococci, 82 patients with stretococci, and 1 patient with L. monocytogenes. The number of antimicrobial switches was similar in the pre-BC-GP (52%; 155 of 300) and post-BC-GP (50%; 107 of 213) periods. The time to antimicrobial switch was significantly shorter in the post-BC-GP group than in the pre-BC-GP group: 48±41 hours versus 75±46 hours, respectively (P<.001). The most common antimicrobial switch was de-escalation and time to de-escalation, was significantly shorter in the post-BC-GP group than in the pre-BC-GP group: 53±41 hours versus 82±48 hours, respectively (P<.001). There was no difference in mortality or hospital length of stay as a result of the intervention. CONCLUSIONS The combination of a rapid microarray diagnostic test with an antimicrobial

  2. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile

    DOE PAGES

    Melton, Emily Denise; Sorokin, Dimitry Y.; Overmars, Lex; ...

    2017-09-21

    Dethiobacter alkaliphilus strain AHT1 T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is thus a Gram-positive bacterium with low GC content, within the phylum Firmicutes. We report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1 T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.

  3. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Emily Denise; Sorokin, Dimitry Y.; Overmars, Lex

    Dethiobacter alkaliphilus strain AHT1 T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is thus a Gram-positive bacterium with low GC content, within the phylum Firmicutes. We report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1 T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.

  4. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Schramm, Jr., Harry F. (Inventor); Farris, III, Alex F. (Inventor); Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  5. Phthalocyanine-sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria.

    PubMed

    da Silva, Raquel Nunes; Cunha, Ângela; Tomé, Augusto C

    2018-06-25

    Phthalocyanines bearing four or eight sulfonamide units were synthesized and their efficiency in the photodynamic inactivation of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria was evaluated. Conjugates with simpler sulfonamide units (N,N-diethylbenzenesulfonamide, N-isopropylbenzenesulfonamide and N-(4-methoxyphenyl)benzenesulfonamide) caused stronger inactivation than those with heterocyclic groups (N-(thiazol-2-yl)benzenesulfonamide) or long alkyl chains (N-dodecylbenzenesulfonamide) in both bacteria. Furthermore, the encapsulation of the phthalocyanine-sulfonamide conjugates within polyvinylpyrrolidone micelles, used as drug delivery vehicles, in general showed to enhance the inactivation efficiency. The results show that encapsulated phthalocyanine-sulfonamide conjugates are a promising class of photosensitizers to be used in photodynamic antimicrobial therapy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Evaluation of the limulus amoebocyte lysate test in conjunction with a gram negative bacterial plate count for detecting irradiation of chicken

    NASA Astrophysics Data System (ADS)

    Scotter, Susan L.; Wood, Roger; McWeeny, David J.

    A study to evaluate the potential of the Limulus amoebocyte lysate (LAL) test in conjuction with a Gram negative bacteria (GNB) plate count for detecting the irradiation of chicken is described. Preliminary studies demonstrated that chickens irradiated at an absorbed dose of 2.5 kGy could be differentiated from unirradiated birds by measuring levels of endotoxin and of numbers of GNB on chicken skin. Irradiated birds were found to have endotoxin levels similar to those found in unirradiated birds but significantly lower numbers of GNB. In a limited study the test was found to be applicable to birds from different processors. The effect of temperature abuse on the microbiological profile, and thus the efficacy of the test, was also investigated. After temperature abuse, the irradiated birds were identifiable at worst up to 3 days after irradiation treatment at the 2.5 kGy level and at best some 13 days after irradiation. Temperature abuse at 15°C resulted in rapid recovery of surviving micro-organisms which made differentiation of irradiated and unirradiated birds using this test unreliable. The microbiological quality of the bird prior to irradiation treatment also affected the test as large numbers of GNB present on the bird prior to irradiation treatment resulted in larger numbers of survivors. In addition, monitoring the developing flora after irradiation treatment and during subsequent chilled storage also aided differentiation of irradiated and unirradiated birds. Large numbers of yeasts and Gram positive cocci were isolated from irradiated carcasses whereas Gram negative oxidative rods were the predominant spoilage flora on unirradiated birds.

  7. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  8. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015.

    PubMed

    Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F

    Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI) and 970 isolates from urinary tract infections (UTI) were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (%) for K. pneumoniae (92.2, 92.3), Enterobacter spp. (97.5, 92.1), and P. aeruginosa (85.3, 75.2) isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6) and imipenem (79.2, 75.9) showed substantially higher rates of susceptibility (%) than other β-lactams, including piperacillin-tazobactam (35.9, 37.4) against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Identification of Surprisingly Diverse Type IV Pili, across a Broad Range of Gram-Positive Bacteria

    PubMed Central

    Roos, David S.; Pohlschröder, Mechthild

    2011-01-01

    Background In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available. Results To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes. Conclusions We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV

  10. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  11. Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence

    PubMed Central

    Nguyen, Minh Thu

    2016-01-01

    SUMMARY Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates. PMID:27512100

  12. [A rarely isolated bacterium in microbiology laboratories: Streptococcus uberis].

    PubMed

    Eryıldız, Canan; Bukavaz, Şebnem; Gürcan, Şaban; Hatipoğlu, Osman

    2017-04-01

    Streptococcus uberis is a gram-positive bacterium that is mostly responsible for mastitis in cattle. The bacterium rarely has been associated with human infections. Conventional phenotyphic methods can be inadequate for the identification of S.uberis; and in microbiology laboratories S.uberis is confused with the other streptococci and enterococci isolates. Recently, molecular methods are recommended for the accurate identification of S.uberis isolates. The aim of this report is to present a lower respiratory tract infection case caused by S.uberis and the microbiological methods for identification of this bacterium. A 66-year-old male patient with squamous cell lung cancer who received radiotherapy was admitted in our hospital for the control. According to the chest X-Ray, patient was hospitalized with the prediagnosis of ''cavitary tumor, pulmonary abscess''. In the first day of the hospitalization, blood and sputum cultures were drawn. Blood culture was negative, however, Candida albicans was isolated in the sputum culture and it was estimated to be due to oral lesions. After two weeks from the hospitalization, sputum sample was taken from the patient since he had abnormal respiratory sounds and cough complaint. In the Gram stained smear of the sputum there were abundant leucocytes and gram-positive cocci, and S.uberis was isolated in both 5% sheep blood and chocolate agar media. Bacterial identification and antibiotic susceptibility tests were performed by VITEK 2 (Biomerieux, France) and also, the bacterium was identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) based VITEK MS system as S.uberis. The isolate was determined susceptible to ampicillin, erythromycin, clindamycin, levofloxacin, linezolid, penicillin, cefotaxime, ceftriaxone, tetracycline and vancomycin. 16S, 23S ribosomal RNA and 16S-23S intergenic spacer gene regions were amplified with specific primers and partial DNA sequence analysis of 16S

  13. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  14. Surface multiheme c-type cytochromes from Thermincola potens: Implications for dissimilatory metal reduction by Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D.

    2011-12-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they have been shown to be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or the humic substances analog, anthraquinone-2,6-disulfonate (AQDS). The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS and that several MHCs are localized to the cell wall or cell surface of T. potens. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results are the first direct evidence for cell-wall associated cytochromes and MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  15. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    PubMed

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible

  16. The warmer the weather, the more gram-negative bacteria - impact of temperature on clinical isolates in intensive care units.

    PubMed

    Schwab, Frank; Gastmeier, Petra; Meyer, Elisabeth

    2014-01-01

    We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives) from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10-1.21) higher at temperatures ≥ 20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR=1.43; 95%CI 1.31-1.56) more frequently at high temperatures, A. baumannii 37% (IRR=1.37; 95%CI 1.11-1.69), S. maltophilia 32% (IRR=1.32; 95%CI 1.12-1.57), K. pneumoniae 26% (IRR=1.26; 95%CI 1.13-1.39), Citrobacter spp. 19% (IRR=1.19; 95%CI 0.99-1.44) and coagulase-negative staphylococci 13% (IRR=1.13; 95%CI 1.04-1.22). By contrast, S. pneumoniae 35% (IRR=0.65; 95%CI 0.50-0.84) less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR=1.03; 95%CI 1.02-1.04) increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR=1.08; 95%CI 1.05-1.12) followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that different seasonality due to physiologic changes underlies host susceptibility to different bacterial pathogens

  17. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    PubMed

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process.

  18. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    PubMed Central

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  19. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    PubMed Central

    Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.

    2011-01-01

    Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the

  20. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  1. Studies on the antibacterial activity of two new acylureidopenicillins, mezlocillin and azlocillin.

    PubMed

    Soares, L A; Trabulsi, L R

    1979-01-01

    The antimicrobial activity of 6-[(R)-2[3-methylsulfonyl-2-oxo-imidazolidine-1-carboxamido]-2-phenylacetamido]-penicillanic acid sodium salt (mezlocillin, Baypen) and 6-[(R)-2-(2-oxo-imidazolidine-1-carboxamido)-2-phenylacetamido-a1-penicillanic acid sodium salt (azlocillin, Securopen) was measured against 545 clinical isolates, including gram-negative rods, gram-positive cocci and Bacteroides. Mezlocillin was more effective than azlocillin against the majority of the strains studied, but azlocillin was more effective against Pseudomonas strains. The minimal bactericidal concentration was equal to the minimal inhibitory concentration for the strains tested, but it was twice or four-fold as high for Staphylococcus.

  2. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  3. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    PubMed

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  4. [Ants as carriers of microorganisms in hospital environments].

    PubMed

    Pereira, Rogério Dos Santos; Ueno, Mariko

    2008-01-01

    Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.

  5. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species.

    PubMed

    Abbas, Syed Zaghum; Rafatullah, Mohd; Ismail, Norli; Lalung, Japareng

    2014-12-01

    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  7. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumas, E.; Gao, C.; Suffern, D.

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots,more » adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.« less

  8. Molecular and antimicrobial susceptibility characterization of Globicatella sulfidifaciens isolated from sow's urinary tract infection.

    PubMed

    Matajira, Carlos E C; Moreno, Luisa Z; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Amigo, Cristina R; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2017-12-01

    The Globicatella genus comprises Gram-positive, facultative anaerobic, α-hemolytic and catalase negative cocci morphologically and phenotypically very similar to Streptococcus and Aerococcus genus which can lead to misidentification and underestimation of this pathogen. Globicatella species have already been isolated from human and animals with heart and brain disorders. Their clinical relevance in animals, and its zoonotic potential, remains unknown due to the difficulty in their identification. To present the isolation, phenotypic and molecular characterization of G. sulfidifaciens from urinary tract infection in sows. Urine samples from 140 sows of two swine herds located in São Paulo State (Brazil) yielded the isolation of three presumptive G. sulfidifaciens strains. Identification and species confirmation were done by MALDI-TOF MS and 16S rRNA sequencing. Strains were further characterized by single enzyme amplified fragments length polymorphism (SE-AFLP) and broth microdilution techniques. All three isolates were confirmed as G. sulfidifaciens. The SE-AFLP genotyping resulted in distinct fingerprint patterns for each strain. All isolates presented high MIC values to tetracycline, sulphonamides, aminoglycosides and tylosin tartrate, which present high usage in human and animal medicine. Globicatella sulfidifaciens could be related to sporadic urinary tract infections in swine and appear to present alarming antimicrobial susceptibility profile. It is necessary to differentiate Streptococcus-like microorganisms in routine laboratory diagnostics for the correct identification of underestimated species potentially pathogenic to animals.

  9. Usability application of multiplex polymerase chain reaction in the diagnosis of microorganisms isolated from urine of patients treated in cancer hospital

    PubMed Central

    Cybulski, Zefiryn; Schmidt, Katarzyna; Grabiec, Alicja; Talaga, Zofia; Bociąg, Piotr; Wojciechowicz, Jacek; Roszak, Andrzej; Kycler, Witold

    2013-01-01

    Background The objective of this study was: i) to compare the results of urine culture with polymerase chain reaction (PCR) -based detection of microorganisms using two commercially available kits, ii) to assess antimicrobial susceptibility of urine isolates from cancer patients to chosen antimicrobial drugs and, if necessary, to update the recommendation of empirical therapy. Materials and methods. A one-year hospital-based prospective study has been conducted in Greater Poland Cancer Centre and Genetic Medicine Laboratory CBDNA Research Centre in 2011. Urine cultures and urine PCR assay from 72 patients were examined Results Urine cultures and urine PCR assay from 72 patients were examined. Urine samples were positive for 128 strains from which 95 (74%) were identical in both tests. The most frequently isolated bacteria in both culture and PCR assay were coliform organisms and Enterococcus spp. The Gram negative bacilli were most resistant to cotrimoxazol. 77.2% of these bacilli and 100% of E. faecalis and S. agalactiae were sensitive to amoxicillin-clavulanic acid. 4.7% of Gram positive cocci were resistant to nitrofurantoin. Conclusions The PCR method quickly finds the causative agent of urinary tract infection (UTI) and, therefore, it can help with making the choice of the proper antimicrobial therapy at an early stage. It appears to be a viable alternative to the recommendations made in general treatment guidelines, in cases where diversified sensitivity patterns of microorganisms have been found. PMID:24133395

  10. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria

    PubMed Central

    Carlson, Hans K.; Iavarone, Anthony T.; Gorur, Amita; Yeo, Boon Siang; Tran, Rosalie; Melnyk, Ryan A.; Mathies, Richard A.; Auer, Manfred; Coates, John D.

    2012-01-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium. PMID:22307634

  11. A Myeloid Hypoxia-inducible Factor 1α-Krüppel-like Factor 2 Pathway Regulates Gram-positive Endotoxin-mediated Sepsis*

    PubMed Central

    Mahabeleshwar, Ganapati H.; Qureshi, Muhammad Awais; Takami, Yoichi; Sharma, Nikunj; Lingrel, Jerry B.; Jain, Mukesh K.

    2012-01-01

    Although Gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of Gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that Gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated Gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated Gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, Gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced Gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated Gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from Gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to Gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of Gram-positive endotoxin-mediated sepsis. PMID:22110137

  12. Female genital tract bacterial coisolates with Candida albicans in patients without clinical vaginitis.

    PubMed Central

    Monif, G R; Carson, H J

    1998-01-01

    OBJECTIVE: In vitro, Candida albicans has demonstrated the ability to inhibit replication of selected bacteria. Little information exists on the impact of C. albicans on the vaginal bacterial flora in vivo. The purpose of this study is to identify the coexisting bacterial flora when C. albicans is isolated from vaginal cultures submitted to a hospital-based testing facility for reasons other than vulvovaginitis. METHODOLOGY: All specimens (240) received from ambulatory care clinics over a six-month period were cultured for aerobic and anaerobic bacteria and Candida species. Those specimens submitted for cervicitis, vaginitis, or vaginal discharge and those from which yeasts other than C. albicans were isolated were eliminated. To control for sample biases, a subgroup composed of all pregnant women for whom cultures were done as screening procedures was similarly studied. Chi-square analyses, comparing the prevalence of individual bacteria isolated with and without the presence of C. albicans, were done for all study populations using SPSS for Windows software (1994). RESULTS: Two hundred and forty consecutive specimens were bacteriologically analyzed. Of the 220 vaginal samples used in the study, C. albicans was isolated in 44 instances (20%). Neither the presence of the lactobacilli nor the presence of Gardnerella vaginalis markedly influenced the isolation rate of C. albicans. The group B streptococci had a greater probability of coisolation when C. albicans was present (27.3% verses 16%), but this was not statistically significant (P < 0.8). Dissociation between the presence of C. albicans and the coisolation of Peptostreptococcus species and anaerobic gram-positive cocci and/or bacilli was noted (P < 0.0819), while the incidence of gram-positive aerobic bacilli was reduced in the presence of C. albicans (30/176 [17.1%] versus 6/44 [13.6%]), this reduced incidence was not statistically significant. Isolation data of the subgroup of pregnant women supported these

  13. Female genital tract bacterial coisolates with Candida albicans in patients without clinical vaginitis.

    PubMed

    Monif, G R; Carson, H J

    1998-01-01

    In vitro, Candida albicans has demonstrated the ability to inhibit replication of selected bacteria. Little information exists on the impact of C. albicans on the vaginal bacterial flora in vivo. The purpose of this study is to identify the coexisting bacterial flora when C. albicans is isolated from vaginal cultures submitted to a hospital-based testing facility for reasons other than vulvovaginitis. All specimens (240) received from ambulatory care clinics over a six-month period were cultured for aerobic and anaerobic bacteria and Candida species. Those specimens submitted for cervicitis, vaginitis, or vaginal discharge and those from which yeasts other than C. albicans were isolated were eliminated. To control for sample biases, a subgroup composed of all pregnant women for whom cultures were done as screening procedures was similarly studied. Chi-square analyses, comparing the prevalence of individual bacteria isolated with and without the presence of C. albicans, were done for all study populations using SPSS for Windows software (1994). Two hundred and forty consecutive specimens were bacteriologically analyzed. Of the 220 vaginal samples used in the study, C. albicans was isolated in 44 instances (20%). Neither the presence of the lactobacilli nor the presence of Gardnerella vaginalis markedly influenced the isolation rate of C. albicans. The group B streptococci had a greater probability of coisolation when C. albicans was present (27.3% verses 16%), but this was not statistically significant (P < 0.8). Dissociation between the presence of C. albicans and the coisolation of Peptostreptococcus species and anaerobic gram-positive cocci and/or bacilli was noted (P < 0.0819), while the incidence of gram-positive aerobic bacilli was reduced in the presence of C. albicans (30/176 [17.1%] versus 6/44 [13.6%]), this reduced incidence was not statistically significant. Isolation data of the subgroup of pregnant women supported these observations. Within the

  14. Impedimetric detection of pathogenic Gram-positive bacteria using an antimicrobial peptide from class IIa bacteriocins.

    PubMed

    Etayash, Hashem; Jiang, Keren; Thundat, Thomas; Kaur, Kamaljit

    2014-02-04

    Real-time, label-free detection of Gram-positive bacteria with high selectivity and sensitivity is demonstrated using an interdigitated impedimetric array functionalized with naturally produced antimicrobial peptide from class IIa bacteriocins. The antimicrobial peptide, leucocin A, was chemically synthesized and covalently immobilized on interdigitated gold microelectrodes via the interaction between the C-terminal carboxylic acid of the peptide and free amines of a preattached thiolated linker. Exposing the peptide sensor to various concentrations of Gram-positive bacteria generated reproducible impedance spectra that detected peptide-bacteria interactions at a concentration of 1 cell/μL. The peptide sensor also selectively detected Listeria monocytogenes from other Gram-positive strains at a concentration of 10(3) cfu mL(-1). The study highlights that short peptide ligands from bacteriocin class offer high selectivity in bacterial detection and can be used in developing a robust, portable biosensor device to efficiently detect pathogenic Gram-positive bacteria in food samples.

  15. Expanding the Use of a Fluorogenic Method to Determine Activity and Mode of Action of Bacillus thuringiensis Bacteriocins Against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    de la Fuente-Salcido, Norma M.; Barboza-Corona, J. Eleazar; Espino Monzón, A. N.; Pacheco Cano, R. D.; Balagurusamy, N.; Bideshi, Dennis K.; Salcedo-Hernández, Rubén

    2012-01-01

    Previously we described a rapid fluorogenic method to measure the activity of five bacteriocins produced by Mexican strains of Bacillus thuringiensis against B. cereus 183. Here we standardize this method to efficiently determine the activity of bacteriocins against both Gram-positive and Gram-negative bacteria. It was determined that the crucial parameter required to obtain reproducible results was the number of cells used in the assay, that is, ~4 × 108 cell/mL and ~7 × 108 cell/mL, respectively, for target Gram-positive and Gram-negative bacteria. Comparative analyses of the fluorogenic and traditional well-diffusion assays showed correlation coefficients of 0.88 to 0.99 and 0.83 to 0.99, respectively, for Gram-positive and Gram-negative bacteria. The fluorogenic method demonstrated that the five bacteriocins of B. thuringiensis have bacteriolytic and bacteriostatic activities against all microorganisms tested, including clinically significant bacteria such as Listeria monocytogenes, Proteus vulgaris, and Shigella flexneri reported previously to be resistant to the antimicrobials as determined using the well-diffusion protocol. These results demonstrate that the fluorogenic assay is a more sensitive, reliable, and rapid method when compared with the well-diffusion method and can easily be adapted in screening protocols for bacteriocin production by other microorganisms. PMID:22919330

  16. The Warmer the Weather, the More Gram-Negative Bacteria - Impact of Temperature on Clinical Isolates in Intensive Care Units

    PubMed Central

    Schwab, Frank; Gastmeier, Petra; Meyer, Elisabeth

    2014-01-01

    Background We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. Methods A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives) from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. Results The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10–1.21) higher at temperatures ≥20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR = 1.43; 95%CI 1.31–1.56) more frequently at high temperatures, A. baumannii 37% (IRR = 1.37; 95%CI 1.11–1.69), S. maltophilia 32% (IRR = 1.32; 95%CI 1.12–1.57), K. pneumoniae 26% (IRR = 1.26; 95%CI 1.13–1.39), Citrobacter spp. 19% (IRR = 1.19; 95%CI 0.99–1.44) and coagulase-negative staphylococci 13% (IRR = 1.13; 95%CI 1.04–1.22). By contrast, S. pneumoniae 35% (IRR = 0.65; 95%CI 0.50–0.84) less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR = 1.03; 95%CI 1.02–1.04) increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR = 1.08; 95%CI 1.05–1.12) followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. Conclusion Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that

  17. Potential utility of a peptide deformylase inhibitor (NVP PDF-713) against oxazolidinone-resistant or streptogramin-resistant Gram-positive organism isolates.

    PubMed

    Jones, Ronald N; Moet, Gary J; Sader, Helio S; Fritsche, Thomas R

    2004-05-01

    To evaluate the potency of a novel peptide deformylase inhibitor, NVP PDF-713, against Gram-positive organisms having resistances to linezolid or quinupristin/dalfopristin. A total of 45 strains from three genera (six species groups) were tested by reference broth microdilution methods. The mechanism of resistance to the oxazolidinone was determined by sequencing of the gene encoding the ribosomal target. NVP PDF-713 retained activity against linezolid-resistant staphylococci (MIC range 0.25-2 mg/L), Streptococcus oralis (MIC 0.5 mg/L), Enterococcus faecalis (MIC range 2-4 mg/L) and Enterococcus faecium (MIC range 0.5-4 mg/L). Quinupristin/dalfopristin-resistant E. faecium (MIC range 1-2 mg/L) and staphylococci (MIC range 0.12-2 mg/L) were also inhibited by NVP PDF-713. Many (10 of 13 strains) of the linezolid-resistant enterococci were resistant to vancomycin and these clinical strains had a G2576U ribosomal target mutation. NVP PDF-713 appears to be a promising clinical candidate among the peptide deformylase inhibitors for the treatment of infections caused by Gram-positive organisms that possess resistances to oxazolidinones or streptogramin combinations.

  18. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  19. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria.

    PubMed

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D

    2014-07-01

    An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Assessment of clinical significance of positive blood cultures of relatively low-virulence isolates.

    PubMed

    Hirakata, Y; Furuya, N; Iwata, M; Kashitani, F; Ishikawa, M; Yumoto, S; Yasui, K; Endoh, H; Marui, A; Kaku, M; Tateda, K; Yamaguchi, K

    1996-03-01

    In Omori Hospital, Toho University School of Medicine, relatively low-virulence blood isolates, including coagulase-negative staphylococci (CNS), enterococci and nonfermentative gram-negative rods other than Pseudomonas aeruginosa comprised c. 60% of total blood isolates. A retrospective study was conducted to assess their clinical significance by reviewing a total of 91 hospital charts. The physicians' assessments of these positive blood cultures as recorded in the charts were classified into four categories--sepsis, possible sepsis, contamination and no comment. The episodes classified as sepsis accounted for 5.0-19.6%. These episodes were also evaluated by a graded clinical significance score based on multiple factors, including number of positive cultures and clinical signs. The scores for the 91 episodes covered a wide range from 1 to 9, indicating that both contaminants and causative organisms may have been involved. The episodes judged as sepsis or possible sepsis tended to have higher scores. The scores for the episodes associated with enterococci were also higher than those involving CNS or non-fermentative gram-negative rods. The scores for episodes associated with intravenous hyperalimentation catheters were higher than those not associated with the catheters.

  1. Use of PNA FISH for blood cultures growing Gram-positive cocci in chains without a concomitant antibiotic stewardship intervention does not improve time to appropriate antibiotic therapy.

    PubMed

    Cosgrove, Sara E; Li, David X; Tamma, Pranita D; Avdic, Edina; Hadhazy, Eric; Wakefield, Teresa; Gherna, Michael; Carroll, Karen C

    2016-09-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) is a rapid diagnostic assay that can identify certain organisms growing in blood cultures 30-90 min from the time of positive Gram-stain. Existing studies have demonstrated a clinical utility with this assay when antibiotic stewardship programs assist clinicians with interpreting the results. However, the benefit of these rapid assays in the absence of concomitant antibiotic stewardship involvement is unclear. In this randomized study of 220 patients with enterococcal or streptococcal bacteremia, we found that PNA FISH, in the absence of concomitant input from an antibiotic stewardship program, had no impact on time to effective or optimal therapy, length of hospital stay, or in-hospital mortality. Our results suggest that in the absence of guidance from an antibiotic stewardship program, the clinical benefits of rapid diagnostic microbiological tools may be reduced. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Isolation and Characterization of Anaerobic Bacteria for Symbiotic Recycling of Uric Acid Nitrogen in the Gut of Various Termites

    PubMed Central

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

  3. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle

    PubMed Central

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-01-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786

  5. Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction.

    PubMed

    Igarashi, T; Yamamoto, A; Goto, N

    1996-10-01

    Streptococcus mutans is an etiological agent in human dental caries. A method for the detection of S. mutans directly from human dental plaque by polymerase chain reaction has been developed. Oligonucleotide primers specific for a portion of the dextranase gene (dexA) of S. mutans Ingbritt (serotype c) were designed to amplify a 1272-bp DNA fragment by polymerase chain reaction. The present method specifically detected S. mutans (serotypes c, e and f), but none of the other mutans streptococci: S. cricetus (serotype a), S. rattus (serotype b), S. sobrinus (serotypes d and g), and S. downei (serotype h), other gram-positive bacteria (16 strains of 12 species of cocci and 18 strains of 12 species of bacilli) nor gram-negative bacteria (1 strain of 1 species of cocci and 20 strains of 18 species of bacilli). The method was capable of detecting 1 pg of the chromosomal DNA purified from S. mutans Ingbritt and as few as 12 colony-forming units of S. mutans cells. The S. mutans cells in human dental plaque were also directly detected. Seventy clinical isolates of S. mutans isolated from the dental plaque of 8 patients were all positive by the polymerase chain reaction. These results suggest that the dexA polymerase chain reaction is suitable for the specific detection and identification of S. mutans.

  6. Antibiogram pattern of oral microflora in periodontic children of age group 6 to 12 years: a clinicomicrobiological study.

    PubMed

    Fysal, N; Jose, Santhosh; Kulshrestha, Reena; Arora, Dimple; Hafiz, Ka Abdul; Vasudevan, Sanjay

    2013-07-01

    The study was carried out to see the diversity of oral microflora and its antibiotic sensitivity test in children of age group 6 to 12 years was carried. Total 50 patients of age group 6 to 12 years were analyzed for their oral microflora and then checked for the antibiotic susceptibility test. The samples that were collected were incubated at 37°C for 48 hours. Once dispersed samples were taken and Gram staining was done, also they were spread on to a number of freshly prepared agar plates and incubated to allow cells to form microbial colony. The result showed microflora common in all types, Gram-positive facultative anaerobic rods and cocci. In normal children Gram-positive facultative anaerobic and fermenting cocci were predominant where as in children with caries growth of microbiota that were Gram-negative and positive, capnophilic, motile and anaerobic rods and cocci belonging to members of genera S. mutans and A. actinomycetemcomitans was seen. By the present study it has been concluded that the number of bacteria determined by microscopic counts was twice as high in caries patients as in healthy sites, and also recommended that amoxicillin, ampicillin and amikacin are the most effective antibacterial drugs for the treatment of dental caries.

  7. Microbiological Etiologies of Pneumonia Complicating Stroke: A Systematic Review.

    PubMed

    Kishore, Amit K; Vail, Andy; Jeans, Adam R; Chamorro, Angel; Di Napoli, Mario; Kalra, Lalit; Langhorne, Peter; Roffe, Christine; Westendorp, Willeke; Nederkoorn, Paul J; Garau, Javier; van de Beek, Diederik; Montaner, Joan; Woodhead, Mark; Meisel, Andreas; Smith, Craig J

    2018-06-18

    Identifying the causal pathogens of pneumonia complicating stroke is challenging, and antibiotics used are often broad spectrum, without recourse to the microbiological cause. We aimed to review existing literature to identify organisms responsible for pneumonia complicating stroke, before developing a consensus-based approach to antibiotic treatment. A systematic literature review of multiple electronic databases using predefined search criteria was undertaken, in accordance with Cochrane and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidance. Published studies of hospitalized adults with ischemic stroke, intracerebral hemorrhage, or both, which identified microbiological etiologies for pneumonia complicating stroke up to January 1, 2017, were considered. Analysis included summary statistics and random-effects meta-analysis where appropriate. Fifteen studies (40% ischemic stroke, 60% ischemic stroke and intracerebral hemorrhage) involving 7968 patients were included. Reported occurrence of pneumonia varied considerably between studies (2%-63%) with a pooled frequency of 23% (95% confidence interval, 14%-34%; I 2 =99%). Where reported (60%), the majority of pneumonia occurred within 1 week of stroke (78%). Reported frequency of positive culture data (15%-88%) varied widely. When isolated, aerobic Gram-negative bacilli (38%) and Gram-positive cocci (16%) were most frequently cultured; commonly isolated organisms included Enterobacteriaceae (21.8%: Klebsiella pneumoniae , 12.8% and Escherichia coli, 9%), Staphylococcus aureus (10.1%), Pseudomonas aeruginosa (6%), Acinetobacter baumanii (4.6%), and Streptococcus pneumoniae (3.5%). Sputum was most commonly used to identify pathogens, in isolation (40%) or in conjunction with tracheal aspirate (15%) or blood culture (20%). Although the analysis was limited by small and heterogeneous study populations, limiting determination of microbiological causality, this review suggests aerobic Gram

  8. Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man.

    PubMed

    Senghor, Bruno; Bassène, Hubert; Khelaifia, Saber; Robert, Catherine; Fournier, Pierre-Edouard; Ruimy, Raymond; Sokhna, Cheikh; Raoult, Didier; Lagier, Jean-Christophe

    2018-07-01

    A Gram-positive, moderately halophilic bacterium, referred to as strain Marseille-P3518 T , was isolated from a stool sample with 2% NaCl concentration from a healthy 15-year-old male living in Dielmo, a village in Senegal. Cells are aerobic, rod-shaped and motile and display endospore formation. Strain Marseille-P3518 T can grow in a medium with 0-20% (w/v) sodium chloride (optimally at 5-7.5% w/v). The major fatty acids were 12-methyl-tetradecanoic acid (45.8%), 13-methyl-tetradecanoic acid (26.9%) and 12-methyl-tridecanoic acid (12.8%). The genome is 4,347,479 bp long with 42.1% G+C content. It contains 4282 protein-coding and 107 RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain Marseille-P3518 T is a member of the Bacillaceae family and is closely related to Sediminibacillus albus (97.4% gene sequence similarity). Strain Marseille-P3518 T was clearly differentiated from its phylogenetic neighbors on the basis of phenotypic and genotypic features. Strain Marseille-P3518 T is, therefore, considered to be a novel representative of the genus Sediminibacillus, for which the name Sediminibacillus massiliensis sp. nov. is proposed, and the type strain is Marseille-P3518 T (CSUR P3518T, DSM69894).

  9. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  10. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria.

    PubMed

    Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda; Westblade, Lars F; Ferraro, Mary Jane; Branda, John A

    2013-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.

  11. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria.

    PubMed

    Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong

    2018-01-09

    Noble metal-based nanomaterials have shown promise as potential enzyme mimetics, but the facet effect and underlying molecular mechanisms are largely unknown. Herein, with a combined experimental and theoretical approach, we unveil that palladium (Pd) nanocrystals exhibit facet-dependent oxidase and peroxidase-like activities that endow them with excellent antibacterial properties via generation of reactive oxygen species. The antibacterial efficiency of Pd nanocrystals against Gram-positive bacteria is consistent with the extent of their enzyme-like activity, that is {100}-faceted Pd cubes with higher activities kill bacteria more effectively than {111}-faceted Pd octahedrons. Surprisingly, a reverse trend of antibacterial activity is observed against Gram-negative bacteria, with Pd octahedrons displaying stronger penetration into bacterial membranes than Pd nanocubes, thereby exerting higher antibacterial activity than the latter. Our findings provide a deeper understanding of facet-dependent enzyme-like activities and might advance the development of noble metal-based nanomaterials with both enhanced and targeted antibacterial activities.

  12. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    PubMed

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  14. In Vitro Activities of Faropenem against 579 Strains of Anaerobic Bacteria

    PubMed Central

    Wexler, Hannah M.; Molitoris, Denise; St. John, Shahera; Vu, Ann; Read, Erik K.; Finegold, Sydney M.

    2002-01-01

    The activity of faropenem, a new oral penem, was tested against 579 strains of anaerobic bacteria by using the NCCLS-approved reference method. Drugs tested included amoxicillin-clavulanate, cefoxitin, clindamycin, faropenem, imipenem, and metronidazole. Of the 176 strains of Bacteroides fragilis group isolates tested, two isolates had faropenem MICs of 64 μg/ml and imipenem MICs of >32 μg/ml. Faropenem had an MIC of 16 μg/ml for an additional isolate of B. fragilis; this strain was sensitive to imipenem (MIC of 1 μg/ml). Both faropenem and imipenem had MICs of ≤4 μg/ml for all isolates of Bacteroides capillosus (10 isolates), Bacteroides splanchnicus (13 isolates), Bacteroides ureolyticus (11 isolates), Bilophila wadsworthia (11 isolates), Porphyromonas species (42 isolates), Prevotella species (78 isolates), Campylobacter species (25 isolates), Sutterella wadsworthensis (11 isolates), Fusobacterium nucleatum (19 isolates), Fusobacterium mortiferum/varium (20 isolates), and other Fusobacterium species (9 isolates). Faropenem and imipenem had MICs of 16 to 32 μg/ml for two strains of Clostridium difficile; the MICs for all other strains of Clostridium tested (69 isolates) were ≤4 μg/ml. Faropenem had MICs of 8 and 16 μg/ml, respectively, for two strains of Peptostreptococcus anaerobius (MICs of imipenem were 2 μg/ml). MICs were ≤4 μg/ml for all other strains of gram-positive anaerobic cocci (53 isolates) and non-spore-forming gram-positive rods (28 isolates). Other results were as expected and reported in previous studies. No metronidazole resistance was seen in gram-negative anaerobes other than S. wadsworthensis (18% resistant); 63% of gram-positive non-spore-forming rods were resistant. Some degree of clindamycin resistance was seen in most of the groups tested. PMID:12384389

  15. Outcomes of single organism peritonitis in peritoneal dialysis: gram negatives versus gram positives in the Network 9 Peritonitis Study.

    PubMed

    Bunke, C M; Brier, M E; Golper, T A

    1997-08-01

    The use of the "peritonitis rate" in the management of patients undergoing peritoneal dialysis is assuming importance in comparing the prowess of facilities, care givers and new innovations. For this to be a meaningful outcome measure, the type of infection (causative pathogen) must have less clinical significance than the number of infections during a time interval. The natural history of Staphylococcus aureus, pseudomonas, and fungal peritonitis would not support that the outcome of an episode of peritonitis is independent of the causative pathogen. Could this concern be extended to other more frequently occurring pathogens? To address this, the Network 9 Peritonitis Study identified 530 episodes of single organism peritonitis caused by a gram positive organism and 136 episodes caused by a single non-pseudomonal gram negative (NPGN) pathogen. Coincidental soft tissue infections (exit site or tunnel) occurred equally in both groups. Outcomes of peritonitis were analyzed by organism classification and by presence or absence of a soft tissue infection. NPGN peritonitis was associated with significantly more frequent catheter loss, hospitalization, and technique failure and was less likely to resolve regardless of the presence or absence of a soft tissue infection. Hospitalization and death tended to occur more frequently with enterococcal peritonitis than with other gram positive peritonitis. The outcomes in the NPGN peritonitis group were significantly worse (resolution, catheter loss, hospitalization, technique failure) compared to coagulase negative staphylococcal or S. aureus peritonitis, regardless of the presence or absence of a coincidental soft tissue infection. Furthermore, for the first time, the poor outcomes of gram negative peritonitis are shown to be independent of pseudomonas or polymicrobial involvement or soft tissue infections. The gram negative organism appears to be the important factor. In addition, the outcome of peritonitis caused by S. aureus

  16. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo.

    PubMed

    Feng, Q; Huang, Y; Chen, M; Li, G; Chen, Y

    2015-01-01

    In this study, the antimicrobial activities based on the synergistic effects of traditional antibiotics (imipenem, cefepime, levofloxacin hydrochloride and vancomycin) and antimicrobial peptides (AMPs; PL-5, PL-31, PL-32, PL-18, PL-29 and PL-26), alone or in combination, against three Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae and Staphylococcus epidermidis) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) were investigated. In addition, the antimicrobial activity that was based on the synergistic effects of levofloxacin hydrochloride and PL-5 against Staphylococcus aureus in vivo was explored in a mouse infection model. Traditional antibiotics and AMPs showed significant synergistic effects on the antibacterial activities against the different Gram-positive and Gram-negative bacteria in vitro. A strong synergistic effect in the PL-5 and levofloxacin hydrochloride combination against Staphylococcus aureus was observed in the mouse infection model in vivo. The mechanism of synergistic action was due to the different targets of AMPs and traditional antibiotics. The combination of AMPs and traditional antibiotics can dramatically enhance antimicrobial activity and may help prevent or delay the emergence of antibiotic resistance. Thus, this combination therapy could be a promising approach to treat bacterial infections, particularly mixed infections and multi-antibiotic-resistant infections, in the clinics.

  17. Genetic characteristics of Streptococcus dysgalactiae isolated from cage cultured cobia, Rachycentron canadum (L.).

    PubMed

    Tsai, M-A; Wang, P-C; Yoshida, T; Chen, S-C

    2015-12-01

    Disease outbreaks occurred during 2007-2013 in Taiwan with 2.5-10% mortality among the cage cultured cobia, Rachycentron canadum (L.), characterized by the presence of polyserositis, pericarditis and peritonitis. The micro-organisms isolated from internal organs were Gram-positive cocci. The isolates were confirmed as Streptococcus dysgalactiae by a polymerase chain reaction assay that yielded the expected specific 259 bp amplicon. Additionally, partial sequence of the 16S-23S rDNA intergenic spacer region of the GCS strain isolates from fish was also compared and produced 100% sequence identity with S. dysgalactiae (GenBank accession number AB252398). The genetic characterization was then determined by pulsed-field gel electrophoresis (PFGE) analysis. Based on PFGE, the Apa I or Sma I digestion patterns of chromosomal DNA of these isolates were grouped into three main clusters. Taiwanese strains were divided into two clusters, and the tet(M) gene was detected in cluster 1 (pulsotypes: A1-A2 and S1-S3), but not in cluster 2 strains (pulsotypes: A3-A4 and S4-S5). Three Japanese strains from amberjack, Seriola dumerili (Risso), were grouped into cluster 3 (pulsotypes: A5-A7 and S6-S8) and displayed no mortality to cobia in the challenge experiment. Conversely, Taiwanese strains from cobia and snubnose pompano, Trachinotus blochii (L.), displayed a mortality rate of 50-87.5% in cobia. © 2014 John Wiley & Sons Ltd.

  18. Evaluation of the Nanosphere Verigene Gram-Positive Blood Culture Assay with the VersaTREK Blood Culture System and Assessment of Possible Impact on Selected Patients

    PubMed Central

    Beal, Stacy G.; Ciurca, Jane; Smith, Geremy; John, Jeffrey; Lee, Francesca; Doern, Christopher D.

    2013-01-01

    The Verigene Gram-positive blood culture (BC-GP) assay (Nanosphere, Northbrook, IL) is a molecular method for the rapid identification of Gram-positive organisms and resistance markers directly from blood culture bottles. A total of 148 VersaTREK REDOX 1 40-ml aerobic bottles demonstrating Gram-positive bacteria were tested. Results were compared with those from conventional biochemical and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) identifications. We obtained isolates of methicillin-resistant Staphylococcus aureus (MRSA) (24), methicillin-susceptible Staphylococcus aureus (MSSA) (14), methicillin-resistant Staphylococcus epidermidis (MRSE) (17), methicillin-susceptible Staphylococcus epidermidis (MSSE) (9), other coagulase-negative staphylococci (19), Streptococcus salivarius (5), Streptococcus parasanguinis (2), Streptococcus sanguinis (1), Streptococcus cristatus (1), the Streptococcus bovis group (5), Streptococcus agalactiae (9), the Streptococcus anginosus group (1), Streptococcus pneumoniae (6), vancomycin-resistant Enterococcus faecium (VRE FCM) (16), vancomycin-susceptible Enterococcus faecalis (3), Aerococcus viridans (2), Bacillus (6), Corynebacterium (8), Lactobacillus (2), Micrococcus (2), Neisseria mucosa (1), Escherichia coli (3), Candida tropicalis (1), Propionibacterium (1), and Rothia (1). Overall agreement with the culture results was 95%. A total of 137 of 138 (99%) monomicrobial cultures were concordant. We tested 9 polymicrobial samples and found 33% agreement. A chart review of 31 patients with MRSA, MSSA, or VRE demonstrated that the Nanosphere BC-GP assay might have led to more appropriate antibiotic selection for these patients an average of 42 h earlier. Additionally, contact isolation could have been initiated an average of 37 h earlier for patients with MRSA or VRE. The BC-GP assay may have a positive impact on patient care, health care costs, and antibiotic stewardship. PMID:24048531

  19. Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates.

    PubMed

    Smiljanic, M; Kaase, M; Ahmad-Nejad, P; Ghebremedhin, B

    2017-07-10

    Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. Among the carbapenem-resistant isolates the genes bla KPC , bla VIM , bla NDM or bla OXA were detected. Both RT-PCR assays detected all bla KPC , bla VIM and bla NDM in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii.

  20. Oral associated bacterial infection in horses: studies on the normal anaerobic flora from the pharyngeal tonsillar surface and its association with lower respiratory tract and paraoral infections.

    PubMed

    Bailey, G D; Love, D N

    1991-02-15

    Two hundred and seventy bacterial isolates were obtained from the pharyngeal tonsillar surface of 12 normal horses and 98 obligatory anaerobic bacteria were characterised. Of these, 57 isolates belonging to 7 genera (Peptostreptococcus (1); Eubacterium (9); Clostridium (6); Veillonella (6); Megasphera (1); Bacteroides (28); Fusobacterium (6)) were identified, and 16 of these were identified to species level (P. anaerobius (1); E. fossor (9); C. villosum (1); B. fragilis (1); B. tectum (2); B. heparinolyticus (2)). Three hundred and twenty isolates were obtained from 23 samples from horses with lower respiratory tract (LRT) or paraoral (PO) bacterial infections. Of the 143 bacteria selected for detailed characterisation, obligate anaerobes accounted for 100 isolates, facultative anaerobes for 42 isolates and obligate aerobes for one isolate. Phenotypic characterisation separated 99 of the isolates into 14 genera. Among the obligately anaerobic species, Gram-positive cocci including P. anaerobius comprised 25% of isolates, E. fossor 11% and other Gram-positive rods (excluding Clostridium sp.) 18% of isolates. The Gram-negative rods comprised B. fragilis 5%, B. heparinolyticus 5%, asaccharolytic pigmented Bacteroides 3% and other Bacteroides 13%, while a so-far unnamed species of Fusobacterium (7%), and Gram-negative corroding rods (3%) were isolated. Among the facultatively anaerobic isolates, S. equi subsp. zooepidemicus accounted for 31% of isolates, followed by Pasteurella spp. 19%, Escherichia coli 17%, Actinomyces spp. 9%, Streptococcus spp. 9%. Incidental facultative isolates were Enterococcus spp. 2%, Enterobacter cloaceae 2%, Actinobacillus spp. 2% and Gram-negative corroding rods 5%. On the basis of the similarities (as determined by DNA hybridization data and/or phenotypic characteristics) of some of the bacterial species (e.g. E. fossor and B. heparinolyticus) isolated from both the normal pharyngeal tonsillar surfaces and LRT and PO diseases of horses, it

  1. Microbiologic Analysis of Complicated and Uncomplicated Acute Appendicitis.

    PubMed

    García-Marín, Andrés; Pérez-López, Mercedes; Martínez-Guerrero, Elena; Rodríguez-Cazalla, Lorena; Compañ-Rosique, Antonio

    2018-01-01

    Microbiologic studies suggest that complicated (CAA) and uncomplicated (UAA) acute appendicitis are different entities. Routine peritoneal fluid cultures continue to be controversially related to a low positive rate, found mainly in UAA; to isolation of typical micro-organisms with expected susceptibilities; and to a community-acquired intra-abdominal infection. The aim of this study was to describe microbiologic isolates in CAA and UAA and the usefulness of peritoneal fluid cultures to determine the susceptibilities to our antibiotic therapy guidelines. This study was a retrospective review of a prospective database collected at University San Juan Hospital (Spain) between June 2014 and June 2017. Complicated acute appendicitis was defined as gangrenous or perforated, whereas UAA was defined as phegmonous or suppurative. Our antibiotic recommendations are amoxicillin-clavulanic acid and in patients with β-lactam allergies, metronidazole plus aztreonam, and an aminoglycoside (gentamicin or tobramycin). Microbiologic cultures were performed in 264 patients, 157 with a CAA and 107 with a UAA. The positive culture rate was significantly higher in CAA (59%) than in UAA (24.3%). Gram-positive cocci (51.6% CAA; 23.1% UAA), including Streptococcus constellatus (29% CAA; 3.8% UAA), and anaerobes (67.7% CAA; 42.3% UAA) were significantly more common in CAA. The rates of antibiotic resistance were amoxicillin-clavulanic acid 14% (17.2% CAA; 3.8% UAA), gentamicin or tobramycin 8.4% (9.7% CAA; 3.8% UAA), ciprofloxacin 5.9% (6.5% CAA; 3.8% UAA), and ertapenem 10.9% (14% CAA; 0 UAA). The culture-positive rate was higher in CAA, with different isolates and susceptibilities than in UAA, identifying a higher frequency of gram-positive cocci (including S. constellatus) and anaerobes. We recommend obtaining peritoneal fluid cultures in CAA, which frequently will lead to a change in the antimicrobial drug therapy guidelines, creating specific recommendations in AA.

  2. Confirmation and Identification of Listeria monocytogenes, Listeria spp. and Other Gram-Positive Organisms by the Bruker MALDI Biotyper Method: Collaborative Study, First Action 2017.10.

    PubMed

    Bastin, Benjamin; Bird, Patrick; Crowley, Erin; Benzinger, M Joseph; Agin, James; Goins, David; Sohier, Daniele; Timke, Markus; Awad, Marian; Kostrzewa, Markus

    2018-04-27

    The Bruker MALDI Biotyper® method utilizes matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for the rapid and accurate confirmation and identification of Gram-positive bacteria from select media types. This alternative method was evaluated using nonselective and selective agar plates to identify and confirm Listeria monocytogenes, Listeria species, and select Gram-positive bacteria. Results obtained by the Bruker MALDI Biotyper were compared with the traditional biochemical methods as prescribed in the appropriate reference method standards. Sixteen collaborators from 16 different laboratories located within the European Union participated in the collaborative study. A total of 36 blind-coded isolates were evaluated by each collaborator. In each set of 36 organisms, there were 16 L. monocytogenes strains, 12 non- monocytogenes Listeria species strains, and 8 additional Gram-positive exclusivity strains. After testing was completed, the total percentage of correct identifications (to both genus and species level) and confirmation from each agar type for each strain was determined at a percentage of 99.9% to the genus level and 98.8% to the species level. The results indicated that the alternative method produced equivalent results when compared with the confirmatory procedures specified by each reference method.

  3. Radiation resistence of microorganisms from radiation sterilization processing environments

    NASA Astrophysics Data System (ADS)

    Sabovljev, Svetlana A.; Žunić, Zora S.

    The radiation resistance of microorganisms was examined on the samples of dust collected from the radiation sterilization processing environments including assembly, storage, and sterilization plant areas. The isolation of radiation resistant strains was performed by irradiation with screening doses ranging from 10 to 35 kGy and test pieces containing 10 6 to 10 8 CFU in dried serum-broth, representing 100 to 5000 colonies of primary cultures of microorganisms from 7 different sites. In an examination of 16900 colonies of aerobic microorganisms from 3 hygienically controlled production sites and 4 uncontrolled ones, 30 strains of bacteria were isolated. Of those 15 were classified as genus Bacillus, 9 as Micrococcus and 6 as Sarcina. All of the 15 strains of Gram positive sporeforming aerobic rods exhibited an exponential decrease in the surviving fraction as a function of dose, indicating that the inactivation of spores of aerobic rods is a consequence of a single energy deposition into the target. All strains were found to be moderately resistant to radiation with D-6 values (dose required to reduce survival to 6 log cycles) between 18 and 26 kGy. All of the isolated Gram positive cocci showed inactivation curves having a shoulder, indicating that different processes are involved in the inactivation of these cells, e.g. accumulation of sublethal lesions, or final repair capacity of potential lethal lesions. Moderate radiation resistance was observed in 13 strains with D-6 values between 16 to 30 kGy. Two slow-growing, red pigmented strains tentatively classified as genus Micrococcus isolated from uncontrolled sites (human dwellings) were exceptionally resistant with D-6 more than 45 kGy. For hygienically controlled sites, Gram positive spereforming rods composed two thirds of the resistant microflora, while Gram positive cocci comprised one third. For hygienically uncontrolled sites this ratio was reversed. An assumption is made that one isolated strain has grown

  4. Partial proteome of the corynetoxin-producing Gram-positive bacterium, Rathayibacter toxicus

    USDA-ARS?s Scientific Manuscript database

    Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry...

  5. Gram-Positive Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group.

    PubMed

    Doernberg, Sarah B; Lodise, Thomas P; Thaden, Joshua T; Munita, Jose M; Cosgrove, Sara E; Arias, Cesar A; Boucher, Helen W; Corey, G Ralph; Lowy, Franklin D; Murray, Barbara; Miller, Loren G; Holland, Thomas L

    2017-03-15

    Antimicrobial resistance in gram-positive bacteria remains a challenge in infectious diseases. The mission of the Gram-Positive Committee of the Antibacterial Resistance Leadership Group (ARLG) is to advance knowledge in the prevention, management, and treatment of these challenging infections to improve patient outcomes. Our committee has prioritized projects involving methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) due to the scope of the medical threat posed by these pathogens. Approved ARLG projects involving gram-positive pathogens include (1) a pharmacokinetics/pharmacodynamics study to evaluate the impact of vancomycin dosing on patient outcome in MRSA bloodstream infection (BSI); (2) defining, testing, and validating innovative assessments of patient outcomes for clinical trials of MRSA-BSI; (3) testing new strategies for "step-down" antibiotic therapy for MRSA-BSI; (4) management of staphylococcal BSIs in neonatal intensive care units; and (5) defining the impact of VRE bacteremia and daptomycin susceptibility on patient outcomes. This article outlines accomplishments, priorities, and challenges for research of infections caused by gram-positive organisms. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Prevention of gram-positive infections in peritoneal dialysis patients in Hong Kong: a cost-effectiveness analysis.

    PubMed

    Wong, Carlos; Luk, In-Wa; Ip, Margaret; You, Joyce H S

    2014-04-01

    Gram-positive bacteria are the major causative pathogens of peritonitis and exit site infection in patients undergoing peritoneal dialysis (PD). We investigated the cost-effectiveness of regular application of mupirocin at the exit site in PD recipients from the perspective of health care providers in Hong Kong. A decision tree was designed to simulate outcomes of incident PD patients with and without regular application of mupirocin over a 1-year period. Outcome measures included total direct medical costs, quality-adjusted life-years (QALYs) gained, and gram-positive infection-related mortality rate. Model inputs were derived from the literature. Sensitivity analyses evaluated the impact of uncertainty in all model variables. In a base case analysis, the mupirocin group had a higher expected QALY value (0.6496 vs 0.6456), a lower infection-related mortality rate (0.18% vs 1.64%), and a lower total cost per patient (US $258 vs $1661) compared with the control group. The rate of gram-positive peritonitis without mupirocin and the risk of gram-positive peritonitis with mupirocin were influential factors. In 10,000 Monte Carlo simulations, the mupirocin group had significantly lower associated costs, higher QALYs, and a lower mortality rate 99.9% of the time. Topical mupirocin appears to be a cost-effective preventive measure against gram-positive infection in incident patients undergoing PD. The cost-effectiveness of mupirocin is affected by the level of infection risk reduction and subject to resistance against mupirocin. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  7. A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm.

    PubMed

    Misba, Lama; Zaidi, Sahar; Khan, Asad U

    2017-06-01

    Antimicrobial photodynamic therapy (APDT) is a process that generates reactive oxygen species (ROS) in presence of photosensitizer, visible light and oxygen which destroys the bacterial cells. We investigated the photoinactivation efficiency of phenothiazinium dyes and the effect of ROS generation on Gram positive and Gram negative bacterial cell as well as on biofilm. Enterococcus faecalis and Klebsiella pneumonia were incubated with all the three phenothiazinium dyes and exposed to 630nm of light. After PDT, colony forming unit (CFU) were performed to estimate the cell survival fraction. Intracellular reactive oxygen species (ROS) was detected by DCFH-DA. Crystal violet (CV) assay and extracellular polysaccharides (EPS) reduction assay were performed to analyze antibiofilm effect. Confocal laser electron microscope (CLSM) scanning electron microscope (SEM) was performed to assess the disruption of biofilm. 8log 10 reduction in bacterial count was observed in Enterococcus faecalis while 3log 10 in Klebsiella pneumoniae. CV and EPS reduction assay revealed that photodynamic inhibition was more pronounced in Enterococcus faecalis. In addition to this CLSM and SEM study showed an increase in cell permeability of propidium iodide and leakage of cellular constituents in treated preformed biofilm which reflects the antibiofilm action of photodynamic therapy. We conclude that Gram-positive bacteria (Enterococcus faecalis) are more susceptible to APDT due to increased level of ROS generation inside the cell, higher photosensitizer binding efficiency and DNA degradation. Phenothiazinium dyes are proved to be highly efficient against both planktonic and biofilm state of cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems.

    PubMed

    Fiori, Barbara; D'Inzeo, Tiziana; Di Florio, Viviana; De Maio, Flavio; De Angelis, Giulia; Giaquinto, Alessia; Campana, Lara; Tanzarella, Eloisa; Tumbarello, Mario; Antonelli, Massimo; Sanguinetti, Maurizio; Spanu, Teresa

    2014-10-01

    We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥ 16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ≤ 5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization-time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine

  9. Performance of Two Resin-Containing Blood Culture Media in Detection of Bloodstream Infections and in Direct Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) Broth Assays for Isolate Identification: Clinical Comparison of the BacT/Alert Plus and Bactec Plus Systems

    PubMed Central

    Fiori, Barbara; D'Inzeo, Tiziana; Di Florio, Viviana; De Maio, Flavio; De Angelis, Giulia; Giaquinto, Alessia; Campana, Lara; Tanzarella, Eloisa; Tumbarello, Mario; Antonelli, Massimo; Spanu, Teresa

    2014-01-01

    We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ≤5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization–time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine

  10. Antimicrobial susceptibility of Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013-2015.

    PubMed

    Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F

    2017-01-01

    Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) are responsible for increases in antimicrobial-resistant infections worldwide. We determined in vitro susceptibilities to eight parenteral antimicrobial agents using Clinical and Laboratory Standards Institute broth microdilution methodology for Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal infections (IAIs) (n=3052) and urinary tract infections (UTIs) (n=1088) in 11 Asia-Pacific countries/regions from 2013 to 2015. Amikacin (98.3, 96.4 %), imipenem (97.1, 95.5 %) and ertapenem (95.3, 93.2 %) demonstrated the highest rates of susceptibility for isolates of K. pneumoniae from IAI and UTI, respectively, whereas susceptibility to advanced-generation cephalosporins was <84 and <71 %, respectively. K. pneumoniae with an extended-spectrum β-lactamase-positive phenotype were more common in UTI (27.1 %) than IAI (16.2 %). Imipenem and amikacin were the most active agents against extended-spectrum β-lactamase-positive K. pneumoniae from IAI (95.1, 91.8 %) and UTI (94.9, 92.3 %), respectively, whereas <54 % were susceptible to piperacillin-tazobactam. Against Enterobacter spp. and P. aeruginosa, amikacin demonstrated the highest rates of susceptibility for isolates from IAI (99.7, 95.5 %) and UTI (90.9, 91.5 %), respectively. K. pneumoniae, Enterobacter spp. and P. aeruginosa from urine demonstrated lower susceptibility to levofloxacin (74.1, 81.8 and 73.8 %) than from IAI (87.6, 91.8 and 85.4 %). For A. baumannii, rates of susceptibility to all agents tested were <43 %. We conclude that the studied Gram-negative ESKAPE pathogens demonstrated reduced susceptibility to commonly prescribed advanced-generation cephalosporins, piperacillin-tazobactam and levofloxacin, while amikacin and carbapenems were the most active. Ongoing surveillance to monitor evolving resistance trends and

  11. Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿

    PubMed Central

    Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik

    2009-01-01

    Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568

  12. The use of lysozyme modified with fluorescein for the detection of Gram-positive bacteria.

    PubMed

    Arabski, Michał; Konieczna, Iwona; Tusińska, Ewa; Wąsik, Sławomir; Relich, Inga; Zając, Krzysztof; Kamiński, Zbigniew J; Kaca, Wiesław

    2015-01-01

    Lysozyme (1,4-β-N-acetylmuramidase) is commonly applied in the food, medical, and pharmaceutical industries. In this study, we tested a novel application of fluorescein-modified lysozyme (using carboxyfluorescein with a triazine-based coupling reagent) as a new tool for the detection of Gram-positive soil bacteria. The results, obtained by cultivation methods, fluorescence analysis, and laser interferometry, showed that, after optimization, fluorescein-modified lysozyme could be used to evaluate the prevalence of Gram-positive bacteria essential in bioremediation of soils with low pH, such as those degraded by sulfur. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Changing epidemiology of central venous catheter-related bloodstream infections: increasing prevalence of Gram-negative pathogens.

    PubMed

    Marcos, Miguel; Soriano, Alex; Iñurrieta, Amaia; Martínez, José A; Romero, Alberto; Cobos, Nazaret; Hernández, Cristina; Almela, Manel; Marco, Francesc; Mensa, Josep

    2011-09-01

    Gram-positive microorganisms have been the predominant pathogens in central venous catheter-related bloodstream infections (CRBSIs). Recent guidelines recommend empirical therapy according to this and restrict coverage for Gram-negatives to specific circumstances. This study aimed to analyse the epidemiological changes in CRBSIs over the 1991-2008 period and to analyse predictors of Gram-negative CRBSIs. A prospectively collected cohort of patients with confirmed CRBSIs was analysed. Strains isolated and antimicrobial susceptibility, as well as clinical and demographic variables were recorded. Differences observed during the study period were analysed by means of a χ² trend test and factors associated with Gram-negative CRBSIs by means of multivariable analysis. Between 1991 and 2008, 1129 episodes of monomicrobial CRBSIs were recorded. There was an increase in the incidence of CRBSIs, from 0.10 (1991-92) to 0.31 (2007-08) episodes/1000 patient-days. A significant increase in the number of Gram-negative strains among the total isolates was also found, from 3 (4.7%) in 1991-92 to 70 (40.23%) in 2007-08, with a parallel decrease in the percentage of Gram-positives. Solid organ transplantation, prior use of penicillins and hospital stay longer than 11 days were independently associated with a significantly higher risk of Gram-negative CRBSIs, while cirrhosis, diabetes and use of quinolones were associated with a higher risk of Gram-positives. Gram-negative strains are an increasing cause of CRBSIs, reaching a prevalence of 40% in the 2007-08 period in our hospital. If this trend is confirmed in other centres, a broad-spectrum empirical therapy should be considered in managing these infections.

  14. Positive isolation disconnect

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Jonkoniec, T. G.

    1975-01-01

    A positive isolation disconnect was developed for component replacement in serviced liquid and gaseous spacecraft systems. Initially a survey of feasible concepts was made to determine the optimum method for fluid isolation, sealing techniques, coupling concepts, and foolproofing techniques. The top concepts were then further evaluated, including the fabrication of a semifunctional model. After all tradeoff analyses were made, a final configuration was designed and fabricated for development testing. This resulted in a 6.35 mm (1/4 inch) line and 12.7 mm (1/2 inch) line positive isolation disconnect, each unit consisting of two coupled disconnect halves, each capable of fluid isolation with essentially zero clearance between them for zero leakage upon disconnect half disengagement. An interlocking foolproofing technique was incorporated that prevents uncoupling of disconnect halves prior to fluid isolation.

  15. Photoinactivation of Gram positive and Gram negative bacteria with the antimicrobial peptide (KLAKLAK)(2) conjugated to the hydrophilic photosensitizer eosin Y.

    PubMed

    Johnson, Gregory A; Muthukrishnan, Nandhini; Pellois, Jean-Philippe

    2013-01-16

    We test the hypothesis that the antimicrobial peptide (KLAKLAK)(2) enhances the photodynamic activity of the photosensitizer eosin Y upon conjugation. The conjugate eosin-(KLAKLAK)(2) was obtained by solid-phase peptide synthesis. Photoinactivation assays were performed against the Gram-negative bacteria Escherichia coli , Pseudomonas aeruginosa , and multidrug resistant Acinetobacter baumannii AYE, as well as the Gram-positive bacteria Staphylococcus aureus , and Staphylococcus epidermidis . Partitioning assays were performed with E. coli and S. aureus . Photohemolysis and photokilling assays were also performed to assess the photodynamic activity of the conjugate toward mammalian cells. Eosin-(KLAKLAK)(2) photoinactivates 99.999% of 10(8) CFU/mL of most bacteria tested at a concentration of 1 μM or below. In contrast, neither eosin Y nor (KLAKLAK)(2) cause any significant photoinactivation under similar conditions. The increase in photodynamic activity of the photosensitizer conferred by the antimicrobial peptide is in part due to the fact that (KLAKLAK)(2) promotes the association of eosin Y to bacteria. Eosin-(KLAKLAK)(2) does not significantly associate with red blood cells or the cultured mammalian cell lines HaCaT, COS-7, and COLO 316. Consequently, little photodamage or photokilling is observed with these cells under conditions for which bacterial photoinactivation is achieved. The peptide (KLAKLAK)(2) therefore significantly enhances the photodynamic activity of eosin Y toward both Gram-positive and Gram-negative bacteria while interacting minimally with human cells. Overall, our results suggest that antimicrobial peptides such as (KLAKLAK)(2) might serve as attractive agents that can target photosensitizers to bacteria specifically.

  16. Development of a micromanipulation method for single cell isolation of prokaryotes and its application in food safety.

    PubMed

    Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud

    2018-01-01

    For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.

  17. Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic

    PubMed Central

    Iwata, Koushi; Nii, Takuya; Nakata, Hikaru; Tsubotani, Yoshie; Inoue, Yasuhide

    2015-01-01

    Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 μg/ml for Gram-positive cocci (155 strains), 109 μg/ml for Gram-positive bacilli (29 strains), and 434 μg/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (≥160 μg/ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine. PMID:25987609

  18. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    PubMed

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  19. Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves

    PubMed Central

    Singh, Ankit Kumar; Sharma, Rajesh Kumar; Sharma, Varsha; Singh, Tanmay; Kumar, Rajesh; Kumari, Dimple

    2017-01-01

    Aim: The objective of this study was to isolate endophytic bacteria from Azadirachta indica (neem) leaves, their identification and investigate their antibacterial activity against three Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes and Bacillus cereus and Gram-negative bacteria Escherichia coli, Salmonella Typhimurium and Klebsiella pneumoniae. Materials and Methods: Fresh leaves of A. indica (neem) was procured from the Department of Botany, JNKVV, Jabalpur. Five samples were taken, and each sample was divided into five subsamples and separated for further isolation of endophytic bacteria. For sterilization leaves were treated with double distilled water, 0.1% sodium hypochlorite, 0.01% bavistin, 0.05% and 70% ethanol. Sterilized leaves of the plants were embedded in Kings B (KB) petri plates and incubated at 37°C for 24 h. Characterization of the bacteria was done according to its morphology and by Gram-staining. After that, a single colony was transferred into brain heart infusion (BHI) broth and incubated at 37°C for 24 h. The antibacterial effect was studied by the disk diffusion method with known antibiotic ciprofloxacin (Ci) as standard. Results: A total of 25 bacterial isolates from A. indica (neem) were obtained and identified morphologically. Most of the samples on KB media depicted irregular shape, flat elevation, undulated, rough, opaque, and white in color. Most of the samples on blood agar showed irregular, raise elevation, undulated, smooth, opaque and all the isolates were nonhemolytic and nonchromogenic. The growth of endophytic bacteria in BHI broth were all isolates showed turbidity. The microscopic examination revealed that maximum isolates were Gram-positive and rod shaped. Good antibacterial activity was observed against S. aureus, Streptococcus pyogenes, E. coli, Salmonella Typhimurium, and K. pneumoniae. Conclusions: Endophytic bacteria are present in leaves of A. indica (neem) and it possesses antibacterial

  20. Study of bacterial meningitis in children below 5 years with comparative evaluation of gram staining, culture and bacterial antigen detection.

    PubMed

    Yadhav Ml, Kala

    2014-04-01

    Bacterial meningitis is one of the most serious infections seen in infants and children, which is associated with acute complications and chronic morbidity. Infections of Central Nervous System (CNS) still dominate the scene of childhood neurological disorders in most of the developing tropical countries. To isolate, identify and determine the antibiotic susceptibility patterns of pathogens associated with bacterial meningitis. We also aimed to comparatively evaluate of Gram staining, culture and bacterial antigen detection in cerebrospinal fluid samples. Present comparative study included 100 CSF samples of children below the age of 5 years, who were clinically suspected meningitis cases. The samples were subjected to Gram staining, culture and Latex agglutination test (LAT). The organisms isolated in the study were characterized and antibiotic susceptibility test was done according to standard guidelines. It was done by using Gaussian test. Of the 100 cases, 24 were diagnosed as Acute bacterial meningitis (ABM) cases by. Gram staining, culture and latex agglutination test. 21 (87.5%) cases were culture positive, with 2 cases being positive for polymicrobial isolates. Gram staining was positive in 17 (70.53%) cases and LAT was positive in 18 (33.33%) cases. Streptococcus pneumoniae was the predominant organism which was isolated and it was sensitive to antibiotics. In the present study, male to female ratio was 1.27:1, which showed a male preponderance. With the combination of Gram staining, culture, and LAT, 100% sensitivity and specificity can be achieved (p < 0.001). Gram staining and LAT can detect 85% of cases of ABM. Bacterial meningitis is a medical emergency and making an early diagnosis and providing treatment early are life saving and they reduce chronic morbidity.

  1. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  2. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    PubMed

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    PubMed

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest

  4. Frequency and antimicrobial susceptibility of gram-negative bacteria isolated from 2 hospitals in Makkah, Saudi Arabia.

    PubMed

    Asghar, Atif H; Faidah, Hani S

    2009-08-01

    To estimate the prevalence and antibiotic susceptibility of the gram-negative bacteria isolated from 2 hospitals in Makkah. This study was undertaken in 2 main tertiary care hospitals namely; Al-Noor Specialist Hospital, and Hera Hospital in Makkah, Kingdom of Saudi Arabia from October 2005 to March 2006. A total of 1137 gram-negative bacteria were identified in non-duplicate clinical specimens obtained from 965 patients of various body sites infections. Demographic data, identity of microorganisms, and antimicrobial susceptibilities were obtained from medical and laboratory records. The most prevalent gram-negative bacteria were Escherichia coli (31.6%), and Pseudomonas aeruginosa (31.2%), followed by Acinetobacter baumannii (10.8%), Klebsiella pneumoniae (8.3%), Klebsiella sp. (6.2%), Haemophilus influenzae (3.7%), Proteus sp. (3.3%), and Enterobacter sp. (1.9%). Results demonstrated that gram-negative bacteria have a high rate of resistance to commonly used antibiotics. Furthermore, multi-drug resistance was also common in this study. Our data showed a high rate of resistance among gram-negative pathogens in comparison with other countries in the world. The implementation of monitoring programs is an important part of the prevention strategy against the development of antibiotic resistance in hospitals.

  5. RNA-mediated regulation in Gram-positive pathogens: an overview punctuated with examples from the group A Streptococcus

    PubMed Central

    Miller, Eric W.; Cao, Tram N.; Pflughoeft, Kathryn J.; Sumby, Paul

    2014-01-01

    RNA-based mechanisms of regulation represent a ubiquitous class of regulators that are associated with diverse processes including nutrient sensing, stress response, modulation of horizontal gene transfer, and virulence factor expression. While better studied in Gram-negative bacteria, the literature is replete with examples of the importance of RNA-mediated regulatory mechanisms to the virulence and fitness of Gram-positives. Regulatory RNAs are classified as cis-acting, e.g. riboswitches, which modulate the transcription, translation, or stability of co-transcribed RNA, or trans-acting, e.g. small regulatory RNAs, which target separate mRNAs or proteins. The group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive bacterial pathogen from which several regulatory RNA mechanisms have been characterized. The study of RNA-mediated regulation in GAS has uncovered novel concepts with respect to how small regulatory RNAs may positively regulate target mRNA stability, and to how CRISPR RNAs are processed from longer precursors. This review provides an overview of RNA-mediated regulation in Gram-positive bacteria, and is highlighted with specific examples from GAS research. The key roles that these systems play in regulating bacterial virulence are discussed and future perspectives outlined. PMID:25091277

  6. Prophylactic antibiotics for preventing early Gram-positive central venous catheter infections in oncology patients, a Cochrane systematic review.

    PubMed

    van de Wetering, M D; van Woensel, J B M; Kremer, L C M; Caron, H N

    2005-05-01

    Long-term tunnelled central venous catheters (TCVC) are increasingly used in oncology patients. Infections are a frequent complication of TCVC, mostly caused by Gram-positive bacteria. The objective of this review is to evaluate the efficacy of antibiotics in the prevention of early Gram-positive TCVC infections, in oncology patients. We searched MEDLINE, EMBASE, and the Cochrane Controlled Trials Register up to July 2003. We selected randomised controlled trials (RCT) evaluating prophylactic antibiotics prior to insertion of the TCVC, and the combination of an antibiotic and heparin to flush the TCVC, in paediatric and adult oncology patients. The primary outcome was documented Gram-positive bacteraemia in patients with a TCVC. All trials identified were assessed and the data extracted independently by two reviewers. There were nine trials included. Four trials reported on vancomycin/teicoplanin prior to insertion of the TCVC compared to no antibiotics. There was no reduction in the number of Gram-positive TCVC infections with an Odds ratio of 0.42 (95% confidence interval 0.13-1.31). Five trials studied flushing of the TCVC with a vancomycin/heparin solution compared to heparin flushing only. This method decreased the number of TCVC infections significantly with an Odds ratio of 0.43 (95% CI 0.21-0.87). Flushing the TCVC with a vancomycin/heparin solution reduced the incidence of Gram-positive infections.

  7. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns

    PubMed Central

    Spencer, J.; Schwarzacher, W.

    2016-01-01

    ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved

  8. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns.

    PubMed

    Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M

    2016-06-15

    In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This

  9. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens.

    PubMed

    Brown, Dean G; May-Dracka, Tricia L; Gagnon, Moriah M; Tommasi, Ruben

    2014-12-11

    To better understand the difficulties surrounding the identification of novel antibacterial compounds from corporate screening collections, physical properties of ∼3200 antibacterial project compounds with whole cell activity against Gram-negative or Gram-positive pathogens were profiled and compared to actives found from high throughput (HTS) screens conducted on both biochemical and phenotypic bacterial targets. The output from 23 antibacterial HTS screens illustrated that when compared to the properties of the antibacterial project compounds, the HTS actives were significantly more hydrophobic than antibacterial project compounds (typically 2-4 log units higher), and furthermore, for 14/23 HTS screens, the average clogD was higher than the screening collection average (screening collection clogD = 2.45). It was found that the consequences of this were the following: (a) lead identification programs often further gained hydrophobic character with increased biochemical potency, making the separation even larger between the physicochemical properties of known antibacterial agents and the HTS active starting point, (b) the probability of plasma protein binding and cytotoxicity are often increased, and (c) cell-based activity in Gram-negative bacteria was severely limited or, if present, demonstrated significant efflux. Our analysis illustrated that compounds least susceptible to efflux were those which were highly polar and small in MW or very large and typically zwitterionic. Hydrophobicity was often the dominant driver for HTS actives but, more often than not, precluded whole cell antibacterial activity. However, simply designing polar compounds was not sufficient for antibacterial activity and pointed to a lack of understanding of complex and specific bacterial penetration mechanisms.

  10. Teicoplanin. A pharmacoeconomic evaluation of its use in the treatment of gram-positive infections.

    PubMed

    Spencer, C M; Bryson, H M

    1995-04-01

    Teicoplanin, a glycopeptide antibiotic, is active against Gram-positive organisms, including methicillin-resistant staphylococci. It has demonstrated similar efficacy to vancomycin in the treatment of Gram-positive infections in febrile patients with neutropenia; fewer comparative data are available in patients with other infection types. Compared with vancomycin, teicoplanin is associated with less nephrotoxicity, appears to cause fewer anaphylactoid reactions, requires less monitoring and is more convenient to administer (once daily by intravenous bolus or intramuscular injection vs 2 to 4 times daily by intravenous infusion). Two European cost-minimisation studies have demonstrated that while the acquisition cost per dose of teicoplanin was approximately twice that of vancomycin, the cost of 2 weeks' therapy with either agent was similar (difference of 1 to 2%). However, in order to fully explore potential differences between these agents, a full economic analysis which considers all treatment-related costs is needed. Home therapy of Gram-positive infections, a setting in which teicoplanin may be preferred over vancomycin because of its tolerability profile and ease of administration, is particularly worthy of future economic study. Thus, there are a number of areas needing further study before the optimum formulary positioning of teicoplanin can be definitely stated. Nevertheless, present evidence suggests that teicoplanin is likely to have pharmacoeconomic advantages over vancomycin in at least some situations.

  11. Comparison of antral tap with endoscopically directed nasal culture.

    PubMed

    Casiano, R R; Cohn, S; Villasuso, E; Brown, M; Memari, F; Barquist, E; Namias, N

    2001-08-01

    The diagnosis of acute bacterial rhinosinusitis continues to generate controversy in critically ill patients. The efficacy of endoscopically directed cultures in these patients is unknown. We compared antral tap (AT) with endoscopic tissue culture (ETC) of the osteomeatal complex in an intensive care unit (ICU) setting. Twenty patients admitted to a surgical/trauma ICU were evaluated by AT and ENB for the presence of rhinosinusitis. All patients had 1) a fever of unknown origin without resolution on empiric antibiotic therapy for > or =48 hrs; 2) other sources of fever ruled out; 3) computed tomography scan evidence of mucoperiosteal thickening +/- sinus air/fluid levels; and 4) attempt at conservative treatment with topical decongestants and removal of all nasal intubation. Microbiologic data were collected and analyzed for any statistical difference between groups. A total of 29 sides underwent simultaneous tap and endoscopically directed tissue culture. The mean age was 40 years (range, 23-77 y) with 85% being males. Fifteen of 20 (75%) patients in the AT group were culture-positive. Of the 49 isolates from the AT, 55% yielded Gram-negative bacilli (Acinetobacter sp. 37%) and 45% yielded Gram-positive cocci. The ETC group was culture-positive in 18 of 20 (90%) patients. Of the 52 isolates from the ETC, Gram-negative bacilli were found in 58% (Acinetobacter sp. 33%) and 42% yielded Gram-positive cocci. The ETCs were culture-positive in all but 1 patient with positive taps. There appeared to be a concordance between AT and ETC in 60% of the patients. In five instances (25%), results of the AT or ETC changed ICU management. Two patients ultimately required sinus surgery. Sinus taps and/or endoscopically directed tissue cultures led to a change in ICU care in 25% of ICU patients studied. In patients with fever of unknown origin and computed tomography evidence of sinusitis, an antral tap continues to provide important information concerning maxillary sinusitis

  12. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.

    PubMed

    Duneau, David F; Kondolf, Hannah C; Im, Joo Hyun; Ortiz, Gerardo A; Chow, Christopher; Fox, Michael A; Eugénio, Ana T; Revah, J; Buchon, Nicolas; Lazzaro, Brian P

    2017-12-21

    Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll

  13. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    PubMed

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  14. Complete genome sequence of Paenibacillus riograndensis SBR5(T), a Gram-positive diazotrophic rhizobacterium.

    PubMed

    Brito, Luciana Fernandes; Bach, Evelise; Kalinowski, Jörn; Rückert, Christian; Wibberg, Daniel; Passaglia, Luciane M; Wendisch, Volker F

    2015-08-10

    Paenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5(T). The genome of P. riograndensis SBR5(T) consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5(T) can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5(T) as plant growth-promoting rhizobacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria.

    PubMed

    Liu, Gaomin; Yang, Fan; Li, Fangfang; Li, Zhongjie; Lang, Yange; Shen, Bingzheng; Wu, Yingliang; Li, Wenxin; Harrison, Patrick L; Strong, Peter N; Xie, Yingqiu; Miller, Keith; Cao, Zhijian

    2018-01-01

    The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs) have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N -terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro , chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18) showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.

  16. Inhibition of various gram-positive and gram- negative bacteria growth on selenium nanoparticle coated paper towels

    PubMed Central

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns. PMID:25926733

  17. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  18. [Antimicrobial sensitivity of the environmental microbiota in the intensive care units of a peruvian hospital].

    PubMed

    Díaz-Tello, José; Rojas-Jaimes, Jesús; Ibarra-Trujillo, Jimmy; Tárraga-Gonzales, Delza

    2017-01-01

    The objective was to detect Gram-negative bacilli and Gram-positive cocci isolated from the environmental microbiota of the Intensive Care Unit (ICU) departments of Neonatology, Pediatrics, and Transplants (kidney, liver, and general) in a Lima hospital and determine their antimicrobial sensitivity. Eighty samples were obtained from inanimate surfaces using a wet swab. A total of 61 bacterial strains were identified, including Staphylococcus epidermis (46.0%), Alcaligenes sp. (21.3%), Pseudomonas aeruginosa (16.4%), Acinetobacter sp. (13.1%), Staphylococcus aureus (1.6%), and Staphylococcus haemolyticus (1.6%). Acinetobacter sp. and P. aeruginosa showed a heightened sensitivity to the antibiotics assessed, while Alcaligenes sp. and S. epidermidis presented the highest antimicrobial resistance. It is recommended that sustained asepsis and monitoring methods be used in ICUs.

  19. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  20. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  1. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    PubMed Central

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  2. Clinical cure and survival in Gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin.

    PubMed

    Kollef, Marin H; Rello, Jordi; Cammarata, Sue K; Croos-Dabrera, Rodney V; Wunderink, Richard G

    2004-03-01

    To assess the effect of baseline variables, including treatment, on clinical cure and survival rates in patients with Gram-positive, ventilator-associated pneumonia (VAP). Retrospective analysis of two randomized, double-blind studies. Multinational study with 134 sites. 544 patients with suspected Gram-positive VAP, including 264 with documented Gram-positive VAP and 91 with methicillin-resistant S. aureus (MRSA) VAP. Linezolid 600 mg or vancomycin 1 g every 12 h for 7-21 days, each with aztreonam. Clinical cure rates assessed 12-28 days after the end of therapy and excluding indeterminate or missing outcomes significantly favored linezolid in the Gram-positive and MRSA subsets. Logistic regression showed that linezolid was an independent predictor of clinical cure with odds ratios of 1.8 for all patients, 2.4 for Gram-positive VAP, and 20.0 for MRSA VAP. Kaplan-Meier survival rates favored linezolid in the MRSA subset. Logistic regression showed that linezolid was an independent predictor of survival with odds ratios of 1.6 for all patients, 2.6 for Gram-positive VAP, and 4.6 for MRSA VAP. Initial linezolid therapy was associated with significantly better clinical cure and survival rates than was initial vancomycin therapy in patients with MRSA VAP.

  3. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from United States Hospitals and Comparative Activity of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes.

    PubMed

    Castanheira, Mariana; Davis, Andrew P; Mendes, Rodrigo E; Serio, Alisa W; Krause, Kevin M; Flamm, Robert K

    2018-06-04

    Plazomicin and comparators agents were tested using the CLSI reference broth microdilution method against 4,825 clinical isolates collected during 2014 and 2015 in 70 United States hospitals as part of the ALERT (Antimicrobial Longitudinal Evaluation and Resistance Trends) program. Plazomicin (MIC 50/90 , 0.5/2 μg/ml) inhibited 99.2% of 4,362 Enterobacteriaceae at ≤4 μg/ml. Amikacin, gentamicin, and tobramycin inhibited 98.9%, 90.3%, and 90.3% of these isolates, respectively, applying CLSI breakpoints. The activity of plazomicin was similar among Enterobacteriaceae species with MIC 50 values ranging from 0.25 to 1 μg/ml, with exception of Proteus mirabilis and indole-positive Proteaee that displayed MIC 50 values of 2 μg/ml. Against 97 carbapenem-resistant Enterobacteriaceae (CRE) that included 87 isolates carrying bla KPC , plazomicin inhibited all but 1 isolate at ≤2 μg/ml (99.0% and 98.9%, respectively). Amikacin and gentamicin inhibited 64.9% and 56.7% of the CRE isolates at the respective CLSI breakpoints. Plazomicin inhibited 96.5/95.5% of the gentamicin-resistant, 96.9/96.5% of the tobramycin-resistant and 64.3/90.0% of the amikacin-resistant isolates using CLSI/EUCAST breakpoints. The activity of plazomicin against Pseudomonas aeruginosa (MIC 50/90 , 4/16 μg/ml) and Acinetobacter spp. (MIC 50/90 , 2/16 μg/ml) isolates was similar. Plazomicin was active against coagulase-negative staphylococci (MIC 50/90 , 0.12/0.5 μg/ml) and Staphylococcus aureus (MIC 50/90 , 0.5/0.5 μg/ml), but had limited activity against Enterococcus spp. (MIC 50/90 , 16/64 μg/ml) and Streptococcus pneumoniae (MIC 50/90 , 32/64 μg/ml). Plazomicin activity against the Enterobacteriaceae tested, including CRE and isolates carrying bla KPC from U.S. hospitals, support the development plan for plazomicin to treat serious infections caused by resistant Enterobacteriaceae in patients with limited treatment options. Copyright © 2018 American Society for Microbiology.

  4. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe.

    PubMed

    Fillol-Salom, Alfred; Martínez-Rubio, Roser; Abdulrahman, Rezheen F; Chen, John; Davies, Robert; Penadés, José R

    2018-06-06

    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.

  5. Sensitivity of Gram stain in the diagnosis of urethritis in men.

    PubMed

    Orellana, M Angeles; Gómez-Lus, M Luisa; Lora, David

    2012-06-01

    Acute urethritis is among the most common types of sexually transmitted diseases in men. The diagnosis usually requires microscopic evidence of urethritis, but sometimes urethral pathogens are detected in asymptomatic men without such evidence. The aims of this study were to assess the sensitivity of Gram stain in men with urethral symptoms and to relate it to the microorganisms isolated. Between January 2006 and December 2007, 491 urethral samples were analysed. The authors assessed the presence of leukocytes by Gram stain and tested specifically for Chlamydia trachomatis, Ureaplasma urealyticum, Mycoplasma hominis and Trichomonas vaginalis, as well as analysing the results of conventional culture. The percentages of positive samples as a function of Gram category were two or less polymorphonuclear leukocytes (PMNLs)/high-power field (HPF) 25% (92/364), three to four PMNLs/HPF 32% (18/57) and five or more PMNLs/HPF 54% (38/70). Classing samples with more than two PMNLs/HPF as positive, the sensitivity, specificity and positive likelihood ratio for Gram stain were 38% (95% CI 30 to 46), 79% (95% CI 75 to 84) and 1.8 (95% CI 1.4 to 2.4), respectively. On the other hand, taking as positive five or more PMNLs/HPF, the sensitivity, specificity and positive likelihood ratio for Gram stain were 26% (95% CI 18 to 33), 91% (95% CI 87 to 94) and 2.7 (95% CI 1.8 to 4.2), respectively. The sensitivity of Gram stain to Neisseria gonorrhoeae, Chlamydia trachomatis and Ureaplasma urealyticum were 80% (95% CI 64 to 96), 23% (95% CI 8 to 39) and 11% (95% CI 2 to 20), respectively. The low sensitivity of Gram stain means that negative results do not exclude the presence of urethritis in symptomatic patients.

  6. Identification of an amphioxus intelectin homolog that preferably agglutinates gram-positive over gram-negative bacteria likely due to different binding capacity to LPS and PGN.

    PubMed

    Yan, Jie; Wang, Jianfeng; Zhao, Yaqi; Zhang, Jingye; Bai, Changcun; Zhang, Changqing; Zhang, Chao; Li, Kailin; Zhang, Haiqing; Du, Xiumin; Feng, Lijun

    2012-07-01

    Intelectin is a recently described galactofuranose-binding lectin that plays a role in innate immunity in vertebrates. Little is known about intelectin in invertebrates, including amphioxus, the transitional form between vertebrates and invertebrates. We cloned an amphioxus intelectin homolog, AmphiITLN-like, coding 302 amino acids with a conserved fibrinogen-related domain (FReD) in the N-terminus and an Intelectin domain in the C-terminus. In situ hybridization in adult amphioxus showed that AmphiITLN-like transcripts were highly expressed in the digestive tract and the skin. Quantitative real-time PCR revealed that AmphiITLN-like is significantly up-regulated in response to Staphylococcus aureus challenge, but only modestly to Escherichia coli. In addition, recombinant AmphiITLN-like expressed in E. coli agglutinates Gram-negative and Gram-positive bacteria to different degrees in a calcium dependent manner. Recombinant AmphiITLN-like could bind lipopolysaccharide (LPS) and peptidoglycan (PGN), the major cell wall components of Gram-negative and Gram-positive bacteria, respectively, with a higher affinity to PGN. Our work identified and characterized for the first time an amphioxus intelectin homolog, and provided insight into the evolution and function of the intelectin family. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia.

    PubMed

    Pakarinen, Jaakko; Hyvärinen, Anne; Salkinoja-Salonen, Mirja; Laitinen, Sirpa; Nevalainen, Aino; Mäkelä, Mika J; Haahtela, Tari; von Hertzen, Leena

    2008-12-01

    Simple living conditions and farming environment have been associated with reduced risk for allergic diseases such as atopy and asthma but the factors responsible for this effect remain unresolved. We examined the bacterial composition of house dusts obtained from Finnish and Russian Karelia, two adjacent areas with high and low occurrence of atopic diseases respectively. Two dust mixes, both composed of 10 randomly selected dust samples from 349 Finnish and 417 Russian Karelian households were studied for bacterial biomarkers (DNA, Limulus-active endotoxin, 3-OH fatty acids, muramic acid) and for 16S rRNA gene sequences. Overall, the DNA cloning revealed more taxons (94 different genera) of dustborne bacteria than seen in any previous study on residential environments. Majority (67%) of the bacterial DNA clones in house dust from the low-allergy Russian Kareliarepresented Gram-positive bacteria (Firmicutes and Actinobacteria), predominantly Staphylococcaceae and Corynebacteriaceae. Russian Karelian dust showed up to 20-fold higher contents of muramic acid (marker of Gram-positive bacteria) and a sevenfold higher number of clones of animal-associated species, whereas in Finnish Karelian dust Gram-negatives (mainly Proteobacteria) predominated. Clones of plant-associated bacterial species and of chloroplast, indicating plant biomass, were more numerous in Finnish than in Russian Karelian dust. In conclusion, this study revealed major disparities between Finnish and Russian house dusts. The higher bacterial content and the predominance of Gram-positive bacteria in Russian dust may have implications for occurrence of atopy.

  8. [Comparison of the quick Gram stain method to the B&M modified and favor methods].

    PubMed

    Osawa, Kayo; Kataoka, Nobumasa; Maruo, Toshio

    2011-01-01

    The Gram stain is an established method for bacterial identification, but the time needed to carry out this stain is 2-3 min. We attempted to shorten this time and stained a total of 70 clinical specimens isolated from using the Bartholomew & Mittwer (B&M) modified or Favor methods with a 3 s duration for washing and staining steps. Results were plotted and analyzed using a Hue Saturation Intensity (HSI) model. The range based on a plot of the two methods with the HSI model was presented as a reference interval. Our results indicated that 100% (35/35) of strains were Gram positive and 97.1% (34/35) were Gram negative for the quick B&M modified method. In the quick Favor method, 80.0% (28/35) were Gram positive and 68.6% (24/35) of strains were Gram negative. We propose that the quick B&M modified method is equivalent to the standard Gram staining method and is superior to the quick Favor method.

  9. Current and novel antibiotics against resistant Gram-positive bacteria.

    PubMed

    Perez, Federico; Salata, Robert A; Bonomo, Robert A

    2008-01-01

    The challenge posed by resistance among Gram-positive bacteria, epitomized by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new generation of antimicrobials. This review focuses on the new β-lactams with activity against MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, and telavancin). It will also consider the role of vancomycin in an era of existing alternatives such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are described, such as iclaprim, friulimicin, and retapamulin, among others.

  10. Antibacterial properties of propolis (bee glue).

    PubMed Central

    Grange, J M; Davey, R W

    1990-01-01

    Propolis (bee glue) was found to have antibacterial activity against a range of commonly encountered cocci and Gram-positive rods, including the human tubercle bacillus, but only limited activity against Gram-negative bacilli. These findings confirm previous reports of antimicrobial properties of this material, possibly attributable to its high flavonoid content. PMID:2182860

  11. BACTERIAL CONTAMINATION OF STETHOSCOPES

    PubMed Central

    Bukharie, Huda A.; Al-Zahrani, Hussain; Rubaish, Abdullah M.; Abdulmohsen, Mohammed F.

    2004-01-01

    Background: A stethoscope, an essential tool of the medical profession, can become a source of nosocomial infection. Objective: To determine the frequency of bacterial contamination of stethoscopes as well as the practices used for cleaning them. Methods: Cultures were taken from 100 stethoscopes used by different medical personnel in different hospital services. The stethoscopes were collected while the staff filled in a questionnaire. Results: Thirty (30%) out of the 100 stethoscopes surveyed were contaminated with microorganisms. The majority of organisms isolated were gram-positive bacteria (gram positive bacilli 12%, gram-negative bacteria 9%, gram-positive cocci 9%). None of the stethoscopes grew methicillin-resistant staphylococcus aureus. Overall, 21% of the health personnel cleaned their stethoscopes daily, 47% weekly, and 32% yearly. None of the health care workers cleaned their stethoscopes after every patient. Nurses cleaned their stethoscopes more often than physicians and medical students. Conclusion: Stethoscopes may be important in the spread of infectious agents. Their regular disinfection after use on each patient should be considered, particularly in such areas of the hospital, as the critical care units, and oncology units which house many patients with antibiotic-resistant organisms. PMID:23012043

  12. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components

    NASA Technical Reports Server (NTRS)

    Gehron, M. J.; Davis, J. D.; Smith, G. A.; White, D. C.

    1984-01-01

    Many gram-positive bacteria form substituted polymers of glycerol and ribitol phosphate esters known as teichoic acids. Utilizing the relative specificity of cold concentrated hydrofluoric acid in the hydrolysis of polyphosphate esters it proved possible to quantitatively assay the teichoic acid-derived glycerol and ribitol from gram-positive bacteria added to various soils and sediments. The lipids are first removed from the soils or sediments with a one phase chloroform-methanol extraction and the lipid extracted residue is hydrolyzed with cold concentrated hydrofluoric acid. To achieve maximum recovery of the teichoic acid ribitol, a second acid hydrolysis of the aqueous extract is required. The glycerol and ribitol are then acetylated after neutralization and analyzed by capillary gas-liquid chromatography. This technique together with measures of the total phospholipid, the phospholipid fatty acid, the muramic acid and the hydroxy fatty acids of the lipopolysaccharide lipid A of the gram-negative bacteria makes it possible to describe the community structure environmental samples. The proportion of gram-positive bacteria measured as the teichoic acid glycerol and ribitol is higher in soils than in sediments and increases with depth in both.

  13. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.

    PubMed

    Tonk, Miray; Knorr, Eileen; Cabezas-Cruz, Alejandro; Valdés, James J; Kollewe, Christian; Vilcinskas, Andreas

    2015-11-01

    The red flour beetle Tribolium castaneum is a destructive insect pest of stored food and feed products, and a model organism for development, evolutionary biology and immunity. The insect innate immune system includes antimicrobial peptides (AMPs) with a wide spectrum of targets including viruses, bacteria, fungi and parasites. Defensins are an evolutionarily-conserved class of AMPs and a potential new source of antimicrobial agents. In this context, we report the antimicrobial activity, phylogenetic and structural properties of three T. castaneum defensins (Def1, Def2 and Def3) and their relevance in the immunity of T. castaneum against bacterial pathogens. All three recombinant defensins showed bactericidal activity against Micrococcus luteus and Bacillus thuringiensis serovar tolworthi, but only Def1 and Def2 showed a bacteriostatic effect against Staphylococcus epidermidis. None of the defensins showed activity against the Gram-negative bacteria Escherichia coli and Pseudomonas entomophila or against the yeast Saccharomyces cerevisiae. All three defensins were transcriptionally upregulated following a bacterial challenge, suggesting a key role in the immunity of T. castaneum against bacterial pathogens. Phylogenetic analysis showed that defensins from T. castaneum, mealworms, Udo longhorn beetle and houseflies cluster within a well-defined clade of insect defensins. We conclude that T. castaneum defensins are primarily active against Gram-positive bacteria and that other AMPs may play a more prominent role against Gram-negative species. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Development and use of species-specific oligonucleotide probes for differentiation of Streptococcus uberis and Streptococcus parauberis.

    PubMed Central

    Bentley, R W; Leigh, J A; Collins, M D

    1993-01-01

    Oligonucleotide probes specific for 16S rRNA and capable of differentiating Streptococcus uberis and S. parauberis from each other and other esculin-hydrolyzing streptococci were developed. Use of a mini-RNA extraction technique for gram-positive cocci associated with bovine mastitis has allowed the probes to be used for identification of esculin-hydrolyzing streptococci from two dairy herds at the Institute for Animal Health, Compton, United Kingdom. One hundred seventy-nine of 206 isolates were identified as S. uberis, 3 were identified as S. parauberis, and 24 were not identified. Isolates not identified by the probes were tested biochemically and found to be mainly Enterococcus faecium, E. faecalis, or S. bovis. Images PMID:8417033

  15. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria.

    PubMed

    Line, J E; Svetoch, E A; Eruslanov, B V; Perelygin, V V; Mitsevich, E V; Mitsevich, I P; Levchuk, V P; Svetoch, O E; Seal, B S; Siragusa, G R; Stern, N J

    2008-03-01

    Strain NRRL B-30745, isolated from chicken ceca and identified as Enterococcus durans, Enterococcus faecium, or Enterococcus hirae, was initially identified as antagonistic to Campylobacter jejuni. The isolate produced a 5,362-Da bacteriocin (enterocin) that inhibits the growth of Salmonella enterica serovar Enteritidis, S. enterica serovar Choleraesuis, S. enterica serovar Typhimurium, S. enterica serovar Gallinarum, Escherichia coli O157:H7, Yersinia enterocolitica, Citrobacter freundii, Klebsiella pneumoniae, Shigella dysenteriae, Pseudomonas aeruginosa, Proteus mirabilis, Morganella morganii, Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Campylobacter jejuni, and 20 other Campylobacter species isolates. The enterocin, E-760, was isolated and purified by cation-exchange and hydrophobic-interaction chromatographies. The proteinaceous nature of purified enterocin E-760 was demonstrated upon treatment with various proteolytic enzymes. Specifically, the antimicrobial peptide was found to be sensitive to beta-chymotrypsin, proteinase K, and papain, while it was resistant to lysozyme and lipase. The enterocin demonstrated thermostability by retaining activity after 5 min at 100 degrees C and was stable at pH values between 5.0 and 8.7. However, activity was lost below pH 3.0 and above pH 9.5. Administration of enterocin E-760-treated feed significantly (P < 0.05) reduced the colonization of young broiler chicks experimentally challenged and colonized with two strains of C. jejuni by more than 8 log(10) CFU. Enterocin E-760 also significantly (P < 0.05) reduced the colonization of naturally acquired Campylobacter species in market age broiler chickens when administered in treated feed 4 days prior to analysis.

  16. Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase

    PubMed Central

    Borisova, Marina; Gaupp, Rosmarie; Duckworth, Amanda; Schneider, Alexander; Dalügge, Désirée; Mühleck, Maraike; Deubel, Denise; Unsleber, Sandra; Yu, Wenqi; Muth, Günther; Bischoff, Markus; Götz, Friedrich

    2016-01-01

    ABSTRACT Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all recycle the sugar N-acetylmuramic acid (MurNAc) of their peptidoglycan during growth in rich medium. They possess MurNAc-6-phosphate (MurNAc-6P) etherase (MurQ in E. coli) enzymes, which are responsible for the intracellular conversion of MurNAc-6P to N-acetylglucosamine-6-phosphate and d-lactate. By applying mass spectrometry, we observed accumulation of MurNAc-6P in MurNAc-6P etherase deletion mutants but not in either the isogenic parental strains or complemented strains, suggesting that MurQ orthologs are required for the recycling of cell wall-derived MurNAc in these bacteria. Quantification of MurNAc-6P in ΔmurQ cells of S. aureus and B. subtilis revealed small amounts during exponential growth phase (0.19 nmol and 0.03 nmol, respectively, per ml of cells at an optical density at 600 nm [OD600] of 1) but large amounts during transition (0.56 nmol and 0.52 nmol) and stationary (0.53 nmol and 1.36 nmol) phases. The addition of MurNAc to ΔmurQ cultures greatly increased the levels of intracellular MurNAc-6P in all growth phases. The ΔmurQ mutants of S. aureus and B. subtilis showed no growth deficiency in rich medium compared to the growth of the respective parental strains, but intriguingly, they had a severe survival disadvantage in late stationary phase. Thus, although peptidoglycan recycling is apparently not essential for the growth of Gram-positive bacteria, it provides a benefit for long-term survival. PMID:27729505

  17. Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    PubMed Central

    Ji, Yuetong; He, Zhili; Pu, Yunting; Zhou, Jizhong; Xu, Jian

    2010-01-01

    Background Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. Methodology/Principal Findings Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6×102 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. Conclusions/Significance In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically. PMID:20838444

  18. Targeting agr- and agr-Like Quorum Sensing Systems for Development of Common Therapeutics to Treat Multiple Gram-Positive Bacterial Infections

    PubMed Central

    Gray, Brian; Hall, Pamela; Gresham, Hattie

    2013-01-01

    Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501

  19. In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; shirazi, Mohammad khabaz; Khan, Saeed Ahmad

    2013-01-01

    Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of 250 μg/disc was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P< 0.05). Staphylococcus aureus was the most sensitive microorganism. The highest antibacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa) was exerted by formula number 2 (Table1). Conclusion: The results reveal the presence of antibacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLANⓇ) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant antibacterial effect of the present formulation, support ethno-pharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat

  20. Ants as vectors of pathogenic microorganisms in a hospital in São Paulo county, Brazil.

    PubMed

    Máximo, Heros J; Felizatti, Henrique L; Ceccato, Marcela; Cintra-Socolowski, Priscila; Beretta, Ana Laura R Zeni

    2014-08-20

    The present study aimed to identify and characterize the presence of bacteria carried by ants, and check the distribution of these ants in the physical confines of a medium-sized hospital in São Paulo county, Brazil. The ants were collected from March 2012 to February 2013. Attractive non-toxic baits were used to catch the ants, and the sectors considered for the study were medical wards, outdoor areas, obstetric unit, reception area, kitchen, surgical centres, paediatric clinic and intensive care unit. Captured ants were classified using taxonomic keys and subsequently immersed in Brain Heart Infusion broth. Paratrechina spp. and Monomorium floricola ants were found most frequently in the hospital. Ants had a high capacity for carrying bacteria, and the isolates comprised 68.8% Gram-positive, spore-producing bacilli (Bacillus spp. and Listeria spp.); 14.7% Gram-negative bacilli (Pseudomonas aeruginosa and Klebsiella spp.); and 16.4% Gram-positive cocci (Streptococcus spp. and Staphylococcus aureus). Among the areas being evaluated, the medical wards had the largest number of ants captured, and therefore the most bacteria. Ants in hospitals may carry both Gram-positive and Gram-negative bacteria, and methods of controlling urban ants should be adopted and strictly adhered to, to minimize the risk of infection in hospital patients.

  1. Gram-positive bacteria as an antigen topically applied into gingival sulcus of immunized rat accelerates periodontal destruction.

    PubMed

    Nagano, F; Kaneko, T; Yoshinaga, Y; Ukai, T; Kuramoto, A; Nakatsu, S; Oshino, K; Ichimura, I; Hara, Y

    2013-08-01

    Periodontitis is generally accepted to relate to gram-negative bacteria, and the host defense system influences its onset and progression. However, little is known about the relation between gram-positive bacteria and periodontitis. In this study, we topically applied gram-positive and gram-negative bacterial suspensions to the gingival sulcus in rats after immunization, and then histopathologically examined their influence on periodontal destruction. Rats previously immunized with heat-treated and sonicated Staphylococcus aureus or Aggregatibacter actinomycetemcomitans were used as immunized groups. The non-immunized group received only sterile phosphate-buffered saline. In each animal, S. aureus or A. actinomycetemcomitans suspension was applied topically to the palatal gingival sulcus of first molars every 24 h for 10 d. Blood samples were collected and the serum level of anti-S. aureus or anti-A. actinomycetemcomitans immunoglobulin G (IgG) antibodies was determined by enzyme-linked immunosorbent assay. The first molar regions were resected and observed histopathologically. Osteoclasts were stained with tartrate-resistant acid phosphatase (TRAP). The formation of immune complexes was confirmed by immunohistological staining of C1qB. Serum levels of anti-S. aureus and anti-A. actinomycetemcomitans IgG antibodies in the immunized groups were significantly higher than those in the non-immunized groups were. The loss of attachment, increase in apical migration of the junctional epithelium, and decreases in alveolar bone level and number of TRAP-positive multinuclear cells in each immunized group were significantly greater than in each non-immunized group. The presence of C1qB was observed in the junctional epithelium and adjacent connective tissue in the immunized groups. Heat-treated and sonicated S. aureus and A. actinomycetemcomitans induced attachment loss in rats immunized with their suspensions. Our results suggest that not only gram-negative but also gram-positive

  2. sRNAdb: A small non-coding RNA database for gram-positive bacteria

    PubMed Central

    2012-01-01

    Background The class of small non-coding RNA molecules (sRNA) regulates gene expression by different mechanisms and enables bacteria to mount a physiological response due to adaptation to the environment or infection. Over the last decades the number of sRNAs has been increasing rapidly. Several databases like Rfam or fRNAdb were extended to include sRNAs as a class of its own. Furthermore new specialized databases like sRNAMap (gram-negative bacteria only) and sRNATarBase (target prediction) were established. To the best of the authors’ knowledge no database focusing on sRNAs from gram-positive bacteria is publicly available so far. Description In order to understand sRNA’s functional and phylogenetic relationships we have developed sRNAdb and provide tools for data analysis and visualization. The data compiled in our database is assembled from experiments as well as from bioinformatics analyses. The software enables comparison and visualization of gene loci surrounding the sRNAs of interest. To accomplish this, we use a client–server based approach. Offline versions of the database including analyses and visualization tools can easily be installed locally on the user’s computer. This feature facilitates customized local addition of unpublished sRNA candidates and related information such as promoters or terminators using tab-delimited files. Conclusion sRNAdb allows a user-friendly and comprehensive comparative analysis of sRNAs from available sequenced gram-positive prokaryotic replicons. Offline versions including analysis and visualization tools facilitate complex user specific bioinformatics analyses. PMID:22883983

  3. Biological Characterization of Novel Inhibitors of the Gram-Positive DNA Polymerase IIIC Enzyme

    PubMed Central

    Kuhl, Alexander; Svenstrup, Niels; Ladel, Christoph; Otteneder, Michael; Binas, Annegret; Schiffer, Guido; Brands, Michael; Lampe, Thomas; Ziegelbauer, Karl; Rübsamen-Waigmann, Helga; Haebich, Dieter; Ehlert, Kerstin

    2005-01-01

    Novel N-3-alkylated 6-anilinouracils have been identified as potent and selective inhibitors of bacterial DNA polymerase IIIC, the enzyme essential for the replication of chromosomal DNA in gram-positive bacteria. A nonradioactive assay measuring the enzymatic activity of the DNA polymerase IIIC in gram-positive bacteria has been assembled. The 6-anilinouracils described inhibited the polymerase IIIC enzyme at concentrations in the nanomolar range in this assay and displayed good in vitro activity (according to their MICs) against staphylococci, streptococci, and enterococci. The MICs of the most potent derivatives were about 4 μg/ml for this panel of bacteria. The 50% effective dose of the best compound (6-[(3-ethyl-4-methylphenyl)amino]-3-{[1-(isoxazol-5-ylcarbonyl)piperidin-4-yl]methyl}uracil) was 10 mg/kg of body weight after intravenous application in a staphylococcal sepsis model in mice, from which in vivo pharmacokinetic data were also acquired. PMID:15728893

  4. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium.

    PubMed

    Idelevich, E A; Schüle, I; Grünastel, B; Wüllenweber, J; Peters, G; Becker, K

    2014-10-01

    Rapid identification of the causative microorganism is important for appropriate antimicrobial therapy of bloodstream infections. Bacteria from positive blood culture (BC) bottles are not readily available for identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lysis and centrifugation procedures suggested for direct MALDI-TOF MS from positive BCs without previous culture are associated with additional hands-on processing time and costs. Here, we describe an alternative approach applying MALDI-TOF MS from bacterial cultures incubated very briefly on solid medium. After plating of positive BC broth on Columbia blood agar (n = 165), MALDI-TOF MS was performed after 1.5, 2, 3, 4, 5, 6, 7, 8, 12 and (for control) 24 h of incubation until reliable identification to the species level was achieved (score ≥2.0). Mean incubation time needed to achieve species-level identification was 5.9 and 2.0 h for Gram-positive aerobic cocci (GPC, n = 86) and Gram-negative aerobic rods (GNR, n = 42), respectively. Short agar cultures with incubation times ≤2, ≤4, ≤6, ≤8 and ≤12 h yielded species identification in 1.2%, 18.6%, 64.0%, 96.5%, 98.8% of GPC, and in 76.2%, 95.2%, 97.6%, 97.6%, 97.6% of GNR, respectively. Control species identification at 24 h was achieved in 100% of GPC and 97.6% of GNR. Ethanol/formic acid protein extraction performed for an additional 34 GPC isolates cultivated from positive BCs showed further reduction in time to species identification (3.1 h). MALDI-TOF MS using biomass subsequent to very short-term incubation on solid medium allows very early and reliable bacterial identification from positive BCs without additional time and cost expenditure. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  5. [Identification of anaerobic gram-negative bacilli isolated from various clinical specimens and determination of antibiotic resistance profiles with E-test methods].

    PubMed

    Demir, Cengiz; Keşli, Recep

    2018-01-01

    The aim of this study was to identify gram-negative anaerobic bacilli isolated from various clinical specimens that were obtained from patients with suspected anaerobic infections and to determine the antibiotic resistance profiles by using the antibiotic concentration gradient method. The study was performed in Afyon Kocatepe University Ahmet Necdet Sezer Research and Practice Hospital, Medical Microbiology Laboratory between 1 November 2014 and 30 October 2015. Two hundred and seventyeight clinical specimens accepted for anaerobic culture were enrolled in the study. All the samples were cultivated anaerobically by using Schaedler agar with 5% defibrinated sheep blood and Schaedler broth. The isolated anaerobic gram-negative bacilli were identified by using both the conventional methods and automated identification system (VITEK 2, bioMerieux, France). Antibiotic susceptibility tests were performed with antibiotic concentration gradient method (E-test, bioMerieux, France); against penicillin G, clindamycin, cefoxitin, metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem for each isolate. Of the 28 isolated anaerobic gram-negative bacilli; 14 were identified as Bacteroides fragilis group, 9 were Prevotella spp., and 5 were Fusobacterium spp. The highest resistance rate was found against penicillin (78.5%) and resistance rates against clindamycin and cefoxitin were found as 17.8% and 21.4%, respectively. No resistance was found against metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem. As a result, isolation and identification of anaerobic bacteria are difficult, time-consuming and more expensive when compared with the cost of aerobic culture. The rate of anaerobic bacteria isolation may be increased by obtaining the appropriate clinical specimen and appropriate transportation of these specimens. We believe that the data obtained from the study in our center may offer benefits for the follow up and treatment of infections

  6. Current concepts and future strategies in the antimicrobial therapy of emerging Gram-positive spontaneous bacterial peritonitis.

    PubMed

    Fiore, Marco; Maraolo, Alberto Enrico; Gentile, Ivan; Borgia, Guglielmo; Leone, Sebastiano; Sansone, Pasquale; Passavanti, Maria Beatrice; Aurilio, Caterina; Pace, Maria Caterina

    2017-10-28

    Spontaneous bacterial peritonitis (SBP) is the most common infection in end-stage liver disease patients. SBP is defined as an ascitic fluid infection with a polymorphonuclear leucocyte count ≥ 250/mm 3 without an evident intra-abdominal surgically treatable source. Several mechanisms contribute to SBP occurrence, including translocation of gut bacteria and their products, reduced intestinal motility provoking bacterial overgrowth, alteration of the gut's barrier function and local immune responses. Historically, Gram-negative enteric bacteria have been the main causative agents of SBP, thereby guiding the empirical therapeutic choice. However, over the last decade, a worryingly increasing prevalence of Gram-positive and multi-drug resistant (MDR) SBP has been seen. Recently, the microbiological spectrum of SBP seems to have changed in Europe due to a high prevalence of Gram-positive bacteria (48%-62%). The overall proportion of MDR bacteria is up to 22%-73% of cases. Consequently, empirical therapy based on third-generation cephalosporins or amoxicillin/clavulanic acid, can no longer be considered the standard of care, as these drugs are associated with poor outcomes. The aim of this review is to describe, with an epidemiological focus, the evidence behind this rise in Gram-positive and MDR SBP from 2000 to present, and illustrate potential targeted therapeutic strategies. An appropriate treatment protocol should include daptomycin plus ceftaroline and meropenem, with prompt stepdown to a narrower spectrum when cultures and sensitivity data are available in order to reduce both cost and potential antibiotic resistance development.

  7. The Gram-positive model organism Bacillus subtilis does not form microscopically detectable cardiolipin-specific lipid domains.

    PubMed

    Pogmore, Alex-Rose; Seistrup, Kenneth H; Strahl, Henrik

    2018-04-01

    Rather than being homogenous diffusion-dominated structures, biological membranes can exhibit areas with distinct composition and characteristics, commonly termed as lipid domains. Arguably the most comprehensively studied examples in bacteria are domains formed by cardiolipin, which have been functionally linked to protein targeting, the cell division process and the mode of action of membrane-targeting antimicrobials. Cardiolipin domains were originally identified in the Gram-negative model organism Escherichia coli based on preferential staining by the fluorescent membrane dye nonylacridine orange (NAO), and later reported to also exist in other Gram-negative and -positive bacteria. Recently, the lipid-specificity of NAO has been questioned based on studies conducted in E. coli. This prompted us to reanalyse cardiolipin domains in the Gram-positive model organism Bacillus subtilis. Here we show that logarithmically growing B. subtilis does not form microscopically detectable cardiolipin-specific lipid domains, and that NAO is not a specific stain for cardiolipin in this organism.

  8. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014

    PubMed Central

    Pfaller, M. A.; Sader, H. S.; Rhomberg, P. R.

    2017-01-01

    ABSTRACT The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae. Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. PMID:28167542

  9. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014.

    PubMed

    Pfaller, M A; Sader, H S; Rhomberg, P R; Flamm, R K

    2017-04-01

    The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus , Streptococcus pneumoniae , viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. Copyright © 2017 Pfaller et al.

  10. Naumannella halotolerans gen. nov., sp. nov., a Gram-positive coccus of the family Propionibacteriaceae isolated from a pharmaceutical clean room and from food.

    PubMed

    Rieser, Gernot; Scherer, Siegfried; Wenning, Mareike

    2012-12-01

    Four Gram-stain-positive, aerobic bacterial strains isolated from a pharmaceutical clean room (strain WS4616(T)), a dessert milk product (strain WS4617) and from raw milk (strains WS4623 and WS4624) were characterized using a polyphasic approach. Phylogenetic analyses based on 16S rRNA and recA gene sequences showed that they formed a distinct lineage within the family Propionibacteriaceae. Similarity values between 16S rRNA gene sequences of the four novel strains and the type species of all genera belonging to the family Propionibacteriaceae were 89.2-94.1%. The major cellular fatty acid was anteiso-C(15:0) and the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. Respiratory quinones were MK-8(H(4)) and MK-9(H(4)). The cell-wall peptidoglycan of type A3γ contained ll-diaminopimelic acid, alanine, glycine and glutamic acid. The G+C content of the genomic DNA of strain WS4616(T) was 67.7 mol%. The whole-cell sugar pattern contained ribose, mannose, arabinose, glucose and galactose. On the basis of phenotypic and genetic data, strains WS4616(T), WS4617, WS4623 and WS4624 are classified as members of a novel species in a new genus of the family Propionibacteriaceae, for which the name Naumannella halotolerans gen. nov., sp. nov. is proposed. The type strain is WS4616(T) ( = DSM 24323(T) = LMG 26184(T)) and three additional strains are WS4617, WS4623 and WS4624.

  11. In Vitro Antimicrobial Activity of Razupenem (SMP-601, PTZ601) against Anaerobic Bacteria▿

    PubMed Central

    Tran, Chau Minh; Tanaka, Kaori; Yamagishi, Yuka; Goto, Takatsugu; Mikamo, Hiroshige; Watanabe, Kunitomo

    2011-01-01

    We evaluated the in vitro antianaerobic activity of razupenem (SMP-601, PTZ601), a new parenterally administered carbapenem, against 70 reference strains and 323 clinical isolates. Razupenem exhibited broad-spectrum activity against anaerobes, inhibiting most of the reference strains when used at a concentration of ≤1 μg/ml. Furthermore, it exhibited strong activity, comparable to those of other carbapenems (meropenem and doripenem), against clinically isolated non-fragilis Bacteroides spp. (MIC90s of 2 μg/ml), with MIC90 values of 0.06, 0.03, and 0.5 μg/ml against Prevotella spp., Porphyromonas spp., and Fusobacterium spp., respectively. Clinical isolates of anaerobic Gram-positive cocci, Eggerthella spp., and Clostridium spp. were highly susceptible to razupenem (MIC90s, 0.03 to 1 μg/ml). PMID:21343447

  12. Stronger T Cell Immunogenicity of Ovalbumin Expressed Intracellularly in Gram-Negative than in Gram-Positive Bacteria

    PubMed Central

    Martner, Anna; Östman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L. Vincent; Axelsson, Lars; Wold, Agnes E.

    2013-01-01

    This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development. PMID:23741469

  13. Clinical significance of coryneform Gram-positive rods from blood identified by MALDI-TOF mass spectrometry and their susceptibility profiles - a retrospective chart review.

    PubMed

    Mushtaq, Ammara; Chen, Derrick J; Strand, Gregory J; Dylla, Brenda L; Cole, Nicolynn C; Mandrekar, Jayawant; Patel, Robin

    2016-07-01

    With the advent of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), most Gram-positive rods (GPRs) are readily identified; however, their clinical relevance in blood cultures remains unclear. Herein, we assessed the clinical significance of GPRs isolated from blood and identified in the era of MALDI-TOF MS. A retrospective chart review of patients presenting to the Mayo Clinic, Rochester, MN, from January 1, 2013, to October 13, 2015, was performed. Any episode of a positive blood culture for a GPR was included. We assessed the number of bottles positive for a given isolate, time to positivity of blood cultures, patient age, medical history, interpretation of culture results by the healthcare team and whether infectious diseases consultation was obtained. We also evaluated the susceptibility profiles of a larger collection of GPRs tested in the clinical microbiology laboratory of the Mayo Clinic, Rochester, MN from January 1, 2013, to October 31, 2015. There were a total of 246 GPRs isolated from the blood of 181 patients during the study period. 56% (n = 101) were deemed contaminants by the healthcare team and were not treated; 33% (n = 59) were clinically determined to represent true bacteremia and were treated; and 8% (n = 14) were considered of uncertain significance, with patients prescribed treatment regardless. Patient characteristics associated with an isolate being treated on univariate analysis included younger age (P = 0.02), identification to the species level (P = 0.02), higher number of positive blood culture sets (P < 0.0001), lower time to positivity (P < 0.0001), immunosuppression (P = 0.03), and recommendation made by an infectious disease consultant (P = 0.0005). On multivariable analysis, infectious diseases consultation (P = 0.03), higher number of positive blood culture sets (P = 0.0005) and lower time to positivity (P = 0.03) were associated with an isolate being treated. 100, 83, 48 and 34% of GPRs

  14. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    PubMed Central

    Pitman, Stephanie; Cho, Kyu Hong

    2015-01-01

    The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described. PMID:26694351

  15. Development of Methionyl-tRNA Synthetase Inhibitors as Antibiotics for Gram-Positive Bacterial Infections.

    PubMed

    Faghih, Omeed; Zhang, Zhongsheng; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Huang, Wenlin; Shibata, Sayaka; Barros-Álvarez, Ximena; Verlinde, Christophe L M J; Hol, Wim G J; Fan, Erkang; Buckner, Frederick S

    2017-11-01

    Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus , Enterococcus , and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development. Copyright © 2017 American Society for Microbiology.

  16. Liver abscesses in dromedary camels: Pathological characteristics and aerobic bacterial aetiology

    PubMed Central

    Aljameel, M.A.; Halima, M.O.; ElTigani-Asil, A.E.; Abdalla, A.S.; Abdellatif, M.M.

    2014-01-01

    The study was carried out at Nyala abattoirs, South Darfur State, Sudan during a period from 2009 to 2011. Slaughtered camels (822) were examined for pathological changes of liver abscesses and identification of the involved aerobic bacteria. Grossly, a total of 111 (13.5%) liver abscesses were recorded in different camel ages; 90 (81.1%) were less than seven years old and 21 (18.9%) were more than seven years old. Histopathology of sectioned tissues revealed necrotic abscesses with infiltration of inflammatory cells, hydropic degeneration with swelling of hepatocytes comprising the sinusoid and different size of vacuoles in the hepatic cells. Proliferation of bile ducts with fibrous tissue and infiltration of inflammatory cells was also recorded. Investigation of bacteria revealed 90 aerobic isolates; they were identified to 52 (57.8%) gram positive cocci, 20 (22.2%) gram positive rods and 18 (20.0%) gram negative rods. Staphylococcus spp. (41.1%), Corynebacterium spp. (17.9%) and Streptococcus spp. (13.3%) were the most frequently identified bacteria involved in liver abscesses of camels in the region. Further studies are required to assess the pathogenicity of bacterial isolates from camel livers. This is particularly important from a public health perspective, since some people of Sudan are known to consume raw camel liver. PMID:26623351

  17. Microbiology of Drycleaning

    PubMed Central

    Banville, Robert R.; McNeil, Ethel

    1966-01-01

    An appreciable number of bacteria on contaminated fabric survived modern drycleaning procedures. Various stages in the process, especially steam pressing, reduced the total number of bacteria, but viable organisms were found on certain areas of garments even after pressing. A significant number of bacteria were redeposited on clean fabric during the washing of ordinary soiled garments in drycleaning units. These bacteria included gram-positive cocci, diphtheroid bacilli, and gram-positive sporeformers. Gram-negative bacilli were seldom found, although some gram-negative bacilli survived drycleaning. The redeposited organisms apparently came mainly from other garments in the same loads, as few bacteria were isolated from the filtered solvent used for washing. The number of bacteria in the drycleaning washwheel was highest shortly after the beginning of the wash, and decreased, with the exchange of solvent in the wheel, to a low level at the end. Although it appears that in most cases several factors combine to reduce to a low level the numbers of bacteria on articles cleaned in a well-operated drycleaning plant, it would seem that under certain conditions pathogenic microorganisms could be disseminated by drycleaning. Images Fig. 2 PMID:4958148

  18. Isolation of anaerobes from bubo associated with chancroid.

    PubMed Central

    Kumar, B; Sharma, V K; Bakaya, V; Ayyagiri, A

    1991-01-01

    Ten men with bubo associated with chancroid were studied for bacterial flora especially anaerobes. Anaerobes were isolated from all 10 buboes and eight out of 10 ulcers of chancroid. Anaerobic cocci, B melaninogenicus and B fragilis were the most common isolates. anaerobes probably play a role in the pathogenesis of bubo in chancroid. PMID:1680792

  19. A molecular gram stain using broad range PCR and pyrosequencing technology: a potentially useful tool for diagnosing orthopaedic infections.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Togawa, Daisuke; Lieberman, Isador H; Sakai, Hiroshige; Fujishiro, Takaaki; Tuohy, Marion J; Procop, Gary W

    2005-06-01

    The bacteria associated with orthopaedic infections are usually common gram-positive and gram-negative bacteria. This fundamental grouping of bacteria is a necessary first step in the selection of appropriate antibiotics. Since polymerase chain reaction (PCR) is more rapid and may be more sensitive than culture, we developed a postamplification pyrosequencing method to subcategorize bacteria based on a few nucleotide polymorphisms in the 16S rRNA gene. We validated this method using well-characterized strains of bacteria and applied it to specimens from spinal surgery cases with suspected infections. Lysates of 114 bacteria including 75 species were created following standard cultivation to obtain DNA. The DNA was amplified by a broad-range real-time PCR. The amplicons were evaluated by pyrosequencing and were classified as gram-positive, gram-negative, or acid-fast bacilli based on the first three to five nucleotides sequenced. In addition, clinical cases of suspected infection were obtained from spinal surgery. The results of the "molecular Gram stain" were compared with the results of traditional Gram stain and culture. The lysates of 107 (93.9%) of the bacteria extracts tested were appropriately categorized as gram-positive and gram-negative or as acid-fast bacilli on the basis of this assay. The sensitivity and specificity of this assay were 100% and 97.4% for gram-positive and 88.3% and 100% for gram-negative isolates. All of the five clinical samples were appropriately categorized as containing gram-positive or gram-negative bacteria with this assay. This study demonstrates that high sensitivity and specificity of a molecular gram stain may be achieved using broad-range real-time PCR and pyrosequencing.

  20. A novel combination approach of human polyclonal IVIG and antibiotics against multidrug-resistant Gram-positive bacteria

    PubMed Central

    Sallam, Mariam Madkour; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-01-01

    Background Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and enterococci, have shown a remarkable ability to develop resistance to antimicrobial agents. Objective We aimed to assess possible enhancement of the antimicrobial activity of vancomycin, amoxicillin, clarithromycin, and azithromycin by human polyclonal intravenous immunoglobulin G (IVIG) against 34 multidrug-resistant (MDR) bacterial isolates, including MRSA, Enterococcus faecium, and Enterococcus faecalis. Materials and methods Double combinations of the antibiotics with the IVIG were assessed by checkerboard assay, where the interaction was evaluated with respect to the minimum inhibitory concentration (MIC) of the antibiotics. The results of the checkerboard assay were verified in vitro using time-kill assay and in vivo using an invasive sepsis murine model. Results The checkerboard assay showed that IVIG enhanced the antimicrobial activity of amoxicillin and clarithromycin against isolates from the three groups of bacteria, which were resistant to the same antibiotics when tested in the absence of IVIG. The efficacy of vancomycin against 15% of the tested isolates was enhanced when it was combined with the antibodies. Antagonism was demonstrated in 47% of the E. faecalis isolates when clarithromycin was combined with the IVIG. Synergism was proved in the time-kill assay when amoxicillin was combined with the antibodies; meanwhile, antagonism was not demonstrated in all tested combinations, even in combinations that showed such response in checkerboard assay. Conclusion The suggested approach is promising and could be helpful to enhance the antimicrobial activity of not only effective antibiotics but also antibiotics that have been proven to be ineffective against MDR bacteria. To our knowledge, this combinatorial approach against MDR bacteria, such as MRSA and enterococci, has not been investigated before. PMID:27994476

  1. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    PubMed

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi. © The Author(s) 2012.

  2. In vitro activity of tigecycline and comparators against gram-negative bacteria isolated from a tertiary hospital in Alexandria, Egypt.

    PubMed

    Mohamed, Nelly M; Youssef, Alaa A F

    2011-12-01

    The emergence of infections caused by multidrug-resistant Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, has necessitated the search for alternative therapy by either introducing new agents or renewing interest in old agents. This study compares the in vitro activity of tigecycline (TIG), recently introduced to Egyptian market, to other potentially active antimicrobials as Colistin (COL), imipenem (IPM), levofloxacin (LEV), and piperacillin/tazobactam (PIP/TAZ) against 67 Gram-negative clinical isolates obtained from El- Meery Hospital in Alexandria, Egypt. El-Meery Hospital is a 1,500-bed tertiary teaching hospital where TIG has not been previously used. Based on MIC(90)s, TIG was found to be a comparator to IPM and COL (MIC(90)= 8 μg/ml). LEV and PIP/TAZ were less active than TIG exhibiting high MIC(90)s. TIG inhibited 100% of Escherichia coli and K. pneumoniae and 60% of Ps. aeruginosa and A. baumannii isolates. In time-kill studies against IPM-resistant isolates, TIG showed bactericidal activity after 6 hours of contact against the Enterobacteriaceae isolates and after 3 hours for the tested Ps. aeruginosa isolates at 4× and 8× MIC. Against A. baumannii, TIG exerted a bacteriostatic effect. TIG demonstrated variable ability to suppress biofilm formation affecting mainly E. coli and A. baumannii isolates. These results point TIG to be a promising agent in treatment of infections caused by strains for which adequate therapy has been limited. As far as we know, this is the first report evaluating the in vitro activity of TIG against Egyptian clinical isolates.

  3. Exit Site Infection due to Mycobacterium chelonae in an Elderly Patient on Peritoneal Dialysis.

    PubMed

    Hibi, Arata; Kasugai, Takahisa; Kamiya, Keisuke; Ito, Chiharu; Kominato, Satoru; Miura, Toshiyuki; Koyama, Katsushi

    2018-01-01

    Nontuberculous mycobacteria (NTM) are rarely isolated from peritoneal dialysis (PD)-associated catheter infections. However, NTM infection is usually difficult to treat and leads to catheter loss. Prompt diagnosis is essential for appropriate treatment. A 70-year-old Japanese man who had been on PD for 2 years and with a medical history of 2 episodes of exit site infections (ESIs) due to methicillin-resistant Staphylococcus aureus was admitted to the hospital due to suspected ESI recurrence. However, Gram staining of the pus revealed no gram-positive cocci. Instead, weakly stained gram-positive rods were observed after 7 days of incubation, which were also positive for acid-fast staining. Rapidly growing NTM Mycobacterium chelonae was isolated on day 14. Despite administering a combination antibiotic therapy, ESI could not be controlled, and catheter removal surgery was performed on day 21. Although PD was discontinued temporarily, the patient did not require hemodialysis, without any uremic symptoms. The catheter was reinserted on day 48, and PD was reinitiated on day 61. The patient was discharged on day 65. Antibiotic therapy was continued for 3 months after discharge, with no indications of recurrent infections observed. It is important to consider the risk of NTM infections in patients on PD. Acid-fast staining could be a key test for prompt diagnosis and provision of an appropriate treatment.

  4. Leuconostoc garlicum: an unusual pathogen in the era of vancomycin therapy.

    PubMed

    Kumar, Anil; Augustine, Deepthi; Mehta, Asmita; Dinesh, Kavitha R; Viswam, Darsana; Philip, Rosamma

    2012-01-01

    Leuconostoc garlicum, belonging to the family of Leuconostocaceae, is a catalase-negative, Gram-positive ovoid cocci, intrinsically resistant to vancomycin. Clinical infection by Leuconostoc garlicum is rare. We report a case of respiratory tract infection subsequent to vancomycin therapy.

  5. Secretory phospholipase A2 in dromedary tears: a host defense against staphylococci and other gram-positive bacteria.

    PubMed

    Ben Bacha, Abir; Abid, Islem

    2013-03-01

    The best known physiologic function of secreted phospholipase A2 (sPLA2) group IIA (sPLA2-IIA) is defense against bacterial infection through hydrolytic degradation of bacterial membrane phospholipids. In fact, sPLA2-IIA effectively kills Gram-positive bacteria and to a lesser extent Gram-negative bacteria and is considered a major component of the eye's innate immune defense system. The antibacterial properties of sPLA2 have been demonstrated in rabbit and human tears. In this report, we have analyzed the bactericidal activity of dromedary tears and the subsequently purified sPLA2 on several Gram-positive bacteria. Our results showed that the sPLA2 displays a potent bactericidal activity against all the tested bacteria particularly against the Staphylococcus strains when tested in the ionic environment of tears. There is a synergic action of the sPLA2 with lysozyme when added to the bacteria culture prior to sPLA2. Interestingly, lysozyme purified from dromedary tears showed a significant bactericidal activity against Listeria monocytogene and Staphylococcus epidermidis, whereas the one purified from human tears displayed no activity against these two strains. We have also demonstrated that Ca(2+) is crucial for the activity of dromedary tear sPLA2 and to a less extent Mg(2+) ions. Given the presence of sPLA2 in tears and intestinal secretions, this enzyme may play a substantial role in innate mucosal and systemic bactericidal defenses against Gram-positive bacteria.

  6. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    PubMed

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  7. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    PubMed

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were < 0.06 to >128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical

  8. β-lactam resistance in gram-negative pathogens isolated from animals.

    PubMed

    Trott, Darren

    2013-01-01

    Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.

  9. Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    PubMed Central

    Passaretti, Teresa V.; Jose, Reashma; Cole, Jocelyn; Coorevits, An; Carpenter, Andrea N.; Jose, Sherly; Van Landschoot, Anita; Izard, Jacques; Kohlerschmidt, Donna J.; Vandamme, Peter; Dewhirst, Floyd E.; Fisher, Mark A.; Musser, Kimberlee A.

    2013-01-01

    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T  = DSM 25276T  = LMG 26725T) is proposed. PMID:22798652

  10. Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility.

    PubMed

    Neu, T R; Verkerke, G J; Herrmann, I F; Schutte, H K; Van der Mei, H C; Busscher, H J

    1994-05-01

    Silicone rubber voice prostheses are implants which are inserted in a non-sterile environment and therefore become quickly colonized by micro-organisms. The micro-organisms exist on the medical grade silicone rubber as mixed biofilms of bacteria and yeasts. A total of 79 bacterial and 39 yeast strains were isolated from these biofilms by soft ultrasonic treatment. Gram-positive/catalase-negative and Gram-positive/catalase-positive cocci represented the dominant bacterial strains. The yeasts were mainly Candida species. Further characterization of cell surface properties such as hydrophobicity by microbial adhesion to hexadecane and electrophoretic mobility showed a distinct difference when the bacterial strains were compared with the yeasts. The bacterial hydrophobicities ranged from 0 to 100% adhesion to hexadecane, whereas the yeast strains, especially the Candida albicans strains, all had markedly hydrophilic cell surfaces. A comparison of the electrophoretic mobilities showed also differences between bacteria and yeast. The values for the bacteria were found to be between -2.5 to -0.5 (10(-8) m2 V-1 s-1), whereas for the yeasts electrophoretic mobilities were more positive. Based on the adhesive properties of the isolated micro-organisms, strategies can now be developed to modify the properties of the silicone rubber to reduce biofilm formation on such prostheses.

  11. Carbapenem stewardship: positive impact on hospital ecology.

    PubMed

    Lima, Ana Lucia Lei Munhoz; Oliveira, Priscila Rosalba Domingos de; Paula, Adriana Pereira de; Dal-Paz, Karine; Almeida, João Nóbrega de; Félix, Cássia da Silva; Rossi, Flávia

    2011-01-01

    Excessive group 2 carbapenem use may result in decreased bacterial susceptibility. We evaluated the impact of a carbapenem stewardship program, restricting imipenem and meropenem use. Ertapenem was mandated for ESBL-producing Enterobacteriaceae infections in the absence of non-fermenting Gram-negative bacilli (GNB) from April 2006 to March 2008. Group 2 carbapenems were restricted for use against GNB infections susceptible only to carbapenems and suspected GNB infections in unstable patients. Cumulative susceptibility tests were done for nosocomial pathogens before and after restriction using Clinical and Laboratory Standards Institute (CLSI) guide-lines.Vitek System or conventional identification methods were performed and susceptibility testing done by disk diffusion according to CLSI.Antibiotic consumption (t-test) and susceptibilities (McNemar's test) were determined. The defined daily doses (DDD) of group 2 carbapenems declined from 61.1 to 48.7 DDD/1,000 patient-days two years after ertapenem introduction (p = 0.027). Mean ertapenem consumption after restriction was 31.5 DDD/1,000 patient-days. Following ertapenem introduction no significant susceptibility changes were noticed among Gram-positive cocci. The most prevalent GNB were P. aeruginosa, Klebsiella pneumoniae, and Acinetobacter spp. There was no change in P. aeruginosa susceptibility to carbapenems. Significantly improved P. aeruginosa and K. pneumoniae ciprofloxacin susceptibilities were observed, perhaps due to decreased group 2 carbapenem use. K. pneumoniae susceptibility to trimethoprim-sulfamethoxazole improved. Preferential use of ertapenem resulted in reduced group 2 carbapenem use, with a positive impact on P. aeruginosa and K. pneumoniae susceptibility.

  12. Systemic Staphylococcus pseudintermedius infection in an arctic fox (Vulpes lagopus) with severe multifocal suppurative meningoencephalitis and nephritis.

    PubMed

    Iwata, Kei; Kasuya, Kazufumi; Takayama, Kou; Nakahara, Yusuke; Kobayashi, Yoshifumi; Kato, Asako; Senba, Hironobu; Yanagisawa, Masae; Shibahara, Tomoyuki

    2018-06-11

    A 2-year-female arctic fox (Vulpes lagopus) developed anorexia, dehydration, and emaciation during the quarantine period for importation from Norway, and died 17 days later. At necropsy, a fistula was observed on the left gluteal region, and the left eye, left brain, and kidneys were discolored. Histologically, severe diffuse suppurative meningoencephalitis and renal abscesses were detected. Numerous Gram-positive cocci were detected in these lesions. Multidrug-susceptible Staphylococcus pseudintermedius were isolated from the lesions. These results suggest that S. pseudintermedius can cause severe multifocal suppurative meningoencephalitis and nephritis in foxes. This is the first report of multidrug-susceptible S. pseudintermedius meningoencephalitis and nephritis in a fox.

  13. Use of the gram stain in microbiology.

    PubMed

    Beveridge, T J

    2001-05-01

    The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be "gram-positive," whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be "gram-negative." This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.

  14. Linezolid: a pharmacoeconomic review of its use in serious Gram-positive infections.

    PubMed

    Plosker, Greg L; Figgitt, David P

    2005-01-01

    Linezolid (Zyvox), the first available oxazolidinone antibacterial agent, has good activity against Gram-positive pathogens, including multidrug-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Randomised multicentre trials in patients with various types of serious Gram-positive infections showed that clinical cure rates with linezolid were similar to those with vancomycin or teicoplanin. In some subgroup analyses, which must be interpreted with a degree of caution, clinical advantages were noted for linezolid (e.g. versus vancomycin in confirmed MRSA nosocomial pneumonia and MRSA-complicated skin and soft tissue infections). Although generally well tolerated, gastrointestinal adverse effects are relatively common with linezolid and it has been associated with thrombocytopenia and myelosuppression. The oral bioavailability of linezolid is approximately 100%, thus allowing sequential intravenous-to-oral administration without changing the drug or dosage regimen. Healthcare resource use data from various countries indicate that this practical advantage translates into at least a trend towards reduced length of hospital stay compared with vancomycin, which may offset its several-fold higher acquisition cost. Modelled analyses from the US, despite some limitations, indicate that, compared with vancomycin, linezolid is associated with lower total hospitalisation costs for the treatment of patients with cellulitis and has a favourable incremental cost-effectiveness ratio of approximately US30,000 dollars per QALY gained (2001 value) for patients with ventilator-associated pneumonia. Broadly similar results have also been reported in modelled analyses from other countries. In conclusion, for patients with serious Gram-positive infections, including those caused by suspected or proven multidrug-resistant pathogens such as MRSA, linezolid is an effective and generally well tolerated therapeutic

  15. Culture-positive sepsis in neonatal camelids: 21 cases.

    PubMed

    Dolente, Brett A; Lindborg, Susan; Palmer, Jonathan E; Wilkins, Pamela A

    2007-01-01

    There is limited literature on neonatal bacterial sepsis in New World (NW) camelids. Bacterial culture-positive crias have clinical differences based on the specific bacterial genera isolated. Bacterial culture-positive NW camelid crias <21 days of age from 1990 to 2005 were included. Historic physical examination and cliniopathologic data were retrieved from medical records as were the identity and antibiograms of bacterial isolates. Cases were categorized by outcome (survival versus nonsurvival) and type of sepsis (gram-negative or gram-positive). Kruskal-Wallis and chi-square testing were used to evaluate differences between groups. Twenty-one crias met the inclusion criteria. Median age was 2 days. Failure of passive transfer was common. There were few differences identified on the basis of outcome or type of sepsis. Crias without gastrointestinal or central nervous system involvement survived in greater numbers. Forty-six percent of isolates were gram-positive. The most common isolates were the following: Escherichia coli, Enterococcus spp., Listeria monocytogenes, and Citrobacter spp. Overall survival was 67% (14/21). Crias with sepsis do not appear to present with major biochemical, hematologic, or blood gas abnormalities, potentially complicating diagnosis. Affected crias may not have localizing signs at presentation and are not usually febrile, although hypothermia, tachypnea, and tachycardia are relatively common. Total protein concentration was not a substitute for immunoglobulin G measurement in septic crias in this study. Familiarity with the clinical presentation and common pathogens isolated should improve early recognition and treatment and ultimately outcome of crias with sepsis.

  16. C8-Linked Pyrrolobenzodiazepine Monomers with Inverted Building Blocks Show Selective Activity against Multidrug Resistant Gram-Positive Bacteria.

    PubMed

    Andriollo, Paolo; Hind, Charlotte K; Picconi, Pietro; Nahar, Kazi S; Jamshidi, Shirin; Varsha, Amrit; Clifford, Melanie; Sutton, J Mark; Rahman, Khondaker Miraz

    2018-02-09

    Antimicrobial resistance has become a major global concern. Development of novel antimicrobial agents for the treatment of infections caused by multidrug resistant (MDR) pathogens is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents initially discovered and isolated from natural sources. Recently, C8-linked PBD biaryl conjugates have been shown to be active against some MDR Gram-positive strains. To explore the role of building block orientations on antibacterial activity and obtain structure activity relationship (SAR) information, four novel structures were synthesized in which the building blocks of previously reported compounds were inverted, and their antibacterial activity was studied. The compounds showed minimum inhibitory concentrations (MICs) in the range of 0.125-32 μg/mL against MDR Gram-positive strains with a bactericidal mode of action. The results showed that a single inversion of amide bonds reduces the activity while the double inversion restores the activity against MDR pathogens. All inverted compounds did not stabilize DNA and lacked eukaryotic toxicity. The compounds inhibit DNA gyrase in vitro, and the most potent compound was equally active against both wild-type and mutant DNA gyrase in a biochemical assay. The observed activity of the compounds against methicillin resistant S. aureus (MRSA) strains with equivalent gyrase mutations is consistent with gyrase inhibition being the mechanism of action in vivo, although this has not been definitively confirmed in whole cells. This conclusion is supported by a molecular modeling study showing interaction of the compounds with wild-type and mutant gyrases. This study provides important SAR information about this new class of antibacterial agents.

  17. Streptococcus mutans: a new Gram-positive paradigm?

    PubMed Central

    Quivey, Robert G.; Koo, Hyun; Abranches, Jacqueline

    2013-01-01

    Despite the enormous contributions of the bacterial paradigms Escherichia coli and Bacillus subtilis to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable in vitro and in vivo systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen Streptococcus mutans have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places S. mutans, an organism that evolved in close association with the human host, as a novel Gram-positive model organism. PMID:23393147

  18. Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran

    PubMed Central

    RoushanZadeh, S; Eskandari, M. H.; Shekarforoush, S. S.; Hosseini, A

    2014-01-01

    Morphological, biochemical and molecular characteristics were studied to identify dominant lactic acid bacteria (LAB), isolated from traditional yoghurts produced by tribes of Iran. From 60 yoghurt samples, a total of 137 LAB isolates were determined, in which 66 and 71 were identified as lactic acid cocci and bacilli, respectively. Biochemical tests showed the occurrence of 9.76% mesophilic homofermentative, 10.98% mesophilic hetrofermentative, 26.83% thermophilic homofermentative and 47.56% mesophilic homofermentative cocci. As for lactic acid bacilli, mesophilic facultative hetrofermentative (26%); thermophilic obligate homofermentative (56%); mesophilic obligate hetrofermentative (18%) were found. Genetically the presence of the following species were verified: E. faecium; E. faecalis; E. durans; L. lactis subsp. lactis; St. thermophilus; Lb. delbruecki subsp. bulgaricus; Lb. brevis; Lb. diolivorans; Lb. helveticus; Lb. jensenii; Lb. plantarum. 9% of the Lactobacillus isolates showed incompatible results between phenotypic and genotypic characteristics. From the cocci isolates, 38.46% showed identical results between phylogenetic characteristics. The current study constitutes the first step in the designing process of LAB starter cultures, to protect the typical organoleptic characteristics of traditional yoghurt. The results could also be used to introduce new starter cultures for commercial use. PMID:27175129

  19. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    PubMed

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  20. Isolation of a Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9.

    PubMed

    Takaku, Hiroaki; Kimoto, Ayumi; Kodaira, Shoko; Nashimoto, Masayuki; Takagi, Masamichi

    2006-11-01

    A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.

  1. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages

    PubMed Central

    Datta, Simanti; Costantino, Nina; Zhou, Xiaomei; Court, Donald L.

    2008-01-01

    We report the identification and functional analysis of nine genes from Gram-positive and Gram-negative bacteria and their phages that are similar to lambda (λ) bet or Escherichia coli recT. Beta and RecT are single-strand DNA annealing proteins, referred to here as recombinases. Each of the nine other genes when expressed in E. coli carries out oligonucleotide-mediated recombination. To our knowledge, this is the first study showing single-strand recombinase activity from diverse bacteria. Similar to bet and recT, most of these other recombinases were found to be associated with putative exonuclease genes. Beta and RecT in conjunction with their cognate exonucleases carry out recombination of linear double-strand DNA. Among four of these foreign recombinase/exonuclease pairs tested for recombination with double-strand DNA, three had activity, albeit barely detectable. Thus, although these recombinases can function in E. coli to catalyze oligonucleotide recombination, the double-strand DNA recombination activities with their exonuclease partners were inefficient. This study also demonstrated that Gam, by inhibiting host RecBCD nuclease activity, helps to improve the efficiency of λ Red-mediated recombination with linear double-strand DNA, but Gam is not absolutely essential. Thus, in other bacterial species where Gam analogs have not been identified, double-strand DNA recombination may still work in the absence of a Gam-like function. We anticipate that at least some of the recombineering systems studied here will potentiate oligonucleotide and double-strand DNA-mediated recombineering in their native or related bacteria. PMID:18230724

  2. A super-infection in the cornea caused by Stemphylium, Acremonium, and α-Streptococcus.

    PubMed

    Hotta, Fumika; Eguchi, Hiroshi; Nishimura, Keiko; Kogiso, Masahiro; Ishimaru, Mayumi; Kusaka, Shunji; Shimomura, Yoshikazu; Yaguchi, Takashi

    2017-03-09

    Polymicrobial keratitis with fungus and bacteria can lead to blindness and is challenging to treat. Here, we introduce a case of fungal keratitis caused by two different strains in addition to definite bacterial super-infection caused by an α-Streptococcus sp., and describe the importance of microscopic examination. A 74-year-old woman, who had a past history of infection with leprosy, presented with conjunctival hyperaemia, pain, and corneal opacity in her right eye. Under the presumptive diagnosis of infectious keratitis, corneal scrapings were stained by various reagents and inoculated on several agar plates. Microscopic findings of the scrapings revealed fungi and a small number of Gram-positive cocci. Multiple anti-fungal therapies with levofloxacin ophthalmic solution were administered. Although empiric treatment was initially effective, keratitis recurred 10 days after its initiation. Repeated corneal scraping revealed an abundance of Gram-positive chain cocci and a small amount of fungi, resulting in the switching of an antibiotic medication from levofloxacin to moxifloxacin and cefmenoxime. Keratitis resolved gradually after the conversion. Stemphylium sp., Acremonium sp., and α-Streptococcus sp. were simultaneously isolated from the corneal scrapings. To the best of our knowledge, this is the first case of fungal keratitis caused by Stemphylium sp., and also the first case of super-infection in the cornea caused by two different fungi and one bacterium. Microscopic examination of the corneal scrapings was beneficial in rapid decision of changing to appropriate drug according to the dominancy of pathogenicity.

  3. [Antimicrobial susceptibility patterns of Gram-negative bacteria isolated in urinary tract infections in Venezuela: Results of the SMART study 2009-2012].

    PubMed

    Guevara, Napoleón; Guzmán, Manuel; Merentes, Altagracia; Rizzi, Adele; Papaptzikos, Juana; Rivero, Narlesky; Oranges, Carmela; Vlllarroel, Héctor; Limas, Yoxsivell

    2015-12-01

    Antimicrobial resistance of pathogens causing urinary tract infection (UTI) is a growing problem, which complicates their effective treatment. Surveillance is needed to guide appropriate empiric therapy. to describe the susceptibility patterns of Gram-negative bacteria isolated of patients with UTI to twelve antibiotics as part of the Study for Monitoring Antimicrobial Resistance Trends in Venezuela. Between 2009-2012 a total of 472 Gram-negative bacteria were isolated from hospitalized patients with UTI. The isolates were sent to Central Laboratory (Central Laboratory of International Health Management Associates) to confirm their identification, and to make susceptibility testing as recommended by the Clinical and Laboratory Standards Institute. Enterobacteriacea comprised 96.6% of the total, where Escherichia coli (76.9%) and Klebsiella pneumoniae (10.6%) were the most frequent. Extended-spectrum β-lactamases (ESBL) was detected in 21.6% of isolates. Top antimicrobial activity were ertapenem, imipenem, and amikacin (> 90.0%), slightly lower for amikacin (85.1%) in ESBL-producing strains. Resistance rates to fluoroquinolones and ampicillin/sulbactam were high (40 y 64%, respectively). These data suggest a necessary revision of the therapeutic regimens for the empirical treatment of UTI in Venezuela.

  4. Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

    PubMed Central

    Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.-S.; Leflèche, A.; Badell, E.; Guiso, N.; Leclercq, A.; Le Monnier, A.; Lecuit, M.; Rodriguez-Nava, V.; Bergeron, E.; Raymond, J.; Vimont, S.; Bille, E.; Carbonnelle, E.; Guet-Revillet, H.; Lécuyer, H.; Beretti, J.-L.; Vay, C.; Berche, P.; Ferroni, A.; Nassif, X.

    2012-01-01

    Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry. PMID:22692743

  5. Antibiotic-Resistant Gram Negative Bacilli in Meals Delivered at a General Hospital, Italy

    PubMed Central

    Plano, Maria Rosa Anna; Di Noto, Anna Maria; Firenze, Alberto; Sciortino, Sonia; Mammina, Caterina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July—September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked. PMID:19750189

  6. Antibiotic-resistant gram negative bacilli in meals delivered at a general hospital, Italy.

    PubMed

    Plano, Maria Rosa Anna; Di Noto, Anna Maria; Firenze, Alberto; Sciortino, Sonia; Mammina, Caterina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July-September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  7. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  8. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    PubMed Central

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID

  9. rpoB Gene Sequence-Based Identification of Aerobic Gram-Positive Cocci of the Genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella

    PubMed Central

    Drancourt, Michel; Roux, Véronique; Fournier, Pierre-Edouard; Raoult, Didier

    2004-01-01

    We developed a new molecular tool based on rpoB gene (encoding the beta subunit of RNA polymerase) sequencing to identify streptococci. We first sequenced the complete rpoB gene for Streptococcus anginosus, S. equinus, and Abiotrophia defectiva. Sequences were aligned with these of S. pyogenes, S. agalactiae, and S. pneumoniae available in GenBank. Using an in-house analysis program (SVARAP), we identified a 740-bp variable region surrounded by conserved, 20-bp zones and, by using these conserved zones as PCR primer targets, we amplified and sequenced this variable region in an additional 30 Streptococcus, Enterococcus, Gemella, Granulicatella, and Abiotrophia species. This region exhibited 71.2 to 99.3% interspecies homology. We therefore applied our identification system by PCR amplification and sequencing to a collection of 102 streptococci and 60 bacterial isolates belonging to other genera. Amplicons were obtained in streptococci and Bacillus cereus, and sequencing allowed us to make a correct identification of streptococci. Molecular signatures were determined for the discrimination of closely related species within the S. pneumoniae-S. oralis-S. mitis group and the S. agalactiae-S. difficile group. These signatures allowed us to design a S. pneumoniae-specific PCR and sequencing primer pair. PMID:14766807

  10. Isolation, pathogenicity and characterization of a novel bacterial pathogen Streptococcus uberis from diseased mandarin fish Siniperca chuatsi.

    PubMed

    Luo, Xia; Fu, Xiaozhe; Liao, Guoli; Chang, Ouqin; Huang, Zhibin; Li, Ningqiu

    2017-06-01

    In recent years, mandarin fish had a high mortality rate associated with abnormal swimming, exophthalmia, corneal opacity and eye hemorrhage on a fish farm located at Foshan city, Guangdong province, China. Three isolates of Gram-positive, chain-forming cocci were recovered from moribund fish, and designated as SS131025-1, SS131025-2, and SS131025-3. These isolates were identified as Streptococcus uberis according to their morphologic and physio-biochemical characteristics as well as phylogenetic analysis based on their 16S rRNA and GapC gene sequences. The pathogenicity of S. uberis to mandarin fish was determined by challenge experiments. Results of artificial challenge showed S. uberis infected healthy mandarin fish and lead to death by eyeball injection or immersion route, and the LD 50 of SS131025-1 with eyeball injection was 2.0 × 10 6.42  CFU per fish. Moreover extracellular product (ECP) of the isolated S.uberis induced CPB cell apoptosis and cause death of mandarin fish. In addition, these S. uberis strains could also infect tilapia, but not grass carp and crucian carp, and grew in brain-heart infusion broth with an optimal temperature of 37 °C, pH of 7.0, and salinity of 0%. Antibiotic sensitivity testing indicated that these isolates were susceptible to rifampicin and furazolidone but resistant to 20 kinds of antibiotics. Histopathologically, infection with S. uberis could cause serious pathological changes in brain tissues such as vacuoles in matrix, swollen mitochondria with lysis of cristae and disintegration, and lots of coccus was observed both under electron and light microscope. These results shed some light on the pathogenicity of the isolates and how to prevent and control S. uberis infection in mandarin fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antimicrobial susceptibility testing of veterinary clinical isolates with the Sceptor System.

    PubMed Central

    Papp, J R; Muckle, C A

    1991-01-01

    The Sceptor System (Becton Dickinson) was compared with an agar dilution method for antimicrobial susceptibility testing of veterinary clinical isolates. The results indicate that the Sceptor System may be used to test gram-positive and fastidious gram-negative bacteria. PMID:1864944

  12. A standard bacterial isolate set for research on contemporary dairy spoilage.

    PubMed

    Trmčić, A; Martin, N H; Boor, K J; Wiedmann, M

    2015-08-01

    Food spoilage is an ongoing issue that could be dealt with more efficiently if some standardization and unification was introduced in this field of research. For example, research and development efforts to understand and reduce food spoilage can greatly be enhanced through availability and use of standardized isolate sets. To address this critical issue, we have assembled a standard isolate set of dairy spoilers and other selected nonpathogenic organisms frequently associated with dairy products. This publicly available bacterial set consists of (1) 35 gram-positive isolates including 9 Bacillus and 15 Paenibacillus isolates and (2) 16 gram-negative isolates including 4 Pseudomonas and 8 coliform isolates. The set includes isolates obtained from samples of pasteurized milk (n=43), pasteurized chocolate milk (n=1), raw milk (n=1), cheese (n=2), as well as isolates obtained from samples obtained from dairy-powder production (n=4). Analysis of growth characteristics in skim milk broth identified 16 gram-positive and 13 gram-negative isolates as psychrotolerant. Additional phenotypic characterization of isolates included testing for activity of β-galactosidase and lipolytic and proteolytic enzymes. All groups of isolates included in the isolate set exhibited diversity in growth and enzyme activity. Source data for all isolates in this isolate set are publicly available in the FoodMicrobeTracker database (http://www.foodmicrobetracker.com), which allows for continuous updating of information and advancement of knowledge on dairy-spoilage representatives included in this isolate set. This isolate set along with publicly available isolate data provide a unique resource that will help advance knowledge of dairy-spoilage organisms as well as aid industry in development and validation of new control strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Dynamic NETosis is Carried Out by Live Neutrophils in Human and Mouse Bacterial Abscesses and During Severe Gram-Positive Infection

    PubMed Central

    Yipp, Bryan G.; Petri, Björn; Salina, Davide; Jenne, Craig N.; Scott, Brittney N. V.; Zbytnuik, Lori D.; Pittman, Keir; Asaduzzaman, Muhammad; Wu, Kaiyu; Meijndert, H. Christopher; Malawista, Stephen E.; de Boisfleury Chevance, Anne; Zhang, Kunyan; Conly, John; Kubes, Paul

    2013-01-01

    Neutrophil extracellular traps (NETs) are released, as neutrophils die in vitro, in a process requiring hours, leaving a temporal gap for invasive microbes to exploit. Functional neutrophils undergoing NETosis have not been documented. During Gram-positive skin infections, we directly visualized live PMN in vivo rapidly releasing NETs, which prevented bacterial dissemination. NETosis occurred during crawling thereby casting large areas of NETs. NET-releasing PMN developed diffuse decondensed nuclei ultimately becoming devoid of DNA. Cells with abnormal nuclei displayed unusual crawling behavior highlighted by erratic pseudopods and hyperpolarization consistent with the nucleus being a fulcrum for crawling. A combined requirement of Tlr2 and complement mediated opsonization tightly regulated NET release. Additionally live human PMN developed decondensed nuclei and formed NETS in vivo and intact anuclear neutrophils were abundant in Gram-positive human abscesses. Therefore early in infection, non-cell death NETosis occurs in vivo during Gram-positive infection in mice and humans. PMID:22922410

  14. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength.

    PubMed

    Schastak, Stanislaw; Ziganshyna, Svitlana; Gitter, Burkhard; Wiedemann, Peter; Claudepierre, Thomas

    2010-07-20

    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100microM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100microM THPTS followed by illumination, yielded a 6lg (> or =99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.

  15. Diversity of bacterial isolates from commercial and homemade composts.

    PubMed

    Vaz-Moreira, Ivone; Silva, Maria E; Manaia, Célia M; Nunes, Olga C

    2008-05-01

    The diversity of heterotrophic bacterial isolates of three commercial and two homemade composts was studied. The commercial composts were produced from poultry litter (PC), sewage sludge (SC), municipal solid waste (MC), and homemade composts (thermal compost [DC] and vermicompost [VC]) from food wastes. The taxonomic and physiological diversity of the heterotrophic culturable bacteria was assessed using phenotypic and genotypic characterization and the analysis of the partial 16S rRNA gene sequence. Composts DC and SC presented the higher genotypic diversity, as could be inferred from the number of distinct genotypic patterns observed, 28 and 21, respectively. Gram-positive bacteria, mainly Firmicutes, were predominant in all the composts. Some organisms related with taxa rarely reported in composts, as Rhodanobacter spathiphylli, Moraxella osloensis, Lysobacter, Corynebacterium, Pigmentiphaga kullae, and new taxa were also isolated. The highest relative proportion of isolates able to degrade starch was found in compost SC (> 70%), to degrade gelatine in compost DC (> 70%), to degrade Tween 80 in compost PC (> 90%), and to degrade poly-epsilon-caprolactones in compost DC (> 80%). Compost MC presented the lowest relative proportions of isolates able to degrade starch (< 25%), gelatine (< 20%), and poly-epsilon-caprolactone (< 40%). When compared with the others, the homemade composts presented higher relative proportions of Gram-positive isolates able to inhibit the target organisms Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, or Pseudomonas aeruginosa. In compost MC, none of the Gram-positive isolates was able to inhibit those targets.

  16. New and improved? A review of novel antibiotics for Gram-positive bacteria.

    PubMed

    Abbas, M; Paul, M; Huttner, A

    2017-10-01

    The number of antibiotics in the pipeline targeting Gram-positive pathogens has increased in recent years. This narrative review aims to provide a summary of existing evidence on efficacy, microbiological spectrum and safety of novel systemic antibiotics that have either recently been licensed or completed phase III trials, and possess activity predominantly against Gram-positive organisms. A review of the published literature via the MEDLINE database was performed. In addition, ongoing trials were identified through a search of the clinical trial registration platform clinicaltrials.gov, and when necessary, pharmaceutical companies responsible for the development of the drug were contacted for further information. Data on development, microbiological spectrum, pharmacokinetic/pharmacodynamic properties, clinical efficacy, safety and cost are presented for the new cephalosporins ceftaroline and ceftobiprole; the lipoglycopeptides dalbavancin, oritavancin and telavancin; the fluoroquinolones delafloxacin, nemonoxacin and zabofloxacin; the dihydrofolate-reductase inhibitor iclaprim; the pleuromutilin lefamulin; and the tetracycline omadacycline. Although promising, these new antibiotics have so far been tested in non-severe infections whose treatment is generally uncomplicated and whose aetiologies were not predominantly multidrug-resistant pathogens. None of the new antibiotics have shown superiority to standard care, and none have been investigated for patient-relevant outcomes. Safety and pharmacokinetic data continue to be lacking. How these new drugs are to be integrated into the current armamentarium remains to be established. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Flight representative positive isolation disconnect

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Jonkoniec, T. G.

    1977-01-01

    Resolutions were developed for each problem encountered and a tradeoff analysis was performed to select a final configuration for a flight representative PID (Positive Isolation Disconnect) that is reduced in size and comparable in weight and pressure drop to the developmental PID. A 6.35 mm (1/4-inch) line size PID was fabricated and tested. The flight representative PID consists of two coupled disconnect halves, each capable of fluid isolation with essentially zero clearance between them for zero leakage upon disconnect half disengagement. An interlocking foolproofing technique prevents uncoupling of disconnect halves prior to fluid isolation. Future development efforts for the Space Shuttle subsystems that would benefit from the use of the positive isolation disconnect are also recommended. Customary units were utilized for principal measurements and calculations with conversion factors being inserted in equations to convert the results to the international system of units.

  18. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine fecal microbiota in vitro

    USDA-ARS?s Scientific Manuscript database

    Aims: The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: 1) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli, and lactate-utilizing bacteria, and 2) fermentation by equine microflora. Methods and Results: When fecal washed cel...

  19. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    PubMed

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains

  20. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  1. Prophylactic antibiotics for preventing Gram positive infections associated with long-term central venous catheters in oncology patients.

    PubMed

    van de Wetering, Marianne D; van Woensel, Job B M; Lawrie, Theresa A

    2013-11-25

    This is an updated version of the review which was first published in the Cochrane Database of Systematic Reviews in 2006. Long-term central venous catheters (CVCs), including tunnelled CVCs (TCVCs) and totally implanted devices or ports (TIDs), are increasingly used when treating oncology patients. Despite international guidelines on sterile insertion and appropriate CVC maintenance and use, infection remains a common complication. These infections are mainly caused by Gram positive bacteria. Antimicrobial prevention strategies aimed at these micro-organisms could potentially decrease the majority of CVC infections. The aim of this review was to evaluate the efficacy of antibiotics in the prevention of Gram positive infections in long-term CVCs. To determine the efficacy of administering antibiotics prior to the insertion of long-term CVCs, or flushing or locking long-term CVCs with a combined antibiotic and heparin solution, or both, to prevent Gram positive catheter-related infections in adults and children receiving treatment for cancer. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (to June 2013) and the MEDLINE and EMBASE databases (1966 to 2013). Randomised controlled trials (RCTs) comparing prophylactic antibiotics given prior to long-term CVC insertion with no antibiotics, RCTs comparing a combined antibiotic and heparin solution with a heparin-only solution to flush or lock newly inserted long-term CVCs, and RCTs comparing a combination of these interventions in adults and children receiving treatment for cancer. Two authors independently selected studies, classified them and extracted data on to a pre-designed data collection form. We pooled data using the RevMan software version 5.2 and used random-effects (RE) model methods for meta-analyses. We included 11 trials with a total of 828 oncology patients (adults and children). We assessed most included studies to be at a low or unclear risk of bias. Five trials compared the use

  2. Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, Alexander R.; Hoff, Kirsten E.; Canty, John T.

    Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNAbinding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Grampositive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U 6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of allmore » other known Hfq structures. The U 6 RNA binds on the “proximal face” in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U 6 with high affinity. In contrast, the longer oligo-uridine, U 16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Lastly, intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU) 3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces.« less

  3. Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes

    DOE PAGES

    Kovach, Alexander R.; Hoff, Kirsten E.; Canty, John T.; ...

    2014-08-22

    Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNAbinding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Grampositive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U 6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of allmore » other known Hfq structures. The U 6 RNA binds on the “proximal face” in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U 6 with high affinity. In contrast, the longer oligo-uridine, U 16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Lastly, intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU) 3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces.« less

  4. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens

    PubMed Central

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  5. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  6. The limitations of Gram-stain microscopy of synovial fluid in concomitant septic and crystal arthritis.

    PubMed

    Stirling, Paul; Tahir, Mohammed; Atkinson, Henry Dushan

    2017-03-29

    Rapid diagnosis of septic arthritis from Gram-stain microscopy is limited by an inherent false-negative rate of 25-78%. The presence of concomitant crystal arthritis in 5% of cases represents a particular diagnostic challenge. This study aims to investigate the effects that a concomitant crystal arthropathy have on the ability of Gram-stain microscopy of synovial fluid to diagnose a septic arthritis. This is a 12-year retrospective cohort study. Inclusion criteria were a positive synovial fluid culture result with a positive clinical diagnosis of septic arthritis. Results were correlated with presence or absence of urate and calcium pyrophosphate crystals, and Gram-stain result. During this time our collection and analysis methods remained unchanged. All samples were collected in Lithium Heparin containers. Chi-squared test with a p value < 0.05 was considered significant. 602 synovial fluid samples were included. 162 cases of concomitant crystal arthritis were identified (27%). Of these, 16 (10%) had an initial negative Gram-stain. Of the 440 samples with no crystals detected, 18 (4%) had an initial negative Gram-stain microscopy result (p < 0.05). The incidence of concurrent septic and crystal arthritis may be higher than previously thought. Synovial fluid samples in concomitant septic and crystal arthritis are significantly less likely to have a positive Gram-stain at microscopy than in cases of an isolated septic arthritis. We would advise the clinician to maintain a high index of suspicion for septic arthritis in these patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Fasting hypochlorhydria with gram positive gastric flora is highly prevalent in healthy old people.

    PubMed Central

    Husebye, E; Skar, V; Høverstad, T; Melby, K

    1992-01-01

    Fifteen healthy old people mean age 84 years (range 80-91 years), were examined to assess the effect of advanced age on the microecology of the upper gastrointestinal tract. Twelve of 15 (80%) were hypochlorhydric with pH 6.6 (0.3) (mean (SEM) and a mean bacterial count of 10(8) colony forming units (CFU) per ml (range 10(5)-10(10)) in fasting gastric aspirate. Normochlorhydric subjects had low counts (< or = 10(1) CFU/ml). The microbial flora was dominated by viridans streptococci, coagulase negative staphylococci, and Haemophilus sp. Only one subject harboured significant concentrations of Gram negative bacilli with Escherichia coli (10(4-5) CFU/ml) and Klebsiella (10(4-5)). Strict anaerobes were not found. The total concentration of short chain fatty acids in gastric aspirate was 10.6 (2.9) mmol/l (mean (SEM). Absence of significant, intraluminal fermentation of xylose to CO2 was shown by the 14C-d Xylose breath test, and ambulatory manometry showed preserved fasting motility pattern of the small intestine. Serum immunoglobulins were normal. Advanced age is accompanied by fasting hypochlorhydria and colonisation with mainly Gram positive flora in the upper gut. Other factors than old age and fasting hypochlorhydria are required for colonisation with Gram negative bacilli. PMID:1446855

  8. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria.

    PubMed

    Kang, Jun-Won; Kim, Sang-Soon; Kang, Dong-Hyun

    2018-07-01

    The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Potential Role for Telavancin in Bacteremic Infections Due to Gram-Positive Pathogens: Focus on Staphylococcus aureus

    PubMed Central

    Corey, G. Ralph; Rubinstein, Ethan; Stryjewski, Martin E.; Bassetti, Matteo; Barriere, Steven L.

    2015-01-01

    Staphylococcus aureus bacteremia (SAB) is one of the most common serious bacterial infections and the most frequent invasive infection due to methicillin-resistant S. aureus (MRSA). Treatment is challenging, particularly for MRSA, because of limited treatment options. Telavancin is a bactericidal lipoglycopeptide antibiotic that is active against a range of clinically relevant gram-positive pathogens including MRSA. In experimental animal models of sepsis telavancin was shown to be more effective than vancomycin. In clinically evaluable patients enrolled in a pilot study of uncomplicated SAB, cure rates were 88% for telavancin and 89% for standard therapy. Among patients with infection due to only gram-positive pathogens enrolled in the 2 phase 3 studies of telavancin for treatment of hospital-acquired pneumonia, cure rates for those with bacteremic S. aureus pneumonia were 41% (9/22, telavancin) and 40% (10/25, vancomycin) with identical mortality rates. These data support further evaluation of telavancin in larger, prospective studies of SAB. PMID:25472944

  10. Disubstituted thiourea derivatives and their activity on CNS: synthesis and biological evaluation.

    PubMed

    Stefanska, Joanna; Szulczyk, Daniel; Koziol, Anna E; Miroslaw, Barbara; Kedzierska, Ewa; Fidecka, Sylwia; Busonera, Bernardetta; Sanna, Giuseppina; Giliberti, Gabriele; La Colla, Paolo; Struga, Marta

    2012-09-01

    A series of new thiourea derivatives of 1,2,4-triazole have been synthesized. The difference in structures of obtained compounds are directly connected with the kind of isothiocyanate (aryl/alkyl). The (1)H NMR, (13)C NMR, MS methods were used to confirm structures of obtained thiourea derivatives. The molecular structure of (1, 17) was determined by an X-ray analysis. Two of the new compounds (8 and 14) were tested for their pharmacological activity on animal central nervous system (CNS) in behavioural animal tests. The results presented in this work indicate the possible involvement of the serotonergic system in the activity of 8 and 14. In the case of 14 is also a possible link between its activity and the endogenous opioid system. All obtained compounds were tested for antibacterial activity against gram-positive cocci, gram-negative rods and antifungal activity. Compounds (1, 2, 5, 7, 9) showed significant inhibition against gram-positive cocci. Microbiological evaluation was carried out over 20 standard strains and 30 hospital strains. Selected compounds (1-13) were examined for cytotoxicity, antitumor, and anti-HIV activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Resistance to bacteriocins produced by Gram-positive bacteria.

    PubMed

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed. © 2015 The Authors.

  12. Techniques for controlling variability in gram staining of obligate anaerobes.

    PubMed Central

    Johnson, M J; Thatcher, E; Cox, M E

    1995-01-01

    Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fixing and staining techniques within a gloveless anaerobic chamber. Under anaerobic conditions, gram-positive staining occurred in all test organisms with "quick" fixing techniques with both absolute methanol and formalin. The results support the hypothesis that, when anaerobic bacteria are exposed to oxygen, a breakdown of the physical integrity of the cell wall occurs, introducing Gram stain variability in gram-positive anaerobes. PMID:7538512

  13. THE OCCURRENCE OF POLYGLYCEROPHOSPHATE AS AN ANTIGENIC COMPONENT OF VARIOUS GRAM-POSITIVE BACTERIAL SPECIES

    PubMed Central

    McCarty, Maclyn

    1959-01-01

    A bacterial substance has been described which gives a precipitin reaction with certain antisera to Group A streptococci. The precipitating antigen is present in various Gram-positive bacteria, including most hemolytic streptococci, staphylococci, and aerobic sporulating bacilli. It is not present in any of the Gram-negative species examined or in pneumococci, clostridia, or corynebacteria. Analysis of purified preparations obtained from Group A streptococci indicates that the antigen is a simple polymer of glycerophosphate. The identification has been confirmed by immunochemical studies, including precipitin tests and specific inhibition with synthetic polyglycerophosphates. In addition, the infrared spectra of bacterial and synthetic polyglycerophosphate are shown to be closely similar. Immunochemical analysis suggests that the amount of polyglycerophosphate present in Group A streptococci and staphylococci is approximately 1 per cent of the dry weight of the cells. The cellular localization and function of the polyglycerophosphate have not been established. PMID:13641562

  14. Phenotypic and Genetic Characterization of Carbapenemase and ESBLs Producing Gram-negative Bacteria (GNB) Isolated from Patients with Cystic Fibrosis (CF) in Tehran Hospitals

    PubMed Central

    Vali, Parisa; Shahcheraghi, Fereshteh; Seyfipour, Maryam; Zamani, Maryam Alsadat; Allahyar, Mohammad Reza; Feizabadi, Mohammad Mehdi

    2014-01-01

    Background: Cystic Fibrosis (CF) is an autosomal recessive genetic disorder in white populations caused by mutation in a gene that encodes Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Since frequent respiratory tract infections are the major problem in patients with CF, obligation to identify the causative bacteria and determining their antibiotic resistance pattern is crucial. The purpose of this project was to detect Gram-negative bacteria (GNB) isolated from sputa of CF patients and to determine their antibiotic resistance pattern. Materials and Methods: The sputum of 52 CF patients, treated as inpatients at hospitals in Tehran, was obtained between November 2011 and June 2012. Samples cultured in selective and non-selective media and GNB recognized by biochemical tests. Antimicrobial susceptibility testing to cephalosporins, aminoglycosides and carbapenems was performed by disk diffusion method and MICs of them were measured. For phenotypic detection of carbapenemase and ESBLs production, the Modified Hodge test, double disk synergy test and the combined disk methods were performed. Subsequently, the genes encoding the extended spectrum beta-lactamases (blaPER, blaCTX-M) and carbapenemases (blaIMP-1, blaGES, blaKPC, blaNDM, blaVIM-1, blaVIM-2, blaSPM, blaSIM) in Gram negative bacteria were targeted among the resistant isolates by using PCR. PFGE was used to determine any genetic relationship among the Pseudomonas aeruginosa isolated from these patients. Results: Fifty five GNB were isolated from 52 sputum samples including Pseudomonas aeruginosa, Klebsiella ozaenae, Alcaligenes xylosoxidans, Achromobacter denitrificans, Klebsiella pneumonia and Stenotrophomonas maltophilia. The rates of resistance to different antibiotic were as follows: cefixime (%80), ceftriaxone (%43), ceftazidime (%45) and meropenem (%7). The prevalence of genes encoding the ESBLs and Carbapenemases among the the phenotypically positive strains were as follows: bla

  15. Genomics of Staphylococcus

    NASA Astrophysics Data System (ADS)

    Lindsay, Jodi A.

    The staphylococci are Gram-positive cocci that divide to form clusters that look like grapes. By 16S ribosomal sequencing, they are most closely related to the Gram-positive, low G+C content Bacillus-Lactobacillus-Staphylococcus genera (Woese, 1987). There are over 30 species of staphylococci identified, and they are typically found on the skin and mucous membranes of mammals. About a dozen species are frequently carried on humans, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus capitis, Staphylococcus hominis, Staphylococcus cohnii, Staphylococcus lugdunensis, Staphylococcus schleiferi, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus.

  16. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    NASA Astrophysics Data System (ADS)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  17. High-risk febrile neutropenia in Auckland 2003-2004: the influence of the microbiology laboratory on patient treatment and the use of pathogen-specific therapy.

    PubMed

    Ritchie, S; Palmer, S; Ellis-Pegler, R

    2007-01-01

    International guidelines recommend routine microbiological assessment of patients with febrile neutropenia, but do not recommend a change from broad-spectrum antibiotic therapy to pathogen-specific therapy when a clinically relevant organism has been isolated. The aim of the study was to determine the aetiology of febrile neutropenia in adult haematology patients at Auckland City Hospital, to document the changes in treatment made following isolation of a clinically relevant organism and to assess adverse outcomes in any patient who received pathogen-specific therapy after a positive culture result. The results of all microbiological tests together with antibiotic therapy were recorded from consecutive patients with fever and a neutrophil count <0.5 x 10(9)/L over 1 year beginning in May 2003. One thousand one hundred and ninety-six specimens were collected from 81 patients during 116 episodes of febrile neutropenia. A pathogen was isolated from blood cultures in 40 episodes: Gram-positive cocci accounted for 46% of isolates and Gram-negative bacilli for 35%. Isolation of a pathogen from blood cultures resulted in a change of treatment in 25 of 40 (62.5%, 95%CI 46-77%) episodes. In 12 of these episodes, antibiotic therapy was optimized to a single pathogen-specific agent. No adverse events or subsequent changes in antibiotic therapy occurred in any of these 12 patients. Isolation of a pathogen from specimens other than blood seldom led to a change in therapy. Isolation of a pathogen from blood cultures often allows antibiotic therapy to be simplified to a pathogen-specific regimen. Further study of this approach is warranted.

  18. Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria

    PubMed Central

    Weiss, Andy; Shaw, Lindsey N.

    2015-01-01

    The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of them (α2ββ′) are essential, three smaller subunits, δ, ε and ω (∼9–21.5 kDa), are considered accessory. Both δ and ω have been viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and outline future challenges in understanding the role of these small subunits in the transcriptional process. PMID:25878038

  19. Bacteremias in liver transplant recipients: shift toward gram-negative bacteria as predominant pathogens.

    PubMed

    Singh, Nina; Wagener, Marilyn M; Obman, Asia; Cacciarelli, Thomas V; de Vera, Michael E; Gayowski, Timothy

    2004-07-01

    During the 1990s, gram-positive bacteria emerged as major pathogens after liver transplantation. We sought to determine whether the pathogens associated with bacteremias in liver transplant recipients have changed. Patients included 233 liver transplant recipients transplanted between 1989 and 2003. The proportion of all infections due to bacteremias increased significantly over time (P <.0001). Of other major infections, a trend toward a decrease in fungal infections (P =.089) and a significant decrease in cytomegalovirus (CMV) disease (P =.0004) were documented. Whereas the proportion of bacteremias due to gram-negatives increased from 25% in the period of 1989-1993 to 51.8% in 1998-03, that of gram-positive bacteria decreased from 75% in the period of 1989-93 to 48.2% in the period of 1998-2003. Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most frequent pathogens in bacteremic patients. The incidence of bacteremias due to MRSA and Pseudomonas aeruginosa has remained unchanged (P <.20); however, that due to enteric gram-negative bacteria, particularly Klebsiella pneumoniae has increased (P =.02). Klebsiella pneumoniae isolates in the current quartile were not clonally related. In conclusion, bacteremias as a proportion of all infections in liver transplant recipients have increased significantly over time, due in part to a decline in infections due to other major pathogens, e.g., fungi, primarily Candida species, and CMV. Gram-negative bacteria have emerged as predominant pathogens in bacteremic liver transplant recipients.

  20. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme.

    PubMed

    Karlowsky, James A; Lob, Sibylle H; Kazmierczak, Krystyna M; Hawser, Stephen P; Magnet, Sophie; Young, Katherine; Motyl, Mary R; Sahm, Daniel F

    2018-04-11

    Relebactam is an inhibitor of class A β-lactamases, including KPC β-lactamases, and class C β-lactamases, and is currently under clinical development in combination with imipenem. The objective of the current study was to evaluate the in vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) submitted by clinical laboratories in 17 European countries to the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance programme in 2015. MICs were determined using the CLSI standard broth microdilution method and interpreted using EUCAST clinical breakpoints. Relebactam was tested at a fixed concentration of 4 mg/L in combination with doubling dilutions of imipenem. Imipenem/relebactam MICs were interpreted using breakpoints for imipenem. Rates of susceptibility to imipenem and imipenem/relebactam for isolates of P. aeruginosa (n = 1705), K. pneumoniae (n = 1591) and Enterobacter spp. (n = 772) were 72.0/94.7%, 88.7/94.8% and 95.6/96.8%, respectively. Relebactam restored imipenem susceptibility to 81.1%, 54.2% and 26.5% of imipenem-non-susceptible isolates of P. aeruginosa (n = 477), K. pneumoniae (n = 179) and Enterobacter spp. (n = 34). Most imipenem/relebactam-non-susceptible isolates carried MBLs, OXA-48 or GES carbapenemases. Relebactam did not increase the number of isolates of A. baumannii (n = 486) susceptible to imipenem. Relebactam restored susceptibility to imipenem for the majority of imipenem-non-susceptible isolates of P. aeruginosa and K. pneumoniae tested as well as some isolates of imipenem-non-susceptible Enterobacter spp. Based on our results, imipenem/relebactam appears to be a promising therapeutic option for treating patients with infections caused by antimicrobial-resistant Gram-negative bacilli.

  1. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  2. High positive predictive value of Gram stain on catheter-drawn blood samples for the diagnosis of catheter-related bloodstream infection in intensive care neonates.

    PubMed

    Deleers, M; Dodémont, M; Van Overmeire, B; Hennequin, Y; Vermeylen, D; Roisin, S; Denis, O

    2016-04-01

    Catheter-related bloodstream infections (CRBSIs) remain a leading cause of healthcare-associated infections in preterm infants. Rapid and accurate methods for the diagnosis of CRBSIs are needed in order to implement timely and appropriate treatment. A retrospective study was conducted during a 7-year period (2005-2012) in the neonatal intensive care unit of the University Hospital Erasme to assess the value of Gram stain on catheter-drawn blood samples (CDBS) to predict CRBSIs. Both peripheral samples and CDBS were obtained from neonates with clinically suspected CRBSI. Gram stain, automated culture and quantitative cultures on blood agar plates were performed for each sample. The paired quantitative blood culture was used as the standard to define CRBSI. Out of 397 episodes of suspected CRBSIs, 35 were confirmed by a positive ratio of quantitative culture (>5) or a colony count of CDBS culture >100 colony-forming units (CFU)/mL. All but two of the 30 patients who had a CDBS with a positive Gram stain were confirmed as having a CRBSI. Seven patients who had a CDBS with a negative Gram stain were diagnosed as CRBSI. The sensitivity, specificity, positive predictive value and negative predictive value of Gram stain on CDBS were 80, 99.4, 93.3 and 98.1 %, respectively. Gram staining on CDBS is a viable method for rapidly (<1 h) detecting CRBSI without catheter withdrawal.

  3. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India.

    PubMed

    Manohar, Prasanth; Shanthini, Thamaraiselvan; Ayyanar, Ramankannan; Bozdogan, Bulent; Wilson, Aruni; Tamhankar, Ashok J; Nachimuthu, Ramesh; Lopes, Bruno S

    2017-07-01

    The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.

  4. Prediction of lipoprotein signal peptides in Gram-negative bacteria.

    PubMed

    Juncker, Agnieszka S; Willenbrock, Hanni; Von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-08-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

  5. The Susceptibility of Bacterial Endophthalmitis Isolates to Vancomycin, Ceftazidime, and Amikacin: a 23 Year-Review.

    PubMed

    Kodati, Shilpa; Eller, Andrew W; Kowalski, Regis P

    2017-01-01

    To investigate the in vitro susceptibility of Gram-positive and Gram-negative endophthalmitis bacterial isolates to vancomycin, amikacin, and ceftazidime over a 23-year period. Retrospective non-comparative laboratory case series. Endophthalmitis patients that were culture positive for bacteria. Laboratory records of bacteria isolated from endophthalmitis specimens collected from January 1 st 1993 to December 31 st 2015 were reviewed for incidence and standard susceptibility testing. The in vitro susceptibilities of bacteria cultured from endophthalmitis to vancomycin (VAN), amikacin (AMK), and ceftazidime (CEF). Patients with endophthalmitis were culture positive for bacteria in 665 cases.. Coagulase negative Staphylococci (CoNS) were the most common bacteria (54.6%), followed by Streptococci (Strep) species (20.8%), Staphylococcus aureus (SA) (10.2%), other Gram-positive (other-GP) bacteria (7.4%) and Gram-negative (GN) bacteria (7.1%). All Gram-positive organisms were susceptible to VAN, with the exception of 2 isolates. The in vitro susceptibilities of bacteria to AMK were: CoNS (95.3%), SA (75.0%), Strep (8.0%), GN (95.7%), and other-GP (81.1%). The in vitro susceptibilities of bacteria to CEF were: CoNS (58.5%), SA (54.4%), Strep (84.1%), GN (93.6.%), and other-GP (52.8%). There was no difference between AMK (95.7%) and CEF (93.6%) for GN coverage. AMK provided better coverage than CEF for CoNS, SA, and other-GP bacteria respectively (p<0.05, Fisher's exact), however, CEF appeared to provide better coverage (p<0.001, Fisher's exact) for Strep than AMK. Based on standard in vitro susceptibility testing, vancomycin remains an optimal antibiotic choice for the treatment of Gram-positive endophthalmitis. AMK and CEF appear to provide equal GN coverage, but AMK appears to provide better coverage for CoNS, SA, and other-GP, but not Strep.

  6. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria.

    PubMed

    Fujita, Koji; Ichimasa, Shiro; Zendo, Takeshi; Koga, Shoko; Yoneyama, Fuminori; Nakayama, Jiro; Sonomoto, Kenji

    2007-05-01

    Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.

  7. Inactivation of Gram-negative and Gram-positive bacteria in red cell concentrates using INACTINE PEN110 chemistry.

    PubMed

    Zavizion, B; Serebryanik, D; Chapman, J; Alford, B; Purmal, A

    2004-10-01

    The risk of transfusion-transmitted bacterial infections as a result of the presence of bacteria in blood is one of the major concerns in transfusion medicine. The purpose of this study was to investigate whether bacteria inoculated into red blood cell concentrates can be inactivated by the INACTINE PEN110 pathogen-reduction process. Four bacterial species were chosen for the study: anaerobic Gram-positive Clostridium perfringens and Propionibacterium acnes, known to be transfusion-transmitted; and two Gram-negative species, Acinetobacter johnsonii and Acinetobacter lwoffii, recently reported to be a common cause of transfusion-associated infections in Europe. Identical units of leucoreduced red cell concentrates were inoculated with A. johnsonii, A. lwoffii, C. perfringens, or P. acnes. The 4 degrees C control units were put on storage immediately after receiving the spike. The test units were subjected to PEN110 treatment and then stored. The bacterial titre in all units was monitored during a 6-week storage period. The PEN110 inactivation of all tested bacterial strains was time- and titre-dependent. For A. johnsonii and A. lwoffii, no viable bacteria were detected in the units spiked with up to 10(4) colony-forming units (CFU)/ml and treated with PEN110. For red cell units spiked with 10(4)-10(5) CFU/ml of C. perfringens and P. acnes, no viable bacteria were detected in the units treated with PEN110. In control units, there was a gradual decrease in A. johnsonii, A. lwoffii and C. perfringens titres during cold storage, while P. acnes titres remained stable. The PEN110 pathogen-reduction process was demonstrated to inactivate high titres of A. johnsonii, A. lwoffii, C. perfringens and P. acnes in red cell concentrates.

  8. Development of rapid phenotypic system for the identification of Gram-negative oxidase-positive bacilli in resource-limited settings.

    PubMed

    Kazmi, Mahmooda; Khan, Adnan; Kazmi, Shahana Urooj

    2013-06-01

    Rapid and accurate identification of bacterial pathogens is a fundamental goal of clinical microbiology. The diagnosis and surveillance of diseases is dependent, to a great extent, on laboratory services, which cannot function without effective reliable reagents and diagnostics. Despite the advancement in microbiology diagnosis globally, resourcelimited countries still struggle to provide an acceptable diagnosis quality which helps in clinical disease management and improve their mortality and morbidity data. During this study an indigenous product, Quick Test Strip (QTS) NE, was developed for the rapid identification of biochemically slower group of Gram-negative oxidase-positive bacilli that covers 19 different bacterial genera. Some of the members belonging to these groups are well-established human pathogens, e.g. various species of Vibrio, Pseudomonas, Burkholderia, Aeromonas, Achromobacter and Stenotrophomonas. This study also evaluates the performance of QTS-NE by comparing with genotypic characterization methods. A total of 232 clinical and reference bacterial isolates were tested by three different methods. QTSNE provides 100 percent concordant results with other rapid identification and molecular characterization methods and confirms the potential to be used in clinical diagnosis.

  9. Effects of photodynamic therapy on Gram-positive and Gram-negative bacterial biofilms by bioluminescence imaging and scanning electron microscopic analysis.

    PubMed

    Garcez, Aguinaldo S; Núñez, Silvia C; Azambuja, Nilton; Fregnani, Eduardo R; Rodriguez, Helena M H; Hamblin, Michael R; Suzuki, Hideo; Ribeiro, Martha S

    2013-11-01

    The aim of this study was to test photodynamic therapy (PDT) as an alternative approach to biofilm disruption on dental hard tissue, We evaluated the effect of methylene blue and a 660 nm diode laser on the viability and architecture of Gram-positive and Gram-negative bacterial biofilms. Ten human teeth were inoculated with bioluminescent Pseudomonas aeruginosa or Enterococcus faecalis to form 3 day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify and evaluate the bacterial viability, and scanning electron microscopic (SEM) imaging was used to assess architecture and morphology of bacterial biofilm before and after PDT employing methylene blue and 40 mW, 660 nm diode laser light delivered into the root canal via a 300 μm fiber for 240 sec, resulting in a total energy of 9.6 J. The data were statistically analyzed with analysis of variance (ANOVA) followed by Tukey test. The bacterial reduction showed a dose dependence; as the light energy increased, the bioluminescence decreased in both planktonic suspension and in biofilms. The SEM analysis showed a significant reduction of biofilm on the surface. PDT promoted disruption of the biofilm and the number of adherent bacteria was reduced. The photodynamic effect seems to disrupt the biofilm by acting both on bacterial cells and on the extracellular matrix.

  10. Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria

    PubMed Central

    Forster, Scott; Snape, Jason R.; Lappin-Scott, Hilary M.; Porter, Jonathan

    2002-01-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems. PMID:12324319

  11. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  12. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  13. High-Level Fluorescence Labeling of Gram-Positive Pathogens

    PubMed Central

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607

  14. Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China.

    PubMed

    Itoh, Takashi; Yamaguchi, Takashi; Zhou, Peijin; Takashina, Tomonori

    2005-04-01

    Three novel isolates of haloalkaliphilic archaea, strains IHC-005T, IHC-010, and N-1311T, from soda lakes in Inner Mongolia, China, were characterized to elucidate their taxonomic positions. The three strains were aerobic, Gram-negative chemoorganotrophs growing optimally at 37-45 degrees C, pH 9.0-9.5, and 15-20% NaCl. Cells of strains IHC-005T/IHC-010 were motile rods, while those of strain N-1311T were non-motile pleomorphic flats or cocci. The three strains contained diphytanyl and phytanyl-sesterterpanyl diether derivatives of phosphatidylglycerol and phosphatidylglycerophosphate methyl ester. No glycolipids were detected. On phylogenetic analysis of 16S rRNA gene sequences, they formed an independent cluster in the Natro group of the family Halobacteriaceae. Comparison of their morphological, physiological, and biochemical properties, DNA G + C content and 16S rRNA gene sequences, and DNA-DNA hybridization study support the view that strains IHC-005T/IHC-010 and strain N-1311T represent separate species. Therefore, we propose Natronolimnobius baerhuensis gen. nov., sp. nov. for strains IHC-005T (=CGMCC 1.3597T =JCM 12253T)/IHC-010 (=CGMCC 1.3598 = JCM 12254) and Natronolimnobius innermongolicus sp. nov. for N-1311T (=CGMCC 1.2124T =JCM 12255T).

  15. Isolation and speciation of Prevotella strains from periodontal abscesses.

    PubMed

    Dumitriu, S; Băncescu, G; Murea, A; Skaug, N

    1998-01-01

    The aims of the study were to isolate and to identify at species level the Prevotella strains in pus samples collected by needle aspiration from 25 Romanian patients with periodontal abscesses. Gram-stained smears and cultures on selective and nonselective media were performed from each of the 25 pus samples. The isolates were identified on the basis of Gram staining, cultural characteristics and standard biochemical reactions. The Gram-negative anaerobic bacilli isolates were biochemically characterized and identified at species level using the Rapid ID 32 A system (Bio Mérieux, France). Fifteen Prevotella isolates belonging to one of the following species: P. melaninogenica, P. denticola, P. oralis, P. loescheii and P. bivia were recovered. All Prevotella isolates reacted similarly in 20 tests in the Rapid ID 32 A system. The P. melaninogenica strain showed approximately the same biochemical profile and only two sugar fermentation tests were not constantly positive. The study confirmed that Prevotella is often involved in periodontal abscesses (> 50% of the cases) in association with other anaerobic or/and aerobic bacteria. P. melaninogenica was the most frequently isolated Prevotella species from the investigated cases.

  16. Gram staining apparatus for space station applications

    NASA Technical Reports Server (NTRS)

    Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.

  17. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    PubMed Central

    Juncker, Agnieszka S.; Willenbrock, Hanni; von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/. PMID:12876315

  18. Veillonella, Firmicutes: Microbes disguised as Gram negatives.

    PubMed

    Vesth, Tammi; Ozen, Aslı; Andersen, Sandra C; Kaas, Rolf Sommer; Lukjancenko, Oksana; Bohlin, Jon; Nookaew, Intawat; Wassenaar, Trudy M; Ussery, David W

    2013-12-20

    The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the

  19. Veillonella, Firmicutes: Microbes disguised as Gram negatives

    PubMed Central

    Vesth, Tammi; Ozen, Aslı; Andersen, Sandra C.; Kaas, Rolf Sommer; Lukjancenko, Oksana; Bohlin, Jon; Nookaew, Intawat; Wassenaar, Trudy M.; Ussery, David W.

    2013-01-01

    The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the

  20. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    PubMed

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  1. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGES

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; ...

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  2. Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota.

    PubMed

    Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre

    2007-11-01

    Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial.

  3. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  4. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core

    NASA Technical Reports Server (NTRS)

    Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.

    2004-01-01

    We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.

  5. Gram staining apparatus for space station applications.

    PubMed Central

    Molina, T C; Brown, H D; Irbe, R M; Pierson, D L

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space. Images PMID:1690529

  6. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland.

    PubMed

    Marasini, S; Swift, S; Dean, S J; Ormonde, S E; Craig, J P

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  7. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    PubMed Central

    Swift, S.; Dean, S. J.; Ormonde, S. E.

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres. PMID:27213052

  8. Antibiotic Resistance of Gram Negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea.

    PubMed

    Foti, M; Giacopello, C; Bottari, Teresa; Fisichella, V; Rinaldo, D; Mammina, C

    2009-09-01

    Previous studies on fish and marine mammals support the hypothesis that marine species harbor antibiotic resistance and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to assess the resistance to antimicrobial agents of Gram negative strains isolated from loggerhead sea turtles (Carettacaretta). Oral and cloacal swabs from 19 live-stranded loggerhead sea turtles, with hooks fixed into the gut, were analyzed. The antimicrobial resistance of the isolates to 31 antibiotics was assessed using the disk-diffusion method. Conventional biochemical tests identified Citrobacter spp., Proteus spp., Enterobacter spp., Escherichia spp., Providencia spp., Morganella spp., Pantoea spp., Pseudomonas spp. and Shewanella spp. Highest prevalences of resistance was detected to carbenicillin (100%), cephalothin (92.6%), oxytetracycline (81.3%) and amoxicillin (77.8%). The isolates showing resistance to the widest range of antibiotics were identified as Citrobacterfreundii, Proteusvulgaris, Providenciarettgeri and Pseudomonasaeruginosa. In this study, antibiotic resistant bacteria reflect marine contamination by polluted effluents and C.caretta is considered a bioindicator which can be used as a monitor for pollution.

  9. 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid: activity against Gram-positive and Gram-negative pathogens including Vibrio cholerae

    NASA Astrophysics Data System (ADS)

    Maji, Krishnendu; Haldar, Debasish

    2017-10-01

    We report a new synthetic aromatic ε-amino acid containing a triazole moiety with antimicrobial potential against Gram-positive, Gram-negative and pathogenic bacteria including Vibrio cholerae. Structure-property relationship studies revealed that all the functional groups are essential to enhance the antimicrobial activity. The 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid was synthesized by click chemistry. From X-ray crystallography, the amino acid adopts a kink-like structure where the phenyl and triazole rings are perpendicular to each other and the amine and acid groups maintain an angle of 60°. The agar diffusion test shows that the amino acid has significant antibacterial activity. The liquid culture test exhibits that the minimum inhibitory concentration (MIC) value for Bacillus subtilis and Vibrio cholerae is 59.5 µg ml-1. FE-SEM experiments were performed to study the morphological changes of bacterial shape after treatment with compound 1. The antimicrobial activity of the amino acid was further studied by DNA binding and degradation study, protein binding, dye-binding assay and morphological analysis. Moreover, the amino acid does not have any harmful effect on eukaryotes.

  10. Bacteriological Profile of Isolates From Urine Samples in Patients of Benign Prostatic Hyperplasia and or Prostatitis Showing Lower Urinary Tract Symptoms.

    PubMed

    Mishra, Prem Prakash; Prakash, Ved; Singh, Kashmir; Mog, H; Agarwal, Sumit

    2016-10-01

    The incidence of Benign Prostatic Hyperplasia (BPH) or Prostatitis is increasing considerably worldwide. The Lower Urinary Tract Symptoms (LUTS) due to bacterial aetiology are one of the common factors for the complications among the patients. To determine the bacterial agents and their antibiotic sensitivity pattern from the urine samples of patients of BPH or Prostatitis showing symptoms of LUTS. The cross-sectional study was carried out in the Department of Microbiology of Rohilkhand Medical College and Hospital of Northern India from June 2014 to May 2015. A total of 105 urine specimens from patients of BPH and/ or Prostatitis were cultured by a semi-quantitative method. The isolated bacteria were identified by colony morphology, Gram's staining, motility and biochemical tests. Antibiotic sensitivity was done according to the CLSI 2007 guidelines by disc diffusion method. Data was analysed by SPSS and Microsoft office 2007. Proportions and percentages were used as statistical measures. The urine cultures from patients with BPH and or chronic Prostatitis, showed n=66/105 (62.85%) culture positivity. Out of 66 isolates the frequency was in following order Escherichia coli 21/66 (31.81%), Klebsiella spp 19/66 (28.78%), Staphylococcus aureus 11/66 (16.66%), Pseudomonas aeruginosa (10.60%), Proteus spp, Enterococcus spp, Acinetobacter spp and Citrobacter spp. The most susceptible 1 st , 2 nd and 3 rd line antibiotics for Gram negative isolates were ampicillin, amikacin and tigecycline respectively. Amongst the Gram positive isolates, the susceptible 1 st , 2 nd and 3 rd line antibiotics were cefoxitin, vancomycin, teicoplanin and linezolid. Multidrug resistance was seen in Escherichia coli (n=6), Klebsiella spp (n=7), Pseudomonas aeruginosa (n=4) and Staphylococcus aureus (n=3). Based on the above findings we can say that accurate aetiology of the LUTS among the patients of BPH and/or Prostatitis is warranted to initiate the therapeutic management. Based on our

  11. Positive isolation disconnect

    NASA Technical Reports Server (NTRS)

    Friedell, M. V. (Inventor)

    1978-01-01

    A disconnect composed basically of two halves each consisting of a poppet valve operable to isolate fluid with essentially zero fluid loss is presented. The two halves are coupled together by a quickly releasable coupling which may be either a coupling ring tightened or loosened by a twisting motion, or a clamp operated by a pivoted to prevent disconnecting the two halves until both valves are in closed condition. The positive feature of the device is one requiring a valve closing step before a disconnect step, and takes structural form in an accentric lobe mounted on the valve operating stem. If some obstruction prevents the poppet from moving to its seat, the eccentric lobe cannot be rotated to the closed position, and the interlock prevents a disconnect.

  12. Triclosan- resistant bacteria isolated from feedlot and residential soils

    PubMed Central

    WELSCH, TANNER T.; GILLOCK, ERIC T.

    2014-01-01

    Triclosan is an antimicrobial agent that is currently incorporated into hundreds of consumer and medical products. It can be either a bacteriostatic or bactericidal agent, depending on its formulation. It has activity against Gram-positive and Gram-negative bacteria, as well as some viruses and protists. The purpose of this study was to determine whether triclosan-resistant bacteria could be isolated from the soil. Soils from cattle feedlots and residential lawns were collected and assayed for the presence of these organisms by plating samples on growth media containing triclosan. Organisms were subsequently identified by partial 16S rRNA sequencing analysis. All the organisms isolated in this study were Gram-negative rods, with members of genus Pseudomonas being particularly well represented. This result may not be surprising because Gram-negative organisms are generally more resistant to triclosan, and since Pseudomonas bacteria are known to have numerous efflux mechanisms for dealing with harmful substances. PMID:21391038

  13. Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases.

    PubMed

    Gahane, Avinash Y; Ranjan, Pritish; Singh, Virender; Sharma, Raj K; Sinha, Neeraj; Sharma, Mandeep; Chaudhry, Rama; Thakur, Ashwani K

    2018-03-28

    In the quest for new antimicrobial materials, hydrogels of Fmoc-protected peptides and amino acids have gained momentum due to their ease of synthesis and cost effectiveness; however, their repertoire is currently limited, and the mechanistic details of their function are not well understood. Herein, we report the antibacterial activity of the hydrogel and solution phases of Fmoc-phenylalanine (Fmoc-F) against a variety of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Fmoc-F, a small molecule hydrogelator, reduces the bacterial load both in vitro and in the skin wound infections of mice. The antibacterial activity of Fmoc-F is predominantly due to its release from the hydrogel. Fmoc-F shows surfactant-like properties with critical micelle concentration nearly equivalent to its minimum bactericidal concentration. Similar to Fmoc-F, some Fmoc-conjugated amino acids (Fmoc-AA) have also shown antibacterial effects that are linearly correlated with their surfactant properties. At low concentrations, where Fmoc-F does not form micelles, it inhibits bacterial growth by entering the cell and reducing the glutathione levels. However, at higher concentrations, Fmoc-F triggers oxidative and osmotic stress and, alters the membrane permeabilization and integrity, which kills Gram-positive bacteria. Herein, we proposed the use of the Fmoc-F hydrogel and its solution for several biomedical applications. This study will open up new avenues to enhance the repertoire of Fmoc-AA to act as antimicrobial agents and improve their structure-activity relationship.

  14. First Comprehensive Evaluation of the M.I.C. Evaluator Device Compared to Etest and CLSI Broth Microdilution for MIC Testing of Aerobic Gram-Positive and Gram-Negative Bacterial Species

    PubMed Central

    Turnbull, L.; Brosnikoff, C.; Cloke, J.

    2012-01-01

    The M.I.C. Evaluator strip (Thermo Fisher Scientific, Basingstoke, United Kingdom) uses a methodology similar to that of Etest. In this first assessment of the M.I.C. Evaluator device, 409 strains of aerobic Gram-positive bacteria (staphylococci, streptococci, and enterococci) and 325 strains of Enterobacteriaceae, Pseudomonas species, and Acinetobacter species were tested by M.I.C. Evaluator strip, Etest, and broth microdilution as a reference standard. The Gram-positive bacteria included staphylococci (methicillin-resistant Staphylococcus aureus, methicillin-susceptible S. aureus, and coagulase-negative staphylococci), Streptococcus pneumoniae, beta-hemolytic streptococci and viridians group strains, vancomycin-resistant enterococci, and other enterococci. The Gram-negative bacteria included 250 strains of 60 Enterobacteriaceae species plus 50 Pseudomonas and 25 Acinetobacter species. A total of 14 antimicrobial agents (depending on the species) were included. The same methodology and reading format were used for M.I.C. Evaluator strips and Etest. Broth microdilution methodology was performed according to CLSI document M07-A8. For the clinical strains, >95% of results were plus or minus one doubling dilution for all species. There were fewer than 5% minor errors, fewer than 3% major errors, and fewer than 1% very major errors. M.I.C. Evaluator strips and Etest often reported higher MICs than the reference broth microdilution method. The M.I.C. Evaluator strips provided results comparable to those of the predicate Etest device and are of value for the accurate testing of MICs for these important pathogens. PMID:22238441

  15. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil

    USDA-ARS?s Scientific Manuscript database

    Two isolates of Gram-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of Bacillus strains deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution ...

  16. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  17. [In-vitro activity of panipenem against clinical isolates in 2006].

    PubMed

    Yoshida, Sanae; Koga, Tetsufumi; Kakuta, Masayo; Kobayashi, Intetsu; Matsuzaki, Kaoru; Urabe, Eriko; Omika, Kaoru; Hasegawa, Miyuki; Sato, Yumie

    2008-02-01

    The antimicrobial activity of various antibiotics against clinical bacterial isolates recovered from patients with infectious diseases at the medical facilities in the Kanto region between March and September 2006 was evaluated. A total of 1030 clinical isolates were available for susceptibility tests: 420 aerobic Gram-positive organisms, 520 aerobic Gram-negative organisms, 30 anaerobic Gram-positive organisms and 60 anaerobic Gram-negative pathogens. Antimicrobial susceptibility data for Streptococcus pneumoniae and Haemophilus influenzae isolates from pediatric and adult patients were analyzed separately. Panipenem (PAPM), imipenem (IPM), meropenem (MEPM), biapenem (BIPM), doripenem (DRPM), cefozopran (CZOP), cefepime (CFPM), and sulbactam/cefoperazone (SBT/CPZ) were used as test antibiotics. PAPM, IPM and DRPM exhibited excellent in vitro antibacterial activities against methicillin-susceptible Staphylococcus, with all isolates exhibiting a MIC of < or =0.06 microg/mL. Against Streptococcus including penicillin-resistant S. pneumoniae, PAPM demonstrated the strongest antibacterial activity among the carbapenems with a MIC range of < or =0.06 to 0.12 microg/mL. Against Enterobacteriaceae, MEPM showed the strongest antibacterial activity, and PAPM had comparable activity to IPM. Against the extended-spectrum beta-lactamase producing Escherichia coli, Klebsiella species and Proteus species, the MICs for the cephems were high, however, those for the carbepenems were low. Against H. influenzae, PAPM had comparable activity to IPM. With respect to anaerobes, each of the carbapenems tested demonstrated almost the same strong antibacterial activity. In conclusion, 13 years has passed since PAPM was launched in 1993, PAPM still maintains potent antibacterial activity and is considered an effective antimicrobial agent for various types of infectious diseases.

  18. Alternate gram staining technique using a fluorescent lectin.

    PubMed Central

    Sizemore, R K; Caldwell, J J; Kendrick, A S

    1990-01-01

    Fluorescence-labeled wheat germ agglutinin binds specifically to N-acetylglucosamine in the outer peptidoglycan layer of gram-positive bacteria. The peptidoglycan layer of gram-negative bacteria is covered by a membrane and is not labeled by the lectin. By exploiting this phenomenon, an alternative Gram staining technique has been developed. Images PMID:1697149

  19. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments.

    PubMed

    Vaishampayan, Parag; Moissl-Eichinger, Christine; Pukall, Rüdiger; Schumann, Peter; Spröer, Cathrin; Augustus, Angela; Roberts, Anne Hayden; Namba, Greg; Cisneros, Jessica; Salmassi, Tina; Venkateswaran, Kasthuri

    2013-07-01

    Two strains of aerobic, non-motile, Gram-reaction-positive cocci were independently isolated from geographically distinct spacecraft assembly clean room facilities (Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana). A polyphasic study was carried out to delineate the taxonomic identity of these two isolates (1P05MA(T) and KO_PS43). The 16S rRNA gene sequences exhibited a high similarity when compared to each other (100 %) and lower than 96.7 % relatedness with Arthrobacter crystallopoietes ATCC 15481(T), Arthrobacter luteolus ATCC BAA-272(T), Arthrobacter tumbae DSM 16406(T) and Arthrobacter subterraneus DSM 17585(T). In contrast with previously described Arthrobacter species, the novel isolates maintained their coccidal morphology throughout their growth and did not exhibit the rod-coccus life cycle typically observed in nearly all Arthrobacter species, except A. agilis. The distinct taxonomic identity of the novel isolates was confirmed based on their unique cell-wall peptidoglycan type (A.11.20; Lys-Ser-Ala2) and polar lipid profile (presence of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and two unknown glycolipids). The G+C content of the genomic DNA was 70.6 mol%. The novel strains revealed MK-9(H2) and MK-8(H2) as dominant menaquinones and exhibited fatty acid profiles consisting of major amounts of anteiso-C15 : 0 and anteiso-C17 : 0 and moderate amounts of iso-C15 : 0 discriminating them again from closely related Arthrobacter species. Based on these observations, the authors propose that strains 1P05MA(T) and KO_PS43 be assigned into a separate genus Tersicoccus gen. nov. For this new taxon, comprising strains 1P05MA(T) and KO_PS43, we propose the name Tersicoccus phoenicis gen. nov., sp. nov. (the type species of Tersicoccus), represented by the type strain Tersicoccus phoenicis 1P05MA(T) ( = NRRL B-59547(T) = DSM 30849(T)).

  1. Black-pigmented gram-negative anaerobes in endodontic infections.

    PubMed

    Haapasalo, M

    1993-03-01

    Necrotic dental root canal infections are polymicrobial infections dominated by anaerobic bacteria. The number of different species in one canal is usually low, approx. 4-7 species. The species isolated most frequently belong to the genera Prevotella, Porphyromonas, Fusobacterium, Peptostreptococcus, Eubacterium and Streptococcus. The frequency of isolation of black-pigmented Gram-negative anaerobes in endodontic infections varies from 25% to > 50%. Pr. intermedia is the most commonly found pigmented species, followed by Pr. denticola and two Porphyromonas species, P. gingivalis and P. endodontalis. Several studies have shown that P. gingivalis and P. endodontalis are closely related to the presence of acute symptoms in endodontic infections, whereas other black-pigmented Gram-negative anaerobes are not. However, several other species may also be involved in acute infections. Moreover, Porphyromonas species have occasionally been isolated from cases with no symptoms. Although Porphyromonas spp. are clearly related to symptoms at the beginning of therapy, they are not important for the prognosis of the treatment.

  2. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  3. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Blocker, Rhonda; Justus, C. G.

    1993-01-01

    4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.

  4. Isolation of non-sporing anaerobic rods from infections in children.

    PubMed

    Brook, I

    1996-07-01

    From 1974 to 1994, 2033 microbiological specimens from children were submitted for cultures for anaerobic bacteria. Fifty-seven isolates of Bifidobacterium spp. were obtained from 55 (3%) children, 67 isolates of Eubacterium spp. from 65 (3%) children and 41 isolates of Lactobacillus spp. from 40 (2%) children. Most Bifidobacterium isolates were from chronic otitis media, abscesses, peritonitis, aspiration pneumonia and paronychia. Most Eubacterium isolates were from abscesses, peritonitis, decubitus ulcers and bites. Lactobacillus spp. were mainly isolated from abscesses, aspiration pneumonia, bacteraemia and conjunctivitis. Most (> 90%) infections from which these species were isolated were polymicrobial and yielded a mixture of aerobic and anaerobic bacteria. The organisms most commonly isolated with the non-sporing anaerobic gram-positive rods were Peptostreptococcus spp., Bacteroides spp., pigmented Prevotella and Porphyromonas spp., Fusobacterium spp., Staphylococcus aureus and Escherichia coli. Most Bacteroides spp. and E. coli were isolated from intra-abdominal infection and skin and soft tissue infection around the rectal area, whereas most Prevotella, Porphyromonas and Fusobacterium isolates were from oropharyngeal, pulmonary and head and neck sites. The predisposing conditions associated with the isolation of non-sporing anaerobic gram-positive rods were previous surgery, malignancy, steroid therapy and immunodeficiency. Antimicrobial therapy was given to 149 (83%) of the 160 patients, in conjunction with surgical drainage or correction of pathology in 89 (56%).

  5. A flow-cytometric gram-staining technique for milk-associated bacteria.

    PubMed

    Holm, Claus; Jespersen, Lene

    2003-05-01

    A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50 degrees C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at -18 degrees C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5 degrees C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation.

  6. Molecular modeling of Gram-positive bacteria peptidoglycan layer, selected glycopeptide antibiotics and vancomycin derivatives modified with sugar moieties.

    PubMed

    Ślusarz, Rafał; Szulc, Monika; Madaj, Janusz

    2014-05-07

    Proper understanding of the mechanisms of binding to Gram-positive bacteria cell wall layers-especially to the peptidoglycan (PG) layer, seems to be crucial for proper development of new drug candidates which are effective against these bacteria. In this work we have constructed two different models of the Gram-positive bacteria PG layer: the layered and the scaffold models. PG conformational changes during geometry optimization, models relaxation, and molecular dynamics were described and discussed. We have found that the border surface of both PG layer models differs from the surface located away from the edge of models and the chains formed by disaccharide units prefer helix-like conformation. This curling of PG chains significantly affects the shape of antibiotic-accessible surface and the process is thus crucial for new drug development. Glycopeptide antibiotics effective against Gram-positive bacteria, such as vancomycin and its semisynthetic derivatives-oritavancin and telavancin, bind to d-alanyl-d-alanine stem termini on the peptidoglycan precursors of the cell wall. This binding inhibits cross-linking between the peptides and subsequently prevents cell wall synthesis. In this study some of the aspects of conformational freedom of vancomycin and restrictions from the modifications of vancomycin structure introduced into oritavancin and telavancin and five other vancomycin derivatives (with addition of 2-acetamido-2-deoxy-β-d-galactopyranosylamine, 2-acetamido-2-deoxy-β-d-glucopyranosylamine, 1-amine-1-deoxy-d-glucitol, 2-amino-2-deoxy-d-galactitol, or 2-amino-2-deoxy-d-glucitol to the C-terminal amino acid group in the vancomycin) are presented and discussed. The resulting molecular dynamics trajectories, root mean square deviation changes of aglycon and saccharide moieties as well as a comparative study of possible interactions with cyclic and chain forms of modified groups have been carried out, measured, and analyzed. Energetically advantageous

  7. Microbial etiology of febrile neutropenia.

    PubMed

    Swati, Mudshingkar; Gita, Nataraj; Sujata, Baveja; Farah, Jijina; Preeti, Mehta

    2010-06-01

    Bacterial and fungal infections are a major cause of morbidity and mortality among neutropenic patients. The choice of empiric antimicrobial regimen is based on susceptibility pattern of locally prevalent pathogens. From 64 febrile neutropenic patients with clinical sepsis, blood and other appropriate clinical specimens were processed to determine bacterial and fungal spectrum and their antimicrobial susceptibility pattern. Risk factors for developing sepsis were determined by case-control study. 68 organisms were recovered. Fifteen (22.05%) were Gram-positive cocci with predominance of methicillin Sensitive S. aureus (10.29%), 47 (69.11%) were Gram-negative rods with predominance of Klebsiella pneumoniae (30.88%) and four were Non albicans Candida. 81% and 60% of Klebsiella and E. coli were ESBL producers. All species of Candida were sensitive to amphoterecin B and voriconazole. Duration and extent of neutropenia, chemotherapy, immunosuppressive therapy, altered mucosal barriers and presence of central venous lines were statistically significant risk factors for developing sepsis. Gram-negative bacteria were the predominant isolates. The choice of therapy in neutropenic patients should be formulated based on local spectrum of microbes and local and regional resistance patterns.

  8. Microbial Etiology of Febrile Neutropenia

    PubMed Central

    Gita, Nataraj; Sujata, Baveja; Farah, Jijina; Preeti, Mehta

    2010-01-01

    Bacterial and fungal infections are a major cause of morbidity and mortality among neutropenic patients. The choice of empiric antimicrobial regimen is based on susceptibility pattern of locally prevalent pathogens. From 64 febrile neutropenic patients with clinical sepsis, blood and other appropriate clinical specimens were processed to determine bacterial and fungal spectrum and their antimicrobial susceptibility pattern. Risk factors for developing sepsis were determined by case–control study. 68 organisms were recovered. Fifteen (22.05%) were Gram-positive cocci with predominance of methicillin Sensitive S. aureus (10.29%), 47 (69.11%) were Gram-negative rods with predominance of Klebsiella pneumoniae (30.88%) and four were Non albicans Candida. 81% and 60% of Klebsiella and E. coli were ESBL producers. All species of Candida were sensitive to amphoterecin B and voriconazole. Duration and extent of neutropenia, chemotherapy, immunosuppressive therapy, altered mucosal barriers and presence of central venous lines were statistically significant risk factors for developing sepsis. Gram-negative bacteria were the predominant isolates. The choice of therapy in neutropenic patients should be formulated based on local spectrum of microbes and local and regional resistance patterns. PMID:21629636

  9. β-Lactamase Production by Oral Anaerobic Gram-Negative Species in Infants in Relation to Previous Antimicrobial Therapy

    PubMed Central

    Nyfors, S.; Könönen, E.; Takala, A.; Jousimies-Somer, H.

    1999-01-01

    The frequency of β-lactamase production in gram-negative bacteria has increased considerably during recent years. In this study, β-lactamase production by oral anaerobic gram-negative rods isolated from saliva was longitudinally examined for 44 Caucasian infants at the ages of 2, 6, and 12 months in relation to their documented exposure to antibiotics. Isolates showing decreased susceptibility to penicillin G (1 μg/ml) were examined for β-lactamase production by using a chromogenic cephalosporin disk test. β-Lactamase-positive, gram-negative anaerobic species were found in 11, 55, and 89% of each age group, respectively. β-Lactamase production was most frequent among organisms of the Prevotella melaninogenica group. At 12 months, 73% of the infants harbored β-lactamase-producing members of the P. melaninogenica group, 55% had nonpigmented Prevotella species, 25% had Porphyromonas catoniae, 23% had Fusobacterium nucleatum, and 5% had Capnocytophaga species. Several β-lactamase-producing species could be simultaneously found in the infants’ mouths. The presence of β-lactamase-producing species was significantly associated with the infants’ exposure to antibiotics through antimicrobial treatments given to the infants and/or their mothers. PMID:10390208

  10. Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope.

    PubMed

    Siegel, Sara D; Reardon, Melissa E; Ton-That, Hung

    2017-01-01

    In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.

  11. Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria

    PubMed Central

    RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.

    2015-01-01

    Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086

  12. Emerging Trends of Bloodstream Infections: A Six-Year Study at a Paediatric Tertiary Care Hospital in Kabul.

    PubMed

    Tariq, Tariq Mahmud; Rasool, Esmatullah

    2016-11-01

    To determine the frequency of pathogens causing bloodstream infections and evaluate their trends and antibiogram patterns among in-patients in a paediatric tertiary care centre. Descriptive study. French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan in two phases, from January 2010 to December 2015. Results of blood cultures from suspected cases of sepsis admitted in the FMIC, from January 2010 to December 2012 (Period-1), and from January 2013 to December 2015 (Period-2) were completed. Standard microbiological methods were followed for blood culture and antibiotic sensitivity testing. Out of total 1,040 cases of culture proven sepsis, 528 (50.77%) Gram-negative bacilli (GNB), 474 (45.58%) Gram-positive cocci (GPC), and 38 (3.65%) Candida species were isolated during the entire study period. Out of 528 GNB isolates, 373 (70.64%) belonged to the Enterobacteriaceae and 155 (29.36%) were non-fermenters. Among Enterobacteriaceae, 168 (31.82%) were Klebsiella species (K. pneumoniae=124, K. oxytoca=44), 70 (13.26%) were Enterobacter species (E. cloacae=52, E. aerogenes=18), 65 (12.31%) were E. coli, 37 (7.01%) were Serratia marcescens and 31 (5.87%) were others. Out of 155 non-fermenters, 88 (16.67%) were Pseudomonas aeruginosa, 39 (7.39%) were Burkholderia cepacia and 18 (3.41%) were Stenotrophomonas maltophilia. There was a drop in the frequency of Enterobacteriaceae from 85% in Period-1 to 58.68% in Period-2. There was an increase in the frequency of nonfermenters from 15% to 41.32%, particularly 18 new cases of sepsis caused by Stenotrophomonas maltophilia during Period-2. Among GPC, there was an overall rise of 16.14% in the prevalence of Staphylococcus epidermidis during Period-2 and a drop of 9.64% in the frequency of Staphylococcus aureus during Period-2. The majority of Gram-negative isolates were multidrug-resistant to commonly used antibiotics. However, most of the isolates were sensitive to amikacin and imipenem (except S. maltophilia

  13. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    PubMed Central

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  14. In Vitro Activity of Delafloxacin Tested against Isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis

    PubMed Central

    Rhomberg, Paul R.; Huband, Michael D.; Farrell, David J.

    2016-01-01

    Delafloxacin, an investigational anionic fluoroquinolone, is active against a broad range of Gram-positive and Gram-negative bacteria. In this study, 200 Streptococcus pneumoniae (plus 30 levofloxacin-resistant isolates), 200 Haemophilus influenzae, and 100 Moraxella catarrhalis isolates selected primarily from the United States (2014) were tested against delafloxacin and comparator agents. Delafloxacin was the most potent agent tested. MIC50 and MIC90 values against all S. pneumoniae isolates were 0.008 and 0.015 μg/ml. Delafloxacin susceptibility was not affected by β-lactamase status against H. influenzae and M. catarrhalis. PMID:27458220

  15. Resistance to oral antibiotics in 4569 Gram-negative rods isolated from urinary tract infection in children.

    PubMed

    Calzi, Anna; Grignolo, Sara; Caviglia, Ilaria; Calevo, Maria Grazia; Losurdo, Giuseppe; Piaggio, Giorgio; Bandettini, Roberto; Castagnola, Elio

    2016-09-01

    To investigate antibiotic resistance among pathogens isolated from urines in a tertiary care children's hospital in Italy. Retrospective analysis of prospectively collected data on antibiotic susceptibility of Gram-negatives isolated from urines at the Istituto Giannina Gaslini, Genoa - Italy from 2007 to 2014. Antibiotic susceptibility was evaluated. By means of CLSI criteria from 2007 to 2010, while from 2011 EUCAST criteria were adopted. Data on susceptibility to amoxicillin-clavulanate, co-trimoxazole, cefuroxime, nitrofurantoin, fosfomycin and ciprofloxacin were evaluated for Escherichia coli, while for other Enterobacteriaceae data were collected for amoxicillin-clavulanate, co-trimoxazole and ciprofloxacin and for ciprofloxacin against Pseudomonas aeruginosa. Univariate and multivariable analyses were performed for risk factors associated with resistance. A total of 4596 Gram-negative strains were observed in 3364 patients. A significant increase in the proportion of resistant strains was observed for E.coli against amoxicillin-clavulanate, cefuroxime and ciprofloxacin and for others Enterobacteriaceae against co-trimoxazole and ciprofloxacin. Resistance to nitrofurantoin and fosfomycin was very infrequent in E.coli. Logistic regression analysis showed that repeated episode of urinary tract infections was a risk factor for E.coli resistance to amoxicillin-clavulanate, co-trimoxazole and cefuroxime, while admission in one of the Units usually managing children with urinary tract malformations was significantly associated to resistance to amoxicillin-clavulanate and cefuroxime. In conclusion the present study shows an increase in antibiotic resistance in pediatric bacteria isolated from urines in children, especially in presence of repeated episodes and/or urinary tract malformations. This resistance is worrisome for beta-lactams and cotrimoxazole, and start to increase also for fluoroquinolones while nitrofurantoin and fosfomycin still could represent useful

  16. Examination of key intermediates in the catalytic cycle of aspartate-beta-semialdehyde dehydrogenase from a gram-positive infectious bacteria.

    PubMed

    Faehnle, Christopher R; Le Coq, Johanne; Liu, Xuying; Viola, Ronald E

    2006-10-13

    Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes a critical branch point transformation in amino acid bio-synthesis. The products of the aspartate pathway are essential in microorganisms, and this entire pathway is absent in mammals, making this enzyme an attractive target for antibiotic development. The first structure of an ASADH from a Gram-positive bacterium, Streptococcus pneumoniae, has now been determined. The overall structure of the apoenzyme has a similar fold to those of the Gram-negative and archaeal ASADHs but contains some interesting structural variations that can be exploited for inhibitor design. Binding of the coenzyme NADP, as well as a truncated nucleotide analogue, into an alternative conformation from that observed in Gram-negative ASADHs causes an enzyme domain closure that precedes catalysis. The covalent acyl-enzyme intermediate was trapped by soaking the substrate into crystals of the coenzyme complex, and the structure of this elusive intermediate provides detailed insights into the catalytic mechanism.

  17. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria.

    PubMed

    Dragoš, Anna; Kovács, Ákos T; Claessen, Dennis

    2017-08-07

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils in the two distant Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis . We describe how amyloid fibrils contribute to a multitude of developmental processes in each of these systems, including multicellular growth and community development. Despite this variety of tasks, we know surprisingly little about how their assembly is organized to fulfill all these roles.

  18. A Flow-Cytometric Gram-Staining Technique for Milk-Associated Bacteria

    PubMed Central

    Holm, Claus; Jespersen, Lene

    2003-01-01

    A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50°C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at −18°C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5°C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation. PMID:12732558

  19. Increased cefepime MIC for enterobacteriacae clinical isolates.

    PubMed

    Najafi, Narges; Alikhani, Ahmad; Babamahmoudi, Farhang; Davoudi, Alireza; Ghasemiyan, Roya; Aliyan, Shahriar; Shoujaiifar, Arman

    2013-01-01

    Background : Cefepime was used as empirical treatment in ventilator-associated pneumonia (VAP) induced by gram-negative and gram-positive bacteria. This study aimed to determine the antimicrobial susceptibility pattern of cefepime against microorganism causing VAP in Mazandaran, North of Iran. This study was performed on VAP patients diagnosed with clinical pulmonary infection score (CPIS) scores in ICU of two hospitals. For each patient suspected of having VAP, quantitative culture of endotracheal aspiration (QEA) was performed and MIC was determined by micro dilution test. Data were collected and analyzed. Thirty- five cases of enterobacteriaceae were isolated orderly including E coli 13, P. aeruginosa 11, Enterobacter 7 and K. pneumonia 4 cases. All the isolated E. coli, Enterobacter and Klebsiella, 54.5% of P. aeruginosa isolated were fully resistant to cefepime. The results of this study show that cefepime is not a reasonable choice for empirical treatment of nosocomial pneumonia and VAP.

  20. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  1. [Epidemiology of nosocomial infections].

    PubMed

    Astagneau, P

    1998-09-15

    The frequency of nosocomial infections lies between 5 and 10%, and varies according to the type of hospital and service. Age, underlying disease invasive devices (such as catheters) or procedures are the main risk factors. Common nosocomial infections are urinary tract infections, pneumonia, surgical site infections, bacteremia/septicemia and intravascular catheter-related infections. Gram positive cocci and gram negative bacilli account for one third and two thirds of microorganisms respectively, Staphylococcus aureus being frequently resistant to antibiotics. Prevention is based on a better control of infection risk related to the use of invasive devices.

  2. [The effect of dexamethoxin on the integrity of cytoplasmic membrane in gram-positive and gram-negative microorganisms].

    PubMed

    Shchetina, V N; Belanov, E F; Starobinets, Z G; Volianskiĭ, Iu L

    1990-01-01

    Decamethoxin is shown to be able to increase membrane permeability of Pseudomonas aeruginosa, Escherichia coli and Micrococcus lysodeikticus, that is confirmed by a loss of compounds with the absorption maximum at 260 nm by cells. Parallel with this the number of viable individuals has fallen and activity of dehydrogenases has been inhibited. The aspartate and alanine aminotransferase activity was not inhibited by decamethoxin and even increased. Decamethoxin lysed the protoplasts of the tested microorganisms. At high decamethoxin concentrations (over 500 micrograms/ml for P. aeruginosa and over 200 mu/ml--for E. coli) the outflow of components from the cells of gram-negative bacteria ceased, that may be associated with the coagulation changes in the cytoplasm. A loss of the low-molecular components by M. lysodeikticus cells and lysis of protoplasts proceeded less intensely than the same processes in the gram-negative microorganisms, that is explained by a less resistance of M. lysodeikticus to decamethoxin and earlier coagulation of the cytoplasm preventing lysis.

  3. Gram staining with an automatic machine.

    PubMed

    Felek, S; Arslan, A

    1999-01-01

    This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared from Escherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p < 0.05). In hand-stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p < 0.05). In conclusion, we suggest that Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.

  4. Activation and manipulation of host responses by a Gram-positive bacterium

    PubMed Central

    Balaji, Vasudevan

    2008-01-01

    The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease. PMID:19704516

  5. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    PubMed

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis.

    PubMed

    O'Horo, John C; Thompson, Deb; Safdar, Nasia

    2012-08-01

    In a meta-analysis examining respiratory specimen Gram stain for diagnosis of ventilator-associated pneumonia, absence of bacteria on Gram stain had a high negative predictive value, but a positive Gram stain correlated poorly with organisms recovered in culture. Rapid and accurate diagnosis of ventilator-associated pneumonia (VAP) is a major challenge and no generally accepted gold standard exists for VAP diagnosis. We conducted a meta-analysis to examine the role of respiratory specimen Gram stain to diagnose VAP, and the correlation with final culture results. In 21 studies, pooled sensitivity of Gram stain for VAP was 0.79 (95% confidence interval [CI], .77-0.81; P < .0001) and specificity was 0.75 (95% CI, .73-.78; P < .0001). Negative predictive value of Gram stain for a VAP prevalence of 20%-30% was 91%, suggesting that VAP is unlikely with a negative Gram stain but the positive predictive value of Gram stain was only 40%. Pooled kappa was 0.42 for gram-positive organisms and 0.34 for gram-negative organisms, suggesting fair concordance between organisms on Gram stain and recovery by culture. Therefore, a positive Gram stain should not be used to narrow anti-infective therapy until culture results become available.

  7. Boholmycin, a new aminoglycoside antibiotic. I. Production, isolation and properties.

    PubMed

    Saitoh, K; Tsunakawa, M; Tomita, K; Miyaki, T; Konishi, M; Kawaguchi, H

    1988-07-01

    A novel aminoglycoside antibiotic, boholmycin, was produced by Streptomyces hygroscopicus H617-25 isolated from a soil sample collected in Bohol Island, the Philippines. It has a pseudotetrasaccharide structure composed of a heptose, two aminosugars and dicarbamoyl-scyllo-inositol. Intrinsic antibacterial activity of boholmycin is weak but it exhibits broad spectrum activity against Gram-positive and Gram-negative bacteria including aminoglycoside-resistant strains. Boholmycin is non-toxic in mice at 1,000 mg/kg intravenously.

  8. Antimicrobial susceptibility of Gram-negative bacteria causing intra-abdominal infections in China: SMART China 2011.

    PubMed

    Zhang, Hui; Yang, Qiwen; Xiao, Meng; Chen, Minjun; Badal, Robert E; Xu, Yingchun

    2014-01-01

    The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide. In 2011, 1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected. All isolates were tested using a panel of 12 antimicrobial agents, and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines. Among the Gram-negative pathogens causing IAIs, Escherichia coli (47.3%) was the most commonly isolated, followed by Klebsiella pneumoniae (17.2%), Pseudomonas aeruginosa (10.1%), and Acinetobacter baumannii (8.3%). Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates. Among the antimicrobial agents tested, ertapenem and imipenem were the most active agents against Enterobacteriaceae, with susceptibility rates of 95.1% and 94.4%, followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%). Susceptibility rates of ceftriaxone, cefotaxime, ceftazidime, and cefepime against Enterobacteriaceae were 38.3%, 38.3%, 61.1%, and 50.8%, respectively. The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%). The extended-spectrum β-lactamase (ESBL) rates among E. coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis were 68.8%, 38.1%, 41.2%, and 57.7%, respectively. Enterobacteriaceae were the major pathogens causing IAIs, and the most active agents against the study isolates (including those producing ESBLs) were ertapenem, imipenem, and amikacin. Including the carbapenems, most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.

  9. Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans.

    PubMed

    Bernalier, A; Rochet, V; Leclerc, M; Doré, J; Pochart, P

    1996-08-01

    The purpose of this work was to study H2/CO2-utilizing acetogenic population in the colons of non-methane-producing individuals harboring low numbers of methanogenic archaea. Among the 50 H2-consuming acetogenic strains isolated from four fecal samples and an in vitro semi-continuous culture enrichment, with H2/CO2 as sole energy source, 20 were chosen for further studies. All isolates were Gram-positive strict anaerobes. Different morphological types were identified, providing evidence of generic diversity. All acetogenic strains characterized used H2/CO2 to form acetate as the sole metabolite, following the stoichiometric equation of reductive acetogenesis. These bacteria were also able to use a variety of organic compounds for growth. The major end product of glucose fermentation was acetate, except for strains of cocci that mainly produced lactate. Yeast extract was not necessary, but was stimulatory for growth and acetogenesis from H2/CO2.

  10. Fermentation of glycolate by a pure culture of a strictly anaerobic gram-positive bacterium belonging to the family Lachnospiraceae.

    PubMed

    Janssen, Peter H; Hugenholtz, Philip

    2003-05-01

    The component bacteria of a three-membered mixed culture able to ferment glycolate to acetate, propionate and CO(2) were isolated in pure culture. All three strains were strict anaerobes that, on the basis of comparative 16S rRNA gene sequence analysis, belonged to the order Clostridiales in the phylum Firmicutes (low G+C gram-positive bacteria). Two of the strains were not involved in glycolate metabolism. The third, the glycolate-fermenting strain 19gly4 (DSM 11261), was related to members of the family Lachnospiraceae. The cells of strain 19gly4 were oval- to lemon-shaped, 0.85 microm long and 0.65 microm in diameter, occurring singly, in pairs, or in chains of up to 30 cells. Strain 19gly4 fermented glycolate or fumarate to acetate, succinate, and CO(2). Hydrogen was not formed, and strain 19gly4 was able to grow on glycolate in pure culture without any syntrophic hydrogen transfer and without the use of an external electron acceptor. There was no evidence for homoacetogenic metabolism. This bacterium therefore differs in metabolism from previously reported glycolate-utilising anaerobes.

  11. A new technique for Gram staining paraffin-embedded tissue.

    PubMed Central

    Engbaek, K; Johansen, K S; Jensen, M E

    1979-01-01

    Five techniques for Gram staining bacteria in paraffin sections were compared on serial sections of pulmonary tissues from eight bacteriological necropsies. Brown and Hopp's method was the most satisfactory for distinguishing Gram-positive and Gram-negative bacteria. However, this method cannot be recommended as the preparations were frequently overstained, and the Gram-negative bacteria were stained indistinctly. A modification of Brown and Hopps' method was developed which stains larger numbers of Gram-negative bacteria and differentiates well between different cell types and connective tissue, and there is no risk of overstaining. PMID:86548

  12. Chengkuizengella sediminis gen. nov. sp. nov., isolated from sediment

    USDA-ARS?s Scientific Manuscript database

    A Gram-strain-positive, aerobic, motile, endospore-forming bacterium, designated strain J15A17T, was isolated from sediment of the South China Sea. The strain was oxidase-positive and catalase-negative. Optimal growth occurred at 33', pH 7.5 and in the presence of 3% (w/v) NaCl. On the basis of 16S ...

  13. Paraliobacillus sediminis sp. nov., isolated from East China sea sediment

    USDA-ARS?s Scientific Manuscript database

    A Gram-strain-positive, facultatively anaerobic, motile, endospore-forming, moderately halophilic bacterium, designated strain 126C4**T, was isolated from sediment of the East China Sea. The strain was catalase-positive and oxidase-negative. Optimal growth occurred at 28–30 deg C, pH 7.0–7.5 and in ...

  14. Preparation of Purified Gram-positive Bacterial Cell Wall and Detection in Placenta and Fetal Tissues

    PubMed Central

    Mann, Beth; Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine

    2017-01-01

    Cell wall is a complex biopolymer on the surface of all Gram-positive bacteria. During infection, cell wall is recognized by the innate immune receptor Toll-like receptor 2 causing intense inflammation and tissue damage. In animal models, cell wall traffics from the blood stream to many organs in the body, including brain, heart, placenta and fetus. This protocol describes how to prepare purified cell wall from Streptococcus pneumoniae, detect its distribution in animal tissues, and study the tissue response using the placenta and fetal brain as examples. PMID:28573167

  15. Tetracycline Susceptibility in Chlamydia suis Pig Isolates.

    PubMed

    Donati, Manuela; Balboni, Andrea; Laroucau, Karine; Aaziz, Rachid; Vorimore, Fabien; Borel, Nicole; Morandi, Federico; Vecchio Nepita, Edoardo; Di Francesco, Antonietta

    2016-01-01

    The aims of the present study were to assess the prevalence of Chlamydia suis in an Italian pig herd, determine the tetracycline susceptibility of C. suis isolates, and evaluate tet(C) and tetR(C) gene expression. Conjunctival swabs from 20 pigs were tested for C. suis by real-time polymerase chain reaction, and 55% (11) were positive. C. suis was then isolated from 11 conjunctival swabs resampled from the same herd. All positive samples and isolates were positive for the tet(C) resistance gene. The in vitro susceptibility to tetracycline of the C. suis isolates showed MIC values ranging from 0.5 to 4 μg/mL. Tet(C) and tetR(C) transcripts were found in all the isolates, cultured both in the absence and presence of tetracycline. This contrasts with other Gram-negative bacteria in which both genes are repressed in the absence of the drug. Further investigation into tet gene regulation in C. suis is needed.

  16. In Vitro Efficacy of Nonantibiotic Treatments on Biofilm Disruption of Gram-Negative Pathogens and an In Vivo Model of Infectious Endometritis Utilizing Isolates from the Equine Uterus

    PubMed Central

    McCue, Patrick M.; Borlee, Grace I.; Loncar, Kristen D.; Hennet, Margo L.

    2015-01-01

    In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent “biofilm-like” matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo. PMID:26719448

  17. Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy

    PubMed Central

    2011-01-01

    Background Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E. coli had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism Bacillus subtilis 1012. Results The chimaeric gene encoding the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 as well as Bet v1 was cloned and expressed in B. subtilis 1012. For that purpose, the E. coli-B. subtilis shuttle vectors pHT01 for expression in the B. subtilis cytoplasm and pHT43 for secretion of the recombinant fusion protein into the culture medium were used. As shown by western blot analysis, immediately after induction of expression, B. subtilis 1012 was able to secret rSbpA/Bet v1 mediated by the signal peptide amyQ of Bacillus amyloliquefaciens. Electron microscopical investigation of the culture medium revealed that the secreted fusion protein was able to form self-assembly products in suspension but did not recrystallize on the surface of the B. subtilis cells. The specific binding mechanism between the N-terminus of the S-layer protein and a secondary cell wall polymer (SCWP), located in the peptidoglycan-containing sacculi of Ly. sphaericus CCM 2177, could be used for isolation and purification of the secreted fusion protein from the culture medium. Immune reactivity of rSbpA/Bet v1 could be demonstrated in

  18. In Vitro Antibacterial Activities of AF 3013, the Active Metabolite of Prulifloxacin, against Nosocomial and Community Italian Isolates

    PubMed Central

    Montanari, Maria Pia; Mingoia, Marina; Varaldo, Pietro Emanuele

    2001-01-01

    AF 3013, the active metabolite of prulifloxacin, was tested to determine its inhibitory and bactericidal activities against 396 nosocomial and 258 community Italian isolates. Compared with that of ciprofloxacin, its activity (assessed in MIC and minimal bactericidal concentration tests) was generally similar or greater against gram-positive bacteria and greater against gram-negative bacteria. In time-kill assays using selected isolates, its bactericidal activity was comparable to that of ciprofloxacin. PMID:11709353

  19. Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae.

    PubMed

    Castanheira, Mariana; Huband, Michael D; Mendes, Rodrigo E; Flamm, Robert K

    2017-09-01

    We evaluated the activity of meropenem-vaborbactam against contemporary nonfastidious Gram-negative clinical isolates, including Enterobacteriaceae isolates with resistance phenotypes and carbapenemase genotypes. Meropenem-vaborbactam (inhibitor at 8 μg/ml) and comparators were susceptibility tested by reference broth microdilution methods against 14,304 Gram-negative clinical isolates collected worldwide during 2014. Carbapenemase-encoding genes were screened by PCR and sequencing. Meropenem-vaborbactam (MIC 50/90 , ≤0.015/0.06 μg/ml) inhibited 99.1 and 99.3% of the 10,426 Enterobacteriaceae isolates tested at ≤1 and ≤2 μg/ml, respectively. Meropenem inhibited 97.3 and 97.7% of these isolates at the same concentrations. Against Enterobacteriaceae isolates displaying carbapenem-resistant Enterobacteriaceae (CRE) ( n = 265), multidrug-resistant (MDR) ( n = 1,210), and extensively drug-resistant (XDR) ( n = 161) phenotypes, meropenem-vaborbactam displayed MIC 50/90 values of 0.5/32, 0.03/1, and 0.5/32 μg/ml, respectively, whereas meropenem activities were 16/>32, 0.06/32, and 0.5/32 μg/ml, respectively. Among all geographic regions, the highest meropenem-vaborbactam activities were observed for CRE and MDR isolates from the United States (MIC 50/90 , 0.03/1 and 0.03/0.12 μg/ml, respectively). Meropenem-vaborbactam was very active against 135 KPC producers, and all isolates were inhibited by concentrations of ≤8 μg/ml (133 isolates by concentrations of ≤2 μg/ml). This combination had limited activity against isolates producing metallo-β-lactamases (including 25 NDM-1 and 16 VIM producers) and/or oxacillinases (27 OXA-48/OXA-163 producers) that were detected mainly in Asia-Pacific and some European countries. The activity of meropenem-vaborbactam was similar to that of meropenem alone against Pseudomonas aeruginosa , Acinetobacter spp., and Stenotrophomonas maltophilia Meropenem-vaborbactam was active against contemporary Enterobacteriaceae isolates

  20. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria

    PubMed Central

    Talei, Gholam-Reza; Mohammadi, Mohsen; Bahmani, Mahmoud; Kopaei, Mahmoud Rafieian

    2017-01-01

    Background: Infectious diseases have always been an important health issue in human communities. In the recent years, much research has been conducted on antimicrobial effects of nature-based compounds because of increased prevalence of antibiotic resistance. The present study was conducted to investigate synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Materials and Methods: In this experimental study, the synergistic effects of C. copticum and M. piperita essential oils with antibiotics on Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Staphylococcus epidermidis (ATCC 14990), and Listeria monocytogenes (ATCC 7644) were studied according to broth microdilution and the MIC and fractional inhibitory concentration (FIC) of these two essential oils determined. Results: C. copticum essential oil at 30 μg/ml could inhibit S. aureus, and in combination with vancomycin, decreased MIC from 0.5 to 0.12 μg/ml. Moreover, the FIC was derived 0.24 μg/ml which represents a potent synergistic effect with vancomycin against S. aureus growth. C. copticum essential oil alone or combined with other antibiotics is effective in treating bacterial infections. Conclusions: In addition, C. copticum essential oil can strengthen the activities of certain antibiotics, which makes it possible to use this essential oil, especially in drug resistance or to lower dosage or toxicity of the drugs. PMID:28929050