Science.gov

Sample records for gram-positive organisms bacillus

  1. Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans

    NASA Technical Reports Server (NTRS)

    Jurtshuk, R. J.; Blick, M.; Bresser, J.; Fox, G. E.; Jurtshuk, P. Jr

    1992-01-01

    A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.

  2. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.

    PubMed

    Lin, Johnson; Madida, Bafana B

    2015-10-01

    The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r?= ?0.64; p?Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. PMID:25847372

  3. Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods.

    PubMed

    Fernández-Fuentes, Miguel Angel; Abriouel, Hikmate; Ortega Morente, Elena; Pérez Pulido, Rubén; Gálvez, Antonio

    2014-02-17

    Bacterial biocide resistance is becoming a matter of concern. In the present study, a collection of biocide-resistant, Gram-positive bacteria from organic foods (including 11 isolates from genus Bacillus, 25 from Enterococcus and 10 from Staphylococcus) were analyzed for genes associated to biocide resistance efflux pumps and antibiotic resistance. The only qac-genes detected were qacA/B (one Bacillus cereus isolate) and smr (one B. cereus and two Staphylococcus saprophyticus isolates). Efflux pump genes efrA and efrB genes were detected in Staphylococcus (60% of isolates), Bacillus (54.54%) and Enterococcus (24%); sugE was detected in Enterococcus (20%) and in one Bacillus licheniformis; mepA was detected in Staphylococcus (60%) and in one Enterococcus isolate (which also carried mdeA), and norE gene was detected only in one Enterococcus faecium and one S. saprophyticus isolate. An amplicon for acrB efflux pump was detected in all but one isolate. When minimal inhibitory concentrations (MICs) were determined, it was found that the addition of reserpine reduced the MICs by eight fold for most of the biocides and isolates, corroborating the role of efflux pumps in biocide resistance. Erythromycin resistance gene ermB was detected in 90% of Bacillus isolates, and in one Staphylococcus, while ereA was detected only in one Bacillus and one Staphyloccus, and ereB only in one Staphylococcus. The ATP-dependent msrA gene (which confers resistance to macrolides, lincosamides and type B streptogramins) was detected in 60% of Bacillus isolates and in all staphylococci, which in addition carried msrB. The lincosamide and streptogramin A resistance gene lsa was detected in Staphylococcus (40%), Bacillus (27.27%) and Enterococcus (8%) isolates. The aminoglycoside resistance determinant aph (3_)-IIIa was detected in Staphylococcus (40%) and Bacillus (one isolate), aph(2_)-1d in Bacillus (27.27%) and Enterococcus (8%), aph(2_)-Ib in Bacillus (one isolate), and the bifunctional aac(6_)1e-aph(2_)-Ia in Staphylococcus (20%), Enterococcus (8%) and Bacillus (one isolate). Chloramphenicol resistance cat gene was detected in Enterococcus (8%) and Staphylococcus (20%), and blaZ only in Staphylococcus (20%). All other antibiotic or biocide resistance genes investigated were not detected in any isolate. Isolates carrying multiple biocide and antibiotic determinants were frequent among Bacillus (36.36%) and Staphylococcus (50%), but not Enterococcus. These results suggest that biocide and antibiotic determinants may be co-selected. PMID:24361832

  4. Transformation of gram positive bacteria by sonoporation

    DOEpatents

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  5. Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin.

    PubMed

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L; Casadevall, Arturo

    2014-07-01

    Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harbouring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  6. ?(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group.

    PubMed

    Souza, Bianca Mendes; Castro, Thiago Luiz de Paula; Carvalho, Rodrigo Dias de Oliveira; Seyffert, Nubia; Silva, Artur; Miyoshi, Anderson; Azevedo, Vasco

    2014-07-01

    The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called ?(ECF) factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms' physiology and indicating some of the genes whose transcription they regulate. PMID:24921931

  7. Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.

    PubMed Central

    Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C

    1997-01-01

    We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus. PMID:9097439

  8. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  9. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis

    PubMed Central

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-01-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055

  10. Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB

    PubMed Central

    Fukushima, Tatsuya; Allred, Benjamin E.; Sia, Allyson K.; Nichiporuk, Rita; Andersen, Ulla N.; Raymond, Kenneth N.

    2013-01-01

    Small molecule iron-chelators, siderophores, are very important in facilitating the acquisition of Fe(III), an essential element for pathogenic bacteria. Many Gram-negative outer-membrane transporters and Gram-positive lipoprotein siderophore-binding proteins have been characterized, and the binding ability of outer-membrane transporters and siderophore-binding proteins for Fe-siderophores has been determined. However, there is little information regarding the binding ability of these proteins for apo-siderophores, the iron-free chelators. Here we report that Bacillus cereus YxeB facilitates iron-exchange from Fe-siderophore to apo-siderophore bound to the protein, the first Gram-positive siderophore-shuttle system. YxeB binds ferrioxamine B (FO, Fe-siderophore)/desferrioxamine B (DFO, apo-siderophore) in vitro. Disc-diffusion assays and growth assays using the yxeB mutant reveal that YxeB is responsible for importing the FO. Cr-DFO (a FO analog) is bound by YxeB in vitro and B. cereus imports or binds Cr-DFO in vivo. In vivo uptake assays using Cr-DFO and FO and growth assays using DFO and Cr-DFO show that B. cereus selectively imports and uses FO when DFO is present. Moreover, in vitro competition assays using Cr-DFO and FO clearly demonstrate that YxeB binds only FO, not Cr-DFO, when DFO is bound to the protein. Iron-exchange from FO to DFO bound to YxeB must occur when DFO is initially bound by YxeB. Because the metal exchange rate is generally first order in replacement ligand concentration, protein binding of the apo-siderophore acts to dramatically enhance the iron exchange rate, a key component of the Gram-positive siderophore-shuttle mechanism. PMID:23924612

  11. Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB.

    PubMed

    Fukushima, Tatsuya; Allred, Benjamin E; Sia, Allyson K; Nichiporuk, Rita; Andersen, Ulla N; Raymond, Kenneth N

    2013-08-20

    Small molecule iron-chelators, siderophores, are very important in facilitating the acquisition of Fe(III), an essential element for pathogenic bacteria. Many Gram-negative outer-membrane transporters and Gram-positive lipoprotein siderophore-binding proteins have been characterized, and the binding ability of outer-membrane transporters and siderophore-binding proteins for Fe-siderophores has been determined. However, there is little information regarding the binding ability of these proteins for apo-siderophores, the iron-free chelators. Here we report that Bacillus cereus YxeB facilitates iron-exchange from Fe-siderophore to apo-siderophore bound to the protein, the first Gram-positive siderophore-shuttle system. YxeB binds ferrioxamine B (FO, Fe-siderophore)/desferrioxamine B (DFO, apo-siderophore) in vitro. Disc-diffusion assays and growth assays using the yxeB mutant reveal that YxeB is responsible for importing the FO. Cr-DFO (a FO analog) is bound by YxeB in vitro and B. cereus imports or binds Cr-DFO in vivo. In vivo uptake assays using Cr-DFO and FO and growth assays using DFO and Cr-DFO show that B. cereus selectively imports and uses FO when DFO is present. Moreover, in vitro competition assays using Cr-DFO and FO clearly demonstrate that YxeB binds only FO, not Cr-DFO, when DFO is bound to the protein. Iron-exchange from FO to DFO bound to YxeB must occur when DFO is initially bound by YxeB. Because the metal exchange rate is generally first order in replacement ligand concentration, protein binding of the apo-siderophore acts to dramatically enhance the iron exchange rate, a key component of the Gram-positive siderophore-shuttle mechanism. PMID:23924612

  12. Bacillus subtilis chromosome organization oscillates between two distinct patterns

    E-print Network

    Rudner, David

    Bacillus subtilis chromosome organization oscillates between two distinct patterns Xindan Wang show that the Bacillus subtilis chromosome alternates between them. For most of the cell cycle, newly was first analyzed in the Gram-positive bacterium Bacillus subtilis, our understanding of the replication

  13. A metal-repressed promoter from gram-positive Bacillus subtilis is highly active and metal-induced in gram-negative Cupriavidus metallidurans.

    PubMed

    Ribeiro-dos-Santos, Gabriela; Biondo, Ronaldo; Quadros, Oeber de Freitas; Vicente, Elisabete José; Schenberg, Ana Clara Guerrini

    2010-10-15

    A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. PMID:20517979

  14. Evaluation of a Microarray-Based Assay for Rapid Identification of Gram-Positive Organisms and Resistance Markers in Positive Blood Cultures

    PubMed Central

    Tibbetts, Robert J.; Agotesku, Adam; Fey, Margaret; Hensley, Rhonda; Meier, Frederick A.

    2013-01-01

    Rapid identification of pathogens directly from positive blood cultures can play a major role in reducing patient mortality rates. We evaluated the performance of the Verigene Gram-Positive Blood Culture (BC-GP) assay (Nanosphere Inc., Northbrook, IL) for detection of commonly isolated Gram-positive organisms as well as associated resistance markers from positive blood cultures. Positive blood cultures (VersaTREK; Trek Diagnostic Systems, Independence, OH) from 203 patients with Gram-positive organism infections were analyzed using the BC-GP assay within 12 h for the detection of 12 different organisms, including staphylococci, streptococci, and enterococci, as well as for the presence of 3 resistance markers (mecA, vanA, and vanB). Results were compared to those of routine laboratory methods for identification and susceptibility testing. For identification of organisms and detection of resistance markers in 178 monomicrobial positive blood cultures, the BC-GP assay showed 94% and 97% concordance, respectively, with routine methods. After 25 polymicrobial cultures were included, the results showed 92% and 96% agreement for identification and resistance markers, respectively, for a total of 203 positive cultures. In 6/25 polymicrobial cultures, at least 1 isolate was not detected. Concordance levels for detection of major pathogens such Staphylococcus aureus (n = 45) and enterococci (n = 19) were 98% and 95%, respectively. Agreement levels for detection of resistance markers such as mecA and vanA/B were 92% and 100%, respectively. The BC-GP assay is capable of providing rapid identification of Gram-positive cocci as well as detection of resistance markers directly from positive blood cultures at least 24 to 48 h earlier than conventional methods. PMID:23363838

  15. Current Concepts in Antimicrobial Therapy Against Select Gram-Positive Organisms: Methicillin-Resistant Staphylococcus aureus, Penicillin-Resistant Pneumococci, and Vancomycin-Resistant Enterococci

    PubMed Central

    Rivera, Ana Maria; Boucher, Helen W.

    2011-01-01

    Gram-positive bacteria cause a broad spectrum of disease in immunocompetent and immunocompromised hosts. Despite increasing knowledge about resistance transmission patterns and new antibiotics, these organisms continue to cause significant morbidity and mortality, especially in the health care setting. Methicillin-resistant Staphylococcus aureus poses major problems worldwide as a cause of nosocomial infection and has emerged as a cause of community-acquired infections. This change in epidemiology affects choices of empirical antibiotics for skin and skin-structure infections and community-acquired pneumonia in many settings. Throughout the world, the treatment of community-acquired pneumonia and other respiratory tract infections caused by penicillin-resistant Streptococcus pneumoniae has been complicated by resistance to ?-lactam and macrolide antibacterial drugs. Vancomycin-resistant enterococci are a major cause of infection in the hospital setting and remain resistant to treatment with most standard antibiotics. Treatment of diseases caused by resistant gram-positive bacteria requires appropriate use of available antibiotics and stewardship to prolong their effectiveness. In addition, appropriate and aggressive infection control efforts are vital to help prevent the spread of resistant pathogens. PMID:22134942

  16. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    PubMed

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect. PMID:25820813

  17. Gram-Positive Anaerobic Cocci

    PubMed Central

    Murdoch, D. A.

    1998-01-01

    Gram-positive anaerobic cocci (GPAC) are a heterogeneous group of organisms defined by their morphological appearance and their inability to grow in the presence of oxygen; most clinical isolates are identified to species in the genus Peptostreptococcus. GPAC are part of the normal flora of all mucocutaneous surfaces and are often isolated from infections such as deep organ abscesses, obstetric and gynecological sepsis, and intraoral infections. They have been little studied for several reasons, which include an inadequate classification, difficulties with laboratory identification, and the mixed nature of the infections from which they are usually isolated. Nucleic acid studies indicate that the classification is in need of radical revision at the genus level. Several species of Peptostreptococcus have recently been described, but others still await formal recognition. Identification has been based on carbohydrate fermentation tests, but most GPAC are asaccharolytic and use the products of protein degradation for their metabolism; the introduction of commercially available preformed enzyme kits affords a physiologically more appropriate method of identification, which is simple and relatively rapid and can be used in routine diagnostic laboratories. Recent reports have documented the isolation in pure culture of several species, notably Peptostreptococcus magnus, from serious infections. Studies of P. magnus have elucidated several virulence factors which correlate with the site of infection, and reveal some similarities to Staphylococcus aureus. P. micros is a strongly proteolytic species; it is increasingly recognized as an important pathogen in intraoral infections, particularly periodontitis, and mixed anaerobic deep-organ abscesses. Comparison of antibiotic susceptibility patterns reveals major differences between species. Penicillins are the antibiotics of choice, although some strains of P. anaerobius show broad-spectrum ?-lactam resistance. PMID:9457430

  18. When Ribonucleases Come into Play in Pathogens: A Survey of Gram-Positive Bacteria

    PubMed Central

    Jester, Brian C.; Romby, Pascale; Lioliou, Efthimia

    2012-01-01

    It is widely acknowledged that RNA stability plays critical roles in bacterial adaptation and survival in different environments like those encountered when bacteria infect a host. Bacterial ribonucleases acting alone or in concert with regulatory RNAs or RNA binding proteins are the mediators of the regulatory outcome on RNA stability. We will give a current update of what is known about ribonucleases in the model Gram-positive organism Bacillus subtilis and will describe their established roles in virulence in several Gram-positive pathogenic bacteria that are imposing major health concerns worldwide. Implications on bacterial evolution through stabilization/transfer of genetic material (phage or plasmid DNA) as a result of ribonucleases' functions will be covered. The role of ribonucleases in emergence of antibiotic resistance and new concepts in drug design will additionally be discussed. PMID:22550495

  19. Architecture and assembly of the Gram-positive cell wall

    PubMed Central

    Beeby, Morgan; Gumbart, James C.; Roux, Benoît; Jensen, Grant J.

    2013-01-01

    The bacterial cell wall is a mesh polymer of peptidoglycan – linear glycan strands crosslinked by flexible peptides – that determines cell shape and provides physical protection. While the glycan strands in thin “Gram-negative” peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker “Gram-positive” form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an “inside-to-outside” assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram-positive cell walls run circumferentially around the cell just as they do in Gram-negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram-positive peptidoglycan is an important antibiotic target crucial to the viability of several important rod-shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile. PMID:23600697

  20. Class D ?-lactamases do exist in Gram-positive bacteria.

    PubMed

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde A; Vakulenko, Sergei B

    2016-01-01

    Production of ?-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to ?-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D ?-lactamases capable of hydrolyzing a wide array of ?-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D ?-lactamases. These enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes. PMID:26551395

  1. New drugs for Gram-positive uropathogens.

    PubMed

    Wagenlehner, F M E; Naber, K G

    2004-09-01

    Complicated urinary tract infections (UTIs) are frequent nosocomial infections. The bacterial spectrum encompasses Gram-negative but also Gram-positive pathogens in up to 30-40%. The existing treatment for Gram-positive pathogens is not always optimal. Antimicrobials for the treatment of Gram-positive uropathogens comprise older agents, such as aminopenicillins with or without beta-lactamase inhibitors and vancomycin, as well as newer fluoroquinolones, such as levofloxacin or gatifloxacin. However, resistant bacteria such as vancomycin-resistant enterococci (VRE) or methicillin-resistant Staphylococcus aureus (MRSA) (except vancomycin-resistant) are generally also not susceptible to the fluoroquinolones. Therefore new agents need to be assessed in the treatment of UTI. Daptomycin and linezolid are new antimicrobial agents with good efficacy against Gram-positive uropathogens as shown by their minimal inhibitory concentrations. In a phase II study the urinary bactericidal activity of linezolid versus ciprofloxacin in volunteers showed comparable activity of both drugs against fluoroquinolone susceptible Gram-positive uropathogens, whereas linezolid was also as active against fluoroquinolone resistant ones. The pharmacokinetics and the mode of action of these two antibiotics are discussed together with some clinical data in the context of therapeutic use in patients with complicated UTIs. PMID:15364305

  2. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

    PubMed Central

    McBride, Shonna M.

    2014-01-01

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. PMID:25419466

  3. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  4. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  5. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  6. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  7. Accentuate the (Gram) positive Victor Nizet

    E-print Network

    Nizet, Victor

    research. Streptococcus pneumoniae (SPN) is a leading agent of pneumonia, meningitis and sepsis throughout January 2010 # Springer-Verlag 2010 Keywords Gram-positive bacteria . Streptococcus . Special issue [7]. The mechanisms of SPN invasion to produce lower respiratory tract, pneumonia, and meningitis

  8. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens

    PubMed Central

    Van Tyne, Daria; Gilmore, Michael S.

    2014-01-01

    SUMMARY Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis. PMID:25544937

  9. Bacteriocins of gram-positive bacteria.

    PubMed Central

    Jack, R W; Tagg, J R; Ray, B

    1995-01-01

    In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered. PMID:7603408

  10. Type IV Pili in Gram-Positive Bacteria

    PubMed Central

    Craig, Lisa

    2013-01-01

    SUMMARY Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species. PMID:24006467

  11. Methods for targetted mutagenesis in gram-positive bacteria

    DOEpatents

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  12. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  13. ?ECF factors of gram-positive bacteria

    PubMed Central

    Souza, Bianca Mendes; Castro, Thiago Luiz de Paula; Carvalho, Rodrigo Dias de Oliveira; Seyffert, Nubia; Silva, Artur; Miyoshi, Anderson; Azevedo, Vasco

    2014-01-01

    The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called ?ECF factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms’ physiology and indicating some of the genes whose transcription they regulate. PMID:24921931

  14. Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated Microarray-Based Nucleic Acid Test

    PubMed Central

    Buchan, Blake W.; Ginocchio, Christine C.; Manii, Ryhana; Cavagnolo, Robert; Pancholi, Preeti; Swyers, Lettie; Thomson, Richard B.; Anderson, Christopher; Kaul, Karen; Ledeboer, Nathan A.

    2013-01-01

    Background A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria. Methods and Findings 1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus. Conclusions The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors' Summary PMID:23843749

  15. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.

    PubMed

    Tonk, Miray; Knorr, Eileen; Cabezas-Cruz, Alejandro; Valdés, James J; Kollewe, Christian; Vilcinskas, Andreas

    2015-11-01

    The red flour beetle Tribolium castaneum is a destructive insect pest of stored food and feed products, and a model organism for development, evolutionary biology and immunity. The insect innate immune system includes antimicrobial peptides (AMPs) with a wide spectrum of targets including viruses, bacteria, fungi and parasites. Defensins are an evolutionarily-conserved class of AMPs and a potential new source of antimicrobial agents. In this context, we report the antimicrobial activity, phylogenetic and structural properties of three T. castaneum defensins (Def1, Def2 and Def3) and their relevance in the immunity of T. castaneum against bacterial pathogens. All three recombinant defensins showed bactericidal activity against Micrococcus luteus and Bacillus thuringiensis serovar tolworthi, but only Def1 and Def2 showed a bacteriostatic effect against Staphylococcus epidermidis. None of the defensins showed activity against the Gram-negative bacteria Escherichia coli and Pseudomonas entomophila or against the yeast Saccharomyces cerevisiae. All three defensins were transcriptionally upregulated following a bacterial challenge, suggesting a key role in the immunity of T. castaneum against bacterial pathogens. Phylogenetic analysis showed that defensins from T. castaneum, mealworms, Udo longhorn beetle and houseflies cluster within a well-defined clade of insect defensins. We conclude that T. castaneum defensins are primarily active against Gram-positive bacteria and that other AMPs may play a more prominent role against Gram-negative species. PMID:26522790

  16. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid. PMID:26598715

  17. Resistance to bacteriocins produced by Gram-positive bacteria.

    PubMed

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed. PMID:25406453

  18. Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus.

    PubMed

    Zhong, Dan; Zhuo, Yan; Feng, Yuanjiao; Yang, Xiaoming

    2015-12-15

    By employing attractive performance of fluorescent carbon dots, we herein successfully established an assay for analyzing bacteria firstly. Specifically, carbon dots with blue fluorescence were initially synthesized according to a previous report, and modified with vancomycin on their surfaces. Subsequently, the prepared carbon dots were applied to detect Staphylococcus aureus accompanied with a linear range of 3.18×10(5)-1.59×10(8) cfu/mL as well as a detection limit of 9.40×10(4) cfu/mL. Compared with other regular methods, our method is more rapid and convenient in term of methodology. Meanwhile, the current strategy was applied for detection of other bacteria including Bacillus subtilis, Listeria monocytogenes, Salmonella, Pseudomonas aeruginosa and Escherichia coli, and the modified carbon dots showed obvious affinity with Gram-positive bacteria owing to the ligand-receptor interactions between vancomycin and the cell walls, suggesting its value for detecting Gram-positive bacteria. Additionally, the practicability of this sensing approach was validated by recovery experiments conducted in orange juice, confirming its potential to broaden avenues for detection of Gram-positive bacteria. PMID:26188677

  19. Oligopolyphenylenevinylene-conjugated oligoelectrolyte membrane insertion molecules selectively disrupt cell envelopes of Gram-positive bacteria.

    PubMed

    Hinks, Jamie; Poh, Wee Han; Chu, Justin Jang Hann; Loo, Joachim Say Chye; Bazan, Guillermo C; Hancock, Lynn E; Wuertz, Stefan

    2015-03-01

    The modification of microbial membranes to achieve biotechnological strain improvement with exogenous small molecules, such as oligopolyphenylenevinylene-conjugated oligoelectrolyte (OPV-COE) membrane insertion molecules (MIMs), is an emerging biotechnological field. Little is known about the interactions of OPV-COEs with their target, the bacterial envelope. We studied the toxicity of three previously reported OPV-COEs with a selection of Gram-negative and Gram-positive organisms and demonstrated that Gram-positive bacteria are more sensitive to OPV-COEs than Gram-negative bacteria. Transmission electron microscopy demonstrated that these MIMs disrupt microbial membranes and that this occurred to a much greater degree in Gram-positive organisms. We used a number of mutants to probe the nature of MIM interactions with the microbial envelope but were unable to align the membrane perturbation effects of these compounds to previously reported membrane disruption mechanisms of, for example, cationic antimicrobial peptides. Instead, the data support the notion that OPV-COEs disrupt microbial membranes through a suspected interaction with diphosphatidylglycerol (DPG), a major component of Gram-positive membranes. The integrity of model membranes containing elevated amounts of DPG was disrupted to a greater extent by MIMs than those prepared from Escherichia coli total lipid extracts alone. PMID:25576607

  20. Wall Teichoic Acids of Gram-Positive Bacteria

    PubMed Central

    Brown, Stephanie; Santa Maria, John P.; Walker, Suzanne

    2013-01-01

    The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers called wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections. PMID:24024634

  1. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  2. Screening genomes of Gram-positive bacteria for

    E-print Network

    Screening genomes of Gram-positive bacteria for double-glycine-motif- containing peptides Secreted-positive bacteria, the double-glycine (GG) motif plays a key role in many peptide secretion systems involved Microbiology Comment #12;peptides and class II bacteriocins, produced by streptococci and lactic acid bacteria

  3. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    PubMed Central

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and ?-globin and ?-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized ?-globin chain peptides, synthetic variants of ?-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  4. Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens

    PubMed Central

    Beiras-Fernandez, Andres; Vogt, Ferdinand; Sodian, Ralf; Weis, Florian

    2010-01-01

    The aim of this review is to summarize the historical background of drug resistance of Gram-positive pathogens as well as to describe in detail the novel lipopeptide antibiotic daptomycin. Pharmacological and pharmacokinetic aspects are reviewed and the current clinical use of daptomycin is presented. Daptomycin seems to be a reliable drug in the treatment of complicated skin and skin structure infections, infective right-sided endocarditis, and bacteremia caused by Gram-positive agents. Its unique mechanism of action and its low resistance profile, together with its rapid bactericidal action make it a favorable alternative to vancomycin in multi-drug resistant cocci. The role of daptomycin in the treatment of prosthetic material infections, osteomyelitis, and urogenital infections needs to be evaluated in randomized clinical trials. PMID:21694898

  5. Complete Genome Sequences for Two Strains of a Novel Fastidious, Partially Acid-Fast, Gram-Positive Corynebacterineae Bacterium, Derived from Human Clinical Samples

    PubMed Central

    Bell, Melissa; Humrighouse, Ben W.; McQuiston, John R.

    2015-01-01

    Here we report the complete genome sequences of two strains of the novel fastidious, partially acid-fast, Gram-positive bacillus “Lawsonella clevelandensis” (proposed). Their clinical relevance and unusual growth characteristics make them intriguing candidates for whole-genome sequencing. PMID:26659691

  6. [New gram-positive opportunistic bacteria: pathogenic role and treatment].

    PubMed

    Philippon, A; Barbut, F

    1997-05-17

    NOVEL BACTERIA: The appearance of novel bacterial species among Gram positive microorganisms is mainly related to progress in bacterial taxonomy justifying such nomen species, i.e. C. jeikeium, C. urealyticum or R. equi. Another feature of such emergence of "Novel" bacteria is related to the rise in the number of clinical observations mediated by some well-known species described elsewhere such as in food bacteriology. PREDISPOSING FACTORS: Among Gram positive microorganisms, emergence for some species and renaissance or rebirth for others is mainly explained by natural resistance to widely used antibiotics including beta-lactams such as third generation cephalosporins, aminoglycosides, or more recently glycopeptides and the combined effect of several predisposing factors (hospitalized patients, underlying disease or prematurity, interruption of the normal integumentary defense via intravascular catheters). Clinical features depend on the bacterial species. Bacteriological diagnosis is easily obtained in terms of isolation and identification. Nevertheless, as for any opportunistic pathogen, a distinction must be made between colonization and infection. Finally successful treatment regimens depend on the bacterial species and may include surgery. PMID:9205480

  7. Acquired inducible antimicrobial resistance in Gram-positive bacteria

    PubMed Central

    Chancey, Scott T; Zähner, Dorothea; Stephens, David S

    2012-01-01

    A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often ‘silent’ spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide–lincosamide–streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of ?-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations. PMID:22913355

  8. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments

    PubMed Central

    Aüllo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

    2013-01-01

    Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review. PMID:24348471

  9. Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates.

    PubMed

    Arhin, Francis F; Draghi, Deborah C; Pillar, Chris M; Parr, Thomas R; Moeck, Gregory; Sahm, Daniel F

    2009-11-01

    Oritavancin activity was tested against 15,764 gram-positive isolates collected from 246 hospital centers in 25 countries between 2005 and 2008. Organisms were Staphylococcus aureus (n = 9,075), coagulase-negative staphylococci (n = 1,664), Enterococcus faecalis (n = 1,738), Enterococcus faecium (n = 819), Streptococcus pyogenes (n = 959), Streptococcus agalactiae (n = 415), group C, G, and F streptococci (n = 84), and Streptococcus pneumoniae (n = 1,010). Among the evaluated staphylococci, 56.7% were resistant to oxacillin. The vancomycin resistance rate among enterococci was 21.2%. Penicillin-resistant and -intermediate rates were 14.7% and 21.4%, respectively, among S. pneumoniae isolates. Among nonpneumococcal streptococci, 18.5% were nonsusceptible to erythromycin. Oritavancin showed substantial in vitro activity against all organisms tested, regardless of resistance profile. The maximum oritavancin MIC against all staphylococci tested (n = 10,739) was 4 microg/ml; the MIC(90) against S. aureus was 0.12 microg/ml. Against E. faecalis and E. faecium, oritavancin MIC(90)s were 0.06 and 0.12, respectively. Oritavancin was active against glycopeptide-resistant enterococci, including VanA strains (n = 486), with MIC(90)s of 0.25 and 1 microg/ml against VanA E. faecium and E. faecalis, respectively. Oritavancin showed potent activity against streptococci (n = 2,468); MIC(90)s for the different streptococcal species were between 0.008 and 1 microg/ml. These data are consistent with previous studies with respect to resistance rates of gram-positive isolates and demonstrate the spectrum and in vitro activity of oritavancin against a wide variety of contemporary gram-positive pathogens, regardless of resistance to currently used drugs. The data provide a foundation for interpreting oritavancin activity and potential changes in susceptibility over time once oritavancin enters into clinical use. PMID:19738026

  10. Comparative In Vitro Activity Profile of Oritavancin against Recent Gram-Positive Clinical Isolates?

    PubMed Central

    Arhin, Francis F.; Draghi, Deborah C.; Pillar, Chris M.; Parr, Thomas R.; Moeck, Gregory; Sahm, Daniel F.

    2009-01-01

    Oritavancin activity was tested against 15,764 gram-positive isolates collected from 246 hospital centers in 25 countries between 2005 and 2008. Organisms were Staphylococcus aureus (n = 9,075), coagulase-negative staphylococci (n = 1,664), Enterococcus faecalis (n = 1,738), Enterococcus faecium (n = 819), Streptococcus pyogenes (n = 959), Streptococcus agalactiae (n = 415), group C, G, and F streptococci (n = 84), and Streptococcus pneumoniae (n = 1,010). Among the evaluated staphylococci, 56.7% were resistant to oxacillin. The vancomycin resistance rate among enterococci was 21.2%. Penicillin-resistant and -intermediate rates were 14.7% and 21.4%, respectively, among S. pneumoniae isolates. Among nonpneumococcal streptococci, 18.5% were nonsusceptible to erythromycin. Oritavancin showed substantial in vitro activity against all organisms tested, regardless of resistance profile. The maximum oritavancin MIC against all staphylococci tested (n = 10,739) was 4 ?g/ml; the MIC90 against S. aureus was 0.12 ?g/ml. Against E. faecalis and E. faecium, oritavancin MIC90s were 0.06 and 0.12, respectively. Oritavancin was active against glycopeptide-resistant enterococci, including VanA strains (n = 486), with MIC90s of 0.25 and 1 ?g/ml against VanA E. faecium and E. faecalis, respectively. Oritavancin showed potent activity against streptococci (n = 2,468); MIC90s for the different streptococcal species were between 0.008 and 1 ?g/ml. These data are consistent with previous studies with respect to resistance rates of gram-positive isolates and demonstrate the spectrum and in vitro activity of oritavancin against a wide variety of contemporary gram-positive pathogens, regardless of resistance to currently used drugs. The data provide a foundation for interpreting oritavancin activity and potential changes in susceptibility over time once oritavancin enters into clinical use. PMID:19738026

  11. Two Active Forms of UDP-N-Acetylglucosamine Enolpyruvyl Transferase in Gram-Positive Bacteria

    PubMed Central

    Du, Wensheng; Brown, James R.; Sylvester, Daniel R.; Huang, Jianzhong; Chalker, Alison F.; So, Chi Y.; Holmes, David J.; Payne, David J.; Wallis, Nicola G.

    2000-01-01

    Gene sequences encoding the enzymes UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from many bacterial sources were analyzed. It was shown that whereas gram-negative bacteria have only one murA gene, gram-positive bacteria have two distinct genes encoding these enzymes which have possibly arisen from gene duplication. The two murA genes of the gram-positive organism Streptococcus pneumoniae were studied further. Each of the murA genes was individually inactivated by allelic replacement. In each case, the organism was viable despite losing one of its murA genes. However, when attempts were made to construct a double-deletion strain, no mutants were obtained. This indicates that both genes encode active enzymes that can substitute for each other, but that the presence of a MurA function is essential to the organism. The two genes were further cloned and overexpressed, and the enzymes they encode were purified. Both enzymes catalyzed the transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetylglucosamine, confirming they are both active UDP-N-acetylglucosamine enolpyruvyl transferases. The catalytic parameters of the two enzymes were similar, and they were both inhibited by the antibiotic fosfomycin. PMID:10894720

  12. Understanding the organization of the metabolism in Bacillus subtilis

    E-print Network

    Wolkenhauer, Olaf

    Understanding the organization of the metabolism in Bacillus subtilis Background information: Bacillus subtilis is the major model organism of the prokaryotic kingdom beside Escherichia coli. A wealth of information is available of physiology, metabolism and signaling pathways in that organism. B. subtilis

  13. Novel Bacterial Lipoprotein Structures Conserved in Low-GC Content Gram-positive Bacteria Are Recognized by Toll-like Receptor 2*

    PubMed Central

    Kurokawa, Kenji; Ryu, Kyoung-Hwa; Ichikawa, Rie; Masuda, Akiko; Kim, Min-Su; Lee, Hanna; Chae, Jun-Ho; Shimizu, Takashi; Saitoh, Tatsuya; Kuwano, Koichi; Akira, Shizuo; Dohmae, Naoshi; Nakayama, Hiroshi; Lee, Bok Luel

    2012-01-01

    Bacterial lipoproteins/lipopeptides inducing host innate immune responses are sensed by mammalian Toll-like receptor 2 (TLR2). These bacterial lipoproteins are structurally divided into two groups, diacylated or triacylated lipoproteins, by the absence or presence of an amide-linked fatty acid. The presence of diacylated lipoproteins has been predicted in low-GC content Gram-positive bacteria and mycoplasmas based on the absence of one modification enzyme in their genomes; however, we recently determined triacylated structures in low-GC Gram-positive Staphylococcus aureus, raising questions about the actual lipoprotein structure in other low-GC content Gram-positive bacteria. Here, through intensive MS analyses, we identified a novel and unique bacterial lipoprotein structure containing an N-acyl-S-monoacyl-glyceryl-cysteine (named the lyso structure) from low-GC Gram-positive Enterococcus faecalis, Bacillus cereus, Streptococcus sanguinis, and Lactobacillus bulgaricus. Two of the purified native lyso-form lipoproteins induced proinflammatory cytokine production from mice macrophages in a TLR2-dependent and TLR1-independent manner but with a different dependence on TLR6. Additionally, two other new lipoprotein structures were identified. One is the “N-acetyl” lipoprotein structure containing N-acetyl-S-diacyl-glyceryl-cysteine, which was found in five Gram-positive bacteria, including Bacillus subtilis. The N-acetyl lipoproteins induced the proinflammatory cytokines through the TLR2/6 heterodimer. The other was identified in a mycoplasma strain and is an unusual diacyl lipoprotein structure containing two amino acids before the lipid-modified cysteine residue. Taken together, our results suggest the existence of novel TLR2-stimulating lyso and N-acetyl forms of lipoproteins that are conserved in low-GC content Gram-positive bacteria and provide clear evidence for the presence of yet to be identified key enzymes involved in the bacterial lipoprotein biosynthesis. PMID:22303020

  14. Relevance of GC content to the conservation of DNA polymerase III/mismatch repair system in Gram-positive bacteria

    PubMed Central

    Akashi, Motohiro; Yoshikawa, Hirofumi

    2013-01-01

    The mechanism of DNA replication is one of the driving forces of genome evolution. Bacterial DNA polymerase III, the primary complex of DNA replication, consists of PolC and DnaE. PolC is conserved in Gram-positive bacteria, especially in the Firmicutes with low GC content, whereas DnaE is widely conserved in most Gram-negative and Gram-positive bacteria. PolC contains two domains, the 3?-5?exonuclease domain and the polymerase domain, while DnaE only possesses the polymerase domain. Accordingly, DnaE does not have the proofreading function; in Escherichia coli, another enzyme DnaQ performs this function. In most bacteria, the fidelity of DNA replication is maintained by 3?-5? exonuclease and a mismatch repair (MMR) system. However, we found that most Actinobacteria (a group of Gram-positive bacteria with high GC content) appear to have lost the MMR system and chromosomes may be replicated by DnaE-type DNA polymerase III with DnaQ-like 3?-5? exonuclease. We tested the mutation bias of Bacillus subtilis, which belongs to the Firmicutes and found that the wild type strain is AT-biased while the mutS-deletant strain is remarkably GC-biased. If we presume that DnaE tends to make mistakes that increase GC content, these results can be explained by the mutS deletion (i.e., deletion of the MMR system). Thus, we propose that GC content is regulated by DNA polymerase and MMR system, and the absence of polC genes, which participate in the MMR system, may be the reason for the increase of GC content in Gram-positive bacteria such as Actinobacteria. PMID:24062730

  15. Teicoplanin or vancomycin in the treatment of gram-positive infections?

    PubMed

    Murphy, S; Pinney, R J

    1995-02-01

    The glycopeptide antibiotics vancomycin and teicoplanin have similar mechanisms of action on bacterial cell wall synthesis. Their spectra of activity are limited to Gram-positive bacteria, with the degree of bactericidal activity depending on the species of micro-organism. Staphylococcus aureus, Staphylococcus epidermis, enterococci and Clostridium difficile are generally sensitive, including methicillin-resistant strains of S. aureus and S. epidermidis. Glycopeptide resistance has recently emerged in staphylococci and enterococci. Vancomycin has a shorter half-life than teicoplanin and requires multiple dosing to maintain adequate serum levels. It can only be given by prolonged intravenous infusion over 1 h. In contrast, the pharmacokinetics of teicoplanin allow for once-daily dosing, either by rapid intravenous infusion or by the intramuscular route. The latter offers reliable absorption for patients with limited venous access and is also of benefit for out-patient therapy. Teicoplanin is a safer drug than vancomycin. It is associated with a lower incidence of nephrotoxicity or ototoxicity. Compared to vancomycin, the availability of the intramuscular route and the absence of a requirement for routine serum monitoring, together with the reduced need to treat drug-related side-effects make teicoplanin more cost-effective. It is as effective as vancomycin for most indications, is safe, easy to administer and an important agent for treating Gram-positive infections. Its role in hospitals is likely to increase if the price of drug acquisition is kept low. PMID:7775615

  16. Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

    SciTech Connect

    Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

    2003-12-01

    Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in the optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans although B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. For successful production of ethanol from pyruvate, both pyruvate decarboxylase (PDC) and alcohol dehydrogenase (AHD) need to be produced at optimal levels in these biocatalysts. A plasmid containing the S. ventriculi pdc gene and the adh gene from geobacillus stearothermophilus was constructed using plasmid pWH1520 that was successfully used for expression of pdc in B. megaterium. The resulting portable ethanol (PET) plasmid, pJAM423, was transformed into B. megaterium. After xylose induction, a significant fraction of cell cytoplasm was composed of the S. ventriculi PDC and G. stearothermophilus ADH proteins. In preliminary experiments, the amount of ethanol produced by b. megaterium with plasmid pJAM423 was about twice (20 mM) of the bacterium without the plasmid. These results show that the PET operon is functional in B. megaterium but high level ethanol production needs further genetic and metabolic engineering. A genetic transfer system for the second generation biocatalysts needs to be developed for transferring the plasmid pJAM423 and its derivatives for engineering these organisms for ethanol production from biomass derived sugars and cellulose to ethanol. One of the new biocatalysts, strain P4-102B was found to be transformable with plasmids and the method for introducing plasmid pJAM423 into this strain and expression of the encoded DNA is being optimized. These new second generation biocatalysts have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource for production of fuels and chemicals.

  17. [Isolation of Gram-positive bacteria from raw milk with antimicrobial residues].

    PubMed

    Faría Reyes, José; García Urdaneta, Aleida; Izquierdo Corser, Pedro; Allara Cagnasso, María; Valero Leal, Kutchynskaya

    2002-03-01

    Two hundred samples of raw milk were collected at the receiving plants located in three areas of high milk production in Zulia state, Venezuela. The CTT test and trial disk were used in order to detect the presence of antimicrobials. The positive samples were inoculated in tripticase soy broth, human blood agar and manitol salt agar in order to isolate Gram-positive bacteria. The identification of species was performed through biochemical tests. It was found that 45 samples (22.5%) of analyzed milk contained antimicrobials, and bacterial growth was obtained in 35 of them. 100 strains were isolated namely: 44 Staphylococcus, 19 Streptococcus, 17 Enterococcus, 9 Bacillus, 4 Micrococcus, 4 Corynebacterium and 3 Lactococcus. The most frequently isolated specie was S. aureus, the main producing agent of bovine mastitis in Zulia state, a microorganism frequently associated in the country to food-borne intoxications, associated to cheese processed from raw milk. It is recommended to apply control programs for the use of antibiotics. PMID:12214550

  18. Biocontrol of plant disease: a (Gram-) positive perspective Elizabeth A.B. Emmert Y

    E-print Network

    Handelsman, Jo

    to the downfall of a biocontrol agent. Knowledge of the biological environment in which the agent will be used utilizing Gram-positive biocontrol agents that have been researched in depth and provide modelsMiniReview Biocontrol of plant disease: a (Gram-) positive perspective Elizabeth A.B. Emmert Y , Jo

  19. The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium

    PubMed Central

    Santos, Joana A.; Alonso-García, Noelia; Macedo-Ribeiro, Sandra; Pereira, Pedro José Barbosa

    2014-01-01

    Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators. PMID:24847070

  20. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    PubMed Central

    Azam, Ameer; Ahmed, Arham S; Oves, Mohammad; Khan, Mohammad S; Habib, Sami S; Memic, Adnan

    2012-01-01

    Background Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria. Methods and results Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3) were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. Conclusion Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3. PMID:23233805

  1. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50??L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3?mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0?mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  2. Thermal inactivation of antimicrobial-resistant Gram-positive cocci in chicken meat: D and Z value determinations.

    PubMed

    Bertolatti, D; Munyard, S J; Grubb, W B; Binns, C W

    2001-09-01

    Antimicrobial-resistance in Gram-positive bacteria is reported with increasing frequency in strains isolated from food animals. Their isolation from commercial poultry carcasses and meat products constitute a potential risk that resistant strains or resistance genes might spread to humans via the food chain. As bacterial inactivation by thermal process is a critical control point in the safe preparation of many ready-to-eat foods, it is important to determine the thermal resistance of these organisms. The present study was undertaken to investigate the thermal tolerance (D and Z values) of antimicrobial-resistant, Gram-positive cocci in ground chicken meat. The antimicrobial-resistant, Gram-positive cocci for this study were isolated from two poultry processing plants in Western Australia. D and Z value data indicate that these isolates do not exhibit enhanced thermal resistant characteristics. The estimated lethal effect of the cooking process for chicken meat indicates that an internal temperature of 70 degrees C for 2.1 min would provide a 7-log reduction of all cell suspensions tested. PMID:11672482

  3. Conjugative Mobilization of the Rolling-Circle Plasmid pIP823 from Listeria monocytogenes BM4293 among Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Charpentier, Emmanuelle; Gerbaud, Guy; Courvalin, Patrice

    1999-01-01

    We determined the sequence and genetic organization of plasmid pIP823, which contains the dfrD gene; dfrD confers high-level trimethoprim resistance to Listeria monocytogenes BM4293 by synthesis of dihydrofolate reductase type S2. pIP823 possessed all the features of the pUB110/pC194 plasmid family, whose members replicate by the rolling-circle mechanism. The rep gene encoded a protein identical to RepU, the protein required for initiation of the replication of plasmids pTB913 from a thermophilic Bacillus sp. and pUB110 from Staphylococcus aureus. The mob gene encoded a protein with a high degree of amino acid identity with the Mob proteins involved in conjugative mobilization and interplasmidic recombination of pTB913 and pUB110. The host range of pIP823 was broad and included L. monocytogenes, Enterococcus faecalis, S. aureus, Bacillus subtilis, and Escherichia coli. In all these species, pIP823 replicated by generating single-stranded DNA and was stable. Conjugative mobilization of pIP823 was obtained by self-transferable plasmids between L. monocytogenes and E. faecalis, between L. monocytogenes and E. coli, and between strains of E. coli, and by the streptococcal conjugative transposon Tn1545 from L. monocytogenes to E. faecalis, and from L. monocytogenes and E. faecalis to E. coli. These data indicate that the gene flux observed in nature from gram-positive to gram-negative bacteria can occur by conjugative mobilization. Our results suggest that dissemination of trimethoprim resistance in Listeria spp. and acquisition of other antibiotic resistance determinants in this species can be anticipated. PMID:10348847

  4. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water.

    PubMed

    Biswa, Pramal; Doble, Mukesh

    2013-06-01

    Acylated homoserine lactone (AHL)-based quorum sensing (QS) has been reported to be present only in Gram-negative microorganisms. Isolation of a novel Gram-positive microorganism from sea water, capable of producing AHL, is reported here. The isolate (GenBank: JF915892, designated as MPO) belonging to the Exiguobacterium genera is capable of inducing the AHL bioreporters, namely Chromobacterium violaceum CV026, Agrobacterium tumefaceins A136, and E. coli JM 109(psb1075). This inducer is characterized as C3-oxo-octanoyl homoserine lactone (OOHL), and its production reaches a maximum of 15.6 ?g L(-1), during the stationary growth phase of the organism. MPO extract when exogenously added inhibits the formation of biofilm for the same organism and lowers the extracellular polymeric substances, indicating an AHL-associated phenotypic trait. The isolated sequence of a probable LuxR homolog from MPO (designated as ExgR) shows similar functional domains and contains conserved residues in LuxR from other known bacterial QS LuxR regulators. Also present immediately downstream to ExgR was found a sequence showing homology to known LuxI synthase of Pseudomonas putida. qPCR analysis suggests an increment in exgR mRNA on addition of AHL, further proving the role of ExgR as a QS regulator. PMID:23489290

  5. Comparative post-antibiotic effect of five antibiotics against ten aerobic gram-positive cocci.

    PubMed

    Drabu, Y J; Blakemore, P H

    1990-01-01

    The post-antibiotic effect (PAE) is the persistent suppression of bacterial growth after a short antibiotic exposure. It is well documented with a variety of antibiotics and micro-organisms and may have important therapeutic implications. The authors have evaluated the PAE produced by teicoplanin, fucidin, gentamicin, rifampicin and ciprofloxacin against a total of ten Gram-positive organisms (S. aureus (2), MRSA (2), S. epidermis (2) S. haemolyticus (2) and E. faecalis (2)). All the organisms were clinical isolates with variable sensitivity patterns confirmed by disc and MIC testing. MICs were performed by the broth dilution method using a final inoculum of 10 x 5 cfu/ml. The PAE was estimated by adding 5 x MIC of each antibiotic to a log phase of growth of approximately 10 x 7 cfu/ml, and incubating at 37 degrees C for 1 h. Antibiotic was removed by 1000-fold dilution in nutrient broth, and total viable counts were carried out hourly by the Miles and Misra method for a further 9 h. All the antibiotics tested showed a PAE against the organisms tested, except for fucidin and ciprofloxacin against the enterococci. Overall, teicoplanin showed a maximum PAE of 5 h against MSRA and a minimum of 0.6 h against E. faecalis. Gentamicin, rifampicin and ciprofloxacin also showed a variable range. Fucidin showed the least PAE against the ten organisms, ranging from 0-1.3 h, except for S. epidermidis (FUC-R) which had a PAE of up to 4.5 h. The duration of PAE of each antibiotic/organism combination varied and was associated with the sensitivity pattern of the organism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2151661

  6. Non-contiguous finished genome sequence and description of Bacillus massilioalgeriensis sp. nov.

    PubMed Central

    Bendjama, Esma; Loucif, Lotfi; Diene, Seydina M.; Michelle, Caroline; Gacemi-Kirane, Djamila; Rolain, Jean-Marc

    2014-01-01

    Strain EB01T sp. nov. is the type strain of Bacillus massilioalgeriensis, a new species within the genus Bacillus. This strain, whose genome is described here, was isolated from sediment sample of the hypersaline lake Ezzemoul sabkha in northeastern Algeria. B. massilioalgeriensis is a facultative anaerobic Gram-positive bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,269,577 bp long genome contains 5,098 protein-coding and 95 RNA genes, including 12 rRNA genes. PMID:25197482

  7. Clinical update on linezolid in the treatment of Gram-positive bacterial infections

    PubMed Central

    Ager, Sally; Gould, Kate

    2012-01-01

    Gram-positive pathogens are a significant cause of morbidity and mortality in both community and health care settings. Glycopeptides have traditionally been the antibiotics of choice for multiresistant Gram-positive pathogens but there are problems with their use, including the emergence of glycopeptide-resistant strains, tissue penetration, and achieving and monitoring adequate serum levels. Newer antibiotics such as linezolid, a synthetic oxazolidinone, are available for the treatment of resistant Gram-positive bacteria. Linezolid is active against a wide range of Gram-positive bacteria and has been generally available for the treatment of Gram-positive infections since 2000. There are potential problems with linezolid use, including its bacteriostatic action and the relatively high incidence of reported adverse effects, particularly with long-term use. Long-term use may also be complicated by the development of resistance. However, linezolid has been shown to be clinically useful in the treatment of several serious infections where traditionally bacteriocidal agents have been required and many of its adverse effects are reversible on cessation. It has also been shown to be a cost-effective treatment option in several studies, with its high oral bioavailability allowing an early change from intravenous to oral formulations with consequent earlier patient discharge and lower inpatient costs. PMID:22787406

  8. Isolation and Characterization of Gram-Positive Biosurfactant-Producing Halothermophilic Bacilli From Iranian Petroleum Reservoirs

    PubMed Central

    Zargari, Saeed; Ramezani, Amin; Ostvar, Sassan; Rezaei, Rasool; Niazi, Ali; Ayatollahi, Shahab

    2014-01-01

    Background: Petroleum reservoirs have long been known as the hosts of extremophilic microorganisms. Some of these microorganisms are known for their potential biotechnological applications, particularly production of extra and intracellular polymers and enzymes. Objectives: Here, 14 petroleum liquid samples from southern Iranian oil reservoirs were screened for presence of biosurfactant?producing halothermophiles. Materials and Methods: Mixture of the reservoir fluid samples with a minimal growth medium was incubated under an N2 atmosphere in 40°C; 0.5 mL samples were transferred from the aqueous phase to agar plates after 72 hours of incubation; 100 mL cell cultures were prepared using the MSS-1 (mineral salt solution 1) liquid medium with 5% (w/v) NaCl. The time-course samples were analyzed by recording the absorbance at 600 nm using a spectrophotometer. Incubation was carried out in 40°C with mild shaking in aerobic conditions. Thermotolerance was evaluated by growing the isolates at 40, 50, 60 and 70°C with varying NaCl concentrations of 5% and 10% (w/v). Halotolerance was evaluated using NaCl concentrations of 5%, 10%, 12.5% and 15% (w/v) and incubating them at 40°C under aerobic and anaerobic conditions. Different phenotypic characteristics were evaluated, as outlined in Bergey's manual of determinative bacteriology. Comparing 16S rDNA sequences is one of the most powerful tools for classification of microorganisms. Results: Among 34 isolates, 10 demonstrated biosurfactant production and growth at temperatures between 40°C and 70°C in saline media containing 5%?15% w/v NaCl. Using partial 16S rDNA sequencing (and amplified ribosomal DNA restriction analysis [ARDRA]) and biochemical tests (API tests 20E and 50 CHB), all the 10 isolates proved to be facultative anaerobic, Gram-positive moderate thermohalophiles of the genus Bacillus (B. thermoglucosidasius, B. thermodenitrificans, B. thermoleovorans, B. stearothermophilus and B. licheniformis), exhibiting surface-active behaviors. Conclusions: General patterns include decreasing the thermotolerance with increasing the salt concentrations and also more halotolerance in the aerobic environment compared with anaerobic conditions. The results demonstrated that Iranian petroleum reservoirs enjoy a source of indigenous extremophilic microorganisms with potential applications in microbial enhanced oil recovery and commercial enzyme production. PMID:25485045

  9. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria.

    PubMed

    Nakamura, Keisuke; Ishiyama, Kirika; Sheng, Hong; Ikai, Hiroyo; Kanno, Taro; Niwano, Yoshimi

    2015-09-01

    The bactericidal effect of various types of photoirradiated polyphenols against Gram-positive and -negative bacteria was evaluated in relation to the mode of action. Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, and Streptococcus mutans) and Gram-negative bacteria (Aggregatibacter actinomycetemcomitans, Escherichia coli, and Pseudomonas aeruginosa) suspended in a 1 mg/mL polyphenol aqueous solution (caffeic acid, gallic acid, chlorogenic acid, epigallocatechin, epigallocatechin gallate, and proanthocyanidin) were exposed to LED light (wavelength, 400 nm; irradiance, 260 mW/cm(2)) for 5 or 10 min. Caffeic acid and chlorogenic acid exerted the highest bactericidal activity followed by gallic acid and proanthocyanidin against both Gram-positive and -negative bacteria. It was also demonstrated that the disinfection treatment induced oxidative damage of bacterial DNA, which suggests that polyphenols are incorporated into bacterial cells. The present study suggests that blue light irradiation of polyphenols could be a novel disinfection treatment. PMID:25660393

  10. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  11. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development

    PubMed Central

    Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung

    2010-01-01

    Various cell-surface multisubunit protein polymers, known as pili or fimbriae, have a pivotal role in the colonization of specific host tissues by many pathogenic bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria assemble pili by a distinct mechanism involving a transpeptidase called sortase. Sortase crosslinks individual pilin monomers and ultimately joins the resulting covalent polymer to the cell-wall peptidoglycan. Here we review current knowledge of this mechanism and the roles of Gram-positive pili in the colonization of specific host tissues, modulation of host immune responses and the development of bacterial biofilms. PMID:18083568

  12. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development.

    PubMed

    Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung

    2008-01-01

    Various cell-surface multisubunit protein polymers, known as pili or fimbriae, have a pivotal role in the colonization of specific host tissues by many pathogenic bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria assemble pili by a distinct mechanism involving a transpeptidase called sortase. Sortase crosslinks individual pilin monomers and ultimately joins the resulting covalent polymer to the cell-wall peptidoglycan. Here we review current knowledge of this mechanism and the roles of Gram-positive pili in the colonization of specific host tissues, modulation of host immune responses and the development of bacterial biofilms. PMID:18083568

  13. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ?99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. PMID:26507390

  14. Transformations of the gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we developed an electrotransformation method for use with the Gram-positive bacterium Paenibacillus larvae—a deadly pathogen of honey bees. The method is substantially different from the only other electroporation method for a Paenibacillus species found in the literature. Using the ty...

  15. Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria.

    PubMed

    Balemans, Wendy; Vranckx, Luc; Lounis, Nacer; Pop, Ovidiu; Guillemont, Jérôme; Vergauwen, Karen; Mol, Selena; Gilissen, Ron; Motte, Magali; Lançois, David; De Bolle, Miguel; Bonroy, Kristien; Lill, Holger; Andries, Koen; Bald, Dirk; Koul, Anil

    2012-08-01

    Emergence of drug-resistant bacteria represents a high, unmet medical need, and discovery of new antibacterials acting on new bacterial targets is strongly needed. ATP synthase has been validated as an antibacterial target in Mycobacterium tuberculosis, where its activity can be specifically blocked by the diarylquinoline TMC207. However, potency of TMC207 is restricted to mycobacteria with little or no effect on the growth of other Gram-positive or Gram-negative bacteria. Here, we identify diarylquinolines with activity against key Gram-positive pathogens, significantly extending the antibacterial spectrum of the diarylquinoline class of drugs. These compounds inhibited growth of Staphylococcus aureus in planktonic state as well as in metabolically resting bacteria grown in a biofilm culture. Furthermore, time-kill experiments showed that the selected hits are rapidly bactericidal. Drug-resistant mutations were mapped to the ATP synthase enzyme, and biochemical analysis as well as drug-target interaction studies reveal ATP synthase as a target for these compounds. Moreover, knockdown of the ATP synthase expression strongly suppressed growth of S. aureus, revealing a crucial role of this target in bacterial growth and metabolism. Our data represent a proof of principle for using the diarylquinoline class of antibacterials in key Gram-positive pathogens. Our results suggest that broadening the antibacterial spectrum for this chemical class is possible without drifting off from the target. Development of the diarylquinolines class may represent a promising strategy for combating Gram-positive pathogens. PMID:22615276

  16. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review.

    PubMed

    Van Bambeke, Françoise

    2015-12-01

    Oritavancin, telavancin, and dalbavancin are recently marketed lipoglycopeptides that exhibit remarkable differences to conventional molecules. While dalbavancin inhibits the late stages of peptidoglycan synthesis by mainly impairing transglycosylase activity, oritavancin and telavancin anchor in the bacterial membrane by the lipophilic side chain linked to their disaccharidic moiety, disrupting membrane integrity and causing bacteriolysis. Oritavancin keeps activity against vancomycin-resistant enterocococci, being a stronger inhibitor of transpeptidase than of transglycosylase activity. These molecules have potent activity against Gram-positive organisms, most notably staphylococci (including methicillin-resistant Staphylococcus aureus and to some extent vancomycin-intermediate S. aureus), streptococci (including multidrug-resistant pneumococci), and Clostridia. All agents are indicated for the treatment of acute bacterial skin and skin structure infections, and telavancin, for hospital-acquired and ventilator-associated bacterial pneumonia. While telavancin is administered daily at 10 mg/kg, the remarkably long half-lives of oritavancin and dalbavancin allow for infrequent dosing (single dose of 1200 mg for oritavancin and 1000 mg at day 1 followed by 500 mg at day 8 for dalbavancin), which could be exploited in the future for outpatient therapy. Among possible safety issues evidenced during clinical development were an increased risk of developing osteomyelitis with oritavancin; taste disturbance, nephrotoxicity, and risk of corrected QT interval prolongation (especially in the presence of at-risk co-medications) with telavancin; and elevation of hepatic enzymes with dalbavancin. Interference with coagulation tests has been reported with oritavancin and telavancin. These drugs proved non-inferior to conventional treatments in clinical trials but their advantages may be better evidenced upon future evaluation in more severe infections. PMID:26603874

  17. Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments

    SciTech Connect

    Van Nostrand, J. D.; Khijniak, T. V.; Gentry, T. J.; Novak, M. T.; Sowder, A. G.; Zhou, J. Z.; Bertsch, P. M.; Morris, P. J.

    2007-01-01

    Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.

  18. Identification of Surprisingly Diverse Type IV Pili, across a Broad Range of Gram-Positive Bacteria

    PubMed Central

    Roos, David S.; Pohlschröder, Mechthild

    2011-01-01

    Background In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available. Results To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes. Conclusions We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins. PMID:22216142

  19. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Yang, Jun; Xie, Jianping; Luo, Zhentao; Jiang, Jiang; Yang, Yi Yan; Liu, Shaomin

    2013-04-01

    Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (Gram-positive Bacillus subtilis, Gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects.Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (Gram-positive Bacillus subtilis, Gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34254a

  20. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system.

    PubMed

    Racyte, Justina; Bernard, Séverine; Paulitsch-Fuchs, Astrid H; Yntema, Doekle R; Bruning, Harry; Rijnaarts, Huub H M

    2013-10-15

    Strong electric fields for disinfection of wastewaters have been employed already for several decades. An innovative approach combining low strength (7 V/cm) alternating electric fields with a granular activated carbon fluidized bed electrode (FBE) for disinfection was presented recently. For disinfection performance of FBE several pure microbial cultures were tested: Bacillus subtilis, Bacillus subtilis subsp. subtilis, Enterococcus faecalis as representatives from Gram positive bacteria and Erwinia carotovora, Pseudomonas luteola, Pseudomonas fluorescens and Escherichia coli YMc10 as representatives from Gram negative bacteria. The alternating electric field amplitude and shape were kept constant. Only the effect of alternating electric field frequency on disinfection performance was investigated. From the bacteria tested, the Gram negative strains were more susceptible and the Gram positive microorganisms were more resistant to FBE disinfection. The collected data indicate that the efficiency of disinfection is frequency and strain dependent. During 6 h of disinfection, the decrease above 2 Log units was achieved with P. luteola and E. coli at 10 kHz and at dual frequency shift keying (FSK) modulated signal with frequencies of 10 kHz and 140 kHz. FBE technology appears to offer a new way for selective bacterial disinfection, however further optimizations are needed on treatment duration, and energy input, to improve effectiveness. PMID:24012021

  1. Susceptibilities of 428 gram-positive and -negative anaerobic bacteria to Bay y3118 compared with their susceptibilities to ciprofloxacin, clindamycin, metronidazole, piperacillin, piperacillin-tazobactam, and cefoxitin.

    PubMed

    Pankuch, G A; Jacobs, M R; Appelbaum, P C

    1993-08-01

    The susceptibilities of 428 gram-negative and gram-positive anaerobes (including selected cefoxitin-resistant strains) to Bay y3118 (a new fluoroquinolone), ciprofloxacin, clindamycin, metronidazole, cefoxitin, piperacillin, and piperacillin-tazobactam were tested. Organisms comprised 115 Bacteroides fragilis group, 116 non-B. fragilis Bacteroides, Prevotella, and Porphyromonas spp., 40 fusobacteria, 58 peptostreptococci, 48 gram-positive non-spore-forming rods, and 51 clostridia. beta-Lactamase production was demonstrated in 87% of the gram-negative rods but in none of the gram-positive organisms. Overall, Bay y3118 was the most active agent, with all organisms inhibited at an MIC of < or = 2.0 micrograms/ml (MICs for 50% [MIC50] and 90% [MIC90] of strains tested, 0.125 and 0.5 microgram/ml, respectively). By contrast, ciprofloxacin was much less active, with only 42% of strains susceptible at a breakpoint of 2.0 micrograms/ml (MIC50, 4.0 micrograms/ml; MIC90, 16.0 micrograms/ml). Metronidazole was active against all gram-negative rods, but 7% of peptostreptococci, 83% of gram-positive non-spore-forming rods, and 4% of non-Clostridium perfringens, non-Clostridium difficile clostridia were resistant to this agent (MICs, > 16.0 micrograms/ml). Clindamycin was active against 94% of Bacteroides, Prevotella, and Porphyromonas spp., 91% of peptostreptococci, and 100% of gram-positive non-spore-forming rods, but was active against only 70% of fusobacteria and 53% of clostridia. Cefoxitin was active against > or = 90% of all groups except the B. fragilis group and non-Propionibacterium acnes gram-positive non-spore-forming rods (both 85%) and C. difficile (20%). Significant enhancement of piperacillin by tazobactam was seen in all beta-lactamase-positive strains (99% susceptible; MIC90, 8.0 micrograms/ml), and all beta-lactamase-negative strains were susceptible to piperacillin (MIC90, 8.0 micrograms/ml). Clinical studies are required to delineate the role of Bay y3118 in the treatment of anaerobic infections. PMID:8215278

  2. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    PubMed

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. PMID:24140741

  3. Efficient enzymatic systems for synthesis of novel ?-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria.

    PubMed

    Le, Tuoi Thi; Pandey, Ramesh Prasad; Gurung, Rit Bahadur; Dhakal, Dipesh; Sohng, Jae Kyung

    2014-10-01

    Two enzymatic systems were developed for the efficient synthesis of glycoside products of ?-mangostin, a natural xanthonoid exhibiting anti-oxidant, antibacterial, anti-inflammatory, and anticancer activities. In these systems, one-pot reactions for the synthesis of UDP-?-D-glucose and UDP-?-D-2-deoxyglucose were modified and combined with a glycosyltransferase (GT) from Bacillus licheniformis DSM-13 to afford C-3 and C-6 position modified glucose and 2-deoxyglucose conjugated novel ?-mangostin derivatives. ?-Mangostin 3-O-?-D-glucopyranoside, ?-mangostin 6-O-?-D-glucopyranoside, ?-mangostin 3,6-di-O-?-D-glucopyranoside, ?-mangostin 3-O-?-D-2-deoxyglucopyranoside, ?-mangostin 6-O-?-D-2-deoxyglucopyranoside, and ?-mangostin 3,6-di-O-?-D-2-deoxyglucopyranoside were successfully produced in practical quantities and characterized by high-resolution quadruple time-of-flight electrospray ionization-mass spectrometry (HR-QTOF ESI/MS), (1)H and (13)C NMR analyses. In excess of the substrate, the maximum productions of three ?-mangostin glucopyranosides (4.8 mg/mL, 86.5 % overall conversion of ?-mangostin) and three ?-mangostin 2-deoxyglucopyronosides (4.0 mg/mL, 79 % overall conversion of ?-mangostin) were achieved at 4-h incubation period. All the ?-mangostin glycosides exhibited improved water solubility, and their antibacterial activity against three Gram-positive bacteria Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus was drastically enhanced by the glucosylation at C-3 position. In this study, diverse glycosylated ?-mangostin were produced in significant quantities by using inexpensive starting materials and recycling co-factors within a reaction vessel without use of expensive NDP-sugars in the glycosylation reactions. PMID:25038930

  4. Transmembrane Organization of the Bacillus subtilis Chemoreceptor McpB Deduced by Cysteine

    E-print Network

    Ordal, George W.

    Transmembrane Organization of the Bacillus subtilis Chemoreceptor McpB Deduced by Cysteine The Bacillus subtilis chemoreceptor McpB is a dimer of identical subunits containing two transmembrane (TM differences exist in the signaling mechanism between E. coli and Bacillus subtilis chemoreceptors. Although

  5. Protein transport across the cell wall of monoderm Gram-positive bacteria

    PubMed Central

    Forster, Brian M.; Marquis, Hélène

    2012-01-01

    Summary In monoderm (single membrane) Gram-positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope either as membrane-anchored or cell wall-anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for some proteins, transport is a regulated process. This review aims at describing what is known about the mechanisms that regulate the transport of proteins across the cell wall of monoderm Gram-positive bacteria. PMID:22471582

  6. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile.

    PubMed

    Bordeleau, Eric; Burrus, Vincent

    2015-11-01

    The anaerobic Gram-positive bacterium Clostridium difficile causes intestinal infections responsible for symptoms ranging from mild diarrhea to fulminant colitis. Like other bacteria, C. difficile needs to sense and integrate environmental signals in order to adapt to changes and thrive in its environment. The second messenger cyclic diguanosine monophosphate (c-di-GMP) was recently recognized as a quasi-ubiquitous phenotype coordinator in bacteria. Mostly known to be involved in the transition from motile to sessile and multicellular behaviors in Gammaproteobacteria, c-di-GMP is now known to regulate many other phenotypes from cell morphogenesis to virulence, in many Gram-negative and a few Gram-positive bacteria. Herein, we review recent advances in our understanding of c-di-GMP signaling in the lifecycle of C. difficile. PMID:25800812

  7. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections

    PubMed Central

    Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8?ng/mL, interquartile range (IQR) 3.4–44.1) bacteremias was significantly higher than in Gram-positive (2.1?ng/mL, IQR 0.6–7.6) or fungal (0.5?ng/mL, IQR 0.4–1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725–0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8?ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6?ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1?ng/mL, IQR 5.9–48.5 versus 3.5?ng/mL, IQR 0.8–21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies. PMID:25852221

  8. Facile synthesis of gold nanoparticles on propylamine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria

    NASA Astrophysics Data System (ADS)

    Bhuyan, Diganta; Gogoi, Animesh; Saikia, Mrinal; Saikia, Ratul; Saikia, Lakshi

    2015-07-01

    The facile synthesis of an SBA-15-pr-+NH3.Au0 nano-hybrid material by spontaneous autoreduction of aqueous chloroaurate anions on propylamine functionalized SBA-15 was successfully demonstrated. The as-synthesized SBA-15-pr-+NH3.Au0 nano-hybrid material was well characterized using low and wide angle x-ray diffraction (XRD), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy and atomic absorption spectroscopy (AAS). The activity of the nano-hybrid material as a potent bactericidal agent was successfully tested against Gram positive/negative bacteria viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The colony killing percentage of Gram positive bacteria was found to be higher than Gram negative bacteria due to the stronger electrostatic interaction between the positively-charged amine functionality of SBA-15 and the negatively charged functionality of the bacterial cell wall.

  9. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Luehrsen, K. R.; Pribula, C. D.; Fox, G. E.

    1976-01-01

    Complete nucleotide sequences are presented for 5S rRNA from Bacillus subtilis, B. firmus, B. pasteurii, B. brevis, Lactobacillus brevis, and Streptococcus faecalis, and 5S rRNA oligonucleotide catalogs and partial sequence data are given for B. cereus and Sporosarcina ureae. These data demonstrate a striking consistency of 5S rRNA primary and secondary structure within a given bacterial grouping. An exception is B. brevis, in which the 5S rRNA sequence varies significantly from that of other bacilli in the tuned helix and the procaryotic loop. The localization of these variations suggests that B. brevis occupies an ecological niche that selects such changes. It is noted that this organism produces antibiotics which affect ribosome function.

  10. Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria.

    PubMed

    Parkunan, Salai Madhumathi; Randall, C Blake; Coburn, Phillip S; Astley, Roger A; Staats, Rachel L; Callegan, Michelle C

    2015-10-01

    Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2(-/-) mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88(-/-) and TRIF(-/-) mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4(-/-) eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. PMID:26195555

  11. Overview of resistant gram-positive pathogens in the surgical patient.

    PubMed

    Rapp, R P

    2000-01-01

    Staphylococci and enterococci are the most common pathogens in surgical-site and bloodstream infections. The emergence of drug resistance among these gram-positive bacteria thus poses a substantial threat to patients with surgical infections. Resistance to methicillin/oxacillin is frequently observed in Staphylococcus aureus isolates and is often accompanied by multidrug resistance. Vancomycin is usually the treatment of choice for infections caused by methicillin-resistant S. aureus (MRSA), so the recent appearance of S. aureus isolated with intermediate sensitivity to vancomycin is cause for concern. Vancomycin resistance has already appeared in most species of enterococci. Infections caused by vancomycin-resistant enterococci (VRE) are associated with increased mortality compared to infections caused by vancomycin-sensitive isolates. Measures for preventing vancomycin resistance include reducing the use of vancomycin and other agents that appear to be associated with VRE, including third-generation cephalosporins and anti-anaerobic drugs. Third-generation cephalosporins have also been implicated in the increased prevalence of MRSA infections. Prudent use of existing antibiotics is an essential strategy for combating the rising tide of drug-resistant gram-positive pathogens. PMID:12594908

  12. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    PubMed Central

    Pitman, Stephanie; Cho, Kyu Hong

    2015-01-01

    The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described. PMID:26694351

  13. Fluorescence studies of gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Blust, Brittni

    2012-02-01

    Autofluorescence is a relatively unexplored technique for identification. It is nondestructive, noncontact, fast, and has the potential to be integrated in small handheld devices. On the other hand, the autofluorescent signal is sometimes very week, or it can be overwhelmed by the emission of a surrounding medium. We are exploring the possibility to develop an optical method for identification of the Gram-type of bacterial cultures based on the autofluorescence. We have enhanced the detectivity of a standard fluorimeter using combination of bandpass and long pass filters. In this particular study, we are investigating if the previously observed difference in the autofluorescent spectra of Gram-positive and Gram-negative bacteria is dependent on the age of the culture. We have selected two types of bacteria, Kocuria rhizophila and Alcagenes faecalis, and we have monitored in equal time intervals of their development the autofluorescence spectra. The stages of development were monitored separately by measuring the turbidity and creating a growth curve. The goal of this study is to find out if the previously observed difference in the autofluorescence spectra of Gram-positive and Gram-negative bacteria is dependent on the stage of the development of the bacterial culture.

  14. Identification of gram-negative and gram-positive bacteria by fluorescence studies

    NASA Astrophysics Data System (ADS)

    Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian

    2011-03-01

    Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched in addition of water, even a very thin layer, which confirms that the observed spectral features originate from the outer parts of the bacteria. These results allow to conclude that the fluorescence spectroscopy can be used as a method for studying the membranes of the bacteria and eventually to discriminate between gram positive and gram negative bacteria. The pulsed experiments show that the fluorescence lifetime is in the sub-microsecond range. The results indicate that the observed spectra are superposition of the emission with different lifetimes.

  15. The Gram-positive bacterium Streptococcus pyogenes is also known as group A Streptococcus (GAS) and is

    E-print Network

    Nizet, Victor

    The Gram-positive bacterium Streptococcus pyogenes is also known as group A Streptococcus (GAS streptococcal pharyngitis6 and invasive diseases worldwide2,7 , and the resurgence of severe invasive GAS

  16. Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A

    E-print Network

    Paetzel, Mark

    Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A Sung-Eun Nam, Apollos C. Kim Bacillus subtilis SppA (SppABS). *Corresponding author. E-mail address: mpaetzel@sfu.ca. Abbreviations used the first crystal structure of a Gram-positive bacterial SppA. The 2.4-Å- resolution structure of Bacillus

  17. Draft genome sequence of Bacillus amyloliquefaciens HB-26

    PubMed Central

    Liu, Xiao-Yan; Min, Yong; Wang, Kai-Mei; Wan, Zhong-Yi; Zhang, Zhi-Gang; Cao, Chun-Xia; Zhou, Rong-Hua; Jiang, Ai-Bing; Liu, Cui-Jun; Zhang, Guang-Yang; Cheng, Xian-Liang; Zhang, Wei; Yang, Zi-Wen

    2014-01-01

    Bacillus amyloliquefaciens HB-26, a Gram-positive bacterium was isolated from soil in China. SDS-PAGE analysis showed this strain secreted six major protein bands of 65, 60, 55, 34, 25 and 20 kDa. A bioassay of this strain reveals that it shows specific activity against P. brassicae and nematode. Here we describe the features of this organism, together with the draft genome sequence and annotation. The 3,989,358 bp long genome (39 contigs) contains 4,001 protein-coding genes and 80 RNA genes. PMID:25197462

  18. Selective Inactivation of Resistant Gram-Positive Pathogens with a Light-Driven Hybrid Nanomaterial.

    PubMed

    Grüner, Malte; Tuchscherr, Lorena; Löffler, Bettina; Gonnissen, Dominik; Riehemann, Kristina; Staniford, Mark C; Kynast, Ulrich; Strassert, Cristian A

    2015-09-23

    Herein, we present a straightforward strategy to disperse highly insoluble photosensitizers in aqueous environments, without major synthetic efforts and keeping their photosensitizing abilities unaffected. A layered nanoclay was employed to adsorb and to solubilize a highly efficient yet hydrophobic Si(IV) phthalocyaninate in water. The aggregation of the photoactive dye was correlated with its photophysical properties, particularly with the ability to produce highly cytotoxic singlet oxygen. Moreover, the resulting hybrid nanomaterial is able to selectively photoinactivate Gram-positive pathogens, due to local interactions between the bacterial membranes and the negatively charged nanodiscs. Nanotoxicity assays confirmed its innocuousness toward eukaryotic cells, showing that it constitutes a new class of "phototriggered magic bullet" for the inactivation of pathogens in phototherapy, as well as in the development of coatings for self-disinfecting surfaces. PMID:26360157

  19. Sonodynamic excitation of Rose Bengal for eradication of gram-positive and gram-negative bacteria.

    PubMed

    Nakonechny, Faina; Nisnevitch, Michael; Nitzan, Yeshayahu; Nisnevitch, Marina

    2013-01-01

    Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28?kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of gram-positive Staphylococcus aureus and gram-negative Escherichia coli. The net sonodynamic effect was calculated as a 3-4 log10 reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories. PMID:23509759

  20. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  1. Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria

    PubMed Central

    RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.

    2015-01-01

    Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086

  2. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    PubMed

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-01

    Protein subcellular localization is an important topic in proteomics since it is related to a protein?s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. PMID:26386142

  3. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria.

    PubMed Central

    Johansen, C; Verheul, A; Gram, L; Gill, T; Abee, T

    1997-01-01

    The inhibitory effect of the cationic peptide protamine on Listeria monocytogenes, Escherichia coli, and Shewanella putrefaciens has been studied in detail. The addition of protamine (10 to 1,000 micrograms/ml) resulted in inhibition of oxygen consumption after less than 1 min and loss of intracellular carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope, leading to a rapid and nonspecific efflux of low- and high-molecular-weight compounds. PMID:9055431

  4. sRNAdb: A small non-coding RNA database for gram-positive bacteria

    PubMed Central

    2012-01-01

    Background The class of small non-coding RNA molecules (sRNA) regulates gene expression by different mechanisms and enables bacteria to mount a physiological response due to adaptation to the environment or infection. Over the last decades the number of sRNAs has been increasing rapidly. Several databases like Rfam or fRNAdb were extended to include sRNAs as a class of its own. Furthermore new specialized databases like sRNAMap (gram-negative bacteria only) and sRNATarBase (target prediction) were established. To the best of the authors’ knowledge no database focusing on sRNAs from gram-positive bacteria is publicly available so far. Description In order to understand sRNA’s functional and phylogenetic relationships we have developed sRNAdb and provide tools for data analysis and visualization. The data compiled in our database is assembled from experiments as well as from bioinformatics analyses. The software enables comparison and visualization of gene loci surrounding the sRNAs of interest. To accomplish this, we use a client–server based approach. Offline versions of the database including analyses and visualization tools can easily be installed locally on the user’s computer. This feature facilitates customized local addition of unpublished sRNA candidates and related information such as promoters or terminators using tab-delimited files. Conclusion sRNAdb allows a user-friendly and comprehensive comparative analysis of sRNAs from available sequenced gram-positive prokaryotic replicons. Offline versions including analysis and visualization tools facilitate complex user specific bioinformatics analyses. PMID:22883983

  5. Isolation of Highly Active Monoclonal Antibodies against Multiresistant Gram-Positive Bacteria

    PubMed Central

    Rossmann, Friederike S.; Laverde, Diana; Kropec, Andrea; Romero-Saavedra, Felipe; Meyer-Buehn, Melanie; Huebner, Johannes

    2015-01-01

    Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL) of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA). At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium), a mouse peritonitis model (using S. aureus Newman and LAC) and a rat endocarditis model (using E. faecalis 12030) and were shown to provide protection in all models at a concentration of 4 ?g/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials. PMID:25706415

  6. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  7. Classification of a bacterial isolate, from pozol, exhibiting antimicrobial activity against several gram-positive and gram-negative bacteria, yeasts, and molds.

    PubMed

    Ray, P; Sanchez, C; O'Sullivan, D J; McKay, L L

    2000-08-01

    A bacterial isolate, designated CS93, capable of producing a broad-spectrum antimicrobial compound(s) effective against gram-positive and gram-negative bacteria, yeasts, and molds was isolated from pozol, a fermented maize product. This strain was phenotypically similar to another pozol isolate that was previously designated as Agrobacterium azotophilium by other investigators. By using biochemical, phenotypic, and 16S rRNA sequence analysis, both pozol isolates were identified as members of the genus Bacillus, possibly a variant of Bacillus subtilis. While the antimicrobial compound(s) was initially produced only on a solid medium, parameters were identified for production in broth. The compound(s) was heat stable (121 degrees C for 15 min), exhibited activity over a wide pH range (pH 3 to pH 11), and was inactivated by pronase E. The antimicrobial compound(s) was bactericidal and bacteriolytic against Escherichia coli V517, bacteriostatic against Micrococcus luteus, and fungistatic against Saccharomyces cerevisiae. The inhibitory compound(s) could possibly serve as a food biopreservative. PMID:10945591

  8. Lysis of gram-positive and gram-negative bacteria by antibacterial porous polymeric monolith formed in microfluidic biochips for sample preparation.

    PubMed

    Aly, Mohamed Aly Saad; Gauthier, Mario; Yeow, John

    2014-09-01

    Bacterial cell lysis is demonstrated using polymeric microfluidic biochips operating via a hybrid mechanical shearing/contact killing mechanism. These biochips are fabricated from a cross-linked poly(methyl methacrylate) (X-PMMA) substrate by well-controlled, high-throughput laser micromachining. The unreacted double bonds at the surface of X-PMMA provide covalent bonding for the formation of a porous polymeric monolith (PPM), thus contributing to the mechanical stability of the biochip and eliminating the need for surface treatment. The lysis efficiency of these biochips was tested for gram-positive (Enterococcus saccharolyticus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas fluorescens) and confirmed by off-chip PCR without further purification. The influence of the flow rate when pumping the bacterial suspension through the PPM, and of the hydrophobic-hydrophilic balance on the cell lysis efficiency was investigated at a cell concentration of 10(5) CFU/mL. It was shown that the contribution of contact killing to cell lysis was more important than that of mechanical shearing in the PPM. The biochip showed better lysis efficiency than the off-chip chemical, mechanical, and thermal lysis techniques used in this work. The biochip also acts as a filter that isolates cell debris and allows PCR-amplifiable DNA to pass through. The system performs more efficient lysis for gram-negative than for gram-positive bacteria. The biochip does not require chemical/enzymatic reagents, power consumption, or complicated design and fabrication processes, which makes it an attractive on-chip lysis device that can be used in sample preparation for genetics and point-of-care diagnostics. The biochips were reused for 20 lysis cycles without any evidence of physical damage to the PPM, significant performance degradation, or DNA carryover when they were back-flushed between cycles. The biochips efficiently lysed both gram-positive and gram-negative bacteria in about 35 min per lysis and PPM regeneration cycle. PMID:25059724

  9. Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp.

    PubMed

    Stauss-Grabo, M; Atiye, S; Le, T; Kretschmar, M

    2014-11-01

    Tyrothricin, an antimicrobial peptide combination produced by Bacillus brevis consisting of gramicidins and tyrocidins commands broad antimicrobial activity against gram-positive bacteria and some yeasts in vitro. The polypeptide and its components have been used therapeutically for about 60 years in the local treatment of infected skin and infected oro-pharyngeal mucous membranes. Though older studies suggest that resistance development of originally susceptible microorganisms towards tyrothricin is a rare event, data concerning recent state of resistance are lacking. In the present in vitro study the susceptibility to tyrothricin of clinical isolates of bacterial and yeast origin from superficial swabs of the skin and mucous membranes of outpatients and inpatients obtained from clinical material in the second half of the year 2003 was determined. Using a microdilution assay, the minimum inhibitory concentration (MIC and MIC90, defined as the concentration that inhibits at least 90 percent of the tested strains) of 20 strains each of Staphylococcus aureus of the variety MSSA (susceptible to methicillin), Staphylococcus aureus of the variety MRSA (methicillin resistant), Staphylococcus haemolyticus, Streptococcus pyogenes, Enterococcus faecalis, Corynebacterium spec., Candida albicans and Candida parapsilosis was determined. All of the tested gram-positive bacteria turned out to be highly susceptible to tyrothricin with MICs ? 4mg/l. The tested yeast strains were susceptible to the polypeptide antibiotic as well, but (with MICs of 16 mg/l and 32 mg/l, respectively) to a lesser extent. No acquired resistance of the tested strains was determined, indicating that the risk of resistance development against topically applied tyrothricin is only marginal, if there is any at all. Thus, long-term-, i.e. decade-long use of topically applied tyrothricin and its components in the local treatment of infected skin does not pose a major risk with respect to acquired resistance of originally susceptible gram-positive bacteria and yeasts, not even in the case of Staphylococcus aureus, both with MSSA and MRSA strains. The broad anti-bacterial and anti-fungal activity of tyrothricin combined with its lacking risk for resistance development make the antimicrobial peptide a valuable addition to our therapeutic armamentarium in the treatment of infected skin. PMID:25985581

  10. Indole trimers with antibacterial activity against Gram-positive organisms produced using combinatorial biocatalysis.

    PubMed

    McClay, Kevin; Mehboob, Shahila; Yu, Jerry; Santarsiero, Bernard D; Deng, Jiangping; Cook, James L; Jeong, Hyunyoung; Johnson, Michael E; Steffan, Robert J

    2015-12-01

    The I100V isoform of toluene-4-monooxygenase was used to catalyze the oxidative polymerization of anthranil and various indoles under mildly acidic conditions, favoring the production of trimers. Compounds produced in sufficient yield were purified and tested for their ability to inhibit the growth of B. anthracis, E. faecalis, L. monocytogenes, S. aureus, and in some cases, F. tularensis. 15 of the compounds displayed promising antibacterial activity (MIC < 5 µg/ml) against one or more of the strains tested, with the best MIC values being <0.8 µg/ml. All of these compounds had good selectivity, showing minimal cytotoxicity towards HepG2 cells. The structure was solved for six of the compounds that could be crystallized, revealing that minimally two classes of indole based trimers were produced. One compound class produced was a group of substituted derivatives of the natural product 2,2-bis(3-indolyl) indoxyl. The other group of compounds identified was classified as tryptanthrin-like compounds, all having multi-ring pendant groups attached at position 11 of tryptanthrin. One compound of particular interest, SAB-J85, had a structure that suggests that any compound, with a ring structure that can be activated by an oxygenase, might serve as a substrate for combinatorial biocatalysis. PMID:26112315

  11. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    SciTech Connect

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  12. Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance

    PubMed Central

    Willems, Rob J. L.; Hanage, William P; Bessen, Debra E.; Feil, Edward J.

    2011-01-01

    Infections caused by multi-resistant Gram positive bacteria represent a major health burden in the community as well as in hospitalized patients. Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium are well-known pathogens of hospitalized patients, frequently linked with resistance against multiple antibiotics, compromising effective therapy. Streptococcus pneumoniae and Streptococcus pyogenes are important pathogens in the community and S. aureus has recently emerged as an important community-acquired pathogen. Population genetic studies reveal that recombination prevails as a driving force of genetic diversity in E. faecium, E. faecalis, S. pneumoniae, and S. pyogenes and thus, these species are weakly clonal. Although recombination has a relatively modest role driving the genetic variation of the core genome of S. aureus, the horizontal acquistion of resistance and virulence genes plays a key role in the emergence of new clinically relevant clones in this species. In this review we discuss the population genetics of E. faecium, E. faecalis, S. pneumoniae, S. pyogenes, and S. aureus. Knowledge of the population structure of these pathogens is not only highly relevant for (molecular) epidemiological research but also for identifying the genetic variation that underlies changes in clinical behaviour, to improve our understanding of the pathogenic behaviour of particular clones and to identify novel targets for vaccines or immunotherapy. PMID:21658083

  13. A role for glycosylated Serine-rich repeatproteins in Gram-positive bacterial pathogenesis

    PubMed Central

    Lizcano, Anel; Sanchez, Carlos J.; Orihuela, Carlos J.

    2012-01-01

    Summary Bacterial attachment to host surfaces is a pivotal event in the biological and infectious processes of both commensal and pathogenic bacteria, respectively. Serine-rich Repeat Proteins (SRRPs) are a family of adhesins in Gram-Positive bacteria that mediate attachment to a variety of host and bacterial surfaces. As such, they contribute towards a wide-range of diseases including sub-acute bacterial endocarditis, community-acquired pneumonia, and meningitis. SRRPs are unique in that they are glycosylated, require a non-canonical Sec-translocase for transport, and are largely composed of a domain containing hundreds of alternating serine residues. These serine-rich repeats are thought to extend a unique non-repeat (NR) domain outward away from the bacterial surface to mediate adhesion. Thus far, NR domains have been determined to bind to sialic acid moieties, keratins, or other NR domains of a similar SRRP. This review summarizes how this important family of bacterial adhesins mediates bacterial attachment to host and bacterial cells, contributes to disease pathogenesis, and might be targeted for pharmacological intervention or used as novel protective vaccine antigens. This review also highlights recent structural findings on the NR domains of these proteins. PMID:22759311

  14. Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'.

    PubMed

    Monnet, V; Gardan, R

    2015-07-01

    Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular?Microbiology, Hoover et?al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et?al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present. PMID:25988215

  15. ?, a New Subunit of RNA Polymerase Found in Gram-Positive Bacteria

    PubMed Central

    Keller, Andrew N.; Yang, Xiao; Wiedermannová, Jana; Delumeau, Olivier; Krásný, Libor

    2014-01-01

    RNA polymerase in bacteria is a multisubunit protein complex that is essential for gene expression. We have identified a new subunit of RNA polymerase present in the high-A+T Firmicutes phylum of Gram-positive bacteria and have named it ?. Previously ? had been identified as a small protein (?1) that copurified with RNA polymerase. We have solved the structure of ? by X-ray crystallography and show that it is not an ? subunit. Rather, ? bears remarkable similarity to the Gp2 family of phage proteins involved in the inhibition of host cell transcription following infection. Deletion of ? shows no phenotype and has no effect on the transcriptional profile of the cell. Determination of the location of ? within the assembly of RNA polymerase core by single-particle analysis suggests that it binds toward the downstream side of the DNA binding cleft. Due to the structural similarity of ? with Gp2 and the fact they bind similar regions of RNA polymerase, we hypothesize that ? may serve a role in protection from phage infection. PMID:25092033

  16. Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria

    PubMed Central

    Marraffini, Luciano A.; DeDent, Andrea C.; Schneewind, Olaf

    2006-01-01

    The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis. PMID:16524923

  17. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci.

    PubMed

    Boda, Sunil Kumar; Broda, Janine; Schiefer, Frank; Weber-Heynemann, Josefine; Hoss, Mareike; Simon, Ulrich; Basu, Bikramjit; Jahnen-Dechent, Willi

    2015-07-01

    The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10(-6) m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections. PMID:25712910

  18. CHARACTERIZATION OF LEUKIN: AN ANTIBACTERIAL FACTOR FROM LEUCOCYTES ACTIVE AGAINST GRAM-POSITIVE PATHOGENS

    PubMed Central

    Skarnes, Robert C.; Watson, Dennis W.

    1956-01-01

    A method has been described for the preparation of a potent antibacterial factor from rabbit polymorphonuclear leucocytes. Upon characterization, the factor was found to possess many properties in common with basic proteins. The amino acid analysis revealed that it contained a relatively large amount of arginine (17 per cent) and small amounts of the other two basic amino acids. It has therefore been identified as a protamine or protamine derivative. The leucocyte factor was very active against all Gram-positive pathogens tested but exhibited little or no action against Gram-negative species. A possible explanation of this phenomenon has been discussed. The factor was very heat-stable at acid and neutral pH and its staphylococcidal activity was blocked by glutamyl polypeptide, hyaluronic acid, and desoxyribonudeic acid. Because of the apparent similarity of the product studied here to other poorly defined leucocyte factors which had been termed leukins in the early literature, it is suggested that the name leukin be retained for it. The possible significance of this leukin in natural immunity has been discussed. PMID:13376807

  19. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria

    PubMed Central

    Prados-Rosales, Rafael; Brown, Lisa; Casadevall, Arturo; Montalvo-Quirós, Sandra; Luque-Garcia, Jose L.

    2014-01-01

    Many intracellular bacterial pathogens naturally release membrane vesicles (MVs) under a variety of growth environments. For pathogenic bacteria there are strong evidences that released MVs are a delivery mechanism for the release of immunologically active molecules that contribute to virulence. Identification of membrane vesicle-associated proteins that can act as immunological modulators is crucial for opening up new horizons for understanding the pathogenesis of certain bacteria and for developing novel vaccines. In this protocol, we provide all the details for isolating MVs secreted by either mycobacteria or Gram-positive bacteria and for the subsequent identification of the protein content of the MVs by mass spectrometry. The protocol is adapted from Gram-negative bacteria and involves four main steps: (1) isolation of MVs from the culture media; (2) purification of MVs by density gradient ultrucentrifugation; (3) acetone precipitation of the MVs protein content and in-solution trypsin digestion and (4) mass spectrometry analysis of the generated peptides and protein identification. Our modifications are:•Growing Mycobacteria in a chemically defined media to reduce the number of unrelated bacterial components in the supernatant.•The use of an ultrafiltration system, which allows concentrating larger volumes.•In solution digestion of proteins followed by peptides purification by ziptip. PMID:26150943

  20. Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria.

    PubMed

    Taglietti, Angelo; Diaz Fernandez, Yuri A; Amato, Elvio; Cucca, Lucia; Dacarro, Giacomo; Grisoli, Pietro; Necchi, Vittorio; Pallavicini, Piersandro; Pasotti, Luca; Patrini, Maddalena

    2012-05-29

    In the present paper, we study the mechanism of antibacterial activity of glutathione (GSH) coated silver nanoparticles (Ag NPs) on model Gram negative and Gram positive bacterial strains. Interference in bacterial cell replication is observed for both cellular strains when exposed to GSH stabilized colloidal silver in solution, and microbicidal activity was studied when GSH coated Ag NPs are (i) dispersed in colloidal suspensions or (ii) grafted on thiol-functionalized glass surfaces. The obtained results confirm that the effect of dispersed GSH capped Ag NPs (GSH Ag NPs) on Escherichia coli is more intense because it can be associated with the penetration of the colloid into the cytoplasm, with the subsequent local interaction of silver with cell components causing damages to the cells. Conversely, for Staphylococcus aureus, since the thick peptidoglycan layer of the cell wall prevents the penetration of the NPs inside the cytoplasm, the antimicrobial effect is limited and seems related to the interaction with the bacterial surfaces. Experiments on GSH Ag NPs grafted on glass allowed us to elucidate more precisely the antibacterial mechanism, showing that the action is reduced because of GSH coating and the limitation of the translational freedom of NPs. PMID:22546237

  1. Can procalcitonin differentiate Staphylococcus aureus from coagulase-negative staphylococci in clustered gram-positive bacteremia?

    PubMed

    Shomali, William; Hachem, Ray; Chaftari, Anne-Marie; Bahu, Ramez; Helou, Gilbert El; Jiang, Ying; Hanania, Alex; Reitzel, Ruth; Raad, Issam

    2013-06-01

    Procalcitonin (PCT) and pro-adrenomedullin (ProADM) have been proposed as diagnostic and prognostic biomarkers of infection. Between July 2009 and January 2012, we studied the role of these biomarkers in 163 patients with clustered gram-positive and gram-negative bacteremia. PCT levels were significantly higher in patients with Staphylococcus aureus and gram-negative bacteremia than those with coagulase-negative staphylococci (CoNS) isolated from blood cultures (P = 0.29 and <0.001, respectively). ProADM levels were only significantly higher in patients with gram-negative bacteremia (median 1.46 nmol/L) than those with CoNS (median 1.01 nmol/L) (P = 0.04). Among patients with CoNS, PCT, and ProADM, levels failed to differentiate blood contamination (medians 0.24 ng/mL and 0.97 nmol/L) from true bacteremia (medians 0.26 ng/mL and 1.14 nmol/L) (P = 0.51 and 0.57, respectively). In cancer patients, PCT (and to a lesser extent, ProADM) was useful in differentiating CoNS from S. aureus and gram-negative bacteremia. PMID:23578976

  2. Phenotypic antimicrobial susceptibility and occurrence of selected resistance genes in gram-positive mastitis pathogens isolated from Wisconsin dairy cows.

    PubMed

    Ruegg, P L; Oliveira, L; Jin, W; Okwumabua, O

    2015-07-01

    In the United States, few intramammary antimicrobials exist that are approved for treatment of bovine mastitis; thus, ensuring judicious use of these products is a priority. The objectives of this study were to determine phenotypic susceptibility and presence of selected antimicrobial resistance genes from staphylococci, streptococci, and streptococcal-like organisms recovered from cases of clinical mastitis occurring in cows on large Wisconsin farms. Staphylococcus aureus (n=35 from 19 herds), coagulase-negative staphylococci (n=51 from 30 herds), Streptococcus spp. (n=78 from 36 herds), and streptococcal-like organisms (n=31 from 19 herds) were used in this study. All Staphylococcus spp. were susceptible to ceftiofur, cephalothin, and the combination of penicillin and novobiocin. Of all staphylococci, only a single Staphylococcus epidermidis exhibited phenotypic resistance to oxacillin. Phenotypic susceptibility to erythromycin was observed in only 8.6 and 15.7% of Staphylococcus aureus and coagulase-negative staphylococci, respectively. Approximately 20% of staphylococci and 13 to 22% of streptococci and streptococcal-like organisms exhibited phenotypic resistance to pirlimycin. All Streptococcus spp. exhibited phenotypic susceptibility to ceftiofur, cephalothin, and oxacillin. The proportion of isolates exhibiting phenotypic susceptibility to pirlimycin and sulfadimethoxine differed among Streptococcus dysgalactiae and Streptococcus uberis. All streptococcal-like organisms exhibited phenotypic susceptibility to ceftiofur, cephalothin, oxacillin, penicillin, and the combination of penicillin and novobiocin. Of all organisms tested, 36.9% did not carry any of the resistance genes (ermC, blaZ, tetK, or tetM), 35.4% carried 1 gene, and 27.7% carried multiple genes (usually blaZ in combination with a tet gene). Eighteen (51.4%) Staph. aureus and 12 (48.0%) Staphylococcus chromogenes carried multiple resistance genes. Six (12.2%) Strep. dysgalactiae and no Strep. uberis carried multiple resistance genes. Results indicate that most gram-positive mastitis organisms were susceptible to most antimicrobials used for intramammary administration, but some resistance to drugs used for systemic treatment of mastitis was noted. The presence of selected resistance genes was not proportional to the occurrence of phenotypic resistance. PMID:25912858

  3. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    EPA Science Inventory

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  4. Tuberculosis (TB) is caused by gram-positive bac-teria known as the Mycobacterium tuberculosis complex

    E-print Network

    Tuberculosis (TB) is caused by gram-positive bac- teria known as the Mycobacterium tuberculosis and, more rarely, wild animal species. We report an M. tuberculosis strain isolated from a wild of the biology and evolutionary history of this widespread infectious disease. Tuberculosis (TB) is caused

  5. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle

    PubMed Central

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-01-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786

  6. Draft Genome Sequence of the Gram-Positive Thermophilic Iron Reducer Thermincola ferriacetica Strain Z-0001T.

    PubMed

    Lusk, Bradley G; Badalamenti, Jonathan P; Parameswaran, Prathap; Bond, Daniel R; Torres, Cesar I

    2015-01-01

    A 3.19-Mbp draft genome of the Gram-positive thermophilic iron-reducing Firmicutes isolate from the Peptococcaceae family, Thermincola ferriacetica Z-0001, was assembled at ~100× coverage from 100-bp paired-end Illumina reads. The draft genome contains 3,274 predicted genes (3,187 protein coding genes) and putative multiheme c-type cytochromes. PMID:26404602

  7. Draft Genome Sequence of the Gram-Positive Thermophilic Iron Reducer Thermincola ferriacetica Strain Z-0001T

    PubMed Central

    Badalamenti, Jonathan P.; Parameswaran, Prathap; Bond, Daniel R.

    2015-01-01

    A 3.19-Mbp draft genome of the Gram-positive thermophilic iron-reducing Firmicutes isolate from the Peptococcaceae family, Thermincola ferriacetica Z-0001, was assembled at ~100× coverage from 100-bp paired-end Illumina reads. The draft genome contains 3,274 predicted genes (3,187 protein coding genes) and putative multiheme c-type cytochromes. PMID:26404602

  8. Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization

    PubMed Central

    Meng, Jingjing; Banerjee, Santanu; Li, Dan; Sindberg, Gregory M.; Wang, Fuyuan; Ma, Jing; Roy, Sabita

    2015-01-01

    Sepsis is the predominant cause of mortality in ICUs, and opioids are the preferred analgesic in this setting. However, the role of opioids in sepsis progression has not been well characterized. The present study demonstrated that morphine alone altered the gut microbiome and selectively induced the translocation of Gram-positive gut bacteria in mice. Using a murine model of poly-microbial sepsis, we further demonstrated that morphine treatment led to predominantly Gram-positive bacterial dissemination. Activation of TLR2 by disseminated Gram-positive bacteria induced sustained up-regulation of IL-17A and IL-6. We subsequently showed that overexpression of IL-17A compromised intestinal epithelial barrier function, sustained bacterial dissemination and elevated systemic inflammation. IL-17A neutralization protected barrier integrity and improved survival in morphine-treated animals. We further demonstrated that TLR2 expressed on both dendritic cells and T cells play essential roles in IL-17A production. Additionally, intestinal sections from sepsis patients on opioids exhibit similar disruption in gut epithelial integrity, thus establishing the clinical relevance of this study. This is the first study to provide a mechanistic insight into the opioid exacerbation of sepsis and show that neutralization of IL-17A might be an effective therapeutic strategy to manage Gram-positive sepsis in patients on an opioid regimen. PMID:26039416

  9. Infections caused by Gram-positive bacteria: a review of the global challenge.

    PubMed

    Woodford, Neil; Livermore, David M

    2009-09-01

    Infections caused by multidrug-resistant Gram-positive bacteria represent a major public health burden, not just in terms of morbidity and mortality, but also in terms of increased expenditure on patient management and implementation of infection control measures. Staphylococcus aureus and Enterococcus spp. are established pathogens in the hospital environment, and their frequent multidrug resistance complicates therapy. The archetypal hospital "superbug", methicillin-resistant S. aureus (MRSA), regularly attracts mass-media interest and, in many countries, there is political pressure to reduce MRSA infection rates, with some progress now being made in the United Kingdom and the United States. To compound these established problems, we have witnessed the emergence and spread of virulent clones of MRSA in the community, and of Clostridium difficile in hospitals. Multidrug-resistant Streptococcus pneumoniae clones are major community pathogens in many parts of the world, but are now being challenged by new conjugate vaccines. Using combinations of molecular epidemiological tools, which characterize the resistant isolates and their resistance determinants, scientists can track highly successful bacterial strains at local, national, and international levels. These methods have provided new insights into the evolution of key pathogens, and this information may aid the design of control strategies and vaccines. In addition, the development of new antimicrobials including oxazolidinones, lipopeptides, glycylcyclines, ketolides, and new generations of fluoroquinolones, antistaphylococcal b-lactams, and glycopeptides must remain a high priority for the continued effective treatment of infections caused by resistant strains. So far, resistance to these newer agents is identified rarely in surveillance programs, but occasional reports of resistance causing therapeutic failure (e.g., with linezolid, daptomycin, telithromycin, or newer fluoroquinolones) give cause for concern. The emergence of antibiotic resistance is inevitable, but we must seek to decrease its impact and prolong the effectiveness of the agents available to us. PMID:19766888

  10. Acyl Enzyme Intermediates in Sortase-Catalyzed Pilus Morphogenesis in Gram-Positive Bacteria?

    PubMed Central

    Guttilla, Irene K.; Gaspar, Andrew H.; Swierczynski, Arlene; Swaminathan, Anu; Dwivedi, Prabhat; Das, Asis; Ton-That, Hung

    2009-01-01

    In gram-positive bacteria, covalently linked pilus polymers are assembled by a specific transpeptidase enzyme called pilus-specific sortase. This sortase is postulated to cleave the LPXTG motif of a pilin precursor between threonine and glycine and to form an acyl enzyme intermediate with the substrate. Pilus polymerization is believed to occur through the resolution of this intermediate upon specific nucleophilic attack by the conserved lysine located within the pilin motif of another pilin monomer, which joins two pilins with an isopeptide bond formed between threonine and lysine. Here, we present evidence for sortase reaction intermediates in Corynebacterium diphtheriae. We show that truncated SrtA mutants that are loosely bound to the cytoplasmic membrane form high-molecular-weight complexes with SpaA polymers secreted into the extracellular milieu. These complexes are not formed with SpaA pilin mutants that have alanine substitutions in place of threonine in the LPXTG motif or lysine in the pilin motif. The same phenotype is observed with alanine substitutions of either the conserved cysteine or histidine residue of SrtA known to be required for catalysis. Remarkably, the assembly of SpaA pili, or the formation of intermediates, is abolished with a SrtA mutant missing the membrane-anchoring domain. We infer that pilus polymerization involves the formation of covalent pilin-sortase intermediates, which occurs within a molecular platform on the exoplasmic face of the cytoplasmic membrane that brings together both sortase and its cognate substrates in close proximity to each other, likely surrounding a secretion apparatus. We present electron microscopic data in support of this picture. PMID:19592583

  11. Health economics assessment study of teicoplanin versus vancomycin in Gram-positive infections.

    PubMed

    Portolés, A; Palau, E; Puerro, M; Vargas, E; Picazo, J J

    2006-03-01

    The objective of this study, conducted at Hospital Clínico San Carlos, Madrid, Spain, was to compare the cost of treatment of Gram-positive infections with teicoplanin and vancomycin under normal conditions. Using a prospective observational study design for drug utilization and economic assessment, we evaluated the comparability of the sample, adverse events, features of treatment with teicoplanin/vancomycin and factors influencing the consumption of resources until the end of glycopeptide treatment or discharge (whichever occurred later) using Health System perspective. Costs were assigned using the hospital's evaluation at the time of the study. Analyses made: multivariate, sensitivity (by modifying staff or acquisition costs) and simulation of reduction of stay by early discharge in the teicoplanin group. Study participants included 201 patients who had been using teicoplanin (n=100) or vancomycin (n=101) for at least four days. Data collected daily outside morning work timetable. Costs of acquisition, administration and monitoring by course of treatment (mean+/-SD, in euros) were lower in the vancomycin group (teicoplanin euro647.62+/-euro572.75 vs. vancomycin euro378.11+/-euro225.90); when total costs (including hospital stay) were considered, no differences were found (teicoplanin euro4,432.04+/-euro3,383.46 vs. vancomycin euro4,364.44+/-euro2,734.24). Conditions of use and results were similar for both antibiotics. The economic results of acquisition, administration and monitoring were advantageous for vancomycin; when global costs of care were taken into account, these differences were not evident. Tolerability was significantly advantageous in the teicoplanin group (with regard to phlebitis and elevation of creatininemia), without differences in clinical or economic outcomes. The formulation of teicoplanin did not take advantage of its potential benefits of administration. PMID:16688294

  12. Quantification of Gram-positive bacteria: adaptation and evaluation of a preparation strategy using high amounts of clinical tissue

    PubMed Central

    2014-01-01

    Background A preparation method for quantification of bacteria in tissues is obligatory to reduce tissue mass, concentrate the target, purify, remove inhibitory substances and to achieve constant target recovery rates. No preparation method has been available until now for a high mass of tissue applicable for routine use and analytical veterinary diagnostics. Results This study describes an easy-to-use tissue preparation protocol to quantify Gram-positive bacteria from a large volume of tissue matrix. A previously published sample preparation method (Matrix-Lysis) from food science was successfully adapted for clinical use on tissues from pigs, including cerebrum, spinal cord, lung, liver, ileum, colon, caecum, kidney and muscle tissue. This tissue preparation method now permits quantification of pathogens from 5 g of organic matrix, which is a 20–200 fold increase by weight compared to other methods. It is based on solubilization of the sample matrix with either a chaotrope plus detergent or divalent salts as solubilization agents. The method was designed as a modular system, offering the possibility to change lysis buffers, according to tissue solubilization characteristics and the intended detection method (molecular or culture). Using Listeria monocytogenes as model organism, viable cell quantification or DNA extraction and quantitative real-time PCR were performed after Matrix-Lysis to determine recovery rates and detection limit (LOD). The adapted Matrix-Lysis protocol resulted in high recovery rates (mean value: 76%?±?39%) for all tested organs, except kidney, and recovery was constant over 5 log scales for all tested buffer systems. The LOD for Matrix-Lysis with subsequent plate count method (PCM) was as low as 1 CFU/5 g, while for qPCR based detection the LOD was 102 bacterial cell equivalents (BCE)/5 g for two buffer systems. Conclusions This tissue preparation is inexpensive and can be easily used for routine and analytical veterinary diagnostics. Inoculation studies or hazard assessments can profit from this tissue preparation method and it is anticipated that this study will be a valuable source for further research on tissue preparation strategies. PMID:24589061

  13. STUDIES ON A BACTERICIDAL AGENT EXTRACTED FROM A SOIL BACILLUS

    PubMed Central

    Dubos, René J.

    1939-01-01

    A Gram-positive, spore-bearing, aerobic bacillus, capable of lyzing the living cells of many Gram-positive microbial species, has been isolated from soil. Cultures of this soil bacillus in peptone media release during autolysis a soluble agent which exerts a bactericidal effect on all the Gram-positive microorganisms so far tested, and inactivates their glucose dehydrogenases. It also inhibits the growth of the susceptible species in culture media. Several of the Gram-positive species undergo lysis when incubated with the bactericidal agent. It appears however, that lysis is only a secondary process, due to the autolytic enzymes of the susceptible cells, and that it follows upon some other primary injury caused by the active agent. The bactericidal agent is ineffective against all the Gram-negative bacilli so far tested. PMID:19870884

  14. Genome-wide gene order distances support clustering the gram-positive bacteria

    PubMed Central

    House, Christopher H.; Pellegrini, Matteo; Fitz-Gibbon, Sorel T.

    2015-01-01

    Initially using 143 genomes, we developed a method for calculating the pair-wise distance between prokaryotic genomes using a Monte Carlo method to estimate the conservation of gene order. The method was based on repeatedly selecting five or six non-adjacent random orthologs from each of two genomes and determining if the chosen orthologs were in the same order. The raw distances were then corrected for gene order convergence using an adaptation of the Jukes-Cantor model, as well as using the common distance correction D? = ?ln(1-D). First, we compared the distances found via the order of six orthologs to distances found based on ortholog gene content and small subunit rRNA sequences. The Jukes-Cantor gene order distances are reasonably well correlated with the divergence of rRNA (R2 = 0.24), especially at rRNA Jukes-Cantor distances of less than 0.2 (R2 = 0.52). Gene content is only weakly correlated with rRNA divergence (R2 = 0.04) over all distances, however, it is especially strongly correlated at rRNA Jukes-Cantor distances of less than 0.1 (R2 = 0.67). This initial work suggests that gene order may be useful in conjunction with other methods to help understand the relatedness of genomes. Using the gene order distances in 143 genomes, the relations of prokaryotes were studied using neighbor joining and agreement subtrees. We then repeated our study of the relations of prokaryotes using gene order in 172 complete genomes better representing a wider-diversity of prokaryotes. Consistently, our trees show the Actinobacteria as a sister group to the bulk of the Firmicutes. In fact, the robustness of gene order support was found to be considerably greater for uniting these two phyla than for uniting any of the proteobacterial classes together. The results are supportive of the idea that Actinobacteria and Firmicutes are closely related, which in turn implies a single origin for the gram-positive cell. PMID:25653643

  15. Novel Imidazoline Antimicrobial Scaffold That Inhibits DNA Replication with Activity against Mycobacteria and Drug Resistant Gram-Positive Cocci

    PubMed Central

    2015-01-01

    Bacterial antimicrobial resistance is an escalating public health threat, yet the current antimicrobial pipeline remains alarmingly depleted, making the development of new antimicrobials an urgent need. Here, we identify a novel, potent, imidazoline antimicrobial compound, SKI-356313, with bactericidal activity against Mycobacterium tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine models of Streptococcus pneumoniae and MRSA infection and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole genome sequencing, and a novel target ID approach using real time imaging of core macromolecular biosynthesis, we show that SKI-356313 inhibits DNA replication and displaces the replisome from the bacterial nucleoid. These results identify a new antimicrobial scaffold with a novel mechanism of action and potential therapeutic utility against nonreplicating M. tuberculosis and antibiotic resistant Gram-positive cocci. PMID:25222597

  16. Development of a Treatment Algorithm for Streptococci and Enterococci from Positive Blood Cultures Identified with the Verigene Gram-Positive Blood Culture Assay

    PubMed Central

    Alby, Kevin; Daniels, Lindsay M.; Weber, David J.

    2013-01-01

    Seventy-eight blood cultures with a Gram stain result of Gram-positive cocci in pairs and/or chains were evaluated with the Nanosphere Verigene Gram-positive blood culture (BC-GP) assay. The overall concordance of the assay with culture was 89.7% (70/78 cultures), allowing for the development of a targeted treatment algorithm. PMID:23985910

  17. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components

    NASA Technical Reports Server (NTRS)

    Gehron, M. J.; Davis, J. D.; Smith, G. A.; White, D. C.

    1984-01-01

    Many gram-positive bacteria form substituted polymers of glycerol and ribitol phosphate esters known as teichoic acids. Utilizing the relative specificity of cold concentrated hydrofluoric acid in the hydrolysis of polyphosphate esters it proved possible to quantitatively assay the teichoic acid-derived glycerol and ribitol from gram-positive bacteria added to various soils and sediments. The lipids are first removed from the soils or sediments with a one phase chloroform-methanol extraction and the lipid extracted residue is hydrolyzed with cold concentrated hydrofluoric acid. To achieve maximum recovery of the teichoic acid ribitol, a second acid hydrolysis of the aqueous extract is required. The glycerol and ribitol are then acetylated after neutralization and analyzed by capillary gas-liquid chromatography. This technique together with measures of the total phospholipid, the phospholipid fatty acid, the muramic acid and the hydroxy fatty acids of the lipopolysaccharide lipid A of the gram-negative bacteria makes it possible to describe the community structure environmental samples. The proportion of gram-positive bacteria measured as the teichoic acid glycerol and ribitol is higher in soils than in sediments and increases with depth in both.

  18. Complete Genome Sequences of Bacillus subtilis subsp. subtilis Laboratory Strains JH642 (AG174) and AG1839

    E-print Network

    Smith, Janet L.

    The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and ...

  19. Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model

    NASA Astrophysics Data System (ADS)

    Fowle, David A.; Fein, Jeremy B.

    1999-10-01

    In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems. Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex multicomponent systems.

  20. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  1. Phosphorylation of the Response Regulator CheV Is Required for Adaptation to Attractants during Bacillus subtilis Chemotaxis*

    E-print Network

    Ordal, George W.

    Bacillus subtilis Chemotaxis* Received for publication, May 30, 2001, and in revised form, September 11 of Illinois at Urbana-Champaign, Urbana, Illinois 61801 In the Gram-positive soil bacterium Bacillus subtilis kinase CheA (5, 6). In Bacillus subti- lis, the autophosphorylating activity of CheA is up

  2. Draft Genome Sequence of a Natural Root Isolate, Bacillus subtilis UD1022, a Potential Plant Growth-Promoting Biocontrol Agent.

    PubMed

    Bishnoi, Usha; Polson, Shawn W; Sherrier, D Janine; Bais, Harsh P

    2015-01-01

    Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. PMID:26159522

  3. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  4. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia.

    PubMed

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders. PMID:26522966

  5. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2015-01-01

    The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035

  6. Performances of VITEK 2 Colorimetric Cards for Identification of Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Wallet, Frédéric; Loïez, Caroline; Renaux, Emilie; Lemaitre, Nadine; Courcol, René J.

    2005-01-01

    Thepurpose of this study was to evaluate the new VITEK 2 identification cards that use colorimetric reading to identify gram-positive and gram-negative bacteria (GP and GN cards, respectively) in comparison to fluorimetric cards (ID-GPC and ID-GNB, respectively). A total of 580 clinical isolates and stock collection strains belonging to 116 taxa were included in the study. Of the 249 gram-positive strains tested with both the ID-GPC and GP cards, 218 (87.5%) and 235 (94.4%) strains were correctly identified (to the genus and species level), respectively. Of the 331 gram-negative strains tested with the ID-GNB and GN cards, 295 (89.1%) and 321 (97%) strains were correctly identified, respectively. Another focus of the study was to apply the percentages of correct identifications obtained in this study to the list of bacteria isolated in our laboratory (32,739 isolates) in the year 2004. We obtained 97.9% correct identifications with the colorimetric cards and 93.9% with fluorescent cards. PMID:16145083

  7. Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria.

    PubMed

    Grau-Campistany, Ariadna; Manresa, Ángeles; Pujol, Montserrat; Rabanal, Francesc; Cajal, Yolanda

    2016-02-01

    Resistance to all known antibiotics is a growing concern worldwide, and has renewed the interest in antimicrobial peptides, a structurally diverse class of amphipathic molecules that essentially act on the bacterial membrane. Propelled by the antimicrobial potential of this compound class, we have designed three new lipopeptides derived from polymyxin B, sp-34, sp-96 and sp-100, with potent antimicrobial activity against both Gram positive and Gram negative bacteria. The three peptides bind with high affinity to lipopolysaccharide as demonstrated by monolayer penetration and dansyl-displacement. The interaction with the cytoplasmic membrane has been elucidated by biophysical experiments with model membranes of POPG or POPE/POPG (6:4), mimicking the Gram positive and Gram negative bacterial membrane. Trp-based fluorescence experiments including steady-state, quenching, anisotropy and FRET, reveal selectivity for anionic phospholipids and deep insertion into the membrane. All three lipopeptides induce membrane fusion and leakage from anionic vesicles, a process that is favored by the presence of POPE. The molecules bind to zwitterionic POPC vesicles, a model of the eukaryotic membrane, but in a different way, with lower affinity, less penetration into the bilayer and no fusion or permeabilization of the membrane. Results in model membranes are consistent with flow cytometry experiments in Escherichia coli and Staphylococcus aureus using a membrane potential sensitive dye (bis-oxonol) and a nucleic acid dye (propidium iodide), suggesting that the mechanism of action is based on membrane binding and collapse of membrane integrity by depolarization and permeabilization. PMID:26607008

  8. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia

    PubMed Central

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders. PMID:26522966

  9. Targeting agr- and agr-Like Quorum Sensing Systems for Development of Common Therapeutics to Treat Multiple Gram-Positive Bacterial Infections

    PubMed Central

    Gray, Brian; Hall, Pamela; Gresham, Hattie

    2013-01-01

    Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501

  10. Production of a bacteriocin by a poultry derived Campylobacter jejuni isolate with antimicrobial activity against Clostridium perfringens and other Gram positive bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have purified a bacteriocin peptide (termed CUV-3), produced by a poultry cecal isolate of Campylobacter jejuni (strain CUV-3) with inhibitory activity against Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staphylococcus epidermidis and Listeria mon...

  11. YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress

    E-print Network

    Grossman, Alan D.

    yabA encodes a negative regulator of replication initiation in Bacillus subtilis and homologues are found in many other Gram-positive species. YabA interacts with the ?-processivity clamp (DnaN) of DNA polymerase and with ...

  12. Intracerebral abscess with dissecting pneumocephalus caused by a gas-producing gram-positive rod following craniotomy for glioblastoma multiforme resection.

    PubMed

    Sarkiss, Christopher A; Soleymani, Teo; Caplan, Justin M; Dorsi, Michael J; Huang, Judy

    2013-11-01

    Propionibacterium acnes (P. acnes), an indolent and slow-growing anaerobic gram-positive bacterium, has largely been known as a commensal organism of the normal skin flora. However, P. acnes is increasingly being recognized as the causative infectious organism complicating craniotomies and shunt insertions. To our knowledge, we present the first reported patient with an intracerebral abscess with dissecting pneumocephalus caused by P. acnes. A 58-year-old woman who was immunocompetent presented 3 weeks after a craniotomy for resection of a glioblastoma multiforme with worsening mental status, lethargy and left hemiparesis. Head CT scans and MRI demonstrated significant vasogenic edema and dissecting pneumocephalus in the resection cavity. A craniotomy was performed and purulent material was found in the subdural space and resection cavity. Cultures were positive for P. acnes. She completed a full course of intravenous antibiotics appropriate for the organism. The infection was eradicated and the patient survived albeit with persistent deficits. This case illustrates the importance of considering an underlying intracerebral abscess in patients with worsening neurological function and pneumocephalus on imaging several weeks after surgery. Our review of the literature underscores the great importance in early recognition and treatment with both surgical debridement and antibiotic therapy in achieving optimal patient recovery. PMID:23688444

  13. Gram-positive bacteria as biocatalysts to convert biomass derived sugars into biofuel and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial fermentation of biomass derived sugar mixtures is one of the barriers to the overall economic conversion process from lignocellulosic biomass to fuels and chemicals. Although the supply and characteristics of feedstocks vary, biomass hydrolysates usually contain mixed sugars, organic ...

  14. A role for the Bacillus subtilis Structural Maintenance of Chromosomes (BsSMC) protein in chromosome organization and compaction

    E-print Network

    Lindow, Janet C. (Janet Christine), 1974-

    2002-01-01

    All cells must compact their chromosomes in order for the DNA to fit inside the cell or nucleus. In Bacillus subtilis, and other bacteria, replication occurs simultaneously with the organization, compaction and segregation ...

  15. Daptomycin Activity against Uncommonly Isolated Streptococcal and Other Gram-Positive Species Groups

    PubMed Central

    Flamm, Robert K.; Farrell, David J.; Jones, Ronald N.

    2013-01-01

    A total of 1,356 clinical isolates were tested against daptomycin by broth microdilution methods. Daptomycin was active against seven groups of viridans group streptococci (MIC50 and MIC90 values ranging from ?0.06 and ?0.06 ?g/ml [Streptococcus bovis and Streptococcus dysgalactiae] to 0.5 and 1 ?g/ml [Streptococcus mitis, Streptococcus oralis, and Streptococcus parasanguinis], respectively), beta-hemolytic streptococci serogroups C, F, and G (MIC50 and MIC90, ?0.06 to 0.25 and 0.12 to 0.25 ?g/ml, respectively), Corynebacterium spp. (MIC50 and MIC90, ?0.06 and 0.12 ?g/ml, respectively), and Micrococcus spp. (MIC50 and MIC90, ?0.06 and 0.25 ?g/ml, respectively). Listeria monocytogenes exhibited higher daptomycin MICs (MIC50 and MIC90, 2 and 4 ?g/ml, respectively) than other tested organisms. PMID:24080651

  16. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    SciTech Connect

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  17. Antimicrobial Growth Promoters Used in Animal Feed: Effects of Less Well Known Antibiotics on Gram-Positive Bacteria

    PubMed Central

    Butaye, Patrick; Devriese, Luc A.; Haesebrouck, Freddy

    2003-01-01

    There are not many data available on antibiotics used solely in animals and almost exclusively for growth promotion. These products include bambermycin, avilamycin, efrotomycin, and the ionophore antibiotics (monensin, salinomycin, narasin, and lasalocid). Information is also scarce for bacitracin used only marginally in human and veterinary medicine and for streptogramin antibiotics. The mechanisms of action of and resistance mechanisms against these antibiotics are described. Special emphasis is given to the prevalence of resistance among gram-positive bacteria isolated from animals and humans. Since no susceptibility breakpoints are available for most of the antibiotics discussed, an alternative approach to the interpretation of MICs is presented. Also, some pharmacokinetic data and information on the influence of these products on the intestinal flora are presented. PMID:12692092

  18. The effect of Indomethacin and Betamethasone on the cytokine response of human neonatal mononuclear cells to gram-positive bacteria.

    PubMed

    Ernst, Wolfgang; Kusi, Evelyn; Fill Malfertheiner, Sara; Reuschel, Edith; Deml, Ludwig; Seelbach-Göbel, Birgit

    2015-05-01

    Intrauterine infections with gram-positive bacteria pose a serious threat to neonates since they can result in neonatal sepsis, induce a fetal inflammatory response and also cause preterm birth. Despite intensive care, prematurity remains a leading cause of neonatal death, and is often accompanied by a number of morbidities. In order to prevent premature birth, tocolytic agents like Indomethacin are administered. Betamethasone is used to promote lung maturation and prevent respiratory distress syndrome. A combination of both drugs is assumed to prevent premature delivery while simultaneously facilitating lung maturation. This study investigates the effect of Betamethasone, Indomethacin and a combination of both on the cytokine production of neonatal cord blood mononuclear cells (CBMC) after stimulation with lysates of the gram-positive pathogens Streptococcus agalactiae and Enterococcus faecalis. The aim of the study is to determine the impact of these drugs on the function of the neonatal immune system which should aid clinicians in choosing the optimal therapy in case of preterm birth associated with intrauterine infection. Betamethasone reduced the production of the pro-inflammatory cytokines IL-6, IL-12p40, MIP-1? and TNF and increased the expression of the anti-inflammatory cytokine IL-10, depending on the pathogen used for stimulation. In contrast to Betamethasone, Indomethacin almost exclusively increased IL-10 production. The combination of both drugs decreased the expression of IL-6, IL-12p40, MIP-1? and TNF while increasing IL-10 production, depending on the concentration of Indomethacin and the pathogen used for stimulation. Based on our results, the combination therapy with Indomethacin and Betamethasone has a similar effect on cytokine production as Betamethasone alone, which is generally administered in case of impending preterm birth. However, the combination therapy has the advantage of promoting lung maturation while simultaneously blocking preterm labor effectively. PMID:25743243

  19. Selective adsorption of heterophile polyglycerophosphate antigen from antigen extracts of Streptococcus mutans and other gram-positive bacteria.

    PubMed Central

    Hamada, S; Tai, S; Slade, H D

    1976-01-01

    Hot saline extracts of Streptococcus mutans have been shown to contain antigenic substances which occasionally react nonspecifically with some antisera against whole cells of various serological groups and types of streptococci. Chromatography of the extract of S. mutans strain MT703 (serotype e) on a diethylaminoethyl-Sephadex A-25 column gave two principal antigens. One antigen was eluted without adsorption to the resin and was identified as the serotype-specific polysaccharide. The other antigen, which contained a large quantity of phosphorus, was absorbed to and released from the resin by gradient elution. It was reactive against the antisera specific for polyglycerophosphate (PGP) from group A Streptococcus pyogenes and/or S. mutans strain Ingbritt (type c). The PGP antigen was further purified by gel filtration with Sephadex G-75. Two peaks, PGP-1, and PGP-2, were obtained. Each possessed the same antigenic specificity to anti-PGP serum as shown by immunodiffusion. Chemical analyses revealed that the molar ratio of phosphorus to glycerol in both was about 1:1, although the protein content between the two was significantly different. PGP antigen was found to be widely distributed in hot saline extracts from various gram-positive bacteria, with a few exceptions. However, all gram-negative bacteria examined were free of PGP. The PGP in the hot saline extracts of various gram-positive bacteria possessed an essentially identical antigenic specificity. The addition of diethylaminoethyl-Sephadex A-25 resin to hot saline extracts successfully removed the cross-reacting PGP antigen. After adsorption of the extract from S. mutans, the supernatant contained only type-specific polysaccharide antigen, except type b, in which both type b-specific polysaccharide and PGP antigens were absorbed with the resin. This simple procedure should be useful for the removal of the PGP-type teichoic acid from antigen extracts of bacteria that contain uncharged polysaccharides. Images PMID:825468

  20. Isolation and Characterization of Four Gram-PositiveNickel-Tolerant Microorganisms from Contaminated Riparian Sediments

    SciTech Connect

    Van Nostrand, Joy D.; Khijniak, Tatiana V.; Gentry, Terry J.; Novak, Michelle T.; Sowder, Andrew G.; Zhou, Jizhong Z.; Bertsch, PaulM.; Morris, Pamela J.

    2006-08-30

    Microbial communities from riparian sediments contaminatedwith high levels of Ni and U were examined for metal-tolerantmicroorganisms. Isolation of four aerobic Ni-tolerant, Gram-positiveheterotrophic bacteria indicated selection pressure from Ni. Theseisolates were identified as Arthrobacter oxydans NR-1, Streptomycesgalbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatosporacystarginea NR-4 based on partial 16S rDNA sequences. A functional genemicroarray containing gene probes for functions associated withbiogeochemical cycling, metal homeostasis, and organic contaminantdegradation showed little overlap among the four isolates. Fifteen of thegenes were detected in all four isolates with only two of these relatedto metal resistance, specifically to tellurium. Each of the four isolatesalso displayed resistance to at least one of six antibiotics tested, withresistance to kanamycin, gentamycin, and ciprofloxacin observed in atleast two of the isolates. Further characterization of S. aureofaciensNR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Nitolerance constitutively. In addition, both were able to grow in higherconcentrations of Ni at pH 6 as compared to pH 7 (42.6 and 8.5 mM Ni atpH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examinedin these two isolates; a similar pH-dependent metal tolerance wasobserved when grown with Co and Zn. Neither isolate was tolerant to Cd.These findings suggest that Ni is exerting a selection pressure at thissite for metal-resistant actinomycetes.

  1. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    SciTech Connect

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20 of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.

  2. Performance Evaluation of the Verigene Gram-Positive and Gram-Negative Blood Culture Test for Direct Identification of Bacteria and Their Resistance Determinants from Positive Blood Cultures in Hong Kong

    PubMed Central

    Siu, Gilman K. H.; Chen, Jonathan H. K.; Ng, T. K.; Lee, Rodney A.; Fung, Kitty S. C.; To, Sabrina W. C.; Wong, Barry K. C.; Cheung, Sherman; Wong, Ivan W. F.; Tam, Marble M. P.; Lee, Swing S. W.; Yam, W. C.

    2015-01-01

    Background A multicenter study was conducted to evaluate the diagnostic performance and the time to identifcation of the Verigene Blood Culture Test, the BC-GP and BC-GN assays, to identify both Gram-positive and Gram-negative bacteria and their drug resistance determinants directly from positive blood cultures collected in Hong Kong. Methods and Results A total of 364 blood cultures were prospectively collected from four public hospitals, in which 114 and 250 cultures yielded Gram-positive and Gram-negative bacteria, and were tested with the BC-GP and BC-GN assay respectively. The overall identification agreement for Gram-positive and Gram-negative bacteria were 89.6% and 90.5% in monomicrobial cultures and 62.5% and 53.6% in polymicrobial cultures, respectively. The sensitivities for most genus/species achieved at least 80% except Enterococcus spp. (60%), K.oxytoca (0%), K.pneumoniae (69.2%), whereas the specificities for all targets ranged from 98.9% to 100%. Of note, 50% (7/14) cultures containing K.pneumoniae that were missed by the BC-GN assay were subsequently identified as K.variicola. Approximately 5.5% (20/364) cultures contained non-target organisms, of which Aeromonas spp. accounted for 25% and are of particular concern. For drug resistance determination, the Verigene test showed 100% sensitivity for identification of MRSA, VRE and carbapenem resistant Acinetobacter, and 84.4% for ESBL-producing Enterobacteriaceae based on the positive detection of mecA, vanA, blaOXA and blaCTXM respectively. Conclusion Overall, the Verigene test provided acceptable accuracy for identification of bacteria and resistance markers with a range of turnaround time 40.5 to 99.2 h faster than conventional methods in our region. PMID:26431434

  3. Changes of the Quinolones Resistance to Gram-positive Cocci Isolated during the Past 8 Years in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Jiancheng; Chen, Qihui; Yao, Hanxin; Zhou, Qi

    This study was to investigate the quinolones resistance to gram-positive cocci isolated in the First Bethune Hospital during the past 8 years. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). The rates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococci (MRCNS) were 50.8%?83.3% and 79.4%?81.5%during the past 8 years, respectively. In recent 8 years, the quinolones resistance to gram-positive cocci had increased. Monitoring of the quinolones resistance to gram-positive cocci should be strengthened. The change of the antimicrobial resistance should be investigated in order to guide rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  4. Electrotransformation of Bacillus mojavensis with fluorescent protein markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gram-positive endophytic bacteria are difficult to transform. To study endophytic interactions between Bacillus mojavensis and maize, a method was developed to transform this species by electroporation with three fluorescent protein expressing integrative plasmids: pSG1154, pSG1192, and pSG1193. The...

  5. Long-term fertilization of organic manure led to the succession of Bacillus community in an alluvial-aquic soil

    NASA Astrophysics Data System (ADS)

    Chen, Ruirui; Lin, Xiangui; Feng, Youzhi; Hu, Junli; Wang, Ruirui

    2014-05-01

    Long-term fertilization inevitably influences soil physic-chemical and biological properties. Our previous studies with a long-term fertilization experiment on an alluvial-aquic have revealed that specific Bacillus spp. was observed in organic manure-fertilized soils. The current study investigated the effects of long-term fertilization on the succession of Bacillus community in soils and their functions. The experiment included three fertilizer treatments: organic manure (OM), mineral fertilizers (NPK) and the control (without fertilizers). The results showed that long-term application of chemical fertilizers didn't increase the quantity of soil microbial population as much as organic fertilizers did, but it played an important role in maintaining the diversity and community structure of indigenous Bacilli. Correspondingly, long-term application of organic manure significantly increased the quantity while significantly decreased the diversity of Bacilli community. The ratio of Bacilli/bacteria was more constant in OM treatment than NPK indicating the stability of the response to long-term organic fertilizers. PCR-DGGE and clone library revealed the succession of Bacillus community after long-term application of organic manure and the dominant Bacillus spp occurred in the treatmen OM was Bacillus asahii. Our results also proved that Bacillus asahii was not derived from exogenous organic manure, but one of indigenous bacteria in the soil. Bacillus asahii was induced by the substrate after the application of organic manure, and gradually evolved into dominant Bacillus after 4 to 5 years. With an enzyme assay test of pure species and a soil incubation experiment, we came to a preliminary judgment, that the dominant Bacillus asahii didn't significantly influence the decomposition rate of cellulose and protein in the soil, but it promoted the decomposition of lipids, and could also improve the transformation process from fresh organic matter to humus. Applied organic manure led to the succession of soil microbial community, as a response, the changed microbial community and their activities influenced the turnover of exogenous and native soil organic matter, as well as the residuals of decomposition and microbial metabolisms.

  6. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures

    PubMed Central

    Lau, S K P; Ng, K H L; Woo, P C Y; Yip, K?t; Fung, A M Y; Woo, G K S; Chan, K?m; Que, T?l

    2006-01-01

    Using full 16S ribosomal RNA (rRNA) gene sequencing as the gold standard, 20 non?duplicating anaerobic Gram positive bacilli isolated from blood cultures were analysed by the MicroSeq 500 16S rDNA bacterial identification system. The MicroSeq system successfully identified 13 of the 20 isolates. Four and three isolates were misidentified at the genus and species level, respectively. Although the MicroSeq 500 16S rDNA bacterial identification system is better than three commercially available identification systems also evaluated, its database needs to be expanded for accurate identification of anaerobic Gram positive bacilli. PMID:16443743

  7. Inhibition of various gram-positive and gram- negative bacteria growth on selenium nanoparticle coated paper towels

    PubMed Central

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns. PMID:25926733

  8. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria

    PubMed Central

    Mandlik, Anjali; Das, Asis; Ton-That, Hung

    2008-01-01

    Cell surface pili in Gram-positive bacteria orchestrate the colonization of host tissues, evasion of immunity, and the development of biofilms. Recent work revealed that pilus assembly is a biphasic process wherein pilus polymerization is catalyzed by a pilus-specific sortase followed by cell wall anchoring of the pilus that is promoted by the housekeeping sortase. Here, we present molecular genetic and biochemical studies of a heterotrimeric pilus in Corynebacterium diphtheriae, uncovering the molecular switch that terminates pilus polymerization in favor of cell wall anchoring. The prototype pilus contains a major pilin (SpaA) forming the shaft, a tip pilin (SpaC), and another minor pilin (SpaB). Cells lacking SpaB form pilus fibers, but they are largely secreted in the medium, a phenotype also observed when cells lack the housekeeping sortase. Furthermore, the average pilus length is greatly increased in the absence of SpaB. Remarkably, a SpaB mutant that lacks the cell wall sorting signal but contains a critical lysine residue is incorporated in the pilus. However, the resulting pili fail to anchor to the cell wall. We propose that a specific minor pilin acts as the terminal subunit in pilus assembly. Cell wall anchoring ensues when the pilus polymer assembled on the pilus-specific sortase is transferred to the minor pilin presented by the housekeeping sortase via lysine-mediated transpeptidation. PMID:18779588

  9. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria.

    PubMed

    Mandlik, Anjali; Das, Asis; Ton-That, Hung

    2008-09-16

    Cell surface pili in gram-positive bacteria orchestrate the colonization of host tissues, evasion of immunity, and the development of biofilms. Recent work revealed that pilus assembly is a biphasic process wherein pilus polymerization is catalyzed by a pilus-specific sortase followed by cell wall anchoring of the pilus that is promoted by the housekeeping sortase. Here, we present molecular genetic and biochemical studies of a heterotrimeric pilus in Corynebacterium diphtheriae, uncovering the molecular switch that terminates pilus polymerization in favor of cell wall anchoring. The prototype pilus contains a major pilin (SpaA) forming the shaft, a tip pilin (SpaC), and another minor pilin (SpaB). Cells lacking SpaB form pilus fibers, but they are largely secreted in the medium, a phenotype also observed when cells lack the housekeeping sortase. Furthermore, the average pilus length is greatly increased in the absence of SpaB. Remarkably, a SpaB mutant that lacks the cell wall sorting signal but contains a critical lysine residue is incorporated in the pilus. However, the resulting pili fail to anchor to the cell wall. We propose that a specific minor pilin acts as the terminal subunit in pilus assembly. Cell wall anchoring ensues when the pilus polymer assembled on the pilus-specific sortase is transferred to the minor pilin presented by the housekeeping sortase via lysine-mediated transpeptidation. PMID:18779588

  10. Synthesis and evaluation of isatin-?-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.

    PubMed

    Zhang, Xu-Meng; Guo, Hui; Li, Zai-Shun; Song, Fu-Hang; Wang, Wei-Min; Dai, Huan-Qin; Zhang, Li-Xin; Wang, Jian-Guo

    2015-08-28

    Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) have caused an increasing mortality rate, which means that antibiotic resistance is becoming an important health issue. In the course to screen new agents for resistant bacteria, we identified that a series of isatin-?-thiosemicarbazones (IBTs) could inhibit the growth of MRSA and VRE. This was the first time that the "familiar" IBT compounds exhibited significant anti Gram-positive pathogen activity. Against a clinical isolated MRSA strain, 20 of the 51 synthesized compounds showed minimum inhibitory concentration (MIC) data of 0.78 mg/L and another 12 novel compounds had MICs of 0.39 mg/L. Moreover, these compounds also inhibited Enterococcus faecalis and VRE at similar levels, indicating that IBTs might have different mode of action compared with vancomycin. For these IBTs, comparative field analysis (CoMFA) models were further established to understand the structure-activity relationships in order to design new compounds from steric and electrostatic contributions. This work has suggested that IBTs can be considered as potential lead compounds to discover antibacterial inhibitors to combat drug resistance. PMID:26185006

  11. Rapid method for the differentiation of gram-positive and gram-negative bacteria on membrane filters.

    PubMed Central

    Romero, S; Schell, R F; Pennell, D R

    1988-01-01

    Microfiltration has become a popular procedure for the concentration and enumeration of bacteria. We developed a rapid and sensitive method for the differentiation of gram-positive and gram-negative bacteria, utilizing a polycarbonate membrane filter, crystal violet, iodine, 95% ethanol, and 6% carbol fuchsin, that can be completed in 60 to 90 s. Gram reactions of 49 species belonging to 30 genera of bacteria were correctly determined by the filter-Gram stain. The sensitivities of the filter-Gram stain and conventional slide-Gram stain were compared by testing dilutions of Escherichia coli, Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae suspensions in the presence and absence of whole human blood. The filter-Gram stain was approximately 100-fold more sensitive than the slide-Gram stain. The filter-Gram stain detected 2 to 100 bacteria, whereas the slide-Gram stain failed to detect less than 1,000 bacteria. The sensitivities of the methods were not significantly altered by the addition of whole human blood to the dilutions of bacteria tested. The filter-Gram stain could be a useful tool for the examination of body fluids with very low numbers of bacteria. Images PMID:2457600

  12. Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    PubMed Central

    Pal, Subrata

    2014-01-01

    Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of the T. indiensis Fe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI) reduction as well. PMID:25180173

  13. Breakage-Reunion Domain of Streptococcus pneumoniae Topoisomerase IV: Crystal Structure of a Gram-Positive Quinolone Target

    PubMed Central

    Achari, Aniruddha; Yang, Cheng; Ferrara, Joseph D.; Fisher, L. Mark; Sanderson, Mark R.

    2007-01-01

    The 2.7 Å crystal structure of the 55-kDa N-terminal breakage-reunion domain of topoisomerase (topo) IV subunit A (ParC) from Streptococcus pneumoniae, the first for the quinolone targets from a gram-positive bacterium, has been solved and reveals a ‘closed’ dimer similar in fold to Escherichia coli DNA gyrase subunit A (GyrA), but distinct from the ‘open’ gate structure of Escherichia coli ParC. Unlike GyrA whose DNA binding groove is largely positively charged, the DNA binding site of ParC exhibits a distinct pattern of alternating positively and negatively charged regions coincident with the predicted positions of the grooves and phosphate backbone of DNA. Based on the ParC structure, a new induced-fit model for sequence-specific recognition of the gate (G) segment by ParC has been proposed. These features may account for the unique DNA recognition and quinolone targeting properties of pneumococcal type II topoisomerases compared to their gram-negative counterparts. PMID:17375187

  14. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria

    PubMed Central

    Dong, Hongling; Zhu, Chaoyang; Chen, Jingyi; Ye, Xing; Huang, Yu-Ping

    2015-01-01

    Maltocin P28 is a phage-tail like bacteriocin produced by Stenotrophomonas maltophilia P28. The ORF8 of maltocin P28 gene cluster is predicted to encode an endolysin and we name it endolysin P28. Sequence analysis revealed that it contains the lysozyme_like superfamily conserved domain. Endolysin P28 has the four consensus motifs as that of Escherichia coli phage lambda gpR. In this study, endolysin P28 was expressed in E. coli BL21 (DE3) and purified with a C-terminal oligo-histidine tag. The antibacterial activity of endolysin P28 increased as the temperature rose from 25 to 45°C. Thermostability assays showed that endolysin P28 was stable up to 50°C, while its residual activity was reduced by 55% after treatment at 70°C for 30 min. Acidity and high salinity could enhance its antibacterial activity. Endolysin P28 exhibited a broad antibacterial activity against 14 out of 16 tested Gram-positive and Gram-negative bacteria besides S. maltophilia. Moreover, it could effectively lyse intact Gram-negative bacteria in the absence of ethylenediaminetetraacetic acid as an outer membrane permeabilizer. Therefore, the characteristics of endolysin P28 make it a potential therapeutic agent against multi-drug-resistant pathogens. PMID:26635765

  15. Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci

    PubMed Central

    Bascomb, Shoshana; Manafi, Mammad

    1998-01-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  16. Quadrisphaera granulorum gen. nov., sp. nov., a Gram-positive polyphosphate-accumulating coccus in tetrads or aggregates isolated from aerobic granules.

    PubMed

    Maszenan, Abdul Majid; Tay, Joo-Hwa; Schumann, Peter; Jiang, He-Long; Tay, Stephen Tiong-Lee

    2005-09-01

    A Gram-positive bacterium, designated strain AG019(T), was isolated by micromanipulation from aerobic granules obtained from a laboratory-scale sequencing batch reactor. This isolate grew axenically as cocci clustered predominantly in tetrads, and was morphologically similar to the dominant organisms observed in the biomass. The morphology also resembled that of the tetrad-forming organisms commonly seen in activated sludge samples. Strain AG019(T) was found to be an oxidase-negative, catalase-positive, non-motile aerobe that does not reduce nitrate and grows at temperatures between 15 and 40 degrees C, with an optimum at 37 degrees C. The pH range for growth was 5.0-9.0, with an optimum at pH 7.5. Strain AG019(T) contained a peptidoglycan with directly cross-linked meso-diaminopimelic acid (type A1gamma) and lacked mycolic acids. The G+C content of the DNA was 75 mol%. Menaquinone MK-8(H(2)) was the major isoprenoid quinone. The bacterium stained positively for intracellular polyphosphate granules but not for poly-beta-hydroxyalkanoates. It produced capsular material and showed autoaggregation ability. Phenotypic and 16S rRNA gene analyses showed that the bacterium differed sufficiently from its closest phylogenetic relatives, namely members of the suborder Frankineae, which includes the genera Geodermatophilus, Blastococcus, Frankia, Sporichthya, Acidothermus and Microsphaera, that it is proposed that it be placed in a novel genus, Quadrisphaera, as Quadrisphaera granulorum gen. nov., sp. nov. The type strain is AG019(T) (=ATCC BAA-1104(T)=DSM 44889(T)). PMID:16166665

  17. The Biosynthesis of UDP-d-QuiNAc in Bacillus cereus ATCC 14579

    PubMed Central

    Hwang, Soyoun; Aronov, Avi; Bar-Peled, Maor

    2015-01-01

    N-acetylquinovosamine (2-acetamido-2,6-di-deoxy-d-glucose, QuiNAc) is a relatively rare amino sugar residue found in glycans of few pathogenic gram-negative bacteria where it can play a role in infection. However, little is known about QuiNAc-related polysaccharides in gram-positive bacteria. In a routine screen for bacillus glycan grown at defined medium, it was surprising to identify a QuiNAc residue in polysaccharides isolated from this gram-positive bacterium. To gain insight into the biosynthesis of these glycans, we report the identification of an operon in Bacillus cereus ATCC 14579 that contains two genes encoding activities not previously described in gram-positive bacteria. One gene encodes a UDP-N-acetylglucosamine C4,6-dehydratase, (abbreviated Pdeg) that converts UDP-GlcNAc to UDP-4-keto-4,6-d-deoxy-GlcNAc (UDP-2-acetamido-2,6-dideoxy-?-d-xylo-4-hexulose); and the second encodes a UDP-4-reductase (abbr. Preq) that converts UDP-4-keto-4,6-d-deoxy-GlcNAc to UDP-N-acetyl-quinovosamine in the presence of NADPH. Biochemical studies established that the sequential Pdeg and Preq reaction product is UDP-d-QuiNAc as determined by mass spectrometry and one- and two-dimensional NMR experiments. Also, unambiguous evidence for the conversions of the dehydratase product, UDP-?-d-4-keto-4,6-deoxy-GlcNAc, to UDP-?-d-QuiNAc was obtained using real-time 1H-NMR spectroscopy and mass spectrometry. The two genes overlap by 4 nucleotides and similar operon organization and identical gene sequences were also identified in a few other Bacillus species suggesting they may have similar roles in the lifecycle of this class of bacteria important to human health. Our results provide new information about the ability of Bacilli to form UDP-QuiNAc and will provide insight to evaluate their role in the biology of Bacillus. PMID:26207987

  18. A poultry-intestinal isolate of Campylobacter jejuni produces a bacteriocin (CUV-3) active against a range of Gram positive bacterial pathogens including Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated bacteriocin, CUV-3, produced by a poultry cecal isolate of Campylobacter jejuni strain CUV-3 had inhibitory activity against several Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staph.epidermidis and Listeria monocytogenes. The pept...

  19. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris.

    PubMed

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-08-28

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the ?vkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. PMID:26170452

  20. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.

  1. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    PubMed Central

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l?1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l?1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID:26441874

  2. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    PubMed Central

    2014-01-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases. PMID:25136281

  3. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on Gram-negative and Gram-positive bacteria

    PubMed Central

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R.

    2012-01-01

    Background and Objectives Antimicrobial photodynamic therapy (APDT) employs a nontoxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen (1O2, produced via Type II mechanism) and hydroxyl radical (HO•, produced via Type I mechanism). This study examined the relative contributions of 1O2 and HO• to APDT killing of Gram-positive and Gram-negative bacteria. Study Design/Materials and Methods Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO• and 1O2 produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI–ce6). Dimethylthiourea is a HO• scavenger, while sodium azide (NaN3) is a quencher of 1O2. Both APDT and killing by Fenton reaction (chemical generation of HO•) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enteroccoccus fecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa. Results Conjugate PEI-ce6 mainly produced 1O2 (quenched by NaN3), while BB6 produced HO• in addition to 1O2 when NaN3 potentiated probe activation. NaN3 also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN3 potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN3 dose dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN3 almost failed to inhibit killing of Gram-positive bacteria. Conclusion Azidyl radicals may be formed from NaN3 and HO•. It may be that Gram-negative bacteria are more susceptible to HO• while Gram-positive bacteria are more susceptible to 1O2. The differences in NaN3 inhibition may reflect differences in the extent of PS binding to bacteria (microenvironment) or differences in penetration of NaN3 into cell walls of bacteria. PMID:22760848

  4. Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon

    PubMed Central

    Chan, Wai Ting; Yeo, Chew Chieng; Sadowy, Ewa; Espinosa, Manuel

    2014-01-01

    Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary19A-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed. PMID:25538695

  5. Protective role of bacillithiol in superoxide stress and Fe–S metabolism in Bacillus subtilis

    PubMed Central

    Fang, Zhong; Dos Santos, Patricia C

    2015-01-01

    Glutathione (GSH) serves as the prime thiol in most organisms as its depletion increases antibiotic and metal toxicity, impairs oxidative stress responses, and affects Fe and Fe–S cluster metabolism. Many gram-positive bacteria lack GSH, but instead produce other structurally unrelated yet functionally equivalent thiols. Among those, bacillithiol (BSH) has been recently identified in several low G+C gram-positive bacteria. In this work, we have explored the link between BSH and Fe–S metabolism in Bacillus subtilis. We have identified that B. subtilis lacking BSH is more sensitive to oxidative stress (paraquat), and metal toxicity (Cu(I) and Cd(II)), but not H2O2. Furthermore, a slow growth phenotype of BSH null strain in minimal medium was observed, which could be recovered upon the addition of selected amino acids (Leu/Ile and Glu/Gln), supplementation of iron, or chemical complementation with BSH disulfide (BSSB) to the growth medium. Interestingly, Fe–S cluster containing isopropylmalate isomerase (LeuCD) and glutamate synthase (GOGAT) showed decreased activities in BSH null strain. Deficiency of BSH also resulted in decreased levels of intracellular Fe accompanied by increased levels of manganese and altered expression levels of Fe–S cluster biosynthetic SUF components. Together, this study is the first to establish a link between BSH and Fe–S metabolism in B. subtilis. PMID:25988368

  6. Thio Derivatives of 2(5H)-Furanone as Inhibitors against Bacillus subtilis Biofilms

    PubMed Central

    Trizna, E. Yu.; Khakimullina, E. N.; Latypova, L. Z.; Kurbangalieva, A. R.; Sharafutdinov, I. S.; Evtyugin, V. G.; Babynin, E. V.; Bogachev, M. I.; Kayumov, A. R.

    2015-01-01

    Gram-positive bacteria cause a wide spectrum of infectious diseases, including nosocomial infections. While in the biofilm, bacteria exhibit increased resistance to antibiotics and the human immune system, causing difficulties in treatment. Thus, the development of biofilm formation inhibitors is a great challenge in pharmacology. The gram-positive bacterium Bacillus subtilis is widely used as a model organism for studying biofilm formation. Here, we report on the effect of new synthesized 2(5H)-furanones on the biofilm formation by B.subtilis cells. Among 57 compounds tested, sulfur-containing derivatives of 2(5H)-furanone (F12, F15, and F94) repressed biofilm formation at a concentration of 10 ?g/ml. Derivatives F12 and F94 were found to inhibit the biosynthesis of GFP from the promoter of the eps operon encoding genes of the biofilm exopolysaccharide synthesis (EPS). Using the differential fluorescence staining of alive/dead cells, we demonstrated an increased bacterial sensitivity to antibiotics (kanamycin and chloramphenicol) in the presence of F12, F15, and F94, with F12 being the most efficient one. The derivative F15 was capable of disrupting an already formed biofilm and thereby increasing the efficiency of antibiotics. PMID:26085951

  7. The Bacillus cereus Group Is an Excellent Reservoir of Novel Lanthipeptides

    PubMed Central

    Xin, Bingyue; Zheng, Jinshui; Xu, Ziya; Song, Xiaoling; Ruan, Lifang; Peng, Donghai

    2014-01-01

    Lantibiotics are ribosomally synthesized peptides that contain multiple posttranslational modifications. Research on lantibiotics has increased recently, mainly due to their broad-spectrum antimicrobial activity, especially against some clinical Gram-positive pathogens. Many reports about various bacteriocins in the Bacillus cereus group have been published, but few were about lantibiotics. In this study, we identified 101 putative lanthipeptide gene clusters from 77 out of 223 strains of this group, and these gene clusters were further classified into 20 types according to their gene organization and the homologies of their functional genes. Among them, 18 types were novel and have not yet been experimentally verified. Two novel lantibiotics (thuricin 4A-4 and its derivative, thuricin 4A-4D) were identified in the type I-1 lanthipeptide gene cluster and showed activity against all tested Gram-positive bacteria. The mode of action of thuricin 4A-4 was studied, and we found that it acted as a bactericidal compound. The transcriptional analysis of four structural genes (thiA1, thiA2, thiA3, and thiA4) in the thuricin 4A gene cluster showed that only one structural gene, thiA4, showed efficient transcription in the exponential growth phase; the other three structural genes did not. In addition, the putative transmembrane protein ThiI was responsible for thuricin 4A-4 immunity. Genome analysis and functional verification illustrated that B. cereus group strains were a prolific source of novel lantibiotics. PMID:25548056

  8. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    PubMed Central

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  9. Gram-positive three-component antimicrobial peptide-sensing system Min Li, Yuping Lai, Amer E. Villaruz, David J. Cha, Daniel E. Sturdevant, and Michael Otto

    E-print Network

    Huang, Ching-Tsan

    PhoQAMP histidine kinasePhoQPhoP AMPPhoP/PhoQ Staphylococcus epidermidis-defensin (hBD3) AMPAMP #12; S antimicrobial peptide, AMP)innate immunity) Gram-positiveAMP Staphylococcus epidermidishuman -defensin Gram. epidermidis 1457 14571457 DapsS1457 DapsR 1457 DapsX 1457 DapsS DapsR DapsX S. aureus RN4220 E. coli DH5 p

  10. Targeting of key pathogenic factors from gram-positive bacteria by the soluble ectodomain of the scavenger-like lymphocyte receptor CD6.

    PubMed

    Martínez-Florensa, Mario; Consuegra-Fernández, Marta; Martínez, Vanesa G; Cañadas, Olga; Armiger-Borràs, Noelia; Bonet-Roselló, Lizette; Farrán, Aina; Vila, Jordi; Casals, Cristina; Lozano, Francisco

    2014-04-01

    Gram-positive bacteria cause a broad spectrum of infection-related diseases in both immunocompetent and immunocompromised hosts, ranging from localized infections to severe systemic conditions such as septic and toxic shock syndromes. This situation has been aggravated by the recent emergence of multidrug-resistant strains, thus stressing the need for alternative therapeutic approaches. One such possibility would be modulating the host's immune response. Herein, the potential use of a soluble form of the scavenger-like human lymphocyte receptor CD6 (shCD6) belonging to an ancient family of innate immune receptors has been evaluated. shCD6 can bind to a broad spectrum of gram-positive bacteria thanks to the recognition of highly conserved cell wall components (lipoteichoic acid [LTA] and peptidoglycan [PGN]), which are essential for their viability and pathogenicity and are not amenable to antibiotic resistance. shCD6 has in vitro inhibitory effects on both bacterial growth and Toll-like receptor-mediated inflammatory response induced by LTA plus PGN. In vivo infusion of shCD6 improves survival on mouse models of septic shock by Staphylococcus aureus (either multidrug-resistant or -sensitive) or their endotoxins (LTA + PGN) or exotoxins (TSST-1). These results support the use of shCD6 and/or other scavenger-like immune receptors in the treatment of severe gram-positive-induced infectious conditions. PMID:24265437

  11. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Jorgensen, J. Z.; Dolan, S.; Kolchinsky, R.; Rainey, F. A.; Lo, S. C.

    1998-01-01

    In the guts of more than 25 species of arthropods we observed filaments containing refractile inclusions previously discovered and named "Arthromitus" in 1849 by Joseph Leidy [Leidy, J. (1849) Proc. Acad. Nat. Sci. Philadelphia 4, 225-233]. We cultivated these microbes from boiled intestines of 10 different species of surface-cleaned soil insects and isopod crustaceans. Literature review and these observations lead us to conclude that Arthromitus are spore-forming, variably motile, cultivable bacilli. As long rod-shaped bacteria, they lose their flagella, attach by fibers or fuzz to the intestinal epithelium, grow filamentously, and sporulate from their distal ends. When these organisms are incubated in culture, their life history stages are accelerated by light and inhibited by anoxia. Characterization of new Arthromitus isolates from digestive tracts of common sow bugs (Porcellio scaber), roaches (Gromphodorhina portentosa, Blaberus giganteus) and termites (Cryptotermes brevis, Kalotermes flavicollis) identifies these flagellated, spore-forming symbionts as a Bacillus sp. Complete sequencing of the 16S rRNA gene from four isolates (two sow bug, one hissing roach, one death's head roach) confirms these as the low-G+C Gram-positive eubacterium Bacillus cereus. We suggest that B. cereus and its close relatives, easily isolated from soil and grown on nutrient agar, enjoy filamentous growth in moist nutrient-rich intestines of healthy arthropods and similar habitats.

  12. Tracking the Elusive Function of Bacillus subtilis Hfq

    PubMed Central

    Rochat, Tatiana; Delumeau, Olivier; Figueroa-Bossi, Nara; Noirot, Philippe; Bossi, Lionello; Dervyn, Etienne; Bouloc, Philippe

    2015-01-01

    RNA-binding protein Hfq is a key component of the adaptive responses of many proteobacterial species including Escherichia coli, Salmonella enterica and Vibrio cholera. In these organisms, the importance of Hfq largely stems from its participation to regulatory mechanisms involving small non-coding RNAs. In contrast, the function of Hfq in Gram-positive bacteria has remained elusive and somewhat controversial. In the present study, we have further addressed this point by comparing growth phenotypes and transcription profiles between wild-type and an hfq deletion mutant of the model Gram-positive bacterium, Bacillus subtilis. The absence of Hfq had no significant consequences on growth rates under nearly two thousand metabolic conditions and chemical treatments. The only phenotypic difference was a survival defect of B. subtilis hfq mutant in rich medium in stationary phase. Transcriptomic analysis correlated this phenotype with a change in the levels of nearly one hundred transcripts. Albeit a significant fraction of these RNAs (36%) encoded sporulation-related functions, analyses in a strain unable to sporulate ruled out sporulation per se as the basis of the hfq mutant’s stationary phase fitness defect. When expressed in Salmonella, B. subtilis hfq complemented the sharp loss of viability of a degP hfq double mutant, attenuating the chronic ?E-activated phenotype of this strain. However, B. subtilis hfq did not complement other regulatory deficiencies resulting from loss of Hfq-dependent small RNA activity in Salmonella indicating a limited functional overlap between Salmonella and B. subtilis Hfqs. Overall, this study confirmed that, despite structural similarities with other Hfq proteins, B. subtilis Hfq does not play a central role in post-transcriptional regulation but might have a more specialized function connected with stationary phase physiology. This would account for the high degree of conservation of Hfq proteins in all 17 B. subtilis strains whose genomes have been sequenced. PMID:25915524

  13. Draft Genome Sequence of Bacillus licheniformis S127, Isolated from a Sheep Udder Clinical Infection.

    PubMed

    Ostrov, Ievgenia; Sela, Noa; Freed, Mor; Khateb, Nihaya; Kott-Gutkowski, Miriam; Inbar, Dana; Shemesh, Moshe

    2015-01-01

    Bacillus licheniformis is a Gram-positive biofilm- and endospore-forming bacterium, which contaminates dairy products and can be pathogenic to humans. The draft genome sequencing for B. licheniformis strain S127 is reported here, providing genetic data relevant to the ability of this strain to sustain its survival in the dairy industry. PMID:26430024

  14. Draft Genome Sequence of Bacillus licheniformis S127, Isolated from a Sheep Udder Clinical Infection

    PubMed Central

    Ostrov, Ievgenia; Sela, Noa; Freed, Mor; Khateb, Nihaya; Kott-Gutkowski, Miriam; Inbar, Dana

    2015-01-01

    Bacillus licheniformis is a Gram-positive biofilm- and endospore-forming bacterium, which contaminates dairy products and can be pathogenic to humans. The draft genome sequencing for B. licheniformis strain S127 is reported here, providing genetic data relevant to the ability of this strain to sustain its survival in the dairy industry. PMID:26430024

  15. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  16. Systematic Review of Membrane Components of Gram-Positive Bacteria Responsible as Pyrogens for Inducing Human Monocyte/Macrophage Cytokine Release

    PubMed Central

    Rockel, Christoph; Hartung, Thomas

    2012-01-01

    Fifty years after the elucidation of lipopolysaccharides (LPS, endotoxin) as the principal structure of Gram-negative bacteria activating the human immune system, its Gram-positive counterpart is still under debate. Pyrogen tests based on the human monocyte activation have been validated for LPS detection as an alternative to the rabbit test and, increasingly, the limulus amebocyte lysate test. For full replacement, international validations with non-endotoxin pyrogens are in preparation. Following evidence-based medicine approaches, a systematic review of existing evidence as to the structural nature of the Gram-positive pyrogen was undertaken. For the three major constituents suggested, i.e., peptidoglycan, lipoteichoic acids (LTA), and bacterial lipoproteins (LP), the questions to be answered and a search strategy for relevant literature was developed, starting in MedLine. The evaluation was based on the Koch–Dale criteria for a mediator of an effect. A total of 380 articles for peptidoglycan, 391 for LP, and 285 for LTA were retrieved of which 12, 8, and 24, respectively, fulfilled inclusion criteria. The compiled data suggest that for peptidoglycan two Koch–Dale criteria are fulfilled, four for LTA, and two for bacterial LP. In conclusion, based on the best currently available evidence, LTA is the only substance that fulfills all criteria. LTA has been isolated from a large number of bacteria, results in cytokine release patterns inducible also with synthetic LTA. Reduction in bacterial cytokine induction with an inhibitor for LTA was shown. However, this systematic review cannot exclude the possibility that other stimulatory compounds complement or substitute for LTA in being the counterpart to LPS in some Gram-positive bacteria. PMID:22529809

  17. Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains.

    PubMed

    Pandey, Jitendra Kumar; Swarnkar, R K; Soumya, K K; Dwivedi, Priyanka; Singh, Manish Kumar; Sundaram, Shanthy; Gopal, R

    2014-10-01

    Present investigation deals with the study, to quantify the antibacterial property of silver nanoparticles (SNPs), synthesized by pulsed laser ablation (PLA) in aqueous media, on some human enteropathogenic gram-positive and gram-negative bacterial strains. Antibacterial property was studied by measuring the zone of inhibition using agar cup double-diffusion method, minimum inhibitory concentration by serial dilution method, and growth curve for 24 h. The results clearly show the potency of antibacterial property of PLA-synthesized SNPs and suggest that it can be used as an effective growth inhibitor against various pathogenic bacterial strains in various medical devices and antibacterial control systems. PMID:24801405

  18. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  19. Crystallization and X-ray diffraction analysis of the DNA-remodelling protein DnaD from Bacillus subtilis

    SciTech Connect

    Schneider, Sabine; Carneiro, Maria J. V. M.; Ioannou, Charikleia; Soultanas, Panos; Paoli, Max

    2007-02-01

    Crystallization and preliminary X-ray diffraction analysis of the two domains of DnaD from B. subtilis is reported. The DnaD protein is an essential component of the chromosome-replication machinery of the Gram-positive bacterium Bacillus subtilis and is part of the primosomal cascade that ultimately loads the replicative ring helicase DnaC onto DNA. Moreover, DnaD is a global regulator of DNA architecture, as it forms higher order nucleoprotein structures in order to open supercoiled DNA. Here, the crystallization and preliminary X-ray diffraction analysis of the two domains of DnaD from B. subtilis are reported. Crystals of the N-terminal domain are trigonal, with either P3{sub 1}21 or P3{sub 2}21 space-group symmetry, and diffracted X-rays to 2.0 Å resolution; crystals of the C-terminal domain are hexagonal, with space group P6{sub 1} or P6{sub 5}, and diffracted X-rays to 2.9 Å resolution in-house. Determination of the structure of the DnaD domains will provide insight into how remodelling of the nucleoid is associated with priming of replication in the model Gram-positive organism B. subtilis.

  20. In vivo metabolism of 2,2 prime -diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal microorganisms and ruminants and its use as a marker of bacterial biomass

    SciTech Connect

    Masson, H.A.; Denholm, A.M.; Ling, J.R. )

    1991-06-01

    Cells of Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2{prime}-diamino (G-{sup 3}H) pimelic acid (({sup 3}H)DAP) as models of gram-positive and gram-negative bacteria, respectively. Two experiments were conducted to study the in vivo metabolism of 2,2{prime}-diaminopimelic acid (DAP) in sheep. In experiment 1, cells of ({sup 3}H)DAP-labeled B. megaterium GW1 were infused into the rumen of one sheep and the radiolabel was traced within microbial samples, digesta, and the whole animal. Bacterially bound ({sup 3}H)DAP was extensively metabolized, primarily (up to 70% after 8 h) via decarboxylation to ({sup 3}H)lysine by both ruminal protozoa and ruminal bacteria. Recovery of infused radiolabel in urine and feces was low (42% after 96 h) and perhaps indicative of further metabolism by the host animal. In experiment 2, ({sup 3}H)DAP-labeled B. megaterium GW1 was infused into the rumens of three sheep and ({sup 3}H)DAP-labeled E. coli W7-W5 was infused into the rumen of another sheep. The radioactivity contents of these mutant bacteria were insufficient to use as tracers, but the metabolism of DAP was monitored in the total, free, and peptidyl forms. Free DAP, as a proportion of total DPA in duodenal digesta, varied from 0 to 9.5%, whereas peptidyl DAP accounted for 8.3 to 99.2%.

  1. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment.

    PubMed

    Compaoré, Clarisse S; Nielsen, Dennis S; Ouoba, Labia I I; Berner, Torben S; Nielsen, Kristian F; Sawadogo-Lingani, Hagrétou; Diawara, Bréhima; Ouédraogo, Georges A; Jakobsen, Mogens; Thorsen, Line

    2013-04-01

    Bikalga is a Hibiscus sabdariffa seed fermented condiment widely consumed in Burkina Faso and neighboring countries. The fermentation is dominated by Bacillus subtilis group species. Ten B. subtilis subsp. subtilis (six isolates) and Bacillus licheniformis (four isolates) isolated from traditional Bikalga were examined for their antimicrobial activity against a panel of 36 indicator organisms including Gram-positive and Gram-negative bacteria and yeasts. The Bacillus spp. isolates showed variable inhibitory abilities depending on the method used. Both Gram-positive and Gram-negative bacteria were inhibited in the agar spot assay while only Gram-positive pathogens were inhibited in the agar well diffusion assay. Cell free supernatants (CFS) of pure cultures of 3 B. subtilis subsp. subtilis (G2, H4 and F1) strains inhibited growth of Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus and Bacillus cereus, while CFS of 2 B. licheniformis (E3 and F9) strains only inhibited M. luteus. The antimicrobial substance(s) produced by B. subtilis subsp. subtilis H4 was further characterized. The antimicrobial substance(s) produced by H4 was detected from mid-exponential growth phase. The activity was sensitive to protease and trypsin, but resistant to the proteolytic action of proteinase K and papain. Treatment with ?-amylase and lipase II resulted in a complete loss of antimicrobial effect, indicating that a sugar moiety and lipid moiety are necessary for the activity. Treatment with mercapto-ethanol resulted in a significant loss, indicative of the presence of disulfide bridges. The antimicrobial activity of H4 was heat resistant and active at pH3-10. PCR detection of yiwB, sboA, spoX, albA and spaS, etnS genes and genes coding for surfactins and plipastatins (fengycins) indicated a potential for subtilosin, subtilin and lipopeptide production, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out and a single band of approximately 4kDa had antimicrobial activity. Ultra high performance liquid chromatography-time of flight mass spectrometry (UHPLC-TOFMS) analysis of the 4kDa band allowed identification of surfactin and a protein with a monoisotopic mass of 3346.59Da, which is dissimilar in size to subtilosin and subtilin. Surfactin is a cyclic lipoheptapeptide, which contains a ?-hydroxy fatty acid, but no di-sulfide bridges or sugar residues. The complete loss of activity upon amylase treatment indicates that surfactin was not responsible for the observed antimicrobial effect. However, it cannot completely be ruled out that surfactin acts synergistically with the detected protein, though further investigations are needed to confirm this. PMID:23466466

  2. Draft Genome Sequences of Two South African Bacillus anthracis Strains

    PubMed Central

    Lekota, Kgaugelo E.; Mafofo, Joseph; Madoroba, Evelyn; Rees, Jasper; van Heerden, Henriette

    2015-01-01

    Bacillus anthracis is a Gram-positive bacterium that causes anthrax, mainly in herbivores through exotoxins and capsule produced on plasmids, pXO1 and pXO2. This paper compares the whole-genome sequences of two B. anthracis strains from an endemic region and a sporadic outbreak in South Africa. Sequencing was done using next-generation sequencing technologies. PMID:26586878

  3. Draft Genome Sequences of Two South African Bacillus anthracis Strains.

    PubMed

    Lekota, Kgaugelo E; Mafofo, Joseph; Madoroba, Evelyn; Rees, Jasper; van Heerden, Henriette; Muchadeyi, Farai C

    2015-01-01

    Bacillus anthracis is a Gram-positive bacterium that causes anthrax, mainly in herbivores through exotoxins and capsule produced on plasmids, pXO1 and pXO2. This paper compares the whole-genome sequences of two B. anthracis strains from an endemic region and a sporadic outbreak in South Africa. Sequencing was done using next-generation sequencing technologies. PMID:26586878

  4. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens.

    PubMed

    Biedenbach, Douglas J; Huband, Michael D; Hackel, Meredith; de Jonge, Boudewijn L M; Sahm, Daniel F; Bradford, Patricia A

    2015-10-01

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, ?-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species. PMID:26195518

  5. Comparison of Conventional and Molecular Methods for Identification of Aerobic Catalase-Negative Gram-Positive Cocci in the Clinical Laboratory

    PubMed Central

    Bosshard, P. P.; Abels, S.; Altwegg, M.; Böttger, E. C.; Zbinden, R.

    2004-01-01

    Over a period of 18 months we have evaluated the use of 16S ribosomal DNA (rDNA) sequence analysis as a means of identifying aerobic catalase-negative gram-positive cocci in the clinical laboratory. A total of 171 clinically relevant strains were studied. The results of molecular analyses were compared with those obtained with a commercially available phenotypic identification system (API 20 Strep system; bioMérieux sa, Marcy l'Etoile, France). Phenotypic characterization identified 67 (39%) isolates to the species level and 32 (19%) to the genus level. Seventy-two (42%) isolates could not be discriminated at any taxonomic level. In comparison, 16S rDNA sequencing identified 138 (81%) isolates to the species level and 33 (19%) to the genus level. For 42 of 67 isolates assigned to a species with the API 20 Strep system, molecular analyses yielded discrepant results. Upon further analysis it was concluded that among the 42 isolates with discrepant results, 16S rDNA sequencing was correct for 32 isolates, the phenotypic identification was correct for 2 isolates, and the results for 8 isolates remained unresolved. We conclude that 16S rDNA sequencing is an effective means for the identification of aerobic catalase-negative gram-positive cocci. With the exception of Streptococcus pneumoniae and beta-hemolytic streptococci, we propose the use of 16S rDNA sequence analysis if adequate species identification is of concern. PMID:15131171

  6. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    SciTech Connect

    Dahl, T.A.; Midden, W.R. ); Hartman, P.E. )

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  7. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou?s general PseAAC.

    PubMed

    Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Lyons, James; Paliwal, Kuldip; Sattar, Abdul

    2015-01-01

    Protein subcellular localization is defined as predicting the functioning location of a given protein in the cell. It is considered an important step towards protein function prediction and drug design. Recent studies have shown that relying on Gene Ontology (GO) for feature extraction can improve protein subcellular localization prediction performance. However, relying solely on GO, this problem remains unsolved. At the same time, the impact of other sources of features especially evolutionary-based features has not been explored adequately for this task. In this study, we aim to extract discriminative evolutionary features to tackle this problem. To do this, we propose two segmentation based feature extraction methods to explore potential local evolutionary-based information for Gram-positive and Gram-negative subcellular localizations. We will show that by applying a Support Vector Machine (SVM) classifier to our extracted features, we are able to enhance Gram-positive and Gram-negative subcellular localization prediction accuracies by up to 6.4% better than previous studies including the studies that used GO for feature extraction. PMID:25264267

  8. SubtiWiki 2.0-an integrated database for the model organism Bacillus subtilis.

    PubMed

    Michna, Raphael H; Zhu, Bingyao; Mäder, Ulrike; Stülke, Jörg

    2016-01-01

    To understand living cells, we need knowledge of each of their parts as well as about the interactions of these parts. To gain rapid and comprehensive access to this information, annotation databases are required. Here, we present SubtiWiki 2.0, the integrated database for the model bacterium Bacillus subtilis (http://subtiwiki.uni-goettingen.de/). SubtiWiki provides text-based access to published information about the genes and proteins of B. subtilis as well as presentations of metabolic and regulatory pathways. Moreover, manually curated protein-protein interactions diagrams are linked to the protein pages. Finally, expression data are shown with respect to gene expression under 104 different conditions as well as absolute protein quantification for cytoplasmic proteins. To facilitate the mobile use of SubtiWiki, we have now expanded it by Apps that are available for iOS and Android devices. Importantly, the App allows to link private notes and pictures to the gene/protein pages. Today, SubtiWiki has become one of the most complete collections of knowledge on a living organism in one single resource. PMID:26433225

  9. Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis.

    PubMed

    Ter Beek, Alexander; Wijman, Janneke G E; Zakrzewska, Anna; Orij, Rick; Smits, Gertien J; Brul, Stanley

    2015-02-01

    The advent of 'omics' techniques bears significant potential for the assessment of the microbiological stability of foods. This requires the integration of molecular data with their implication for cellular physiology. Here we performed a comparative physiological and transcriptional analysis of Bacillus subtilis stressed with three different weak organic acids: the commonly used food preservatives sorbic- and acetic-acid, plus the well-known uncoupler carbonyl cyanide-m-chlorophenyl hydrazone (CCCP). The concentration of each compound needed to cause a similar reduction of the growth rate negatively correlated with their membrane solubility, and positively with the concentration of undissociated acid. Intracellular acidification was demonstrated by expressing a pH-sensitive GFP derivative. The largest drop in intracellular pH was observed in CCCP-stressed cells and was accompanied by the transcriptional induction of the general stress response (GSR) and SigM regulon, responses known to be induced by acidification. The GSR was induced by acetate, but not by sorbate in mildly-stressed cells. Microarray analysis further revealed that all three acids activate transcriptional programs normally seen upon nutrient limitation and cause diverse responses indicative of an adaptation of the cell envelope. Based on the responses observed and the utilized pH measurements, the inhibitory effect of sorbic acid seems to be more focused on the cell membrane than that of acetic acid or CCCP. PMID:25481064

  10. SubtiWiki 2.0—an integrated database for the model organism Bacillus subtilis

    PubMed Central

    Michna, Raphael H.; Zhu, Bingyao; Mäder, Ulrike; Stülke, Jörg

    2016-01-01

    To understand living cells, we need knowledge of each of their parts as well as about the interactions of these parts. To gain rapid and comprehensive access to this information, annotation databases are required. Here, we present SubtiWiki 2.0, the integrated database for the model bacterium Bacillus subtilis (http://subtiwiki.uni-goettingen.de/). SubtiWiki provides text-based access to published information about the genes and proteins of B. subtilis as well as presentations of metabolic and regulatory pathways. Moreover, manually curated protein-protein interactions diagrams are linked to the protein pages. Finally, expression data are shown with respect to gene expression under 104 different conditions as well as absolute protein quantification for cytoplasmic proteins. To facilitate the mobile use of SubtiWiki, we have now expanded it by Apps that are available for iOS and Android devices. Importantly, the App allows to link private notes and pictures to the gene/protein pages. Today, SubtiWiki has become one of the most complete collections of knowledge on a living organism in one single resource. PMID:26433225

  11. The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis

    PubMed Central

    2013-01-01

    Background Standardized and well-characterized genetic building blocks are a prerequisite for the convenient and reproducible assembly of novel genetic modules and devices. While numerous standardized parts exist for Escherichia coli, such tools are still missing for the Gram-positive model organism Bacillus subtilis. The goal of this study was to develop and thoroughly evaluate such a genetic toolbox. Results We developed five BioBrick-compatible integrative B. subtilis vectors by deleting unnecessary parts and removing forbidden restriction sites to allow cloning in BioBrick (RFC10) standard. Three empty backbone vectors with compatible resistance markers and integration sites were generated, allowing the stable chromosomal integration and combination of up to three different devices in one strain. In addition, two integrative reporter vectors, based on the lacZ and luxABCDE cassettes, were BioBrick-adjusted, to enable ?-galactosidase and luciferase reporter assays, respectively. Four constitutive and two inducible promoters were thoroughly characterized by quantitative, time-resolved measurements. Together, these promoters cover a range of more than three orders of magnitude in promoter strength, thereby allowing a fine-tuned adjustment of cellular protein amounts. Finally, the Bacillus BioBrick Box also provides five widely used epitope tags (FLAG, His10, cMyc, HA, StrepII), which can be translationally fused N- or C-terminally to any protein of choice. Conclusion Our genetic toolbox contains three compatible empty integration vectors, two reporter vectors and a set of six promoters, two of them inducible. Furthermore, five different epitope tags offer convenient protein handling and detection. All parts adhere to the BioBrick standard and hence enable standardized work with B. subtilis. We believe that our well-documented and carefully evaluated Bacillus BioBrick Box represents a very useful genetic tool kit, not only for the iGEM competition but any other BioBrick-based project in B. subtilis. PMID:24295448

  12. Complex Organization and Dynamic Regulation of the pks Gene Cluster in Bacillus subtilis 

    E-print Network

    Vargas Bautista, Carol M

    2014-08-27

    The pks genes are the largest antibiotic- encoding gene cluster in Bacillus subtilis and encode the Pks enzymatic complex that produces bacillaene. Bacillaene plays important roles in the fitness of B. subtilis during competition with other...

  13. In Vitro Activities of Tedizolid and Linezolid against Gram-Positive Cocci Associated with Acute Bacterial Skin and Skin Structure Infections and Pneumonia.

    PubMed

    Chen, Ko-Hung; Huang, Yu-Tsung; Liao, Chun-Hsing; Sheng, Wang-Hui; Hsueh, Po-Ren

    2015-10-01

    Tedizolid is a novel, expanded-spectrum oxazolidinone with potent activity against a wide range of Gram-positive pathogens. A total of 425 isolates of Gram-positive bacteria were obtained consecutively from patients with acute bacterial skin and skin structure infections (ABSSSIs) or pneumonia. These isolates included methicillin-susceptible Staphylococcus aureus (MSSA) (n = 100), methicillin-resistant Staphylococcus aureus (MRSA) (n = 100), Streptococcus pyogenes (n = 50), Streptococcus agalactiae (n = 50), Streptococcus anginosus group (n = 75), Enterococcus faecalis (n = 50), and vancomycin-resistant enterococci (VRE) (Enterococcus faecium) (n = 50). The MICs of tedizolid and linezolid were determined by the agar dilution method. Tedizolid exhibited better in vitro activities than linezolid against MSSA (MIC90s, 0.5 versus 2 ?g/ml), MRSA (MIC90s, 0.5 versus 2 ?g/ml), S. pyogenes (MIC90s, 0.5 versus 2 ?g/ml), S. agalactiae (MIC90s, 0.5 versus 2 ?g/ml), Streptococcus anginosus group (MIC90s, 0.5 versus 2 ?g/ml), E. faecalis (MIC90s, 0.5 versus 2 ?g/ml), and VRE (MIC90s, 0.5 versus 2 ?g/ml). The tedizolid MICs against E. faecalis (n = 3) and VRE (n = 2) intermediate to linezolid (MICs, 4 ?g/ml) were 1 ?g/ml and 0.5 ?g/ml, respectively. The tedizolid MIC90s against S. anginosus, S. constellatus, and S. intermedius were 0.5, 1, and 0.5 ?g/ml, respectively, and the rates of susceptibility based on the U.S. FDA MIC interpretive breakpoints to the isolates were 16%, 28%, and 72%, respectively. Tedizolid exhibited 2- to 4-fold better in vitro activities than linezolid against a variety of Gram-positive cocci associated with ABSSSIs and pneumonia. The lower susceptibilities of tedizolid against isolates of S. anginosus and S. constellatus than against those of S. intermedius in Taiwan were noted. PMID:26248355

  14. Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium

    PubMed Central

    Kuever, Jan; Visser, Michael; Loeffler, Claudia; Boll, Matthias; Worm, Petra; Sousa, Diana Z.; Plugge, Caroline M.; Schaap, Peter J.; Muyzer, Gerard; Pereira, Ines A.C.; Parshina, Sofiya N.; Goodwin, Lynne A.; Kyrpides, Nikos C.; Detter, Janine; Woyke, Tanja; Chain, Patrick; Davenport, Karen W.; Rohde, Manfred; Spring, Stefan; Klenk, Hans-Peter; Stams, Alfons J.M.

    2014-01-01

    Desulfotomaculum gibsoniae is a mesophilic member of the polyphyletic spore-forming genus Desulfotomaculum within the family Peptococcaceae. This bacterium was isolated from a freshwater ditch and is of interest because it can grow with a large variety of organic substrates, in particular several aromatic compounds, short-chain and medium-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow autotrophically with H2 + CO2 and sulfate and slowly acetogenically with H2 + CO2, formate or methoxylated aromatic compounds in the absence of sulfate. It does not require any vitamins for growth. Here, we describe the features of D. gibsoniae strain GrollT together with the genome sequence and annotation. The chromosome has 4,855,529 bp organized in one circular contig and is the largest genome of all sequenced Desulfotomaculum spp. to date. A total of 4,666 candidate protein-encoding genes and 96 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth and in CO2 fixation during autotrophic growth, are present. The genome contains a large set of genes for the anaerobic transformation and degradation of aromatic compounds, which are lacking in the other sequenced Desulfotomaculum genomes. PMID:25197466

  15. Recent progress in Bacillus subtilis sporulation

    PubMed Central

    Higgins, Douglas; Dworkin, Jonathan

    2011-01-01

    The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last five years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth. PMID:22091839

  16. New potent antibacterials against Gram-positive multiresistant pathogens: effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles.

    PubMed

    Fortuna, Cosimo G; Berardozzi, Roberto; Bonaccorso, Carmela; Caltabiano, Gianluigi; Di Bari, Lorenzo; Goracci, Laura; Guarcello, Annalisa; Pace, Andrea; Palumbo Piccionello, Antonio; Pescitelli, Gennaro; Pierro, Paola; Lonati, Elena; Bulbarelli, Alessandra; Cocuzza, Clementina E A; Musumarra, Giuseppe; Musumeci, Rosario

    2014-12-15

    The effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles have been studied to design new potent antibacterials against Gram-positive multidrug-resistant pathogens. The adopted strategy involved a molecular modelling approach, the synthesis and biological evaluation of new designed compounds, enantiomers separation and absolute configuration assignment. Experimental determination of the antibacterial activity of the designed (S)-1-((3-(4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea and (S)-1-((3-(3-fluoro-4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea against multidrug resistant linezolid bacterial strains was higher than that of linezolid. PMID:25464880

  17. Genome Sequence of Bacillus butanolivorans K9T (DSM 18926), an n-Butanol-Consuming Bacterium Isolated from Soil

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai; Ge, Ci-bin

    2015-01-01

    Bacillus butanolivorans K9T (DSM 18926) is a Gram-positive, spore-forming, strictly aerobic, and n-butanol-consuming bacterium. Here, we report the 5.68-Mb genome sequence of B. butanolivorans K9T, which is the first genomic information of this species that will provide useful information for the genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494675

  18. Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection.

    PubMed

    Lawless, Nathan; Foroushani, Amir B K; McCabe, Matthew S; O'Farrelly, Cliona; Lynn, David J

    2013-01-01

    MicroRNAs (miRNAs) are short, non-coding RNAs, which post-transcriptionally regulate gene expression and are proposed to play a key role in the regulation of innate and adaptive immunity. Here, we report a next generation sequencing (NGS) approach profiling the expression of miRNAs in primary bovine mammary epithelial cells (BMEs) at 1, 2, 4 and 6 hours post-infection with Streptococcus uberis, a causative agent of bovine mastitis. Analysing over 450 million sequencing reads, we found that 20% of the approximately 1,300 currently known bovine miRNAs are expressed in unchallenged BMEs. We also identified the expression of more than 20 potentially novel bovine miRNAs. There is, however, a significant dynamic range in the expression of known miRNAs. The top 10 highly expressed miRNAs account for >80% of all aligned reads, with the remaining miRNAs showing much lower expression. Twenty-one miRNAs were identified as significantly differentially expressed post-infection with S. uberis. Several of these miRNAs have characterised roles in the immune systems of other species. This miRNA response to the Gram-positive S. uberis is markedly different, however, to lipopolysaccharide (LPS) induced miRNA expression. Of 145 miRNAs identified in the literature as being LPS responsive, only 9 were also differentially expressed in response to S. uberis. Computational analysis has also revealed that the predicted target genes of miRNAs, which are down-regulated in BMEs following S. uberis infection, are statistically enriched for roles in innate immunity. This suggests that miRNAs, which potentially act as central regulators of gene expression responses to a Gram-positive bacterial infection, may significantly regulate the sentinel capacity of mammary epithelial cells to mobilise the innate immune system. PMID:23472090

  19. Mass and density measurements of live and dead Gram-negative and Gram-positive bacterial populations.

    PubMed

    Lewis, Christina L; Craig, Caelli C; Senecal, Andre G

    2014-06-01

    Monitoring cell growth and measuring physical features of food-borne pathogenic bacteria are important for better understanding the conditions under which these organisms survive and proliferate. To address this challenge, buoyant masses of live and dead Escherichia coli O157:H7 and Listeria innocua were measured using Archimedes, a commercially available suspended microchannel resonator (SMR). Cell growth was monitored with Archimedes by observing increased cell concentration and buoyant mass values of live growing bacteria. These growth data were compared to optical density measurements obtained with a Bioscreen system. We observed buoyant mass measurements with Archimedes at cell concentrations between 10(5) and 10(8) cells/ml, while growth was not observed with optical density measurements until the concentration was 10(7) cells/ml. Buoyant mass measurements of live and dead cells with and without exposure to hydrogen peroxide stress were also compared; live cells generally had a larger buoyant mass than dead cells. Additionally, buoyant mass measurements were used to determine cell density and total mass for both live and dead cells. Dead E. coli cells were found to have a larger density and smaller total mass than live E. coli cells. In contrast, density was the same for both live and dead L. innocua cells, while the total mass was greater for live than for dead cells. These results contribute to the ongoing challenge to further develop existing technologies used to observe cell populations at low concentrations and to measure unique physical features of cells that may be useful for developing future diagnostics. PMID:24705320

  20. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela

    2012-06-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10- x Ag x (PO4)6(OH)2, x Ag = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for x Ag = 0.05, a = b = 9.443 Å, c = 6.875 Å for x Ag = 0.2, and a = b = 9.445 Å, c = 6.877 Å for x Ag = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples ( x Ag = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of x Ag in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth ( P. stuartii).

  1. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    PubMed Central

    2012-01-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg?=?0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a?=?b?=?9.435 Å, c?=?6.876 Å for xAg?=?0.05, a?=?b?=?9.443 Å, c?=?6.875 Å for xAg?=?0.2, and a?=?b?=?9.445 Å, c?=?6.877 Å for xAg?=?0.3 are in good agreement with the standard of a?=?b?=?9.418 Å, c?=?6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg?=?0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii). PMID:22721352

  2. The Arthromitus stage of Bacillus cereus: Intestinal symbionts of?animals

    PubMed Central

    Margulis, Lynn; Jorgensen, Jeremy Z.; Dolan, Sona; Kolchinsky, Rita; Rainey, Frederick A.; Lo, Shyh-Ching

    1998-01-01

    In the guts of more than 25 species of arthropods we observed filaments containing refractile inclusions previously discovered and named “Arthromitus” in 1849 by Joseph Leidy [Leidy, J. (1849) Proc. Acad. Nat. Sci. Philadelphia 4, 225–233]. We cultivated these microbes from boiled intestines of 10 different species of surface-cleaned soil insects and isopod crustaceans. Literature review and these observations lead us to conclude that Arthromitus are spore-forming, variably motile, cultivable bacilli. As long rod-shaped bacteria, they lose their flagella, attach by fibers or fuzz to the intestinal epithelium, grow filamentously, and sporulate from their distal ends. When these organisms are incubated in culture, their life history stages are accelerated by light and inhibited by anoxia. Characterization of new Arthromitus isolates from digestive tracts of common sow bugs (Porcellio scaber), roaches (Gromphodorhina portentosa, Blaberus giganteus) and termites (Cryptotermes brevis, Kalotermes flavicollis) identifies these flagellated, spore-forming symbionts as a Bacillus sp. Complete sequencing of the 16S rRNA gene from four isolates (two sow bug, one hissing roach, one death’s head roach) confirms these as the low-G+C Gram-positive eubacterium Bacillus cereus. We suggest that B. cereus and its close relatives, easily isolated from soil and grown on nutrient agar, enjoy filamentous growth in moist nutrient-rich intestines of healthy arthropods and similar habitats. PMID:9448315

  3. Bacillus cellulasensis sp. nov., isolated from marine sediment.

    PubMed

    Mawlankar, Rahul; Thorat, Meghana N; Krishnamurthi, Srinivasan; Dastager, Syed G

    2016-01-01

    A novel bacterial strain NIO-1130(T) was isolated from sediment sample taken from Chorao Island, Goa Province, India, and subjected to a taxonomic investigation. The strain was Gram-positive, aerobic, and motile. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate within the genus Bacillus and strain NIO-1130(T) showed highest sequence similarity with Bacillus halosaccharovorans DSM 25387(T) (98.4 %) and Bacillus niabensis CIP 109816(T) (98.1 %), whereas other Bacillus species showed <97.0 % similarity. Tree based on gyrB gene sequence revealed that strain bacillus group. The major menaquinone was MK-7 and the predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The strain showed a DNA G+C content of 39.9 mol%. DNA-DNA hybridization studies revealed that strain NIO-1130(T) exhibits 70 % similarity with Bacillus halosaccharovorans DSM 25387(T) and Bacillus niabensis CIP 109816(T). On the basis of physiological, biochemical, chemotaxonomic and phylogenetic analyses, we consider the isolate to represent a novel species of the genus Bacillus, for which the name Bacillus cellulasensis sp. nov., is proposed. The type strain is NIO-1130(T) (=NCIM 5461(T)=CCTCC AB 2011126(T)). PMID:26410293

  4. Isolation of a halophilic bacterium, Bacillus sp. strain NY-6 for organic contaminants removal in saline wastewater on ship

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Yu, Zhenjiang; Zhang, Xiaohui; Zhao, Dan; Zhao, Fangbo

    2013-06-01

    The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.

  5. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates

    PubMed Central

    2012-01-01

    Background Plant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates. Results Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261) was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides. Conclusions Here we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants. PMID:22720735

  6. Genome Sequence of Brevibacillus formosus F12T for a Genome-Sequencing Project for Genomic Taxonomy and Phylogenomics of Bacillus-Like Bacteria

    PubMed Central

    Wang, Jie-Ping; Liu, Guo-Hong; Chen, Qian-qian; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Brevibacillus formosus F12T is a Gram-positive, spore-forming, and strictly aerobic bacterium. Here, we report the draft 6.215-Mb genome sequence of B. formosus F12T, which will provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria, as well as for the functional gene mining and application of B. formosus. PMID:26205874

  7. In vitro activity of ceftazidime, ceftaroline and aztreonam alone and in combination with avibactam against European Gram-negative and Gram-positive clinical isolates.

    PubMed

    Testa, Raymond; Cantón, Rafael; Giani, Tommaso; Morosini, María-Isabel; Nichols, Wright W; Seifert, Harald; Stefanik, Danuta; Rossolini, Gian Maria; Nordmann, Patrice

    2015-06-01

    Recent clinical isolates of key Gram-negative and Gram-positive bacteria were collected in 2012 from hospitalised patients in medical centres in four European countries (France, Germany, Italy and Spain) and were tested using standard broth microdilution methodology to assess the impact of 4 mg/L avibactam on the in vitro activities of ceftazidime, ceftaroline and aztreonam. Against Enterobacteriaceae, addition of avibactam significantly enhanced the level of activity of these antimicrobials. MIC(90) values (minimum inhibitory concentration that inhibits 90% of the isolates) of ceftazidime, ceftaroline and aztreonam for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Morganella morganii were reduced up to 128-fold or greater when combined with avibactam. A two-fold reduction in the MIC(90) of ceftazidime to 8 mg/L was noted in Pseudomonas aeruginosa isolates when combined with avibactam, whereas little effect of avibactam was noted on the MIC values of the test compounds when tested against Acinetobacter baumannii isolates. Avibactam had little effect on the excellent activity of ceftazidime, ceftaroline and aztreonam against Haemophilus influenzae. It had no impact on the in vitro activity of ceftazidime and ceftaroline against staphylococci and streptococci. This study demonstrates that addition of avibactam enhances the activities of ceftazidime, ceftaroline and aztreonam against Enterobacteriaceae and P. aeruginosa but not against A. baumannii. PMID:25748553

  8. A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19.

    PubMed

    Mitsui, R; Sakai, Y; Yasueda, H; Kato, N

    2000-02-01

    A 4.2-kb PstI fragment harboring the gene cluster of the ribulose monophosphate (RuMP) pathway for formaldehyde fixation was identified in the chromosome of a gram-positive, facultative methylotroph, Mycobacterium gastri MB19, by using the coding region of 3-hexulose-6-phosphate synthase (HPS) as the hybridization probe. The PstI fragment contained three complete open reading frames (ORFs) which encoded from the 5' end, a DNA-binding regulatory protein (rmpR), 6-phospho-3-hexuloisomerase (PHI; rmpB), and HPS (rmpA). Sequence analysis suggested that rmpA and rmpB constitute an operon, and Northern blot analysis of RNA extracted from bacteria grown under various conditions suggested that the expression of the two genes is similarly regulated at the transcriptional level. A similarity search revealed that the proteins encoded by rmpA and rmpB in M. gastri MB19 show high similarity to the unidentified proteins of nonmethylotrophic prokaryotes, including bacteria and anaerobic archaea. The clusters in the phylogenetic tree of the HPS protein of M. gastri MB19 and those in the phylogenetic tree of the PHI protein were nearly identical, which implies that these two formaldehyde-fixing genes evolved as a pair. These findings give new insight into the acquisition of the formaldehyde fixation pathway during the evolution of diverse microorganisms. PMID:10648518

  9. A Novel Operon Encoding Formaldehyde Fixation: the Ribulose Monophosphate Pathway in the Gram-Positive Facultative Methylotrophic Bacterium Mycobacterium gastri MB19

    PubMed Central

    Mitsui, Ryoji; Sakai, Yasuyoshi; Yasueda, Hisashi; Kato, Nobuo

    2000-01-01

    A 4.2-kb PstI fragment harboring the gene cluster of the ribulose monophosphate (RuMP) pathway for formaldehyde fixation was identified in the chromosome of a gram-positive, facultative methylotroph, Mycobacterium gastri MB19, by using the coding region of 3-hexulose-6-phosphate synthase (HPS) as the hybridization probe. The PstI fragment contained three complete open reading frames (ORFs) which encoded from the 5? end, a DNA-binding regulatory protein (rmpR), 6-phospho-3-hexuloisomerase (PHI; rmpB), and HPS (rmpA). Sequence analysis suggested that rmpA and rmpB constitute an operon, and Northern blot analysis of RNA extracted from bacteria grown under various conditions suggested that the expression of the two genes is similarly regulated at the transcriptional level. A similarity search revealed that the proteins encoded by rmpA and rmpB in M. gastri MB19 show high similarity to the unidentified proteins of nonmethylotrophic prokaryotes, including bacteria and anaerobic archaea. The clusters in the phylogenetic tree of the HPS protein of M. gastri MB19 and those in the phylogenetic tree of the PHI protein were nearly identical, which implies that these two formaldehyde-fixing genes evolved as a pair. These findings give new insight into the acquisition of the formaldehyde fixation pathway during the evolution of diverse microorganisms. PMID:10648518

  10. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus

    PubMed Central

    Chen, Chen; Gao, George F.

    2012-01-01

    A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296

  11. Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria.

    PubMed

    Um, Si-Hyeon; Kim, Jin-Sik; Song, Saemee; Kim, Nam Ah; Jeong, Seong Hoon; Ha, Nam-Chul

    2015-08-01

    In Gram-negative bacteria in the periplasmic space, the dimeric thioredoxin-fold protein DsbC isomerizes and reduces incorrect disulfide bonds of unfolded proteins, while the monomeric thioredoxin-fold protein DsbA introduces disulfide bonds in folding proteins. In the Gram-negative bacteria Salmonella enterica serovar Typhimurium, the reduced form of CueP scavenges the production of hydroxyl radicals in the copper-mediated Fenton reaction, and DsbC is responsible for keeping CueP in the reduced, active form. Some DsbA proteins fulfill the functions of DsbCs, which are not present in Gram-positive bacteria. In this study, we identified a DsbA homologous protein (CdDsbA) in the Corynebacterium diphtheriae genome and determined its crystal structure in the reduced condition at 1.5 Å resolution. CdDsbA consists of a monomeric thioredoxin-like fold with an inserted helical domain and unique N-terminal extended region. We confirmed that CdDsbA has disulfide bond isomerase/reductase activity, and we present evidence that the N-terminal extended region is not required for this activity and folding of the core DsbA-like domain. Furthermore, we found that CdDsbA could reduce CueP from C. diphtheriae. PMID:26082031

  12. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria.

    PubMed

    Suresh, Anil K; Pelletier, Dale A; Wang, Wei; Moon, Ji-Won; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David C; Phelps, Tommy J; Doktycz, Mitchel J

    2010-07-01

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver-based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the gamma-proteobacterium, Shewanella oneidensis MR-1, upon incubation with aqueous silver nitrate solution. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the 2-11 nm size range (average of 4 +/- 1.5 nm). The bactericidal effect of these nanoparticles (biogenic-Ag) is compared to chemically synthesized silver nanoparticles (colloidal-Ag and oleate capped silver nanoparticles, oleate-Ag) and assessed using Gram-negative (E. coli and S. oneidensis) and Gram-positive (B. subtilis) bacteria. Relative toxicity was based on the diameter of inhibition zone in disk diffusion tests, minimum inhibitory concentrations, live/dead assays, and atomic force microscopy. From a toxicity perspective, strain-dependent inhibition depended on the synthesis procedure and the surface coat. Biogenic-Ag was found to be of higher toxicity compared to colloidal-Ag for all three strains tested, whereas E. coli and S. oneidensis were found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, oleate-Ag was not toxic to any of the bacteria. These findings have implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems. PMID:20509652

  13. Genome Sequence of Type Strain Bacillus decisifrondis E5HC-32T (DSM 11725T), Isolated from Soil Underlying the Decaying Leaf Litter of a Slash Pine Forest

    PubMed Central

    Liu, Guo-hong; Wang, Jie-ping; Chen, Qian-Qian; Che, Jian-Mei; Zheng, Xue-fang; Ge, Ci-bin

    2015-01-01

    Bacillus decisifrondis E5HC-32T (DSM 11725T) is a Gram-positive, subterminal spherical spore-forming, strictly aerobic bacterium. Here, we report the 5,613,728-bp genome sequence of B. decisifrondis E5HC-32T, which is the first genome information of this species and will provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494684

  14. Genome Sequence of Type Strain Bacillus decisifrondis E5HC-32T (DSM 11725T), Isolated from Soil Underlying the Decaying Leaf Litter of a Slash Pine Forest.

    PubMed

    Liu, Guo-Hong; Liu, Bo; Wang, Jie-Ping; Chen, Qian-Qian; Che, Jian-Mei; Zheng, Xue-Fang; Ge, Ci-Bin

    2015-01-01

    Bacillus decisifrondis E5HC-32(T) (DSM 11725(T)) is a Gram-positive, subterminal spherical spore-forming, strictly aerobic bacterium. Here, we report the 5,613,728-bp genome sequence of B. decisifrondis E5HC-32(T), which is the first genome information of this species and will provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494684

  15. Role of fatty acids in Bacillus environmental adaptation

    PubMed Central

    Diomandé, Sara E.; Nguyen-The, Christophe; Guinebretière, Marie-Hélène; Broussolle, Véronique; Brillard, Julien

    2015-01-01

    The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness. PMID:26300876

  16. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis.

    PubMed

    Guan, Jiewen; Chan, Maria; Brooks, Brian W; Rohonczy, Liz

    2013-04-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At -20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400

  17. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis

    PubMed Central

    Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Liz

    2013-01-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At ?20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400

  18. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    PubMed

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n?=?2), Oceanobacillus picturae (n?=?5), and Oceanobacillus iheyensis (n?=?15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological and/or industrial processes. PMID:25227686

  19. Structural Basis for the De-N-acetylation of Poly-?-1,6-N-acetyl-d-glucosamine in Gram-positive Bacteria*

    PubMed Central

    Little, Dustin J.; Bamford, Natalie C.; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P. Lynne

    2014-01-01

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-?-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 ? resolution. The structure of IcaBAd reveals a (?/?)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni2+, Co2+, and Zn2+. From docking studies with ?-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci. PMID:25359777

  20. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    SciTech Connect

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A; Moon, Ji Won; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are compared to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.

  1. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    PubMed Central

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  2. Bacillus coagulans

    MedlinePLUS

    Bacillus coagulans is a type of bacteria. It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for diarrhea, including infectious types such as rotaviral ...

  3. Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments

    PubMed Central

    Sass, Andrea M; McKew, Boyd A; Sass, Henrik; Fichtel, Jörg; Timmis, Kenneth N; McGenity, Terry J

    2008-01-01

    Background The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored. Results Eighty nine isolates were obtained from the sediments of four deep-sea, hypersaline anoxic brine lakes in the Eastern Mediterranean Sea: l'Atalante, Bannock, Discovery and Urania basins. This culture collection was dominated by representatives of the genus Bacillus and close relatives (90% of all isolates) that were investigated further. Physiological characterization of representative strains revealed large versatility with respect to enzyme activities or substrate utilization. Two third of the isolates did not grow at in-situ salinities and were presumably present as endospores. This is supported by high numbers of endospores in Bannock, Discovery and Urania basins ranging from 3.8 × 105 to 1.2 × 106 g-1 dw sediment. However, the remaining isolates were highly halotolerant growing at salinities of up to 30% NaCl. Some of the novel isolates affiliating with the genus Pontibacillus grew well under anoxic conditions in sulfidic medium by fermentation or anaerobic respiration using dimethylsulfoxide or trimethylamine N-oxide as electron acceptor. Conclusion Some of the halophilic, facultatively anaerobic relatives of Bacillus appear well adapted to life in this hostile environment and suggest the presence of actively growing microbial communities in the NaCl-rich, deep-sea brine-lake sediments. PMID:18541011

  4. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil.

    PubMed

    Ghosh, A; Bhardwaj, M; Satyanarayana, T; Khurana, M; Mayilraj, S; Jain, R K

    2007-02-01

    A Gram-positive, endospore-forming, alkalitolerant bacterial strain, designated MLB2T, was isolated from soil from Leh, India, and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Growth was observed at pH 7.0-11.0, but not at pH 6.0. The DNA G+C content was 41.4 mol%. The highest level of 16S rRNA gene sequence similarity was with Bacillus oshimensis JCM 12663T (98.8 %). However, DNA-DNA hybridization experiments indicated low levels of genomic relatedness with the type strains of B. oshimensis (62 %), Bacillus patagoniensis (55 %), Bacillus clausii (51 %) and Bacillus gibsonii (34 %), the species with which strain MLB2T formed a coherent cluster (based on the results of the phylogenetic analysis). On the basis of the phenotypic characteristics and genotypic distinctiveness of strain MLB2T, it should be classified within a novel species of Bacillus, for which the name Bacillus lehensis sp. nov. is proposed. The type strain is MLB2T (=MTCC 7633T=JCM 13820T). PMID:17267957

  5. Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates.

    PubMed

    Konsoula, Zoe; Liakopoulou-Kyriakides, Maria

    2007-01-01

    Various nutrients belonging to three categories, carbon, organic nitrogen and complex organic sources, were investigated for the first time in terms of their effect on the co-production of extracellular thermostable alpha-amylase and beta-galactosidase by Bacillus subtilis, a bacterium isolated from fresh sheep's milk. Among the organic nitrogen sources tested, tryptone and corn steep liquor favored their production. Substitution of soluble starch by various starchy substrates, such as corn flour, had a positive effect on both enzyme yields. Furthermore, a two-fold higher production of both enzymes was achieved when corn steep liquor or tryptone was used in combination with the different flours. Among the divalent cations examined, calcium ions appeared to be vital for alpha-amylase production. The crude alpha-amylase and beta-galactosidase produced by this B. subtilis strain exhibited maximal activities at 135 degrees C and 65 degrees C, respectively, and were also found to be significantly stable at elevated temperatures. PMID:16376073

  6. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii,and Streptomyces costaricanus with and without Organic Amendments against Meloidogyne hapla Infecting Lettuce.

    PubMed

    Chen, J; Abawi, G S; Zuckerman, B M

    2000-03-01

    Chitin, wheat mash, or brewery compost were incorporated into unfumigated and methyl bromide-fumigated organic soils placed in microplots formed from cylindrical drainage tiles (0.25 m-diam. clay tile). After 3 weeks, Meloidogyne hapla and cell or spore suspensions of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus were individually added to the soils of designated microplots. A B. thuringiensis + S. costaricanus combination was also tested. Lettuce seedlings, cv. Montello, were transplanted into the soils 3 to 4 days later. All the bacterial and fungal antagonists applied without a soil amendment, except the B. thuringiensis + S. costaricanus treatment, reduced root galling and increased lettuce head weight in the unfumigated organic soil, but not in the fumigated soil. All three amendments were also effective against M. hapla and reduced root galling in fumigated and unfumigated soils. Wheat mash amendment increased lettuce head weight in the unfumigated soil. In general, no antagonist x amendment interaction was detected. Soil populations of B. thuringiensis were maintained at >/=4.0 log10 colony-forming units/g organic soil during the first 14 days after planting. However, viable cells of B. thuringiensis were not detected after 49 days. PMID:19270951

  7. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii,and Streptomyces costaricanus with and without Organic Amendments against Meloidogyne hapla Infecting Lettuce

    PubMed Central

    Chen, J.; Abawi, G. S.; Zuckerman, B. M.

    2000-01-01

    Chitin, wheat mash, or brewery compost were incorporated into unfumigated and methyl bromide-fumigated organic soils placed in microplots formed from cylindrical drainage tiles (0.25 m-diam. clay tile). After 3 weeks, Meloidogyne hapla and cell or spore suspensions of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus were individually added to the soils of designated microplots. A B. thuringiensis + S. costaricanus combination was also tested. Lettuce seedlings, cv. Montello, were transplanted into the soils 3 to 4 days later. All the bacterial and fungal antagonists applied without a soil amendment, except the B. thuringiensis + S. costaricanus treatment, reduced root galling and increased lettuce head weight in the unfumigated organic soil, but not in the fumigated soil. All three amendments were also effective against M. hapla and reduced root galling in fumigated and unfumigated soils. Wheat mash amendment increased lettuce head weight in the unfumigated soil. In general, no antagonist × amendment interaction was detected. Soil populations of B. thuringiensis were maintained at ?4.0 log10 colony-forming units/g organic soil during the first 14 days after planting. However, viable cells of B. thuringiensis were not detected after 49 days. PMID:19270951

  8. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  9. Novel physico-chemical diagnostic tools for high throughput identification of bovine mastitis associated gram-positive, catalase-negative cocci

    PubMed Central

    2014-01-01

    Background The routine diagnosis of Streptococcus spp. and other mastitis associated gram-positive, catalase-negative cocci is still based upon biochemical tests and serological methods, which frequently provide ambiguous identification results. We therefore aimed to establish an accurate identification system for differential diagnosis of mastitis associated Streptococcus spp. and related species using biophysical techniques such as Fourier-transform infrared (FTIR) spectroscopy and MALDI – TOF/MS. Results Based on a panel of 210 isolates from cases of bovine mastitis, an unsupervised FTIR spectral reference library was established and an artificial neural network (ANN) - assisted identification system was developed. All bacterial isolates were previously identified by species-specific PCR and/or 16S rRNA gene sequence analysis. An overall identification rate of 100% at species level for 173 strains unknown to the ANN and the library was achieved by combining ANN and the spectral database, thus demonstrating the suitability of our FTIR identification system for routine diagnosis. In addition, we investigated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of mastitis associated Streptococcus spp. and related bacteria. Using the Microflex LT System, MALDI Biotyper software™ (V3.3) we achieved an accuracy rate of 95.2%. A blind study, including 21 clinical samples from dairy cows, revealed a 100% correct species identification rate for FTIR and 90.5% for MALDI-TOF MS, indicating that these techniques are valuable tools for diagnosis. Conclusions This study clearly demonstrates that FTIR spectroscopy as well as MALDI-TOF MS can significantly improve and facilitate the identification and differentiation of mastitis associated Streptococcus spp. and related species. Although the FTIR identification system turned out being slightly superior to MALDI-TOF MS in terms of identification on species level, both methods offer interesting alternatives to conventional methods currently used in mastitis diagnosis as both of them provide high accuracy at low operating costs once the instrument is acquired. PMID:25015262

  10. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria

    PubMed Central

    Mehmood, Shahid; Rehman, Malik A; Ismail, Hammad; Mirza, Bushra; Bhatti, Arshad S

    2015-01-01

    In this work, we highlighted the effect of surface modifications of one-dimensional (1D) ZnO nanostructures (NSs) grown by the vapor–solid mechanism on their antibacterial activity. Two sets of ZnO NSs were modified separately – one set was modified by annealing in an Ar environment, and the second set was modified in O2 plasma. Annealing in Ar below 800°C resulted in a compressed lattice, which was due to removal of Zn interstitials and increased O vacancies. Annealing above 1,000°C caused the formation of a new prominent phase, Zn2SiO4. Plasma oxidation of the ZnO NSs caused an expansion in the lattice due to the removal of O vacancies and incorporation of excess O. Photoluminescence (PL) spectroscopy was employed for the quantification of defects associated with Zn and O in the as-grown and processed ZnO NS. Two distinct bands were observed, one in the ultraviolet (UV) region, due to interband transitions, and other in the visible region, due to defects associated with Zn and O. PL confirmed the surface modification of ZnO NS, as substantial decrease in intensities of visible band was observed. Antibacterial activity of the modified ZnO NSs demonstrated that the surface modifications by Ar annealing limited the antibacterial characteristics of ZnO NS against Staphylococcus aureus. However, ZnO NSs annealed at 1,000°C or higher showed a remarkable antibacterial activity against Escherichia coli. O2 plasma–treated NS showed appreciable antibacterial activity against both E. coli and S. aureus. The minimum inhibition concentration was determined to be 0.5 mg/mL and 1 mg/mL for Ar-annealed and plasma-oxidized ZnO NS, respectively. It was thus proved that the O content at the surface of the ZnO NS was crucial to tune the antibacterial activity against both selected gram-negative (E. coli) and gram-positive (S. aureus) bacterial species. PMID:26213466

  11. [Maxillary sinus infection by Bacillus licheniformis: a case report from Djibouti].

    PubMed

    Garcia Hejl, C; Sanmartin, N; Samson, T; Soler, C; Koeck, J-L

    2015-01-01

    Aerobic, spore-forming gram-positive Bacillus spp infections are rare and reported mainly in immunocompromised hosts. We report a case of acute unilateral maxillary sinusitis, caused by Bacillus licheniformis, in a 35-year-old French soldier stationed in Djibouti. It was easily identifiable due to its typical culture and resistance profile. This case is interesting for two reasons: first, it is, to our knowledge, the first case of sinusitis attributed to this microbe, and second, it has rarely been described in immunocompetent patients without altered skin or mucous membranes. PMID:26370779

  12. Expression and biochemical characterization of a thermophilic organic solvent-tolerant lipase from Bacillus sp. DR90.

    PubMed

    Asoodeh, Ahmad; Emtenani, Shirin; Emtenani, Shamsi

    2014-10-01

    The objective of the present study was the isolation, molecular cloning and biochemical characterization of a thermophilic organic solvent-resistant lipase from Bacillus sp. DR90. The lipase gene was expressed in Escherichia coli BL21(DE3) using pET-28a(+) vector. The purification of recombinant lipase was conducted by nickel affinity chromatography and its biochemical properties were determined. The lipase sequence with an ORF of 639 bp contains the conserved pentapeptide Ala-His-Ser-Met-Gly. His-tagged recombinant lipase had a specific activity of 1,126 U/mg with a molecular mass of 26.8 kDa. The cloned lipase was optimally active at pH 8.0 and 75 °C representing high stability in broad ranges of temperature and pH. High performance liquid chromatography was used to determine the major compounds released during the lipase-catalyzed reaction of p-nitrophenyl derivatives as well as the substrate specificity. The purified lipase showed high compatibility towards various organic solvents, surfactants and commercial solid/liquid detergents; therefore the recombinant DR90 lipase could be considered as a probable candidate for future applications, predominantly in detergent processing industries. PMID:25070564

  13. Structural and genetic organization of IS232, a new insertion sequence of Bacillus thuringiensis.

    PubMed Central

    Menou, G; Mahillon, J; Lecadet, M M; Lereclus, D

    1990-01-01

    In the Bacillus thuringiensis strains toxic for the lepidopteran larvae, the delta-endotoxin genes cryIA are frequently found within a composite transposonlike structure flanked by two inverted repeat sequences. We report that these elements are true insertion sequences and designate them IS232. IS232 is a 2,184-bp element and is delimited by two imperfect inverted repeats (28 of 37 bp are identical). Two adjacent open reading frames, overlapping for three codons, span almost the entire sequence of IS232. The potential encoded polypeptides of 50 and 30-kDa are homologous to the IstA and IstB proteins of the gram-negative insertion sequence IS21. The N-terminal part of the 50-kDa polypeptide contains a helix-turn-helix DNA-binding motif. The junctions at the insertion sites of three IS232 elements were analyzed. Each case was different, with 0, 4, or 6 bp of the target DNA being duplicated. Transposition of IS232 in Escherichia coli was demonstrated by using a genetic marker inserted upstream of the two open reading frames. PMID:2174857

  14. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities.

    PubMed

    Leclère, Valérie; Béchet, Max; Adam, Akram; Guez, Jean-Sébastien; Wathelet, Bernard; Ongena, Marc; Thonart, Philippe; Gancel, Frédérique; Chollet-Imbert, Marlène; Jacques, Philippe

    2005-08-01

    A Bacillus subtilis derivative was obtained from strain ATCC 6633 by replacement of the native promoter of the mycosubtilin operon by a constitutive promoter originating from the replication gene repU of the Staphylococcus aureus plasmid pUB110. The recombinant strain, designated BBG100, produced up to 15-fold more mycosubtilin than the wild type produced. The overproducing phenotype was related to enhancement of the antagonistic activities against several yeasts and pathogenic fungi. Hemolytic activities were also clearly increased in the modified strain. Mass spectrometry analyses of enriched mycosubtilin extracts showed similar patterns of lipopeptides for BBG100 and the wild type. Interestingly, these analyses also revealed a new form of mycosubtilin which was more easily detected in the BBG100 sample. When tested for its biocontrol potential, wild-type strain ATCC 6633 was almost ineffective for reducing a Pythium infection of tomato seedlings. However, treatment of seeds with the BBG100 overproducing strain resulted in a marked increase in the germination rate of seeds. This protective effect afforded by mycosubtilin overproduction was also visualized by the significantly greater fresh weight of emerging seedlings treated with BBG100 compared to controls or seedlings inoculated with the wild-type strain. PMID:16085851

  15. Identification of Gram-Positive Cocci by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Comparison of Different Preparation Methods and Implementation of a Practical Algorithm for Routine Diagnostics

    PubMed Central

    Schulthess, Bettina; Brodner, Katharina; Bloemberg, Guido V.; Zbinden, Reinhard; Böttger, Erik C.

    2013-01-01

    This study compared three sample preparation methods (direct transfer, the direct transfer-formic acid method with on-target formic acid treatment, and ethanol-formic acid extraction) for the identification of Gram-positive cocci with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). A total of 156 Gram-positive cocci representing the clinically most important genera, Aerococcus, Enterococcus, Staphylococcus, and Streptococcus, as well as more rare genera, such as Gemella and Granulicatella, were analyzed using a Bruker MALDI Biotyper. The rate of correct genus-level identifications was approximately 99% for all three sample preparation methods. The species identification rate was significantly higher for the direct transfer-formic acid method and ethanol-formic acid extraction (both 77.6%) than for direct transfer (64.1%). Using direct transfer-formic acid compared to direct transfer, the total time to result was increased by 22.6%, 16.4%, and 8.5% analyzing 12, 48, and 96 samples per run, respectively. In a subsequent prospective study, 1,619 clinical isolates of Gram-positive cocci were analyzed under routine conditions by MALDI-TOF MS, using the direct transfer-formic acid preparation, and by conventional biochemical methods. For 95.6% of the isolates, a congruence between conventional and MALDI-TOF MS identification was observed. Two major limitations were found using MALDI-TOF MS: the differentiation of members of the Streptococcus mitis group and the identification of Streptococcus dysgalactiae. The Bruker MALDI Biotyper system using the direct transfer-formic acid sample preparation method was shown to be a highly reliable tool for the identification of Gram-positive cocci. We here suggest a practical algorithm for the clinical laboratory combining MALDI-TOF MS with phenotypic and molecular methods. PMID:23554198

  16. Isolation, purification and characterisation of an organic solvent-tolerant Ca2+-dependent protease from Bacillus megaterium AU02.

    PubMed

    Priya, J Deepa Arul; Divakar, K; Prabha, M Suriya; Selvam, G Panneer; Gautam, Pennathur

    2014-01-01

    A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The Km and Vmax values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media. PMID:24122712

  17. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization.

    PubMed

    Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal

    2016-01-01

    Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60°C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water. PMID:25356983

  18. A singular enzymatic megacomplex from Bacillus subtilis

    E-print Network

    Rudner, David

    A singular enzymatic megacomplex from Bacillus subtilis Paul D. Straight*, Michael A. Fischbach% of the Bacillus subtilis genome, encodes the subunits of 2.5 megadalton active hybrid NRPS/PKS. Many copies enzymes in the context of their native producer organisms. The genome of Bacillus subtilis contains

  19. Performance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories.

    PubMed

    Moon, Hee-Won; Lee, Sun Hwa; Chung, Hae-Sun; Lee, Miae; Lee, Kyungwon

    2013-09-01

    We evaluated the performance of the Vitek MS for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. With a total of 424 well-characterized isolates, the results of the Vitek MS were compared to those of conventional methods and 16S rRNA gene sequencing. The Vitek MS correctly identified 97.9 % of the isolates tested to species level. The Vitek MS correctly identified the species of 97.2 % of the staphylococci (95.9 % of coagulase-negative staphylococci), 97.8 % of the streptococci, and 100 % of the enterococci. For the identification of Gram-positive cocci isolates, the overall concordance rate between conventional identification and the Vitek MS was 94.5 %. The Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) system can be a reliable and rapid method for the identification of most relevant Gram-positive cocci. In addition, expanding the database of the Vitek MS, especially for coagulase-negative staphylococci, is needed to enhance the performance of the Vitek MS. PMID:23764744

  20. Association of RNAs with Bacillus subtilis Hfq

    PubMed Central

    Dambach, Michael; Irnov, Irnov; Winkler, Wade C.

    2013-01-01

    The prevalence and characteristics of small regulatory RNAs (sRNAs) have not been well characterized for Bacillus subtilis, an important model system for Gram-positive bacteria. However, B. subtilis was recently found to synthesize many candidate sRNAs during stationary phase. In the current study, we performed deep sequencing on Hfq-associated RNAs and found that a small subset of sRNAs associates with Hfq, an enigmatic RNA-binding protein that stabilizes sRNAs in Gram-negatives, but whose role is largely unknown in Gram-positive bacteria. We also found that Hfq associated with antisense RNAs, antitoxin transcripts, and many mRNA leaders. Several new candidate sRNAs and mRNA leader regions were also discovered by this analysis. Additionally, mRNA fragments overlapping with start or stop codons associated with Hfq, while, in contrast, relatively few full-length mRNAs were recovered. Deletion of hfq reduced the intracellular abundance of several representative sRNAs, suggesting that B. subtilis Hfq-sRNA interactions may be functionally significant in vivo. In general, we anticipate this catalog of Hfq-associated RNAs to serve as a resource in the functional characterization of Hfq in B. subtilis. PMID:23457461

  1. Bacillus thuringiensis Conjugation in Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  2. Bacillus coagulans

    MedlinePLUS

    ... vaccines to improve their effectiveness. Bacillus coagulans produces lactic acid and, as a result, is often misclassified as lactic acid bacteria such as lactobacillus. In fact, some commercial ...

  3. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6

    PubMed Central

    Yuan, Jun; Zhang, Nan; Huang, Qiwei; Raza, Waseem; Li, Rong; Vivanco, Jorge M.; Shen, Qirong

    2015-01-01

    The successful colonization of plant growth promoting rhizobacteria (PGPR) in the rhizosphere is an initial and compulsory step in the protection of plants from soil-borne pathogens. Therefore, it is necessary to evaluate the role of root exudates in the colonization of PGPR. Banana root exudates were analyzed by high pressure liquid chromatography (HPLC) which revealed exudates contained several organic acids (OAs) including oxalic, malic and fumaric acid. The chemotactic response and biofilm formation of Bacillus amyloliquefaciens NJN-6 were investigated in response to OA’s found in banana root exudates. Furthermore, the transcriptional levels of genes involved in biofilm formation, yqxM and epsD, were evaluated in response to OAs via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results suggested that root exudates containing the OAs both induced the chemotaxis and biofilm formation in NJN-6. In fact, the strongest chemotactic and biofilm response was found when 50??M of OAs were applied. More specifically, malic acid showed the greatest chemotactic response whereas fumaric acid significantly induced biofilm formation by a 20.7–27.3% increase and therefore biofilm formation genes expression. The results showed banana root exudates, in particular the OAs released, play a crucial role in attracting and initiating PGPR colonization on the host roots. PMID:26299781

  4. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6.

    PubMed

    Yuan, Jun; Zhang, Nan; Huang, Qiwei; Raza, Waseem; Li, Rong; Vivanco, Jorge M; Shen, Qirong

    2015-01-01

    The successful colonization of plant growth promoting rhizobacteria (PGPR) in the rhizosphere is an initial and compulsory step in the protection of plants from soil-borne pathogens. Therefore, it is necessary to evaluate the role of root exudates in the colonization of PGPR. Banana root exudates were analyzed by high pressure liquid chromatography (HPLC) which revealed exudates contained several organic acids (OAs) including oxalic, malic and fumaric acid. The chemotactic response and biofilm formation of Bacillus amyloliquefaciens NJN-6 were investigated in response to OA's found in banana root exudates. Furthermore, the transcriptional levels of genes involved in biofilm formation, yqxM and epsD, were evaluated in response to OAs via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results suggested that root exudates containing the OAs both induced the chemotaxis and biofilm formation in NJN-6. In fact, the strongest chemotactic and biofilm response was found when 50??M of OAs were applied. More specifically, malic acid showed the greatest chemotactic response whereas fumaric acid significantly induced biofilm formation by a 20.7-27.3% increase and therefore biofilm formation genes expression. The results showed banana root exudates, in particular the OAs released, play a crucial role in attracting and initiating PGPR colonization on the host roots. PMID:26299781

  5. Isolation of bacillus subtilis MH-4 from soil and its potential of polypeptidic antibiotic production.

    PubMed

    Jamil, Bushra; Hasan, Fariha; Hameed, A; Ahmed, Safia

    2007-01-01

    The genus Bacillus produces mainly polypeptide antibiotics such as bacitracin and polymyxin. Bacillus species were isolated from soil by soil sprinkle technique. And all were screened for the production of antibiotic. Bacillus subtilis MH-4 gave the maximum antimicrobial activity so finally selected for optimization. During optimization of culture conditions for Bacillus subtilis MH-4 best antibacterial activity was obtained at 96 hours of incubation period, at pH-8 and by using glycerol as carbon and L-glutamic acid as nitrogen source. Optimum temperature for antibiotic production was 37 degrees C. The antibiotic was confirmed to be bacitracin by paper chromatography. Antibiotic was further extracted successfully with 1-Butanol, and aqueous concentrate showed activity of 0.8 mg/ml. The antibiotic so produced was found to be narrow spectrum active against only Gram-positive bacteria. PMID:17337424

  6. Methodological approaches to help unravel the intracellular metabolome of Bacillus subtilis

    PubMed Central

    2013-01-01

    Background Bacillus subtilis (B. subtilis) has become widely accepted as a model organism for studies on Gram-positive bacteria. A deeper insight into the physiology of this prokaryote requires advanced studies of its metabolism. To provide a reliable basis for metabolome investigations, a validated experimental protocol is needed since the quality of the analytical sample and the final data are strongly affected by the sampling steps. To ensure that the sample analyzed precisely reflects the biological condition of interest, outside biases have to be avoided during sample preparation. Results Procedures for sampling, quenching, extraction of metabolites, cell disruption, as well as metabolite leakage were tested and optimized for B. subtilis. In particular the energy status of the bacterial cell, characterized by the adenylate energy charge, was used to evaluate sampling accuracy. Moreover, the results of the present study demonstrate that the cultivation medium can affect the efficiency of the developed sampling procedure. Conclusion The final workflow presented here allows for the reproducible and reliable generation of physiological data. The method with the highest qualitative and quantitative metabolite yield was chosen, and when used together with complementary bioanalytical methods (i.e., GC-MS, LC-MS and 1H-NMR) provides a solid basis to gather information on the metabolome of B. subtilis. PMID:23844891

  7. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

    PubMed Central

    Lucena, Wagner A.; Pelegrini, Patrícia B.; Martins-de-Sa, Diogo; Fonseca, Fernando C. A.; Gomes, Jose E.; de Macedo, Leonardo L. P.; da Silva, Maria Cristina M.; Oliveira, Raquel S.; Grossi-de-Sa, Maria F.

    2014-01-01

    Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity. PMID:25123558

  8. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells

    PubMed Central

    2014-01-01

    Background One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. Results In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37°C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40–60 nm) and an organic shell as determined by UV–vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. Conclusions Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells. PMID:25027643

  9. Balanced transcription of cell division genes in Bacillus subtilis as revealed by single cell analysis.

    PubMed

    Trip, Erik Nico; Veening, Jan-Willem; Stewart, Eric J; Errington, Jeff; Scheffers, Dirk-Jan

    2013-12-01

    Cell division in bacteria is carried out by a set of conserved proteins that all have to function at the correct place and time. A cell cycle-dependent transcriptional programme drives cell division in bacteria such as Caulobacter crescentus. Whether such a programme exists in the Gram-positive model organism Bacillus subtilis is unknown. Here, we investigate the role of gene transcription as a potential regulatory mechanism for control of division in B.?subtilis. Transcriptional GFP fusions in combination with flow cytometry demonstrated a constitutive promoter activity, independent of growth rate, of nine tested cell division genes. These measurements were verified by quantitative real-time reverse-transcription PCR (qrtPCR). Time-lapse fluorescence microscopy was performed on a set of selected reporter strains to test transcriptional regulation during the cell cycle. Interestingly, although the average fluorescence remained constant during cell-cycle progression, individual cells demonstrated a roughly twofold higher promoter activity at the end of the cell cycle. This cell cycle-dependent increased promoter activity can be partly explained by the doubled promoter copy number after DNA replication. Our results indicate that the transcriptional activity of promoters for cell division genes remains constant regardless of growth rate and cell-cycle state, suggesting that regulation of cell division in B.?subtilis predominantly takes place at the post-translational level. PMID:23701187

  10. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins.

    PubMed

    Lucena, Wagner A; Pelegrini, Patrícia B; Martins-de-Sa, Diogo; Fonseca, Fernando C A; Gomes, Jose E; de Macedo, Leonardo L P; da Silva, Maria Cristina M; Oliveira, Raquel S; Grossi-de-Sa, Maria F

    2014-08-01

    Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity. PMID:25123558

  11. A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1

    PubMed Central

    Ramachandran, Ramya; Chalasani, Ajay Ghosh; Lal, Ram

    2014-01-01

    In the present study, an attempt was made to biochemically characterize the antimicrobial substance from the soil isolate designated as RLID 12.1 and explore its potential applications in biocontrol of drug-resistant pathogens. The antimicrobial potential of the wild-type isolate belonging to the genus Bacillus was determined by the cut-well agar assay. The production of antimicrobial compound was recorded maximum at late exponential growth phase. The ultrafiltered concentrate was insensitive to organic solvents, metal salts, surfactants, and proteolytic and nonproteolytic enzymes. The concentrate was highly heat stable and active over a wide range of pH values. Partial purification, zymogram analysis, and TLC were performed to determine the preliminary biochemical nature. The molecular weight of the antimicrobial peptide was determined to be less than 2.5?kDa in 15% SDS-PAGE and in zymogram analysis against Streptococcus pyogenes. The N-terminal amino acid sequence by Edman degradation was partially determined to be T-P-P-Q-S-X-L-X-X-G, which shows very insignificant identity to other antimicrobial peptides from bacteria. The minimum inhibitory concentrations of dialysed and partially purified ion exchange fractions were determined against some selected gram-positive and gram-negative bacteria and some pathogenic yeasts. The presence of three important antimicrobial peptide biosynthesis genes ituc, fend, and bmyb was determined by PCR. PMID:25180214

  12. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand

    PubMed Central

    Abusham, Randa A; Rahman, Raja Noor Zaliha RA; Salleh, Abu Bakar; Basri, Mahiran

    2009-01-01

    Background Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. Results A thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v) of (AB600 = 0.5) inoculum size, in a culture medium (pH 7.0) and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg). The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively. Conclusion Strain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic solvent. This unique property makes it attractive and useful to be used in industrial applications. PMID:19356254

  13. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800

    PubMed Central

    2013-01-01

    Background Nattokinases/Subtilisins (EC 3.4.21.62) belong to the second large family of serine proteases, which gain significant attention and play important role in many biotechnology processes. Thus, a number of nattokinases/subtilisins from various Bacillus species, especially from B. subtilis strains, extensively have been investigated to understand their biochemical and physical properties as well as to improve the production for industrial application. The purpose of this study was to clone a nattokinase gene from Bacillus subtilis strain VTCC-DVN-12-01, enhance its production in B. subtilis WB800, which is deficient in eight extracellular proteases and characterize its physicochemical properties for potential application in organic synthesis and detergent production. Results A gene coding for the nattokinase (Nk) from B. subtilis strain VTCC-DVN-12-01 consisted of an ORF of 1146 nucleotides, encoding a pre-pro-protein enzyme (30-aa pre-signal peptide, 76-aa pro-peptide and 275-aa mature protein with a predicted molecular mass of 27.7 kDa and pI 6.6). The nattokinase showed 98-99% identity with other nattokinases/subtilisins from B. subtilis strains in GenBank. Nk was expressed in B. subtilis WB800 under the control of acoA promoter at a high level of 600 mg protein per liter culture medium which is highest yield of proteins expressed in any extracellular-protease-deficient B. subtilis system till date. Nk was purified to homogeneity with 3.25 fold purification, a specific activity of 12.7 U/mg, and a recovery of 54.17%. The purified Nk was identified by MALDI-TOF mass spectrometry through three peptides, which showed 100% identity to corresponding peptides of the B. subtilis nattokinase (CAC41625). An optimal activity for Nk was observed at 65°C and pH 9. The nattokinase was stable at temperature up to 50°C and in pH range of 5–11 and retained more than 85% of its initial activity after incubation for 1 h. Mg2+ activated Nk up to 162% of its activity. The addition of Triton X-100, Tween 20, and Tween 80 showed an activation of Nk up to 141% of its initial activity but SDS strongly inhibited. The enzyme was highly resistant to organic solvents. Conclusions Our findings demonstrated that an eight-protease-gene-deficient Bacillus subtilis WB800 could overproduce the nattokinase from B. subtilis VTCC-DVN-12-01. Due to high resistance to detergents and organic solvents of this nattokinase, it could be potentially applied in organic synthesis and detergent production. PMID:24021098

  14. Vectors for Lactobacilli and other Gram-positive bacteria based on the minimal replicon of pRV500 from Lactobacillus sakei.

    PubMed

    Crutz-Le Coq, Anne-Marie; Zagorec, Monique

    2008-11-01

    The low-copy-number plasmid pRV500, belonging to the pUCL287 group of theta-type plasmids, was previously isolated from Lactobacillus sakei and characterized. We show here that the replicon of this plasmid enables replication also in Enterococcus faecalis and Bacillus subtilis but not in Lactococcus lactis. A 1.25 kb region encompassing the iterons and the repA gene was sufficient for replication, copy-number control and relative stable maintenance in L. sakei. Functional implications of host or plasmid-borne factors in the maintenance of pUCL287-type plasmids are discussed. The minimal replicon from pRV500 was fused to pBluescript for constructing the shuttle E. coli/lactobacilli cloning vector pRV610. pRV610 enables the white/blue lacZ alpha-complementation in E. coli. The cassettes for selection (erythromycin resistance) and replication (iterons and repA gene) are each bordered by unique restriction sites for easy replacement if needed. Derivatives in which chloramphenicol or tetracycline resistance replaced erythromycin resistance were constructed. In order to allow inducible gene expression, a copper-inducible promoter was placed on the pRV613 derivative. Expression of the downstream reporter gene lacZ was shown to be induced by 30 microM CuSO(4). PMID:18789962

  15. Divergence of protein-coding capacity and regulation in the Bacillus cereus sensu lato group

    PubMed Central

    2014-01-01

    Background The Bacillus cereus sensu lato group contains ubiquitous facultative anaerobic soil-borne Gram-positive spore-forming bacilli. Molecular phylogeny and comparative genome sequencing have suggested that these organisms should be classified as a single species. While clonal in nature, there do not appear to be species-specific clonal lineages, excepting B. anthracis, in spite of the wide array of phenotypes displayed by these organisms. Results We compared the protein-coding content of 201 B. cereus sensu lato genomes to characterize differences and understand the consequences of these differences on biological function. From this larger group we selected a subset consisting of 25 whole genomes for deeper analysis. Cluster analysis of orthologous proteins grouped these genomes into five distinct clades. Each clade could be characterized by unique genes shared among the group, with consequences for the phenotype of each clade. Surprisingly, this population structure recapitulates our recent observations on the divergence of the generalized stress response (SigB) regulons in these organisms. Divergence of the SigB regulon among these organisms is primarily due to the placement of SigB-dependent promoters that bring genes from a common gene pool into/out of the SigB regulon. Conclusions Collectively, our observations suggest the hypothesis that the evolution of these closely related bacteria is a consequence of two distinct processes. Horizontal gene transfer, gene duplication/divergence and deletion dictate the underlying coding capacity in these genomes. Regulatory divergence overlays this protein coding reservoir and shapes the expression of both the unique and shared coding capacity of these organisms, resulting in phenotypic divergence. Data from other organisms suggests that this is likely a common pattern in prokaryotic evolution. PMID:25350501

  16. Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins

    PubMed Central

    Barth, Holger; Aktories, Klaus; Popoff, Michel R.; Stiles, Bradley G.

    2004-01-01

    Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic “A-B” paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The “B” components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated “B” components form homoheptameric rings that subsequently dock with an “A” component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, “A” molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria. PMID:15353562

  17. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    PubMed

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl ?-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals. PMID:26454865

  18. In Vitro Activity and Microbiological Efficacy of Tedizolid (TR-700) against Gram-Positive Clinical Isolates from a Phase 2 Study of Oral Tedizolid Phosphate (TR-701) in Patients with Complicated Skin and Skin Structure Infections

    PubMed Central

    Prokocimer, Philippe; Bien, Paul; DeAnda, Carisa; Pillar, Chris M.

    2012-01-01

    Tedizolid (TR-700, formerly torezolid) is the active moiety of the prodrug tedizolid phosphate (TR-701), a next-generation oxazolidinone, with high potency against Gram-positive species, including methicillin-resistant Staphylococcus aureus (MRSA). A recently completed randomized, double-blind phase 2 trial evaluated 200, 300, or 400 mg of oral tedizolid phosphate once daily for 5 to 7 days in patients with complicated skin and skin structure infections. This report examines the in vitro activity of tedizolid and Zyvox (linezolid) against Gram-positive pathogens isolated at baseline and describes the microbiological and clinical efficacy of tedizolid. Of 196 isolates tested, 81.6% were S. aureus, and of these, 76% were MRSA. The MIC50 and MIC90 of tedizolid against both methicillin-susceptible S. aureus (MSSA) and MRSA were 0.25 ?g/ml, compared with a MIC50 of 1 ?g/ml and MIC90 of 2 ?g/ml for linezolid. For coagulase-negative staphylococci (n = 7), viridans group streptococci (n = 15), and beta-hemolytic streptococci (n = 3), the MICs ranged from 0.03 to 0.25 ?g/ml for tedizolid and from 0.12 to 1 ?g/ml for linezolid. The microbiological eradication rates at the test-of-cure visit (7 to 14 days posttreatment) in the microbiologically evaluable population (n = 133) were similar in all treatment groups, with overall eradication rates of 97.7% for all pathogens, 97.9% for MRSA, and 95.7% for MSSA. The clinical cure rates for MRSA and MSSA infections were 96.9% and 95.7%, respectively, across all dose groups. This study confirms the potent in vitro activity of tedizolid against pathogenic Gram-positive cocci, including MRSA, and its 4-fold-greater potency in comparison with linezolid. All dosages of tedizolid phosphate showed excellent microbiological and clinical efficacy against MRSA and MSSA. PMID:22687509

  19. Preliminary Evaluation of the Research-Use-Only (RUO) iCubate iC-GPC Assay for Identification of Select Gram-Positive Bacteria and Their Resistance Determinants in Blood Culture Broths.

    PubMed

    Buchan, Blake W; Reymann, Garrett C; Granato, Paul A; Alkins, Brenda R; Jim, Patricia; Young, Stephen

    2015-12-01

    The iC-GPC assay (iCubate, Huntsville, AL) provides a molecular option for the rapid, on-demand analysis of positive blood cultures. A preliminary evaluation of the iC-GPC assay using 203 clinical or seeded specimens demonstrated a sensitivity of 93.8% to 100% and a specificity of 98.0% to 100% for the identification of five Gram-positive bacterial species (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) and three associated genetic resistance determinants (mecA, vanA, and vanB) in positive blood culture broths. PMID:26468498

  20. The tubercle bacillus

    PubMed Central

    1949-01-01

    A series of lectures on the tubercle bacillus by eminent authorities from various countries was organized at the Institut d'Hygiène et de Bactériologie of the University of Lausanne by Professor Paul Hauduroy, from 22 to 25 April 1949. Through the kindness of Professor Hauduroy it has been possible for the World Health Organization to publish in the Bulletin summaries of these lectures. * PMID:20603940

  1. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic

    USGS Publications Warehouse

    Switzer, Blum J.; Burns, Bindi A.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S.

    1998-01-01

    Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS 10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5-10. Strain E1H had a salinity optimum at 60 g 1-1 NaCl, while strain MLS10 had optimal growth at lower salinities (24-60 g 1-1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria.

  2. Draft Genome Sequence of Bacillus marisflavi TF-11T (JCM 11544), a Carotenoid-Producing Bacterium Isolated from Seawater from a Tidal Flat in the Yellow Sea

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Chen, Qian-qian; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Bacillus marisflavi TF-11T (JCM 11544) is a Gram-positive, spore-forming, and carotenoid-producing bacterium isolated from seawater from a tidal flat in the Yellow Sea. Here, we report the first draft genome sequence of B. marisflavi TF-11T, which comprises 4.31 Mb in 11 scaffolds with a G+C content of 48.57%. PMID:26659687

  3. Organic-inorganic hybrid nanoparticles for bacterial inhibition: synthesis and characterization of doped and undoped ONPs with Ag/Au NPs.

    PubMed

    Aguilar, Carlos Alberto Huerta; Jiménez, Adriana Berenice Pérez; Silva, Antonio Romero; Kaur, Navneet; Thangarasu, Pandiyan; Ramos, Jorge Manuel Vázquez; Singh, Narinder

    2015-01-01

    Organic nanoparticles (ONPs) of lipoic acid and its doped derivatives ONPs/Ag and ONPs/Au were prepared and characterized by UV-Visible, EDS, and TEM analysis. The antibacterial properties of the ONPs ONPs/Ag and ONPs/Au were tested against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhi). Minimal Inhibitory Concentration (MIC) and bacterial growth inhibition tests show that ONPs/Ag are more effective in limiting bacterial growth than other NPs, particularly, for Gram positive than for Gram-negative ones. The order of bacterial cell growth inhibition was ONPs/Ag > ONPs > ONPs/Au. The morphology of the cell membrane for the treated bacteria was analyzed by SEM. The nature of bond formation of LA with Ag or Au was analyzed by molecular orbital and density of state (DOS) using DFT. PMID:25853317

  4. Non-Aqueous Glycerol Monolaurate Gel Exhibits Antibacterial and Anti-Biofilm Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Mueller, Elizabeth A.; Schlievert, Patrick M.

    2015-01-01

    Background Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML), as solubilized in a non-aqueous vehicle (5% GML Gel), as a novel, broadly-active topical antimicrobial. The FDA has designated GML as generally recognized as safe for human use, and the compound is commonly used in the cosmetic and food industries. Methods In vitro, bacterial strains in broths and biofilms were exposed to GML Gel, and effects on bacterial colony-forming units (CFUs) were assessed. In vivo,subcutaneous incisions were made in New Zealand white rabbits; the incisions were closed with four sutures. Bacterial strains were painted onto the incision sites, and then GML Gel or placebo was liberally applied to cover the sites completely. Rabbits were allowed to awaken and were examined for CFUs as a function of exposure time. Results In vitro, GML Gel was bactericidal for all broth culture and biofilm organisms in <1 hour and <4 hour, respectively; no CFUs were detected after the entire 24 h test period. In vivo, GML Gel inhibited bacterial growth in the surgical incision sites, compared to no growth inhibition in controls. GML Gel significantly reduced inflammation, as viewed by lack of redness in and below the incision sites. Conclusions Our findings suggest that 5% GML Gel is useful as a potent topical antibacterial and anti-inflammatory agent for prevention of infections. PMID:25799455

  5. Pharmacokinetics and bactericidal rates of daptomycin and vancomycin in intravenous drug abusers being treated for gram-positive endocarditis and bacteremia.

    PubMed

    Rybak, M J; Bailey, E M; Lamp, K C; Kaatz, G W

    1992-05-01

    The pharmacokinetics and bactericidal killing rates (BR) of daptomycin (D) and vancomycin (V) in 12 intravenous drug abusers (6 treated with daptomycin and 6 treated with vancomycin) were evaluated. Pharmacokinetic parameters were determined from multiple serum samples drawn at steady state over a 12-h dosing interval after intravenous infusions of 3 mg of D per kg of body weight and 1,000 mg of V. The BRs were determined from the 1- and 6-h serum samples by using four isolates of Staphylococcus aureus (three methicillin susceptible and one methicillin resistant) obtained from the patients enrolled in the study. Peak serum daptomycin concentrations were lower and volumes of distribution were higher than reported in healthy volunteers. Although not statistically different, D clearance was 22% higher than reported in healthy volunteers. V pharmacokinetics were similar to those reported in previous studies. Daptomycin's BRs, although comparable to those of V in patients' serum, were significantly decreased compared with those found in broth. This may be related to the high degree of protein binding of D (93% versus 50% for V). Conversely, the BRs of V in serum were significantly greater than those in broth. The BRs of D and V in broth were greater when killing curves were performed with test strains in logarithmic versus stationary-phase growth. The ability to kill organisms in stationary phase may be an important factor in determining the performance of an antibiotic in deep-seated infections such as endocarditis.3+ PMID:1324637

  6. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides.

    PubMed

    Münch, Daniela; Sahl, Hans-Georg

    2015-11-01

    Antimicrobial peptides (AMPs) are natural antibiotics produced by virtually all living organisms. Typically, AMPs are cationic and amphiphilic and first contacts with target microbes involve interactions with negatively charged components of the cell envelope such as lipopolysaccharide (LPS), and wall- or lipoteichoic acids (WTA, LTA). The importance of charge-mediated interactions of AMPs with the cell envelope is reflected by effective microbial resistance mechanisms which are based on reduction of the overall charge of these polymers. The anionic polymers are linked in various ways to the stress-bearing polymer of the cell envelope, the peptidoglycan, which is made of a highly conserved building block, a disaccharide-pentapeptide moiety that also contains charged residues. This structural element, in spite of its conservation throughout the bacterial world, can undergo genus- and species-specific modifications that also impact significantly on the overall charge of the cell envelope and on the binding affinity of AMPs. The modification reactions involved largely occur on the membrane-bound peptidoglycan building block, the so-called lipid II, which is a most prominent target for AMPs. In this review, we focus on modifications of lipid II and peptidoglycan and discuss their consequences for the interactions with various classes of AMPs, such as defensins, lantibiotics and glyco-(lipo)-peptide antibiotics. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. PMID:25934055

  7. Direct molecular versus culture-based assessment of Gram-positive cocci in biopsies of patients with major abscesses and diabetic foot infections.

    PubMed

    Stappers, M H T; Hagen, F; Reimnitz, P; Mouton, J W; Meis, J F; Gyssens, I C

    2015-09-01

    Major abscesses and diabetic foot infections (DFIs) are predominant subtypes of complicated skin and skin structure infections (cSSSIs), and are mainly caused by Staphylococcus aureus and ?-hemolytic streptococci. This study evaluates the potential benefit of direct pathogen-specific real-time polymerase chain reaction (PCR) assays in the identification of causative organisms of cSSSIs. One-hundred and fifty major abscess and 128 DFI biopsy samples were collected and microbial DNA was extracted by using the Universal Microbe Detection kit for tissue samples. Pathogen-specific PCRs were developed for S. aureus and its virulence factor Panton-Valentine leukocidin (PVL), Streptococcus pyogenes, S. agalactiae, S. dysgalactiae, and the S. anginosus group. Identification by pathogen-specific PCRs was compared to routine culture and both methods were considered as the gold standard for determination of the sensitivity and specificity of each assay. Direct real-time PCR assays of biopsy samples resulted in a 34 % higher detection of S. aureus, 37 % higher detection of S. pyogenes, 18 % higher detection of S. agalactiae, 4 % higher detection of S. dysgalactiae subspecies equisimilis, and 7 % higher detection of the S. anginosus group, compared to routine bacterial culture. The presence of PVL was mainly confined to S. aureus isolated from major abscess but not DFI biopsy samples. In conclusion, our pathogen-specific real-time PCR assays had a higher yield than culture methods and could be an additional method for the detection of relevant causative pathogens in biopsies. PMID:26143347

  8. Bacillus cereus fasciitis: a unique pathogen and clinically challenging sequela of inoculation.

    PubMed

    Rosenbaum, Andrew; Papaliodis, Dean; Alley, Maxwell; Lisella, Jordan; Flaherty, Michael

    2013-01-01

    Bacillus cereus is an aerobic, spore-forming, gram-positive rod. It has historically been associated with "fried rice syndrome," a foodborne diarrheal and emetic illness resulting from eating fried rice dishes that have been sitting at room temperature for hours. We report the case of a 9-year-old boy who developed culture-positive B cereus fasciitis of the right lower extremity after being impaled on a tree branch. This case report further elucidates and emphasizes the importance of recognizing B cereus as a possible cause of severe soft-tissue infection. It must be included in the differential diagnosis of gas gangrene and necrotizing fasciitis. PMID:23431539

  9. Draft genome sequence of Bacillus thuringiensis 147, a Brazilian strain with high insecticidal activity

    PubMed Central

    Barbosa, Luiz Carlos Bertucci; Farias, Débora Lopes; Silva, Isabella de Moraes Guimarães; Melo, Fernando Lucas; Ribeiro, Bergmann Morais; Aguiar, Raimundo Wagner de Souza

    2015-01-01

    Bacillus thuringiensis is a ubiquitous Gram-positive and sporulating bacterium. Its crystals and secreted toxins are useful tools against larvae of diverse insect orders and, as a consequence, an alternative to recalcitrant chemical insecticides. We report here the draft genome sequence ofB. thuringiensis 147, a strain isolated from Brazil and with high insecticidal activity. The assembled genome contained 6,167,994 bp and was distributed in seven replicons (a chromosome and 6 plasmids). We identified 12 coding regions, located in two plasmids, which encode insecticidal proteins. PMID:26517667

  10. Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens

    PubMed Central

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors. PMID:25369289

  11. Bacillus subtilis biosensor engineered to assess meat spoilage.

    PubMed

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismaêl; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A; Heinemann, Matthias; Kuipers, Oscar P; Veening, Jan-Willem

    2014-12-19

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated promoter was PsboA, which drives expression of the genes required for the bacteriocin subtilosin. Next, we created a novel BioBrick compatible integration plasmid for B. subtilis and cloned PsboA as a BioBrick in front of the gene encoding the chromoprotein amilGFP inside this vector. We show that the newly identified promoter could efficiently drive fluorescent protein production in B. subtilis in response to spoiled meat and thus can be used as a biosensor to detect meat spoilage. PMID:25524109

  12. dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42

    PubMed Central

    Fan, Ben; Förstner, Konrad; Vogel, Jörg; Borriss, Rainer; Wu, Xiao-Qin

    2015-01-01

    Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizosphere-mimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions. PMID:26540162

  13. High-Salinity Growth Conditions Promote Tat-Independent Secretion of Tat Substrates in Bacillus subtilis

    PubMed Central

    van der Ploeg, René; Monteferrante, Carmine G.; Piersma, Sjouke; Barnett, James P.; Kouwen, Thijs R. H. M.; Robinson, Colin

    2012-01-01

    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway. PMID:22923407

  14. Cerecidins, Novel Lantibiotics from Bacillus cereus with Potent Antimicrobial Activity

    PubMed Central

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng

    2014-01-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces. PMID:24532070

  15. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

  16. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria.

    PubMed

    Huband, Michael D; Bradford, Patricia A; Otterson, Linda G; Basarab, Gregory S; Kutschke, Amy C; Giacobbe, Robert A; Patey, Sara A; Alm, Richard A; Johnstone, Michele R; Potter, Marie E; Miller, Paul F; Mueller, John P

    2015-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, ?-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  17. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks.

    PubMed

    Park, J H; Kim, I H

    2014-08-01

    One-day-old Ross 308 male broiler chicks were used to investigate the additive effect during growth of Bacillus subtilis B2A derived from soil samples on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality. Five hundred seventy-six birds (46 ± 0.5 g) were fed 3 different levels of B. subtilis B2A (1.1 × 10(4), 1.0 × 10(5), and 1.0 × 10(6) cfu), in a basal diet based on corn-soybean meal, for 28 d. In the current study, feed intake and feed conversion during 1 to 28 d showed significant improvement as dietary B. subtilis B2A increased from 1.1 × 10(4) to 1.0 × 10(6) cfu (linear, P < 0.05). All blood parameters, such as white blood cells, red blood cells, and lymphocyte and haptoglobin concentrations, were not influenced by B. subtilis B2A added into the diet; however, the weights of the bursa of Fabricius were significantly increased linearly in B. subtilis B2A-fed groups (P < 0.05). Bacillus subtilis B2A supplementation was associated with reduced intestinal Salmonella burden (linear and quadratic, P < 0.05). Breast meat pH and color were not affected by B. subtilis B2A, but 1 d drip loss was decreased (linear, P < 0.05). Our observations suggest that B. subtilis B2A benefits productivity and reduces Salmonella in broilers. PMID:24902699

  18. Amylocyclicin, a Novel Circular Bacteriocin Produced by Bacillus amyloliquefaciens FZB42

    PubMed Central

    Scholz, Romy; Vater, Joachim; Budiharjo, Anto; Wang, Zhiyuan; He, Yueqiu; Dietel, Kristin; Schwecke, Torsten; Herfort, Stefanie; Lasch, Peter

    2014-01-01

    Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization–time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon. PMID:24610713

  19. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis

    SciTech Connect

    Bange, Gert; Petzold, Georg; Wild, Klemens; Sinning, Irmgard

    2007-05-01

    Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.

  20. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine. PMID:10919516

  1. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge.

    PubMed

    Wei, Xiu Li; Lin, Yan Bing; Xu, Lin; Han, Meng Sha; Dong, Dan Hong; Chen, Wei Min; Wang, Li; Wei, Ge Hong

    2015-10-01

    A Gram-positive, facultative anaerobic, rod-shaped, and endospore-forming strain, designated 53-2(T) was isolated from the root nodule of Oxytropis ochrocephala Bunge growing on Qilian mountain, China. The strain can grow at pH 7.0-8.0, 10-50?°C and tolerate up to 11% NaCl. Optimal growth occurred at pH 7.2 and 37?°C. The result of BLASTn search based on 16S rRNA gene sequence revealed that strain 53-2(T) , being closest related to Bacillus acidicola 105-2(T) , possessed remote similarity (less than 95.64%) to the species within genus Bacillus. The DNA G?+?C content was 37.8%. Chemotaxonomic data (major quinone is MK-7; major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipid, and aminoglycophospholipid; fatty acids are anteiso-C15: 0 , iso-C15:0 and anteiso-C17: 0 ) supported the affiliation of the isolate to the genus Bacillus. On the basis of physiological, phylogenetic, and biochemical properties, strain 53-2(T) represents a novel species within genus Bacillus, for which the name Bacillus radicibacter is proposed. The type strain is 53-2(T) (=DSM27302(T) =ACCC06115(T) =CCNWQLS5(T) ). PMID:26214748

  2. Bacillus cereus, a Volatile Human Pathogen

    PubMed Central

    Bottone, Edward J.

    2010-01-01

    Summary: Bacillus cereus is a Gram-positive aerobic or facultatively anaerobic, motile, spore-forming, rod-shaped bacterium that is widely distributed environmentally. While B. cereus is associated mainly with food poisoning, it is being increasingly reported to be a cause of serious and potentially fatal non-gastrointestinal-tract infections. The pathogenicity of B. cereus, whether intestinal or nonintestinal, is intimately associated with the production of tissue-destructive exoenzymes. Among these secreted toxins are four hemolysins, three distinct phospholipases, an emesis-inducing toxin, and proteases. The major hurdle in evaluating B. cereus when isolated from a clinical specimen is overcoming its stigma as an insignificant contaminant. Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates. Its role in nosocomial acquired bacteremia and wound infections in postsurgical patients has also been well defined, especially when intravascular devices such as catheters are inserted. Primary cutaneous infections mimicking clostridial gas gangrene induced subsequent to trauma have also been well documented. B. cereus produces a potent ?-lactamase conferring marked resistance to ?-lactam antibiotics. Antimicrobials noted to be effective in the empirical management of a B. cereus infection while awaiting antimicrobial susceptibility results for the isolate include ciprofloxacin and vancomycin. PMID:20375358

  3. A pangenomic study of Bacillus thuringiensis.

    PubMed

    Fang, Yongjun; Li, Zhaolong; Liu, Jiucheng; Shu, Changlong; Wang, Xumin; Zhang, Xiaowei; Yu, Xiaoguang; Zhao, Duojun; Liu, Guiming; Hu, Songnian; Zhang, Jie; Al-Mssallem, Ibrahim; Yu, Jun

    2011-12-20

    Bacillus thuringiensis (B. thuringiensis) is a soil-dwelling Gram-positive bacterium and its plasmid-encoded toxins (Cry) are commonly used as biological alternatives to pesticides. In a pangenomic study, we sequenced seven B. thuringiensis isolates in both high coverage and base-quality using the next-generation sequencing platform. The B. thuringiensis pangenome was extrapolated to have 4196 core genes and an asymptotic value of 558 unique genes when a new genome is added. Compared to the pangenomes of its closely related species of the same genus, B. thuringiensis pangenome shows an open characteristic, similar to B. cereus but not to B. anthracis; the latter has a closed pangenome. We also found extensive divergence among the seven B. thuringiensis genome assemblies, which harbor ample repeats and single nucleotide polymorphisms (SNPs). The identities among orthologous genes are greater than 84.5% and the hotspots for the genome variations were discovered in genomic regions of 2.3-2.8Mb and 5.0-5.6Mb. We concluded that high-coverage sequence assemblies from multiple strains, before all the gaps are closed, are very useful for pangenomic studies. PMID:22196399

  4. The recombination genes addAB are not restricted to gram-positive bacteria: genetic analysis of the recombination initiation enzymes RecF and AddAB in Rhizobium etli.

    PubMed

    Zuñiga-Castillo, Jacobo; Romero, David; Martínez-Salazar, Jaime M

    2004-12-01

    Single-strand gaps (SSGs) and double-strand breaks (DSBs) are the major initiation sites for recombination. In bacteria, the SSGs are repaired by RecFOR, while the DSBs are processed by RecBCD in gram-negative bacteria and AddAB in gram-positive bacteria. Unexpectedly, instead of recBCD genes, the addAB genes were found in members of the alpha-proteobacteria group (gram negative). Taking Rhizobium etli as a model, the role of recF and addAB genes in homologous recombination and repair of damaged DNA was evaluated. Inactivation of either recF or addA provoked strong sensitivity to UV radiation and mitomycin C, while an additive effect was observed in the recF-addA mutant. The DSBs generated by nalidixic acid caused low viability only in the addA mutant. The recombination frequency of large and small plasmids was reduced in the recF mutant (24- and 36-fold, respectively), whereas a slight decrease (threefold) in the addA mutant was observed. Moreover, an additive effect (47- and 90-fold, respectively) was observed in the double mutant, but it was not as dramatic as that in a recA mutant. Interestingly, the frequency of deletion and Campbell-type recombination was slightly affected in either single or double mutants. These results suggest that another pathway exists that allows plasmid and Campbell-type recombination in the absence of recF and addA genes. PMID:15547262

  5. The Recombination Genes addAB Are Not Restricted to Gram-Positive Bacteria: Genetic Analysis of the Recombination Initiation Enzymes RecF and AddAB in Rhizobium etli

    PubMed Central

    Zuñiga-Castillo, Jacobo; Romero, David; Martínez-Salazar, Jaime M.

    2004-01-01

    Single-strand gaps (SSGs) and double-strand breaks (DSBs) are the major initiation sites for recombination. In bacteria, the SSGs are repaired by RecFOR, while the DSBs are processed by RecBCD in gram-negative bacteria and AddAB in gram-positive bacteria. Unexpectedly, instead of recBCD genes, the addAB genes were found in members of the ?-proteobacteria group (gram negative). Taking Rhizobium etli as a model, the role of recF and addAB genes in homologous recombination and repair of damaged DNA was evaluated. Inactivation of either recF or addA provoked strong sensitivity to UV radiation and mitomycin C, while an additive effect was observed in the recF-addA mutant. The DSBs generated by nalidixic acid caused low viability only in the addA mutant. The recombination frequency of large and small plasmids was reduced in the recF mutant (24- and 36-fold, respectively), whereas a slight decrease (threefold) in the addA mutant was observed. Moreover, an additive effect (47- and 90-fold, respectively) was observed in the double mutant, but it was not as dramatic as that in a recA mutant. Interestingly, the frequency of deletion and Campbell-type recombination was slightly affected in either single or double mutants. These results suggest that another pathway exists that allows plasmid and Campbell-type recombination in the absence of recF and addA genes. PMID:15547262

  6. Effect of malachite green toxicity on non target soil organisms.

    PubMed

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. PMID:25462308

  7. BacillusRegNet: a transcriptional regulation database and analysis platform for Bacillus species.

    PubMed

    Misirli, Goksel; Hallinan, Jennifer; Röttger, Richard; Baumbach, Jan; Wipat, Anil

    2014-01-01

    As high-throughput technologies become cheaper and easier to use, raw sequence data and corresponding annotations for many organisms are becoming available. However, sequence data alone is not sufficient to explain the biological behaviour of organisms, which arises largely from complex molecular interactions. There is a need to develop new platform technologies that can be applied to the investigation of whole-genome datasets in an efficient and cost-effective manner. One such approach is the transfer of existing knowledge from well-studied organisms to closely-related organisms. In this paper, we describe a system, BacillusRegNet, for the use of a model organism, Bacillus subtilis, to infer genome-wide regulatory networks in less well-studied close relatives. The putative transcription factors, their binding sequences and predicted promoter sequences along with annotations are available from the associated BacillusRegNet website (http://bacillus.ncl.ac.uk). PMID:25001169

  8. Efficacy of bacillus biocontrol agents for management of sheath blight and narrow brown leaf spot in organic rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic rice production has significantly increased in the U. S. over the last decade. Growers lack effective tools to manage sheath blight, caused by Rhizoctonia solani, and narrow brown leaf spot (NBLS), caused by Cercospora janseana, two major diseases affecting organic rice production. An experi...

  9. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.

    PubMed

    Hu, Hongfei; Li, Lulu; Ding, Shaojun

    2015-06-01

    A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg(-1), respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l(-1) 4-vinylphenol and 58.30 g l(-1) 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system. PMID:25547838

  10. 77 FR 19109 - Bacillus Pumilus Strain GHA 180; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ...the active ingredient Bacillus...Organization/World Health Organization...of Clinical Microbiology. Washington...1997. Food Microbiology: Fundamentals...Society for Microbiology, Washington, DC 5. World Health...

  11. Bacillus abyssalis sp. nov., isolated from a sediment of the South China Sea.

    PubMed

    You, Zhi-Qing; Li, Jie; Qin, Sheng; Tian, Xin-Peng; Wang, Fa-Zuo; Zhang, Si; Li, Wen-Jun

    2013-05-01

    A Gram-positive bacterium, designated SCSIO 15042(T), was isolated from a sediment of the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew at 20-60 °C, pH 6.0-10.0 and it could grow with up to 10 % (w/v) NaCl. The cell-wall diamino acid was found to be meso-diaminopimelic acid. Polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine and an unknown polar lipid. The only menaquinone was determined to be MK-7. The major fatty acids were identified as C16:1 ?7c/C16:1 ?6c, C16:0, iso-C15:0, anteiso-C15:0, and iso-C16:0. The DNA G+C content of strain SCSIO 15042(T) was determined to be 43.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain SCSIO 15042(T) to the genus Bacillus. Levels of 16S rRNA gene sequence similarities between strain SCSIO 15042(T) and Bacillus herbersteinensis D-1-5a(T), Bacillus infantis SMC 4352-1(T), Bacillus novalis LMG 21837(T) and Bacillus drentensis LMG 21831(T) were 96.2, 96.2, 96.1 and 96.1 %, respectively. Based on the evidence of the present polyphasic study, strain SCSIO 15042(T) is considered to represent a novel species of the genus Bacillus, for which the name Bacillus abyssalis sp. nov. is proposed. The type strain is SCSIO 15042(T) (=DSM 25875(T) = CCTCC AB 2012074(T) = NBRC 109102(T)). PMID:23314911

  12. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.

    PubMed

    Hajji, Sawssen; Ghorbel-Bellaaj, Olfa; Younes, Islem; Jellouli, Kemel; Nasri, Moncef

    2015-08-01

    Crab shells waste were fermented using six protease-producing Bacillus species (Bacillus subtilis A26, Bacillus mojavensis A21, Bacillus pumilus A1, Bacillus amyloliquefaciens An6, Bacillus licheniformis NH1 and Bacillus cereus BG1) for the production of chitin and fermented-crab supernatants (FCSs). In medium containing only crab shells, the highest demineralization DM was obtained with B. licheniformis NH1 (83±0.5%) and B. pumilus A1 (80±0.6%), while the highest deproteinization (DP) was achieved with A1 (94±1%) followed by NH1 (90±1.5%) strains. Cultures conducted in medium containing crab shells waste supplemented with 5% (w/v) glucose, were found to remarkably promote demineralization efficiency, and enhance slightly deproteinization rates. FTIR spectra of chitins showed the characteristics bands of ?-chitin. FCSs showed varying degrees of antioxidant activities which were in a dose-dependent manner (p<0.01). In fact, FCS produced by B. amyloliquefaciens An6 exhibited the highest DPPH free radical-scavenging activity (92% at 4 mg/ml), while the lowest hydroxyl radical-scavenging activity (60% at 4 mg/ml) was obtained with B. subtilis A26 hydrolysates. However, the highest reducing power (OD700nm=2 at 0.5 mg/ml) was obtained by B.amyloliquefaciens An6 hydrolysates. These results suggest that crab hydrolysates are good sources of natural antioxidants. Further, FCSs were found to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria. PMID:25910648

  13. Bacillus thuringiensis

    PubMed Central

    Ibrahim, Mohamed A; Griko, Natalya; Junker, Matthew

    2010-01-01

    Bacillus thuringiensis (Bt) is a unique bacterium in that it shares a common place with a number of chemical compounds which are used commercially to control insects important to agriculture and public health. Although other bacteria, including B. popilliae and B. sphaericus, are used as microbial insecticides, their spectrum of insecticidal activity is quite limited compared to Bt. Importantly, Bt is safe for humans and is the most widely used environmentally compatible biopesticide worldwide. Furthermore, insecticidal Bt genes have been incorporated into several major crops, rendering them insect resistant, and thus providing a model for genetic engineering in agriculture. This review highlights what the authors consider the most relevant issues and topics pertaining to the genomics and proteomics of Bt. At least one of the authors (L.A.B.) has spent most of his professional life studying different aspects of this bacterium with the goal in mind of determining the mechanism(s) by which it kills insects. The other authors have a much shorter experience with Bt but their intellect and personal insight have greatly enriched our understanding of what makes Bt distinctive in the microbial world. Obviously, there is personal interest and bias reflected in this article notwithstanding oversight of a number of published studies. This review contains some material not published elsewhere although several ideas and concepts were developed from a broad base of scientific literature up to 2010. PMID:21327125

  14. Impact of Hfq on the Bacillus subtilis Transcriptome

    PubMed Central

    Hämmerle, Hermann; Amman, Fabian; Ve?erek, Branislav; Stülke, Jörg; Hofacker, Ivo; Bläsi, Udo

    2014-01-01

    The RNA chaperone Hfq acts as a central player in post-transcriptional gene regulation in several Gram-negative Bacteria, whereas comparatively little is known about its role in Gram-positive Bacteria. Here, we studied the function of Hfq in Bacillus subtilis, and show that it confers a survival advantage. A comparative transcriptome analysis revealed mRNAs with a differential abundance that are governed by the ResD-ResE system required for aerobic and anaerobic respiration. Expression of resD was found to be up-regulated in the hfq? strain. Furthermore, several genes of the GerE and ComK regulons were de-regulated in the hfq? background. Surprisingly, only six out of >100 known and predicted small RNAs (sRNAs) showed altered abundance in the absence of Hfq. Moreover, Hfq positively affected the transcript abundance of genes encoding type I toxin-antitoxin systems. Taken the moderate effect on sRNA levels and mRNAs together, it seems rather unlikely that Hfq plays a central role in RNA transactions in Bacillus subtilis. PMID:24932523

  15. Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Lee, Jung-Sook; Lee, Keun-Chul; Hari, Kuppusamy

    2011-10-01

    A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012(T), was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012(T) revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716(T). However, DNA-DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C(15:0), anteiso-C(15:0), iso-C(17:0) and anteiso-C(17:0). The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012(T) are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012(T) to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012(T) (=DSM 21911(T) = NCCB 100267(T)). PMID:21671194

  16. A comparative genomic analysis of the alkalitolerant soil bacterium Bacillus lehensis G1.

    PubMed

    Noor, Yusuf Muhammad; Samsulrizal, Nurul Hidayah; Jema'on, Noor Azah; Low, Kheng Oon; Ramli, Aizi Nor Mazila; Alias, Noor Izawati; Damis, Siti Intan Rosdianah; Fuzi, Siti Fatimah Zaharah Mohd; Isa, Mohd Noor Mat; Murad, Abdul Munir Abdul; Raih, Mohd Firdaus Mohd; Bakar, Farah Diba Abu; Najimudin, Nazalan; Mahadi, Nor Muhammad; Illias, Rosli Md

    2014-07-25

    Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes. PMID:24811681

  17. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa.

    PubMed

    Comas, C; Lumbierres, B; Pons, X; Albajes, R

    2014-02-01

    Maize with the insecticidal properties of the entomopathogenic bacterium Bacillus thuringiensis Berliner, known as Bt maize, has been sown in Europe since 1998. For several years, EU and Spanish regulations have required laboratory and field trials to assess risks of genetically modified crops for nontarget organisms prior to their authorization. Thirteen field trials were conducted in Spain to measure the effects of Bt maize on a broad range of arthropod taxa; no effects were found in accordance with most literature records. However, statistical analyses of single trials rarely have the statistical power to detect low effect sizes if they do not have a sufficient sample size. When sample size is low, meta-analysis may improve statistical power by combining several trials and assuming a common measure of effect size. Here we perform a meta-analysis of the results of 13 independent field trials conducted in Spain in which effects of single or stacked Bt traits on several arthropod taxa were measured with no significant results. Since the taxa included in each single trial were not the same for all trials, for the meta-analysis we selected only those taxa recorded in a minimum of six trials, resulting finally in 7, 7, and 12 taxa analyzed in visual counts, pitfall traps and yellow sticky traps, respectively. In comparison with single trial analysis, meta-analysis dramatically increased the detectability of treatment effects for most of the taxa regardless of the sampling technique; of the 26 taxa analyzed, only three showed poorer detectability in the meta-analysis than the best recorded in the 13 single trials. This finding reinforces the conclusion that Bt maize has no effect on the most common herbivore, predatory and parasitoid arthropods found in the maize ecosystems of southern Europe. PMID:23904218

  18. Bacillus subtilis CheD Is a Chemoreceptor Modification Enzyme Required for Chemotaxis*

    E-print Network

    Ordal, George W.

    Bacillus subtilis CheD Is a Chemoreceptor Modification Enzyme Required for Chemotaxis* Received 61801 The chemotaxis machinery of Bacillus subtilis is sim- ilar to that of the well characterized on receptors of the distantly related organism Bacillus subtilis (13, 14). The consensus ex- hibits some slight

  19. Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis

    E-print Network

    Rudner, David

    , Portugal Abstract Sporulation in Bacillus subtilis involves two cells that follow separate but coordinately Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis. PLo-cellular organisms, microbial pathogenesis and communities of microor- ganisms. In the bacterium Bacillus subtilis

  20. Structural Studies of Phage Lysis Proteins and Their Targets 

    E-print Network

    Kuznetsov, Vladimir 1973-

    2011-08-04

    , the structure of Bacillus subtilis MurA, which is not recognized by A2, is presented. The crystal structure of B. subtilis MurA, the first structure of MurA from a Gram-positive organism, allows for a direct comparison of Gram-positive and Gram-negative homologs...

  1. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling

    NASA Astrophysics Data System (ADS)

    Sohmen, Daniel; Chiba, Shinobu; Shimokawa-Chiba, Naomi; Innis, C. Axel; Berninghausen, Otto; Beckmann, Roland; Ito, Koreaki; Wilson, Daniel N.

    2015-04-01

    Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5-3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner.

  2. A novel lysine 2,3-aminomutase encoded by the yodO gene of bacillus subtilis: characterization and the observation of organic radical intermediates.

    PubMed

    Chen, D; Ruzicka, F J; Frey, P A

    2000-06-15

    The yodO gene product of Bacillus subtilis has been cloned and overexpressed in Escherichia coli and purified. The nucleotide sequence encodes a protein of 471 amino acids with a calculated molecular mass of 54071 Da. The translated amino acid sequence is more than 60% identical to that of the lysine 2,3-aminomutase from Clostridium subterminale SB4. Analytical HPLC gel-permeation chromatography leads to an estimate of an over all molecular mass of 224000+/-21000 Da, which corresponds to a tetrameric protein. The purified protein contains iron, sulphide and pyridoxal 5'-phosphate (PLP) and displays an optical absorption band extending to 700 nm, suggesting the presence of an iron-sulphide cluster. After reductive incubation with L-cysteine anaerobically, the protein catalyses the transformation of L-lysine into beta-lysine in the presence of S-adenosylmethionine (AdoMet) and sodium dithionite. The K(m) value for L-lysine is estimated to be 8.0+/-2.2 mM. The iron-sulphur centre is stable in air,allowing aerobic purification. EPR spectroscopy at 10 K of the purified enzyme revealed an EPR signal similar to that of the [4Fe-4S](3+) cluster observed in the clostridial lysine 2, 3-aminomutase. Incubation with cysteine under anaerobic conditions converts the iron-sulphur centre into the EPR-silent [4Fe-4S](2+). Unlike the clostridial enzyme, the fully reduced [4Fe-4S](+) could not be characterized by further reduction with dithionite in the presence of AdoMet, although both dithionite and AdoMet were required to activate the enzyme. Upon addition of L-lysine, dithionite and AdoMet to the reduced enzyme and freezing the solution to 77 K, the EPR spectrum revealed the presence of an organic free-radical signal (g=2.0023), which displayed multiple hyperfine transitions very similar to the spectrum of the beta-lysine-related radical in the mechanism of the clostridial lysine 2,3-aminomutase. Experiments with isotopically substituted L-lysine and lysine analogues verified the association of spin density with the carbon skeleton of lysine. The data indicate that the protein encoded by the yodO gene of B. subtilis is a novel lysine 2,3-aminomutase. The E. coli homologue of clostridial lysine 2,3-aminomutase was also expressed in E. coli and purified. This protein contained ironand sulphide but not PLP, it did not display lysine 2,3-aminomutase activity, and addition of PLP did not induce 2,3-aminomutase activity. PMID:10839984

  3. A novel lysine 2,3-aminomutase encoded by the yodO gene of bacillus subtilis: characterization and the observation of organic radical intermediates.

    PubMed Central

    Chen, D; Ruzicka, F J; Frey, P A

    2000-01-01

    The yodO gene product of Bacillus subtilis has been cloned and overexpressed in Escherichia coli and purified. The nucleotide sequence encodes a protein of 471 amino acids with a calculated molecular mass of 54071 Da. The translated amino acid sequence is more than 60% identical to that of the lysine 2,3-aminomutase from Clostridium subterminale SB4. Analytical HPLC gel-permeation chromatography leads to an estimate of an over all molecular mass of 224000+/-21000 Da, which corresponds to a tetrameric protein. The purified protein contains iron, sulphide and pyridoxal 5'-phosphate (PLP) and displays an optical absorption band extending to 700 nm, suggesting the presence of an iron-sulphide cluster. After reductive incubation with L-cysteine anaerobically, the protein catalyses the transformation of L-lysine into beta-lysine in the presence of S-adenosylmethionine (AdoMet) and sodium dithionite. The K(m) value for L-lysine is estimated to be 8.0+/-2.2 mM. The iron-sulphur centre is stable in air,allowing aerobic purification. EPR spectroscopy at 10 K of the purified enzyme revealed an EPR signal similar to that of the [4Fe-4S](3+) cluster observed in the clostridial lysine 2, 3-aminomutase. Incubation with cysteine under anaerobic conditions converts the iron-sulphur centre into the EPR-silent [4Fe-4S](2+). Unlike the clostridial enzyme, the fully reduced [4Fe-4S](+) could not be characterized by further reduction with dithionite in the presence of AdoMet, although both dithionite and AdoMet were required to activate the enzyme. Upon addition of L-lysine, dithionite and AdoMet to the reduced enzyme and freezing the solution to 77 K, the EPR spectrum revealed the presence of an organic free-radical signal (g=2.0023), which displayed multiple hyperfine transitions very similar to the spectrum of the beta-lysine-related radical in the mechanism of the clostridial lysine 2,3-aminomutase. Experiments with isotopically substituted L-lysine and lysine analogues verified the association of spin density with the carbon skeleton of lysine. The data indicate that the protein encoded by the yodO gene of B. subtilis is a novel lysine 2,3-aminomutase. The E. coli homologue of clostridial lysine 2,3-aminomutase was also expressed in E. coli and purified. This protein contained ironand sulphide but not PLP, it did not display lysine 2,3-aminomutase activity, and addition of PLP did not induce 2,3-aminomutase activity. PMID:10839984

  4. The Entry Mechanism of Membrane-Containing Phage Bam35 Infecting Bacillus thuringiensis

    PubMed Central

    Gaidelyt?, Aušra; Cvirkait?-Krupovic, Virginija; Daugelavicius, Rimantas; Bamford, Jaana K. H.; Bamford, Dennis H.

    2006-01-01

    The temperate double-stranded DNA bacteriophage Bam35 infects gram-positive Bacillus thuringiensis cells. Bam35 has an icosahedral protein coat surrounding the viral membrane that encloses the linear 15-kbp DNA genome. The protein coat of Bam35 uses the same assembly principle as that of PRD1, a lytic bacteriophage infecting gram-negative hosts. In this study, we dissected the process of Bam35 entry into discrete steps: receptor binding, peptidoglycan penetration, and interaction with the plasma membrane (PM). Bam35 very rapidly adsorbs to the cell surface, and N-acetyl-muramic acid is essential for Bam35 binding. Zymogram analysis demonstrated that peptidoglycan-hydrolyzing activity is associated with the Bam35 virion. We showed that the penetration of Bam35 through the PM is a divalent-cation-dependent process, whereas adsorption and peptidoglycan digestion are not. PMID:16885461

  5. Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis

    PubMed Central

    2011-01-01

    With the emergence and spread of multidrug resistant bacteria, effective methods to eliminate both planktonic bacteria and those embedded in surface-attached biofilms are needed. Electric currents at ?A-mA/cm2 range are known to reduce the viability of bacteria. However, the mechanism of such effects is still not well understood. In this study, Bacillus subtilis was used as the model Gram-positive species to systematically investigate the effects of electrochemical currents on bacteria including the morphology, viability, and gene expression of planktonic cells, and viability of biofilm cells. The data suggest that weak electrochemical currents can effectively eliminate B. subtilis both as planktonic cells and in biofilms. DNA microarray results indicate that the genes associated with oxidative stress response, nutrient starvation, and membrane functions were induced by electrochemical currents. These findings suggest that ions and oxidative species generated by electrochemical reactions might be important for the killing effects of these currents. PMID:22078549

  6. PrfA protein of Bacillus species: Prediction and demonstration of endonuclease activity on DNA

    PubMed Central

    Rigden, Daniel J.; Setlow, Peter; Setlow, Barbara; Bagyan, Irina; Stein, Richard A.; Jedrzejas, Mark J.

    2002-01-01

    The prfA gene product of Gram-positive bacteria is unusual in being implicated in several cellular processes; cell wall synthesis, chromosome segregation, and DNA recombination and repair. However, no homology of PrfA with other proteins has been evident. Here we report a structural relationship between PrfA and the restriction enzyme PvuII, and thereby produce models that predict that PrfA binds DNA. Indeed, wild-type Bacillus stearothermophilus PrfA, but not a catalytic site mutant, nicked one strand of supercoiled plasmid templates leaving 5`-phosphate and 3`-hydroxyl termini. This activity, much lower on linear or relaxed circular double-stranded DNA or on single-stranded DNA, is consistent with a role for this protein in chromosome segregation, DNA recombination, or DNA repair. PMID:12237459

  7. Clostridium and Bacillus Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being

    PubMed Central

    Stiles, Bradley G.; Pradhan, Kisha; Fleming, Jodie M.; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R.

    2014-01-01

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (?-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin. PMID:25198129

  8. Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung

    PubMed Central

    Singh, Shuchi; Moholkar, Vijayanand S.; Goyal, Arun

    2013-01-01

    Cellulose hydrolyzing bacteria were isolated from rhinoceros dung and tested for clear zone formation around the colonies on the agar plates containing the medium amended with carboxymethylcellulose as a sole carbon source. Isolates were further screened on the basis of carboxymethylcellulase production in liquid medium. Out of 36 isolates, isolate no. 35 exhibited maximum enzyme activity of 0.079?U/mL and was selected for further identification by using conventional biochemical tests and phylogenetic analyses. This was a Gram-positive, spore forming bacterium with rod-shaped cells. The isolate was identified as Bacillus amyloliquefaciens SS35 based on nucleotide homology and phylogenetic analysis using 16S rDNA and gyrase A gene sequences. PMID:23762763

  9. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  10. Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19.

    PubMed Central

    Bystrykh, L V; Vonck, J; van Bruggen, E F; van Beeumen, J; Samyn, B; Govorukhina, N I; Arfman, N; Duine, J A; Dijkhuizen, L

    1993-01-01

    The quaternary protein structure of two methanol:N,N'-dimethyl-4-nitrosoaniline (NDMA) oxidoreductases purified from Amycolatopsis methanolica and Mycobacterium gastri MB19 was analyzed by electron microscopy and image processing. The enzymes are decameric proteins (displaying fivefold symmetry) with estimated molecular masses of 490 to 500 kDa based on their subunit molecular masses of 49 to 50 kDa. Both methanol:NDMA oxidoreductases possess a tightly but noncovalently bound NADP(H) cofactor at an NADPH-to-subunit molar ratio of 0.7. These cofactors are redox active toward alcohol and aldehyde substrates. Both enzymes contain significant amounts of Zn2+ and Mg2+ ions. The primary amino acid sequences of the A. methanolica and M. gastri MB19 methanol:NDMA oxidoreductases share a high degree of identity, as indicated by N-terminal sequence analysis (63% identity among the first 27 N-terminal amino acids), internal peptide sequence analysis, and overall amino acid composition. The amino acid sequence analysis also revealed significant similarity to a decameric methanol dehydrogenase of Bacillus methanolicus C1. Images PMID:8449887

  11. Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)).

    PubMed

    Muntel, Jan; Fromion, Vincent; Goelzer, Anne; Maa?, Sandra; Mäder, Ulrike; Büttner, Knut; Hecker, Michael; Becher, Dörte

    2014-04-01

    In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MS(E)). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification. The quantification results covered almost four orders of magnitude, ranging roughly from 10 to 150,000 copies per cell. To prove this method for its biological relevance selected physiological aspects of B. subtilis cells grown under conditions requiring either amino acid synthesis or alternatively amino acid degradation were analyzed. This allowed both in particular the validation of the adjustment of protein levels by known regulatory events and in general a perspective of new insights into bacterial physiology. Within new findings the analysis of "protein costs" of cellular processes is extremely important. Such a comprehensive and detailed characterization of cellular protein concentrations based on data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)) data has been performed for the first time and should pave the way for future comprehensive quantitative characterization of microorganisms as physiological entities. PMID:24696501

  12. Comprehensive Absolute Quantification of the Cytosolic Proteome of Bacillus subtilis by Data Independent, Parallel Fragmentation in Liquid Chromatography/Mass Spectrometry (LC/MSE)*

    PubMed Central

    Muntel, Jan; Fromion, Vincent; Goelzer, Anne; Maa?, Sandra; Mäder, Ulrike; Büttner, Knut; Hecker, Michael; Becher, Dörte

    2014-01-01

    In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MSE). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification. The quantification results covered almost four orders of magnitude, ranging roughly from 10 to 150,000 copies per cell. To prove this method for its biological relevance selected physiological aspects of B. subtilis cells grown under conditions requiring either amino acid synthesis or alternatively amino acid degradation were analyzed. This allowed both in particular the validation of the adjustment of protein levels by known regulatory events and in general a perspective of new insights into bacterial physiology. Within new findings the analysis of “protein costs” of cellular processes is extremely important. Such a comprehensive and detailed characterization of cellular protein concentrations based on data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MSE) data has been performed for the first time and should pave the way for future comprehensive quantitative characterization of microorganisms as physiological entities. PMID:24696501

  13. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile.

    PubMed

    Yumoto, Isao; Hirota, Kikue; Goto, Toshitaka; Nodasaka, Yoshinobu; Nakajima, Kenji

    2005-03-01

    A halophilic and halotolerant, facultatively alkaliphilic strain, K11(T), was isolated from soil obtained from Oshyamanbe, Oshima, Hokkaido, Japan. The isolate grew at pH 7-10. It was non-motile, Gram-positive and aerobic. Cells comprised straight rods and produced ellipsoidal spores. The isolate grew in 0-20 % NaCl, with optimum growth at 7 % NaCl, and hydrolysed casein, gelatin, starch, DNA and Tweens 20, 40, 60 and 80. The major isoprenoid quinone was menaquinone-7, and the cellular fatty acid profile consisted of significant amounts of C(15) branched-chain acids, iso C(15 : 0) and anteiso C(15 : 0). Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain K11(T) was a member of group 6 [Nielsen et al., FEMS Microbiol Lett 117 (1994), 61-66] (alkaliphiles) of the genus Bacillus. DNA-DNA hybridization revealed a low relatedness (14 %) of the isolate to its closest phylogenetic neighbour, Bacillus clausii. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic data and DNA-DNA relatedness data, it was concluded that K11(T) (=JCM 12663(T)=NCIMB 14023(T)) merits classification as the type strain of a novel species, for which the name Bacillus oshimensis sp. nov. is proposed. PMID:15774684

  14. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp.

    PubMed Central

    Schendel, F J; August, P R; Anderson, C R; Hanson, R S; Flickinger, M C

    1992-01-01

    The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes. PMID:1311544

  15. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance.

    PubMed

    Guo, Yaoqi; Yu, Zhanqiao; Xie, Jianhua; Zhang, Rijun

    2012-06-01

    The emergence of antibiotic resistance has spurred a great number of studies for development of new antimicrobials in the past decade. The purpose of this study was to screen environmental samples for Bacillus strains producing potent antimicrobial agents. A new strain, which showed strong antimicrobial activity against Staphylococcus aureus and Salmonella enterica ser. Pullorum, was isolated from soil and designated as B116. This new isolate was identified as Bacillus licheniformis by morphological, biochemical and genetic analyses. The production of bacteriocin-like substance (BLS) started at early exponential phase and achieved highest level at early stationary phase. The BLS was precipitated by ammonium sulfate and its molecular mass was determined as ?4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Culture supernatant of the new isolate exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, including Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Micrococcus luteus, Escherichia coli, and Salmonella spp. The BLS was resistant to heat, acid and alkaline treatment. Activity of the BLS was totally lost after digestion by pronase and partially lost after digestion by papain and lipase. The new isolate and relevant BLS are potentially useful in food and feed applications. PMID:22752909

  16. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  17. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger

    2003-01-01

    One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).

  18. 7-O-Malonyl Macrolactin A, a New Macrolactin Antibiotic from Bacillus subtilis Active against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococci, and a Small-Colony Variant of Burkholderia cepacia

    PubMed Central

    Romero-Tabarez, Magally; Jansen, Rolf; Sylla, Marita; Lünsdorf, Heinrich; Häußler, Susanne; Santosa, Dwi A.; Timmis, Kenneth N.; Molinari, Gabriella

    2006-01-01

    We report here the discovery, isolation, and chemical and preliminary biological characterization of a new antibiotic compound, 7-O-malonyl macrolactin A (MMA), produced by a Bacillus subtilis soil isolate. MMA is a bacteriostatic antibiotic that inhibits a number of multidrug-resistant gram-positive bacterial pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. MMA-treated staphylococci and enterococci were pseudomulticellular and exhibited multiple asymmetric initiation points of septum formation, indicating that MMA may inhibit a cell division function. PMID:16641438

  19. A general classification of silicon utilizing organisms

    NASA Astrophysics Data System (ADS)

    Das, P.; Das, S.

    2010-12-01

    Silicon utilizing organisms may be defined as organisms with high silicon content (? 1% dry weight) and they can metabolize silicon with or without demonstrable silicon transporter genes (SIT) in them(Das,2010). Silicon is the second most abundant element in the lithosphere (27.70%) and it is as important as phosphorus and magnesium (0.03%) in the biota. Hydrated silica represents the second most abundant biogenic mineral after carbonate minerals. Silicon is accumulated and metabolized by some prokaryotes, and Si compounds can stimulate the growth of a range of fungi. It is well known that Si is essential for diatoms. In mammals, Si is considered an essential trace element, required in bone, cartilage and connective tissue formation, enzymatic activities and other metabolic processes. Silicon was suggested to act as a phosphoprotein effector in bone. In mammals, Si is also reported to positively influence the immune system and to be required for lymphocyte proliferation. The aqueous chemistry of Si is dominated by silicic acid at biological pH ranges. Monosilicic acid can form stable complexes with organic hydroxy-containing molecules . Biosilica also has been identified associated with various biomolecules including proteins and carbohydrates. There are main seven groups of silicon utilizing organisms belonging to Gram positive bacteria, algae, protozoa, sponges, fungi, lichens, and monocotyledon plants. In each group again all the members are not silicon utilizing organisms, thus selective members in each group are further classified depending their degree of silicon utilization. Important silicon utilizing bacteria are Mycobacteria, Nocardia, Streptomyces, Staphylococcus, Bacillus, Lactobacillus spp. etc., Important silicon utilizing algae are Centrobacillariophyceae, Pennatibacillariophyceae and Chrysophyceae. Many protozoa belonging to Heterokonta, Choanoflagellida, Actinopoda are well known silicon utilizing microorganisms. Hexactinellida ( glass sponges), Demospongiae and Sclerospongiae are important silicon utilizing sponges. Fungi like Aspergillus, Penicillium, Rhizopus etc. are also silicon utilizing. Candida spp. also belong to silicon utilizing organisms as they are also frequently found in sputum in silicotuberculosis cases. Many monocotyledon plants belonging to Pteridophyta, Magnoliophyta etc. are also well known silicon utilizing organisms. Almost all lichens belong to the group of silicon utilizing organisms.

  20. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities.

    PubMed

    Urdaci, Maria C; Bressollier, Philippe; Pinchuk, Irina

    2004-07-01

    The clinical benefits observed with probiotic use are mainly attributed to the antimicrobial substances produced by probiotic strains and to their immunomodulatory effects. Currently, the best-documented probiotic bacteria used in human therapy are lactic acid bacteria. In contrast, studies aiming to characterize the mechanisms responsible for the probiotic beneficial effects of Bacillus are rare. The current work seeks to contribute to such characterization by evaluating the antimicrobial and immunomodulatory activities of probiotic B. clausii strains. B. clausii strains release antimicrobial substances in the medium. Moreover, the release of these antimicrobial substances was observed during stationary growth phase and coincided with sporulation. These substances were active against Gram-positive bacteria, in particular against Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile. The antimicrobial activity was resistant to subtilisin, proteinase K, and chymotrypsin treatment, whereas it was sensitive to pronase treatment. The evaluation of the immunomodulatory properties of probiotic B. clausii strains was performed in vitro on Swiss and C57 Bl/6j murine cells. The authors demonstrate that these strains, in their vegetative forms, are able to induce NOS II synthetase activity, IFN-gamma production, and CD4 T-cell proliferation. PMID:15220667

  1. Genomic Reconstruction of the Transcriptional Regulatory Network in Bacillus subtilis

    PubMed Central

    Leyn, Semen A.; Kazanov, Marat D.; Sernova, Natalia V.; Ermakova, Ekaterina O.; Novichkov, Pavel S.

    2013-01-01

    The adaptation of microorganisms to their environment is controlled by complex transcriptional regulatory networks (TRNs), which are still only partially understood even for model species. Genome scale annotation of regulatory features of genes and TRN reconstruction are challenging tasks of microbial genomics. We used the knowledge-driven comparative-genomics approach implemented in the RegPredict Web server to infer TRN in the model Gram-positive bacterium Bacillus subtilis and 10 related Bacillales species. For transcription factor (TF) regulons, we combined the available information from the DBTBS database and the literature with bioinformatics tools, allowing inference of TF binding sites (TFBSs), comparative analysis of the genomic context of predicted TFBSs, functional assignment of target genes, and effector prediction. For RNA regulons, we used known RNA regulatory motifs collected in the Rfam database to scan genomes and analyze the genomic context of new RNA sites. The inferred TRN in B. subtilis comprises regulons for 129 TFs and 24 regulatory RNA families. First, we analyzed 66 TF regulons with previously known TFBSs in B. subtilis and projected them to other Bacillales genomes, resulting in refinement of TFBS motifs and identification of novel regulon members. Second, we inferred motifs and described regulons for 28 experimentally studied TFs with previously unknown TFBSs. Third, we discovered novel motifs and reconstructed regulons for 36 previously uncharacterized TFs. The inferred collection of regulons is available in the RegPrecise database (http://regprecise.lbl.gov/) and can be used in genetic experiments, metabolic modeling, and evolutionary analysis. PMID:23504016

  2. Crystallization and crystallographic analysis of Bacillus subtilis xylanase C

    PubMed Central

    St John, Franz J.; Godwin, David K.; Preston, James F.; Pozharski, Edwin; Hurlbert, Jason C.

    2009-01-01

    The recent biochemical characterization of the xylanases of glycosyl hydrolase family 5 (GH 5) has identified a distinctive endo mode of action, hydrolyzing the ?-1,4 xylan chain at a specific site directed by the position of an ?-1,2-linked glucuronate moiety. Xylanase C (XynC), the GH 5 xylanase from Bacillus subtilis 168, has been cloned, overexpressed and crystallized. Initial data collection was performed and a preliminary model has been built into a low-quality 2.7?Å resolution density map. The crystals belonged to the primitive monoclinic space group P21. Further screening identified an additive that resulted in large reproducible crystals. This larger more robust crystal form belonged to space group P21212 and a resulting data set has been processed to 1.64?Å resolution. This will be the second structure to be solved from this unique xylanase family and the first from a Gram-positive bacterium. This work may help to identify the structural determinants that allow the exceptional specificity of this enzyme and the role it plays in the biological depolymerization and processing of glucuronoxylan. PMID:19407387

  3. Computational discovery of small open reading frames in Bacillus lehensis

    NASA Astrophysics Data System (ADS)

    Zainuddin, Nurhafizhoh; Illias, Rosli Md.; Mahadi, Nor Muhammad; Firdaus-Raih, Mohd

    2015-09-01

    Bacillus lehensis is a Gram-positive and endospore-forming alkalitolerant bacterial strain. In recent years there has been increasing interest in alkaliphilic bacteria and their ability to grow under extreme conditions as well as their ability to serve various important functions in industrial biology especially enzyme production. Small open reading frames (sORFs) have emerged as important regulators in various biological roles such as tumor progression, hormone signalling and stress response. Over the past decade, many biocomputational tools have been developed to predict genes in bacterial genomes. In this study, three softwares were used to predict sORF (? 80 aa) in B. lehensis by using whole genome sequence. We used comparative analysis to identify the sORFs in B. lehensis that conserved across all other bacterial genomes. We extended the analysis by doing the homology analysis against protein database. This study established the sORFs in B. lehensis that are conserved across bacteria which might has important biological function which still remain elusive in biological field.

  4. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  5. Pseudomycoicidin, a Class II Lantibiotic from Bacillus pseudomycoides

    PubMed Central

    Basi-Chipalu, Shradha; Dischinger, Jasmin; Josten, Michaele; Szekat, Christiane; Zweynert, Annegret; Sahl, Hans-Georg

    2015-01-01

    Lantibiotics are ribosomally synthesized antimicrobial peptides with substantial posttranslational modifications. They are characterized by the unique amino acids lanthionine and methyllanthionine, which are introduced by dehydration of Ser/Thr residues and linkage of the resulting dehydrated amino acids with Cys residues. BLAST searches using the mersacidin biosynthetic enzyme (MrsM) in the NCBI database revealed a new class II lantibiotic gene cluster in Bacillus pseudomycoides DSM 12442. Production of an antimicrobial substance with activity against Gram-positive bacteria was detectable in a cell wash extract of this strain. The substance was partially purified, and mass spectrometric analysis predicted a peptide of 2,786 Da in the active fraction. In order to characterize the putative lantibiotic further, heterologous expression of the predicted biosynthetic genes was performed in Escherichia coli. Coexpression of the prepeptide (PseA) along with the corresponding modification enzyme (PseM) resulted in the production of a modified peptide with the corresponding mass, carrying four out of eight possible dehydrations and supporting the presence of four thioether and one disulfide bridge. After the proteolytic removal of the leader, the core peptide exhibited antimicrobial activity. In conclusion, pseudomycoicidin is a novel lantibiotic with antimicrobial activity that was heterologously produced in E. coli. PMID:25769830

  6. Bacillus thuringiensis toxins: an overview of their biocidal activity.

    PubMed

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  7. Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus.

    PubMed

    Vosloo, Johan Arnold; Stander, Marietjie A; Leussa, Adrienne N-N; Spathelf, Barbara M; Rautenbach, Marina

    2013-10-01

    A group of non-ribosomally produced antimicrobial peptides, the tyrocidines from the tyrothricin complex, have potential as antimicrobial agents in both medicine and industry. Previous work by our group illustrated that the more polar tyrocidines rich in Trp residues in their structure were more active toward Gram-positive bacteria, while the more non-polar tyrocidines rich in Phe residues had greater activity toward Plasmodium falciparum, one of the major causative pathogens of malaria in humans. Our group also found that the tyrocidines have pronounced antifungal activity, dictated by the primary sequence of the tyrocidine. By simply manipulating the Phe or Trp concentration in the culture medium of the tyrothricin producer, Bacillus aneurinolyticus ATCC 10068, we were able to modulate the production of subsets of tyrocidines, thereby tailoring the tyrothricin complex to target specific pathogens. We optimized the tailored tyrothricin production using a novel, small-scale, high-throughput deep 96-well plate culturing method followed by analyses of the peptide mixtures using ultra-performance liquid chromatography linked to mass spectrometry. We were able to gradually shift the production profile of the tyrocidines and analogues, as well as the gramicidins between two extremes in terms of peptide subsets and peptide hydrophobicity. This study demonstrated that tyrothricin peptide subsets with targeted activity can be efficiently produced by simple manipulation of the aromatic amino acid profile of the culture medium. PMID:23963303

  8. Bacillus huizhouensis sp. nov., isolated from a paddy field soil.

    PubMed

    Li, Jibing; Yang, Guiqin; Wu, Min; Zhao, Yong; Zhou, Shungui

    2014-08-01

    A Gram-stain positive, facultative aerobic bacterium, designated as strain GSS03(T), was isolated from a paddy field soil. The cells were observed to be endospore forming, rod-shaped and motile with flagella. The organism was found to grow optimally at 35 °C at pH 7.0 and in the presence of 1 % NaCl. The strain was classified as a novel taxon within the genus Bacillus on the basis of phenotypic and phylogenetic analyses. The closest phylogenetic relatives were identified as Bacillus psychrosaccharolyticus DSM 6(T) (97.61 %), Bacillus muralis DSM 16288(T) (97.55 %), Bacillus asahii JCM 12112(T) (97.48 %), Bacillus simplex DSM 1321(T) (97.48 %) and "Bacillus frigoritolerans" DSM 8801(T) (97.38 %). The menaquinone was identified as MK-7, the major cellular fatty acid was identified as anteiso-C15:0 and the major cellular polar lipids as phosphatidylethanolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and three unknown polar lipids. The DNA G+C content was determined to be 40.2 mol%. The DNA-DNA relatedness with the closest relatives was below 48 %. Therefore, on the basis of all the results, strain GSS03(T) is considered to represent a novel species within the genus Bacillus, for which the name Bacillus huizhouensis sp. nov. is proposed. The type strain is GSS03(T) (=KCTC 33172(T) =CCTCC AB 2013237(T)). PMID:24903955

  9. Proteolytic Activities Expressed by Gastrointestinal Pathogens Bacillus cereus, Listeria monocytogenes and Enterococcus faecium in Different Growth Phases

    PubMed Central

    Abfalter, Carmen M.; Schmidt, Thomas P.; Wessler, Silja

    2015-01-01

    Aims Bacterial proteases are implicated in protein quality control, biofilm formation or might have a direct function in pathogenesis by processing virulence factors or cleaving host factors. In recent years, knowledge of proteases expressed by Gram-negative pathogens remarkably increased. However, investigation of proteases from Gram-positive bacteria is rather rare, but required for the analysis of pathogenesis-relevant proteases. In this study, we extracted and detected proteases from the gastrointestinal pathogens Bacillus cereus, Listeria monocytogenes, and Enterococcus faecium in different growth phases. Methodology Bacteria were grown to logarithmic or stationary phases, harvested and extracted by sonication and French press. For the detection of active proteases, zymography analyses were performed using casein and gelatin as substrates to monitor caseinolytic and gelatinolytic activities. Results We observed different active proteases with different intensities in bacteria grown to logarithmic or stationary phases. Strong activities as gelatinases were detected in B. cereus and distinct caseinolytic proteases exhibiting molecular weights of > 170 kDa, 70 kDa and 45 kDa were shown in L. monocytogenes and E. faecium, respectively. Interestingly, detected proteases were differentially regulated in bacteria grown to logarithmic or stationary phases. Conclusion In summary, the data clearly indicated proteases that are differentially regulated in the Gram-positive pathogens B. cereus, L. monocytogenes, and E. faecium, which might contribute to bacterial pathogenesis. PMID:26682199

  10. Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root.

    PubMed

    Zhang, Yun Zeng; Chen, Wen Feng; Li, Mao; Sui, Xin Hua; Liu, Hong-Can; Zhang, Xiao Xia; Chen, Wen Xin

    2012-02-01

    A gram-positive, aerobic, motile rod, designated strain CCBAU 05776(T), was isolated from the inner tissues of a healthy soybean (Glycine max L.) root collected from an agricultural field in the countryside of Shijiazhuang city, Hebei Province, China. Phylogenetic analysis of the 16S rRNA gene indicated that this strain was most closely related to Bacillus muralis LMG 20238(T) and Bacillus simplex NBRC 15720(T) with similarity of 96.5?% and 96.3?%, respectively, lower than the suggested threshold (97.0?%) for separating bacterial species. In phenotypic characterization, the novel strain differed from the two most related species in that it did not hydrolyse casein or starch but could grow on MacConkey agar. It grew between 15 and 45 °C and tolerated up to 7?% NaCl (w/v). Strain CCBAU 05776(T) grew in media with pH 5.5 to 10 (optimal growth at pH 7.0-8.0). The predominant cellular fatty acids were iso-C(15?:?0) (40.81?%) and C(16?:?1)?7c alcohol (10.61?%). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C was 40.8 mol% (T(m)). DNA-DNA relatedness of the novel isolate with B. muralis and B. simplex was 42.4?% and 32.7?%, respectively. Based upon the consensus of phylogenetic and phenotypic analyses, strain CCBAU 05776(T) represents a novel species within the genus Bacillus, for which the name Bacillus endoradicis sp. nov. is proposed. The type strain is CCBAU 05776(T) (?=?LMG 25492(T) ?=?HAMBI 3097(T)). PMID:21441377

  11. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials.

    PubMed

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio; Vázquez, Candelario; Talavera, Rogelio Rodríguez

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). PMID:26478352

  12. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase

    PubMed Central

    Park, Jung-Ho; Yamaguchi, Yoshihiro; Inouye, Masayori

    2011-01-01

    MazF is an mRNA interferase which cleaves mRNAs at a specific sequence. Here, we show that in contrast to MazF-ec from Escherichia coli, which specifically cleaves ACA sequences, MazF-bs from Bacillus subtilis is an mRNA interferase that specifically cleaves a five-base sequence, UACAU. MazF homologues widely prevailing in Gram-positive bacteria were found to be highly homologous to MazF-bs, suggesting that they may also have similar cleavage specificity. This cleavage site is over-represented in the B. subtilis genes associated with biosynthesis of secondary metabolites, suggesting that MazF-bs may be involved in the regulation of the production of secondary metabolites. PMID:21763692

  13. Loss of Homogentisate 1,2-Dioxygenase Activity in Bacillus anthracis Results in Accumulation of Protective Pigment

    PubMed Central

    Han, Hesong; Iakovenko, Liudmyla; Wilson, Adam C.

    2015-01-01

    Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology. PMID:26047497

  14. Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging.

    PubMed

    Overkamp, Wout; Beilharz, Katrin; Detert Oude Weme, Ruud; Solopova, Ana; Karsens, Harma; Kovács, Ákos T; Kok, Jan; Kuipers, Oscar P; Veening, Jan-Willem

    2013-10-01

    Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two "superfolder" GFPs with codon adaptation specifically for Bacillus subtilis and Streptococcus pneumoniae and have benchmarked them against five other previously available variants of GFP in B. subtilis, S. pneumoniae, and Lactococcus lactis, using promoter-gfp fusions. Surprisingly, the best-performing GFP under our experimental conditions in B. subtilis was the one codon optimized for S. pneumoniae and vice versa. The data and tools described in this study will be useful for cell biology studies in low-GC-rich Gram-positive bacteria. PMID:23956387

  15. Complete genome sequence of Bacillus amyloliquefaciens L-S60, a plant growth-promoting and antifungal bacterium.

    PubMed

    Qin, Yuxuan; Han, Yuzhu; Yu, Yaqiong; Shang, Qingmao; Zhang, Bao; Li, Pinglan

    2015-10-20

    Bacillus amyloliquefaciens L-S60, a gram-positive plant-associated bacterium, which could stimulate plant growth and shows strong antifungal function, was isolated from the turfy soil in Beijing, China. The genome of B. amyloliquefaciens L-S60 comprises a 3903,017bp long circular chromosome that consists of 3909 protein-coding genes and 117 RNA genes. Based on genomic analysis, we identified gene clusters responsible for the biosynthesis of numerous bioactive metabolites with well-established in-vitro activity such as surfactin, iturin and fengycins. Additionally, we also found functionally related genes in the genome of L-S60, which play key roles in the process of plant growth promotion hormone secretion, biofilm formation and volatile compounds production. PMID:26297906

  16. Purification and characterization of malate:quinone oxidoreductase from thermophilic Bacillus sp. PS3.

    PubMed

    Kabashima, Yoshiki; Sone, Nobuhito; Kusumoto, Tomoichirou; Sakamoto, Junshi

    2013-02-01

    Several bacteria possess membrane-bound dehydrogenases other than cytosolic dehydrogenases in their respiratory chains. In many cases, the membrane-bound malate:quinone oxidoreductases (MQOs) are essential for growth. However, these MQOs are absent in mammalian mitochondria, and therefore may be a potential drug target for pathogenic bacteria. To characterize the kinetic properties of MQOs, we purified MQO from Bacillus sp. PS3, which is a gram-positive and thermophilic bacterium, and cloned the gene encoding MQO based on the obtained partial N-terminus sequence. Purified MQOs showed a molecular mass of ~90 kDa, which was estimated using gel filtration, and it consists of two subunits with a molecular mass of ~50 kDa. Phylogenetic analysis showed a high similarity to the MQO of the Geobacillus group rather than the Bacillus group. Additionally, the purified enzyme was thermostable and it retained menaquinol reduction activity at high temperatures. Although it is difficult to conduct experiments using menaquinol because of its instability, we were able to measure the oxidase activity of cytochrome bd-type quinol oxidase by using menaquinol-1 by coupling this molecule with the menaquinol reduction reaction using purified MQOs. PMID:23143325

  17. Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown.

    PubMed

    Goossens, Pierre L; Tournier, Jean-Nicolas

    2015-01-01

    Anthrax, caused by Bacillus anthracis, a Gram-positive spore-forming bacterium, is initiated by the entry of spores into the host body. There are three types of human infection: cutaneous, inhalational, and gastrointestinal. For each form, B. anthracis spores need to cross the cutaneous, respiratory or digestive epithelial barriers, respectively, as a first obligate step to establish infection. Anthrax is a toxi-infection: an association of toxemia and rapidly spreading infection progressing to septicemia. The pathogenicity of Bacillus anthracis mainly depends on two toxins and a capsule. The capsule protects bacilli from the immune system, thus promoting systemic dissemination. The toxins alter host cell signaling, thereby paralyzing the immune response of the host and perturbing the endocrine and endothelial systems. In this review, we will mainly focus on the events and mechanisms leading to crossing of the respiratory epithelial barrier, as the majority of studies have addressed inhalational infection. We will discuss the critical gaps of knowledge that need to be addressed to gain a comprehensive view of the initial steps of inhalational anthrax. We will then discuss the few data available on B. anthracis crossing the cutaneous and digestive epithelia. PMID:26500645

  18. Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown

    PubMed Central

    Goossens, Pierre L.; Tournier, Jean-Nicolas

    2015-01-01

    Anthrax, caused by Bacillus anthracis, a Gram-positive spore-forming bacterium, is initiated by the entry of spores into the host body. There are three types of human infection: cutaneous, inhalational, and gastrointestinal. For each form, B. anthracis spores need to cross the cutaneous, respiratory or digestive epithelial barriers, respectively, as a first obligate step to establish infection. Anthrax is a toxi-infection: an association of toxemia and rapidly spreading infection progressing to septicemia. The pathogenicity of Bacillus anthracis mainly depends on two toxins and a capsule. The capsule protects bacilli from the immune system, thus promoting systemic dissemination. The toxins alter host cell signaling, thereby paralyzing the immune response of the host and perturbing the endocrine and endothelial systems. In this review, we will mainly focus on the events and mechanisms leading to crossing of the respiratory epithelial barrier, as the majority of studies have addressed inhalational infection. We will discuss the critical gaps of knowledge that need to be addressed to gain a comprehensive view of the initial steps of inhalational anthrax. We will then discuss the few data available on B. anthracis crossing the cutaneous and digestive epithelia. PMID:26500645

  19. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri (Inventor); La Duc, Myron Thomas (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  20. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures. PMID:26502561

  1. Spirochaetes Hyperthermophilic bacteriaCyanobacteriaLow-GC Gram-positives

    E-print Network

    Hillis, David

    -positives Deinococcus/Thermus Proteobacteria Crenarchaeota Euryarchaeota Haptophytes Brown algae D iatom s O om ycetes Charales Coleochaetales Chlorophytes Red Algae Glaucophytes Kinetoplastids Euglenids Heteroloboseans

  2. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to

    E-print Network

    Palmer, Tracy

    . Crossing the cytoplasmic membrane Almost all exported proteins are transported across the cytoplasmic peptides (Figure 1a) and transports them across the membrane in an unfolded conformation. By contrast envelope proteins anchored into the outer leaflet of the plasma membrane. Lipid modification is achieved

  3. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp

    SciTech Connect

    Schendel, F.J.; August, P.R.; Anderson, C.R.; Flickinger, M.C. ); Hanson, R.S. )

    1992-01-01

    Acetate salts are emerging as potentially attractive bulk chemicals for a variety of environmental applications, for example, as catalysts to facilitate combustion of high-sulfur coal by electrical utilities and as the biodegradable noncorrosive highway deicing salt calcium magnesium acetate. The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (M{sub r}, 84,500) with a sub unit with an M{sub r} of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.

  4. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  5. Sporulenes, Heptaprenyl Metabolites from Bacillus subtilis Spores

    E-print Network

    Brocks, Jochen J.

    Sporulenes, Heptaprenyl Metabolites from Bacillus subtilis Spores Renee Kontnik, Tanja Bosak with an unusual pentacyclic structure, is produced by Bacillus subtilis during sporulation. All bacterial genomes biological functions have been overlooked. For example, Bacillus subtilis and its relatives are some

  6. Food–bacteria interplay: pathometabolism of emetic Bacillus cereus

    PubMed Central

    Ehling-Schulz, Monika; Frenzel, Elrike; Gohar, Michel

    2015-01-01

    Bacillus cereus is a Gram-positive endospore forming bacterium known for its wide spectrum of phenotypic traits, enabling it to occupy diverse ecological niches. Although the population structure of B. cereus is highly dynamic and rather panmictic, production of the emetic B. cereus toxin cereulide is restricted to strains with specific genotypic traits, associated with distinct environmental habitats. Cereulide is an ionophoric dodecadepsipeptide that is produced non-ribosomally by an enzyme complex with an unusual modular structure, named cereulide synthetase (Ces non-ribosomal peptide synthetase). The ces gene locus is encoded on a mega virulence plasmid related to the B. anthracis toxin plasmid pXO1. Cereulide, a highly thermo- and pH- resistant molecule, is preformed in food, evokes vomiting a few hours after ingestion, and was shown to be the direct cause of gastroenteritis symptoms; occasionally it is implicated in severe clinical manifestations including acute liver failures. Control of toxin gene expression in emetic B. cereus involves central transcriptional regulators, such as CodY and AbrB, thereby inextricably linking toxin gene expression to life cycle phases and specific conditions, such as the nutrient supply encountered in food matrices. While in recent years considerable progress has been made in the molecular and biochemical characterization of cereulide toxin synthesis, far less is known about the embedment of toxin synthesis in the life cycle of B. cereus. Information about signals acting on toxin production in the food environment is lacking. We summarize the data available on the complex regulatory network controlling cereulide toxin synthesis, discuss the role of intrinsic and extrinsic factors acting on toxin biosynthesis in emetic B. cereus and stress how unraveling these processes can lead to the development of novel effective strategies to prevent toxin synthesis in the food production and processing chain. PMID:26236290

  7. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba.

    PubMed

    Ahaotu, I; Anyogu, A; Njoku, O H; Odu, N N; Sutherland, J P; Ouoba, L I I

    2013-03-01

    Molecular identification of Bacillus spp. involved in the fermentation of African oil bean seeds for production of Ugba, as well as ability of the Bacillus spp. isolated to produce toxins, were investigated. Forty-nine bacteria were isolated from Ugba produced in different areas of South Eastern Nigeria and identified by phenotyping and sequencing of 16S rRNA, gyrB and rpoB genes. Genotypic diversities at interspecies and intraspecies level of the isolates were screened by PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR) and repetitive sequence-based PCR (rep-PCR). The ability of the bacteria to produce toxins was also investigated by detection of genes encoding production of haemolysin BL (HblA, HblC, HblD), non-haemolytic enterotoxin (NheA, NheB, NheC), cytotoxin K (CytK) and emetic toxin (EM1) using PCR with specific primers. Moreover, a Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) was used to screen ability of the isolates to produce haemolysin in broth and during fermentation of African oil bean seeds. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. They were identified as Bacillus cereus sensu lato (42), Lysinibacillus xylanilyticus (3), Bacillus clausii (1), Bacillus licheniformis (1), Bacillus subtilis (1), and Bacillus safensis (1). B. cereus was the predominant Bacillus species and was present in all samples studied. Using ITS-PCR, interspecies diversity was observed among isolates, with six clusters representing each of the pre-cited species. Rep-PCR was more discriminatory (eight clusters) and allowed further differentiation at intraspecies level for the B. cereus and L. xylanilyticus isolates with two genotypes for each species. Genes encoding production of non-haemolytic enterotoxin (NheA, NheB, NheC) and cytotoxin K (CytK) genes were detected in all B. cereus isolates, while Hbl genes (HblA, HblC, HblD) were detected in only one isolate. The emetic-specific gene fragment was not detected in any of the isolates studied. None of the toxin genes screened was detected in isolates belonging to other Bacillus species. Using RPLA, haemolysin production was detected in one isolate of B. cereus, which showed positive amplicons for Hbl genes, both during cultivation in broth and during fermentation of oil bean seeds. PMID:23376783

  8. The effects of the supplementation of Bacillus subtilis RX7 and B2A strains on the performance, blood profiles, intestinal Salmonella concentration, noxious gas emission, organ weight and breast meat quality of broiler challenged with Salmonella typhimurium.

    PubMed

    Park, J H; Kim, I H

    2015-04-01

    An experiment was conducted to evaluate the effects of B. subtilis RX7 and B. subtilis B2A on growth performance, blood profiles, intestinal Salmonella population, noxious gas emission, organ weight and breast meat quality of broilers under S. typhimurium challenge. A total of 120, one-day-old Ross 308 male broiler chicks were assigned to four dietary treatments, composed of six replications, with five birds per replication, for 10 day. The dietary treatment groups were negative control (NC; no antibiotic, no B. subtilis), positive control (PC; NC + 0.1% virginiamycin), B. subtilis RX7 (NC + 0.1% B. subtilis RX7 1.0 × 10(9) cfu/g) and B. subtilis B2A (NC + 0.1% B. subtilis 1.0 × 10(9) cfu/g). All birds were orally challenged with 2 ml suspension, containing 10(4) cfu/ml of S. typhimurium KCCM 40253. Results indicated that the body weight gain, feed intake and feed conversion did not differ, among all comparative treatments. Serum haptoglobin concentration was lower in Bacillus treatments (RX7 + B2A) than the NC treatment (p < 0.05). Intestinal and excreta Salmonella number, and excreta ammonia gas emission in the PC treatment or Bacillus treatments, was lower than the NC treatment (p < 0.05). Breast pH, colour and water-holding capacity were not affected by supplementation of B. subtilis RX7 and B2A. However, drip loss at 1 day post-slaughter from birds fed with B. subtilis RX7 and B2A decreased, compared with the positive control birds (p < 0.05). Relative gizzard weights of birds fed B. subtilis RX7 and B2A were significantly higher than the NC birds under S. typhimurium challenge. It is concluded from the results that B. subtilis RX7 and B2A increased the gizzard weight and decreased the intestinal and excreta Salmonella population and excreta ammonia gas, and drip loss of breast meat after being stored for 1 day, under stress caused by the S. typhimurium challenge. PMID:25244020

  9. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 ?m, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  10. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust.

    PubMed

    Sylvan, Jason B; Hoffman, Colleen L; Momper, Lily M; Toner, Brandy M; Amend, Jan P; Edwards, Katrina J

    2015-06-01

    A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 ?m wide and 1-3 ?m long, that occurred singly and in chains. Strain 1MBB1T stained Gram-positive. Catalase and oxidase were produced. The isolate grew optimally at 30 °C and pH 7.5, and could grow with up to 12 % (w/v) NaCl. The DNA G+C content was 40.5 mol%. The major cellular fatty acids were C16:1?11c (26.5 %), anteiso-C15:0 (19.5 %), C16:0 (18.7 %) and iso-C15:0 (10.4 %), and the cell-wall diamino acid was meso-diaminopimelic acid. Endospores of strain 1MBB1T oxidized Mn(II) to Mn(IV), and siderophore production by vegetative cells was positive. Phylogenetic analysis of the 16S rRNA gene indicated that strain 1MBB1T was a member of the family Bacillaceae, with Bacillus foraminis CV53T and Bacillus novalis LMG 21837T being the closest phylogenetic neighbours (96.5 and 96.2 % similarity, respectively). This is the first novel species described from deep subseafloor basaltic crust. On the basis of our polyphasic analysis, we conclude that strain 1MBB1T represents a novel species of the genus Bacillus, for which we propose the name Bacillus rigiliprofundi sp. nov. The type strain is 1MBB1T (?= NCMA B78T =?LMG 28275T). PMID:25813363

  11. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.

    PubMed

    Villéger, Romain; Saad, Naima; Grenier, Karine; Falourd, Xavier; Foucat, Loïc; Urdaci, Maria C; Bressollier, Philippe; Ouk, Tan-Sothea

    2014-10-01

    Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use. PMID:25090957

  12. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms.

    PubMed

    Zimmermann, Stephan; Pfennig, Sabrina; Neumann, Piotr; Yonus, Huma; Weininger, Ulrich; Kovermann, Michael; Balbach, Jochen; Stubbs, Milton T

    2015-08-19

    D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine moiety is defined in one. The atomic resolution of the apo-structure allows delineation of alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase, no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit similar backbone dynamics on the ps-ns and ms timescales. PMID:26193422

  13. Microbial genotyping and differentiating between Bacillus mojavensis and Bacillus subtilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis, a specie recently distinguished from its previous Bacillus subtilis classification, was discovered in corn kernels and later determined to possess endophytic character. The bacterium was also determined to have biocontrol potential due to its growth inhibition of the maize mycot...

  14. Characterization of Bacillus probiotics available for human use.

    PubMed

    Duc, Le H; Hong, Huynh A; Barbosa, Teresa M; Henriques, Adriano O; Cutting, Simon M

    2004-04-01

    Bacillus species (Bacillus cereus, Bacillus clausii, Bacillus pumilus) carried in five commercial probiotic products consisting of bacterial spores were characterized for potential attributes (colonization, immunostimulation, and antimicrobial activity) that could account for their claimed probiotic properties. Three B. cereus strains were shown to persist in the mouse gastrointestinal tract for up to 18 days postadministration, demonstrating that these organisms have some ability to colonize. Spores of one B. cereus strain were extremely sensitive to simulated gastric conditions and simulated intestinal fluids. Spores of all strains were immunogenic when they were given orally to mice, but the B. pumilus strain was found to generate particularly high anti-spore immunoglobulin G titers. Spores of B. pumilus and of a laboratory strain of B. subtilis were found to induce the proinflammatory cytokine interleukin-6 in a cultured macrophage cell line, and in vivo, spores of B. pumilus and B. subtilis induced the proinflammatory cytokine tumor necrosis factor alpha and the Th1 cytokine gamma interferon. The B. pumilus strain and one B. cereus strain (B. cereus var. vietnami) were found to produce a bacteriocin-like activity against other Bacillus species. The results that provided evidence of colonization, immunostimulation, and antimicrobial activity support the hypothesis that the organisms have a potential probiotic effect. However, the three B. cereus strains were also found to produce the Hbl and Nhe enterotoxins, which makes them unsafe for human use. PMID:15066809

  15. Enhanced Control of Cucumber Wilt Disease by Bacillus amyloliquefaciens SQR9 by Altering the Regulation of Its DegU Phosphorylation

    PubMed Central

    Xu, Zhihui; Zhang, Ruifu; Wang, Dandan; Qiu, Meihua; Feng, Haichao; Zhang, Nan

    2014-01-01

    Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU?P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU?P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. PMID:24584252

  16. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  17. Characterization of a bacteriocin-like substance produced from a novel isolated strain of Bacillus subtilis SLYY-3

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Li, Hongfang; Zhang, Yuanyuan; Duan, Xiaohui; Liu, Jie

    2014-12-01

    In the present research, the strain SLYY-3 was isolated from sediments of Jiaozhou Bay, Qingdao, China. The strain SLYY-3, which produced a bacteriocin-like substance (BLS), was characterized to be a strain of Bacillus subtillis by biochemical profiling and 16S rDNA sequence analysis. It is the first time to report that Bacillus subtilis from Jiaozhou Bay sediments could produce a BLS. The BLS of B. subtillis SLYY-3 exhibited strong inhibitory activity against gram-positive bacteria (including Staphylococcus aureus and B. subtillis) and some fungi (including Penicillium glaucum, Aspergillus niger and Aspergillus flavus). The antimicrobial activity was detected from culture in the exponential growth phase and reached its maximum when culture entered into stationary growth phase. It was thermo-tolerant even when being kept at 100°C for 60 min without losing any activity and stable over a wide pH range from 1.0 to 12.0 while being inactivated by proteolytic enzyme and trypsin, indicating the proteinaceous nature of the BLS. The BLS was purified by precipitation with hydrochloric acid (HCl) and gel filteration (Sephadex G-100). SDS-PAGE analysis of the extracellular peptides of SLYY-3 revealed a bacteriocin-like protein with a molecular mass of 66 kDa. Altogether, these characteristics indicate the potential of the BLS for food industry as a protection against pathogenic and spoilage microorganisms.

  18. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    PubMed

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. PMID:25860123

  19. INACTIVATION OF BACILLUS GLOBIGII BY CHLORINATION: A HIERARCHICAL BAYESIAN MODEL

    EPA Science Inventory

    Recent events where spores of Bacillus anthracis have been used as a bioterrorist weapon have prompted interest in determining the resistance of this organism to commonly used disinfectants, such as chlorine, chlorine dioxide and ozone. This work was undertaken to study ...

  20. Complete Genome Sequence of Bacillus megaterium Siphophage Stills

    PubMed Central

    Lee, Simon S.; Kongari, Rohit R.; Hernandez, Adriana C.

    2015-01-01

    Bacillus megaterium is a soil-dwelling bacterium frequently used in research as a model organism and in industry in protein production applications. Bacteriophages may be used to enhance the use of this bacterium. Here, we describe the complete genome of B. megaterium siphophage Stills and its core features. PMID:26251490

  1. Differential gene expression during sporulation in Bacillus subtilis: regulation of the spoVJ gene.

    PubMed

    Errington, J; Wootten, L; Dunkerley, J C; Foulger, D

    1989-08-01

    The process of spore formation in the Gram-positive bacterium Bacillus subtilis is a simple developmental system controlled by 50 or more genes. The complex pattern of regulatory interactions between these genes is beginning to be elucidated. spoVJ is a poorly characterized locus in which mutations affect spore development at a relatively late stage (Stage V). We have now cloned and physically characterized the spoVJ locus, and analysed its expression by lacZ fusion. Expression of spoVJ is temporally delayed until about two hours after the initiation of sporulation. Its expression is also spatially restricted to the mother cell compartment; as such, it represents the earliest known mother-cell-specific event. Control of spoVJ transcription is complex: expression is dependent upon the products of all of the spoO genes and on some of the spoII genes but it is independent of all later genes except spoIIID. As spoIIID mutations do not affect prespore development, this gene must be an important early determinant of mother-cell-specific gene expression. PMID:2514336

  2. Small Regulatory RNA-Induced Growth Rate Heterogeneity of Bacillus subtilis

    PubMed Central

    Mars, Ruben A. T.; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L.

    2015-01-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions. PMID:25790031

  3. Bacillus subtilis: from soil bacterium to super-secreting cell factory.

    PubMed

    van Dijl, Jan Maarten; Hecker, Michael

    2013-01-01

    The biotechnology industry has become a key element in modern societies. Within this industry, the production of recombinant enzymes and biopharmaceutical proteins is of major importance. The global markets for such recombinant proteins are growing rapidly and, accordingly, there is a continuous need for new production platforms that can deliver protein products in greater yields, with higher quality and at lower costs. This calls for the development of next-generation super-secreting cell factories. One of the microbial cell factories that can meet these challenges is the Gram-positive bacterium Bacillus subtilis, an inhabitant of the upper layers of the soil that has the capacity to secrete proteins in the gram per litre range. The engineering of B. subtilis into a next-generation super-secreting cell factory requires combined Systems and Synthetic Biology approaches. In this way, the bacterial protein secretion machinery can be optimized from the single molecule to the network level while, at the same time, taking into account the balanced use of cellular resources. Although highly ambitious, this is an achievable objective due to recent advances in functional genomics and Systems- and Synthetic Biological analyses of B. subtilis cells. PMID:23311580

  4. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    PubMed Central

    Othman, A. R.; Bakar, N. A.; Halmi, M. I. E.; Johari, W. L. W.; Ahmad, S. A.; Jirangon, H.; Syed, M. A.; Shukor, M. Y.

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4?mM phosphate, using 1% (w/v) glucose, 50?mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865?nm and a shoulder at 700?nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1?mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants pmax, Ks, Sm, and n was 5.88??mole Mo-blue hr?1, 70.36?mM, 108.22?mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  5. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.

    PubMed

    Müller, Jonas E N; Heggeset, Tonje M B; Wendisch, Volker F; Vorholt, Julia A; Brautaset, Trygve

    2015-01-01

    Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids. PMID:25431011

  6. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii.

    PubMed

    Galopin, Sébastien; Cattoir, Vincent; Leclercq, Roland

    2009-06-01

    The mechanism of resistance to chloramphenicol was studied in four strains of Bacillus clausii included in a probiotic mixture, which is administered to humans for prevention of gastrointestinal side effects due to oral antibiotic therapy. By cloning experiments, a chloramphenicol acetyltransferase (CAT) gene, cat(Bcl), coding for a putative 228-amino acid CAT protein was identified in B. clausii SIN. The deduced amino acid sequence displayed from 31% to 85% identity with 56 CAT proteins from other Gram-positive bacterial strains. The cat(Bcl) gene was also detected by PCR in the three other B. clausii strains resistant to chloramphenicol, whereas it was absent in the three control strains susceptible to chloramphenicol. Pulse-field gel electrophoresis of total DNA digested by I-CeuI followed by hybridization with a cat-specific probe as well as unsuccessful repeated attempts of in vitro transfer of chloramphenicol resistance to various recipient cells indicated that cat(Bcl) was chromosomally located in all four resistant B. clausii strains. PMID:19459958

  7. A Conserved ClpP-like Protease Involved in Spore Outgrowth in Bacillus subtilis

    PubMed Central

    Traag, Bjorn A.; Pugliese, Antonia; Setlow, Barbara; Setlow, Peter; Losick, Richard

    2013-01-01

    Germination and outgrowth of endospores of the Gram-positive bacterium Bacillus subtilis involves the degradation and conversion to free amino acids of abundant proteins located in the spore core known as small acid-soluble proteins (SASP). This degradation is mediated primarily by the germination protease Gpr. Here we show that YmfB, a distant homolog of ClpP serine proteases that is highly conserved among endospore-forming bacteria, contributes to SASP degradation but that its function is normally masked by Gpr. Spores from a ymfB gpr double mutant were more delayed in spore outgrowth and more impaired in SASP degradation than were spores from a gpr single mutant. The activity of YmfB relied on three putative active site residues as well as on the product of a small gene ylzJ located immediately downstream of, and overlapping with, ymfB. We propose that YmfB is an orphan ClpP protease that is dedicated to the degradation of a specialized family of small protein substrates. PMID:23927687

  8. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer

    PubMed Central

    Fukushima, Tatsuya; Sia, Allyson K.; Allred, Benjamin E.; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N.; Raymond, Kenneth N.

    2012-01-01

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the Gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up 55Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (Kd) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization–mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations. PMID:23027976

  9. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    PubMed

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations. PMID:23027976

  10. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions. PMID:25790031

  11. Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis.

    PubMed

    Maa?, Sandra; Wachlin, Gerhild; Bernhardt, Jörg; Eymann, Christine; Fromion, Vincent; Riedel, Katharina; Becher, Dörte; Hecker, Michael

    2014-09-01

    Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition. Furthermore, analysis of protein repartition during glucose starvation showed that biomass seems to be redistributed from proteins involved in amino acid biosynthesis to enzymes of the central carbon metabolism. In contrast, during heat stress most resources of the cell, namely those from amino acid synthetic pathways, are used to increase the amount of chaperones and proteases. Analysis of dynamical aspects of protein synthesis during heat stress adaptation revealed, that these proteins make up almost 30% of the protein mass accumulated during early phases of this stress. PMID:24878497

  12. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.

    PubMed

    Stannek, Lorena; Thiele, Martin J; Ischebeck, Till; Gunka, Katrin; Hammer, Elke; Völker, Uwe; Commichau, Fabian M

    2015-09-01

    In the Gram-positive bacterium, Bacillus subtilis glutamate is synthesized by the glutamine synthetase and the glutamate synthase (GOGAT). During growth with carbon sources that exert carbon catabolite repression, the rocG glutamate dehydrogenase (GDH) gene is repressed and the transcription factor GltC activates the expression of the GOGAT encoding gltAB genes. In the presence of amino acids of the glutamate family, the GDH RocG is synthesized and the enzyme prevents GltC from binding to DNA. The dual control of glutamate biosynthesis allows the efficient utilization of the available nutrients. Here we provide genetic and biochemical evidence that, like RocG, also the paralogous GDH GudB can inhibit the transcription factor GltC, thereby controlling glutamate biosynthesis. Contradictory previous observations show that high level of GDH activity does not result in permanent inhibition of GltC. By controlling the intracellular levels of glutamate through feeding with exogenous arginine, we observed that the GDH-dependent control of GltC and thus expression of the gltAB genes inversely correlates with the glutamate pool. These results suggest that the B.?subtilis?GDHs RocG and GudB in fact act as glutamate sensors. In conclusion, the GDH-mediated control of glutamate biosynthesis seems to depend on the intracellular glutamate concentration. PMID:25711804

  13. Prevalence, Genetic Diversity, and Host Range of Tectiviruses among Members of the Bacillus cereus Group

    PubMed Central

    Gillis, Annika

    2014-01-01

    GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found. PMID:24795369

  14. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review

    PubMed Central

    Chowdhury, Soumitra Paul; Hartmann, Anton; Gao, XueWen; Borriss, Rainer

    2015-01-01

    Bacillus amyloliquefaciens subsp. plantarum FZB42 is a Gram-positive model bacterium for unraveling plant–microbe interactions in Bacilli. In addition, FZB42 is used commercially as biofertilizer and biocontrol agent in agriculture. Genome analysis of FZB42 revealed that nearly 10% of the FZB42 genome is devoted to synthesizing antimicrobial metabolites and their corresponding immunity genes. However, recent investigations in planta demonstrated that – except surfactin – the amount of such compounds found in vicinity of plant roots is relatively low, making doubtful a direct function in suppressing competing microflora including plant pathogens. These metabolites have been also suspected to induce changes within the rhizosphere microbial community, which might affect environment and plant health. However, sequence analysis of rhizosphere samples revealed only marginal changes in the root microbiome, suggesting that secondary metabolites are not the key factor in protecting plants from pathogenic microorganisms. On the other hand, adding FZB42 to plants compensate, at least in part, changes in the community structure caused by the pathogen, indicating an interesting mechanism of plant protection by beneficial Bacilli. Sub-lethal concentrations of cyclic lipopeptides and volatiles produced by plant-associated Bacilli trigger pathways of induced systemic resistance (ISR), which protect plants against attacks of pathogenic microbes, viruses, and nematodes. Stimulation of ISR by bacterial metabolites is likely the main mechanism responsible for biocontrol action of FZB42. PMID:26284057

  15. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis*

    PubMed Central

    Arnaouteli, Sofia; Giastas, Petros; Andreou, Athina; Tzanodaskalaki, Mary; Aldridge, Christine; Tzartos, Socrates J.; Vollmer, Waldemar; Eliopoulos, Elias; Bouriotis, Vassilis

    2015-01-01

    Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) ?-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis. PMID:25825488

  16. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin.

    PubMed

    Zobel, Sophia; Kumpfmüller, Jana; Süssmuth, Roderich D; Schweder, Thomas

    2015-01-01

    The heterologous expression of genes or gene clusters in microbial hosts, followed by metabolic engineering of biosynthetic pathways, is key to access industrially and pharmaceutically relevant compounds in an economically affordable and sustainable manner. Therefore, platforms need to be developed, which provide tools for the controlled synthesis of bioactive compounds. The Gram-positive bacterium Bacillus subtilis is a promising candidate for such applications, as it is generally regarded as a safe production host, its physiology is well investigated and a variety of tools is available for its genetic manipulation. Furthermore, this industrially relevant bacterium provides a high secretory potential not only for enzymes but also for primary and secondary metabolites. In this study, we present the first heterologous expression of an eukaryotic non-ribosomal peptide synthetase gene (esyn) coding for the biosynthesis of the small molecule enniatin in B. subtilis. Enniatin is a pharmaceutically used cyclodepsipeptide for treatment of topical bacterial and fungal infections. We generated various enniatin-producing B. subtilis strains, allowing for either single chromosomal or plasmid-based multi-copy expression of the esyn cluster under the control of an acetoin-inducible promoter system. Optimization of cultivation conditions, combined with modifications of the genetic background and multi-copy plasmid-based esyn expression, resulted in a secretory production of enniatin B. This work presents B. subtilis as a suitable host for the expression of heterologous eukaryotic non-ribosomal peptide synthetases (NRPS) clusters. PMID:25398283

  17. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. PMID:26478403

  18. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.

    PubMed

    Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 ?mole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  19. Bacillus subtilis: from soil bacterium to super-secreting cell factory

    PubMed Central

    2013-01-01

    The biotechnology industry has become a key element in modern societies. Within this industry, the production of recombinant enzymes and biopharmaceutical proteins is of major importance. The global markets for such recombinant proteins are growing rapidly and, accordingly, there is a continuous need for new production platforms that can deliver protein products in greater yields, with higher quality and at lower costs. This calls for the development of next-generation super-secreting cell factories. One of the microbial cell factories that can meet these challenges is the Gram-positive bacterium Bacillus subtilis, an inhabitant of the upper layers of the soil that has the capacity to secrete proteins in the gram per litre range. The engineering of B. subtilis into a next-generation super-secreting cell factory requires combined Systems and Synthetic Biology approaches. In this way, the bacterial protein secretion machinery can be optimized from the single molecule to the network level while, at the same time, taking into account the balanced use of cellular resources. Although highly ambitious, this is an achievable objective due to recent advances in functional genomics and Systems- and Synthetic Biological analyses of B. subtilis cells. PMID:23311580

  20. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    PubMed Central

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M. F.; Stanley-Wall, Nicola R.

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic “cap” region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community. PMID:23904481

  1. Highly Precise Quantification of Protein Molecules per Cell During Stress and Starvation Responses in Bacillus subtilis *

    PubMed Central

    Maa?, Sandra; Wachlin, Gerhild; Bernhardt, Jörg; Eymann, Christine; Fromion, Vincent; Riedel, Katharina; Becher, Dörte; Hecker, Michael

    2014-01-01

    Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition. Furthermore, analysis of protein repartition during glucose starvation showed that biomass seems to be redistributed from proteins involved in amino acid biosynthesis to enzymes of the central carbon metabolism. In contrast, during heat stress most resources of the cell, namely those from amino acid synthetic pathways, are used to increase the amount of chaperones and proteases. Analysis of dynamical aspects of protein synthesis during heat stress adaptation revealed, that these proteins make up almost 30% of the protein mass accumulated during early phases of this stress. PMID:24878497

  2. Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes

    PubMed Central

    Wörmann, Mirka E; Corrigan, Rebecca M; Simpson, Peter J; Matthews, Steve J; Gründling, Angelika

    2011-01-01

    Lipoteichoic acid (LTA) is an important cell wall polymer in Gram-positive bacteria. The enzyme responsible for polyglycerolphosphate LTA synthesis is LtaS, first described in Staphylococcus aureus. Four LtaS orthologues, LtaSBS, YfnI, YqgS and YvgJ, are present in Bacillus subtilis. Using an in vitro enzyme assay, we determined that all four proteins are Mn2+-dependent metal enzymes that use phosphatidylglycerol as a substrate. We show that LtaSBS, YfnI and YqgS can produce polymers, suggesting that these three proteins are bona-fide LTA synthases while YvgJ functions as an LTA primase, as indicated by the accumulation of a GroP-Glc2-DAG glycolipid. Western blot analysis of LTA produced by ltaSBS, yfnI, yqgS and yvgJ single, triple and the quadruple mutant, showed that LTA production was only abolished in the quadruple and the YvgJ-only expressing mutant. B. subtilis strains expressing YfnI in the absence of LtaSBS produced LTA of retarded mobility, presumably caused by an increase in chain length as suggested by a structural analysis of purified LTA. Taken together, the presented results indicate that the mere presence or absence of LTA cannot account for cell division and sporulation defects observed in the absence of individual enzymes and revealed an unexpected enzymatic interdependency of LtaS-type proteins in B. subtilis. PMID:21255105

  3. Enthalpies of proton adsorption onto Bacillus licheniformis at 25, 37, 50, and 75 °C

    NASA Astrophysics Data System (ADS)

    Gorman-Lewis, Drew

    2011-03-01

    Understanding bacterial surface reactivity requires many different lines of investigation. Toward this end, we used isothermal titration calorimetry to measure heats of proton adsorption onto a Gram positive thermophile Bacillus licheniformis at 25, 37, 50, and 75 °C. Proton adsorption under all conditions exhibited exothermic heat production. Below pH 4.5, exothermic heats decreased as temperature increased above 37 °C; above pH 4.5, there was no significant difference in heats evolved at the temperatures investigated. Total proton uptake did not vary significantly with temperature. Site-specific enthalpies and entropies were calculated by applying a 4-site, non-electrostatic surface complexation model to the calorimetric data. Interpretation of site-specific enthalpies and entropies of proton adsorption for site L1, L2, and L4 are consistent with previous interpretations of phosphoryl, carboxyl, and hydroxyl/amine site-identities, respectively, and with previous calorimetric measurements of proton adsorption onto mesophilic species. Enthalpies and entropies for surface site L3 are not consistent with the commonly inferred phosphoryl site-identity and are more consistent with sulfhydryl functional groups. These results reveal intricacies of surface reactivity that are not detectable by other methods.

  4. Methylglyoxal resistance in Bacillus subtilis: Contributions of bacillithiol-dependent and independent pathways

    PubMed Central

    Chandrangsu, Pete; Dusi, Renata; Hamilton, Chris J.; Helmann, John D.

    2014-01-01

    Summary Methylglyoxal (MG) is a toxic byproduct of glycolysis that damages DNA and proteins ultimately leading to cell death. Protection from MG is often conferred by a glutathione-dependent glyoxalase pathway. However, glutathione is absent from the low-GC Gram-positive Firmicutes, such as Bacillus subtilis. The identification of bacillithiol (BSH) as the major low molecular weight thiol in the Firmicutes raises the possibility that BSH is involved in MG detoxification. Here, we demonstrate that MG can rapidly and specifically deplete BSH in cells, and we identify both BSH-dependent and BSH-independent MG resistance pathways. The BSH-dependent pathway utilizes glyoxalase I (GlxA, formerly YwbC) and glyoxalase II (GlxB, formerly YurT) to convert MG to D-lactate. The critical step in this pathway is the activation of the KhtSTU K+ efflux pump by the S-lactoyl-BSH intermediate, which leads to cytoplasmic acidification. We show that cytoplasmic acidification is both necessary and sufficient for maximal protection from MG. Two additional MG detoxification pathways operate independent of BSH. The first involves three enzymes (YdeA, YraA and YfkM) which are predicted to be homologues of glyoxalase III that converts MG to D-lactate, and the second involves YhdN, previously shown to be a broad specificity aldo-keto reductase that converts MG to acetol. PMID:24330391

  5. Class I and Class II Lanthipeptides Produced by Bacillus spp.

    PubMed

    Barbosa, Joana; Caetano, Tânia; Mendo, Sónia

    2015-11-25

    The increasing number of multidrug-resistant pathogens, along with the small number of new antimicrobials under development, leads to an increased need for novel alternatives. Class I and class II lanthipeptides (also known as lantibiotics) have been considered promising alternatives to classical antibiotics. In addition to their relevant medical applications, they are used as probiotics, prophylactics, preservatives, and additives in cosmetics and personal-care products. The genus Bacillus is a prolific source of bioactive compounds including ribosomally and nonribosomally synthesized antibacterial peptides. Accordingly, there is significant interest in the biotechnological potential of members of the genus Bacillus as producers of antimicrobial lanthipeptides. The present review focuses on aspects of the biosynthesis, gene cluster organization, structure, antibacterial spectrum, and bioengineering approaches of lanthipeptides produced by Bacillus strains. Their efficacy and potency against some clinically relevant strains, including MRSA and VRE, are also discussed. Although no lanthipeptides are currently in clinical use, the information herein highlights the potential of these compounds. PMID:26448102

  6. Occurrence of Biosurfactant Producing Bacillus spp. in Diverse Habitats

    PubMed Central

    Joshi, Sanket J.; Suthar, Harish; Yadav, Amit Kumar; Hingurao, Krushi; Nerurkar, Anuradha

    2013-01-01

    Diversity among biosurfactant producing Bacillus spp. from diverse habitats was studied among 77 isolates. Cluster analysis based on phenotypic characteristics using unweighted pair-group method with arithmetic averages (UPGMAs) method was performed. Bacillus isolates possessing high surface tension activity and five reference strains were subjected to amplified 16S rDNA restriction analysis (ARDRA). A correlation between the phenotypic and genotypic characterization of Bacillus spp. is explored. Most of the oil reservoir isolates showing high surface activity clustered with B. licheniformis and B. subtilis, the hot water spring isolates clustered in two ingroups, while the petroleum contaminated soil isolates were randomly distributed in all the three ingroups. Present work revealed that diversity exists in distribution of Bacillus spp. from thermal and hydrocarbon containing habitats where majority of organisms belonged to B. licheniformis and B. subtilis group. Isolate B. licheniformis TT42 produced biosurfactant which reduced the surface tension of water from 72?mNm?1 to 28?mNm?1, and 0.05?mNm?1 interfacial tension against crude oil at 80°C. This isolate clustered with B. subtilis and B. licheniformis group on the basis of ARDRA. These findings increase the possibility of exploiting the Bacillus spp. from different habitats and their possible use in oil recovery. PMID:25969778

  7. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  8. Microbial biomass as a significant source of soil organic matter

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Kindler, Reimo; Schweigert, Michael; Achtenhagen, Jan; Bombach, Petra; Fester, Thomas; Kästner, Matthias

    2014-05-01

    Soil organic matter (SOM) plays an important role for soil fertility and in the global carbon cycle. SOM management should be based on knowledge about the chemical composition as well as the spatial distribution of SOM and its individual components in soils. Both parameters strongly depend on the direct precursors of SOM. In the past, microbial biomass has been neglected as a potential source of SOM, mainly because of its small pool size. Recent studies, however, show that a substantial portion of SOM is derived from microbial biomass residues. We therefore investigated the fate of microbial biomass residues in soils by means of incubation experiments with 13C-labelled microbial biomass. For our studies, we selected model organisms representing the three types of soil microorganisms and their characteristic cell wall structures: Escherichia coli (a Gram-negative bacterium), Bacillus subtilis (a Gram-positive bacterium) and Laccaria bicolor (an ectomycorrhizal fungus). We labelled the organisms by growing them on 13C glucose and incubated them in soil. During incubation, we followed the mineralisation of the labelled C, its incorporation into microbial biomass, and its transformation to non-living SOM. We found that 50-65% of the microbial biomass C remained in the soil during incubation. However, only a small part remained in the microbial biomass, the majority was transformed to SOM. In particular, proteins seemed to be rather stable in our experiments. In addition, we used scanning electron microscopy to identify microbial residues in soils and, for comparison, in artificial groundwater microcosms. Scanning electron micrographs showed a low number of intact cells, but mainly fragments of about 200-500 nm size. Similar fragments were found in artificial groundwater microcosms where the only possible origin was microbial biomass residues. Based on the results obtained, we provide a mechanistic model which explains how microbial biomass residues are formed and stabilized in soils. This model also explains a number of chemical and physical properties of SOM such as the abundance and stability of microbial biomolecules, the low C/N ratio and the water repellency of SOM.

  9. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    SciTech Connect

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  10. Isolation and characterisation of Bacillus spp. antagonistic to Vibrio parahaemolyticus for use as probiotics in aquaculture.

    PubMed

    Liu, Xue-Fei; Li, Ya; Li, Jian-Rong; Cai, Lu-Yun; Li, Xiu-Xia; Chen, Jin-Ru; Lyu, Shu-Xia

    2015-05-01

    Acute gastroenteritis caused by pathogenic Vibrio parahaemolyticus is one of the major factors affecting the development of aquaculture and the safety of seafood. Using the antagonism of probiotics against pathogens is an alternative strategy to antibiotics and a common trend to control food-borne pathogenic bacteria. In this study, a total of 249 isolates were isolated from four types of seafood (Litopenaeus vannamei, Oratosquilla oratoria, Mactra veneriformis and Portunus trituberculatus) and coastal sediment from Liaodong Bay in the Bohai Sea, China with five different separation agars. The most isolates came from the sample of coastal sediment and on agar of 2216E, which accounted for 36.14 and 54.62 % respectively. Twenty-four among 249 isolates displayed direct antimicrobial activity to V. parahaemolyticus with spot inoculation. Sixteen active isolates were selected for extracellular antimicrobial activity using the Oxford cup method. Only strains of B16 and J7 showed extracellular antimicrobial activity and were identified as Bacillus pumilus and Bacillus mojavensis respectively based on the physiological identification and 16S rRNA sequence analysis. Both of the strains B16 and J7 exhibited extracellular hydrolytic enzyme activity and antagonism against more than one indicator bacteria in vitro, which indicates that the two strains have broad potential application as suitable probiotic candidates in aquaculture while B. mojavensis was first reported to inhibit pathogenic Vibrio spp. in vitro. There is no particular trait as to antagonism of B. pumilus B16 or B. mojavensis J7 to Gram-positive or Gram-negative indicator bacteria. PMID:25737203

  11. Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp.

    PubMed

    Mazotto, Ana Maria; de Melo, Ana Cristina N; Macrae, Andrew; Rosado, Alexandre Soares; Peixoto, Raquel; Cedrola, Sabrina M L; Couri, Sônia; Zingali, Russolina B; Villa, Ana Lúcia V; Rabinovitch, Leon; Chaves, Jeane Q; Vermelho, Alane B

    2011-06-01

    In this study, three feather degrading bacterial strains were isolated from agroindustrial residues from a Brazilian poultry farm. Three Gram-positive, spore-forming, rod-shaped bacteria and were identified as B. subtilis 1271, B. licheniformis 1269 and B. cereus 1268 using biochemical, physiologic and molecular methods. These Bacillus spp. strains grew and produced keratinases and peptidases using chicken feather as the sole source of nitrogen and carbon. B. subtilis 1271 degraded feathers completely after 7 days at room temperature and produced the highest levels of keratinase (446 U ml(-1)). Feather hydrolysis resulted in the production of serine, glycine, glutamic acid, valine and leucine as the major amino acids. Enzymography and zymography analyses demonstrated that enzymatic extracts from the Bacillus spp. effectively degraded keratin and gelatin substrates as well as, casein, hemoglobin and bovine serum albumin. Zymography showed that B. subtilis 1271 and B. licheniformis 1269 produced peptidases and keratinases in the 15-140 kDa range, and B. cereus produced a keratinase of ~200 kDa using feathers as the carbon and nitrogen source in culture medium. All peptidases and keratinases observed were inhibited by the serine specific peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF). The optimum assay conditions of temperature and pH for keratinase activity were 40-50°C and pH 10.0 for all strains. For gelatinases the best temperature and pH ranges were 50-70°C and pH 7.0-11. These isolates have potential for the biodegradation of feather wastes and production of proteolytic enzymes using feather as a cheap and eco-friendly substrate. PMID:25187135

  12. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    PubMed Central

    Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.

    2011-01-01

    Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187

  13. Siderophore-mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin .

    PubMed

    Zawadzka, Anna M; Abergel, Rebecca J; Nichiporuk, Rita; Andersen, Ulla N; Raymond, Kenneth N

    2009-04-28

    During growth under iron limitation, Bacillus cereus and Bacillus anthracis, two human pathogens from the Bacillus cereus group of Gram-positive bacteria, secrete two siderophores, bacillibactin (BB) and petrobactin (PB), for iron acquisition via membrane-associated substrate-binding proteins (SBPs) and other ABC transporter components. Since PB is associated with virulence traits in B. anthracis, the PB-mediated iron uptake system presents a potential target for antimicrobial therapies; its characterization in B. cereus is described here. Separate transporters for BB, PB, and several xenosiderophores are suggested by (55)Fe-siderophore uptake studies. The PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and the photoproduct of FePB (FePB(nu)) also mediate iron delivery into iron-deprived cells. Putative SBPs were recombinantly expressed, and their ligand specificity and binding affinity were assessed using fluorescence spectroscopy. The noncovalent complexes of the SBPs with their respective siderophores were characterized using ESI-MS. The differences between solution phase behavior and gas phase measurements are indicative of noncovalent interactions between the siderophores and the binding sites of their respective SBPs. These studies combined with bioinformatics sequence comparison identify SBPs from five putative transporters specific for BB and enterobactin (FeuA), 3,4-DHB and PB (FatB), PB (FpuA), schizokinen (YfiY), and desferrioxamine and ferrichrome (YxeB). The two PB receptors show different substrate ranges: FatB has the highest affinity for ferric 3,4-DHB, iron-free PB, FePB, and FePB(nu), whereas FpuA is specific to only apo- and ferric PB. The biochemical characterization of these SBPs provides the first identification of the transporter candidates that most likely play a role in the B. cereus group pathogenicity. PMID:19254027

  14. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin†a

    PubMed Central

    Zawadzka, Anna M.; Abergel, Rebecca J.; Nichiporuk, Rita; Andersen, Ulla N.; Raymond, Kenneth N.

    2009-01-01

    During growth under iron limitation, Bacillus cereus and Bacillus anthracis, two human pathogens from the Bacillus cereus group of Gram-positive bacteria, secrete two siderophores, bacillibactin (BB) and petrobactin (PB), for iron acquisition via membrane-associated substrate-binding proteins (SBPs) and other ABC transporter components. Since PB is associated with virulence traits in B. anthracis, the PB-mediated iron uptake system presents a potential target for antimicrobial therapies; its characterization in B. cereus is described here. Separate transporters for BB, PB, and several xenosiderophores are suggested by 55Fe-siderophore uptake studies. The PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and the photoproduct of FePB (FePB?) also mediate iron delivery into iron-deprived cells. Putative SBPs were recombinantly expressed, and their ligand specificity and binding affinity assessed using fluorescence spectroscopy. The noncovalent complexes of the SBPs with their respective siderophores were characterized using ESI-MS. The differences between solution phase behavior and gas phase measurements are indicative of noncovalent interactions between the siderophores and the binding sites of their respective SBPs. These studies combined with bioinformatics sequence comparison identify SBPs from five putative transporters specific for BB and enterobactin (FeuA), 3,4-DHB and PB (FatB), PB (FpuA), schizokinen (YfiY), and desferrioxamine and ferrichrome (YxeB). The two PB receptors show different substrate ranges: FatB has the highest affinity for ferric 3,4-DHB, iron-free PB, FePB, and FePB?, whereas FpuA is specific to only apo- and ferric PB. The biochemical characterization of these SBPs provides the first identification of the transporter candidates that most likely play a role in the B. cereus group pathogenicity. PMID:19254027

  15. Bacillus thuringiensis (Bt)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  16. Sporulation of Bacillus stearothermophilus

    PubMed Central

    Thompson, P. J.; Thames, O. A.

    1967-01-01

    A broth medium containing tryptone and manganese sulfate supported heavy sporulation of Bacillus stearothermophilus ATCC 7953 (NCA 1518) and four isolates identified as B. stearothermophilus. Maximal spore yields were obtained by use of inocula grown anaerobically in a medium containing glucose with aeration of sporulation medium via bubbling. After an extended stationary period, sporulation occurred concurrently with vegetative growth between 6 and 8 hr of incubation at 60 C. Omission of glucose from the inoculum or use of a “young” (2 hr) inoculum abolished the stationary period, but decreased spore yields. A requirement of oxygen for rapid vegetative growth and sporulation was demonstrated. Manganese (15 to 30 ppm) stimulated sporulation but did not enhance cell growth. Images Fig. 1 PMID:6053174

  17. Influence of hybrid inorganic/organic mesoporous and nanostructured materials on the cephalosporins' efficacy on different bacterial strains.

    PubMed

    Carmen Chifiriuc, M; Mihaiescu, D; Ilinca, E; Marutescu, L; Mihaescu, G; Mihai Grumezescu, A

    2012-12-01

    The aim of this study was to investigate the effect of different hybrid inorganic-organic micro- and nanomaterials (Fe(3)O(4)/PEG(600), Fe(3)O(4)/C(12), ZSM-5) on the antibacterial activity of different cephalosporins against Gram-positive and Gram-negative bacterial strains. The synergic effect of the studied materials was demonstrated by the increase in the growth inhibition zones diameter. All tested hybrid micro- and nanomaterials increased the activity of cefotaxime against Staphylococcus aureus. ZSM-5 increased the activity of cefotaxime and ceftriaxone and Fe(3)O(4)/C(12) that of ceftriaxone against Pseudomonas aeruginosa and S. aureus. The anti-Pseudomonas, anti-Klebsiella pneumoniae and anti-Bacillus subtilis activity of cefoperazone was increased by Fe(3)O(4)/C(12) nanoparticles, while the ZSM-5 improved its anti-Escherichia coli, K. pneumoniae, S. aureus and B. subtilis activity, whereas Fe(3)O(4)/PEG(600) against K. pneumoniae. The anti-K. pneumoniae activity of cefepime was increased by all tested nanoparticles, whereas its anti-B. subtilis and anti-E. coli activity was improved by Fe(3)O(4)/C(12) and Fe(3)O(4)/PEG(600) nanoparticles. In conclusion, both magnetic Fe(3)O(4) nanoparticles, charged outside as extra-shell with the antibiotic as well as ZSM-5 microparticles carrying the antibiotic inside the pores, significantly and specifically improved cephalosporin efficacy. A probable explanation for the increase in the antibiotic efficiency is the better penetration through the cellular wall of the antibiotic charged nanoparticles. PMID:23101869

  18. CodY Regulates Expression of the Bacillus subtilis Extracellular Proteases Vpr and Mpr

    PubMed Central

    Barbieri, Giulia; Voigt, Birgit; Albrecht, Dirk; Hecker, Michael; Albertini, Alessandra M.; Sonenshein, Abraham L.; Ferrari, Eugenio

    2015-01-01

    ABSTRACT CodY is a global transcriptional regulator in low-G+C Gram-positive bacteria that is responsive to GTP and branched-chain amino acids. By interacting with its two cofactors, it is able to sense the nutritional and energetic status of the cell and respond by regulating expression of adaptive genetic programs. In Bacillus subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. In this study, we demonstrated that expression of two extracellular proteases, Vpr and Mpr, is negatively controlled by CodY. By gel mobility shift and DNase I footprinting assays, we showed that CodY binds to the regulatory regions of both genes, in the vicinity of their transcription start points. The mpr gene is also characterized by the presence of a second, higher-affinity CodY-binding site located at the beginning of its coding sequence. Using strains carrying vpr- or mpr-lacZ transcriptional fusions in which CodY-binding sites were mutated, we demonstrated that repression of both protease genes is due to the direct effect by CodY and that the mpr internal site is required for regulation. The vpr promoter is a rare example of a sigma H-dependent promoter that is regulated by CodY. In a codY null mutant, Vpr became one of the more abundant proteins of the B. subtilis exoproteome. IMPORTANCE CodY is a global transcriptional regulator of metabolism and virulence in low-G+C Gram-positive bacteria. In B. subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. However, no role for B. subtilis CodY in regulating expression of extracellular proteases has been established to date. In this work, we demonstrate that by binding to the regulatory regions of the corresponding genes, B. subtilis CodY negatively controls expression of Vpr and Mpr, two extracellular proteases. Thus, in B. subtilis, CodY can now be seen to regulate the entire protein utilization pathway. PMID:25666135

  19. Bacillus gossypii sp. nov., isolated from the stem of Gossypium hirsutum.

    PubMed

    Kämpfer, Peter; Busse, Hans-Jürgen; McInroy, John A; Glaeser, Stefanie P

    2015-11-01

    A Gram-stain-positive, facultatively anaerobic, endospore-forming organism, isolated from the stem of Gossypium hirsutum, was studied to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain JM-267T was grouped in the genus Bacillus, related most closely to the type strains of Bacillus simplex and Bacillus huizhouensis (both 97.8?%), Bacillus muralis (97.7?%), Bacillus butanolivorans and Bacillus psychrosaccharolyticus (both 97.3?%). 16S rRNA gene sequence similarity to the sequences of the type strains of other Bacillus species was Bacillus. As major fatty acids, anteiso-C15?:?0, iso-C15?:?0, iso-C14?:?0 and iso-C16?:?0 were detected. The polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major quinone was menaquinone 7 (MK-7). DNA-DNA hybridizations with B. simplex DSM 1321T, B. huizhouensis GSS03T, B. muralis LMG 20238T, B. butanolivorans LMG 23974T and B. psychrosaccharolyticus DSM 6T resulted in values clearly below 70?%. In addition, physiological and biochemical test results allowed the clear phenotypic differentiation of strain JM-267T from the most closely related species. Hence, strain JM-267T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus gossypii sp. nov. is proposed. The type strain is JM-267T (?=?DSM 100034T?=?LMG 28742T). PMID:26303844

  20. Bacillus shacheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    PubMed

    Lei, Zuchao; Qiu, Peng; Ye, Renyuan; Tian, Jiewei; Liu, Yang; Wang, Lei; Tang, Shu-Kun; Li, Wen-Jun; Tian, Yongqiang

    2014-01-01

    A moderately halophilic bacterium, strain HNA-14(T), was isolated from a saline-alkali soil sample collected in Shache County, Xinjiang Province. On the basis of the polyphasic taxonomic data, the isolate was considered to be a member of the genus Bacillus. The organism grew optimally at 30 °C and pH 8.0. It was moderately halophilic and its optimum growth occurred at 5-10% NaCl. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid and the predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0 and the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and two unknown phospholipids. The G+C content of the genomic DNA was 48.6 mol%. Strain HNA-14(T) exhibited a low 16S rRNA gene sequence similarity of 96% with its nearest neighbors [Bacillus clausii KSM-K16 (96.5%), Bacillus xiaoxiensis DSM 21943(T)(96.2%), Bacillus clausii DSM 8716(T) (96.1%), Bacillus patagoniensis PAT05(T) (96.1%), Bacillus lehensis MLB-2(T) (96.0%), Bacillus oshimensis K11(T) (95.9%) and Bacillus hunanensis DSM 23008(T) (95.8%)] and the phenotypic characteristics indicate that strain HNA-14(T) can be distinguished from them. Therefore, a novel species of the genus Bacillus, Bacillus shacheensis sp. nov. (type strain, HNA-14(T) = KCTC 33145 = DSM 26902) is proposed. PMID:25008165

  1. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  2. Pressure Inactivation of Bacillus Endospores

    PubMed Central

    Margosch, Dirk; Gänzle, Michael G.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2004-01-01

    The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores. PMID:15574932

  3. Hypobaric bacteriology: growth, cytoplasmic membrane polarization and total cellular fatty acids in Escherichia coli and Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Pokorny, N. J.; Boulter-Bitzer, J. I.; Hart, M. M.; Storey, L.; Lee, H.; Trevors, J. T.

    2005-10-01

    Escherichia coli JM109 (Gram-negative) and Bacillus subtilis (Gram-positive) were grown under hypobaric conditions for 19 days at 25 °C to study the effects of 33 and 67 kPa low pressures on selected physiological responses; growth, cytoplasmic membrane polarization (measure of cytoplasmic membrane fluidity) and total cellular fatty acids. In the first experiment, cytoplasmic membrane polarization in B. subtilis increased under both hypobaric conditions, indicating the membrane became more rigid or less fluid. This experiment was repeated and the effect of the hypobaric conditions was not evident as in the first experiment with B. subtilis. In addition, total cellular fatty acids analysis for B. subtilis showed that hypobaric conditions did not alter the ratio of saturated to unsaturated fatty acids. The cytoplasmic membrane remained in the same fluid state in hypobaric grown E. coli cell cultures as in the 101 kPa ambient control cells in both experiments. However, the saturated to unsaturated ratios were altered in E. coli under hypobaric conditions. It is important to note the ratios for E. coli were less than 1, while the ratios for Bacillus were in the 28 50 range. Growth of both species was also measured by colony forming units at the termination of the 19 day experiment. Both bacterial species were capable of growth under hypobaric conditions and no distinct trend emerged as to the effect of hypobaric pressure on bacterial growth and cytoplasmic membrane fluidity.

  4. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain.

    PubMed

    Chitlaru, Theodor; Israeli, Ma'ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-01

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis Sterne?htrA strain secretes functional anthrax toxins but is 10-10(4)-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with Sterne?htrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization. PMID:26732659

  5. Nitrogen gas flushing can be bactericidal: the temperature-dependent destiny of Bacillus weihenstephanensis KBAB4 under a pure N2 atmosphere

    PubMed Central

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2014-01-01

    Gram-negative Pseudomonas and Gram-positive Bacillus are the most common spoilage bacteria in raw and pasteurized milk, respectively. In previous studies, nitrogen (N2) gas flushing treatments of raw and pasteurized milk at cold chain-temperatures inhibited bacterial spoilage and highlighted different susceptibilities to the N2 treatment with the exclusion of certain bacterial types. Here, we investigated the effects of pure N2 gas flushing on representative strains of these genera grown in mono- or co-cultures at 15 and 25°C. Bacillus weihenstephanensis, a frequent inhabitant of fluid dairy products, is represented by the genome-sequenced KBAB4 strain. Among Pseudomonas, P. tolaasii LMG 2342T and strain C1, a raw milk psychrotroph, were selected. The N2 gas flushing treatment revealed: (1) temperature-dependent responses; (2) inhibition of the growth of both pseudomonads; (3) emergence of small colony variants (SCVs) for B. weihenstephanensis strain KBAB4 at 15°C induced by the N2 treatment or when grown in co-culture with Pseudomonas strains; (4) N2 gas flushing modulates (suppressed or stimulated) bacterial antagonistic reactions in co-cultures; (5) most importantly, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that at 25°C the majority of the KBAB4 cells were killed by pure N2 gas flushing. This observation constitutes the first evidence that N2 gas flushing has bactericidal effects. PMID:25452751

  6. Rapid targeted gene disruption in Bacillus anthracis

    PubMed Central

    2013-01-01

    Background Anthrax is a zoonotic disease recognized to affect herbivores since Biblical times and has the widest range of susceptible host species of any known pathogen. The ease with which the bacterium can be weaponized and its recent deliberate use as an agent of terror, have highlighted the importance of gaining a deeper understanding and effective countermeasures for this important pathogen. High quality sequence data has opened the possibility of systematic dissection of how genes distributed on both the bacterial chromosome and associated plasmids have made it such a successful pathogen. However, low transformation efficiency and relatively few genetic tools for chromosomal manipulation have hampered full interrogation of its genome. Results Group II introns have been developed into an efficient tool for site-specific gene inactivation in several organisms. We have adapted group II intron targeting technology for application in Bacillus anthracis and generated vectors that permit gene inactivation through group II intron insertion. The vectors developed permit screening for the desired insertion through PCR or direct selection of intron insertions using a selection scheme that activates a kanamycin resistance marker upon successful intron insertion. Conclusions The design and vector construction described here provides a useful tool for high throughput experimental interrogation of the Bacillus anthracis genome and will benefit efforts to develop improved vaccines and therapeutics. PMID:24047152

  7. STUDIES ON BACILLUS WELCHII WITH SPECIAL REFERENCE TO GAS GANGRENE.

    PubMed

    Simonds, J P

    1917-06-01

    1. Spores of the Bacillus welchii group of bacteria were found on 100 per cent of the uniforms of Belgian soldiers who had come directly from the trenches, and in the meshes of all the samples examined of the new cloth from which the uniforms were made. 2. In fifteen out of twenty fresh war wounds members of this group of bacteria were found. Of the fifteen patients, only three later developed gas gangrene. Once the spores of Bacillus welchii have been carried into a wound the deep-lying lacerated muscle tissue appears to be the most important factor in the onset of gas gangrene. 3. Bacillus welchii is able to grow and produce gas in broth containing up to 40 per cent saccharose. Some strains were able to multiply and produce gas in 50 per cent saccharose broth; but none of those examined were able to grow when the concentration of the sugar reached 60 per cent. 4. The bubbling of pure oxygen through milk or dextrose broth cultures of Bacillus welchii has a definite depressor action on the production of gas. This does not appear to be-due to a reduced number of organisms in the culture. PMID:19868125

  8. Suitability of different ?-galactosidases as reporter enzymes in Bacillus subtilis.

    PubMed

    Welsch, Norma; Homuth, Georg; Schweder, Thomas

    2012-01-01

    The suitability of three ?-galactosidases as reporter enzymes for promoter expression analyses was investigated in Bacillus subtilis with respect to various temperature conditions during cultivation and assay procedures. Starting from the hypothesis that proteins derived from diverse habitats have different advantages as reporters at different growth temperatures, the beta-galactosidases from the thermophilic organism Bacillus stearothermophilus, from the mesophilic bacterium Escherichia coli and from the psychrophilic organism Pseudoalteromonas haloplanktis TAE79 were analysed under control of the constitutive B. subtilis lepA promoter. Subsequent expression of the ?-galactosidase genes and determination of specific activities was performed at different cultivation and assay temperatures using B. subtilis as host. Surprisingly, the obtained results demonstrated that the highest activities over a broad cultivation temperature range were obtained using the ?-galactosidase from the mesophilic bacterium E. coli whereas the enzymes from the thermophilic and psychrophilic bacteria revealed a more restricted usability in terms of cultivation temperature. PMID:22052389

  9. Process optimisation for the biosynthesis of cellulase by Bacillus PC-BC6 and its mutant derivative Bacillus N3 using submerged fermentation.

    PubMed

    Abdullah, Roheena; Zafar, Wajeeha; Nadeem, Muhammad; Iqtedar, Mehwish; Naz, Shagufta; Syed, Quratulain; Kaleem, Afshan

    2015-01-01

    This study deals with optimisation of cultural conditions for enhanced production of cellulase by Bacillus PC-BC6 and its mutant derivative Bacillus N3. Influence of different variables including incubation time, temperature, inoculum size, pH, nitrogen sources and metal ions has been studied. The optimum conditions for cellulase production were incubation period of 72 h, inoculum size 4% incubation temperature 37°C, pH 7, 0.25% ammonium sulphate, 0.2% peptone as inorganic and organic nitrogen source in case of Bacillus PC-BC6. In case of mutant Bacillus N3, optimal conditions were incubation period of 48 h, incubation temperature 37°C, inoculum size 3%, pH 7, 0.2% ammonium chloride and 0.15% yeast extract. Presence of MnSO4 and CaCl2 enhances the enzyme production by Bacillus PC-BC6 and mutant Bacillus N3, respectively. This study was innovative and successful in producing cellulase economically by using cheap indigenous substrate Saccharum spontaneum. PMID:25421057

  10. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, ?-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  11. Corynebacterium urealyticum: a comprehensive review of an understated organism

    PubMed Central

    Salem, Nagla; Salem, Lamyaa; Saber, Sally; Ismail, Ghada; Bluth, Martin H

    2015-01-01

    Corynebacterium urealyticum is a Gram positive, slow-growing, lipophilic, multi-drug resistant, urease positive micro-organism with diphtheroid morphology. It has been reported as an opportunistic nosocomial pathogen and as the cause of a variety of diseases including but not limited to cystitis, pyelonephritis, and bacteremia among others. This review serves to describe C. urealyticum with respect to its history, identification, laboratory investigation, relationship to disease and treatment in order to allow increased familiarity with this organism in clinical disease. PMID:26056481

  12. Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis

    PubMed Central

    Black, Katherine A.

    2015-01-01

    ABSTRACT The 2-thiouridine (s2U) modification of the wobble position in glutamate, glutamine, and lysine tRNA molecules serves to stabilize the anticodon structure, improving ribosomal binding and overall efficiency of the translational process. Biosynthesis of s2U in Escherichia coli requires a cysteine desulfurase (IscS), a thiouridylase (MnmA), and five intermediate sulfur-relay enzymes (TusABCDE). The E. coli MnmA adenylates and subsequently thiolates tRNA to form the s2U modification. Bacillus subtilis lacks IscS and the intermediate sulfur relay proteins, yet its genome contains a cysteine desulfurase gene, yrvO, directly adjacent to mnmA. The genomic synteny of yrvO and mnmA combined with the absence of the Tus proteins indicated a potential functionality of these proteins in s2U formation. Here, we provide evidence that the B. subtilis YrvO and MnmA are sufficient for s2U biosynthesis. A conditional B. subtilis knockout strain showed that s2U abundance correlates with MnmA expression, and in vivo complementation studies in E. coli IscS- or MnmA-deficient strains revealed the competency of these proteins in s2U biosynthesis. In vitro experiments demonstrated s2U formation by YrvO and MnmA, and kinetic analysis established a partnership between the B. subtilis proteins that is contingent upon the presence of ATP. Furthermore, we observed that the slow-growth phenotype of E. coli ?iscS and ?mnmA strains associated with s2U depletion is recovered by B. subtilis yrvO and mnmA. These results support the proposal that the involvement of a devoted cysteine desulfurase, YrvO, in s2U synthesis bypasses the need for a complex biosynthetic pathway by direct sulfur transfer to MnmA. IMPORTANCE The 2-thiouridine (s2U) modification of the wobble position in glutamate, glutamine, and lysine tRNA is conserved in all three domains of life and stabilizes the anticodon structure, thus guaranteeing fidelity in translation. The biosynthesis of s2U in Escherichia coli requires seven proteins: the cysteine desulfurase IscS, the thiouridylase MnmA, and five intermediate sulfur-relay enzymes (TusABCDE). Bacillus subtilis and most Gram-positive bacteria lack a complete set of biosynthetic components. Interestingly, the mnmA coding sequence is located adjacent to yrvO, encoding a cysteine desulfurase. In this work, we provide evidence that the B. subtilis YrvO is able to transfer sulfur directly to MnmA. Both proteins are sufficient for s2U biosynthesis in a pathway independent of the one used in E. coli. PMID:25825430

  13. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation.

    PubMed

    Fernandes, João C; Eaton, Peter; Gomes, Ana M; Pintado, Manuela E; Xavier Malcata, F

    2009-07-01

    Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss. PMID:19362422

  14. Antibacterial activity of a cell wall hydrolase from Lactobacillus paracasei NRRL B-50314 produced by recombinant Bacillus megaterium.

    PubMed

    Liu, Siqing; Rich, Joseph O; Anderson, Amber

    2015-02-01

    The cell-free supernatant (CFS) from Lactobacillus paracasei NRRL B-50314 culture has been previously reported as containing antibacterial activity against a wide variety of Gram-positive bacteria. The CFS protein gel slice corresponding to antibacterial activities was subjected to trypsin digestion and ion trap MASS (Gel/LC-MS/MS) analysis. BlastP search of the resulted IQAVISIAEQQIGKP sequence led to a hypothetical cell-wall associated hydrolase (designated as CWH here) from Lactobacillus paracasei ATCC 25302. Further analyses of CWH revealed that the IQAVISIAEQQIGKP belongs to a highly conserved region of the NlpC/P60 superfamily. The L. paracasei NRRL B-50314 CWH gene, cloned in pStrepHIS1525CWH477, was introduced into Bacillus megaterium MS 941. The production of CWH477 protein was induced by xylose. The CWH477 protein was purified by using NiNTA column, and elution fraction E2 showed highest antibacterial activity. This study and bioinformatics analyses suggested that the antibacterial activity of CWH could originate from its cell wall degrading enzymatic function. PMID:25533632

  15. Food Sensing: Aptamer-Based Trapping of Bacillus cereus Spores with Specific Detection via Real Time PCR in Milk.

    PubMed

    Fischer, Christin; Hünniger, Tim; Jarck, Jan-Hinnerk; Frohnmeyer, Esther; Kallinich, Constanze; Haase, Ilka; Hahn, Ulrich; Fischer, Markus

    2015-09-16

    Aerobic spores pose serious problems for both food product manufacturers and consumers. Milk is particularly at risk and thus an important issue of preventive consumer protection and quality assurance. The spore-former Bacillus cereus is a food poisoning Gram-positive pathogen which mainly produces two different types of toxins, the diarrhea inducing and the emetic toxins. Reliable and rapid analytical assays for the detection of B. cereus spores are required, which could be achieved by combining in vitro generated aptamers with highly specific molecular biological techniques. For the development of routine bioanalytical approaches, already existing aptamers with high affinity to B. cereus spores have been characterized by surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in terms of their dissociation constants and selectivity. Dissociation constants in the low nanomolar range (from 5.2 to 52.4 nM) were determined. Subsequently, the characterized aptamers were utilized for the establishment and validation of an aptamer-based trapping technique in both milk simulating buffer and milk with fat contents between 0.3 and 3.5%. Thereby, enrichment factors of up to 6-fold could be achieved. It could be observed that trapping protocol and characterized aptamers were fully adaptable to the application in milk. Due to the fact that aptamer selectivity is limited, a highly specific real time PCR assay was utilized following trapping to gain a higher degree of selectivity. PMID:26306797

  16. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials.

    PubMed

    Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M

    2014-08-01

    Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. PMID:24875320

  17. Non-cytotoxic antifungal agents: isolation and structures of gageopeptides A-D from a Bacillus strain 109GGC020.

    PubMed

    Tareq, Fakir Shahidullah; Lee, Min Ah; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Hasan, Choudhury M; Islam, Md Tofazzal; Shin, Hee Jae

    2014-06-18

    Antifungal resistance and toxicity problems of conventional fungicides highlighted the requirement of search for new safe antifungal agents. To comply with the requirement, we discovered four new non-cytotoxic lipopeptides, gageopeptides A-D, 1-4, from a marine-derived bacterium Bacillus subtilis. The structures and stereochemistry of gageopeptides were determined by NMR data analysis and chemical means. Gageopeptides exhibited significant antifungal activities against pathogenic fungi Rhizoctonia solani, Botrytis cinerea, and Colletotrichum acutatum with minimum inhibitory concentration (MIC) values of 0.02-0.06 ?M. In addition, these lipopeptides showed significant motility inhibition and lytic activities against zoospores of the late blight pathogen Phytophthora capsici. These compounds also showed potent antimicrobial activity against Gram positive and Gram negative bacteria with MIC values of 0.04-0.08 ?M. However, gageopeptides A-D did not exhibit any cytotoxicity (GI50 > 25 ?M) against cancer cell lines in sulforhodamine B (SRB), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and WST-1 ((4-[3-4-iodophenyl]-2-(4-nitrophenyl)-2H-5-tetrazolio)-1,3-benzene disulfonate)) assays, demonstrating that these compounds could be promising candidates for the development of non-cytotoxic antifungal agents. PMID:24857413

  18. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors

    PubMed Central

    Omer, Hélène; Alpha-Bazin, Béatrice; Brunet, Jean-Luc; Armengaud, Jean; Duport, Catherine

    2015-01-01

    Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ?entD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ?entD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group. PMID:26500610

  19. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Iydroose, Mahudunan; Mohideen, Mohmed Hanifa Abdul Kader; Mohan, Thankiah Selva; Cho, Min; Oh, Byung-Taek

    2014-08-01

    This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag(+) ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag(+) ion and 720 min. The UV-Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM-EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria. PMID:24569955

  20. Genome Analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: A Rhizobacterium That Improves Plant Growth and Stress Management

    PubMed Central

    Niazi, Adnan; Manzoor, Shahid; Asari, Shashidar; Bejai, Sarosh; Meijer, Johan; Bongcam-Rudloff, Erik

    2014-01-01

    The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants. PMID:25119988

  1. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    PubMed Central

    Phelan, Robert W.; Barret, Matthieu; Cotter, Paul D.; O’Connor, Paula M.; Chen, Rui; Morrissey, John P.; Dobson, Alan D. W.; O’Gara, Fergal; Barbosa, Teresa M.

    2013-01-01

    Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications. PMID:23736764

  2. Bacteria of the genus Bacillus have a hydrolase stereospecific to the D isomer of benzoyl-arginine-p-nitroanilide.

    PubMed Central

    Gofshtein-Gandman, L V; Keynan, A; Milner, Y

    1988-01-01

    A stereospecific enzyme activity capable of cleaving the amide bond of the synthetic substrate N-benzoyl-D-arginine-p-nitroanilide (D-BAPA) has been found in all aerobic and anaerobic members of the family Bacillaceae tested by us. Cells of nonsporeforming gram-positive or gram-negative bacteria contain a hydrolase activity stereospecific to N-benzoyl-L-arginine-p-nitroanilide. The D-BAPA-hydrolyzing enzymes (D-BAPAases) of mid-logarithmic-phase cells of Bacillus subtilis 168 and B. cereus T were compared. These enzymes had the same molecular weight of approximately 66,000 in gel filtration and the same electrophoretic mobility after electrophoresis on polyacrylamide gels. The D-BAPAases of B. subtilis 168 and B. cereus T differed in the effect of inhibitors on enzymatic activity. While both hydrolases were inhibited by tosyl-L-lysine chloromethyl ketone and tosyl-L-arginine-methyl ester as well as leupeptin, only the D-BAPAase of B. cereus T was inhibited by p-chloromercuribenzene sulfonic acid. The D-BAPAases of B. subtilis and B. cereus T had a Michaelis constant for D-BAPA of 2.9 x 10(-5) M and 1.4 x 10(-4) M, respectively. D-BAPAase is an intracellular enzyme localized in the protoplast (80 to 90% in soluble form in the cytoplasm). The ability to cleave D-BAPA is suggested as an additional chemotaxonomic characteristic of sporeforming bacteria of the genera Bacillus and Clostridium. Images PMID:3142860

  3. Detailed Genomic Analysis of the W? and ? Phages Infecting Bacillus anthracis: Implications for Evolution of Environmental Fitness and Antibiotic Resistance†

    PubMed Central

    Schuch, Raymond; Fischetti, Vincent A.

    2006-01-01

    Phage-mediated lysis has been an essential laboratory tool for rapidly identifying Bacillus anthracis for more than 40 years, relying on the ? phage derivative of a Bacillus cereus prophage called W. The complete genomic sequences of the temperate W phage, referred to as W?, and its lytic variant ? were determined and found to encode 53 open reading frames each, spanning 40,864 bp and 37,373 bp, respectively. Direct comparison of the genomes showed that ? evolved through mutations at key loci controlling host recognition, lysogenic growth, and possibly host phenotypic modification. Included are a cluster of point mutations at the gp14 tail fiber locus of ?, encoding a protein that, when fused to green fluorescent protein, binds specifically to B. anthracis. A large 2,003-bp deletion was also identified at the ? lysogeny module, explaining its shift from a temperate to a lytic lifestyle. Finally, evidence of recombination was observed at a dicistronic W? locus, encoding putative bacterial cell surface-modifying proteins, replaced in ? with a locus, likely obtained from a B. anthracis prophage, encoding demonstrable fosfomycin resistance. Reverse transcriptase PCR analysis confirmed strong induction at the dicistronic W? locus and at four other phage loci in B. anthracis and/or B. cereus lysogens. In all, this study represents the first genomic and functional description of two historically important phages and is part of a broader investigation into contributions of phage to the B. anthracis life cycle. Initial findings suggest that lysogeny of B. anthracis promotes ecological adaptation, rather than virulence, as with other gram-positive pathogens. PMID:16585764

  4. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    PubMed

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture. PMID:25440998

  5. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  6. Transient heterogeneity in extracellular protease production by Bacillus subtilis

    E-print Network

    Igoshin, Oleg

    Transient heterogeneity in extracellular protease production by Bacillus subtilis Jan sophisticated survival strategy Bacillus subtilis employs is the differentiation of a subpopulation of cells; microbiology & pathogens Keywords: Bacillus subtilis; bistability; DegU; modeling; sporulation This is an open

  7. Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers

    SciTech Connect

    Wig, Andrew G; Arakawa, Edward T; Passian, Ali; Ferrell, Thomas L; Thundat, Thomas George

    2006-03-01

    Microcalorimetric optical and infrared spectroscopy is a method of determining the spectral absorption of small quantities of materials over a wide range of incident wavelengths. In this paper, the first spectroscopic results for microcantilevers coated with Bacillus anthracis (BA) are presented. These results, for B. anthracis from 2.5 to 14.5 {micro}m, are compared with results from microcantilevers coated with Bacillus cereus (BC) and standard spectroscopic absorption data. The results demonstrate strong correlation between the deflection measurements and the reference spectroscopic absorption peaks. An advantage of this microcantilever-based method over traditional spectroscopy is that much smaller amounts of material (nanogram quantities) can be detected in comparison with the milligram amounts needed for standard methods. Another advantage is that the complete system can be relatively small without sacrificing spectral resolution.

  8. Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two independent isolates of a Gram-positive, aerobic, motile rod-shaped bacterium were recovered from soybean-based fermented foodstuffs. Two were isolated from cheonggukjang, a Korean fermented soybean food product. Multilocus sequencing analysis of the 16S rRNA gene and 5 protein coding genes indi...

  9. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolate of a Gram-positive, facultatively anaerobic, motile, rod-shaped, endospore forming bacterium was recovered from soybean-based fermented paste. It was isolated from cheonggukjang, a Korean fermented soybean food product. Phylogenetic analysis of the 16S rRNA gene indicated that the strain ...

  10. Differentiation of Bacillus anthracis and other Bacillus species by lectins.

    PubMed Central

    Cole, H B; Ezzell, J W; Keller, K F; Doyle, R J

    1984-01-01

    Bacillus anthracis was agglutinated by several lectins, including those from Griffonia simplicifolia, Glycine max, Abrus precatorius, and Ricinus communis. Some strains of Bacillus cereus var. mycoides (B. mycoides) were strongly reactive with the lectin from Helix pomatia and weakly reactive with the G. max lectin. The differential interactions between Bacillus species and lectins afforded a means of distinguishing B. anthracis from other bacilli. B. cereus strains exhibited heterogeneity with respect to agglutination patterns by lectins but could readily be differentiated from B. anthracis and the related B. mycoides. Spores of B. anthracis and B. mycoides retained lectin receptors, although the heating of spores or vegetative cells at 100 degrees C resulted in a decrease in their ability to be specifically agglutinated. Fluorescein-conjugated lectin of G. max stained vegetative cells of B. anthracis uniformly, suggesting that the distribution of lectin receptors was continuous over the entire cellular surface. B. anthracis cells grown under conditions to promote the production of capsular poly(D-glutamyl peptide) were also readily agglutinated by the lectins, suggesting that the lectin reactive sites penetrate the polypeptide layer. Trypsin, subtilisin, lysozyme, and mutanolysin did not modify the reactivity of B. anthracis with the G. max agglutinin, although the same enzymes markedly diminished the interaction between the lectin and B. mycoides. Because the lectins which interact with B. anthracis are specific for alpha-D-galactose or 2-acetamido-2-deoxy-alpha-D-galactose residues, it is likely that the bacteria possess cell surface polymers which contain these sugars. Lectins may prove useful in the laboratory identification of B. anthracis and possibly other pathogenic Bacillus species, such as B. cereus. Images PMID:6418761

  11. Identification and Characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae)

    PubMed Central

    Li, Guan-Nan; Xia, Xue-Juan; Zhao, Huan-Huan; Sendegeya, Parfait; Zhu, Yong

    2015-01-01

    The bacterial diseases of silkworms cause significant reductions in sericulture and result in huge economic loss. This study aimed to identify and characterize a pathogen from diseased silkworm. SW7-1, a pathogenic bacterial strain, was isolated from the diseased silkworm. The strain was identified on the basis of its bacteriological properties and 16S rRNA gene sequence. The colony was round, slightly convex, opaque, dry, and milky on a nutrient agar medium, the colony also exhibited jagged edges. SW7-1 was Gram-positive, without parasporal crystal, and 0.8–1.2 by 2.6–3.4?µm in length, resembling long rods with rounded ends. The strain was positive to most of the physiological biochemical tests used in this study. The strain could utilize glucose, sucrose, and maltose. The results of its 16S rRNA gene sequence analysis revealed that SW7-1 shared the highest sequence identity (>99%) with Bacillus cereus strain 14. The bacterial strain was highly susceptible to gentamycin, streptomycin, erythromycin, norfloxacin, and ofloxacin and moderately susceptible to tetracycline and rifampicin. It exhibited resistance to other antibiotics. SW7-1 had hemolytic activity and could produce extracellular casease, lipase, and amylase. SW7-1 could reproduce septicemia-like symptoms with high mortality rate when re-fed to healthy silkworm. .The median lethal concentration (LC50) was 5.45?×?104 cfu/ml. Thus, SW7-1 was identified as B. cereus, which is a pathogen for silkworm and human infections are possible. PMID:26411789

  12. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis.

    PubMed

    Noirot-Gros, Marie-Françoise; Velten, M; Yoshimura, M; McGovern, S; Morimoto, T; Ehrlich, S D; Ogasawara, N; Polard, P; Noirot, Philippe

    2006-02-14

    The regulation of initiation of DNA replication is crucial to ensure that the genome is replicated only once per cell cycle. In the Gram-positive bacterium Bacillus subtilis, the function of the YabA protein in initiation control was assigned based on its interaction with the DnaA initiator and the DnaN sliding clamp in the yeast two-hybrid and on the overinitiation phenotype observed in a yabA null strain. However, YabA is unrelated to known regulators of initiation and interacts with several additional proteins that could also be involved directly or not in initiation control. Here, we investigated the specific role of YabA interactions with DnaA and DnaN in initiation control by identifying single amino acid changes in YabA that disrupted solely the interaction with DnaA or DnaN. These disruptive mutations delineated specific interacting surfaces involving a Zn2+-cluster structure in YabA. In B. subtilis, these YabA interaction mutations abolished both initiation control and the formation of YabA foci at the replication factory. Upon coexpression of deficient YabA mutants, mixed oligomers formed foci at the replisome and restored initiation control, indicating that YabA acts within a heterocomplex with DnaA and DnaN. In agreement, purified YabA oligomerized and formed complexes with DnaA and DnaN. These findings underscore the functional association of YabA with the replication machinery, indicating that YabA regulates initiation through coupling with the elongation of replication. PMID:16461910

  13. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract.

    PubMed

    Berthold-Pluta, Anna; Pluta, Antoni; Garbowska, Monika

    2015-05-01

    Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably. PMID:25794697

  14. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore

    PubMed Central

    Zawadzka, Anna M.; Kim, Youngchang; Maltseva, Natalia; Nichiporuk, Rita; Fan, Yao; Joachimiak, Andrzej; Raymond, Kenneth N.

    2009-01-01

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB?) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB? with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a Gram-positive siderophore receptor is presented. The 1.75-? crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two ?/?/? sandwich domains connected by a long ?-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies. PMID:19955416

  15. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore.

    PubMed

    Zawadzka, Anna M; Kim, Youngchang; Maltseva, Natalia; Nichiporuk, Rita; Fan, Yao; Joachimiak, Andrzej; Raymond, Kenneth N

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB(nu)) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB(nu) with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a gram-positive siderophore receptor is presented. The 1.75-A crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two alpha/beta/alpha sandwich domains connected by a long alpha-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies. PMID:19955416

  16. Comprehensive Analysis of Temporal Alterations in Cellular Proteome of Bacillus subtilis under Curcumin Treatment

    PubMed Central

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956

  17. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source

    PubMed Central

    Kosono, Saori; Tamura, Masaru; Suzuki, Shota; Kawamura, Yumi; Yoshida, Ayako; Nishiyama, Makoto; Yoshida, Minoru

    2015-01-01

    Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA) increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is common in B. subtilis, just as it is in Escherichia coli. Our results suggest that acyl modifications play a role in the physiological adaptations to changes in carbon nutrient availability of B. subtilis. PMID:26098117

  18. Characterization of Biochemical Properties of Bacillus subtilis RecQ Helicase

    PubMed Central

    Qin, Wei; Liu, Na-Nv; Wang, Lijun; Zhou, Min; Ren, Hua; Bugnard, Elisabeth; Liu, Jie-Lin; Zhang, Lin-Hu; Vendôme, Jeremie

    2014-01-01

    RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg2+-dependent DNA helicase activity with a 3??5? polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3?-overhang but is inactive on blunt-ended dsDNA and 5?-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5?-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]'s possible functions in preserving genomic stability. PMID:25246477

  19. Definition of the ?W Regulon of Bacillus subtilis in the Absence of Stress

    PubMed Central

    Zweers, Jessica C.; Nicolas, Pierre; Wiegert, Thomas; van Dijl, Jan Maarten; Denham, Emma L.

    2012-01-01

    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF ?W regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF ?X, ?Y, and ?M regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly ?W-regulated. Under these conditions, ?W exhibits a basal level of activity. Subsequently, we verified the ?W-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the ?W anti-sigma factor RsiW and subsequent activation of the ?W-regulon. Taken together, our studies identify 89 genes as being strictly ?W-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of ?W-dependent genes were relatively mild, which implies that ?W-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via ?W, but that this membrane protease also exerts other important post-transcriptional regulatory functions. PMID:23155385

  20. Definition of the ?(W) regulon of Bacillus subtilis in the absence of stress.

    PubMed

    Zweers, Jessica C; Nicolas, Pierre; Wiegert, Thomas; van Dijl, Jan Maarten; Denham, Emma L

    2012-01-01

    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF ?(W) regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF ?(X), ?(Y), and ?(M) regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly ?(W)-regulated. Under these conditions, ?(W) exhibits a basal level of activity. Subsequently, we verified the ?(W)-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the ?(W) anti-sigma factor RsiW and subsequent activation of the ?(W)-regulon. Taken together, our studies identify 89 genes as being strictly ?(W)-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of ?(W)-dependent genes were relatively mild, which implies that ?(W)-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via ?(W), but that this membrane protease also exerts other important post-transcriptional regulatory functions. PMID:23155385

  1. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore

    SciTech Connect

    Zawadzka, A. M.; Kim, Y.; Maltseva, N; Nichiporuk, R; Fan, Y; Joachimiak, A; Raymond, KN

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB{sup {nu}}) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB{sup {nu}} with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a Gram-positive siderophore receptor is presented. The 1.75-{angstrom} crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two {alpha}/{beta}/{alpha} sandwich domains connected by a long {alpha}-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.

  2. Characterization of biochemical properties of Bacillus subtilis RecQ helicase.

    PubMed

    Qin, Wei; Liu, Na-Nv; Wang, Lijun; Zhou, Min; Ren, Hua; Bugnard, Elisabeth; Liu, Jie-Lin; Zhang, Lin-Hu; Vendôme, Jeremie; Hu, Jin-Shan; Xi, Xu Guang

    2014-12-01

    RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg(2+)-dependent DNA helicase activity with a 3' ? 5' polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3'-overhang but is inactive on blunt-ended dsDNA and 5'-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5'-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]'s possible functions in preserving genomic stability. PMID:25246477

  3. Identification and Characterization of Mutations Conferring Resistance to d-Amino Acids in Bacillus subtilis

    PubMed Central

    Leiman, Sara A.; Richardson, Charles; Foulston, Lucy; Elsholz, Alexander K. W.; First, Eric A.

    2015-01-01

    ABSTRACT Bacteria produce d-amino acids for incorporation into the peptidoglycan and certain nonribosomally produced peptides. However, d-amino acids are toxic if mischarged on tRNAs or misincorporated into protein. Common strains of the Gram-positive bacterium Bacillus subtilis are particularly sensitive to the growth-inhibitory effects of d-tyrosine due to the absence of d-aminoacyl-tRNA deacylase, an enzyme that prevents misincorporation of d-tyrosine and other d-amino acids into nascent proteins. We isolated spontaneous mutants of B. subtilis that survive in the presence of a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine. Whole-genome sequencing revealed that these strains harbored mutations affecting tRNATyr charging. Three of the most potent mutations enhanced the expression of the gene (tyrS) for tyrosyl-tRNA synthetase. In particular, resistance was conferred by mutations that destabilized the terminator hairpin of the tyrS riboswitch, as well as by a mutation that transformed a tRNAPhe into a tyrS riboswitch ligand. The most potent mutation, a substitution near the tyrosine recognition site of tyrosyl-tRNA synthetase, improved enzyme stereoselectivity. We conclude that these mutations promote the proper charging of tRNATyr, thus facilitating the exclusion of d-tyrosine from protein biosynthesis in cells that lack d-aminoacyl-tRNA deacylase. IMPORTANCE Proteins are composed of l-amino acids. Mischarging of tRNAs with d-amino acids or the misincorporation of d-amino acids into proteins causes toxicity. This work reports on mutations that confer resistance to d-amino acids and their mechanisms of action. PMID:25733611

  4. Evidence for Cyclic Di-GMP-Mediated Signaling in Bacillus subtilis

    PubMed Central

    Chen, Yun; Chai, Yunrong

    2012-01-01

    Cyclic di-GMP (c-di-GMP) is a second messenger that regulates diverse cellular processes in bacteria, including motility, biofilm formation, cell-cell signaling, and host colonization. Studies of c-di-GMP signaling have chiefly focused on Gram-negative bacteria. Here, we investigated c-di-GMP signaling in the Gram-positive bacterium Bacillus subtilis by constructing deletion mutations in genes predicted to be involved in the synthesis, breakdown, or response to the second messenger. We found that a putative c-di-GMP-degrading phosphodiesterase, YuxH, and a putative c-di-GMP receptor, YpfA, had strong influences on motility and that these effects depended on sequences similar to canonical EAL and RxxxR—D/NxSxxG motifs, respectively. Evidence indicates that YpfA inhibits motility by interacting with the flagellar motor protein MotA and that yuxH is under the negative control of the master regulator Spo0A?P. Based on these findings, we propose that YpfA inhibits motility in response to rising levels of c-di-GMP during entry into stationary phase due to the downregulation of yuxH by Spo0A?P. We also present evidence that YpfA has a mild influence on biofilm formation. In toto, our results demonstrate the existence of a functional c-di-GMP signaling system in B. subtilis that directly inhibits motility and directly or indirectly influences biofilm formation. PMID:22821967

  5. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  6. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores.

    PubMed

    Wood, Joseph P; Meyer, Kathryn M; Kelly, Thomas J; Choi, Young W; Rogers, James V; Riggs, Karen B; Willenberg, Zachary J

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  7. Spider mite infestations reduce Bacillus thuringiensis toxin concentration in corn leaves and predators avoid spider mites that have fed on Bacillus thuringiensis corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic crops containing pyramid-stacked genes for Bacillus thuringiensis derived toxins for controlling coleopteran and lepidopteran pests are increasingly common. As part of environmental risk assessments, these crops are evaluated for toxicity against non-target organisms, and for their poten...

  8. Screening for bacillus isolates in the broiler gastrointestinal tract.

    PubMed

    Barbosa, Teresa M; Serra, Cláudia R; La Ragione, Roberto M; Woodward, Martin J; Henriques, Adriano O

    2005-02-01

    Spores from a number of different Bacillus species are currently being used as human and animal probiotics, although their mechanisms of action remain poorly understood. Here we describe the isolation of 237 presumptive gut-associated Bacillus spp. isolates that were obtained by heat and ethanol treatment of fecal material from organically reared broilers followed by aerobic plating. Thirty-one representative isolates were characterized according to their morphological, physiological, and biochemical properties as well as partial 16S rRNA gene sequences and screening for the presence of plasmid DNA. The Bacillus species identified included B. subtilis, B. pumilus, B. licheniformis, B. clausii, B. megaterium, B. firmus, and species of the B. cereus group, whereas a number of our isolates could not be classified. Intrinsic properties of potential importance for survival in the gut that could be advantageous for spore-forming probiotics were further investigated for seven isolates belonging to five different species. All isolates sporulated efficiently in the laboratory, and the resulting spores were tolerant to simulated gastrointestinal tract conditions. They also exhibited antimicrobial activity against a broad spectrum of bacteria, including food spoilage and pathogenic organisms such as Bacillus spp., Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. Importantly, the isolates were susceptible to most of the antibiotics tested, arguing that they would not act as donors for resistance determinants if introduced in the form of probiotic preparations. Together, our results suggest that some of the sporeformers isolated in this study have the potential to persist in or transiently associate with the complex gut ecosystem. PMID:15691955

  9. Role and Function of LitR, an Adenosyl B12-Bound Light-Sensitive Regulator of Bacillus megaterium QM B1551, in Regulation of Carotenoid Production

    PubMed Central

    Mise, Kou; Hagiwara, Kenta; Hirata, Naoya; Watanabe, Shoko; Toriyabe, Minami; Shiratori-Takano, Hatsumi; Ueda, Kenji

    2015-01-01

    ABSTRACT The LitR/CarH family of proteins is a light-sensitive MerR family of transcriptional regulators that contain an adenosyl B12 (coenzyme B12 or AdoB12)-binding domain at the C terminus. The genes encoding these proteins are found in phylogenetically diverse bacterial genera; however, the biochemical properties of these proteins from Gram-positive bacteria remain poorly understood. We performed genetic and biochemical analyses of a homolog of the LitR protein from Bacillus megaterium QM B1551, a Gram-positive endospore-forming soil bacterium. Carotenoid production was induced by illumination in this bacterium. In vivo analysis demonstrated that LitR plays a central role in light-inducible carotenoid production and serves as a negative regulator of the light-inducible transcription of crt and litR itself. Biochemical evidence showed that LitR in complex with AdoB12 binds to the promoter regions of litR and the crt operon in a light-sensitive manner. In vitro transcription experiments demonstrated that AdoB12-LitR inhibited the specific transcription of the crt promoter generated by a ?A-containing RNA polymerase holoenzyme under dark conditions. Collectively, these data indicate that the AdoB12-LitR complex serves as a photoreceptor with DNA-binding activity in B. megaterium QM B1551 and that its function as a transcriptional repressor is fundamental to the light-induced carotenoid production. IMPORTANCE Members of the LitR/CarH family are AdoB12-based photosensors involved in light-inducible carotenoid production in nonphototrophic Gram-negative bacteria. Our study revealed that Bacillus LitR in complex with AdoB12 also serves as a transcriptional regulator with a photosensory function, which indicates that the LitR/CarH family is generally involved in the light-inducible carotenoid production of nonphototrophic bacteria. PMID:25917914

  10. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    SciTech Connect

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.; Wallace, Bret D.; Paige, Carleitta; Hamilton, Chris J.; Dos Santos, Patricia C.; Redinbo, Matthew R.; Reid, Sean D.; Claiborne, Al

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.

  11. Inactivation of Bacillus anthracis Spores

    PubMed Central

    Whitney, Ellen A. Spotts; Beatty, Mark E.; Taylor, Thomas H.; Weyant, Robbin; Sobel, Jeremy; Arduino, Matthew J.

    2003-01-01

    After the intentional release of Bacillus anthracis through the U.S. Postal Service in the fall of 2001, many environments were contaminated with B. anthracis spores, and frequent inquiries were made regarding the science of destroying these spores. We conducted a survey of the literature that had potential application to the inactivation of B. anthracis spores. This article provides a tabular summary of the results. PMID:12780999

  12. Evaluating the elimination of Brazilian entomopathogenic Bacillus by non-target aquatic species: an experimental study.

    PubMed

    Oliveira-Filho, Eduardo C; Ramos, Felipe R; Miranda, Barbara C G; Muniz, Daphne H F; Monnerat, Rose G

    2014-10-01

    Ecotoxicity tests are key to predict environmental hazards resulting from chemical and biological pesticides in non-target species. In order to assess the effects of microbial pesticides it is important to determine if they cause infection in test organisms. At present the microbial elimination rate or clearance is not included in ecotoxicological regulatory protocols. This study evaluated the elimination of Bacillus thuringiensis and Bacillus sphaericus from fish and snails, after 30 days' exposure to commercial formulations of such entomopathogens. Data obtained showed that in clean water the tendency to eliminate microbial agents from the body of the exposed organisms is gradual over time but after 7 days the fish and snails were free of the two tested Bacillus spp. PMID:25168695

  13. Fluorescent Amplified Fragment Length Polymorphism Analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis Isolates

    PubMed Central

    Hill, Karen K.; Ticknor, Lawrence O.; Okinaka, Richard T.; Asay, Michelle; Blair, Heather; Bliss, Katherine A.; Laker, Mariam; Pardington, Paige E.; Richardson, Amber P.; Tonks, Melinda; Beecher, Douglas J.; Kemp, John D.; Kolstø, Anne-Brit; Wong, Amy C. Lee; Keim, Paul; Jackson, Paul J.

    2004-01-01

    DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together. PMID:14766590

  14. Homology of Ribosomal Ribonucleic Acid of Diverse Bacterial Species with Escherichia coli and Bacillus stearothermophilus

    PubMed Central

    Pace, B.; Campbell, L. Leon

    1971-01-01

    Hybridization competition experiments were used to examine the ribosomal ribonucleic acid (rRNA) homologies of 22 bacteria and 3 higher organisms with Escherichia coli and Bacillus stearothermophilus. Although little or no homology was observed with the higher organisms, the bacteria showed a wide range of homologies. Organisms whose rRNA showed closer homology to E. coli rRNA showed less rRNA homology to B. stearothermophilus rRNA and vice versa. PMID:4329734

  15. Alexandre Yersin and the plague bacillus.

    PubMed

    Solomon, T

    1995-06-01

    To most doctors, the name Yersin is known only for its eponymous connection with the plague bacillus, Yersinia pestis. In Vietnam, where he lived for over 50 years, Alexandre Yersin is a legendary figure. On the 100th anniversary of the identification of the plague bacillus, a review of this extraordinary man and his controversial discovery is timely. PMID:7783282

  16. Organics.

    ERIC Educational Resources Information Center

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  17. Spore formation in Bacillus subtilis

    PubMed Central

    Tan, Irene S.; Ramamurthi, Kumaran S.

    2014-01-01

    Summary Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental program called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signaling, membrane remodeling, protein localization, and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications. PMID:24983526

  18. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose utilizing capabilities. It was found to have high tolerance f...

  19. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix

    E-print Network

    Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix Agnese Seminaraa for review June 23, 2011) Bacterial biofilms are organized communities of cells living in asso- ciation with surfaces. The hallmark of biofilm formation is the secretion of a polymeric matrix rich in sugars

  20. The production of tryptamine from tryptophan by Bacillus cereus (KVT)

    PubMed Central

    Perley, J. E.; Stowe, B. B.

    1966-01-01

    1. A strain of Bacillus cereus has been isolated that can produce tryptamine when grown in a broth containing tryptophan. 2. The conditions of culture under which this conversion is optimum, as well as the general pathways of tryptophan metabolism by this micro-organism, have been examined, and the information obtained has been used to obtain the first demonstration of cell-free tryptophan-carboxy-lyase activity. 3. The significance of these findings both to the current attempts to elucidate the pathways of metabolism of tryptophan in higher plants and to the published generalizations about the previously studied amino acid carboxy-lyases is discussed. PMID:4960870

  1. Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco.

    PubMed

    Wu, Kai; Fang, Zhiying; Guo, Rong; Pan, Bin; Shi, Wen; Yuan, Saifei; Guan, Huilin; Gong, Ming; Shen, Biao; Shen, Qirong

    2015-01-01

    Bacillus amyloliquefaciens is a plant-beneficial Gram-positive bacterium involved in suppressing soil-borne pathogens through the secretion of secondary metabolites and high rhizosphere competence. Biofilm formation is regarded as a prerequisite for high rhizosphere competence. In this work, we show that plant extracts affect the chemotaxis and biofilm formation of B. amyloliquefaciens SQY 162 (SQY 162). All carbohydrates tested induced the chemotaxis and biofilm formation of the SQY 162 strain; however, the bacterial growth rate was not influenced by the addition of carbohydrates. A strong chemotactic response and biofilm formation of SQY 162 were both induced by pectin through stimulation of surfactin synthesis and transcriptional expression of biofilm formation related matrix genes. These results suggested that pectin might serve as an environmental factor in the stimulation of the biofilm formation of SQY 162. Furthermore, in pot experiments the surfactin production and the population of SQY 162 in the rhizosphere significantly increased with the addition of sucrose or pectin, whereas the abundance of the bacterial pathogen Ralstonia decreased. With increased production of secondary metabolites in the rhizosphere of tobacco by SQY 162 and improved colonization density of SQY 162 in the pectin treatment, the disease incidences of bacterial wilt were efficiently suppressed. The present study revealed that certain plant extracts might serve as energy sources or environmental cues for SQY 162 to enhance the population density on tobacco root and bio-control efficacy of tobacco bacterial wilt. PMID:25996156

  2. SecDF as Part of the Sec-Translocase Facilitates Efficient Secretion of Bacillus cereus Toxins and Cell Wall-Associated Proteins

    PubMed Central

    Vörös, Aniko; Simm, Roger; Slamti, Leyla; McKay, Matthew J.; Hegna, Ida K.; Nielsen-LeRoux, Christina; Hassan, Karl A.; Paulsen, Ian T.; Lereclus, Didier; Økstad, Ole Andreas; Molloy, Mark P.; Kolstø, Anne-Brit

    2014-01-01

    The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ?secDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system. PMID:25083861

  3. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity

    PubMed Central

    Schilling, Oliver; Langbein, Ines; Müller, Michael; Schmalisch, Matthias H.; Stülke, Jörg

    2004-01-01

    The Gram-positive soil bacterium Bacillus subtilis transports glucose by the phosphotransferase system. The genes for this system are encoded in the ptsGHI operon. The expression of this operon is controlled at the level of transcript elongation by a protein-dependent riboswitch. In the absence of glucose a transcriptional terminator prevents elongation into the structural genes. In the presence of glucose, the GlcT protein is activated and binds and stabilizes an alternative RNA structure that overlaps the terminator and prevents termination. In this work, we have studied the structural and sequence requirements for the two mutually exclusive RNA structures, the terminator and the RNA antiterminator (the RAT sequence). In both cases, the structure seems to be more important than the actual sequence. The number of paired and unpaired bases in the RAT sequence is essential for recognition by the antiterminator protein GlcT. In contrast, mutations of individual bases are well tolerated as long as the general structure of the RAT is not impaired. The introduction of one additional base in the RAT changed its structure and resulted in complete loss of interaction with GlcT. In contrast, this mutant RAT was efficiently recognized by a different B.subtilis antitermination protein, LicT. PMID:15155854

  4. A novel SMC-like protein, SbcE (YhaN), is involved in DNA double-strand break repair and competence in Bacillus subtilis

    PubMed Central

    Krishnamurthy, Mahalakshmi; Tadesse, Serkalem; Rothmaier, Katharina; Graumann, Peter L.

    2010-01-01

    Bacillus subtilis and most Gram positive bacteria possess four SMC like proteins: SMC, SbcC, RecN and the product of the yhaN gene, termed SbcE. SbcE is most similar to SbcC but contains a unique central domain. We show that SbcE plays a role during transformation in competent cells and in DNA double-strand break (DSB) repair. The phenotypes were strongly exacerbated by the additional deletion of recN or of sbcC, suggesting that all three proteins act upstream of RecA and provide distinct avenues for presynapsis. SbcE accumulated at the cell poles in competent cells, and localized as a discrete focus on the nucleoids in 10% of growing cells. This number moderately increased after treatment with DNA damaging agents and in the absence of RecN or of SbcC. Damage-induced foci of SbcE arose early after induction of DNA damage and rarely colocalized with the replication machinery. Our work shows that SMC-like proteins in B. subtilis play roles at different subcellular sites during DNA repair. SbcC operates at breaks occurring at the replication machinery, whereas RecN and SbcE function mainly, but not exclusively, at DSBs arising elsewhere on the chromosome. In agreement with this idea, we found that RecN-YFP damage-induced assemblies also arise in the absence of ongoing replication. PMID:19906728

  5. Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco

    PubMed Central

    Guo, Rong; Pan, Bin; Shi, Wen; Yuan, Saifei; Guan, Huilin; Gong, Ming; Shen, Biao; Shen, Qirong

    2015-01-01

    Bacillus amyloliquefaciens is a plant-beneficial Gram-positive bacterium involved in suppressing soil-borne pathogens through the secretion of secondary metabolites and high rhizosphere competence. Biofilm formation is regarded as a prerequisite for high rhizosphere competence. In this work, we show that plant extracts affect the chemotaxis and biofilm formation of B. amyloliquefaciens SQY 162 (SQY 162). All carbohydrates tested induced the chemotaxis and biofilm formation of the SQY 162 strain; however, the bacterial growth rate was not influenced by the addition of carbohydrates. A strong chemotactic response and biofilm formation of SQY 162 were both induced by pectin through stimulation of surfactin synthesis and transcriptional expression of biofilm formation related matrix genes. These results suggested that pectin might serve as an environmental factor in the stimulation of the biofilm formation of SQY 162. Furthermore, in pot experiments the surfactin production and the population of SQY 162 in the rhizosphere significantly increased with the addition of sucrose or pectin, whereas the abundance of the bacterial pathogen Ralstonia decreased. With increased production of secondary metabolites in the rhizosphere of tobacco by SQY 162 and improved colonization density of SQY 162 in the pectin treatment, the disease incidences of bacterial wilt were efficiently suppressed. The present study revealed that certain plant extracts might serve as energy sources or environmental cues for SQY 162 to enhance the population density on tobacco root and bio-control efficacy of tobacco bacterial wilt. PMID:25996156

  6. Adsorption of cadmium to Bacillus subtilis bacterial cell walls : a pH-dependent x-ray absorption fine structure spectroscopy study.

    SciTech Connect

    Boyanov, M. I.; Kelly, S. D.; Kemner, K. M.; Bunker, B. A.; Fein, J. B.; Fowle, D. A.; Environmental Research; Univ. of Notre Dame

    2003-09-01

    The local atomic environment of Cd bound to the cell wall of the gram-positive bacterium Bacillus subtilis was determined by X-ray absorption fine structure (XAFS) spectroscopy. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to phosphoryl ligands below pH 4.4, whereas at higher pH, adsorption to carboxyl groups becomes increasingly important. At pH 7.8, we observe the activation of an additional binding site, which we tentatively ascribe to a phosphoryl site with smaller Cd-P distance than the one that is active at lower pH conditions. XAFS spectra of several cadmium acetate, phosphate, and perchlorate solutions were measured and used as standards for fingerprinting, as well as to assess the ability of FEFF8 and FEFFIT to model carboxyl, phosphoryl, and hydration environments, respectively. The results of this XAFS study in general corroborate existing surface complexation models; however, some binding mechanism details could only be detected with the XAFS technique.

  7. Uncoupling and Toxic Action of Alkyltriphenylphosphonium Cations on Mitochondria and the Bacterium Bacillus subtilis as a Function of Alkyl Chain Length.

    PubMed

    Khailova, L S; Nazarov, P A; Sumbatyan, N V; Korshunova, G A; Rokitskaya, T I; Dedukhova, V I; Antonenko, Yu N; Skulachev, V P

    2015-12-01

    A series of permeating cations based on alkyl derivatives of triphenylphosphonium (Cn-TPP(+)) containing linear hydrocarbon chains (butyl, octyl, decyl, and dodecyl) was investigated in systems of isolated mitochondria, bacteria, and liposomes. In contrast to some derivatives (esters) of rhodamine-19, wherein butyl rhodamine possessed the maximum activity, in the case of Cn-TPP a stimulatory effect on mitochondrial respiration steadily increased with growing length of the alkyl radical. Tetraphenylphosphonium and butyl-TPP(+) at a dose of several hundred micromoles exhibited an uncoupling effect, which might be related to interaction between Cn-TPP(+) and endogenous fatty acids and induction of their own cyclic transfer, resulting in transport of protons across the mitochondrial membrane. Such a mechanism was investigated by measuring efflux of carboxyfluorescein from liposomes influenced by Cn-TPP(+). Experiments with bacteria demonstrated that dodecyl-TPP(+), decyl-TPP(+), and octyl-TPP(+) similarly to quinone-containing analog (SkQ1) inhibited growth of the Gram-positive bacterium Bacillus subtilis, wherein the inhibitory effect was upregulated with growing lipophilicity. These cations did not display toxic effect on growth of the Gram-negative bacterium Escherichia coli. It is assumed that the difference in toxic action on various bacterial species might be related to different permeability of bacterial coats for the examined triphenylphosphonium cations. PMID:26638684

  8. Antibacterial effect and mechanism of high-intensity 405±5nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition.

    PubMed

    Kim, Min-Jeong; Mikš-Krajnik, Marta; Kumar, Amit; Ghate, Vinayak; Yuk, Hyun-Gyun

    2015-12-01

    This study investigated the antibacterial effect of 405±5nm light emitting diode (LED) on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus, and examined its antibacterial mechanism by determining the bacterial membrane and DNA damages. A 405±5nm LED illuminated the Gram-positive pathogens until 486J/cm(2) at 4°C. Weibull model was used to calculate reliable life (tR) to compare bacterial sensitivities to LED illumination. The membrane damage was determined by NaCl and LIVE/DEAD® assay, while comet assay and DNA ladder analysis were conducted to determine DNA degradation. The illumination resulted in 1.9, 2.1, and 1.0 log reductions for B. cereus, L. monocytogenes, and S. aureus at 486J/cm(2), respectively. The comparison of tR values revealed that L. monocytogenes was identified as the most susceptible strain to LED illumination. The percentage of the bacterial sensitivity to NaCl remarkably increased in LED-illuminated cells compared to non-illuminated cells. Moreover, loss of membrane integrity was confirmed for LED-illuminated cells by LIVE/DEAD® assay, whereas no DNA breakage was indicated by comet assay and DNA ladder analysis. Thus, these findings suggest that the antibacterial effect of 405±5nm LED illumination on these pathogens might be due to physical damage to bacterial membrane rather than DNA degradation. PMID:26398810

  9. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample

    PubMed Central

    2013-01-01

    A bacterial strain producing two antimicrobial peptides was isolated from a rhizosphere soil sample and identified as Bacillus subtilis based on both phenotypic and 16S rRNA gene sequence phylogenetic analysis. It grew optimally up to 14% NaCl and produced antimicrobial peptide within 24 h of growth. The peptides were purified using a combination of chemical extraction and chromatographic techniques. The MALDI-TOF analysis of HPLC purified fractions revealed that the strain SK.DU.4 secreted a bacteriocin-like peptide with molecular mass of 5323.9 Da and a surface-active lipopeptide (m/z 1056 Da). The peptide mass fingerprinting of low-molecular-weight bacteriocin exhibited significant similarity with stretches of secreted lipoprotein of Methylomicrobium album BG8 and displayed 70% sequence coverage. MALDI MS/MS analysis elucidated the lipopeptide as a cyclic lipopeptide with a ?-hydroxy fatty acid linked to Ser of a peptide with seven ?-amino acids (Asp-Tyr-Asn-Gln-Pro-Asn-Ser) and assigned it to iturin-like group of antimicrobial biosurfactants. However, it differed in amino acid composition with other members of the iturin family. Both peptides were active against Gram-positive bacteria, suggesting that they had an additive effect. PMID:23289832

  10. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4).

    PubMed

    Le Marrec, C; Hyronimus, B; Bressollier, P; Verneuil, B; Urdaci, M C

    2000-12-01

    A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I(4) has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42-50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I(4). Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI(4) DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI(4) when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus. PMID:11097892

  11. Antimicrobial effects of gold/copper sulphide (Gold/Copper monosulfide) core/shell nanoparticles on Bacillus anthracis spores and cells

    NASA Astrophysics Data System (ADS)

    Addae, Ebenezer

    Bacillus anthracis is a gram positive, rod shaped and spore forming bacteria. It causes anthrax, a deadly human and animal disease that can kill its victims in three days. The spores of B. anthracis can survive extreme environmental conditions for decades and germinate when exposed to proper conditions. Due to its potential as a bio-weapon, effective disinfectants that pose less harm to the environment and animals are urgently needed. Metal nanoparticles have the potential of killing microbial cells and spores. We present here the effect of Gold/Copper Sulphide core/shell (Au/CuS) nanoparticles on B. anthracis cells and spores. The results indicated that the continuous presence of 0.83 microM during the spore growth in nutrient medium completely inhibited spore outgrowth. Au/CuS nanoparticles at concentration of 4.15 ?M completely inactivated B. anthracis cells (x 107) after 30 min of pre-treatment in any of the three buffers including water, PBS, and nutrient broth. However, the same and even higher concentrations of nanoparticles produce no significant spore (x 105) killing after 24 h of pre-treatment. SEM imaging, EDS analysis, and DNA extrusion experiments revealed that nanoparticles damaged the cell membrane causing DNA and cytosolic content efflux and eventually cell death. The study demonstrated the strong antimicrobial activity of Au/CuS nanoparticles to B. anthracis cells and revealed that Au/CuS NPs showed more effective inactivation effect against the cells than they did against the spores.

  12. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic

    USGS Publications Warehouse

    Baesman, S.M.; Stolz, J.F.; Kulp, T.R.; Oremland, R.S.

    2009-01-01

    Mono Lake sediment slurries incubated with lactate and tellurite [Te(IV)] turned progressively black with time because of the precipitation of elemental tellurium [Te(0)]. An enrichment culture was established from these slurries that demonstrated Te(IV)-dependent growth. The enrichment was purified by picking isolated black colonies from lactate/Te(IV) agar plates, followed by repeated streaking and picking. The isolate, strain MLTeJB, grew in aqueous Te(IV)-medium if provided with a small amount of sterile solid phase material (e.g., agar plug; glass beads). Strain MLTeJB grew at high concentrations of Te(IV) (~8 mM) by oxidizing lactate to acetate plus formate, while reducing Te(IV) to Te(0). Other electron acceptors that were found to sustain growth were tellurate, selenate, selenite, arsenate, nitrate, nitrite, fumarate and oxygen. Notably, growth on arsenate, nitrate, nitrite and fumarate did not result in the accumulation of formate, implying that in these cases lactate was oxidized to acetate plus CO2. Strain MLTeJB is a low G + C Gram positive motile rod with pH, sodium, and temperature growth optima at 8.5-9.0, 0.5-1.5 M, and 40??C, respectively. The epithet Bacillus beveridgei strain MLTeJBT is proposed. ?? 2009 Springer.

  13. Antibody responses elicited in mice immunized with Bacillus subtilis vaccine strains expressing Stx2B subunit of enterohaemorragic Escherichia coli O157:H7

    PubMed Central

    Gomes, P.A.D.P.; Bentancor, L.V