Science.gov

Sample records for gramicidin channel cs

  1. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  2. Gramicidin Channels Are Internally Gated

    PubMed Central

    Jones, Tyson L.; Fu, Riqiang; Nielson, Frederick; Cross, Timothy A.; Busath, David D.

    2010-01-01

    Abstract Gramicidin channels are archetypal molecular subjects for solid-state NMR studies and investigations of single-channel or cation conductance. Until now, the transitions between on and off conductance states have been thought, based on multichannel studies, to represent monomer ↔ dimer reactions. Here we use a single-molecule deposition method (vesicle fusion to a planar bilayer) to show that gramicidin dimer channels do not normally dissociate when conductance terminates. Furthermore, the observation of two 13C peaks in solid-state NMR indicates very stable dichotomous conformations for both the first and second peptide bonds in the monomers, and a two-dimensional chemical exchange spectrum with a 12-s mixing time demonstrates that the Val1 carbonyl conformations exchange slowly, with lifetimes of several seconds. It is proposed that gramicidin channels are gated by small conformational changes in the channel near the permeation pathway. These studies demonstrate how regulation of conformations governing closed ↔ open transitions may be achieved and studied at the molecular level. PMID:20409467

  3. Temperature dependence of gramicidin channel conductance

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2010-03-01

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati has shown that the gramicidin channel can function at high temperatures with significant currents. This finding may have implications for fuel cell technologies. In order to explore the effect of temperature on channel conductance, we examined the gramicidin system at 300K, 330K, and 360K by computer simulation. Two forms of gramicidin, the head-to-head helical dimer and the intertwined double helix, were examined. Both the decrease of the free energy barrier and the increase of the diffusion of potassium ions inside the gramicidin channel at high temperatures imply an increase of current. We found that higher temperatures also affect the lifetime of hydrogen bonds, the distribution of the bending angle, the distribution of the distance between dimers, and the size of the pore radius for the helical dimer structure. These finding may be related to the gating of the gramicidin channel.

  4. Computer Simulation Studies of Gramicidin Channel

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2009-04-01

    Ion channels are large membrane proteins, and their function is to facilitate the passage of ions across biological membranes. Recently, Dr. John Cuppoletti's group at UC showed that the gramicidin channel could function at high temperatures (360 -- 390K) with significant currents. This finding may have large implications for fuel cell technology. In this project, we will examine the experimental system by computer simulation. We will investigate how the temperature affects the current and differences in magnitude of the currents between two forms of Gramicidin, A and D. This research will help to elucidate the underlying molecular mechanism in this promising new technology.

  5. Gramicidins A, B, and C form structurally equivalent ion channels.

    PubMed Central

    Sawyer, D B; Williams, L P; Whaley, W L; Koeppe, R E; Andersen, O S

    1990-01-01

    The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. Läuger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11. PMID:1705449

  6. Small iminium ions block gramicidin channels in lipid bilayers.

    PubMed Central

    Hemsley, G; Busath, D

    1991-01-01

    Guanidinium and acetamidinium, when added to the bathing solution in concentrations of approximately 0.1M, cause brief blocks in the single channel potassium currents from channels formed in planar lipid bilayers by gramicidin A. Single channel lifetimes are not affected indicating that the channel structure is not modified by the blockers. Guanidinium block durations and interblock times are approximately exponential in distribution. Block frequencies increase with guanidinium concentration whereas block durations are unaffected. Increases in membrane potential cause an increase in block frequency as expected for a positively charged blocker but a decrease in block duration suggesting that the block is relieved when the blocker passes through the channel. At low pH, urea, formamide, and acetamide cause similar blocks suggesting that the protonated species of these molecules also block. Arginine and several amines do not block. This indicates that only iminium ions which are small enough to enter the channel can cause blocks in gramicidin channels. PMID:1712240

  7. Lorentzian noise in single gramicidin A channel formamidinium currents.

    PubMed

    Fairbanks, T G; Andrus, C L; Busath, D D

    1999-01-01

    Seoh & Busath (1995) showed that in the presence of formamidinium, single gramicidin A channels were lengthened, had uniformly noisy currents at low voltages and had superlinear current-voltage relationships, all three properties being absent in gramicidin M- channels in which the interfacial tryptophan residues in gramicidin A are all replaced by phenylalanine. We measured the single channel noise power spectra (PSDs) in small monoolein (GMO) bilayers with formamidinium chloride solutions to help identify the mechanism of noise process. PSDs were Lorentzian with characteristic frequencies of 0.1-1.0 kHz in 0.1 and 0.3 M formamidinium chloride solutions, and from. 1-6 kHz in 1 M solution. Si(0), where measurable, ranged from approximately 50-200 fA2/Hz. The time course of the noise process could not be detected in these experiments. The low fc suggests slow motions or rare states of the blocking 'gates' which, judging from the result with gramicidin M-, must be equal to or related to the Trp residues. PMID:10472049

  8. Tandem Gramicidin Channels Cross-linked by Streptavidin

    PubMed Central

    Rokitskaya, Tatyana I.; Kotova, Elena A.; Antonenko, Yuri N.

    2003-01-01

    The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053–13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization. PMID:12719486

  9. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.

    PubMed Central

    Roux, B; Prod'hom, B; Karplus, M

    1995-01-01

    The structural and thermodynamic factors responsible for the singly and doubly occupied saturation states of the gramicidin channel are investigated with molecular dynamics simulations and free energy perturbation methods. The relative free energy of binding of all of the five common cations Li+, Na+, K+, Rb+, and Cs+ is calculated in the singly and doubly occupied channel and in bulk water. The atomic system, which includes the gramicidin channel, a model membrane made of neutral Lennard-Jones particles and 190 explicit water molecules to form the bulk region, is similar to the one used in previous work to calculate the free energy profile of a Na+ ion along the axis of the channel. In all of the calculations, the ions are positioned in the main binding sites located near the entrances of the channel. The calculations reveal that the doubly occupied state is relatively more favorable for the larger ions. Thermodynamic decomposition is used to show that the origin of the trend observed in the calculations is due to the loss of favorable interactions between the ion and the single file water molecules inside the channel. Small ions are better solvated by the internal water molecules in the singly occupied state than in the doubly occupied state; bigger ions are solvated almost as well in both occupation states. Water-channel interactions play a role in the channel response. The observed trends are related to general thermodynamical properties of electrolyte solutions. Images FIGURE 2 PMID:7538804

  10. Formation of non-beta 6.3-helical gramicidin channels between sequence-substituted gramicidin analogues.

    PubMed Central

    Durkin, J T; Providence, L L; Koeppe, R E; Andersen, O S

    1992-01-01

    Using the linear gramicidins as an example, we have previously shown how the statistical properties of heterodimeric (hybrid) channels (formed between the parent [Val1]gramicidin A (gA) and a sequence-altered analogue) can be used to assess whether the analogue forms channels that are structurally equivalent to the parent channels (Durkin, J. T., R. E. Koeppe II, and O. S. Andersen. 1990. J. Mol. Biol. 211:221-234). Generally, the gramicidins are tolerant of amino acid sequence alterations. We report here an exception. The optically reversed analogue, gramicidin M- (gM-) (Heitz, F., G. Spach, and Y. Trudelle. 1982. Biophys. J. 40:87-89), forms channels that are the mirror-image of [Val1]gA channels; gM- should thus form no hybrid channels with analogues having the same helix sense as [Val1]gA. Surprisingly, however, gM- forms hybrid channels with the shortened analogues des-Val1-[Ala2]gA and des-Val1-gC, but these channels differ fundamentally from the parent channels: (a) the appearance rate of these heterodimers is only approximately 1/10 of that predicted from the random assortment of monomers into conducting dimers, indicating the existence of an energy barrier to their formation (e.g., monomer refolding into a new channel-forming conformation); and (b), once formed, the hybrid channels are stabilized approximately 1,000-fold relative to the parent channels. The increased stability suggests a structure that is joined by many hydrogen bonds, such as one of the double-stranded helical dimers shown to be adopted by gramicidins in organic solvents (Veatch, W. R., E. T. Fossel, and E. R. Blout. 1974. Biochemistry. 13:5249-5256). PMID:1376164

  11. Effects of volatile anesthetic on channel structure of gramicidin A.

    PubMed Central

    Tang, Pei; Mandal, Pravat K; Zegarra, Martha

    2002-01-01

    Volatile anesthetic agent, 1-chloro-1,2,2-trifluorocyclobutane (F3), was found to alter gramicidin A channel function by enhancing Na(+) transport (. Biophys. J. 77:739-746). Whether this functional change is associated with structural alternation is evaluated by circular dichroism and nuclear magnetic resonance spectroscopy. The circular dichroism and nuclear magnetic resonance results indicate that at low millimolar concentrations, 1-chloro-1,2,2-trifluorocyclobutane causes minimal changes in gramicidin A channel structure in sodium dodecyl sulfate micelles. All hydrogen bonds between channel backbones are well maintained in the presence of 1-chloro-1,2,2-trifluorocyclobutane, and the channel structure is stable. The finding supports the notion that low affinity drugs such as volatile anesthetics and alcohols can cause significant changes in protein function without necessarily producing associated changes in protein structure. To understand the molecular mechanism of general anesthesia, it is important to recognize that in addition to structural changes, other protein properties, including dynamic characteristics of channel motions, may also be of functional significance. PMID:12202367

  12. Modeling negative ion defect migration through the gramicidin A channel.

    PubMed

    Nemukhin, Alexander V; Kaliman, Ilya A; Moskovsky, Alexander A

    2009-08-01

    The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. PMID:19198898

  13. Solvent drag across gramicidin channels demonstrated by microelectrodes.

    PubMed Central

    Pohl, P; Saparov, S M

    2000-01-01

    The competition of ion and water fluxes across gramicidin channels was assessed from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double-barreled microelectrodes in the immediate vicinity of a planar bilayer. Because water movement across the membrane led to accumulation of solutes on one side of the membrane and depletion on the other, the permeable cation was not only pushed by water across the channel (true solvent drag); it also flowed along its concentration gradient (pseudo-solvent drag). For the demonstration of true solvent drag, a difference between the bulk concentrations on the hypertonic and the hypotonic sides of the membrane was established. It was adjusted to get equal cation concentrations at both membrane/water interfaces. From the sodium and potassium fluxes measured along with membrane conductivity under these conditions, approximately five water molecules were found to be transported simultaneously with one ion through the channel. In diphytanoyl phosphatidylcholine membranes, a single-channel hydraulic permeability coefficient of 1.6 x 10(-14) cm(3) s(-1) was obtained. PMID:10777738

  14. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.

    PubMed Central

    Edwards, Scott; Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2002-01-01

    We investigate the validity of continuum electrostatics in the gramicidin A channel using a recently determined high-resolution structure. The potential and electric field acting on ions in and around the channel are computed by solving Poisson's equation. These are then used in Brownian dynamics simulations to obtain concentration profiles and the current passing through the channel. We show that regardless of the effective dielectric constant used for water in the channel or the channel protein, it is not possible to reproduce all the experimental data on gramicidin A; thus, continuum electrostatics cannot provide a valid framework for the description of ion dynamics in gramicidin channels. Using experimental data and molecular dynamics simulations as guides, we have constructed potential energy profiles that can satisfactorily describe the available physiological data. These profiles provide useful benchmarks for future potential of mean force calculations of permeating ions from molecular dynamics simulations of gramicidin A. They also offer a convenient starting point for studying structure-function relationships in modified gramicidin channels. PMID:12202360

  15. Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime.

    PubMed Central

    Ring, A.; Sandblom, J.

    1988-01-01

    The surface tension of glycerylmonooleate-hexadecane lipid bilayer membranes and the lifetime of gramicidin A channels were measured at various concentrations of the surrounding solutions. For HCl the surface tension is essentially constant at approximately 5 mN/m up to approximately 1 M, whereas the average lifetime increases approximately 40-fold. At higher concentrations the surface tension decreases markedly. For CsCl the surface tension is constant up to about 1 M then increases with salt level. The average lifetime in this case increases about sixfold. In both cases the lifetime levels off and even decreases at higher salt levels. The increase in lifetime observed with ion activity is therefore qualitatively different from, and not explained by, the established dependence of lifetime on membrane properties (Elliot, J.R., D. Needham, J.P. Dilger, and D.A. Haydon. 1983. Biochim. Biophys. Acta. 735:95-103). We have previously proposed that ion occupancy is a determinant of channel stability, and to test this hypothesis the voltage dependence of channel lifetime was measured in asymmetrical solutions. For the case of a potassium chloride solution on one side of the membrane and a hydrogen chloride solution, on the other, the voltage dependence of the lifetime is asymmetrical. The asymmetry is such that when the electrical field is applied in the direction of the chemical gradient for each of the ions, the channel lifetime approaches, at increasing field strengths, that of a symmetrical solution of the respective ion. The voltage dependence of the surface tension, on the other hand, is negligible for the range of voltages used. These results, and the earlier findings that the order of the lifetimes for the alkali cations generally agree with the order of the permeability selectivity of the gramicidin A channel, support the hypothesis that ion occupancy is a major factor determining the lifetime of gramicidin A channels. The effects of multivalent blockers and

  16. Ion transport in a model gramicidin channel. Structure and thermodynamics.

    PubMed Central

    Roux, B; Karplus, M

    1991-01-01

    The potential of mean force for Na+ and K+ ions as a function of position in the interior of a periodic poly(L,D)-alanine model for the gramicidin beta-helix is calculated with a detailed atomic model and realistic interactions. The calculated free energy barriers are 4.5 kcal/mol for Na+ and 1.0 kcal/mol for K+. A decomposition of the free energy demonstrates that the water molecules make a significant contribution to the free energy of activation. There is an increase in entropy at the transition state associated with greater fluctuations. Analysis reveals that the free energy profile of ions in the periodic channel is controlled not by the large interaction energy involving the ion but rather by the weaker water-water, water-peptide and peptide-peptide hydrogen bond interactions. The interior of the channel retains much of the solvation properties of a liquid in its interactions with the cations. Of particular importance is the flexibility of the helix, which permits it to respond to the presence of an ion in a fluidlike manner. The distortion of the helix is local (limited to a few carbonyls) because the structure is too flexible to transmit a perturbation to large distances. The plasticity of the structure (i.e., the property to deform without generating a large energy stress) appears to be an essential factor in the transport of ions, suggesting that a rigid helix model would be inappropriate. Images FIGURE 1 FIGURE 10 PMID:1714305

  17. Effect of pyrrolidinium based ionic liquid on the channel form of gramicidin in lipid vesicles.

    PubMed

    Singh, Upendra Kumar; Dohare, Neeraj; Mishra, Prabhash; Singh, Prashant; Bohidar, Himadri B; Patel, Rajan

    2015-08-01

    The present work is focused on the interaction between membrane bound gramicidin and 1-butyl-1-methyl-2-oxopyrrolidinium bromide (BMOP) ionic liquid. Ionic liquids (ILs) are solvents that are often liquid at room temperature and composed of organic cation and appropriate anion. The gramicidin peptide forms prototypical ion channels for cations, which have been extensively used to study the organization, dynamics, and function of membrane spanning channels. The interaction was studied by circular dichroism, steady state, time-resolved fluorescence spectroscopy in combination with dynamic surface tension and field emission scanning electron microscopic methods (FESEM). The results obtained from circular dichroism shows that the BMOP interacts with the channel form of gramicidin in lipid vesicle without any considerable effect on its conformation. The Red-edge excitation shift (REES) also supported the above findings. In addition, the fluorescence studies suggested that BMOP makes ground state complex with ion channel, which was further supported by time resolved measurements. Furthermore, dynamic surface tension analysis shows the faster adsorption of BMOP with membrane bound gramicidin at the air-water interface. Additionally, FESEM results indicated that BMOP forms a film around the membrane bound gramicidin at higher concentration. These results are potentially useful to analyze the effect of ionic liquids on the behaviour of membrane proteins. PMID:26025771

  18. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials.

    PubMed Central

    Andersen, O S

    1983-01-01

    The patch-clamp technique of Mueller (1975, Ann. N.Y. Acad. Sci., 274:247-264) and Neher and Sakmann (1976, Nature (Lond.), 260:799-802) was modified to be suitable for single-channel measurements in lipid bilayers at potentials up to 500 mV. This method was used to study gramicidin A single-channel current-voltage characteristics. It was found that the sublinear current-voltage behavior normally observed at low permeant ion concentrations and rather low potentials (V less than or equal to 200 mV) continues to be seen all the way up to 500 mV. This phenomenon is characteristic of the low permeant ion situation in which the channel is far from saturation, and implies that the overall rate constant for association between ion and channel is very weakly, if at all, voltage dependent. The magnitude of the single channel currents at 500 mV is consistent with the notion that the aqueous convergence conductance is a significant factor in determining the permeability characteristics of the gramicidin A channel. PMID:6188500

  19. Membrane Organization and Dynamics of ‘Inner Pair’ and ‘Outer Pair’ Tryptophan Residues in Gramicidin Channels

    PubMed Central

    Haldar, Sourav; Chaudhuri, Arunima; Gu, Hong; Koeppe, Roger E.; Kombrabail, Mamata; Krishnamoorthy, G.; Chattopadhyay, Amitabha

    2012-01-01

    The linear ion channel peptide gramicidin serves as an excellent prototype for monitoring the organization, dynamics and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for establishing and maintaining the structure and function of the channel in the membrane bilayer. In order to address the basis of differential importance of tryptophan residues in gramicidin channel, we monitored the effects of pairwise substitution of two of the four gramicidin tryptophans, the inner pair (Trp-9 and -11) and the outer pair (Trp-13 and -15), using a combination of steady state and time-resolved fluorescence approaches and circular dichroism spectroscopy. We show here that these double tryptophan gramicidin analogs adopt different conformations in membranes, suggesting that the conformational preference of double tryptophan gramicidin analogs is dictated by the positions of the tryptophans in the sequence. These results assume significance in the context of recent observations that the inner pair of tryptophans (Trp-9 and -11) is more important for gramicidin channel formation and channel conductance. These results could be potentially useful in analyzing the effect of tryptophan substitution on the functioning of ion channels and membrane proteins. PMID:22892073

  20. Polyanions decelerate the kinetics of positively charged gramicidin channels as shown by sensitized photoinactivation.

    PubMed Central

    Antonenko, Yuri N; Borisenko, Vitali; Melik-Nubarov, Nikolay S; Kotova, Elena A; Woolley, G Andrew

    2002-01-01

    The effects of different anionic polymers on the kinetic properties of ionic channels formed by neutral gramicidin A (gA) and its positively charged analogs gramicidin-tris(2-aminoethyl)amine (gram-TAEA) and gramicidin-ethylenediamine (gram-EDA) in a bilayer lipid membrane were studied using a method of sensitized photoinactivation. The addition of Konig's polyanion caused substantial deceleration of the photoinactivation kinetics of gram-TAEA channels, which expose three positive charges to the aqueous phase at both sides of the membrane. In contrast, channels formed of gram-EDA, which exposes one positive charge, and neutral gA channels were insensitive to Konig's polyanion. The effect strongly depended on the nature of the polyanion added, namely: DNA, RNA, polyacrylic acid, and polyglutamic acid were inactive, whereas modified polyacrylic acid induced deceleration of the channel kinetics at high concentrations. In addition, DNA was able to prevent the action of Konig's polyanion. In single-channel experiments, the addition of Konig's polyanion resulted in the appearance of long-lived gram-TAEA channels. The deceleration of the gram-TAEA channel kinetics was ascribed to electrostatic interaction of the polyanion with gram-TAEA that reduces the mobility of gram-TAEA monomers and dimers in the membrane via clustering of channels. PMID:11867447

  1. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.

    PubMed Central

    Rokitskaya, Tatyana I; Kotova, Elena A; Antonenko, Yuri N

    2002-01-01

    The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane. PMID:11806928

  2. Ion-water and ion-polypeptide correlations in a gramicidin-like channel. A molecular dynamics study.

    PubMed Central

    Jordan, P C

    1990-01-01

    This work describes a molecular dynamics study of ion-water and ion-polypeptide correlation in a model gramicidin-like channel (the polyglycine analogue) based upon interaction between polarizable, multipolar groups. The model suggests that the vicinity of the dimer junction and of the ethanolamine tail are regions of unusual flexibility. Cs+ binds weakly in the mouth of the channel: there it coordinates five water molecules and the #11CO group with which it interacts strongly and is ideally aligned. In the channel interior it is generally pentacoordinate; at the dimer junction, because of increased channel flexibility, it again becomes essentially hexacoordinate. The ion is also strongly coupled to the #13 CO but not to either #9 or #15, consistent with 13C NMR data. Water in the channel interior is strikingly different from bulk water; it has a much lower mean dipole moment. This correlates with our observation (which differs from that of previous studies) that water-water angular correlations do not persist within the channel, a result independent of ion occupancy or ionic polarity. In agreement with streaming potential measurements, there are seven single file water molecules associated with Cs+ permeation; one of these is always in direct contact with bulk water. At the mouth of an ion-free channel, there is a pattern of dipole moment alteration among the polar groups. Due to differential interaction with water, exo-carbonyls have unusually large dipole moments whereas those of the endo-carbonyls are low. The computed potential of mean force for CS+ translocation is qualitatively reasonable. However, it only exhibits a weakly articulated binding site and it does not quantitatively account for channel energetics. Correction for membrane polarization reduces, but does not eliminate, these problems. PMID:1705448

  3. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.

    PubMed Central

    Chiu, S W; Jakobsson, E; Subramaniam, S; McCammon, J A

    1991-01-01

    Molecular dynamics simulations have been done on a system consisting of the polypeptide membrane channel former gramicidin, plus water molecules in the channel and caps of waters at the two ends of the channel. In the absence of explicit simulation of the surrounding membrane, the helical form of the channel was maintained by artificial restraints on the peptide motion. The characteristic time constant of the artificial restraint was varied to assess the effect of the restraints on the channel structure and water motions. Time-correlation analysis was done on the motions of individual channel waters and on the motions of the center of mass of the channel waters. It is found that individual water molecules confined in the channel execute higher frequency motions than bulk water, for all degrees of channel peptide restraint. The center-of-mass motion of the chain of channel waters (which is the motion that is critical for transmembrane transport, due to the mandatory single filing of water in the channel) does not exhibit these higher frequency motions. The mobility of the water chain is dramatically reduced by holding the channel rigid. Thus permeation through the channel is not like flow through a rigid pipe; rather permeation is facilitated by peptide motion. For the looser restraints we used, the mobility of the water chain was not very much affected by the degree of restraint. Depending on which set of experiments is considered, the computed mobility of our water chain in the flexible channel is four to twenty times too high to account for the experimentally measured resistance of the gramicidin channel to water flow. From this result it appears likely that the peptide motions of an actual gramicidin channel embedded in a lipid membrane may be more restrained than in our flexible channel model, and that these restraints may be a significant modulator of channel permeability. For the completely rigid channel model the "trapping" of the water molecules in

  4. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.

    PubMed

    Kubota, Shintaro; Shirai, Osamu; Kitazumi, Yuki; Kano, Kenji

    2016-01-01

    Ion transport through a single channel of gramicidin A (GA) within the bilayer lipid membrane (BLM) between two aqueous phases (W1 and W2) has been analyzed based on the electroneutrality principle. The single-channel current increases in proportion to the magnitude of the applied membrane potential and is also dependent on the permeability coefficients of electrolyte ions (K(+) and Cl(-)). By varying the ratio of the concentration of KCl in W1 to that in W2, the ratio of the diffusion coefficient of K(+) in the BLM to that of Cl(-) in the BLM can be evaluated. PMID:26860564

  5. The Gramicidin A Transmembrane Channel: A Proposed π(L,D) Helix

    PubMed Central

    Urry, D. W.

    1971-01-01

    A lipophilic, left-handed helical structure is proposed for gramicidin A in which the C-O bonds alternately point toward the amino and carboxyl ends; it is a hybrid of the 4.314 and 4.416 helices. The C-O groups pointing toward the carboxyl end form part of 16-membered hydrogen-bonded rings, whereas the C-O moieties pointing toward the amino end form 14-membered hydrogenbonded rings. The proposed structure is based on conformational analysis combined with requirements for the gramicidin A transmembrane channel. Two helices combine to form the channel. The alternating C-O directions allow hydrogen-bonded dimerization by the unique possibilities of head-to-head and tail-to-tail attachment. The formyl group at the amino end allows for a favorable head-to-head attachment with no loss of structural continuity. Unpublished studies. by M. C. Goodall on the lipid bilayer conductance of deformyl gramicidin A strongly argue for head-to-head attachment. Such hydrogen-bonded association is not possible with previously described helices, as the C-O groups all point in the same direction. In relation to possible π(L,D) helices in mammalian systems, it should be noted that glycines would fill the role of D residues. The conformation can undergo ion-induced relaxations, which provide approximate tetrahedral coordination for the ion, with facile shifting of coordinations. The ready exchange of coordinations provides the mechanism for movement of the ion along the channel. Conceivably, such transmembrane channels could have application as models for ion transport across biological membranes—an application which may be as great as, or greater than, that of carriers such as valinomycin and nonactin. Specifically, biogenic amines and drugs containing aromatic groups could control access to the channel by interactions with the two tryptophan residues at the ethanolamine end and with the negative region provided by the three oxygens. Images PMID:5276779

  6. Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel.

    PubMed Central

    Decker, E R; Levitt, D G

    1988-01-01

    The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution. PMID:2449253

  7. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study.

    PubMed Central

    Weinstein, S; Wallace, B A; Blout, E R; Morrow, J S; Veatch, W

    1979-01-01

    We have determined the conformation of the channel-forming polypeptide antibiotic gramicidin A in phosphatidylcholine vesicles by using 13C and 19F NMR spectroscopy. The models previously proposed for the conformation of the dimer channel differ in the surface localization of the NH2 and COOH termini. We have incorporated specific 13C and 19F nuclei at both the NH2, and COOH termini of gramicidin and have used 13C and 19F chemical shifts and spin lattice relaxation time measurements to determine the accessibility of these labels to three paramagnetic NMR probes--two in aqueous solution and one attached to the phosphatidylcholine fatty acid chain9 all of our results indicate that the COOH terminus of gramicidin in the channel is located near the surface of the membrane and the NH2 terminus is buried deep within the lipid bilayer. These findings strongly favor an NH2-terminal to NH2-terminal helical dimer as the major conformation for the gramicidin channel in phosphatidylcholine vesicles. PMID:92025

  8. Can gramicidin ion channel affect the dipole potential of neighboring phospholipid headgroups?

    PubMed

    Becucci, Lucia; Guidelli, Rolando

    2015-12-01

    The cyclic voltammetry behavior of a mercury-supported tethered bilayer lipid membrane (tBLM) incorporating gramicidin A was investigated in aqueous 0.1 M KCl at pH 6.8, 5.4 and 3. The distal leaflet of the lipid bilayer consisted of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS), dioleoylphosphatidic acid or a DOPC/cholesterol mixture. In passing from pH 6.8 to pH 3, the midpoint potential between the negative current peak, due to K(+) inflow into the spacer, and the positive current peak, due to K(+) ejection into the aqueous solution, shifts toward more positive potentials, while the separation between these two peaks decreases. This behavior is interpreted quantitatively on the basis of a model relying on tBLM structural features estimated independently in previous works. The only adjustable parameter is the rate constant for cation translocation across a potential energy barrier located in the hydrocarbon tail region. The behavior is ascribed to a dragging of the lipid headgroups adjacent to the gramicidin channel mouth toward the hydrocarbon tail region, with a resulting decrease in the negative charge of the DOPC phosphate group, or of the DOPS carboxyl group, with decreasing pH. PMID:26190793

  9. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.

    PubMed

    Cole, Chad D; Frost, Adam S; Thompson, Nephi; Cotten, Myriam; Cross, Timothy A; Busath, David D

    2002-10-01

    Fluorination of peptide side chains has been shown to perturb gramicidin channel conductance without significantly changing the average side chain structure, which, it is hoped, will allow detailed analysis of electrostatic modulation of current flow. Here we report a 1312-point potassium current-voltage-concentration data set for homodimeric channels formed from gramicidin A (gA) or any of eight fluorinated Trp analogs in both lecithin and monoglyceride bilayers. We fit the data with a three-barrier, two-site, two-ion (3B2S) kinetic model. The fluorination-induced changes in the rate constants were constrained by the same factor in both lipids. The rate constant changes were converted to transition-state free-energy differences for comparison with previous electrostatic potential energy differences based on an ab initio force field. The model allowed a reasonably good fit (chi = 8.29 with 1271 degrees of freedom). The measured changes were subtle. Nevertheless, the fitted energy perturbations agree well with electrostatic predictions for five of the eight peptides. For the other three analogs, the fitted changes suggested a reduced translocation barrier rather than the reduced exit barrier as predicted by electrostatics. PMID:12324416

  10. Peroxyl radicals promoted changes in water permeability through gramicidin channels in DPPC and lecithin-PC vesicles.

    PubMed

    Soto, M A; Sotomayor, C P; Lissi, E A

    2003-03-01

    Gramicidin incorporation to DPPC or lecithin-PC large unilamellar vesicles (LUVs) leads to pore formation that, under hyper-osmotic conditions, produces a noticeable increase in the rate of trans-membrane water flow. This pore formation is more efficient in the more fluid lecithin-PC LUVs. Exposure of these vesicles to peroxyl radicals generated in the aerobic thermolysis of 2,2'-azo-bis(2-amidinopropane) (AAPH), changes the physical properties of the bilayer (as sensed employing fluorescent probes), modifies gramicidin molecules (as sensed by the decrease in Trp fluorescence) and notably reduces the transbilayer rate of water outflow. In order to evaluate if this reduced water-transport capacity is due to changes in the membrane due to lipid-peroxidation and/or direct damage to gramicidin channels, results obtained in the oxidable vesicles (lecithin-PC) were compared to those obtained in DPPC vesicles. The data obtained show that most of the water transport efficiency loss can be ascribed to a direct disruption of gramicidin channels by AAPH derived peroxyl radicals. PMID:12637166

  11. Density-functional theory study of gramicidin A ion channel geometry and electronic properties

    PubMed Central

    Todorović, Milica; Bowler, David R.; Gillan, Michael J.; Miyazaki, Tsuyoshi

    2013-01-01

    Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A (gA), whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground state geometry and electronic properties of the channel in vacuum, focusing on their dependence on the side chains of the amino acids. We find that the side chains affect the ground state geometry, while the electrostatic potential of the pore is independent of the side chains. This study is also in preparation for a full, linear scaling DFT study of gA in a lipid bilayer with surrounding water. We demonstrate that linear scaling DFT methods can accurately model the system with reasonable computational cost. Linear scaling DFT allows ab initio calculations with 10 000–100 000 atoms and beyond, and will be an important new tool for biomolecular simulations. PMID:24068174

  12. Reactive derivatives of gramicidin enable light- and ion-modulated ion channels

    NASA Astrophysics Data System (ADS)

    Macrae, Michael X.; Blake, Steven; Mayer, Thomas; Mayer, Michael; Yang, Jerry

    2009-08-01

    Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We have explored methods to detect chemical analytes in solution using synthetic derivatives of gramicidin A (gA). We exploited the functional properties of an ion channel-forming peptideg--gA--to report changes in the local environment near the opening of these semi-synthetic nanopores upon exposure to specific external stimuli. These peptide-based nanosensors detect reaction-induced changes in the chemical or physical properties of functional groups presented at the opening of the pore. This paper discusses the development of gA-based sensors for detecting external factors such as metal ions in solution or for detecting specific wavelengths of light. We propose that gA-based ion channel sensors offer tremendous potential for ultra sensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.

  13. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.

    PubMed Central

    Hao, Y; Pear, M R; Busath, D D

    1997-01-01

    The free energy profiles for four organic cations in right-handed single-helix gramicidin A dimers were computed by using umbrella sampling molecular dynamics with CHARMM. Ion-water column translocations were facilitated by using a novel "water-tunnel" approach. The overlapping pieces of free energy profile for adjacent windows were selected from three trajectories that differed in initial ion rotation and were aligned by the method of umbrella potential differences. Neglected long-range electrostatic energies from the bulk water and the bilayer were computed with DelPhi and added to the profile. The approach was corroborated for the formamidinium-guanidinium pair by using perturbation dynamics at axial positions 0, 6, 12, and 15 A from the channel center. The barrier to ethylammonium entry was prohibitive at 21 kcal/mol, whereas for methylammonium it was 5.5 kcal/mol, and the profile was quite flat through the channel, roughly consistent with conductance measurements. The profile for formamidinium was very similar to that of methylammonium. Guanidinium had a high entry barrier (deltaF = +8.6 kcal/mol) and a narrow deep central well (deltaF = -2.6 kcal/mol), qualitatively consistent with predictions from voltage-dependent potassium current block measurements. Its deep central well, contrasting with the flat profile for formamidinium, was verified with perturbation dynamics and was correlated with its high propensity to form hydrogen bonds with the channel at the dimer junction (not shared by the other three cations). Analysis of the ensemble average radial forces on the ions demonstrates that all four ions undergo compressive forces in the channel that are at maximum at the center of the monomer and relieved at the dimer junction, illustrating increased flexibility of the channel walls in the center of the channel. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:9336167

  14. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.

    PubMed

    Hao, Y; Pear, M R; Busath, D D

    1997-10-01

    The free energy profiles for four organic cations in right-handed single-helix gramicidin A dimers were computed by using umbrella sampling molecular dynamics with CHARMM. Ion-water column translocations were facilitated by using a novel "water-tunnel" approach. The overlapping pieces of free energy profile for adjacent windows were selected from three trajectories that differed in initial ion rotation and were aligned by the method of umbrella potential differences. Neglected long-range electrostatic energies from the bulk water and the bilayer were computed with DelPhi and added to the profile. The approach was corroborated for the formamidinium-guanidinium pair by using perturbation dynamics at axial positions 0, 6, 12, and 15 A from the channel center. The barrier to ethylammonium entry was prohibitive at 21 kcal/mol, whereas for methylammonium it was 5.5 kcal/mol, and the profile was quite flat through the channel, roughly consistent with conductance measurements. The profile for formamidinium was very similar to that of methylammonium. Guanidinium had a high entry barrier (deltaF = +8.6 kcal/mol) and a narrow deep central well (deltaF = -2.6 kcal/mol), qualitatively consistent with predictions from voltage-dependent potassium current block measurements. Its deep central well, contrasting with the flat profile for formamidinium, was verified with perturbation dynamics and was correlated with its high propensity to form hydrogen bonds with the channel at the dimer junction (not shared by the other three cations). Analysis of the ensemble average radial forces on the ions demonstrates that all four ions undergo compressive forces in the channel that are at maximum at the center of the monomer and relieved at the dimer junction, illustrating increased flexibility of the channel walls in the center of the channel. PMID:9336167

  15. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  16. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    SciTech Connect

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S.

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  17. Gating Gramicidin Channels in Lipid Bilayers: Reaction Coordinates and the Mechanism of Dissociation

    PubMed Central

    Miloshevsky, Gennady V.; Jordan, Peter C.

    2004-01-01

    The dissociation of gramicidin A (gA) channels into monomers is the simplest example of a channel gating process. The initial steps in this process are studied via a computational model that simulates the reaction coordinate for dimer-monomer dissociation. The nonbonded interaction energy between the monomers is determined, allowing for their free relative translational and rotational motion. Lowest energy pathways and reaction coordinates of the gating process are determined. Partial rupture of the six hydrogen bonds (6HB) at the dimer junction takes place by coupling monomer rotation and lateral displacement. Coupling rotation with axial separation is far more expensive energetically. The transition state for channel dissociation occurs when monomers are displaced laterally by ∼4–6 Å, separated by ∼1.6–2 Å, and rotated by ∼120°, breaking two hydrogen bonds. In membranes with significant hydrophobic mismatch there is a much greater likelihood of forming 4HB and possibly even 2HB states. In the 4HB state the pore remains fully open and conductive. However, transitions from the 6HB to 4HB and 4HB to 2HB states take place via intermediates in which the gA pore is closed and nonconductive. These lateral monomer displacements give rise to transitory pore occlusion at the dimer junction, which provides a rationale for fast closure events (flickers). Local dynamics of gA monomers also leads to lateral and rotational diffusion of the whole gA dimer, giving rise to diffusional rotation of the dimer about the channel axis. PMID:14695253

  18. Nuclear magnetic resonance of 23Na ions interacting with the gramicidin channel.

    PubMed Central

    Monoi, H.

    1985-01-01

    Basic nuclear magnetic resonance (NMR) features of 23Na ions bound to the gramicidin channel (packaged into lecithin liposomes) were studied. The first binding constant K1 of Na+ was not significantly dependent on channel models employed. With the two-identical-site model (Model I), K1 was 13.7 (+/- 1.4) molal-1 (in the activity basis) at 25 degrees C; when the binding of a third ion was included (Model II), it was 13.0 (+/- 2.0) molal-1. The second binding constant K2 was model dependent; it was 1.6 (+/- 0.2) and 3-4 molal-1 for Models I and II, respectively. The rate constants, k-1 and k-2, of Na+ for exit from singly and doubly loaded channels, respectively, were 8 X 10(5) s-1 less than or equal to k-1 less than or equal to 3 X 10(6) s-1 and 8 X 10(5) s-1 less than or equal to k-2 less than or equal to 1.0 X 10(7) s-1 at 25 degrees C; the lower bound represents a rough approximation of k-1. The ratio k-2/k-1 was greater than one and did not greatly exceed 20. From the competition experiment, K1 of T1+ was 5.7 (+/- 0.6) X 10(2) molal-1. The longitudinal relaxation time T1 of bound 23Na in the state of single occupancy (T 1B sing) was virtually independent of models, 0.56 (+/- 0.03) and 0.55 (+/- 0.04) ms at 25 degrees C for Models I and II, respectively. For the state of double occupancy, T1 of bound 23Na (T 1B doub) was model dependent: 0.27 (+/- 0.01) and 0.4-0.6 ms for Models I and II. The correlation time tau c of bound 23Na was 2.2 (+/- 0.2) ns at 25 degrees C for single occupancy; tau c for double occupancy was not significantly different from this value. The estimated tau c was found to involve no appreciable contribution of the exchange of 23Na between the channel and the bulk solution. Thé quadrupole coupling constant chi was 1.0 (+/- 0.1) MHz for 23Na in single occupancy; chi for double occupancy was 0.9-1.4 MHz, depending on models. A lower bound of the average quadrupole coupling constant chi alpha was 0.13-0.26 MHz at 25 degrees C for 23Na in single

  19. Design of Peptide-Membrane Interactions to Modulate Single-File Water Transport through Modified Gramicidin Channels

    PubMed Central

    Portella, Guillem; Polupanow, Tanja; Zocher, Florian; Boytsov, Danila A.; Pohl, Peter; Diederichsen, Ulf; de Groot, Bert L.

    2012-01-01

    Water permeability through single-file channels is affected by intrinsic factors such as their size and polarity and by external determinants like their lipid environment in the membrane. Previous computational studies revealed that the obstruction of the channel by lipid headgroups can be long-lived, in the range of nanoseconds, and that pore-length-matching membrane mimetics could speed up water permeability. To test the hypothesis of lipid-channel interactions modulating channel permeability, we designed different gramicidin A derivatives with attached acyl chains. By combining extensive molecular-dynamics simulations and single-channel water permeation measurements, we show that by tuning lipid-channel interactions, these modifications reduce the presence of lipid headgroups in the pore, which leads to a clear and selective increase in their water permeability. PMID:23083713

  20. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.

    PubMed

    Busath, D D; Thulin, C D; Hendershot, R W; Phillips, L R; Maughan, P; Cole, C D; Bingham, N C; Morrison, S; Baird, L C; Hendershot, R J; Cotten, M; Cross, T A

    1998-12-01

    Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends. PMID:9826605

  1. Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophane, and tyrosine substitutions at positions 1 and 11.

    PubMed Central

    Mazet, J L; Andersen, O S; Koeppe, R E

    1984-01-01

    The relation between chemical structure and permeability characteristics of transmembrane channels has been investigated with the linear gramicidins (A, B, and C), where the amino acid at position 1 was chemically replaced by phenylalanine, tryptophane or tyrosine. The purity of most of the compounds was estimated to be greater than 99.99%. The modifications resulted in a wide range of conductance changes in NaCl solutions: sixfold from tryptophane gramicidin A to tyrosine gramicidin B. The conductance changes induced by a given amino acid substitution at position 1 are not the same as at position 11. The only important change in the Na+ affinity was observed when the first amino acid was tyrosine. No major conformational changes of the polypeptide backbone structure could be detected on the basis of experiments with mixtures of different analogues and valine gramicidin A (except possibly with tyrosine at position 1), as all the compounds investigated could form hybrid channels with valine gramicidin A. The side chains are not in direct contact with the permeating ions. The results were therefore interpreted in terms of modifications of the energy profile for ion movement through the channel, possibly due to an electrostatic interaction between the dipoles of the side chains and ions in the channel. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6201199

  2. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2013-01-01

    Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels. PMID:23435154

  3. Accurate Evaluation of Ion Conductivity of the Gramicidin A Channel Using a Polarizable Force Field without Any Corrections.

    PubMed

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Yan; Zhang, Dinglin; Cao, Liaoran; Li, Guohui

    2016-06-14

    Classical molecular dynamic (MD) simulation of membrane proteins faces significant challenges in accurately reproducing and predicting experimental observables such as ion conductance and permeability due to its incapability of precisely describing the electronic interactions in heterogeneous systems. In this work, the free energy profiles of K(+) and Na(+) permeating through the gramicidin A channel are characterized by using the AMOEBA polarizable force field with a total sampling time of 1 μs. Our results indicated that by explicitly introducing the multipole terms and polarization into the electrostatic potentials, the permeation free energy barrier of K(+) through the gA channel is considerably reduced compared to the overestimated results obtained from the fixed-charge model. Moreover, the estimated maximum conductance, without any corrections, for both K(+) and Na(+) passing through the gA channel are much closer to the experimental results than any classical MD simulations, demonstrating the power of AMOEBA in investigating the membrane proteins. PMID:27171823

  4. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: protective efficacy of singlet oxygen quenchers depends on photosensitizer location.

    PubMed

    Rokitskaya, T I; Firsov, A M; Kotova, E A; Antonenko, Y N

    2015-06-01

    The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal - in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other. PMID:26531019

  5. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes

    PubMed Central

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Ki Kim, Moon; Kim, Young-Rok; Maruta, Shinsaku; Min Kim, Sun; Jeon, Tae-Joon

    2015-01-01

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations. PMID:26189604

  6. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes.

    PubMed

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Kim, Moon Ki; Kim, Young-Rok; Maruta, Shinsaku; Kim, Sun Min; Jeon, Tae-Joon

    2015-01-01

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations. PMID:26189604

  7. Channel competition in strong-field dissociation of CS+

    NASA Astrophysics Data System (ADS)

    Jochim, Bethany; Zohrabi, M.; Betsch, K. J.; Ablikim, U.; Berry, Ben; Severt, T.; Summers, A. M.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2015-05-01

    We study intense ultrafast laser-induced dissociation of a CS+ ion beam, utilizing a coincidence 3-D momentum imaging technique. Over a laser intensity range of 1010-1016 W/cm2, we find clear intensity-dependent behavior of the C++S and C+S+ branching ratios. Specifically, we observe that the branching ratios are nearly equal at low intensities (~1010-1012 W/cm2) and deviate from each other at higher intensities (>1013 W/cm2), where C+S+ dominates. We propose that the low-intensity branching ratio behavior is due to strong mixing of states corresponding to the relevant dissociation limits mediated by the non-adiabatic couplings, and we identify possible dissociation pathways involving these couplings. Another aspect of channel competition, closing and opening of the two dissociation channels as a function of total energy, is distinctly observed, and this behavior is characterized using the well-known Wigner law for near-threshold behavior. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ is also supported by DOE-SCGF (DE-AC05-06OR23100).

  8. The pore dimensions of gramicidin A.

    PubMed Central

    Smart, O S; Goodfellow, J M; Wallace, B A

    1993-01-01

    The ion channel forming peptide gramicidin A adopts a number of distinct conformations in different environments. We have developed a new method to analyze and display the pore dimensions of ion channels. The procedure is applied to two x-ray crystal structures of gramicidin that adopt distinct antiparallel double helical dimer conformations and a nuclear magnetic resonance (NMR) structure for the beta6.3 NH2-terminal to NH2-terminal dimer. The results are discussed with reference to ion conductance properties and dependence of pore dimensions on the environment. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7508762

  9. Gramicidin Induce Local Non-Uniform Distribution of Lipids in Multi-Component Membrane Domains

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Hussain, Fazle; Huang, Juyang

    2015-03-01

    In lipid membranes, gramicidin form trans-membrane channels that are specific for monovalent cations. We performed Molecular Dynamics simulations of gramicidin in coexisting liquid-ordered (Lo) and liquid disordered (Ld) domains using GROMACS. The lipid compositions of Lo and Ld domains are DOPC/DSPC/Cholesterol = 6.5/52.6/40.9 and 74.4/10.6/15, respectively. In the Ld domain, the membrane thickness matches the hydrophobic length of gramicidin quite well, and water molecules can diffuse through the gramicidin channels. However, in the Lo lipid domain, the bilayer thickness is far greater than the hydrophobic length of gramicidin and majority of gramicidin do not form conducting channel. The simulation result explained our experimental finding that gramicidin partition favorably into the Ld domains. The calculated radial distribution functions of lipids indicate that gramicidin recruit a layer of short DOPC surrounding each protein and keep cholesterol and taller DSPC away from the protein-bilayer interface. Our result indicates that membrane proteins are capable of inducing non-uniform distributions of lipids and creating a local bilayer environment, which favors protein function.

  10. Enhanced eryptosis following gramicidin exposure.

    PubMed

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-05-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD. PMID:25915718

  11. Enhanced Eryptosis Following Gramicidin Exposure

    PubMed Central

    Malik, Abaid; Bissinger, Rosi; Liu, Guoxing; Liu, Guilai; Lang, Florian

    2015-01-01

    The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD. PMID:25915718

  12. The International Reference Preparation of Gramicidin*

    PubMed Central

    Lightbown, J. W.; Bond, Jillian M.; Woodward, Patricia M.

    1967-01-01

    The National Institute for Medical Research, London, was requested by the WHO Expert Committee on Biological Standardization to establish an International Reference Preparation of Gramicidin. This preparation was needed to standardize preparations of gramicidin containing predominantly gramicidin A, B and C, for which purpose the International Reference Preparation of Gramicidin S cannot be used. A batch of 100 g of crystalline gramicidin obtained in 1963 was distributed into ampoules in 55 mg amounts and dried in vacuo; the ampoules were then filled with dried nitrogen and sealed. The proposed international reference preparation was assayed biologically against the Master Standard of Gramicidin of the US Food and Drug Administration in 7 laboratories in 6 countries by turbidimetric methods. Significant curvature of the dose—response lines was found for most assays; no single transformation improved the linearity of assays from all laboratories. Although significant heterogeneity of potencies was obtained in 5 laboratories the mean potency ratios for all laboratories only varied over a range of 5% to 6%. The composition of the material is 7% gramicidin B, 50% gramicidin A and 25% gramicidin C; preparations of gramicidin containing appreciably higher concentrations of gramicidin B can be expected to give invalid assays against the international reference preparation. The material has been established as the International Reference Preparation of Gramicidin with a defined potency of 1000 IU/mg. The International Unit of Gramicidin is defined as the activity of 0.001 mg of the International Reference Preparation of Gramicidin. PMID:5299675

  13. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen.

    PubMed

    Rokitskaya, Tatyana I; Kotova, Elena A; Agapov, Igor I; Moisenovich, Mikhail M; Antonenko, Yuri N

    2014-05-01

    In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide. PMID:24613917

  14. Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability.

    PubMed

    Althaus, Mike; Bogdan, Roman; Clauss, Wolfgang G; Fronius, Martin

    2007-08-01

    Epithelial cells are exposed to a variety of mechanical forces, but little is known about the impact of these forces on epithelial ion channels. Here we show that mechanical activation of epithelial sodium channels (ENaCs), which are essential for electrolyte and water balance, occurs via an increased ion channel open probability. ENaC activity of heterologously expressed rat (rENaC) and Xenopus (xENaC) orthologs was measured by whole-cell as well as single-channel recordings. Laminar shear stress (LSS), producing shear forces in physiologically relevant ranges, was used to mechanically stimulate ENaCs and was able to activate ENaC currents in whole-cell recordings. Preceding pharmacological activation of rENaC with Zn2+ and xENaC with gadolinium and glibenclamide largely prevented LSS-activated currents. In contrast, proteolytic cleavage with trypsin potentiated the LSS effect on rENaC whereas the LSS effect on xENaC was reversed (inhibition of xENaC current). Further, we found that exposure of excised outside-out patches to LSS led to an increased ion channel open probability without affecting the number of active channels. We suggest that mechano-sensitivity of ENaC may represent a ubiquitous feature for the physiology of epithelia, providing a putative mechanism for coupling transepithelial Na+ reabsorption to luminal transport. PMID:17426066

  15. Carbon nanotube as a gramicidin analogue

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Chung, Shin-Ho

    2011-01-01

    We have designed a carbon nanotube that is selectively permeable to monovalent cations, binds divalent cations and rejects anions. The nanotubes, with an effective radius of 4.53 Å and length of 36 Å, are terminated with hydrogen atoms and are exohydrogenated in two regions near the entrance and exit. Using molecular and stochastic dynamics simulations we examine the free energy, current-voltage-concentration profiles and ion binding sites. The characteristics of this channel are comparable to the antibiotic gramicidin-A, but the potassium current is six times larger. At 40 mM calcium concentration the current is reduced from 26 pA to 4 pA due to a calcium ion binding at the channel entrance.

  16. Dielectric boundary force and its crucial role in gramicidin

    NASA Astrophysics Data System (ADS)

    Nadler, Boaz; Hollerbach, Uwe; Eisenberg, R. S.

    2003-08-01

    In an electrostatic problem with nonuniform geometry, a charge Q in one region induces surface charges [called dielectric boundary charges (DBC)] at boundaries between different dielectrics. These induced surface charges, in return, exert a force [called dielectric boundary force (DBF)] on the charge Q that induced them. The DBF is often overlooked. It is not present in standard continuum theories of (point) ions in or near membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst- Planck. The DBF is important when a charge Q is near dielectric interfaces, for example, when ions permeate through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed charge force (FCF) produced by the permanent charge of the gramicidin polypeptide, and so the net force on the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and so the net (repulsive) force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged positive ions to move into and through the channel. The DBF is not directly responsible, however, for selectivity between the alkali metal ions (e.g., Li+, Na+, K+): we prove that the DBF on a mobile spherical ion is independent of the ion’s radius.

  17. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C.

    PubMed Central

    Hinton, J F; Fernandez, J Q; Shungu, D C; Whaley, W L; Koeppe, R E; Millett, F S

    1988-01-01

    Thermodynamic parameters for the binding of the monovalent cations, Li+, Na+, K+, Rb+, Cs+, NH4+, TI+, and Ag+, to gramicidin A and for the binding of TI+ to gramicidin C, incorporated into lysophosphatidylcholine, have been determined using a combination of TI-205 nuclear magnetic resonance spectroscopy and competition binding. The thermodynamic parameters, enthalpy and entropy, are discussed in terms of a process involving the transfer of cations from an aqueous to amide environment. PMID:2462930

  18. [Effect of temperature on the interaction of gramicidin A and its dimer analog with the muscle fiber membrane].

    PubMed

    Shvinka, N E; Caffier, G; Malev, V V; Ryzhova, E V

    1985-01-01

    Potassium conductance of single muscle fibres from Rana esculenta was studied in isotonic K2SO4 solution under constant current conditions using double sucrose gap method. At room temperature the channel formation by gramicidin was much faster than that of the synthetic head to head covalently linked gramicidin dimer. The increase of temperature by 8-10 degrees C resulted in a considerable rise of both dimer- and gramicidin-induced conductances. The effect was much greater than in the case of bilayers indicating a remarkable entropy change in the muscle fibre membrane. The temperature dependence of adsorption was more pronounced than that of desorption: there was no effect on desorption of dimer and only 20% of the temperature-activated desorption of gramicidin irreversibly bound at room temperature. PMID:2413902

  19. Computational Studies of Gramicidin Permeation: An Entryway Sulfonate Enhances Cation Occupancy at Entry Sites

    PubMed Central

    Mustafa, Morad; Henderson, Douglas J.; Busath, David D.

    2009-01-01

    The impact on the cation-transport free-energy profile of replacing the C-terminal ethanolamine in the gramicidin A channel with a taurine residue is studied using molecular dynamics simulations of gramicidin A (1JNO) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl saline solution. The potential of mean force for ion transport is obtained by umbrella sampling. The presence of a negatively charged sulfonate group at the entrance of the gramicidin channel affects the depth and the location of the binding sites, producing a strong attraction for the cations in the bulk. The potential of mean force by the sulfonate acting directly through electrostatics and van der Waals interactions on the test ion is highly modulated by indirect effects (i.e., sulfonate effects on other components of the system that, in turn, affect the ion free-energy profile in the channel). Because the “entry” sites are located symmetrically at both entry and exit of the channel, the deeper free-energy wells should inhibit exit. Given that the channel has increased conductance experimentally, the simulation results suggest that the channel conductance is normally entry limited. PMID:19361485

  20. Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers.

    PubMed Central

    LoGrasso, P V; Moll, F; Cross, T A

    1988-01-01

    Reconstituted lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and gramicidin A' have been prepared by cosolubilizing gramicidin and DMPC in one of three organic solvent systems followed by vacuum drying and hydration. The conformational state of gramicidin as characterized by 23Na NMR, circular dichroism, and solid state 15N NMR is dependent upon the cosolubilizing solvent system. In particular, two conformational states are described; a state in which Na+ has minimal interactions with the polypeptide, referred to as a nonchannel state, and a state in which Na+ interacts very strongly with the polypeptide, referred to as the channel state. Both of these conformations are intimately associated with the hydrophobic core of the lipid bilayer. Furthermore, both of these states are stable in the bilayer at neutral pH and at a temperature above the bilayer phase transition temperature. These results with gramicidin suggest that the conformation of membrane proteins may be dictated by the conformation before membrane insertion and may be dependent upon the mechanism by which the insertion is accomplished. PMID:2462923

  1. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.

    PubMed Central

    Cukierman, S; Quigley, E P; Crumrine, D S

    1997-01-01

    Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton

  2. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation

    NASA Astrophysics Data System (ADS)

    Rokitskaya, Tatyana I.; Macrae, Michael X.; Blake, Steven; Egorova, Natalya S.; Kotova, Elena A.; Yang, Jerry; Antonenko, Yuri N.

    2010-11-01

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.

  3. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation.

    PubMed

    Rokitskaya, Tatyana I; Macrae, Michael X; Blake, Steven; Egorova, Natalya S; Kotova, Elena A; Yang, Jerry; Antonenko, Yuri N

    2010-11-17

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors. PMID:21339605

  4. The F. C. C.'s Clear Channel Radio Policies: Regulation in the Slow Lane.

    ERIC Educational Resources Information Center

    Jassem, Harvey C.

    In 1928, the Federal Radio Commission (the precursor of the Federal Communications Commission--FCC) noted the need for special radio channels that could carry radio across the United States free from interference from other radio stations. Many of these "clear channels" still exist as protected entities. Perhaps no other FCC policy better reflects…

  5. Molecular Dynamics Study of Gramicidin A in Lipid Bilayer: Electrostatic Map and Ion Conduction

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Iwayama, Masashi; Kawaguchi, Kazutomo; Mizukami, Taku; Miyakawa, Takeshi; Takasu, Masako; Nagao, Hidemi

    The electrostatic potential (ESP) of gramicidin A (GA) in the DMPC lipid bilayers with/without an external uniform electrostatic field was investigated by molecular dynamics (MD) simulation. We found that the ESP profile with an external electrostatic field became step shape. The water and polar groups of the lipid and GA are rearranged in order to restore a flat ESP in the water bulk and GA channel interior. The reorientation of the polar head group enhances the ESP difference between each hydration regions of the membrane, and this should yield an increase of ion conductance through the GA channel.

  6. Folding simulations of gramicidin A into the β-helix conformations: Simulated annealing molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Mori, Takaharu; Okamoto, Yuko

    2009-10-01

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the β6.3-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed β4.4-helix as the lowest-potential-energy structure, and left-handed β4.4-helix, right-handed and left-handed β6.3-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite β-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed β6.3-helix and β4.4-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these β-helix structures. The results suggested that β6.3-helix is more stable than β4.4-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the β6.3-helix conformation.

  7. Folding simulations of gramicidin A into the beta-helix conformations: Simulated annealing molecular dynamics study.

    PubMed

    Mori, Takaharu; Okamoto, Yuko

    2009-10-28

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the beta(6.3)-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed beta(4.4)-helix as the lowest-potential-energy structure, and left-handed beta(4.4)-helix, right-handed and left-handed beta(6.3)-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite beta-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed beta(6.3)-helix and beta(4.4)-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these beta-helix structures. The results suggested that beta(6.3)-helix is more stable than beta(4.4)-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the beta(6.3)-helix conformation. PMID:19894978

  8. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin.

    PubMed Central

    Prosser, R S; Daleman, S I; Davis, J H

    1994-01-01

    Solid state deuterium NMR was employed on oriented multilamellar dispersions consisting of 1,2-dilauryl-sn-glycero-3-phosphatidylcholine and deuterium (2H) exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamic structure of the channel conformation of gramicidin in a liquid crystalline phase. The corresponding spectra were used to discriminate between several structural models for the channel structure of gramicidin (based on the left- and right-handed beta 6.3 LD helix) and other models based on a structure obtained from high resolution NMR. The oriented spectrum is complicated by the fact that many of the doublets, corresponding to the 20 exchangeable sites, partially overlap. Furthermore, the asymmetry parameter, eta, of the electric field gradient tensor of the amide deuterons is large (approximately 0.2) and many of the amide groups are involved in hydrogen bonding, which is known to affect the quadrupole coupling constant. In order to account for these complications in simulating the spectra in the fast motional regime, an ab initio program called Gaussian 90 was employed, which permitted us to calculate, by quantum mechanical means, the complete electric field gradient tensor for each residue in gramicidin (using two structural models). Our results indicated that the left-handed helical models were inconsistent with our observed spectra, whereas a model based on the high-resolution structure derived by Arseniev and coworkers, but relaxed by a simple energy minimization procedure, was consistent with our observed spectra. The molecular order parameter was then estimated from the motional narrowing assuming the relaxed (right-handed) Arseniev structure. Our resultant order parameter of SZZ = 0.91 translates into an rms angle of 14 degrees, formed by the helix axis and the local bilayer normal. The strong resemblance between our spectra (and also those reported for gramicidin in 1,2-dipalmitoyl-sn-glycero-3

  9. Interaction of gramicidin with DPPC/DODAB bilayer fragments.

    PubMed

    Carvalho, Camilla A; Olivares-Ortega, Constanza; Soto-Arriaza, Marco A; Carmona-Ribeiro, Ana M

    2012-12-01

    The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids. PMID:22960286

  10. Comment on ``Free energy simulations of single and double ion occupancy in gramicidin A'' [J. Chem. Phys. 126, 105103 (2007)

    NASA Astrophysics Data System (ADS)

    Roux, Benoît; Andersen, Olaf S.; Allen, Toby W.

    2008-06-01

    In a recent article published by Bastug and Kuyucak [J. Chem. Phys.126, 105103 (2007)] investigated the microscopic factors affecting double ion occupancy in the gramicidin channel. The analysis relied largely on the one-dimensional potential of mean force of ions along the axis of the channel (the so-called free energy profile of the ion along the channel axis), as well as on the calculation of the equilibrium association constant of the ions in the channel binding sites. It is the purpose of this communication to clarify this issue.

  11. Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs+ and Rb+ block in guinea-pig heart cells.

    PubMed

    Matsuda, H; Matsuura, H; Noma, A

    1989-06-01

    1. The hypothesis that the inwardly rectifying K+ channel consists of a triple-barrel structure was investigated. Inward currents were recorded under the blocking effects of external Cs+ or Rb+ in the cell-attached configuration of the patch-clamp technique using single ventricular cells enzymatically isolated from guinea-pig hearts. 2. Cs+ (10-100 microM) or Rb+ (20-100 microM) added to the 150 mM-K+ pipette solution induced rapid open-blocked transitions in the inward open-channel currents. In about 20% of experiments the inward current showed two intermediate current levels equally spaced between the unit amplitude and the zero-conductance level. The current fluctuated between these four levels. In the remaining experiments no obvious sublevels were observed except spontaneous ones, whose amplitudes were not always equal to one-third or two-thirds of the unit amplitude. 3. In experiments showing sublevels, the probability that the open-channel current stayed at each level was measured at various concentrations of blockers and membrane potentials. In both Cs+ and Rb+ block, the distribution of the current levels showed reasonable agreement with the binomial theorem. This finding suggests that the inwardly rectifying K+ channel is composed of three equally conductive subunits and each subunit is independently blocked by Cs+ or Rb+. 4. The dwell-time histogram in each substate was well fitted with a single-exponential function. On the assumption of the binomial model, the blocking (mu) and unblocking (lambda) rate for Cs+ and Rb+ were calculated. The value of mu was linearly proportional to the concentration of the blocking ion at a given membrane potential and increased with hyperpolarization (e-fold increase with a change of -43.5 mV in the Cs+ block). lambda was almost independent of the concentration of the blocking ion and less dependent on the membrane potential than mu. 5. The open and blocked times were calculated in experiments showing no clear sublevels

  12. Response to ``Comment on `Free energy simulations of single and double ion occupancy in gramicidin A' '' [J. Chem. Phys. 128, 227101 (2008)

    NASA Astrophysics Data System (ADS)

    Baştuğ, Turgut; Kuyucak, Serdar

    2008-06-01

    We respond to the criticism that one-dimensional (1D) construction of the potential of mean force (PMF) of ions in channels is flowed. Comparison of the 1D PMF results in the gramicidin A channel with independent free energy difference calculations obtained by using the free energy perturbation and thermodynamic integration methods shows complete agreement, thus providing a justifications for the 1D PMF approximation.

  13. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    NASA Astrophysics Data System (ADS)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  14. NQRS Data for Gramicidin A (Subst. No. 2507)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for Gramicidin A (Subst. No. 2507)

  15. Molecular dynamics study of electrostatic potential along lipid bilayer with gramicidin A

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Nishimura, Megumi; Takagi, Hiroyuki; Miyakawa, Takeshi; Kawaguchi, Kazutomo; Nagao, Hidemi

    2013-02-01

    The structure and electrostatic potential profile of the DMPC lipid bilayers with a gramicidin A (GA) were studied by molecular dynamics (MD) simulation. The MD simulation reproduced the effect of GA on the membrane structure; the area per lipid decreases and membrane thickness increases, and the observed membrane structures correspond to the experimental data. The polar headgroup of lipid was found to orient toward the membrane normal as the lipid approaches the GA. The observed electrostatic potential map showed that the electrostatic potential around the region of GA gate was lower than the others at the same level of the membrane normal and the values of electrostatic potential in the pore region of GA were negative. These results indicate that a cation in the aqueous region of membrane can be electrostatically led to the GA entrance and penetrate the GA channel following the gradient of ion concentration.

  16. Enhancement of linear gramicidin expression from Bacillus brevis ATCC 8185 by casein peptide.

    PubMed

    Nakai, Tomonori; Yamauchi, Daisuke; Kubota, Kou

    2005-04-01

    Bacillus brevis (Brevibacillus parabrevis) ATCC 8185 synthesizes two kinds of antibiotic peptides, cyclopeptide tyrocidine and linear gramicidin. The production of linear gramicidin can be induced by the standard method (using a skim milk medium for pre-culture and beef broth for the main culture) employed for the induction of tyrocidine. In this study, we tried to determine the optimal growth medium for B. brevis ATCC 8185 for synthesizing linear gramicidin. The yield of linear gramicidin produced by the standard method was 3.11 microg/ml. When beef broth was used both as the pre-medium and the main medium, the yield of the antibiotic was only 0.59 microg/ml. To confirm the influence of skim milk, the strain was grown in a 1% skim milk medium. As a result, the amount of linear gramicidin produced reached 20.3 microg/ml. These findings show the importance of skim milk in the production of linear gramicidin. In the skim milk medium, the cells produced an extracellular protease 2 h before the linear gramicidin was expressed. The 1% skim milk medium pretreated by this protease did not allow the induction of linear gramicidin into the cells, and protease activity was not detected in the supernatant of the culture. When the cells were cultivated in a 1% egg albumin medium, protease activity from the supernatant of the culture was detected, but production of linear gramicidin was not observed. Therefore, a 1% casein medium was used for production of linear gramicidin. As a result, the yield of linear gramicidin produced in the medium reached 6.69 microg/ml. We concluded that a digested product of the extracellular protease from casein enhances linear gramicidin production. PMID:15849407

  17. Gramicidin conformational changes during riboflavin photosensitized oxidation in solution and the effect of N-methylation of tryptophan residues.

    PubMed

    Fuentealba, Denis; López, Jhon J; Palominos, Marco; Salas, Cristian O; Soto-Arriaza, Marco A

    2015-04-01

    In the present work, we evaluated the role of gramicidin conformation in its photosensitized oxidation in organic solvents when irradiated in the presence of riboflavin. Gramicidin conformation has been described as monomeric in trifluoroethanol and as an intertwined dimer in methanol. Gramicidin showed extensive photo-oxidation upon irradiation in the presence of riboflavin in both solvents, and tryptophan residues were identified to be involved. We synthesized a gramicidin derivative methylated at position 1 of the indole ring of tryptophan to assess its effect on gramicidin conformation and photo-oxidation. Methylated gramicidin showed very similar absorption and emission spectra to gramicidin, but different conformations were identified by circular dichroism spectra. Upon irradiation, N-methylated tryptophan residues in the gramicidin derivative were not easily photo-oxidized by riboflavin compared to gramicidin. Circular dichroism spectra for gramicidin in methanol changed significantly upon irradiation in the presence of riboflavin indicating a change in conformation, while in trifluoroethanol no such changes were observed. Time-resolved fluorescence and anisotropy studies showed that oxidized gramicidin in methanol had shorter fluorescence lifetimes and a shorter rotational correlation time compared to non-irradiated gramicidin. Additionally, SDS-PAGE analysis showed a marked change in the electrophoretic pattern, whereas the high-molecular-weight bands disappeared upon irradiation. We interpret all these results in terms of a riboflavin photosensitized shift in gramicidin conformation from intertwined to monomeric. PMID:25611022

  18. Anomalous volume change of gramicidin A in ethanol solutions

    NASA Technical Reports Server (NTRS)

    Derechin, M.; Hayashi, D. M.; Jordan, B. E.

    1975-01-01

    Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.

  19. Molecular Dynamics Simulated Annealing Study of Gramicidin A in Water and the Hydrophobic Environment

    NASA Astrophysics Data System (ADS)

    Mori, Takaharu; Okamoto, Yuko

    2008-03-01

    Gramicidin A is a hydrophobic 15-residue peptide with alternating D- and L-amino acids, and it forms various conformations depending on its environment. For example, gramicidin A adopts a random coil or helical conformations, such as &4.4circ;-helix, &6.3circ;-helix, and double-stranded helix in organic solvents. To investigate the structural and dynamical properties of gramicidin A in water and the hydrophobic environment, we performed molecular dynamics simulated annealing simulations with implicit solvent based on a generalized Born model. From the simulations, it was found that gramicidin A has a strong tendency to form a random-coil structure in water, while in the hydrophobic environment it becomes compact and can fold into right- and left-handed conformations of β-helix structures. We discuss the folding mechanism of the β-helix conformation of gramicidin A.

  20. Gramicidin S production by Bacillus brevis in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity.

  1. Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents

    PubMed Central

    Ragioto, Danielle AMT; Carrasco, Letícia DM; Carmona-Ribeiro, Ana M

    2014-01-01

    Dioctadecyldimethylammonium bromide (DODAB) is an antimicrobial lipid that can be dispersed as large closed bilayers (LV) or bilayer disks (BF). Gramicidin (Gr) is an antimicrobial peptide assembling as channels in membranes and increasing their permeability towards cations. In mammalian cells, DODAB and Gr have the drawbacks of Gram-positive resistance and high toxicity, respectively. In this study, DODAB bilayers incorporating Gr showed good antimicrobial activity and low toxicity. Techniques employed were spectroscopy, photon correlation spectroscopy for sizing and evaluation of the surface potential at the shear plane, turbidimetric detection of dissipation of osmotic gradients in LV/Gr, determination of bacterial cell lysis, and counting of colony-forming units. There was quantitative incorporation of Gr and development of functional channels in LV. Gr increased the bilayer charge density in LV but did not affect the BF charge density, with localization of Gr at the BF borders. DODAB/Gr formulations substantially reduce Gr toxicity against eukaryotic cells and advantageously broaden the antimicrobial activity spectrum, effectively killing Escherichia coli and Staphylococcus aureus bacteria with occurrence of cell lysis. PMID:25061295

  2. Diffusion constant of K+ inside Gramicidin A: A comparative study of four computational methods

    PubMed Central

    Mamonov, Artem B.; Kurnikova, Maria G.; Coalson, Rob D.

    2007-01-01

    The local diffusion constant of K+ inside the Gramicidin A (GA) channel has been calculated using four computational methods based on molecular dynamics (MD) simulations, specifically: Mean Square Displacement (MSD), Velocity Autocorrelation Function (VACF), Second Fluctuation Dissipation Theorem (SFDT) and analysis of the Generalized Langevin Equation for a Harmonic Oscillator (GLE-HO). All methods were first tested and compared for K+ in bulk water—all predicted the correct diffusion constant. Inside GA, MSD and VACF methods were found to be unreliable because they are biased by the systematic force exerted by the membrane-channel system on the ion. SFDT and GLE-HO techniques properly unbias the influence of the systematic force on the diffusion properties and predicted a similar diffusion constant of K+ inside GA, namely, ca. 10 times smaller than in the bulk. It was found that both SFDT and GLE-HO methods require extensive MD sampling on the order of tens of nanoseconds to predict a reliable diffusion constant of K+ inside GA. PMID:16797116

  3. Simulation of voltage-driven hydrated cation transport through narrow transmembrane channels.

    PubMed Central

    Skerra, A; Brickmann, J

    1987-01-01

    Molecular dynamics studies for the voltage-driven transport of the alkali metal ions lithium, sodium, and potassium through gramicidin A-type channels filled with water molecules are presented. The number of water molecules in the channel is obtained from a previous study (Skerra, A., and J. Brickmann, 1987, Biophys. J., 51:969-976). It is shown that the selectivity of the intrachannel ion diffusion through our model pore conforms to the experimentally observed selectivity of the gramicidin A channel. It is demonstrated that the number of water molecules in the channel plays a key role for the selectivity. PMID:2440486

  4. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    PubMed

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes. PMID:25437123

  5. Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A.

    PubMed

    Setiadi, Jeffry; Kuyucak, Serdar

    2016-01-01

    Membrane proteins are embedded in a lipid bilayer and interact with the lipid molecules in subtle ways. This can be studied experimentally by examining the effect of different lipid bilayers on the function of membrane proteins. Understanding the causes of the functional effects of lipids is difficult to dissect experimentally but more amenable to a computational approach. Here we perform molecular dynamics simulations and free energy calculations to study the effect of two lipid types (POPC and NODS) on the conductance of the gramicidin A (gA) channel. A larger energy barrier is found for the K⁺ potential of mean force in gA embedded in POPC compared to that in NODS, which is consistent with the enhanced experimental conductance of cations in gA embedded in NODS. Further analysis of the contributions to the potential energy of K⁺ reveals that gA and water molecules in gA make similar contributions in both bilayers but there are significant differences between the two bilayers when the lipid molecules and interfacial waters are considered. It is shown that the stronger dipole moments of the POPC head groups create a thicker layer of interfacial waters with better orientation, which ultimately is responsible for the larger energy barrier in the K⁺ PMF in POPC. PMID:26999229

  6. Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A

    PubMed Central

    Setiadi, Jeffry; Kuyucak, Serdar

    2016-01-01

    Membrane proteins are embedded in a lipid bilayer and interact with the lipid molecules in subtle ways. This can be studied experimentally by examining the effect of different lipid bilayers on the function of membrane proteins. Understanding the causes of the functional effects of lipids is difficult to dissect experimentally but more amenable to a computational approach. Here we perform molecular dynamics simulations and free energy calculations to study the effect of two lipid types (POPC and NODS) on the conductance of the gramicidin A (gA) channel. A larger energy barrier is found for the K+ potential of mean force in gA embedded in POPC compared to that in NODS, which is consistent with the enhanced experimental conductance of cations in gA embedded in NODS. Further analysis of the contributions to the potential energy of K+ reveals that gA and water molecules in gA make similar contributions in both bilayers but there are significant differences between the two bilayers when the lipid molecules and interfacial waters are considered. It is shown that the stronger dipole moments of the POPC head groups create a thicker layer of interfacial waters with better orientation, which ultimately is responsible for the larger energy barrier in the K+ PMF in POPC. PMID:26999229

  7. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    PubMed

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA. PMID:25622083

  8. Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels.

    PubMed Central

    Rokitskaya, T I; Block, M; Antonenko, Y N; Kotova, E A; Pohl, P

    2000-01-01

    The photodynamic activity of sulfonated aluminum phthalocyanines (AlPcS(n), 1 gramicidin channels, as revealed by measurements of the electric current across planar lipid bilayers. The increase in the degree of sulfonation of phthalocyanine progressively reduced its affinity for the lipid bilayer as well as its potency of sensitizing gramicidin channel photoinactivation. The portion of photoinactivated gramicidin channels, alpha, increased with rising photosensitizer concentration up to some optimum. The concentration at which alpha was at half-maximum amounted to 80 nM, 30 nM, 200 nM, and 2 microM for AlPcS(1), AlPcS(2), AlPcS(3), and AlPcS(4), respectively. At high concentrations alpha was found to decrease, which was attributed to quenching of reactive oxygen species and self-quenching of the photosensitizer triplet state by its ground state. Fluoride anions were observed to inhibit both AlPcS(n) (2 gramicidin channels. It is concluded that photosensitizer binding to membrane lipids is a prerequisite for the photodynamic inactivation of gramicidin channels. PMID:10777753

  9. Conformation of gramicidin A in Triton X-100 micelles from CD and FTIR data: a clean example of antiparallel double β5.6 helix formation.

    PubMed

    Sychev, Sergei V; Barsukov, Leonid I; Ivanov, Vadim T

    2013-07-01

    The linear peptide gramicidin A (gA) forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization and dynamics of membrane channels. This polymorphic peptide can adopt two different types of structures, the helical dimer β6.3 ('channel state') and the double helical structure with two intertwined monomers. The structure of gA in micelles of detergent Triton X-100 has been studied using CD, Fourier transform infrared, and fluorescence spectroscopy. The results obtained demonstrate that only one thermodynamically stable gA structure, the antiparallel left-handed double helix β5.6, is formed in this membrane-mimetic environment. The position of the tryptophan fluorescence maximum at 332 nm is the same as that in phospholipid membranes. The causative factors governing the double helix formation in the micellar medium are discussed on the basis of known physicochemical properties of Triton X-100. PMID:23712944

  10. A combination of curcumin with either gramicidin or ouabain selectively kills cells that express the multidrug resistance-linked ABCG2 transporter.

    PubMed

    Rao, Divya K; Liu, Haiyan; Ambudkar, Suresh V; Mayer, Michael

    2014-11-01

    This paper introduces a strategy to kill selectively multidrug-resistant cells that express the ABCG2 transporter (also called breast cancer resistance protein, or BCRP). The approach is based on specific stimulation of ATP hydrolysis by ABCG2 transporters with subtoxic doses of curcumin combined with stimulation of ATP hydrolysis by Na(+),K(+)-ATPase with subtoxic doses of gramicidin A or ouabain. After 72 h of incubation with the drug combinations, the resulting overconsumption of ATP by both pathways inhibits the efflux activity of ABCG2 transporters, leads to depletion of intracellular ATP levels below the viability threshold, and kills resistant cells selectively over cells that lack ABCG2 transporters. This strategy, which was also tested on a clinically relevant human breast adenocarcinoma cell line (MCF-7/FLV1), exploits the overexpression of ABCG2 transporters and induces caspase-dependent apoptotic cell death selectively in resistant cells. This work thus introduces a novel strategy to exploit collateral sensitivity (CS) with a combination of two clinically used compounds that individually do not exert CS. Collectively, this work expands the current knowledge on ABCG2-mediated CS and provides a potential strategy for discovery of CS drugs against drug-resistant cancer cells. PMID:25253691

  11. Ion fluxes through nanopores and transmembrane channels

    NASA Astrophysics Data System (ADS)

    Bordin, J. R.; Diehl, A.; Barbosa, M. C.; Levin, Y.

    2012-03-01

    We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2006-10240-4 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.

  12. Direct coupled-channels deperturbation analysis of the A{sup 1}Σ{sup +} ∼ b{sup 3}Π complex in LiCs with experimental accuracy

    SciTech Connect

    Kowalczyk, P.; Jastrzebski, W.; Szczepkowski, J.

    2015-06-21

    We have carried out the direct deperturbation analysis of about 780 rovibronic term values of the strongly spin-orbit (SO) coupled A{sup 1}Σ{sup +} and b{sup 3}Π states of the {sup 7}Li{sup 133}Cs molecule recorded by polarization labelling spectroscopy technique. The explicit A{sup 1}Σ{sup +} ∼ b{sup 3}Π{sub Ω=0,1,2} coupled-channels treatment allowed us to reproduce 95% experimental term values with a standard deviation of 0.05 cm{sup −1} which is close to the accuracy of the present experiment. The initial potential energy curves (PECs) of the mutually perturbed states and SO matrix elements were ab initio evaluated in the basis of the spin-averaged wave functions. The empirically refined PECs and SO functions, along with the theoretical transition dipole moments, were used to predict energy and radiative properties of the A ∼ b complex for low J levels of both {sup 7}Li{sup 133}Cs and {sup 6}Li{sup 133}Cs isotopologues. The reasonable candidates for the stimulated Raman transitions between initial Feshbach resonance states, the mixed levels of the A ∼ b complex, and absolute ground X{sup 1}Σ{sup +} (v = 0 and J = 0) state were identified.

  13. Structure, toxicity and antibiotic activity of gramicidin S and derivatives.

    PubMed

    Swierstra, J; Kapoerchan, V; Knijnenburg, A; van Belkum, A; Overhand, M

    2016-05-01

    Development of new antibiotics is declining whereas antibiotic resistance is rising, heralding a post-antibiotic era. Antimicrobial peptides such as gramicidin S (GS), exclusively topically used due to its hemolytic side-effect, could still be interesting as therapeutic compounds. By modifying the amino-acid composition of GS, we synthesized GS analogues. We now show that derivative VK7 has a lower MIC (7.8-31.2 μg/ml, median 15.6 μg/ml) against strains of multi-drug resistant (MDR) Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa than GS has (3.9-62.5 μg/ml, median 31.3 μg/ml). Low MICs for both VK7 and GS were observed for Staphylococcus aureus and Enterococcus faecium. VK7 showed reduced haemolysis and less lactate dehydrogenase release. All compounds were fully bactericidal at MIC values. Modification of GS enables production of novel derivatives potentially useful for systemic treatment of human infections. PMID:26886453

  14. Gramicidin-mediated currents at very low permeant ion concentrations.

    PubMed

    Hainsworth, A H; Hladky, S B

    1987-07-01

    Current-voltage relations have been measured for the fluxes of caesium ions through pores formed by gramicidin in lipid bilayer membranes. The ionic currents have been separated from capacitative currents using a bridge circuit with an integrator as null-detector. The conductances during brief voltage pulses were small enough to avoid the effects of diffusion polarization and the ionic strength was raised using choline chloride or magnesium sulfate to reduce the effects of double-layer polarization. Under these conditions the current-voltage relations have the same shape at 0.1 and 1 mM, but different shapes for higher concentrations. These data demonstrate that the fluxes do not obey independence for concentrations above 10 mM, but they cannot be used in isolation to support a particular value of the binding constant. The shape observed at low concentrations suggests that entry of ions into the pore remains weakly potential dependent even at 300 mV. PMID:2440488

  15. N-terminally glutamate-substituted analogue of gramicidin A as protonophore and selective mitochondrial uncoupler.

    PubMed

    Sorochkina, Alexandra I; Plotnikov, Egor Y; Rokitskaya, Tatyana I; Kovalchuk, Sergei I; Kotova, Elena A; Sychev, Sergei V; Zorov, Dmitry B; Antonenko, Yuri N

    2012-01-01

    Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents. PMID:22911866

  16. N-Terminally Glutamate-Substituted Analogue of Gramicidin A as Protonophore and Selective Mitochondrial Uncoupler

    PubMed Central

    Sorochkina, Alexandra I.; Plotnikov, Egor Y.; Rokitskaya, Tatyana I.; Kovalchuk, Sergei I.; Kotova, Elena A.; Sychev, Sergei V.; Zorov, Dmitry B.; Antonenko, Yuri N.

    2012-01-01

    Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents. PMID:22911866

  17. Deuterium NMR of 2HCO-Val1...gramicidin A and 2HCO-Val1-D-Leu2...gramicidin A in oriented DMPC bilayers.

    PubMed

    Hing, A W; Adams, S P; Silbert, D F; Norberg, R E

    1990-05-01

    Deuterium NMR is used to study the structure and dynamics of the formyl C-2H bond in selectively deuterated gramicidin molecules. Specifically, the functionally different analogues 2HCO-Val1...gramicidin A and 2HCO-Val1-D-Leu2...gramicidin A are studied by 2H NMR so that any conformational or dynamical differences between the two analogues can be correlated with their difference in lifetime. These analogues are first synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorous NMR line shapes obtained from these samples are consistent with the presence of the bilayer phase and indicate that the disorder exhibited by the lipid matrix is approximately of the same type and degree for both analogues. Deuterium NMR line shapes obtained from these samples indicate that the motional axis of the formyl group of gramicidin is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 7-9 degrees, and that a similar, major conformational and dynamical state exists for the formyl C-2H bond of both analogues. In this state, if the only motion present is fast axial rotation, then the experimentally derived angle between the formyl C-2H bond and the motional axis is consistent with the presence of a right-handed, single-stranded, beta 6.3 helical dimer but is not consistent with the presence of a left-handed, single-stranded, beta 6.3 helical dimer. However, if fast axial rotation is not the only motion present, then the left-handed, single-stranded, beta 6.3 helical dimer cannot be absolutely excluded as a possibility. Also, a second, minor conformational and dynamical state appears to be present in the spectrum of 2HCO-Val1-D-Leu2...gramicidin A but is not observed in the spectrum of 2HCO-Val1...gramicidin A. This minor conformational and dynamical state may reflect the presence of monomers, while the major conformational and

  18. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Hydrophobic Coupling of Lipid Bilayer Energetics to Channel Function

    PubMed Central

    Goforth, Robyn L.; Chi, Aung K.; Greathouse, Denise V.; Providence, Lyndon L.; Koeppe, Roger E.; Andersen, Olaf S.

    2003-01-01

    The hydrophobic coupling between membrane-spanning proteins and the lipid bilayer core causes the bilayer thickness to vary locally as proteins and other “defects” are embedded in the bilayer. These bilayer deformations incur an energetic cost that, in principle, could couple membrane proteins to each other, causing them to associate in the plane of the membrane and thereby coupling them functionally. We demonstrate the existence of such bilayer-mediated coupling at the single-molecule level using single-barreled as well as double-barreled gramicidin channels in which two gramicidin subunits are covalently linked by a water-soluble, flexible linker. When a covalently attached pair of gramicidin subunits associates with a second attached pair to form a double-barreled channel, the lifetime of both channels in the assembly increases from hundreds of milliseconds to a hundred seconds—and the conductance of each channel in the side-by-side pair is almost 10% higher than the conductance of the corresponding single-barreled channels. The double-barreled channels are stabilized some 100,000-fold relative to their single-barreled counterparts. This stabilization arises from: first, the local increase in monomer concentration around a single-barreled channel formed by two covalently linked gramicidins, which increases the rate of double-barreled channel formation; and second, from the increased lifetime of the double-barreled channels. The latter result suggests that the two barrels of the construct associate laterally. The underlying cause for this lateral association most likely is the bilayer deformation energy associated with channel formation. More generally, the results suggest that the mechanical properties of the host bilayer may cause the kinetics of membrane protein conformational transitions to depend on the conformational states of the neighboring proteins. PMID:12719487

  20. Gated Ion Channel-Based Biosensor Device

    NASA Astrophysics Data System (ADS)

    Separovic, Frances; Cornell, Bruce A.

    A biosensor device based on the ion channel gramicidin A (gA) incorporated into a bilayer membrane is described. This generic immunosensing device utilizes gA coupled to an antibody and assembled in a lipid membrane. The membrane is chemically tethered to a gold electrode, which reports on changes in the ionic conduction of the lipid bilayer. Binding of a target molecule in the bathing solution to the antibody causes the gramicidin channels to switch from predominantly conducting dimers to predominantly nonconducting monomers. Conventional a.c. impedance spectroscopy between the gold and a counter electrode in the bathing solution is used to measure changes in the ionic conductivity of the membrane. This approach permits the quantitative detection of a range of target species, including bacteria, proteins, toxins, DNA sequences, and drug molecules.

  1. Computer Simulation Studies of Ion Channels at High Temperatures

    NASA Astrophysics Data System (ADS)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  2. Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes.

    PubMed

    Sorochkina, Alexandra I; Kovalchuk, Sergei I; Omarova, Elena O; Sobko, Alexander A; Kotova, Elena A; Antonenko, Yuri N

    2013-11-01

    Introducing a charged group near the N-terminus of gramicidin A (gA) is supposed to suppress its ability to form ion channels by restricting its head-to-head dimerization. The present study dealt with the activity of [Lys1]gA, [Lys3]gA, [Glu1]gA, [Glu3]gA, [Lys2]gA, and [Lys5]gA in model membrane systems (planar lipid bilayers and liposomes) and erythrocytes. In contrast to the Glu-substituted peptides, the lysine derivatives of gA caused non-specific liposomal leakage monitored by fluorescence dequenching of lipid vesicles loaded with carboxyfluorescein or other fluorescent dyes. Measurements of electrical current through a planar lipid membrane revealed formation of giant pores by Lys-substituted analogs, which depended on the presence of solvent in the bilayer lipid membrane. The efficacy of unselective pore formation in liposomes depended on the position of the lysine residue in the amino acid sequence, increasing in the row: [Lys2]gA<[Lys5]gA<[Lys1]gA<[Lys3]gA. The similar series of potency was exhibited by the Lys-substituted gA analogs in facilitating erythrocyte hemolysis, whereas the Glu-substituted analogs showed negligible hemolytic activity. Oligomerization of the Lys-substituted peptides is suggested to be involved in the process of nonselective pore formation. PMID:23806648

  3. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.

    PubMed Central

    Hinton, J F; Koeppe, R E; Shungu, D; Whaley, W L; Paczkowski, J A; Millett, F S

    1986-01-01

    Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidin A, B, or C under these experimental conditions. In this system, the Tl+ equilibrium binding constant is 582 +/- 20 M-1 for gramicidin 1949 +/- 100 M-1 for gramicidin B, and 390 +/- 20 M-1 for gramicidin C. Gramicidin B not only binds Tl+ more strongly but it is also in a different conformational state than that of A and C, as shown by Circular Dichroism spectroscopy. The 205Tl NMR technique can now be extended to determinations of binding constants of other cations to gramicidin by competition studies using a 205Tl probe. PMID:2420383

  4. The Gramicidin Dimer Shows Both EX1 and EX2 Mechanisms of H/D Exchange

    PubMed Central

    Chitta, Raghu K.; Rempel, Don L.; Gross, Michael L.

    2009-01-01

    We describe the use of H/D amide exchange and electrospray ionization mass spectrometry to study, in organic solvents, the pentadecapeptide gramicidin as a model for protein self association. In methanol-OD, all active H’s in the peptide exchange for D within 5 min, indicating a monomer/dimer equilibrium that is shifted towards the fast-exchanging monomer. H/D exchange in n-propanol-OD, however, showed a partially protected gramicidin that slowly converts to a second species that exchanges nearly all the active hydrogens, indicating EX1 kinetics for the H/D exchange. We propose that this behavior is the result of slower rate of unfolding in n-propanol compared to that in methanol. The rate constant for the unfolding of the dimer is the rate of disappearance of the partially protected species, and it agrees within a factor of two with a value reported in literature. The rate constant of dimer refolding can be determined from the ratio of the rate constant for unfolding and the affinity constant for the dimer, which we determined in an earlier study. The unfolding activation energy is 20 kcal mol-1, determined by performing the exchange experiments as a function of temperature. To study gramicidin in an even more hydrophobic medium than n-propanol, we measured its H/D exchange kinetics in a phospholipids vesicle and found a different H/D amide exchange behavior. Gramicidin is an unusual peptide dimer that can exhibit both EX1 and EX2 mechanisms for its H/D exchange, depending on the solvent. PMID:19631556

  5. The pH-dependent induction of lipid membrane ionic permeability by N-terminally lysine-substituted analogs of gramicidin A.

    PubMed

    Rokitskaya, Tatyana I; Sorochkina, Alexandra I; Kovalchuk, Sergey I; Egorova, Natalya S; Kotova, Elena A; Sychev, Sergey V; Antonenko, Yuri N

    2012-02-01

    Insertion of charged groups at the N-terminus of the gramicidin A (gA) amino acid sequence is considered to be fatal for peptide channel-forming activity because of hindrance to the head-to-head dimer formation. Here the induction of ionic conductivity in planar bilayer lipid membranes (BLM) was studied with gA analogs having lysine either in the first ([Lys1]gA) or the third ([Lys3]gA) position. If added to the bathing solution at neutral or acidic pH, these analogs, being protonated and thus positively charged, were unable to induce ionic current across BLM. By contrast, at pH 11 the induction of BLM conductivity was observed with both lysine-substituted analogs. Based on the dependence of the macroscopic current on the side of the peptide addition, sensitivity to calcium ions and susceptibility to sensitized photoinactivation, as well as on the single-channel properties of the analogs, we surmise that at alkaline pH [Lys1]gA formed channels with predominantly single-stranded structure of head-to-head helical dimers, whereas [Lys3]gA open channels had the double-stranded helical structure. CD spectra of the lysine-substituted analogs in liposomes were shown to be pH-dependent. PMID:22042158

  6. Gramicidin Alters the Lipid Compositions of Liquid-Ordered and Liquid-Disordered Membrane Domains

    NASA Astrophysics Data System (ADS)

    Hassan-Zadeh, Ebrahim; Huang, Juyang

    2012-10-01

    The effects of adding 1 mol % of gramicidin A to the well-known DOPC/DSPC/cholesterol lipid mixtures were investigated. 4-component giant unilamellar vesicles (GUV) were prepared using our recently developed Wet-Film method. The phase boundary of liquid-ordered and liquid-disordered (Lo-Ld) coexisting region was determined using video fluorescence microscopy. We found that if cares were not taken, light-induced domain artifacts could significantly distort the measured phase boundary. After testing several fluorescence dyes, we found that the emission spectrum of Nile Red is quite sensitive to membrane composition. By fitting the Nile Red emission spectra at the phase boundary to the spectra in the Lo-Ld coexisting region, the thermodynamic tie-lines were determined. As an active component of lipid membranes, gramicidin not only partitions favorably into the liquid-disordered (Ld) phase, it also alters the phase boundary and thermodynamic tie-lines. Even at as low as 1 mol %, gramicidin decreases the cholesterol mole fraction of Ld phase and increases the area of Lo phase.

  7. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons.

    PubMed

    Stevenson, Paul; Tokmakoff, Andrei

    2015-06-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D. PMID:26049444

  8. Gramicidin S: a peptide model for protein glycation and reversal of glycation using nucleophilic amines.

    PubMed

    Shakkottai, V G; Sudha, R; Balaram, P

    2002-08-01

    Nonenzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. Glycation of proteins proceeds through the stages of Schiff base formation, conversion to ketoamine product and advanced glycation end products. Gramicidin S, which has two ornithine residues, was used as a model system to study the various stages of glycation of proteins using electrospray ionization mass spectrometry. The proximity of two ornithine residues in the peptide favors the glycation reaction. Formation of advanced glycation end products and diglycation on ornithine residues in gramicidin S were observed. The formation of Schiff base adduct is reversible, whereas the Amadori rearrangement to the ketoamine product is irreversible. Nucleophilic amines and hydrazines can deglycate the Schiff base adduct of glucose with peptides and proteins. Hydroxylamine, isonicotinic acid hydrazide and aminoguanidine effectively removed glucose from the Schiff base adduct of gramicidin S. Hydroxylamine is more effective in deglycating the adduct compared with isonicotinic acid hydrazide and aminoguanidine. The observation that the hydrazines are effective in deglycating the Schiff base adduct even in the presence of high concentrations of glucose, may have a possible therapeutic application in preventing complications of diabetes mellitus. Hydrazines may be used to distinguish between the Schiff base and the ketoamine products formed at the initial stages of glycation. PMID:12102724

  9. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    PubMed Central

    Tokmakoff, Andrei

    2015-01-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D. PMID:26049444

  10. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    NASA Astrophysics Data System (ADS)

    Stevenson, Paul; Tokmakoff, Andrei

    2015-06-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D.

  11. Vertical profile of 137Cs in soil.

    PubMed

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them. PMID:15388151

  12. Physical origin of selectivity in ionic channels of biological membranes.

    PubMed Central

    Laio, A; Torre, V

    1999-01-01

    This paper shows that the selectivity properties of monovalent cation channels found in biological membranes can originate simply from geometrical properties of the inner core of the channel without any critical contribution from electrostatic interactions between the permeating ions and charged or polar groups. By using well-known techniques of statistical mechanics, such as the Langevin equations and Kramer theory of reaction rates, a theoretical equation is provided relating the permeability ratio PB/PA between ions A and B to simple physical properties, such as channel geometry, thermodynamics of ion hydration, and electrostatic interactions between the ion and charged (or polar) groups. Diffusive corrections and recrossing rates are also considered and evaluated. It is shown that the selectivity found in usual K+, gramicidin, Na+, cyclic nucleotide gated, and end plate channels can be explained also in the absence of any charged or polar group. If these groups are present, they significantly change the permeability ratio only if the ion at the selectivity filter is in van der Waals contact with them, otherwise these groups simply affect the channel conductance, lowering the free energy barrier of the same amount for the two ions, thus explaining why single channel conductance, as it is experimentally observed, can be very different in channels sharing the same selectivity sequence. The proposed theory also provides an estimate of channel minimum radius for K+, gramicidin, Na+, and cyclic nucleotide gated channels. PMID:9876129

  13. Tetrahydrofuran amino acid-containing gramicidin S analogues with improved biological profiles.

    PubMed

    Pal, Sudip; Singh, Gajendra; Singh, Shyam; Tripathi, Jitendra Kumar; Ghosh, Jimut Kanti; Sinha, Sudhir; Ampapathi, Ravi Sankar; Chakraborty, Tushar Kanti

    2015-06-28

    Gramicidin S (GS) is a cyclic cationic antimicrobial peptide (CAP) with a wide spectrum of antibiotic activities whose usage has been limited to topical applications owing to its cytotoxic side effects. We have synthesized tetrahydrofuran amino acid (Taa)-containing GS analogues, and we have carried out conformational analysis and explored their structure activity relationships by evaluating their antitubercular, antibacterial and cytotoxic properties. Two of these analogues showed impressive as well as selective activity against Mycobacterium tuberculosis (MTB) without toxicity towards mammalian Vero cells or human RBCs, and are promising as potential leads. PMID:26008215

  14. Influence of gramicidin on the dynamics of DMPC studied by incoherent elastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U.; D'Angelo, G.; Conti Nibali, V.; Gonzalez, M.; Crupi, C.; Mondelli, C.

    2008-03-01

    By using the fixed energy window method in incoherent elastic neutron scattering, molecular motions in the 150 ps timescale in highly oriented multilayers of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) membranes in excess of water (D2O) have been studied as a function of temperature, in the range from 27 to 325 K. The same system in partially deuterated form and with the addition of a pore-forming peptide (gramicidin) has also been investigated. By proper orientation of the membrane plane with respect to the scattering wavevector Q, information on in plane and out of plane motions of lipid membranes have been derived. Two relevant dynamical transitions were observed at T = 297 K and at T = 270 K. The former is related to the structural main transition from gel to liquid phase of the phospholipid bilayer, while the latter is related to a transition of the aqueous solvent. The inclusion of gramicidin shifts the main transition down to 294 K and the second transition up to 276 K. In both cases the observed dynamical transitions show an enhanced mobility in the direction normal to the membrane plane.

  15. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

  16. Deuterium NMR of Val1...(2-2H)Ala3...gramicidin A in oriented DMPC bilayers.

    PubMed

    Hing, A W; Adams, S P; Silbert, D F; Norberg, R E

    1990-05-01

    Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study. PMID:1694457

  17. Improving CS regulations.

    SciTech Connect

    Nesse, R.J.; Scheer, R.M.; Marasco, A.L.; Furey, R.

    1980-10-01

    President Carter issued Executive Order 12044 (3/28/78) that required all Federal agencies to distinguish between significant and insignificant regulations, and to determine whether a regulation will result in major impacts. This study gathered information on the impact of the order and the guidelines on the Office of Conservation and Solar Energy (CS) regulatory practices, investigated problems encountered by the CS staff when implementing the order and guidelines, and recommended solutions to resolve these problems. Major tasks accomplished and discussed are: (1) legislation, Executive Orders, and DOE Memoranda concerning Federal administrative procedures relevant to the development and analysis of regulations within CS reviewed; (2) relevant DOE Orders and Memoranda analyzed and key DOE and CS staff interviewed in order to accurately describe the current CS regulatory process; (3) DOE staff from the Office of the General Counsel, the Office of Policy and Evaluation, the Office of the Environment, and the Office of the Secretary interviewed to explore issues and problems encountered with current CS regulatory practices; (4) the regulatory processes at five other Federal agencies reviewed in order to see how other agencies have approached the regulatory process, dealt with specific regulatory problems, and responded to the Executive Order; and (5) based on the results of the preceding four tasks, recommendations for potential solutions to the CS regulatory problems developed. (MCW)

  18. Complete Genome Sequence of Aneurinibacillus migulanus E1, a Gramicidin S- and d-Phenylalanyl-l-Propyl Diketopiperazine-Deficient Mutant.

    PubMed

    Belbahri, Lassaad; Alenezi, Faizah N; Luptakova, Lenka; Rateb, Mostafa E; Woodward, Steve

    2015-01-01

    We report here the complete genome sequence of the Aneurinibacillus migulanus E1 mutant deficient in gramicidin S (GS) and d-phenylalanyl-l-propyl diketopiperazine (DKP) formation. The genome consists of a circular chromosome (6,301,904 bp, 43.20% G+C content) without any plasmid. The complete genome sequence enables further investigation of the biosynthetic mechanism and the biological function of gramicidin S. PMID:26679577

  19. Structure and dynamics of one-dimensional ionic solutions in biological transmembrane channels.

    PubMed Central

    Skerra, A; Brickmann, J

    1987-01-01

    The structure and dynamics of solvated alkali metal cations in transmembrane channels are treated using the molecular dynamics simulation technique. The simulations are based on a modified Fischer-Brickmann model (Fischer, W., and J. Brickmann, 1983, Biophys. Chem., 18:323-337) for gramicidin A-type channels. The trajectories of all particles in the channel as well as two-dimensional pair correlation functions are analyzed. It is found from the analysis of the stationary simulation state that one-dimensional solvation complexes are formed and that the number of water molecules in the channel varies for different alkali metal cations. PMID:2440485

  20. Lipid bilayer array for simultaneous recording of ion channel activities

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  1. A preliminary scanning tunnelling microscopy study of the surface-organised structures of gramicidin S hydrochloride on highly oriented pyrolytic graphite.

    PubMed

    Brown, N M; You, H X

    1991-12-01

    For an initial study of potentially surface-structural self-organising systems of biological significance by scanning tunnelling microscopy (STM), gramicidin S, a pseudocentrosymmetric cyclodecapeptide with antibiotic properties, was chosen as prototype, recognising its structure as having both intramolecular and intermolecular hydrogen-bond forming propensity. The surface-organised structures, based on gramicidin S hydrochloride deposited on a highly oriented pyrolytic graphite (HOPG) substrate, have been observed by STM in air under ambient conditions. These are characterised in the main by rectangular or rectangle-like structural elements identified with the individual gramicidin S hydrochloride molecules. Two kinds of arrangements of gramicidin S hydrochloride in a two-dimensional array are found, i.e., as a centred rectangular lattice and a primitive rectangular lattice. The STM topographical arrays and the molecular dimensions obtained are in good quantitative agreement with the corresponding X-ray crystallographic data. The differences between the STM results, the theoretical models, and the X-ray crystallographic data are attributed to the intermolecular interactions present in the three-dimensional gramicidin S crystal but absent in the lower dimensional arrays and to the environments in which a gramicidin S hydrochloride molecule finds itself during deposition and drying on the HOPG substrate. PMID:1725492

  2. The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S.

    PubMed Central

    Jones, C R; Sikakana, C T; Hehir, S; Kuo, M C; Gibbons, W A

    1978-01-01

    The [1H:1H] nuclear Overhauser effects (NOE's) and spin-lattice relaxation times (T1's) are reported for the backbone protons of the decapeptide gramicidin S. Several methods for calculating interproton distances from these measurements are presented. Ratios of interproton distances were obtained from [1H:1H] NOE's and from the combination of [1H:1H]NOE'S and T1 values. Actual proton-proton distances were calculated from these ratios either by using the known distance between two geminal protons or distances derived from scalar coupling constants. The interproton distances calculated for gramicidin S are consistent with a II' beta-turn/antiparallel beta-sheet conformation. PMID:83886

  3. Desformylgramicidin: a model channel with an extremely high water permeability.

    PubMed Central

    Saparov, S M; Antonenko, Y N; Koeppe, R E; Pohl, P

    2000-01-01

    The water conductivity of desformylgramicidin exceeds the permeability of gramicidin A by two orders of magnitude. With respect to its single channel hydraulic permeability coefficient of 1.1.10(-12) cm(3) s(-1), desformylgramicidin may serve as a model for extremely permeable aquaporin water channel proteins (AQP4 and AQPZ). This osmotic permeability exceeds the conductivity that is predicted by the theory of single-file transport. It was derived from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double barreled microelectrodes in the immediate vicinity of a planar bilayer. From solvent drag experiments, approximately five water molecules were found to be transported by a single-file process along with one ion through the channel. The single channel proton, potassium, and sodium conductivities were determined to be equal to 17 pS (pH 2.5), 7 and 3 pS, respectively. Under any conditions, the desformyl-channel remains at least 10 times longer in its open state than gramicidin A. PMID:11053127

  4. Generalized Langevin models of molecular dynamics simulations with applications to ion channels

    NASA Astrophysics Data System (ADS)

    Gordon, Dan; Krishnamurthy, Vikram; Chung, Shin-Ho

    2009-10-01

    We present a new methodology, which combines molecular dynamics and stochastic dynamics, for modeling the permeation of ions across biological ion channels. Using molecular dynamics, a free energy profile is determined for the ion(s) in the channel, and the distribution of random and frictional forces is measured over discrete segments of the ion channel. The parameters thus determined are used in stochastic dynamics simulations based on the nonlinear generalized Langevin equation. We first provide the theoretical basis of this procedure, which we refer to as "distributional molecular dynamics," and detail the methods for estimating the parameters from molecular dynamics to be used in stochastic dynamics. We test the technique by applying it to study the dynamics of ion permeation across the gramicidin pore. Given the known difficulty in modeling the conduction of ions in gramicidin using classical molecular dynamics, there is a degree of uncertainty regarding the validity of the MD-derived potential of mean force (PMF) for gramicidin. Using our techniques and systematically changing the PMF, we are able to reverse engineer a modified PMF which gives a current-voltage curve closely matching experimental results.

  5. EXTRAGALACTIC CS SURVEY

    SciTech Connect

    Bayet, E.; Viti, S.; Aladro, R.; MartIn, S.; MartIn-Pintado, J.

    2009-12-10

    We present a coherent and homogeneous multi-line study of the CS molecule in nearby (D < 10 Mpc) galaxies. We include, from the literature, all the available observations from the J = 1-0 to the J = 7-6 transitions toward NGC 253, NGC 1068, IC 342, Henize 2-10, M 82, the Antennae Galaxies, and M 83. We have, for the first time, detected the CS(7-6) line in NGC 253, M 82 (both in the northeast and southwest molecular lobes), NGC 4038, M 83 and tentatively in NGC 1068, IC 342, and Henize 2-10. We use the CS molecule as a tracer of the densest gas component of the interstellar medium in extragalactic star-forming regions, following previous theoretical and observational studies by Bayet et al. In this first paper out of a series, we analyze the CS data sample under both local thermodynamical equilibrium (LTE) and non-LTE (large velocity gradient) approximations. We show that except for M 83 and Overlap (a shifted gas-rich position from the nucleus NGC 4039 in the Antennae Galaxies), the observations in NGC 253, IC 342, M 82-NE, M 82-SW, and NGC 4038 are not well reproduced by a single set of gas component properties and that, at least, two gas components are required. For each gas component, we provide estimates of the corresponding kinetic temperature, total CS column density, and gas density.

  6. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    NASA Astrophysics Data System (ADS)

    Tindjong, R.; Luchinsky, D. G.; McClintock, P. V. E.; Kaufman, I.; Eisenberg, R. S.

    2009-04-01

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  7. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    SciTech Connect

    Tindjong, R.; McClintock, P. V. E.; Luchinsky, D. G.; Kaufman, I.; Eisenberg, R. S.

    2009-04-23

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  8. Therapeutic Potential of Gramicidin S in the Treatment of Root Canal Infections.

    PubMed

    Berditsch, Marina; Lux, Hannah; Babii, Oleg; Afonin, Sergii; Ulrich, Anne S

    2016-01-01

    An intrinsic clindamycin-resistant Enterococcus faecalis, the most common single species present in teeth after failed root canal therapy, often possesses acquired tetracycline resistance. In these cases, root canal infections are commonly treated with Ledermix(®) paste, which contains demeclocycline, or the new alternative endodontic paste Odontopaste, which contains clindamycin; however, these treatments are often ineffective. We studied the killing activity of the cyclic antimicrobial peptide gramicidin S (GS) against planktonic and biofilm cells of tetracycline-resistant clinical isolates of E. faecalis. The high therapeutic potential of GS for the topical treatment of problematic teeth is based on the rapid bactericidal effect toward the biofilm-forming, tetracycline-resistant E. faecalis. GS reduces the cell number of planktonic cells within 20-40 min at a concentration of 40-80 μg/mL. It kills the cells of pre-grown biofilms at concentrations of 100-200 μg/mL, such that no re-growth is possible. The translocation of the peptide into the cell interior and its complexation with intracellular nucleotides, including the alarmon ppGpp, can explain its anti-biofilm effect. The successful treatment of persistently infected root canals of two volunteers confirms the high effectiveness of GS. The broad GS activity towards resistant, biofilm-forming E. faecalis suggests its applications for approval in root canal medication. PMID:27618065

  9. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  10. Surface science of Cs, CsO and CsI ionic layers on Pt(111)

    NASA Astrophysics Data System (ADS)

    Drnec, Jakub

    Cesium adsorption on Pt(111) and its coadsorption with iodine and oxygen is studied in this dissertation. The work function during Cs dosing first decreases and at Deltaφ ≈ 3 eV (thetaCs = 0.15) the surface undergoes surface transition between a disordered anomalous state (Pt(111)(anom)-Cs) and islands of a Pt(111)(2x2)-Cs causing a change in the slope of the work function curve. The work function curve reaches minimum at --5.5 eV where the surface is fully covered with the Pt(111)(2 x 2)-Cs structure( thetaCs = 0.25). Further Cs dosing results in a work function increase and the surface undergoes a phase transition to Pt(111)(√3 x√3)-Cs. The Cs saturated structure (Pt(111)(ihcp)-Cs) has an hexagonal symmetry with the unit cell vector aligned with the (1, 0) direction of the substrate. Cs in the anomalous state desorbs from the surface in a high-temperature TDS peak (> 1000 K). When the lock-in TDS detection technique is used, this peak appears to be phase shifted by 180° when compared to the desorption peak of normally adsorbed Cs (thetaCs> 0.15) . This phase shift is a consequence of a positive charge of desorbing Cs. The TDS and work function behavior were explained by a Monte Carlo desorption model incorporating di¤erent desorption behavior for all four observed adsorption phases. When O2 is dosed on a Pt(111)-Cs surface, the maximum coverage of oxygen bonded to the surface is signi.cantly increased in comparison to Pt(111). Anomalously adsorbed Cs activates the O2 bond but does not interact strongly with coadsorbed O. However, when O2 is dosed on Pt(111)(ihcp)-Cs, the oxygen first adsorbs to a sub-layer adsorption site and strongly interacts with Cs. The oxygen in this state is responsible for thermal stabilization of coadsorbed Cs. When iodine is coadsorbed on a Pt(111)-Cs surface, it also strongly interacts with and thermally stabilizes Cs. During the desorption of Cs,I layers, some Cs and I desorb together in the form of a CsxIy cluster. The

  11. Near-yrast structure of Cs142 and Cs144

    NASA Astrophysics Data System (ADS)

    Rząca-Urban, T.; Genevey, J.; Materna, T.; Urban, W.; Smith, A. G.; Pinston, J. A.; Simpson, G. S.; Sadowski, M. P.; Köster, U.; Faust, H.; Bail, A.; Mathieu, L.; Serot, O.; Michel-Sendis, F.; Ahmad, I.

    2009-12-01

    Excited states in Cs142 and Cs144, populated in the spontaneous fission of Cm248 and Cf252 and in thermal neutron-induced fission of U235 and Am242 were studied by means of γ spectroscopy using the EUROGAM2 and Gammasphere multidetector Ge arrays and the LOHENGRIN fission-fragment separator, respectively. In Cs142, a band and an isomer with a half-life of T1/2=11(3) ns have been identified. Spins and parities have been proposed for excited levels in this nucleus. In Cs144 excited levels have been observed. A T1/2=1.1(1) μs isomer was found with a γ cascade, which probably feeds this isomer. There is also an indication of a nanosecond isomer in Cs144. Quasiparticle-rotor model calculations done in this work allowed proton-neutron configurations to be proposed for levels in Cs142 and Cs144.

  12. Functional and structural insights on self-assembled nanofiber-based novel antibacterial ointment from antimicrobial peptides, bacitracin and gramicidin S.

    PubMed

    Mandal, Santi M; Roy, Anupam; Mahata, Denial; Migliolo, Ludovico; Nolasco, Diego O; Franco, Octavio L

    2014-11-01

    A novel antibacterial ointment using bacitracin, specific for Gram-positive bacteria, and gramicidin S, a highly toxic antibacterial peptide, was here developed showing broad-spectrum antibacterial activities against pathogenic strains with less toxicity after self-assembly into nanofiber structures. Such structures were confirmed with scanning electron microscopy and CD analyses. In addition, in silico studies using docking associated with molecular dynamics were carried out to obtain information about fiber structural oligomerization. Thus, the bacitracin and gramicidin S-based self-assembled nanopeptide ribbon may be a successful ointment formulation for bacterial infection control. PMID:24894183

  13. High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13}

    SciTech Connect

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-01-15

    The uranyl silicates Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13} were obtained by mixing stoichiometric amounts of uranium metal, tellurium dioxide, silicon dioxide, and an excess of correspondent alkali metal halide flux. These compounds crystallize in the orthorhombic space groups Pnma and C222 with eight and two units per unit cell, respectively. Their crystal structures are dominated by zippered pentagonal bipyramidal chains of UO{sub 7} and silicates layer that are further connected into 3D frameworks. The cesium compound has silicate double layers while rubidium has a single layer. Six-ring voids and ten-ring channels are found in both compounds. - Graphical abstract: A view of the three-dimensional network structure of Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19}. Highlights: Black-Right-Pointing-Pointer Three-dimensional uranium silicates. Black-Right-Pointing-Pointer Analogs of natural uranyl silicate minerals. Black-Right-Pointing-Pointer Complexity and symmetry ambiguity of uranyl silicates.

  14. The Influence of Lipid Bilayer Physicochemical Properties on Gramicidin A Conformer Preferences.

    PubMed

    Patrick, John W; Gamez, Roberto C; Russell, David H

    2016-04-26

    The conformational preferences adopted by gramicidin A (GA) dimers inserted into phospholipid bilayers are reported as a function of the bilayer cholesterol content, temperature, and incubation time. Through use of vesicle capture-freeze drying methodology, GA dimers were captured in lipid bilayers and the conformational preferences of the complex were analyzed using ion mobility-mass spectrometry. Perturbations that affect the physicochemical interactions in the lipid bilayer such as cholesterol incorporation, temperature, and incubation time directly alter the conformer preferences of the complex. Regardless of bilayer cholesterol concentration, the antiparallel double helix (ADH) conformation was observed to be most abundant for GA dimers in bilayers composed of lipids with 12 to 22 carbon acyl chains. Incorporation of cholesterol into lipid bilayers yields increased bilayer thickness and rigidity, and an increased abundance of parallel double helix (PDH) and single-stranded head-to-head (SSHH) dimers were observed. Bilayers prepared using 1,2-dilauroyl-sn-glycero-3-phosphocholine, a lipid with 12 carbon acyl chains, yielded a nascent conformer that decreased in abundance as a function of bilayer cholesterol content. High resolution ion mobility-mass spectrometry data revealed two peaks in the ADH region suggesting that ADH populations are composed of two distinct conformers. The conformer preferences of GA dimers from 1,2-distearoyl-sn-glycero-3-phosphocholine bilayers were significantly different for samples incubated at 4°C vs. 60°C; increased cholesterol content yielded more PDH and SSHH at 60°C. The addition of cholesterol as well as incubating samples of 1,2-distearoyl-sn-glycero-3-phosphocholine at 60°C for 24-72 h yielded an increase in PDH and SSHH abundance. PMID:27119642

  15. Measuring Ion Channels on Solid Supported Membranes

    PubMed Central

    Schulz, Patrick; Dueck, Benjamin; Mourot, Alexandre; Hatahet, Lina; Fendler, Klaus

    2009-01-01

    Abstract Application of solid supported membranes (SSMs) for the functional investigation of ion channels is presented. SSM-based electrophysiology, which has been introduced previously for the investigation of active transport systems, is expanded for the analysis of ion channels. Membranes or liposomes containing ion channels are adsorbed to an SSM and a concentration gradient of a permeant ion is applied. Transient currents representing ion channel transport activity are recorded via capacitive coupling. We demonstrate the application of the technique to liposomes reconstituted with the peptide cation channel gramicidin, vesicles from native tissue containing the nicotinic acetylcholine receptor, and membranes from a recombinant cell line expressing the ionotropic P2X2 receptor. It is shown that stable ion gradients, both inside as well as outside directed, can be applied and currents are recorded with an excellent signal/noise ratio. For the nicotinic acetylcholine receptor and the P2X2 receptor excellent assay quality factors of Z′ = 0.55 and Z′ = 0.67, respectively, are obtained. This technique opens up new possibilities in cases where conventional electrophysiology fails like the functional characterization of ion channels from intracellular compartments. It also allows for robust fully automatic assays for drug screening. PMID:19580777

  16. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  17. High-Quality Draft Genome Sequence of Aneurinibacillus migulanus ATCC 9999T (DSM 2895), a Gramicidin S-Producing Bacterium Isolated from Garden Soil

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Ge, Ci-bin; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai

    2015-01-01

    Aneurinibacillus migulanus ATCC 9999T (DSM 2895) is a Gram-positive, round-spore-forming, and gramicidin S-producing bacterium. Here, we report the 6.35-Mb high-quality draft genome sequence of A. migulanus ATCC 9999T, which will provide useful information for the genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494674

  18. High-Quality Draft Genome Sequence of Aneurinibacillus migulanus ATCC 9999T (DSM 2895), a Gramicidin S-Producing Bacterium Isolated from Garden Soil.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Ge, Ci-Bin; Xiao, Rong-Feng; Zheng, Xue-Fang; Shi, Huai

    2015-01-01

    Aneurinibacillus migulanus ATCC 9999(T) (DSM 2895) is a Gram-positive, round-spore-forming, and gramicidin S-producing bacterium. Here, we report the 6.35-Mb high-quality draft genome sequence of A. migulanus ATCC 9999(T), which will provide useful information for the genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26494674

  19. Gramicidin A disassembles large conductive clusters of its lysine-substituted derivatives in lipid membranes.

    PubMed

    Antonenko, Yuri N; Gluhov, Grigory S; Firsov, Alexander M; Pogozheva, Irina D; Kovalchuk, Sergey I; Pechnikova, Evgeniya V; Kotova, Elena A; Sokolova, Olga S

    2015-07-14

    N-terminally substituted lysine derivatives of gramicidin A (gA), [Lys1]gA and [Lys3]gA, but not glutamate- or aspartate-substituted peptides have been previously shown to cause the leakage of carboxyfluorescein from liposomes. Here, the leakage induction was also observed for [Arg1]gA and [Arg3]gA, while [His1]gA and [His3]gA were inactive at neutral pH. The Lys3-containing analogue with all tryptophans replaced by isoleucines did not induce liposome leakage, similar to gA. This suggests that the presence of both tryptophans and N-terminal cationic residues is critical for pore formation. Remarkably, the addition of gA blocked the leakage induced by [Lys3]gA. By examining with fluorescence correlation spectroscopy the peptide-induced leakage of fluorescent markers from liposomes, we estimated the diameter of pores responsible for the leakage to be about 1.6 nm. Transmission electron cryo-microscopy imaging of liposomes with [Lys3]gA showed that the liposomal membranes contained high electron density particles with a size of about 40 Å, suggesting the formation of peptide clusters. No such clusterization was observed in liposomes incorporating gA or a mixture of gA with [Lys3]gA. Three-dimensional reconstruction of the clusters was compatible with their pentameric arrangement. Based on experimental data and computational modeling, we suggest that the large pore formed by [Lys3]gA represents a barrel-stave oligomeric cluster formed by antiparallel double-stranded helical dimers (DH). In a tentative model, the pentamer of dimers may be stabilized by aromatic Trp-Trp and cation-π Trp-Lys interactions between the neighboring DHs. The inhibiting effect of gA on the [Lys3]gA-induced leakage can be attributed to breaking of cation-π interactions, which prevents peptide clusterization and pore formation. PMID:26077982

  20. Biophysical properties of the voltage gated proton channel HV1

    PubMed Central

    Musset, Boris; DeCoursey, Thomas

    2012-01-01

    The biophysical properties of the voltage gated proton channel (HV1) are the key elements of its physiological function. The voltage gated proton channel is a unique molecule that in contrast to all other ion channels is exclusively selective for protons. Alone among proton channels, it has voltage and time dependent gating like other “classical” ion channels. HV1 is furthermore a sensor for the pH in the cell and the surrounding media. Its voltage dependence is strictly coupled to the pH gradient across the membrane. This regulation restricts opening of the channel to specific voltages at any given pH gradient, therefore allowing HV1 to perform its physiological task in the tissue it is expressed in. For HV1 there is no known blocker. The most potent channel inhibitor is zinc (Zn2+) which prevents channel opening. An additional characteristic of HV1 is its strong temperature dependence of both gating and conductance. In contrast to single-file water filled pores like the gramicidin channel, HV1 exhibits pronounced deuterium effects and temperature effects on conduction, consistent with a different conduction mechanism than other ion channels. These properties may be explained by the recent identification of an aspartate in the pore of HV1 that is essential to its proton selectivity. PMID:23050239

  1. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    PubMed

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Agnes; Antoni, Ferenc A; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+) and organic cations through gramicidin channels and detecting the Cl(-)-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  2. Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties

    PubMed Central

    Sanford, R. Lea; Lee, William; Schultz, Margaret F.; Ingólfsson, Helgi I.

    2014-01-01

    Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Nav). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Nav function and lipid bilayer properties. We examined the effects of these agents on Nav in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Nav and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Nav function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia. PMID:25385786

  3. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  4. Syntheses and characterization of the cubic uranium chalcogenides Rh2U6S15, Cs2Ti2U6Se15, Cs2Cr2U6Se15, and Cs2Ti2U6Te15

    NASA Astrophysics Data System (ADS)

    Ward, Matthew D.; Oh, George N.; Mesbah, Adel; Lee, Minseong; Sang Choi, Eun; Ibers, James A.

    2015-08-01

    The compounds Rh2U6S15, Cs2Ti2U6Se15, Cs2Cr2U6Se15, and Cs2Ti2U6Te15 have been synthesized at 1173 K. All crystallize in space group Oh9- Im 3 bar m of the cubic system. Rh2U6S15 has a framework structure with three-dimensional channels. The compounds Cs2Ti2U6Se15, Cs2Cr2U6Se15, and Cs2Ti2U6Te15 have structures similar to that of Rh2U6S15, but with Cs cations variably filling the channels. In all four structures the transition element is octahedrally coordinated by chalcogens and the uranium atom is in a bicapped trigonal-prismatic arrangement. The temperature dependence of the magnetic susceptibility of Cs2Cr2U6Se15 implies both Cr and U magnetic contributions. From these data the compound is not antiferromagnetic, but it could have either a ferrimagnetic or a ferromagnetic ground state.

  5. Therapeutic index of gramicidin S is strongly modulated by d-phenylalanine analogues at the β-turn

    PubMed Central

    Solanas, Concepción; de la Torre, Beatriz G.; Fernández-Reyes, María; Santiveri, Clara M.; Jiménez, M. Ángeles; Rivas, Luis; Jiménez, Ana I.; Andreu, David; Cativiela, Carlos

    2009-01-01

    Analogues of the cationic antimicrobial peptide gramicidin S (GS), cyclo(Val-Orn-Leu-d-Phe-Pro)2, with d-Phe residues replaced by different (restricted mobility, mostly) surrogates have been synthesized and used in SAR studies against several pathogenic bacteria. While all d-Phe substitutions are shown by NMR to preserve the overall β-sheet conformation, they entail subtle structural alterations that lead to significant modifications in biological activity. In particular, the analogue incorporating d-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) shows a modest but significant increase in therapeutic index, mostly due to a sharp decrease in hemolytic effect. The fact that NMR data show a shortened distance between the d-Tic aromatic ring and the Orn δ-amino group may help explain the improved antibiotic profile of this analogue. PMID:19132829

  6. Sequence inversion and phenylalanine surrogates at the β-turn enhance the antibiotic activity of gramicidin S

    PubMed Central

    Solanas, Concepción; de la Torre, Beatriz G.; Fernández-Reyes, María; Santiveri, Clara M.; Jiménez, M. Ángeles; Rivas, Luis; Jiménez, Ana I.; Andreu, David; Cativiela, Carlos

    2010-01-01

    A series of gramicidin S (GS) analogs have been synthesized where the Phe (i+1) and Pro (i+2) residues of the β-turn have been swapped while the respective chiralities (D-, L-) at each position are preserved, and Phe is replaced by surrogates with aromatic side chains of diverse size, orientation and flexibility. Although most analogs preserve the β-sheet structure, as assessed by NMR, their antibiotic activities turn out to be highly dependent on the bulkiness and spatial arrangement of the aromatic side chain. Significant increases in microbicidal potency against both Gram-positive and Gram-negative pathogens are observed for several analogs, resulting in improved therapeutic profiles. Data indicate that seemingly minor replacements at the GS β-turn can have significant impact on antibiotic activity, highlighting this region as a hot spot for modulating GS plasticity and activity. PMID:20411945

  7. Bandhead Energies in 125Cs

    NASA Astrophysics Data System (ADS)

    Sun, Ji; Hu, Xue-Yuan; Ma, Ying-Jun; Liu, Yun-Zuo; Tetsuro, Komatsubara; Kohei, Furuno; Zhang, Yu-Hu; Zhou, Wen-Ping; Wang, Shou-Yu

    Excited states in 125Cs have been studied with the fusion-evaporation-reaction 116Cd(14N,5n)125Cs at 65 MeV beam energy, using the Nordball-multidetector-system at the Niels-Bohr-Institute in Denmark. The level scheme of 125Cs was extended with the addition of more than 40 new γ-transitions. Moreover, the bandhead excitation energies of the previously known g9/2 and h11/2 bands were unambiguously corrected with plenty of hard evidence.

  8. Automatable lipid bilayer formation for ion channel studies

    NASA Astrophysics Data System (ADS)

    Poulos, Jason L.; Bang, Hyunwoo; Jeon, Tae-Joon; Schmidt, Jacob J.

    2008-08-01

    Transmembrane proteins and ion channels are important drug targets and have been explored as single molecule sensors. For these proteins to function normally they must be integrated within lipid bilayers; however, the labor and skill required to create artificial lipid bilayers have the limited the possible applications utilizing these proteins. In order to reduce the complexity and cost of lipid bilayer formation and measurement, we have modified a previously published lipid bilayer formation technique using mechanically contacted monolayers so that the process is automatable, requiring minimal operator input. Measurement electronics are integrated with the fluid handling system, greatly reducing the time and operator feedback characteristically required of traditional bilayer experiments. To demonstrate the biological functionality of the resultant bilayers and the system's capabilities as a membrane platform, the ion channel gramicidin A was incorporated and measured with this system.

  9. Theoretical and computational models of biological ion channels

    NASA Astrophysics Data System (ADS)

    Roux, Benoit

    2004-03-01

    A theoretical framework for describing ion conduction through biological molecular pores is established and explored. The framework is based on a statistical mechanical formulation of the transmembrane potential (1) and of the equilibrium multi-ion potential of mean forces through selective ion channels (2). On the basis of these developments, it is possible to define computational schemes to address questions about the non-equilibrium flow of ions through ion channels. In the case of narrow channels (gramicidin or KcsA), it is possible to characterize the ion conduction in terms of the potential of mean force of the ions along the channel axis (i.e., integrating out the off-axis motions). This has been used for gramicidin (3) and for KcsA (4,5). In the case of wide pores (i.e., OmpF porin), this is no longer a good idea, but it is possible to use a continuum solvent approximations. In this case, a grand canonical monte carlo brownian dynamics algorithm was constructed for simulating the non-equilibrium flow of ions through wide pores. The results were compared with those from the Poisson-Nernst-Planck mean-field electrodiffusion theory (6-8). References; 1. B. Roux, Biophys. J. 73:2980-2989 (1997); 2. B. Roux, Biophys. J. 77, 139-153 (1999); 3. Allen, Andersen and Roux, PNAS (2004, in press); 4. Berneche and Roux. Nature, 414:73-77 (2001); 5. Berneche and Roux. PNAS, 100:8644-8648 (2003); 6. W. Im and S. Seefeld and B. Roux, Biophys. J. 79:788-801 (2000); 7. W. Im and B. Roux, J. Chem. Phys. 115:4850-4861 (2001); 8. W. Im and B. Roux, J. Mol. Biol. 322:851-869 (2002).

  10. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels.

    PubMed

    Petrek, Martin; Kosinová, Pavlína; Koca, Jaroslav; Otyepka, Michal

    2007-11-01

    We have developed an algorithm, "MOLE," for the rapid, fully automated location and characterization of molecular channels, tunnels, and pores. This algorithm has been made freely available on the Internet (http://mole.chemi.muni.cz/) and overcomes many of the shortcomings and limitations of the recently developed CAVER software. The core of our MOLE algorithm is a Dijkstra's path search algorithm, which is applied to a Voronoi mesh. Tests on a wide variety of biomolecular systems including gramicidine, acetylcholinesterase, cytochromes P450, potassium channels, DNA quadruplexes, ribozymes, and the large ribosomal subunit have demonstrated that the MOLE algorithm performs well. MOLE is thus a powerful tool for exploring large molecular channels, complex networks of channels, and molecular dynamics trajectories in which analysis of a large number of snapshots is required. PMID:17997961

  11. Bandhead energies in 125Cs

    NASA Astrophysics Data System (ADS)

    Sun, Ji; Ma, Ying-Jun; Komatsubara, Tetsuro; Furuno, Kohei; Zhang, Yu-Hu; Zhou, Wen-Ping; Wang, Shou-Yu; Hu, Xue-Yuan; Guo, Hao; Wang, Jia-Qi; Liu, Yun-Zuo

    2016-06-01

    Excited states in 125Cs have been studied with the fusion-evaporation-reaction 116Cd(14N,5 n ) at 65-MeV beam energy. The level scheme of 125Cs was extended with the addition of more than 50 new γ transitions and with the identification of two new rotational bands built on the π d5 /2 and π g7 /2 configurations at low spins. The bandhead excitation energies of the previously known π g9 /2 and π h11 /2 bands were revised.

  12. Conduction properties of the cloned Shaker K+ channel.

    PubMed Central

    Heginbotham, L; MacKinnon, R

    1993-01-01

    The conduction properties of the cloned Shaker K+ channel were studied using electrophysiological techniques. Single channel conductance increases in a sublinear manner with symmetric increases in K+ activity, reaching saturation by 0.6 M K+. The Shaker K+ channel is highly selective among monovalent cations; under bi-ionic conditions, its selectivity sequence is K+ > Rb+ > NH+4 > Cs+ > Na+, whereas, by relative conductance in symmetric solutions, it is K+ > NH+4 > Rb+ > Cs+. In Cs+ solutions, single channel currents were too small to be measured directly, so nonstationary fluctuation analysis was used to determine the unitary Cs+ conductance. The single channel conductance displays an anomalous molefraction effect in symmetric mixtures of K+ and NH+4, suggesting that the conducting pore is occupied by multiple ions simultaneously. PMID:8298038

  13. CHeCS Commanding Hardware

    NASA Technical Reports Server (NTRS)

    Moore, Jamie

    2010-01-01

    This slide presentation reviews the Crew Health Care System (CHeCS) commanding hardware. It includes information on the hardware status, commanding plan, and command training status with specific information the EV-CPDS 2 and 3, TEPC, MEC, and T2

  14. Reactive barriers for 137Cs retention

    NASA Astrophysics Data System (ADS)

    Krumhansl, James L.; Brady, Patrick V.; Anderson, Howard L.

    2001-02-01

    137Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of 137Cs from soils and groundwaters is exceedingly difficult. Because the half-life of 137Cs is only 30.2 years, remediation might be more effective (and less costly) if 137Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with 135Cs (half-life 2.3×10 6 years) in addition to 137Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention, Cs desorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO 3 and LiCl washes. Washed clays were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F-Ill were similar; 0.017% to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12% to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were Cs-doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake. However, the residual loading was greatest on K-Mbt (˜0.33 wt.% Cs). Thus, this clay would be the optimal material for constructing artifical reactive barriers.

  15. Reactive barriers for 137Cs retention.

    PubMed

    Krumhansl, J L; Brady, P V; Anderson, H L

    2001-02-01

    137Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of 137Cs from soils and groundwaters is exceedingly difficult. Because the half-life of 137Cs is only 30.2 years, remediation might be more effective (and less costly) if 137Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with 135Cs (half-life 2.3 x 10(6) years) in addition to 137Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention, Cs desorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO3 and LiCl washes. Washed clays were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F-Ill were similar; 0.017% to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12% to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were Cs-doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake. However, the residual loading was greatest on K-Mbt (approximately 0.33 wt.% Cs). Thus, this clay would be the optimal material for constructing artifical reactive barriers. PMID:11288579

  16. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  17. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  18. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  19. Direct surfactin-gramicidin S antagonism supports detoxification in mixed producer cultures of Bacillus subtilis and Aneurinibacillus migulanus.

    PubMed

    Rautenbach, Marina; Eyéghé-Bickong, Hans André; Vlok, Nicolas Maré; Stander, Marietjie; de Beer, Abré

    2012-12-01

    Antibiotic production as a defence mechanism is a characteristic of a wide variety of organisms. In natural evolutionary adaptation, cellular events such as sporulation, biofilm formation and resistance to antibiotics enable some micro-organisms to survive environmental and antibiotic stress conditions. The two antimicrobial cyclic peptides in this study, gramicidin S (GS) from Aneurinibacillus migulanus and the lipopeptide surfactin (Srf) from Bacillus subtilis, have been shown to affect both membrane and intercellular components of target organisms. Many functions, other than that of antimicrobial activity, have been assigned to Srf. We present evidence that an additional function may exist for Srf, namely that of a detoxifying agent that protects its producer from the lytic activity of GS. We observed that Srf producers were more resistant to GS and could be co-cultured with the GS producer. Furthermore, exogenous Srf antagonized the activity of GS against both Srf-producing and non-producing bacterial strains. A molecular interaction between the anionic Srf and the cationic GS was observed with circular dichroism and electrospray MS. Our results indicate that the formation of an inactive complex between GS and Srf supports resistance towards GS, with the anionic Srf forming a chemical barrier to protect its producer. This direct detoxification combined with the induction of protective stress responses in B. subtilis by Srf confers resistance toward GS from A. migulanus and allows survival in mixed cultures. PMID:23103974

  20. Second harmonic generation from tryptophan-rich short peptides: W(n)K(m) and gramicidin A.

    PubMed

    Duboisset, J; Matar, G; Besson, F; Ficheux, D; Benichou, E; Russier-Antoine, I; Jonin, Ch; Brevet, P F

    2014-09-01

    We report the first hyperpolarizability of a series of tryptophan-rich short peptides with the respective sequence KWK, KWWK, KWWWK, KWWKWWK, where W and K stand for tryptophan and lysine. The measurements were performed with the technique of hyper-Rayleigh scattering in the bulk of an aqueous Tris buffer solution at a pH of 8.5 and a salt concentration of 150 mM at the non-resonant fundamental wavelength of 784 nm. The first hyperpolarizability of the different peptides follows a simple additive model scaling with the number of tryptophan residues contained in the peptide. However, it appears that the first hyperpolarizability response of a single tryptophan residue in the peptide strongly differs from that of an isolated tryptophan. Hence, it is therefore demonstrated that the local environment of the tryptophan residues within the peptide strongly influences its nonlinear optical response. A comparison with the first hyperpolarizability of the natural peptide gramicidin A measured in trifluoroethanol (TFE) further confirms the key role of the local environment on the first hyperpolarizability of tryptophan residues in peptides. PMID:25144248

  1. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  2. Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping

    2016-05-01

    The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.

  3. CS2SAT Desktop Tool

    Energy Science and Technology Software Center (ESTSC)

    2006-03-15

    The Idaho National Laboratory (INL) has developed a Control System Cyber Security Self-Assessment Tool (CS2SAT) desktop tool that provides a repeatable and systematic approach for control system users to assess the cyber security posture of their control system networks. The tool assists users in identifying the cyber security parameters of their systems and then offers security objectives, in the form of requirements, for improving the security of their specific network. Each requirement is linked tomore » a series of associated recommendations for compliance dependent upon the desired level of security protection. Each requirement is supported by links to the original standards document and recommendations are supported by links to whitepapers and other help documents. Package also includes two back-end supporting codes: CS2SAT Requirements Matrix and Control System Security Information System.« less

  4. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  5. Towards sparse characterisation of on-body ultra-wideband wireless channels

    PubMed Central

    Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-01-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  6. Role of Epithelium Sodium Channel in Bone Formation

    PubMed Central

    Wang, Ruo-Yu; Yang, Shu-Hua; Xu, Wei-Hua

    2016-01-01

    Objective: To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation. Data Sources: Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected. Study Selection: Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded. Results: ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2. Conclusion: The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference. PMID:26904995

  7. Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties.

    PubMed

    Herold, Karl F; Sanford, R Lea; Lee, William; Schultz, Margaret F; Ingólfsson, Helgi I; Andersen, Olaf S; Hemmings, Hugh C

    2014-12-01

    Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Na(v)). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Na(v) function and lipid bilayer properties. We examined the effects of these agents on Na(v) in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Na(v) and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Na(v) function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia. PMID:25385786

  8. RFI channels

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  9. Lactosylated Gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma

    PubMed Central

    Zhang, Mengzi; Zhou, Xiaoju; Wang, Bo; Yung, Bryant C.; Lee, Ly J.; Ghoshal, Kalpana; Lee, Robert J.

    2013-01-01

    Lactosylated gramicidin-containing lipid nanoparticles (Lac-GLN) were developed for delivery of anti-microRNA-155 (anti-miR-155) to hepatocellular carcinoma (HCC) cells. MiR-155 is an oncomiR frequently elevated in HCC. The Lac-GLN formulation contained N-lactobionyl-dioleoyl phosphatidylethanolamine (Lac-DOPE), a ligand for the asialoglycoprotein receptor (ASGR), and an antibiotic peptide gramicidin A. The nanoparticles exhibited a mean particle diameter of 73 nm, zeta potential of +3.5 mV, anti-miR encapsulation efficiency of 88%, and excellent colloidal stability at 4°C. Lac-GLN effectively delivered anti-miR-155 to HCC cells with a 16.1- and 4.1-fold up-regulation of miR-155 targets C/EBPβ and FOXP3 genes, respectively, and exhibited significant greater efficiency over Lipofectamine 2000. In mice, intravenous injection of Lac-GLN containing Cy3-anti-miR-155 led to preferential accumulation of the anti-miR-155 in hepatocytes. Intravenous administration of 1.5 mg/kg anti-miR-155 loaded Lac-GLN resulted in up-regulation of C/EBPβ and FOXP3 by 6.9- and 2.2- fold, respectively. These results suggest potential application of Lac-GLN as a liver-specific delivery vehicle for anti-miR therapy. PMID:23567045

  10. Reactive barriers for {sup 137}Cs retention

    SciTech Connect

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ANDERSON,HOWARD L.

    2000-05-19

    {sup 137}Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of {sup 137}Cs from soils and groundwaters is exceedingly difficult. Because the half life of {sup 137}Cs is only 30.2 years, remediation might be more effective (and less costly) if {sup 137}Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with {sup 135}Cs (half life 2.3x10{sup 6} years) in addition to {sup 137}Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention Cs resorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO{sub 3} and LiCl washes. Washed clay were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F- 111 were similar; 0.017 to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12 to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake so most soils have some limited ability to act as a natural barrier to Cs migration. However, the residual loading was greatest on K-Mbt ({approximately} 0.33 wt% Cs). Thus, this clay would be the optimal material for constructing artificial reactive barriers.

  11. Formation of Stoichiometric CsFn Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Oganov, Artem R.; Zeng, Qingfeng

    2015-01-01

    Alkali halides MX, have been viewed as typical ionic compounds, characterized by 1:1 ratio necessary for charge balance between M+ and X-. It was proposed that group I elements like Cs can be oxidized further under high pressure. Here we perform a comprehensive study for the CsF-F system at pressures up to 100 GPa, and find extremely versatile chemistry. A series of CsFn (n >= 1) compounds are predicted to be stable already at ambient pressure. Under pressure, 5p electrons of Cs atoms become active, with growing tendency to form Cs (III) and (V) valence states at fluorine-rich conditions. Although Cs (II) and (IV) are not energetically favoured, the interplay between two mechanisms (polyfluoride anions and polyvalent Cs cations) allows CsF2 and CsF4 compounds to be stable under pressure. The estimated defluorination temperatures of CsFn (n = 2,3,5) compounds at atmospheric pressure (218°C, 150°C, -15°C, respectively), are attractive for fluorine storage applications.

  12. Formation of Stoichiometric CsFn Compounds

    PubMed Central

    Zhu, Qiang; Oganov, Artem R.; Zeng, Qingfeng

    2015-01-01

    Alkali halides MX, have been viewed as typical ionic compounds, characterized by 1:1 ratio necessary for charge balance between M+ and X−. It was proposed that group I elements like Cs can be oxidized further under high pressure. Here we perform a comprehensive study for the CsF-F system at pressures up to 100 GPa, and find extremely versatile chemistry. A series of CsFn (n ≥ 1) compounds are predicted to be stable already at ambient pressure. Under pressure, 5p electrons of Cs atoms become active, with growing tendency to form Cs (III) and (V) valence states at fluorine-rich conditions. Although Cs (II) and (IV) are not energetically favoured, the interplay between two mechanisms (polyfluoride anions and polyvalent Cs cations) allows CsF2 and CsF4 compounds to be stable under pressure. The estimated defluorination temperatures of CsFn (n = 2,3,5) compounds at atmospheric pressure (218°C, 150°C, -15°C, respectively), are attractive for fluorine storage applications. PMID:25608669

  13. DNA translocation across planar bilayers containing Bacillus subtilis ion channels.

    PubMed

    Szabò, I; Bàthori, G; Tombola, F; Brini, M; Coppola, A; Zoratti, M

    1997-10-01

    The mechanisms by which genetic material crosses prokaryotic membranes are incompletely understood. We have developed a new methodology to study the translocation of genetic material via pores in a reconstituted system, using techniques from electrophysiology and molecular biology. We report here that planar bilayer membranes become permeable to double-stranded DNA (kilobase range) if Bacillus subtilis membrane vesicles containing high conductance channels have been fused into them. The translocation is an electrophoretic process, since it does not occur if a transmembrane electrical field opposing the movement of DNA, a polyanion, is applied. It is not an aspecific permeation through the phospholipid bilayer, since it does not take place if no proteins have been incorporated into the membrane. The transport is also not due simply to the presence of polypeptides in the membrane, since it does not occur if the latter contains gramicidin A or a eukaryotic, multi-protein vesicle fraction exhibiting 30-picosiemens anion-selective channel activity. The presence of DNA alters the behavior of the bacterial channels, indicating that it interacts with the pores and may travel through their lumen. These results support the idea that DNA translocation may take place through proteic pores and suggest that some of the high conductance bacterial channels observed in electrophysiological experiments may be constituents of the DNA translocating machinery in these organisms. PMID:9312144

  14. Collision induced dissociation of CsI and Cs2I2 to ion pairs by Kr, Xe, and SF6

    NASA Astrophysics Data System (ADS)

    Parks, E. K.; Inoue, M.; Wexler, S.

    1982-02-01

    Absolute cross sections as functions of collision energy have been determined for collision induced dissociation of cesium iodide monomer and dimer to ion pairs. In these studies a beam of accelerated Xe, Kr, or SF6 projectiles was crossed with a thermal beam of cesium iodide. The partial cross sections for each product-ion channel were determined by time-of-flight mass spectrometry. For the rare gas-monomer collisions, the dependence of each partial cross section on the internal temperature of the CsI was also obtained. Collisions of Xe with CsI produced three-body dissociation as well as the formation of the molecular ions CsXe+ and IXe-. The formation of both the positive and negative molecular ions is primarily a reflection of the similar masses of Cs+ and I-, and was not observed in previously studied systems. For the same reason, Cs2I+ and CsI-2 resulting from collisions of Xe with Cs2I2 were formed with comparable intensities. At energies well above threshold, the total dissociation cross section for the rare gases colliding with CsI or Cs2I2 is large (≳10 Å2). Those for SF6 are approximately a factor of 5 smaller for the monomer, but only slightly smaller for the dimer. No ions containing SF6 were observed. The cross sections for three-body dissociation as well as molecular ion formation are relatively small in the region of the thermodynamic threshold (decreasing in the series Xe, Kr, and Ar). Analysis of the experimental results indicates that dissociation in this region only occurs for CsI molecules having considerable internal excitation, an effect related almost entirely to the projectile-target relative masses. A model which takes into account the coupling of internal motion with relative translational motion is shown to give an excellent description of the dissociation in the threshold region. Collinear trajectory calculations of the rare gases colliding with CsI were also performed in order to determine the threshold for dissociation as a

  15. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.

    PubMed

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca(2+) may cause more unstable discrete Ca(2+) fluxes than that of monovalent Na(+). Two different methods-called the SMIB and multiscale methods-are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  16. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels

    NASA Astrophysics Data System (ADS)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca2 + may cause more unstable discrete Ca2 + fluxes than that of monovalent Na+. Two different methods—called the SMIB and multiscale methods—are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  17. Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels.

    PubMed

    Cranfield, Charles G; Bettler, Taren; Cornell, Bruce

    2015-01-01

    The nanoscale spacing between a tethered lipid bilayer membrane (tBLM) and its supporting gold electrode can be utilized to determine the polarity selectivity of the conduction of ion channels and ion carriers embedded in a membrane. The technique relies upon a bias voltage sequestering or eliminating ions, of a particular polarity, into or out of the aqueous electrolyte region between the gold electrode and the tethered membrane. A demonstration is given, using ac swept frequency impedance spectrometry, of the bias polarity dependence of the ionophore conductance of gramicidin A, a cationic selective channel, and valinomycin, a potassium ion selective carrier. We further use pulsed amperometry to show that the intrinsic voltage dependence of the ion conduction is actually selective of the polarity of the transported ion and not simply of the direction of the ionic current flow. PMID:25474616

  18. Open channel noise. VI. Analysis of amplitude histograms to determine rapid kinetic parameters.

    PubMed Central

    Heinemann, S H; Sigworth, F J

    1991-01-01

    Recently we reported that rapid fluctuations of ion currents flowing through open gramicidin A channels exceed the expected level of pure transport noise at low ion concentrations (Heinemann, S. H. and F. J. Sigworth. 1990. Biophys. J. 57:499-514). Based on comparisons with kinetic ion transport models we concluded that this excess noise is likely caused by current interruptions lasting approximately 1 microsecond. Here we introduce a method using the higher-order cumulants of the amplitude distribution to estimate the kinetics of channel closing events far below the actual time resolution of the recording system. Using this method on data recorded with 10 kHz bandwidth, estimates for gap time constants on the order of 1 microsecond were obtained, similar to the earlier predictions. PMID:1718467

  19. Cesium ordering and electron localization-delocalization phenomena in the quasi-one-dimensional diphosphate tungsten bronzes: Cs1‒xP8W8O40

    NASA Astrophysics Data System (ADS)

    Foury-Leylekian, P.; Pouget, J. P.; Greenblatt, M.; Wang, E.

    1998-03-01

    We present a structural investigation of the Cs1‒xP8W8O40 family of quasi-one-dimensional (quasi-1D) conductors, which exhibit intriguing charge transport properties where, for x small, the conductivity exhibits a crossover from a semiconducting to a metallic like regime when the temperature decreases. In these materials the W4O18 double zig-zag chains, together with the P2O7 diphosphate groups, delimit channels which are partially filled with the Cs+ ions. It is found, from an X-ray diffuse scattering investigation, that at room temperature the Cs+ ions are locally ordered on a lattice of well-defined sites in the channel direction and not ordered between neighboring channels. These Cs+ ions form 1D incommensurate concentration waves whose periodicity depends on the Cs+ stoichiometry. In CsP8W8O40 upon cooling, the intrachannel order increases significantly, and an interchannel order between the 1D Cs+ concentration waves develops. But, probably because of kinetic effects, no tridimensional (3D) long range order of the Cs+ ions is achieved at low temperature. The 3D low-temperature local order has been determined and it is found that the phase shift between the Cs+ concentration waves minimizes their Coulomb repulsions. This local order is increasingly reduced as the Cs concentration diminishes. We interpret the intriguing features of the electrical conductivity in relationship with the thermal evolution of the Cs ordering effects. We suggest that in Cs1‒xP8W8O40, for x small, a localization-delocalization transition of the Anderson type occurs due to the thermal variation of the Cs disorder. When x increases, the enhancement of the disorder leads to a localization of the electronic wave function in the whole temperature range measured. Finally, and probably because of the disorder, no charge density wave instability is revealed by our X-ray diffuse scattering investigation.

  20. Microstructure of Cs-implanted zirconia: Role of temperature

    SciTech Connect

    Vincent, L.; Thome, L.; Garrido, F.; Kaitasov, O.; Houdelier, F.

    2008-12-01

    The aim of this study was to identify experimentally the phase which includes cesium in yttria stabilized zirconia (YSZ). The solubility and retention of cesium in YSZ were studied at high temperature (HT). Cesium was ion implanted (at 300 keV) into YSZ at room temperature (RT), 750 deg. C, or 900 deg. C at fluences up to 5x10{sup 16} cm{sup -2}. The temperature dependence of the radiation-induced damage and of the cesium distribution in YSZ single crystals was investigated by Rutherford backscattering spectrometry and ion channeling. Transmission electron microscopy (TEM) studies were performed in order to determine the damage nature and search for a predicted ternary phase of cesium zirconate. Whatever the implantation temperature, the thickness of the damaged layer increases inwards with ion fluence. At RT, amorphization occurs, caused by the high Cs concentration (7 at. %). In situ TEM during postannealing shows recrystallization of cubic zirconia after release of cesium. A high implantation temperature has a significant influence on the nature of radiation defects and on the retained Cs concentration. At HT, dislocation loops and voids are formed but no amorphization is observed whereas polygonization occurs at high fluence. The implanted cesium concentration reaches a saturation value of 1.5 at. % above which Cs can no longer be retained in the matrix and is then released at the surface. At that concentration, cesium forms a solid solution in YSZ; no other phase is formed, neither during irradiation nor after thermal annealing.

  1. Storable droplet interface lipid bilayers for cell-free ion channel studies.

    PubMed

    Jung, Sung-Ho; Choi, Sangbaek; Kim, Young-Rok; Jeon, Tae-Joon

    2012-01-01

    An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in -80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies. PMID:21909672

  2. The nature of ion and water barrier crossings in a simulated ion channel.

    PubMed Central

    Chiu, S. W.; Novotny, J. A.; Jakobsson, E.

    1993-01-01

    Using a combination of techniques, including molecular dynamics, time-correlation analysis, stochastic dynamics, and fitting of continuum diffusion theory to electrophysiological data, a characterization is made of thermally driven sodium, water, and D2O motion within the gramicidin A channel. Since the channel contents are constrained to move in a single-file fashion, the motion that corresponds to experimentally measurable rates of permeation of the membrane is the motion of the center of mass of the channel contents. We therefore emphasize channel contents center-of-mass motion in our analysis of molecular dynamics computations. The usual free energy calculation techniques would be of questionable validity when applied to such motion. As an alternative to those techniques, we postulate a periodic sinusoidal free energy profile (related to the periodic structure of the helical channel) and deduce the fluid dynamic diffusion coefficient and the height and spacing of the free energy barriers from the form of the mean-square-deviation function, using stochastic computations. The fluid dynamic friction in each case appears similar to that for aqueous solution. However, the diffusive motions are modulated by a spatially periodic free energy profile with a periodicity characteristic of an L-D pair of amino acids in the gramicidin helix, approximately 1.7 A in the model we use. The barrier height depends on which substance is moving in the channel, but in each case is several times thermal energy. For barriers of this width and height, the motion is intermediate between the low-friction (transition-state) and high-friction (Brownian) limits. Thus, neither of these formalisms that have been used commonly to describe membrane permeation gives an accurate picture of the underlying physical process (although the Brownian description seems closer to correct). The non-Markovian Langevin equation must be solved to describe properly the statistics of the process. The "channel

  3. Structure and supramolecular architecture of membrane channel-forming peptides.

    PubMed

    Spach, G; Duclohier, H; Molle, G; Valleton, J M

    1989-01-01

    Peptides gathering together to induce channels in lipid bilayers may be classified in several categories according to the spatial structures involved. For example, gramicidin A forms intramolecular tubes, alamethicin, bundles of helical rods with intermolecular pores, porins (being proteins, properly speaking) are rich in beta-sheets that may form barrels, whereas cyclic peptides might stack together resulting in the formation of pores. The chemical structure of these compounds is now well characterized. The transmembrane electrical signals that they transmit are also typical of the particular supramolecular configurations (or architecture). Investigations in this field are thus relevant to structure-function relationship studies due to the availability of natural or synthetic analogues allowing the measurement of the influence of physico-chemical parameters upon the energy profiles of the pores. Consequently, questions such as the existence and probabilities of conductance substrates, their voltage-dependence and their ion or molecular selectivity can be tackled. Today, the loosest aspect of these studies lies in the actual molecular conformations and architecture in the membranes of the peptide aggregates, the knowledge of which remains imprecise, even 'at rest' in the best-studied cases. This review attempts to point out still unresolved questions and to propose some plausible approaches concerning, for example: 1) the configurations of the molecular aggregates responsible for ion transfer; 2) the mechanisms for channel-opening and closing (gating); 3) the eventual cooperative phenomena between channels, via the bilayer or interfacial components. Possible applications of these structures will be tentatively outlined. PMID:2470416

  4. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    PubMed Central

    Gurnev, Philip A.; Nestorovich, Ekaterina M.

    2014-01-01

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications. PMID:25153255

  5. Cs3ScCl6.

    PubMed

    Ward, Matthew D; Ibers, James A

    2014-06-01

    Crystals of tricaesium scandium(III) hexa-chloride were obtained as a side product from the reaction of U, SnCl2, Sc, and S in a CsCl flux at 1073 K. Cs3ScCl6 crystallizes in the Rb3YCl6 structure type. The asymmetric unit comprises three Cs sites, two Sc sites, and six Cl sites, all of which have site symmetry 1, except for the two Sc sites that have site symmetries of 2 and -1, respectively. The structure is composed of isolated [ScCl6](3-) octa-hedra that are surrounded by Cs(+) cations. Two Cs(+) cations have inter-actions with eight Cl(-) anions, while the third has inter-actions with ten Cl(-) anions. PMID:24940185

  6. Cs3ScCl6

    PubMed Central

    Ward, Matthew D.; Ibers, James A.

    2014-01-01

    Crystals of tricaesium scandium(III) hexa­chloride were obtained as a side product from the reaction of U, SnCl2, Sc, and S in a CsCl flux at 1073 K. Cs3ScCl6 crystallizes in the Rb3YCl6 structure type. The asymmetric unit comprises three Cs sites, two Sc sites, and six Cl sites, all of which have site symmetry 1, except for the two Sc sites that have site symmetries of 2 and -1, respectively. The structure is composed of isolated [ScCl6]3− octa­hedra that are surrounded by Cs+ cations. Two Cs+ cations have inter­actions with eight Cl− anions, while the third has inter­actions with ten Cl− anions. PMID:24940185

  7. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  8. Temperature and Pressure Dependence of the Reaction S + CS (+M) → CS2 (+M).

    PubMed

    Glarborg, Peter; Marshall, Paul; Troe, Jürgen

    2015-07-16

    Experimental data for the unimolecular decomposition of CS2 from the literature are analyzed by unimolecular rate theory with the goal of obtaining rate constants for the reverse reaction S + CS (+M) → CS2 (+M) over wide temperature and pressure ranges. The results constitute an important input for the kinetic modeling of CS2 oxidation. CS2 dissociation proceeds as a spin-forbidden process whose detailed properties are still not well understood. The role of the singlet-triplet transition involved is discussed. PMID:25669352

  9. The effects of the muscle relaxant, CS-722, on synaptic activity of cultured neurones.

    PubMed Central

    Marszalec, W.; Song, J. H.; Narahashi, T.

    1996-01-01

    1. The pharmacological properties of the centrally acting muscle relaxant, CS-722, were studied in cultured hippocampal cells and dorsal root ganglion cells of the rat using the whole-cell variation of the patch clamp technique. 2. CS-722 inhibited the occurrence of spontaneous excitatory and inhibitory postsynaptic currents in hippocampal neurones at concentrations of 100-300 microM, but had no effect on postsynaptic currents evoked by the application of glycine, gamma-aminobutyric acid, glutamate or N-methyl-D-aspartate. 3. CS-722 reduced voltage-gated sodium currents, while shifting the sodium channel inactivation curve to more negative membrane potentials. This effect is similar to that reported for local anaesthetics. Voltage-gated potassium currents were decreased by CS-722 by approximately 20%, whereas voltage-activated calcium currents were inhibited by about 25%. 4. CS-722 inhibited evoked inhibitory postsynaptic currents. However, the spontaneous quantal release of inhibitory transmitter was not affected. 5. The inhibitory effect of CS-722 on spontaneous inhibitory postsynaptic currents and excitatory postsynaptic currents in hippocampal cultures probably results from an inhibition of both sodium and calcium currents. This inhibitory effect is likely to be amplified in polysynaptic neuronal circuits. PMID:8872365

  10. Luminescence properties of the CsSnBr3 phase in metastable Cs4SnBr6

    NASA Astrophysics Data System (ADS)

    Myagkota, S. V.; Savchin, P. V.; Voloshinovskiĭ, A. S.; Demkiv, T. M.; Boĭko, Ya. V.; Vus, R. S.; Demkiv, L. S.

    2008-08-01

    Crystalline materials of the compositions Cs4SnBr6, CsSnBr3, and CsBr-Sn (0.1 mol %) are investigated using x-ray diffraction and luminescent methods. The formation of the CsSnBr3 phase is found to occur in metastable Cs4SnBr6 and CsBr-Sn. It is established that the CsSnBr3 crystalline phase in the Cs4SnBr6 metastable phase is a more stable compound as compared to the CsSnBr3 bulk crystal, which undergoes oxidation and hydration in air.

  11. Memory Is Not Extinguished along with CS Presentation but within a Few Seconds after CS-Offset

    ERIC Educational Resources Information Center

    Perez-Cuesta, Luis Maria; Hepp, Yanil; Pedreira, Maria Eugenia; Maldonado, Hector

    2007-01-01

    Prior work with the crab's contextual memory model showed that CS-US conditioned animals undergoing an unreinforced CS presentation would either reconsolidate or extinguish the CS-US memory, depending on the length of the reexposure to the CS. Either memory process is only triggered once the CS is terminated. Based on these results, the following…

  12. Potential value of Cs-137 capsules

    SciTech Connect

    Bloomster, C.H.; Brown, D.R.; Bruno, G.A.; Hazelton, R.F.; Hendrickson, P.L.; Lezberg, A.J.; Tingey, G.L.; Wilfert, G.L.

    1985-04-01

    We determined the value of Cs-137 compared to Co-60 as a source for the irradiation of fruit (apples and cherries), pork and medical supplies. Cs-137, in the WESF capsule form, had a value of approximately $0.40/Ci as a substitute for Co-60 priced at approximately $1.00/Ci. The comparison was based on the available curies emitted from the surface of each capsule. We developed preliminary designs for fourteen irradiation facilities; seven were based on Co-60 and seven were based on Cs-137. These designs provided the basis for estimating capital and operating costs which, in turn, provided the basis for determining the value of Cs-137 relative to Co-60 in these applications. We evaluated the effect of the size of the irradiation facility on the value of Cs-137. The cost of irradiation is low compared to the value of the product. Irradiation of apples for disinfestation costs $.01 to .02 per pound. Irradiation for trichina-safe pork costs $.02 per pound. Irradiation of medical supplies for sterilization costs $.07 to .12 per pound. The cost of the irradiation source, either Co-60 or Cs-137, contributed only a minor amount to the total cost of irradiation, about 5% for the fruit and hog cases and about 20% for the medical supply cases. We analyzed the sensitivity of the irradiation costs and Cs-137 value to several key assumptions.

  13. A Venom-derived Neurotoxin, CsTx-1, from the Spider Cupiennius salei Exhibits Cytolytic Activities*

    PubMed Central

    Kuhn-Nentwig, Lucia; Fedorova, Irina M.; Lüscher, Benjamin P.; Kopp, Lukas S.; Trachsel, Christian; Schaller, Johann; Vu, Xuan Lan; Seebeck, Thomas; Streitberger, Kathrin; Nentwig, Wolfgang; Sigel, Erwin; Magazanik, Lev G.

    2012-01-01

    CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45–Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca2+ channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides. PMID:22613721

  14. CsI and some new photocathodes

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Peskov, V.

    1993-06-01

    A discussion of the possible sources of discrepancies in the measurements of the quantum efficiency of CsI photocathodes is presented. We propose that the major causes for disagreements in QE are due to the QE dependence on the current density extracted from the photocathode, on the electric field, and on the temperature of the photocathode. Preliminary results on TMAE enhanced GaAs and Si, plus TMAE protected CsTe and SbCs photocathodes, operated in gas, are also presented.

  15. The "Seven Cs" for Employee Retention.

    ERIC Educational Resources Information Center

    Taguchi, Sherrie Gong

    2001-01-01

    Defines the "Seven Cs," traditional yet effective business fundamentals used to engage employees. Discusses how many companies are leveraging the basics of good employee relations in order to inspire staff productivity and loyalty. (GCP)

  16. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    (135)Cs/(137)Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure (135)Cs, there were no (135)Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited (135)Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of (134)Cs, (135)Cs, and (137)Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the (134)Cs/(137)Cs activity ratio (1.033 ± 0.006) and (135)Cs/(137)Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace (135)Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%-52.6%. The obtained (135)Cs/(137)Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  17. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    PubMed Central

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  18. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future.

  19. PyCS : Python Curve Shifting

    NASA Astrophysics Data System (ADS)

    Tewes, Malte

    2015-09-01

    PyCS is a software toolbox to estimate time delays between multiple images of strongly lensed quasars, from resolved light curves such as obtained by the COSMOGRAIL monitoring program. The pycs package defines a collection of classes and high level functions, that you can script in a flexible way. PyCS makes it easy to compare different point estimators (including your own) without much code integration. The package heavily depends on numpy, scipy, and matplotlib.

  20. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, J.R.

    1996-05-07

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  1. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, James R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  2. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  3. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  4. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax.

    PubMed Central

    Tank, D W; Miller, C; Webb, W W

    1982-01-01

    Small unilamellar vesicles formed from purified phospholids by detergent/dialysis methods may be enlarged to 30-microns diameter by freezing and thawing. Very-high-resistance seals were formed by applying a glass micropipette to the surface of these large liposomes, and single bilayer "patches" of membrane were isolated from the liposome surface while remaining sealed to the micropipette. The exogenous channel-forming peptides gramicidin and alamethicin induced characteristic single-channel fluctuation behavior in these excised patches held under voltage-clamp conditions. Large liposomes were formed from the small unilamellar vesicles made from cholate extracts of Torpedo electroplax plasma membrane vesicles. Isolated patches formed from these reconstituted membranes displayed current fluctuations due to single voltage-gated Cl- channels from non-innervated-face membranes; the properties of these Cl- channels are identical to those observed in planar bilayer membranes after direct insertion from native membranes. This liposome-patch method combines the advantages of membrane protein incorporation into liposomes with high-resolution electrical recording methods and may provide a generally applicable approach to the study of integral membrane channel proteins after solubilization and reconstitution. Images PMID:6296849

  5. Potential role of CS2 photooxidation in tropospheric sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Chameides, W. L.; Ravishankara, A. R.

    1981-01-01

    Absorption cross section measurements and model calculations indicate that CS2 photooxidation may be an important tropospheric sink for the CS2, giving a lifetime on the order of a week or two. If background CS2 levels are 10-20 pptv, then CS2 photooxidation may be an important global source of OCS as well.

  6. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  7. Pharmacology of o-chlorobenzylidene malononitrile (CS)

    PubMed Central

    Brimblecombe, R. W.; Green, D. M.; Muir, A. W.

    1972-01-01

    1. The effects of o-chlorobenzylidene malononitrile (CS) have been studied on several isolated organs and tissues, anaesthetized animals and cat encéphale isolé preparations. 2. On the isolated guinea-pig ileum an initial dose of CS produced a small, non-maintained contraction. Subsequent doses had reduced effects. There was no effect on peristalsis when the substance was given intraluminally. 3. No significant effects of CS were detected on the rat phrenic nerve-diaphragm preparation, the isolated perfused rabbit heart or on the contractor response of the indirectly stimulated cat tibialis muscle. 4. In the cat encéphale isolé preparation 1 mg/kg (i.v.) produced a brief period of electrocortical alerting but no abnormal activity in the electrocorticogram. Doses in excess of 10 mg/kg produced cortical depression. 5. Intravascular injection into the chloralose anaesthetized cat resulted typically in a pressor response accompanied by a brief period of apnoea. The threshold dose for the pressor response varied with the route of administration, but generally lay between 2·5 and 12·5 μg/kg; the threshold dose for apnoea was slightly higher. Small variations in this pattern of response were seen with different species and other anaesthetics. 6. When administered by stomach tube to chloralose anaesthetized cats, CS produced no measurable effects at doses of up to 100 mg/kg. 7. No changes in blood pressure or respiration were detected in anaesthetized cats given pure CS aerosol for 1 h in concentrations of between 345 mg/m3 and 1·39 g/m3 via a tracheal cannula or through the upper respiratory tract. Pure CS solution given by slow intravenous infusion at a similar dose and over a similar period produced significant effects on blood pressure and respiration. 8. Pyrotechnically generated (grenade) CS produced variable effects when given by inhalation in concentrations of between 460 and 1,040 mg/m3 for 1 hour. Respiratory depression, possibly reflex in nature

  8. Molecular structures and thermodynamic properties of 12 gaseous cesium-containing species of nuclear safety interest: Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I)

    NASA Astrophysics Data System (ADS)

    Badawi, Michael; Xerri, Bertrand; Canneaux, Sébastien; Cantrel, Laurent; Louis, Florent

    2012-01-01

    Ab initio electronic structure calculations at the coupled cluster level with a correction for the triples extrapolated to the complete basis set limit have been made for the estimation of the thermochemical properties of Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I). The standard enthalpies of formation and standard molar entropies at 298 K, and the temperature dependence of the heat capacities at constant pressure were evaluated. The calculated thermochemical properties are in good agreement with their literature counterparts. For Cs 2, CsH, CsOH, Cs 2(OH) 2, CsCl, Cs 2Cl 2, CsBr, CsI, and Cs 2I 2, the calculated ΔfH298K∘ values are within chemical accuracy of the most recent experimental values. Based on the excellent agreement observed between our calculated ΔfH298K∘ values and their literature counterparts, the standard enthalpies of formation at 298 K are estimated to be the following: ΔfH298K∘ (CsO) = 17.0 kJ mol -1 and ΔfH298K∘ (Cs 2Br 2) = -575.4 kJ mol -1.

  9. A biokinetic model for {sup 137}Cs

    SciTech Connect

    Melo, D.R.; Lipsztein, J.L.; Oliveira, C.A.N.; Lundgren, D.L.

    1997-08-01

    An improved biokinetic model for {sup 137}Cs in humans was developed based on an analysis of data obtained from individuals internally contaminated during an accident in Goiania, Brazil, and other data. Seventeen children (ten girls and seven boys 1-10 y old), ten adolescents (four females and six males), and thirty adults, (fifteen females and fifteen males) contaminated in the accident in Goiania contributed to this study. {sup 137}Cs retention was determined through periodic measurements in a whole-body counter. In addition to the data on {sup 137}Cs retention from these individuals, data from a study on the metabolism of {sup 137}Cs in immature, adult, and aged Beagle dogs and data from the literature were used in the formulation of the {sup 137}Cs biokinetic model presented. Mathematically, the retention of cesium is described by three exponential terms, and the retention model is based on a step function of body weight. When the ICRP Publication 56 model for cesium was compared to the model suggested in this paper, it was determined that the ICRP model predicts lower effective doses in 5-y-old children and higher effective doses in infants, adolescents, and adults.

  10. Cs2UPd3Se6

    PubMed Central

    Oh, George N.; Ibers, James A.

    2011-01-01

    Dicaesium uranium(IV) tripalladium(II) hexa­selenide, Cs2UPd3Se6, crystallizes in the space group Fmmm in the Ba2NaCu3O6 structure type. The asymmetric unit comprises the following atoms with site symmetries as shown: U1 (mm2), Cs1 (222), Cs2 (m2m), Pd1 (.m.), Pd2 (2mm), Se1 (m..), and Se2 (1). This layered structure contains six edge-sharing square-planar [PdSe4] units that form a hexa­gon. These, in turn, edge-share with [USe6] trigonal–prismatic units, forming an extended layer parallel to (010). The layers are stacked along [010]. They are staggered, and are separated by the Cs atoms. The Cs atoms are either coordinated in a square anti­prism of Se atoms or are ten-coordinate, with one square face and the opposite face hexa­gonal. PMID:21522818

  11. Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor

    SciTech Connect

    Brone, Bert; Peeters, Pieter J.; Marrannes, Roger; Mercken, Marc; Nuydens, Ronny; Meert, Theo; Gijsen, Harrie J.M.

    2008-09-01

    The TRPA1 channel is activated by a number of pungent chemicals, such as allylisothiocyanate, present in mustard oil and thiosulfinates present in garlic. Most of the known activating compounds contain reactive, electrophilic chemical groups, reacting with cysteine residues in the active site of the TRPA1 channel. This covalent modification results in activation of the channel and has been shown to be reversible for several ligands. Commonly used tear gasses CN, CR and CS are also pungent chemicals, and in this study we show that they are extremely potent and selective activators of the human TRPA1 receptor. To our knowledge, these are the most potent TRPA1 agonists known to date. The identification of the molecular target for these tear gasses may open up possibilities to alleviate the effects of tear gasses via treatment with TRPA1 antagonists. In addition these results may contribute to the basic knowledge of the TRPA1 channel that is gaining importance as a pharmacological target.

  12. Role of epithelial Na+ channels in endothelial function.

    PubMed

    Guo, Dongqing; Liang, Shenghui; Wang, Su; Tang, Chengchun; Yao, Bin; Wan, Wenhui; Zhang, Hailing; Jiang, Hui; Ahmed, Asif; Zhang, Zhiren; Gu, Yuchun

    2016-01-15

    An increasing number of mechano-sensitive ion channels in endothelial cells have been identified in response to blood flow and hydrostatic pressure. However, how these channels respond to flow under different physiological and pathological conditions remains unknown. Our results show that epithelial Na(+) channels (ENaCs) colocalize with hemeoxygenase-1 (HO-1) and hemeoxygenase-2 (HO-2) within the caveolae on the apical membrane of endothelial cells and are sensitive to stretch pressure and shear stress. ENaCs exhibited low levels of activity until their physiological environment was changed; in this case, the upregulation of HO-1, which in turn facilitated heme degradation and hence increased the carbon monoxide (CO) generation. CO potently increased the bioactivity of ENaCs, releasing the channel from inhibition. Endothelial cells responded to shear stress by increasing the Na(+) influx rate. Elevation of intracellular Na(+) concentration hampered the transportation of l-arginine, resulting in impaired nitric oxide (NO) generation. Our data suggest that ENaCs that are endogenous to human endothelial cells are mechano-sensitive. Persistent activation of ENaCs could inevitably lead to endothelium dysfunction and even vascular diseases such as atherosclerosis. PMID:26621031

  13. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    PubMed

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from

  14. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    DOE PAGESBeta

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement withmore » values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.« less

  15. (135)Cs/(137)Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications.

    PubMed

    Snow, Mathew S; Snyder, Darin C

    2016-01-01

    (135)Cs/(137)Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the (135)Cs/(137)Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product (135)Cs/(137)Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated (135)Cs/(137)Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show (135)Cs/(137)Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. The differences in (135)Cs/(137)Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that (135)Cs/(137)Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe. PMID:26540258

  16. Spectroscopic [correction of eSpectroscopic] and structural properties of valine gramicidin A in monolayers at the air-water interface.

    PubMed Central

    Lavoie, Hugo; Blaudez, Daniel; Vaknin, David; Desbat, Bernard; Ocko, Benjamin M; Salesse, Christian

    2002-01-01

    Monomolecular films of valine gramicidin A (VGA) were investigated in situ at the air-water interface by x-ray reflectivity and x-ray grazing incidence diffraction as well as polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). These techniques were combined to obtain information on the secondary structure and the orientation of VGA and to characterize the shoulder observed in its pi-A isotherm. The thickness of the film was obtained by x-ray reflectivity, and the secondary structure of VGA was monitored using the frequency position of the amide I band. The PM-IRRAS spectra were compared with the simulated ones to identify the conformation adopted by VGA in monolayer. At large molecular area, VGA shows a disordered secondary structure, whereas at smaller molecular areas, VGA adopts an anti-parallel double-strand intertwined beta(5.6) helical conformation with 30 degrees orientation with respect to the normal with a thickness of 25 A. The interface between bulk water and the VGA monolayer was investigated by x-ray reflectivity as well as by comparing the experimental and the simulated PM-IRRAS spectra on D(2)O and H(2)O, which suggested the presence of oriented water molecules between the bulk and the monolayer. PMID:12496123

  17. TRP channels.

    PubMed

    Benemei, Silvia; Patacchini, Riccardo; Trevisani, Marcello; Geppetti, Pierangelo

    2015-06-01

    Evidence is accumulating on the role of transient receptor potential (TRP) channels, namely TRPV1, TRPA1, TRPV4 and TRPM8, expressed by C- and Aδ-fibres primary sensory neurons, in cough mechanism. Selective stimuli for these channels have been proven to provoke and, more rarely, to inhibit cough. More importantly, cough threshold to TRP agonists is increased by proinflammatory conditions, known to favour cough. Off-target effects of various drugs, such as tiotropium or desflurane, seem to produce their protective or detrimental actions on airway irritation and cough via TRPV1 and TRPA1, respectively. Thus, TRPs appear to encode the process that initiates or potentiates cough, activated by exogenous irritants and endogenous proinflammatory mediators. More research on TRP channels may result in innovative cough medicines. PMID:25725213

  18. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

    PubMed Central

    2015-01-01

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625

  19. Properties of CsI and CsI-TMAE photocathodes

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Peskov, V. ); Hoeneisen, B. )

    1992-06-01

    The importance of heating the CsI or CsI-TMAE photocathodes during preparation, as well as the importance of the gas environment on the quantum efficiency is presented. The dependence of the aging characteristics of these photocathodes on the operating temperature, on the presence of gas, and on the charge amplification of the chamber is also discussed. For CsI photocathodes charges in excess of 2{times}10{sup 14} e{sup {minus}}/mm{sup 2} can be collected with little degradation of performance. A timing resolution of 0.55 ns is also achieved for single photoelectrons suggesting a possible time-of-flight detector.

  20. CS exposure--clinical effects and management.

    PubMed Central

    Worthington, E; Nee, P A

    1999-01-01

    The number of people exposed to CS spray presenting to accident and emergency departments is on the increase. Its effects, though usually minor and short lived, involve several systems and can occasionally be life threatening. It is therefore important that staff are able to manage these patients and know when and how to protect themselves and others from further contamination. PMID:10353039

  1. Determination of ¹³⁵Cs and ¹³⁷Cs in environmental samples: A review.

    PubMed

    Russell, B C; Croudace, Ian W; Warwick, Phil E

    2015-08-26

    Radionuclides of caesium are environmentally important since they are formed as significant high yield fission products ((135)Cs and (137)Cs) and activation products ((134)Cs and (136)Cs) during nuclear fission. They originate from a range of nuclear activities such as weapons testing, nuclear reprocessing and nuclear fuel cycle discharges and nuclear accidents. Whilst (137)Cs, (134)Cs and (136)Cs are routinely measurable at high sensitivity by gamma spectrometry, routine detection of long-lived (135)Cs by radiometric methods is challenging. This measurement is, however, important given its significance in long-term nuclear waste storage and disposal. Furthermore, the (135)Cs/(137)Cs ratio varies with reactor, weapon and fuel type, and accurate measurement of this ratio can therefore be used as a forensic tool in identifying the source(s) of nuclear contamination. The shorter-lived activation products (134)Cs and (136)Cs have a limited application but provide useful early information on fuel irradiation history and have importance in health physics. Detection of (135)Cs (and (137)Cs) is achievable by mass spectrometric techniques; most commonly inductively coupled plasma mass spectrometry (ICP-MS), as well as thermal ionisation (TIMS), accelerator (AMS) and resonance ionisation (RIMS) techniques. The critical issues affecting the accuracy and detection limits achievable by this technique are effective removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba, and elimination of peak tailing of stable (133)Cs on (135)Cs. Isobaric interferences can be removed by chemical separation, most commonly ion exchange chromatography, and/or instrumental separation using an ICP-MS equipped with a reaction cell. The removal of the peak tailing interference is dependent on the instrument used for final measurement. This review summarizes and compares the analytical procedures developed for determination of (135)Cs/(137)Cs, with particular focus on

  2. Radiation damage in undoped CsI and CsI(Tl)

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1992-12-01

    Radiation damage has been studied in undoped CsI and CsI(TI) crystals using {sup 60}Co gamma radiation for doses up to {approximately} 4.2 {times} 10{sup 6}. Samples from various manufacturers were measured ranging in size from 2.54 cm long cylinders to a 30 cm long block. Measurements were made on the change in optical transmission and scintillation light output as a function of dose. Although some samples showed a small change in transmission, a significant change in light output was observed for all samples. Recovery from damage was also studied as a function of time and exposure to UV light. A short lived phosphorescence was observed in undoped CsI, similar to the phosphorescence seen in CsI(TI).

  3. Radiation damage in undoped CsI and CsI(Tl)

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1992-01-01

    Radiation damage has been studied in undoped CsI and CsI(TI) crystals using [sup 60]Co gamma radiation for doses up to [approximately] 4.2 [times] 10[sup 6]. Samples from various manufacturers were measured ranging in size from 2.54 cm long cylinders to a 30 cm long block. Measurements were made on the change in optical transmission and scintillation light output as a function of dose. Although some samples showed a small change in transmission, a significant change in light output was observed for all samples. Recovery from damage was also studied as a function of time and exposure to UV light. A short lived phosphorescence was observed in undoped CsI, similar to the phosphorescence seen in CsI(TI).

  4. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    SciTech Connect

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurement at very low femtogram levels using this method in a ground water matrix is also demonstrated.

  5. Positive nonlinear pressure shift of Cs in Ne

    NASA Astrophysics Data System (ADS)

    Xia, Tian; McGuyer, Bart; Jau, Yuan-Yu; Happer, William

    2010-03-01

    We demonstrate that the hyperfine resonance frequency of ground state Cs atoms have a nonlinear dependence on the pressure of the buffer gas Ne at a fixed temperature. The hyperfine resonance frequency of alkali-metal atoms is shifted by an amount, which had long been assumed to be linear with the buffer gas pressure until Fei Gong discovered that the shift of Rb and Cs hyperfine resonance frequency has a nonlinear dependence on the pressure of the buffer gas Ar and Kr. While the nonlinear pressure shift of Cs in Ar and Kr is negative, we found that the nonlinear pressure shift of Cs hyperfine frequency in Ne is positive. The reason of the nonlinear shift is the three body collision(eg: Cs-Ne-Ne) and the formation of Van der Waals molecules of a Cs atom and a buffer gas atom of Ar, Kr, or Ne. The hyperfine precession rate of a Cs atom bound in molecule has a shift respect to a free Cs atom. The reversal sign of this nonlinear pressure shift of Cs in Ne respect to Ar and Kr demonstrate that the shift of the hyperfine precession rate of Cs in CsNe is reversed respect to CsAr and CsKr.

  6. In-situ Dehydration Studies of Fully K- Rb- and Cs-exchanged Natrolites

    SciTech Connect

    Y Lee; D Seoung; D Liu; M Park; S Hong; H Chen; J Bai; C Kao; T Vogt; Y Lee

    2011-12-31

    In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100 C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 C, whereas Rb- and Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100 C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 x 10{sup -5} K{sup -1}, 1.03 x 10{sup -4} K{sup 01}, and 5.06 x 10{sup -5} K{sup -1}, respectively. Rietveld structure refinements of the dehydrated phases at 400 C reveal that the framework collapses are due to an increase of the chain rotation angles, {Psi}, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400 C shows a 2.2-fold increase in {Psi}, whereas the dehydrated Rb- and Cs-natrolites at 400 C reveal increases of {Psi} by ca. 3.7 and 7.3 times, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Cs-natrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions.

  7. Opposite effects of Ni2+ on Xenopus and rat ENaCs expressed in Xenopus oocytes.

    PubMed

    Cucu, Dana; Simaels, Jeannine; Eggermont, Jan; Van Driessche, Willy; Zeiske, Wolfgang

    2005-10-01

    The epithelial Na+ channel (ENaC) is modulated by various extracellular factors, including Na+, organic or inorganic cations, and serine proteases. To identify the effect of the divalent Ni2+ cation on ENaCs, we compared the Na+ permeability and amiloride kinetics of Xenopus ENaCs (xENaCs) and rat ENaCs (rENaCs) heterologously expressed in Xenopus oocytes. We found that the channel cloned from the kidney of the clawed toad Xenopus laevis [wild-type (WT) xENaC] was stimulated by external Ni2+, whereas the divalent cation inhibited the channel cloned from the rat colon (WT rENaC). The kinetics of amiloride binding were determined using noise analysis of blocker-induced fluctuation in current adapted for the transoocyte voltage-clamp method, and Na+ conductance was assessed using the dual electrode voltage-clamp (TEVC) technique. The inhibitory effect of Ni2+ on amiloride binding is not species dependent, because Ni2+ decreased the affinity (mainly reducing the association rate constant) of the blocker in both species in competition with Na+. Importantly, using the TEVC method, we found a prominent difference in channel conductance at hyperpolarizing voltage pulses. In WT xENaCs, the initial ohmic current response was stimulated by Ni2+, whereas the secondary voltage-activated current component remained unaffected. In WT rENaCs, only a voltage-dependent block by Ni2+ was obtained. To further study the origin of the xENaC stimulation by Ni2+, and based on the rationale of the well-known high affinity of Ni2+ for histidine residues, we designed alpha-subunit mutants of xENaCs by substituting histidines that were expressed in oocytes, together with WT beta- and gamma-subunits. Changing His215 to Asp in one putative amiloride-binding domain (WYRFHY) in the extracellular loop between Na+ channel membrane segments M1 and M2 had no influence on the stimulatory effect of Ni2+, and neither did complete deletion of this segment. Next, we mutated His416 flanked by His411 and Cys

  8. Monitoring 137Cs and 134Cs at marine coasts in Indonesia between 2011 and 2013.

    PubMed

    Suseno, Heny; Prihatiningsih, Wahyu Retno

    2014-11-15

    Environmental samples (seawater, sediments and biota) were collected along the eastern and western Indonesian coasts between 2011 and 2013 to anticipate the possible impacts of the Fukushima radioactive releases in Indonesia. On the eastern coasts (south and north Sulawesi), the (137)Cs concentrations in the seawater and sediments were 0.12-0.32 Bq m(-3) and 0.10-1.03 Bq kg(-1), respectively. On the western coasts (West Sumatra, Bangka Island, North Java, South Java and Madura island), the (137)Cs concentrations in the seawater and sediments were 0.12-0.66 Bq m(-3) and 0.19-1.64 Bq kg(-1), respectively. In general, the (137)Cs concentrations in the fish from several Indonesian coasts were Cs concentrations in mollusk, crab and prawn were 10.65-38.78, 4.02 and 6.16 mBq kg(-1), respectively. (134)Cs was not detected in the seawater, sediments or biota. Thus, it was concluded that (137)Cs on the eastern and western Indonesian coasts originated from global fallout. PMID:25199708

  9. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  10. Nonadiabatic couplings and charge transfer study in H + CS+ collision using time-dependent quantum dynamics

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2015-11-01

    Experiments have reported the high stability of HCS+ ion and inhibit to decompose over the range of collision energies. In this study, the various energy transfer channels of atomic H collision with CS+ molecular ion has been performed by ab initio computations at the multireference configuration interaction/aug-cc-pVQZ level of theory. The ground and several low-lying excited electronic state potential energy surfaces in three different molecular orientations, namely, two collinear configurations with, (1) H approaching the S atom (γ = 0°), (2) H approaching the C atom (γ = 180°) and one perpendicular configuration, (3) H approaching the centre of mass of CS (γ = 90°) with the diatom fixed at the equilibrium bond length, have been obtained. Nonadiabatic effects with Landau-Zener coupling leading to avoided crossings are observed between the ground- and the first-excited states in γ = 90° orientation, and also between the first- and second-excited states in γ = 180° orientation. Quantum dynamics have been performed to study the charge transfer using time-dependent wave packet method on the diabatic potential energy surfaces. The probability of charge transfer is found to be highest with 42% in γ = 180°. The high charge transfer probability result in the formation of H+ + CS channel which ascertains the high stability of HCS+ ion.

  11. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  12. Cs atoms on helium nanodroplets and the immersion of Cs{sup +} into the nanodroplet

    SciTech Connect

    Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E.

    2011-08-21

    We report the non-desorption of cesium (Cs) atoms on the surface of helium nanodroplets (He{sub N}) in their 6{sup 2}P{sub 1/2} ({sup 2}{Pi}{sub 1/2}) state upon photo-excitation as well as the immersion of Cs{sup +} into the He{sub N} upon photo-ionization via the 6{sup 2}P{sub 1/2} ({sup 2}{Pi}{sub 1/2}) state. Cesium atoms on the surface of helium nanodroplets are excited with a laser to the 6{sup 2}P states. We compare laser-induced fluorescence (LIF) spectra with a desorption-sensitive method (Langmuir-Taylor detection) for different excitation energies. Dispersed fluorescence spectra show a broadening of the emission spectrum only when Cs-He{sub N} is excited with photon energies close to the atomic D{sub 1}-line, which implies an attractive character of the excited state system (Cs*-He{sub N}) potential energy curve. The experimental data are compared with a calculation of the potential energy curves of the Cs atom as a function of its distance R from the center of the He{sub N} in a pseudo-diatomic model. Calculated Franck-Condon factors for emission from the 6{sup 2}P{sub 1/2} ({sup 2}{Pi}{sub 1/2}) to the 6{sup 2}S{sub 1/2} ({sup 2}{Sigma}{sub 1/2}) state help to explain the experimental data. The stability of the Cs*-He{sub N} system allows to form Cs{sup +} snowballs in the He{sub N}, where we use the non-desorbing 6{sup 2}P{sub 1/2} ({sup 2}{Pi}{sub 1/2}) state as a springboard for ionization in a two-step ionization scheme. Subsequent immersion of positively charged Cs ions is observed in time-of-flight mass spectra, where masses up to several thousand amu were monitored. Only ionization via the 6{sup 2}P{sub 1/2} ({sup 2}{Pi}{sub 1/2}) state gives rise to a very high yield of immersed Cs{sup +} in contrast to an ionization scheme via the 6{sup 2}P{sub 3/2} ({sup 2}{Pi}{sub 3/2}) state. When resonant two-photon ionization is applied to cesium dimers on He droplets, Cs{sub 2}{sup +}-He{sub N} aggregates are observed in time-of-flight mass spectra.

  13. Communications satellite no. 2 (CS-2)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.

  14. IR-Improved DGLAP-CS Theory

    DOE PAGESBeta

    Ward, B. F. L.

    2008-01-01

    We show that it is possible to improve the infrared aspects of the standard treatment of the DGLAP-CS evolution theory to take into account a large class of higher-order corrections that significantly improve the precision of the theory for any given level of fixed-order calculation of its respective kernels. We illustrate the size of the effects we resum using the moments of the parton distributions.

  15. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6

    NASA Astrophysics Data System (ADS)

    Saeki, Keiichiro; Fujimoto, Yutaka; Koshimizu, Masanori; Yanagida, Takayuki; Asai, Keisuke

    2016-04-01

    The photoluminescence and scintillation properties of Cs2HfCl6 and Cs2ZrCl6 crystals were investigated. Two emission bands in the photoluminescence spectra were observed at 375 and 435 nm for the Cs2HfCl6 crystal and at 440 and 479 nm for the Cs2ZrCl6 crystal. Similar spectra were observed for radioluminescence. The decay time constants were found to be about 2.2 and 8.4 µs for Cs2HfCl6 and 1.5 and 7.5 µs for Cs2ZrCl6. The scintillation light yields were estimated to be 27,500 and 25,100 photons/MeV for Cs2HfCl6 and Cs2ZrCl6, respectively.

  16. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    PubMed

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  17. Effects of imidazolium-based ionic liquids on the stability and dynamics of gramicidin A and lipid bilayers at different salt concentrations.

    PubMed

    Lee, Hwankyu; Kim, Sun Min; Jeon, Tae-Joon

    2015-09-01

    Gramicidin A (gA) dimers with bilayers, which consist of phospholipids and ionic liquids (ILs) at different molar ratios, were simulated at different salt concentrations of 0.15 and 1M NaCl. Bilayer thickness is larger than the length of a gA dimer, and hence lipids around the gA dimer are significantly disordered to adapt to the gA dimer, yielding membrane curvature. As the IL concentration increases, the bilayer thickness decreases and becomes closer to the gA length, leading to less membrane curvature. Also, ILs significantly increase lateral diffusivities of the gA dimer and lipids at 0.15M NaCl, but not at 1M NaCl because strong electrostatic interactions between salt ions and lipid head groups suppress an increase in the lateral mobility of the bilayer at high salt concentration. These findings help explain the conflicting experimental results that showed the increased ion permeability in electrophysiological experiments at 1M NaCl, but the reduced ion permeability in fluorescent experiments at 0.15M NaCl. ILs disorder lipids and make bilayers thinner, which yields less membrane curvature around the gA dimer and thus stabilizes the gA dimer, leading to the increased ion permeability. This IL effect predominantly occurs at 1M NaCl, where ILs only slightly increase the bilayer dynamics because of the strong electrostatic interactions between salt ions and lipids. In contrast, at 0.15M NaCl, ILs do not only stabilize the curved bilayer but also significantly increase the lateral mobility of gA dimers and lipids, which can reduce gA-induced pore formation, leading to the decreased ion permeability. PMID:26188795

  18. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

    PubMed

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian; Ulrich, Anne S

    2015-06-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  19. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  20. Pressure-induced metathesis reaction to sequester Cs.

    PubMed

    Im, Junhyuck; Seoung, Donghoon; Lee, Seung Yeop; Blom, Douglas A; Vogt, Thomas; Kao, Chi-Chang; Lee, Yongjae

    2015-01-01

    We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate. PMID:25515673

  1. Developments towards detection of 135Cs at VERA

    NASA Astrophysics Data System (ADS)

    Lachner, Johannes; Kasberger, Magdalena; Martschini, Martin; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-10-01

    Radioisotopes produced in natural or anthropogenic fission are widely used for tracer studies of environmental processes, in nuclear forensics, and are important for nuclear waste disposal. Besides the well-known 137Cs, the longer-lived sister isotope 135Cs (T1/2 = 2.3 Myr) is also produced, and the combined measurement of the two isotopes would allow for assessment of contaminating sources. The insufficient suppression of the stable isobar 135Ba presently prevents AMS measurements down to expected natural levels of 135Cs/133Cs ≈ 10-11. Via the difference in electron affinities between Cs and Ba further isobar suppression should be achievable after the installation of the Ion-Laser-Interaction System (ILIAS) at VERA. We present a preparatory study on the performance of the 3 MV VERA AMS facility for 135Cs concerning ion formation, transmission and detection. Since the usual Cs sputtering would obscure the 135Cs/133Cs ratio of a sample, Rb sputtering was successfully applied and tested also for various other typical AMS elements. Partial suppression of 135Ba is possible with the extraction of Cs- and negative Cs-fluorides. Cs- currents of several 10 nA were extracted over hours from mg amounts of Cs2SO4 material. The transmission to various charge states was tested with gas (Ar, He) and foil stripping. Experiments showed that no suppression in the detection system is possible at high beam energies with the VERA facility. For this reason, gas stripping to low charge states (2+, 3+) with transmissions up to 30% is favorable to guarantee optimal beam transport to the detector. In the present setup, utilizing a simple Bragg-type detector, the blank 135Cs/133Cs ratios from chemically pure samples are determined by the 135Ba background to a value of (4.0 ± 1.3)·10-9.

  2. Free energy of formation of Cs 3PuCl 6 and CsPu 2Cl 7

    NASA Astrophysics Data System (ADS)

    Williamson, M. A.; Kleinschmidt, P. D.

    The free energy, enthalpy and entropy of formation of the compounds Cs 3PuCl 6 and CsPu 2Cl 7 have been determined by measuring the sublimation pressures for the reactions CsCl( s) / aiCsCl( g), {2}/{5}Cs 3PuCl 6(s) /ai {1}/{5}CsPu 2Cl 7(s) + CsCl(g) , and CsPu2Cl7( s) / ai 2 PuCl3( s) + CsCl( g). The pressures are measured using Knudsen effusion mass spectrometry over the temperature range 600 to 850 K. For the formation of Cs 3PuCl 6 from CsCl and PuCl 3, ΔG0298 = -77.3 ± 8.5 kJ/ mol, ΔH0298 = -82.1 ± 7.8 kJ/ mol, and ΔS0298 = -16.2 ± 10.9 J/ Kmol. For CsPu 2Cl 7, ΔG0298 = -39.4 ± 3.5 kJ/ mol, ΔH0298 = -40.8 ± 3.2 kJ/ mol, and ΔS0298 = -4.6 ± 4.2 J/ Kmol.

  3. Spatial distribution of 137Cs in surface soil under different land uses in Chao Phraya watershed: Potential used as sediment source tracing

    NASA Astrophysics Data System (ADS)

    Srisuksawad, K.; porntepkasemsan, B.; Noipow, N.; Omanee, A.; Wiriyakitnateekul, W.; Chouybudha, R.; Srimawong, P.

    2015-05-01

    Sediment fingerprinting techniques involves the discrimination of sediment sources based on differences in source material properties and quantification of the relative contributions from these sources to sediment delivered downstream to the river catchments. Results of the previous study indicated that fallout radionuclides (FRNs); 137Cs and excess 210Pb (210Pbex) are the most suitable radionuclides to be used as sediments sources tracers. This study investigated the spatial distribution of 137Cs in soil under different land uses in Chao Phraya watershed; the most significant watershed in Thailand. Emphasis was placed on discriminating among potential sediment sources including the cultivated (upland crops), pasture field, uncultivated (swamp, forest, and grass field), and channel erosion (stream and river bank). One hundred and twenty four soil samples were collected from all sources and determining for 137Cs. The 137Cs mass activities in pasture areas varied from the limit of detection (LLD) to 1.22±0.05 with the average of 0.64±0.14 Bq kg-1. In cultivated areas the 137Cs mass activities varied from LLD to 1.41±0.04 with the average of 0.38±0.04 Bq kg-1. The 137Cs mass activities were higher in uncultivated areas varied from 0.12±0.03 to 1.73±0.05 with the average of 0.76±0.15 Bq kg-1. The 137Cs mass activities in channel bank varied from LLD to 1.16±0.04 with the average of 0.39±0.05 Bq kg-1.GIS and geospatial interpolations revealed pattern in the spatial concentrations of 137Cs and indicated important differences in its distributions showing the differences behaviour of 137Cs in different land uses.

  4. Channel Networks

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio; Rigon, Riccardo

    This review proceeds from Luna Leopold's and Ronald Shreve's lasting accomplishments dealing with the study of random-walk and topologically random channel networks. According to the random perspective, which has had a profound influence on the interpretation of natural landforms, nature's resiliency in producing recurrent networks and landforms was interpreted to be the consequence of chance. In fact, central to models of topologically random networks is the assumption of equal likelihood of any tree-like configuration. However, a general framework of analysis exists that argues that all possible network configurations draining a fixed area are not necessarily equally likely. Rather, a probability P(s) is assigned to a particular spanning tree configuration, say s, which can be generally assumed to obey a Boltzmann distribution: P(s) % e^-H(s)/T, where T is a parameter and H(s) is a global property of the network configuration s related to energetic characters, i.e. its Hamiltonian. One extreme case is the random topology model where all trees are equally likely, i.e. the limit case for T6 4 . The other extreme case is T 6 0, and this corresponds to network configurations that tend to minimize their total energy dissipation to improve their likelihood. Networks obtained in this manner are termed optimal channel networks (OCNs). Observational evidence suggests that the characters of real river networks are reproduced extremely well by OCNs. Scaling properties of energy and entropy of OCNs suggest that large network development is likely to effectively occur at zero temperature (i.e. minimizing its Hamiltonian). We suggest a corollary of dynamic accessibility of a network configuration and speculate towards a thermodynamics of critical self-organization. We thus conclude that both chance and necessity are equally important ingredients for the dynamic origin of channel networks---and perhaps of the geometry of nature.

  5. The pore properties of human nociceptor channel TRPA1 evaluated in single channel recordings

    PubMed Central

    Bobkov, Y.V.; Corey, E.A.; Ache, B.W.

    2011-01-01

    TRPA channels detect stimuli of different sensory modalities, including a broad spectrum of chemosensory stimuli, noxious stimuli associated with tissue damage and inflammation, mechanical stimuli, and thermal stimuli. Despite a growing understanding of potential modulators, agonists, and antagonists for these channels, the exact mechanisms of channel regulation and activation remain mostly unknown or controversial and widely debated. Relatively little is also known about the basic biophysical parameters of both native and heterologously expressed TRPA channels. Here we use conventional single channel inside-out and outside-out patch recording from the human TRPA1 channel transiently expressed in human embryonic kidney 293T cells to characterize the selectivity of the channel for inorganic mono-/divalent and organic monovalent cations in the presence of Allylisothiocyanate (AITC). We show the relative permeability of the hTRPA1 channel to inorganic cations to be: Ca2+(5.1)>Ba2+(3.5)>Mg2+(2.8)>NH4+(1.5)>Li+(1.2)>Na+(1.0)≥K+(0.98)≥Rb+(0.98)>Cs+(0.95); and to organic cations: Na+(1.0)≥Dimethylamine(0.99)>Trimethylamine(0.7)>Tetramethylammonium(0.4)>N-methyl-d-glucamine(0.1). Activation of the hTRPA1 channels by AITC appears to recruit the channels to a conformational state with an increased permeability to large organic cations. The pore of the channels in this state can be characterized as dilated by approximately 1–2.5A. These findings provide important insight into the basic fundamental properties and function of TRPA1 channels in general and human TRPA1 channel in particular. PMID:21195050

  6. Crystal structure of CsCrAs2O7, a new member of the diarsenate family

    PubMed Central

    Bouhassine, Mohamad Alem; Boughzala, Habib

    2015-01-01

    Caesium chromium(III) diarsenate(V), CsCrAs2O7, was prepared by solid-state reactions. The title structure consists of isolated CrO6 octa­hedra and As2O7 diarsenate groups, sharing corners to build up a three-dimensional [CrAs2O7]− anionic framework. In this framework, channels extending parallel to [001] are present in which the ten-coordinate Cs+ ions reside. CsCrAs2O7 is isotypic with the monoclinic A I M III X 2O7 (A I = alkali metal; M III = Al, Cr, Fe; X = As, P) type I family of compounds crystallizing in the space group P21/c. PMID:26090138

  7. Plasma Formation During Operation of a Diode Pumped Alkali Laser (DPAL) in Cs

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Zatsarinny, Oleg; Bartschat, Klaus; Kushner, Mark J.

    2014-10-01

    Diode pumped Alkali Lasers (DPALs) produce laser action on the resonant lines of alkali atoms. Diode lasers resonantly pump the 2P3/2 state of the alkali atom which is collisionally relaxed to the 2P3/2 state which then lases to the ground state 2S1/2. The low optical quality of high power semiconductor diode lasers is converted into high optical quality laser radiation from the alkali vapor. The Cs DPAL system using Ar/Cs/C2H6 mixtures has shown promising results. (C2H6 is the collisional relaxant.) In other studies, resonant excitation of alkali vapor by low power lasers has been used to produce highly ionized channels, initiated through associative ionization and superelastic electron heating. The issue then arises if plasma formation occurs during DPAL by similar mechanisms which would be detrimental to laser performance. In this paper, we report on results from a computational study of a DPAL using Cs vapor. The global model addresses quasi-cw pumping of the Cs(2P3/2) state by laser diodes, and includes a full accounting of the resulting electron kinetics. To enable this study, the B-spline R-matrix (BSR) with pseudostates method was employed to calculate electron impact cross sections for Cs. We found that for pump rates of many to 10 kW/cm2, plasma densities approaching 1013 cm-3 occur during laser oscillation with higher values in the absence of laser oscillation. Supported by DoD High Energy Laser Mult. Res. Initiative and NSF.

  8. A Semi-Synthetic Ion Channel Platform for Detection of Phosphatase and Protease Activity

    PubMed Central

    Macrae, Michael X.; Blake, Steven; Jiang, Xiayun; Capone, Ricardo; Estes, Daniel J.; Mayer, Michael; Yang, Jerry

    2009-01-01

    Sensitive methods to probe the activity of enzymes are important for clinical assays and for elucidating the role of these proteins in complex biochemical networks. This paper describes a semi-synthetic ion channel platform for detecting the activity of two different classes of enzymes with high sensitivity. In the first case, this method uses single ion channel conductance measurements to follow the enzyme-catalyzed hydrolysis of a phosphate group attached to the C-terminus of gramicidin A (gA, an ion channel-forming peptide) in the presence of alkaline phosphatase (AP). Enzymatic hydrolysis of this phosphate group removes negative charges from the entrance of the gA pore, resulting in a product with measurably reduced single ion channel conductance compared to the original gA-phosphate substrate. This technique employs a standard, commercial bilayer setup and takes advantage of the catalytic turnover of enzymes and the amplification characteristics of ion flux through individual gA pores to detect picomolar concentrations of active AP in solution. Furthermore, this technique makes it possible to study the kinetics of an enzyme and provides an estimate for the observed rate constant (kcat) and the Michaelis constant (KM) by following the conversion of the gA-phosphate substrate to product over time in the presence of different concentrations of AP. In the second case, modification of gA with a substrate for proteolytic cleavage by anthrax lethal factor (LF) afforded a sensitive method for detection of LF activity, illustrating the utility of ion channel-based sensing for detection of a potential biowarfare agent. This ion channel-based platform represents a powerful, novel approach to monitor the activity of femtomoles to picomoles of two different classes of enzymes in solution. Furthermore, this platform has the potential for realizing miniaturized, cost-effective bioanalytical assays that complement currently established assays. PMID:19860382

  9. (135)Cs/(137)Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident.

    PubMed

    Zheng, Jian; Tagami, Keiko; Bu, Wenting; Uchida, Shigeo; Watanabe, Yoshito; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2014-05-20

    Since the Fukushima Daiichi nuclear power plant (FDNPP) accident in 2011, intensive studies of the distribution of released fission products, in particular (134)Cs and (137)Cs, in the environment have been conducted. However, the release sources, that is, the damaged reactors or the spent fuel pools, have not been identified, which resulted in great variation in the estimated amounts of (137)Cs released. Here, we investigated heavily contaminated environmental samples (litter, lichen, and soil) collected from Fukushima forests for the long-lived (135)Cs (half-life of 2 × 10(6) years), which is usually difficult to measure using decay-counting techniques. Using a newly developed triple-quadrupole inductively coupled plasma tandem mass spectrometry method, we analyzed the (135)Cs/(137)Cs isotopic ratio of the FDNPP-released radiocesium in environmental samples. We demonstrated that radiocesium was mainly released from the Unit 2 reactor. Considering the fact that the widely used tracer for the released Fukushima accident-sourced radiocesium in the environment, the (134)Cs/(137)Cs activity ratio, will become unavailable in the near future because of the short half-life of (134)Cs (2.06 years), the (135)Cs/(137)Cs isotopic ratio can be considered as a new tracer for source identification and long-term estimation of the mobility of released radiocesium in the environment. PMID:24779957

  10. Reactor Configuration Development for ARIES-CS

    SciTech Connect

    Ku LP, the ARIES-CS Team

    2005-09-27

    New compact, quasi-axially symmetric stellarator configurations have been developed as part of the ARIES-CS reactor studies. These new configurations have good plasma confinement and transport properties, including low losses of α particles and good integrity of flux surfaces at high β. We summarize the recent progress by showcasing two attractive classes of configurations — configurations with judiciously chosen rotational transforms to avoid undesirable effects of low order resonances on the flux surface integrity and configurations with very small aspect ratios (∼2.5) that have excellent quasi-axisymmetry and low field ripples.

  11. K2CsSb Cathode Development

    SciTech Connect

    Smedley,J.; Rao, T.; Wang, E.

    2008-10-01

    K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

  12. Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin

    PubMed Central

    Ozawa, Shin-ichiro; Kimura, Tomomi; Nozaki, Tomohiro; Harada, Hitomi; Shimada, Ichio; Osawa, Masanori

    2015-01-01

    Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins. PMID:26382304

  13. Results of computer network experiment via the Japanese communication satellite CS - Performance evaluation of communication protocols

    NASA Astrophysics Data System (ADS)

    Ito, A.; Kakinuma, Y.; Uchida, K.; Matsumoto, K.; Takahashi, H.

    1984-03-01

    Computer network experiments have been performed by using the Japanese communication satellite CS. The network is of a centralized (star) type, consisting of one center station and many user stations. The protocols are determined taking into consideration the long round trip delay of a satellite channel. This paper treats the communication protocol aspects of the experiments. Performances of the burst level and the link protocols (which correspond nearly to data link layer of OSI 7 layer model) are evaluated. System performances of throughput, delay, link level overhead are measured by using the statistically generated traffic.

  14. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  15. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. PMID:27228947

  16. Anion Permeation in Ca2+-Activated Cl− Channels

    PubMed Central

    Qu, Zhiqiang; Hartzell, H. Criss

    2000-01-01

    Ca2+-activated Cl channels (ClCaCs) are an important class of anion channels that are opened by increases in cytosolic [Ca2+]. Here, we examine the mechanisms of anion permeation through ClCaCs from Xenopus oocytes in excised inside-out and outside-out patches. ClCaCs exhibited moderate selectivity for Cl over Na: PNa/PCl = 0.1. The apparent affinity of ClCaCs for Cl was low: Kd = 73 mM. The channel had an estimated pore diameter >0.6 nm. The relative permeabilities measured under bi-ionic conditions by changes in Erev were as follows: C(CN)3 > SCN > N(CN)2 > ClO4 > I > N3 > Br > Cl > formate > HCO3 > acetate = F > gluconate. The conductance sequence was as follows: N3 > Br > Cl > N(CN)2 > I > SCN > COOH > ClO4 > acetate > HCO3 = C(CN)3 > gluconate. Permeant anions block in a voltage-dependent manner with the following affinities: C(CN)3 > SCN = ClO4 > N(CN)2 > I > N3 > Br > HCO3 > Cl > gluconate > formate > acetate. Although these data suggest that anionic selectivity is determined by ionic hydration energy, other factors contribute, because the energy barrier for permeation is exponentially related to anion hydration energy. ClCaCs exhibit weak anomalous mole fraction behavior, implying that the channel may be a multi-ion pore, but that ions interact weakly in the pore. The affinity of the channel for Ca2+ depended on the permeant anion at low [Ca2+] (100–500 nM). Apparently, occupancy of the pore by a permeant anion increased the affinity of the channel for Ca2+. The current was strongly dependent on pH. Increasing pH on the cytoplasmic side decreased the inward current, whereas increasing pH on the external side decreased the outward current. In both cases, the apparent pKa was voltage-dependent with apparent pKa at 0 mV = ∼9.2. The channel may be blocked by OH− ions, or protons may titrate a site in the pore necessary for ion permeation. These data demonstrate that the permeation properties of ClCaCs are different from those of CFTR or ClC-1, and provide

  17. Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes.

    PubMed

    Li, Xuebing; Iglesia, Enrique

    2008-02-01

    Pt clusters within [Fe]ZSM-5 channels provide active and stable sites for the selective catalytic dehydrogenation of n-alkanes to n-alkenes. Cs and Na cations titrate acid sites and inhibit skeletal isomerization and cracking side reactions. PMID:18209800

  18. On the Formation of Cometary Carbon Disulfide (CS2)

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie; Moore, marla; Ferrante, Robert F.

    2009-01-01

    The formation of cometary CS molecules from carbon disulfide, CS2 , was proposed about 20 years before the latter's detection in comet 122P/de Vico by Jackson et al. (2002). However, the origin of CS2 has received little attention from either experimentalists or theorists. As part of our on-going laboratory program to investigate cometary molecules we have examined chemical reactions that lead to CS2 in the solid state. Icy mixtures of known cometary molecules were proton irradiated near 10 K to doses of several eV per molecule. Mid-IR spectroscopy was used as an in situ probe to record both CS2 formation in the ices and the destruction of precursors. We find that the most likely route to cometary CS2 is through OCS by way of the S + CO reaction.

  19. Experimental Progress in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Johansen, Jacob; Parker, Colin; Chin, Cheng

    2015-05-01

    We report experimental progress in a mixture of 6Li and 133Cs. The mass imbalance of this system results in a particular challenge, as gravity has a significant influence on Cs position, but not on Li, separating the two gases at temperatures on the order of 200 nK. We overcome this difficulty using a two color optical dipole trap. We demonstrate mixing of these species below 100 nK in preparation for studies of quantum degenerate mixtures of this system. We further report on progress toward degeneracy and many-body physics measurements in this trap. Finally, we consider Efimov physics in this system, studying the effects of Cs-Cs interaction on the spectrum of LiCsCs trimers by a comparison of Feshbach resonances at 843 and 889 G. This work is supported by NSF and Chicago MRSEC.

  20. Efimov Physics in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  1. Thermionic work function of /Cs/ZnO

    NASA Technical Reports Server (NTRS)

    Sommer, A. H.; Briere, T. R.

    1976-01-01

    The collector electrode of a thermionic converter requires a material having a low thermionic work function and chemical stability in a Cs atmosphere in the 800-K range. This letter reports that ZnO with an adsorbed Cs film meets these requirements. The work function is approximately 1.3 eV. Various methods of preparing the ZnO film are described as well as an experiment in which Cs was replaced by K.

  2. Different motifs regulate trafficking of SorCS1 isoforms.

    PubMed

    Nielsen, Morten S; Keat, Sady J; Hamati, Jida W; Madsen, Peder; Gutzmann, Jakob J; Engelsberg, Arne; Pedersen, Karen M; Gustafsen, Camilla; Nykjaer, Anders; Gliemann, Jørgen; Hermans-Borgmeyer, Irm; Kuhl, Dietmar; Petersen, Claus M; Hermey, Guido

    2008-06-01

    The type I transmembrane protein SorCS1 is a member of the Vps10p-domain receptor family comprised of Sortilin, SorLA and SorCS1, -2 and -3. Current information indicates that Sortilin and SorLA mediate intracellular protein trafficking and sorting, but little is known about the cellular functions of the SorCS subgroup. SorCS1 binds platelet-derived growth factor-BB (PDGF-BB) and is expressed in isoforms differing only in their cytoplasmic domains. Here, we identify two novel isoforms of mouse SorCS1 designated m-SorCS1c and -d. In situ hybridization revealed a combinatorial expression pattern of the variants in brain and embryonic tissues. We demonstrate that among the mouse variants, only SorCS1c mediates internalization and that the highly conserved SorCS1c is internalized through a canonical tyrosine-based motif. In contrast, human SorCS1a, whose cytoplasmic domain is completely different from mouse SorCS1a, is internalized through a DXXLL motif. We report that the human SorCS1a cytoplasmic domain interacts with the alphaC/sigma2 subunits of the adaptor protein (AP)-2 complex, and internalization of human SorCS1a and -c is mediated by AP-2. Our results suggest that the endocytic isoforms target internalized cargo to lysosomes but are not engaged in Golgi-endosomal transport to a significant degree. PMID:18315530

  3. The Mechanism Responsible for Extraordinary Cs-ion Selectivity in Crystalline Silicotitanate

    SciTech Connect

    Celestian,A.; Kubicki, J.; Hanson, J.; Clearfield, A.; Parise, J.

    2008-01-01

    Combining information from time-resolved X-ray and neutron scattering with theoretical calculations has revealed the elegant mechanism whereby hydrogen crystalline silicotitanate (H-CST; H2Ti2SiO7{center_dot}1.5H2O) achieves its remarkable ion-exchange selectivity for cesium. Rather than a simple ion-for-ion displacement reaction into favorable sites, which has been suggested by static structural studies of ion-exchanged variants of CST, Cs+ exchange proceeds via a two-step process mediated by conformational changes in the framework. Similar to the case of ion channels in proteins, occupancy of the most favorable site does not occur until the first lever, cooperative repulsive interactions between water and the initial Cs-exchange site, repels a hydrogen lever on the silicotitanate framework. Here we show that these interactions induce a subtle conformational rearrangement in CST that unlocks the preferred Cs site and increases the overall capacity and selectivity for ion exchange.

  4. Coulomb explosion of CS2 molecule under an intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Xiao, Wang; Jian, Zhang; Shi-An, Zhang; Zhen-Rong, Sun

    2016-05-01

    We experimentally demonstrate the Coulomb explosion process of CS2 molecule under a near-infrared (800 nm) intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S+, S2+, CS+, and CS2+ by breaking one C–S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions decreases with the increase of the charge number k. These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area. Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500). We acknowledge the support of the NYU-ECNU Institute of Physics at NYU Shanghai, China.

  5. Yield, variance and spatial distribution of electron–hole pairs in CsI

    SciTech Connect

    Gao, Fei; Xie, YuLong; Kerisit, Sebastien N.; Campbell, Luke W.; Weber, William J.

    2011-10-01

    A Monte Carlo (MC) method previously developed has been applied to simulate the interaction of photons, with energies ranging from 50 eV to ~ 1 MeV, with CsI and the subsequent electron cascades. The MC model has been employed to compute nano-scale spatial distributions of electron-hole pairs and important intrinsic properties, including W, the mean energy per electron-hole pair, and the Fano factor, F. W exhibits discontinuities at the shell edges that follow the photoionization cross sections and decreases with increasing photon energy (from ~19 to 15 eV), with an asymptotic value of 15.2 eV at high energy. This decrease may contribute the initial rise in relative light yield with incident energy observed experimentally for CsI, thus suggesting that nonlinearity may be associated with intrinsic properties of the material at low energies. F is calculated to increase with increasing energy and has an asymptotic value of 0.28. A significant number of electron-hole pairs are produced through the different ionization channels of core shells and corresponding relaxation processes, which may explain why F is larger for CsI than for Si or Ge. Finally, the calculated spatial distributions show that the electron-hole pairs are primarily distributed along fast electron tracks. These spatial distributions constitute important input for large-scale simulations of electron-hole pair transport.

  6. Fractionation of (137)Cs and Pu in natural peatland.

    PubMed

    Mihalík, Ján; Bartusková, Miluše; Hölgye, Zoltán; Ježková, Tereza; Henych, Ondřej

    2014-08-01

    High Cs-137 concentrations in plants growing on peatland inspired us to investigate the quantity of its bioavailable fraction in natural peat. Our investigation aims to: a) estimate the quantity of bioavailable Cs-137 and Pu present in peat, b) verify the similarity of Cs-137 and K-40 behaviours, and c) perform a quantification of Cs-137 and Pu transfer from peat to plants. We analysed the vertical distribution of Cs-137 and Pu isotopes in the peat and their concentrations in plants growing on these places. Bioavailability of radionuclides was investigated by sequential extraction. Sequential analyses revealed that it was the upper layer which contained the majority of Cs-137 in an available form while deeper layers retained Cs-137 in immobile fractions. We can conclude that 18% of all Cs-137 in the peat is still bioavailable. Despite of the low quantity of bioavailable fraction of Cs-137 its transfer factor reached extremely high values. In the case of Pu, 64% of its total amount was associated with fulvic/humic acids which resulted in the high transfer factor from peat to plants. 27 years after the Chernobyl nuclear accident, the significant part of radionuclides deposited in peatland is still bioavailable. PMID:24631917

  7. Positron states on the Cs/Cu(100) surface

    SciTech Connect

    Koeymen, A.R.; Lee, K.H.; Mehl, D.; Weiss, A. ); Jensen, K.O. )

    1991-02-01

    The attenuation of the CuM{sub 23}VV Auger peak with Cs coverage on Cu(100) is measured using both positron-annihilation-induced Auger electron emission (PAES) and conventional (electron induced) Auger electron spectroscopy (EAES). The Cs coverage varies from 0 to 1 physical monolayer (ML). The data indicates that below 0.5 ML in agreement with first order theoretical calculations the positrons are trapped at the Cu/Cs interface. At higher Cs coverages the thermal desorption of the positrons as positronium drops the PAES intensity to zero whereas the EAES signal changes linearly as expected.

  8. Electrical conductivity of Cs2CuCl4 crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-05-01

    The electrical conductivity of Cs2CuCl4 single crystals, synthesized by crystallization from aqueous solutions in the CsCl-CuCl2-H2O system, has been investigated. The temperature dependence of the electrical conductivity of crystals in a temperature range of 338-584 K exhibits no anomalies. The electrical transfer activation enthalpy is Δ H σ = 0.72 ± 0.05 eV and the conductivity is σ = 3 × 10-4 S/cm at 584 K. The most likely carriers in Cs2CuCl4 are Cs+ cations, which transfer electric charge according to the vacancy mechanism.

  9. Improved TV-CS Approaches for Inverse Scattering Problem

    PubMed Central

    Bevacqua, M. T.; Di Donato, L.

    2015-01-01

    Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method. PMID:26495420

  10. Microhydration of caesium compounds: Cs, CsOH, CsI and Cs₂I₂ complexes with one to three H₂O molecules of nuclear safety interest.

    PubMed

    Sudolská, Mária; Cantrel, Laurent; Cernušák, Ivan

    2014-04-01

    Structure and thermodynamic properties (standard enthalpies of formation and Gibbs free energies) of hydrated caesium species of nuclear safety interest, Cs, CsOH, CsI and its dimer Cs₂I₂, with one up to three water molecules, are calculated to assess their possible existence in severe accident occurring to a pressurized water reactor. The calculations were performed using the coupled cluster theory including single, double and non-iterative triple substitutions (CCSD(T)) in conjunction with the basis sets (ANO-RCC) developed for scalar relativistic calculations. The second-order spin-free Douglas-Kroll-Hess Hamiltonian was used to account for the scalar relativistic effects. Thermodynamic properties obtained by these correlated ab initio calculations (entropies and thermal capacities at constant pressure as a function of temperature) are used in nuclear accident simulations using ASTEC/SOPHAEROS software. Interaction energies, standard enthalpies and Gibbs free energies of successive water molecules addition determine the ordering of the complexes. CsOH forms the most hydrated stable complexes followed by CsI, Cs₂I₂, and Cs. CsOH still exists in steam atmosphere even at quite high temperature, up to around 1100 K. PMID:24715048

  11. Further studies on the distribution of 137Cs in British coastal waters—I. Irish Sea

    NASA Astrophysics Data System (ADS)

    Jefferies, D. F.; Steele, A. K.; Preston, A.

    1982-06-01

    The concentrations of 137Cs, discharged to the northeast Irish Sea from the British Nuclear Fuels Limited (BNFL) Windscale Works, Cumbria, have been measured in the Irish Sea and its approaches during 1970 to 1978. Seawater labelled by 137Cs has been used to study the variability of local and distant dispersion and to estimate residence times and volume transports. In the immediate vicinity of the outfall a release rate of 1 Ci d -1 produces a mean annual concentration of 4.2 pCi l -1 (2.6 to 6.3 pCi l -1) with an approximate 30-fold reduction to 0.15 pCi l -1 in the northern exit to the Irish Sea and at least a 300-fold reduction at the southern entrance. The release rate ranged from 60 to 400 Ci d -1 (annual average) during the study period. The main flow patterns are deduced and show a substantial change before and after 1976. Using estimated inventories of the radionuclide in various areas, the rate of input into the system, and a simple exponential model, the residence 'half time' of water east of a line south from Scotland through the Isle of Man to Anglesey is estimated to be 200 days. The estimate for the whole northern Irish Sea was 1 year between 1970 and 1976, with a sharp reduction thereafter. The change is confirmed by estimating the volume transport through the North Channel from data from the Stranraer-Larne, Fishguard-Rosslare, and Swansea-Cork ferries. The mean flow through the Irish Sea for the period October 1971 to May 1978 was 5 km 3 d -1 with mean flows of 3.4 km 3 d -1 prior to January 1976 and 7.9 km 3 d -1 thereafter to May 1978. Transit times from the discharge point to the North Channel have also been estimated from the change in concentration of the radionuclides 137Cs( t1/2 = 30.1 y) and 134Cs( t1/2 = 2.1 y) and from serial correlation of rates of discharge and concentrations of 137Cs at distance.

  12. Thermal ionization of Cs Rydberg states

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2009-01-01

    Rates Pnl of photoionization from Rydberg ns-, np-, nd-states of a valence electron in Cs, induced by black-body radiation, were calculated on the basis of the modified Fues model potential method. The numerical data were approximated with a three-term expression which reproduces in a simple analytical form the dependence of Pnl on the ambient temperature T and on the principal quantum number n. The comparison between approximate and exactly calculated values of the thermal ionization rate demonstrates the applicability of the proposed approximation for highly excited states with n from 20 to 100 in a wide temperature range of T from 100 to 10,000 K. We present coefficients of this approximation for the s-, p- and d-series of Rydberg states.

  13. CS-Studio Scan System Parallelization

    SciTech Connect

    Kasemir, Kay; Pearson, Matthew R

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  14. Epithelial Na(+) channels are regulated by flow.

    PubMed

    Satlin, L M; Sheng, S; Woda, C B; Kleyman, T R

    2001-06-01

    Na(+) absorption in the renal cortical collecting duct (CCD) is mediated by apical epithelial Na(+) channels (ENaCs). The CCD is subject to continuous variations in intraluminal flow rate that we speculate alters hydrostatic pressure, membrane stretch, and shear stress. Although ENaCs share limited sequence homology with putative mechanosensitive ion channels in Caenorhabditis elegans, controversy exists as to whether ENaCs are regulated by biomechanical forces. We examined the effect of varying the rate of fluid flow on whole cell Na(+) currents (I(Na)) in oocytes expressing mouse alpha,beta,gamma-ENaC (mENaC) and on net Na(+) absorption in microperfused rabbit CCDs. Oocytes injected with mENaC but not water responded to the initiation of superfusate flow (to 4-6 ml/min) with a reversible threefold stimulation of I(Na) without a change in reversal potential. The increase in I(Na) was variable among oocytes. CCDs responded to a threefold increase in rate of luminal flow with a twofold increase in the rate of net Na(+) absorption. An increase in luminal viscosity achieved by addition of 5% dextran to the luminal perfusate did not alter the rate of net Na(+) absorption, suggesting that shear stress does not influence Na(+) transport in the CCD. In sum, our data suggest that flow stimulation of ENaC activity and Na(+) absorption is mediated by an increase in hydrostatic pressure and/or membrane stretch. We propose that intraluminal flow rate may be an important regulator of channel activity in the CCD. PMID:11352841

  15. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107)

    SciTech Connect

    DE Kurath; DL Blanchard; JR Bontha

    2000-06-28

    The current BNFL Inc. flowsheet for the pretreatment of the Hanford high-level tank wastes includes the use of Superlig{reg_sign} materials for removing {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium-selective Superlig 632and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, Utah. This report describes the testing of the Superlig 644 ion exchange material in a small dual-column system. The bed volume of the lead column was 18.6 mL (L/D = 7), and the bed volume of the lag column was 15.9 mL (L/D = 6) during the loading phase. The sample processed was approximately 1.6 L of diluted waste ([Na{sup +}] = 4.84 M) from Tank 241-AN-107 (Envelope C). This sample had been previously treated for removal of Sr/transuranic (TRU) values and clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration. A summary of performance measures for both columns is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 20 for the lead column is much lower than the estimated 150 obtained by the Savannah River Technology Center during Phase 1A testing. Equilibrium data obtained with batch contacts using the AN-107 Cs IX feed predicts a Cs {lambda} of 183. A Cs {lambda} for the lag column could not be determined due to insufficient breakthrough, but it appeared to work well and removed nearly all of the cesium not removed by the lead column. The low value for the lead column indicates that it did not perform as expected. This may have been due to air or gas in the bed that caused fluid channeling or blinding of the resin. The maximum decontamination factor (DF) for {sup 137}Cs listed in Table S1 is based on {sup 137}Cs

  16. CsEuBr3: Crystal structure and its role in the photostimulation of CsBr :Eu2+

    NASA Astrophysics Data System (ADS)

    Hesse, S.; Zimmermann, J.; von Seggern, H.; Ehrenberg, H.; Fuess, H.; Fasel, C.; Riedel, R.

    2006-10-01

    CsBr :Eu2+ has recently been investigated as a photostimulable x-ray storage phosphor with great potential for application in high-resolution image plates. In a recent paper Hackenschmied et al. [J. Appl. Phys. 93, 5109 (2003)] suggested that segregations of CsEuBr3 or Cs4EuBr6 formed within CsBr :Eu2+ during annealing are responsible for an increase in the photostimulated luminescence (PSL) yield. In this work single crystals of CsEuBr3 were prepared by a one step synthesis and identified by x-ray diffraction (XRD) analysis as single phase perovskites. It was concluded that, after preparation, CsEuBr3 degrades in normal atmosphere into at least two phases, one of which is the orthorhombic structure of Cs2EuBr5•10H2O. The XRD powder diffraction pattern of this compound is very similar to that of the segregations observed within CsBr :Eu2+ and reported by Hackenschmied et al. However, the increased PSL yield in CsBr :Eu2+ after annealing cannot be due to the segregations, because the trivalent nature of the europium in the segregations renders them PSL inactive.

  17. Yield, variance and spatial distribution of electron-hole pairs in CsI

    SciTech Connect

    Gao, Fei; Xie, Y.; Kerisit, S.; Campbell, L. W.; Weber, William J

    2011-01-01

    A Monte Carlo method previously developed has been applied to simulate the interaction of photons with CsI over the energy range from 50 eV to ~ 1 MeV and the subsequent electron cascades, as well as various quantum mechanical processes. The MC model has been employed to investigate the creation and nano-scale spatial distribution of electron-hole pairs and to calculate important intrinsic properties, including the W value, which is the mean energy required to produce an electron-hole pair, and the Fano factor. At energies lower than 10 keV, W generally decreases with increasing photon energy from 19 to 15 eV, whereas it saturates to 15 eV for higher energies. However, W exhibits a sawtooth variation, and discontinuities at the shell edges that follow the photoionization cross sections. The Fano factor, F, generally increases with increasing energy, and has a value of 0.28 at energies higher than 10 keV. The decrease of W value up to 10 keV may account for the initial rise in relative light yield with incident energy, as observed in experiments in CsI, and this suggests that the nonlinearity at low energy range may be associated with intrinsic properties of materials. Also, the spatial distribution of e-h pairs shows that the e-h pairs are primarily distributed along fast electron tracks in CsI, but the density of electron-hole pairs is low. A significant number of electron-hole pairs are produced through the different ionization channels of core shells and corresponding relaxation processes, which may provide an explanation why the Fano factor in CsI is larger than that in Si or Ge. The spatial distribution and density of thermalized electron-hole pairs along the primary and secondary tracks are important for large scale simulations of electron-hole pair transport.

  18. Integration of biological ion channels onto optically addressable micro-fluidic electrode arrays for single molecule characterization.

    SciTech Connect

    Brozik, Susan Marie; Frink, Laura J. Douglas; Bachand, George David; Keller, David J.; Patrick, Elizabeth L.; Marshall, Jason A.; Ortiz, Theodore P.; Meyer, Lauren A.; Davis, Ryan W.; Brozik, James A.; Flemming, Jeb Hunter

    2004-12-01

    The challenge of modeling the organization and function of biological membranes on a solid support has received considerable attention in recent years, primarily driven by potential applications in biosensor design. Affinity-based biosensors show great promise for extremely sensitive detection of BW agents and toxins. Receptor molecules have been successfully incorporated into phospholipid bilayers supported on sensing platforms. However, a collective body of data detailing a mechanistic understanding of membrane processes involved in receptor-substrate interactions and the competition between localized perturbations and delocalized responses resulting in reorganization of transmembrane protein structure, has yet to be produced. This report describes a systematic procedure to develop detailed correlation between (recognition-induced) protein restructuring and function of a ligand gated ion channel by combining single molecule fluorescence spectroscopy and single channel current recordings. This document is divided into three sections: (1) reported are the thermodynamics and diffusion properties of gramicidin using single molecule fluorescence imaging and (2) preliminary work on the 5HT{sub 3} serotonin receptor. Thirdly, we describe the design and fabrication of a miniaturized platform using the concepts of these two technologies (spectroscopic and single channel electrochemical techniques) for single molecule analysis, with a longer term goal of using the physical and electronic changes caused by a specific molecular recognition event as a transduction pathway in affinity based biosensors for biotoxin detection.

  19. Occasion Setting Is Specific to the CS-US Association

    ERIC Educational Resources Information Center

    Bonardi, Charlotte

    2007-01-01

    In Experiment 1, rats were trained on a discrimination in which one occasion setter, A, signaled that one cue (conditioned stimulus, CS), x, would be followed by one outcome, p (unconditioned stimulus, US), and a second CS, y, by a different outcome, q (x [right arrow] p and y [right arrow] q); a second occasion setter, B signalled the reverse…

  20. Narrating Data Structures: The Role of Context in CS2

    ERIC Educational Resources Information Center

    Yarosh, Svetlana; Guzdial, Mark

    2008-01-01

    Learning computing with respect to the context of its use has been linked in previous reports to student motivation in introductory Computer Science (CS) courses. In this report, we consider the role of context in a second course. We present a case study of a CS2 data structures class that uses a media computation context. In this course, students…

  1. In Quest of Fame at the 4Cs

    ERIC Educational Resources Information Center

    Livatino, Mel

    2006-01-01

    Mel Livatino had stopped attending Conferences on College Composition and Communication (4Cs), but this year one came to his hometown, so he attended and now reports back. Where once the 4Cs had offered helpful insights into teaching kids how to write, today frivolity and radicalism reign. Professor Livatino's notes paint a very precise, largely…

  2. Do CS-US Pairings Actually Matter? A Within-Subject Comparison of Instructed Fear Conditioning with and without Actual CS-US Pairings

    PubMed Central

    Raes, An K.; De Houwer, Jan; De Schryver, Maarten; Brass, Marcel; Kalisch, Raffael

    2014-01-01

    Previous research showed that instructions about CS-US pairings can lead to fear of the CS even when the pairings are never presented. In the present study, we examined whether the experience of CS-US pairings adds to the effect of instructions by comparing instructed conditioning with and without actual CS-US pairings in a within-subject design. Thirty-two participants saw three fractals as CSs (CS+1, CS+2, CS−) and received electric shocks as USs. Before the start of a so-called training phase, participants were instructed that both CS+1 and CS+2 would be followed by the US, but only CS+1 was actually paired with the US. The absence of the US after CS+2 was explained in such a way that participants would not doubt the instructions about the CS+2-US relation. After the training phase, a test phase was carried out. In this phase, participants expected the US after both CS+s but none of the CS+s was actually paired with the US. During test, self-reported fear was initially higher for CS+1 than for CS+2, which indicates that the experience of actual CS-US pairings adds to instructions about these pairings. On the other hand, the CS+s elicited similar skin conductance responses and US expectancies. Theoretical and clinical implications are discussed. PMID:24465447

  3. Determination of 135Cs by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Charles, C. R. J.; Zhao, X.-L.; Kieser, W. E.; Cornett, R. J.; Litherland, A. E.

    2015-10-01

    The ratio of anthropogenic 135Cs and 137Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying 135Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10-3 and 1.7 × 10-7 respectively. This quantification of 135Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  4. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange.

    PubMed

    Hoffman, Jacob B; Schleper, A Lennart; Kamat, Prashant V

    2016-07-13

    All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics. PMID:27322132

  5. Second-order Poisson Nernst-Planck solver for ion channel transport.

    PubMed

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2011-06-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are

  6. Atomic-level simulation of current–voltage relationships in single-file ion channels

    PubMed Central

    Jogini, Vishwanath; Eastwood, Michael P.

    2013-01-01

    The difficulty in characterizing ion conduction through membrane channels at the level of individual permeation events has made it challenging to elucidate the mechanistic principles underpinning this fundamental physiological process. Using long, all-atom simulations enabled by special-purpose hardware, we studied K+ permeation across the KV1.2/2.1 voltage-gated potassium channel. At experimentally accessible voltages, which include the physiological range, the simulated permeation rate was substantially lower than the experimentally observed rate. The current–voltage relationship was also nonlinear but became linear at much higher voltages. We observed permeation consistent with a “knock-on” mechanism at all voltages. At high voltages, the permeation rate was in accordance with our previously reported KV1.2 pore-only simulations, after the simulated voltages from the previous study were recalculated using the correct method, new insight into which is provided here. Including the voltage-sensing domains in the simulated channel brought the linear current–voltage regime closer to the experimentally accessible voltages. The simulated permeation rate, however, still underestimated the experimental rate, because formation of the knock-on intermediate occurred too infrequently. Reducing the interaction strength between the ion and the selectivity filter did not increase conductance. In complementary simulations of gramicidin A, similar changes in interaction strength did increase the observed permeation rate. Permeation nevertheless remained substantially below the experimental value, largely because of infrequent ion recruitment into the pore lumen. Despite the need to apply large voltages to simulate the permeation process, the apparent voltage insensitivity of the permeation mechanism suggests that the direct simulation of permeation at the single-ion level can provide fundamental physiological insight into ion channel function. Notably, our simulations

  7. Second-order Poisson Nernst-Planck solver for ion channel transport

    PubMed Central

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are

  8. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis.

    PubMed

    Wang, Yu; Jiang, Chang-Jun; Li, Ye-Yun; Wei, Chao-Ling; Deng, Wei-Wei

    2012-01-01

    C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1, respectively. The deduced protein CsICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE1-like proteins. CsCBF1 contains all conserved domains of CBFs in other plant species and can specifically bind to the C-repeat/dehydration-responsive element (CRT/DRE) as confirmed by electrophoretic mobility shift assay. The transcription of CsICE1 had no apparent alteration after chilling treatment (4°C). CsCBF1 expression was not detected in normal temperature (20°C) but was induced immediately and significantly by low temperature (4°C). Our results suggest that ICE1-CBF cold-response pathway is conserved in tea plants. CsICE1 and CsCBF1, two components of this pathway, play roles in cold responses in tea plants. PMID:21850593

  9. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  10. Volunteer Challenge With Enterotoxigenic Escherichia coli That Express Intestinal Colonization Factor Fimbriae CS17 and CS19

    PubMed Central

    McKenzie, Robin; Porter, Chad K.; Cantrell, Joyce A.; DeNearing, Barbara; O’Dowd, Aisling; Grahek, Shannon L.; Sincock, Stephanie A.; Woods, Colleen; Sebeny, Peter; Sack, David A.; Tribble, David R.; Bourgeois, A. Louis

    2011-01-01

    Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 109 organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 109 organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials. PMID:21628659

  11. Volunteer challenge with enterotoxigenic Escherichia coli that express intestinal colonization factor fimbriae CS17 and CS19.

    PubMed

    McKenzie, Robin; Porter, Chad K; Cantrell, Joyce A; Denearing, Barbara; O'Dowd, Aisling; Grahek, Shannon L; Sincock, Stephanie A; Woods, Colleen; Sebeny, Peter; Sack, David A; Tribble, David R; Bourgeois, A Louis; Savarino, Stephen J

    2011-07-01

    Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 10(9) organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 10(9) organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials. PMID:21628659

  12. 137Cs in the western South Pacific Ocean.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang

    2007-09-01

    The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by gamma spectrometry using a low background Ge detector. The 137Cs activities ranged from 1.4 to 2.3 Bq m(-3) over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137Cs inventory over the depth interval 100-1000 m increased from 400+/-30 Bq m(-2) to 560+/-30 Bq m(-2) during the period from 1973 to 1992. The total 137Cs inventories in the western South Pacific Ocean ranged from 850+/-70 Bq m(-2) in the Coral Sea Basin to 1270+/-90 Bq m(-2) in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9-4.5 times (2.9+/-0.7 on average) and 1.7-4.3 times (3.1+/-0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137Cs deposition density in 10 degrees latitude by 10 degrees longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from

  13. VizieR Online Data Catalog: TW Hya CO (2-1), CN (2-1) and CS (5-4) data cubes (Teague+, 2016)

    NASA Astrophysics Data System (ADS)

    Teague, R.; Guilloteau, S.; Semenov, D.; Henning, T.; Dutrey, A.; Pietu, V.; Birnstiel, T.; Chapillon, E.; Hollenbach, D.; Gorti, U.

    2016-07-01

    The observations were performed using ALMA on May 13, 2015 under excellent weather conditions (Cycle 2, 2013.1.00387.S). The receivers were tuned to cover CO J=(2-1), CS J=(5-4) and all strong hyperfine components of CN N=(2-1) simultaneously. The correlator was configured to deliver very high spectral resolution, with a channel spacing of 15kHz (and an effective velocity resolution of 40m/s) for the CO J=(2-1) and CS J=(5-4) lines, and 30kHz (80m/s) for the CN N=(2-1) transition. (2 data files).

  14. A Kv3-like persistent, outwardly rectifying, Cs+-permeable, K+ current in rat subthalamic nucleus neurones

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    2000-01-01

    A persistent outward K+ current (IPO), activated by depolarization from resting potential, has been identified and characterized in rat subthalamic nucleus (SThN) neurones using whole-cell voltage-clamp recording in brain slices.IPO both rapidly activated (τ= 8 ms at +5 mV) and deactivated (τ= 2 ms at −68 mV), while showing little inactivation. Tail current reversal potentials varied with extracellular K+ concentration in a Nernstian manner.Intracellular Cs+ did not alter either IPO amplitude or the voltage dependence of activation, but blocked transient (A-like) outward currents activated by depolarization. When extracellular K+ was replaced with Cs+, IPO tail current reversal potentials were dependent upon the extracellular Cs+ concentration, indicating an ability to conduct Cs+, as well as K+.IPO was blocked by Ba2+ (1 mm), 4-aminopyridine (1 mm) and tetraethylammonium (TEA; 20 mm), with an IC50 for TEA of 0.39 mm.The IPO conductance appeared maximal (38 nS) at around +27 mV, half-maximal at −13 mV, with the threshold for activation at around −38 mV.TEA (1 mm) blocked the action potential after-hyperpolarization and permitted accommodation of action potential firing at frequencies greater than around 200 Hz.We conclude that IPO, which shares many characteristics of currents attributable to Kv3.1 K+ channels, enables high-frequency spike trains in SThN neurones. PMID:10990536

  15. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  16. On the Formation of Cometary Carbon Disulfide (CS2)

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie; Moore, Maria; Ferrante, Robert F.

    2010-01-01

    The formation of cometary CS from CS2 was proposed about 20 years before the latter's detection in comet 122P/de Vico by Jackson et al. (2002). However, the origin of CS2 has received little attention from either experimentalists or theorists. As part of our on-going laboratory program to investigate cometary molecules we have examined chemical reactions that lead to CS2 in the solid state. Icy mixtures of known cometary molecules were proton irradiated near 10K to doses of several eV per molecule. Mid-IR spectroscopy was used as an in situ probe to record both CS2 formation in the ices and the destruction of precursors. We find that the most likely route to cometary CS2 is through OCS by way of the S + CO reaction. We also observe the monocyclic molecule OCS2 as an intermediate on the path from OCS to CS2. This work was funded by NASA's Planetary Geology and Geophysics program.

  17. Radioactive Cs capture in the early solar system

    PubMed Central

    Hidaka, Hiroshi; Yoneda, Shigekazu

    2013-01-01

    Barium isotopic compositions of primitive materials in the solar system are generally affected by s- and r-process nucleosynthetic components that hide the contribution of the isotopic excess of 135Ba formed by decay of radioactive 135Cs. However, the Ba isotopic composition of the chemical separates from chondrules in the Sayama CM2 chondrite shows an excess of 135Ba isotopic abundance up to (0.33 ± 0.06)%, which is independent of the isotopic components from s- and r-process nucleosyntheses. The isotopic excesses of 135Ba correlate with the elemental abundance of Ba relative to Cs, providing chemical and isotopic evidence for the existence of the presently extinct radionuclide 135Cs (t1/2 = 2.3 million years) in the early solar system. The estimated abundance of 135Cs/133Cs = (6.8 ± 1.9) × 10−4 is more than double that expected from the uniform production model of the short-lived radioisotopes, suggesting remobilization of Cs including 135Cs in the chondrules of the meteorite parent body. PMID:23435551

  18. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.

    PubMed

    Aggarwal, Vaneet; Li, Hui; Boyd, Stephen A; Teppen, Brian J

    2006-02-01

    Trichloroethene (TCE) is one of the most common pollutants in groundwater, and Cs+ can be a cocontaminant at nuclear facilities. Smectite clays have large surface areas, are common in soils, have high affinities for some organic contaminants, and hence can potentially influence the transport of organic pollutants entering soils and sediments. The exchangeable cations present near smectite clay surfaces can radically influence the sorption of organic pollutants by soil clays. This research was undertaken to determine the effect of Cs+, and other common interlayer cations, such as K+ and Ca2+, on the sorption of TCE by a reference smectite clay saponite. Cs-saturated clay sorbed the most TCE, up to 3500 mg/kg, while Ca-saturated smectite sorbed the least. We hypothesize that the stronger sorption of TCE by the Cs-smectite can be attributed to the lower hydration energy and hence smaller hydrated radius of Cs+, which expands the lateral clay surface domains available for sorption. Also, Cs-smectite interlayers are only one or two water layers thick, which may drive capillary condensation of TCE. Our results implicate enhanced retention of TCE in aquifer materials containing smectites accompanied by Cs+ cocontamination. PMID:16509334

  19. DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor

    PubMed Central

    Geffeney, Shana L.; Cueva, Juan G.; Glauser, Dominique A.; Doll, Joseph C.; Lee, Tim Hau-Chen; Montoya, Misty; Karania, Snetu; Garakani, Arman M.; Pruitt, Beth L.; Goodman, Miriam B.

    2011-01-01

    Summary Many nociceptors detect mechanical cues, but the ion channels responsible for mechanotransduction in these sensory neurons remain obscure. Using in vivo recordings and genetic dissection, we identified the DEG/ENaC protein, DEG-1, as the major mechanotransduction channel in ASH, a polymodal nociceptor in Caenorhabditis elegans. But, DEG-1 is not the only mechanotransduction channel in ASH: loss of deg-1 revealed a minor current whose properties differ from those expected of DEG/ENaC channels. This current was independent of two TRPV channels expressed in ASH. Although loss of these TRPV channels inhibits behavioral responses to noxious stimuli, we found that both mechanoreceptor currents and potentials were essentially wild-type in TRPV mutants. We propose that ASH nociceptors rely on two genetically-distinct mechanotransduction channels and that TRPV channels contribute to encoding and transmitting information. Because mammalian and insect nociceptors also co-express DEG/ENaCs and TRPVs, the cellular functions elaborated here for these ion channels may be conserved. PMID:21903078

  20. Influence of water management and fertilizer application on (137)Cs and (133)Cs uptake in paddy rice fields.

    PubMed

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-06-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on (137)Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ((133)Cs) in the plants was also determined as an analogue for predicting (137)Cs behavior after long-term aging of soil (137)Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher (137)Cs and (133)Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on (137)Cs and (133)Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between (137)Cs and (133)Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period enhances

  1. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  2. The KTeV Pure CsI Calorimeter

    SciTech Connect

    Ray, R.E.

    1994-12-01

    KTeV is currently building a state-of-the-art pure CsI electromagnetic calorimeter with a sophisticated digital readout. The CsI array is expected to have better than 1% resolution over a dynamic range of 2--64 GeV. The design of the CsI array is driven by the difficult physics goal of attempting to measure the CP violation parameter Re({epsilon}{prime}/{epsilon}) to 1 part in 10000 in a high-rate neutral beam environment. The physics requirements and their impact on the final design will be discussed.

  3. Altimeter Products for the Sentinel-6/Jason-CS Mission

    NASA Astrophysics Data System (ADS)

    Scharroo, Remko; Bonekamp, Hans; Ponsard, Christelle; Nogueira Loddo, Carolina

    2015-12-01

    The Sentinel-6 mission will be developed and implemented through a partnership between the EU, ESA, EUMETSAT and NOAA . Its aim is to secure the continuity until 2030+ of critical high precision observations of ocean surface topography beyond Jason-3. The European contribution will be implemented through the combination of the ESA Copernicus Space Component, the EUMETSAT Jason-CS optional programme, and the EU Copernicus programme, for the joint benefits of the meteorological and Copernicus user communities in Europe. NASA and CNES will be supporting partners. The mission will start with the launch of Jason-CS A in 2020, followed by Jason-CS B in 2025.

  4. The transfer of {sup 137}Cs from barley to beer

    SciTech Connect

    Proehl, G.; Mueller, H.; Voigt, G.

    1997-01-01

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  5. Physics Design for ARIES-CS

    SciTech Connect

    L.P. Ku, P.R. Garabedian, J. Lyon, A. Turnbull, A. Grossman, T.K. Mau, M. Zarnstorff, and the ARIES Team

    2007-10-10

    Novel stellarator configurations have been developed for ARIES-CS. These configurations are optimized to provide good plasma confinement and flux surface integrity at high beta. Modular coils have been designed for them in which the space needed for the breeding blanket and radiation shielding was specifically targeted such that reactors generating GW electrical powers would require only moderate major radii (<10 m). These configurations are quasi-axially symmetric in the magnetic field topology and have small number of field periods (≤3) and low aspect ratios (≤6). The baseline design chosen for detailed systems and power plant studies has 3 field periods, aspect ratio 4.5 and major radius 7.5 m operating at β~6.5% to yield 1 GW electric power. The shaping of the plasma accounts for ≥75% of the rotational transform. The effective helical ripples are very small (< 0.6% everywhere) and the energy loss of alpha particles is calculated to be ≤5% when operating in high density regimes. An interesting feature in this configuration is that instead of minimizing all residues in the magnetic spectrum, we preferentially retained a small amount of the non-axisymmetric mirror field. The presence of this mirror and its associated helical field alters the ripple distribution, resulting in the reduced ripple-trapped loss of alpha particles despite the long connection length in a tokamak-like field structure. Additionally, we discuss two other potentially attractive classes of configurations, both quasi-axisymmetric: one with only two field periods, very low aspect ratios (~2.5), and less complex coils, and the other with the plasma shaping designed to produce low shear rotational transform so as to assure the robustness and integrity of flux surfaces when operating at high β.

  6. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    SciTech Connect

    Orlova, Maria; Khainakov, Sergey; Michailov, Dmitriy; Perfler, Lukas; Langes, Christoph; Kahlenberg, Volker; Orlova, Albina

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  7. The Earliest Ion Channels

    NASA Astrophysics Data System (ADS)

    Pohorille, A.; Wilson, M. A.; Wei, C.

    2009-12-01

    Supplying protocells with ions required assistance from channels spanning their membrane walls. The earliest channels were most likely short proteins that formed transmembrane helical bundles surrounding a water-filled pore. These simple aggregates were capable of transporting ions with efficiencies comparable to those of complex, contemporary ion channels. Channels with wide pores exhibited little ion selectivity but also imposed only modest constraints on amino acid sequences of channel-forming proteins. Channels with small pores could have been selective but also might have required a more precisely defined sequence of amino acids. In contrast to modern channels, their protocellular ancestors had only limited capabilities to regulate ion flux. It is postulated that subsequent evolution of ion channels progressed primarily to acquire precise regulation, and not high efficiency or selectivity. It is further proposed that channels and the surrounding membranes co-evolved.

  8. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  9. Ab initio intermolecular potential energy surfaces of He-CS2, Ne-CS2 and Ar-CS2 complexes

    NASA Astrophysics Data System (ADS)

    Farrokhpour, H.; Tozihi, M.

    2013-03-01

    The potential energy surfaces of the He-CS2, Ne-CS2 and Ar-CS2 van der Waals complexes were calculated for the first time at the CCSD(T) level of theory using the aug-cc-pVDZ basis set augmented with a set of midbond functions (3s3p2d1f1g). It was found that the calculated interaction potential, using the applied basis set, readily converges to the complete basis set limit. For a broad range of intermolecular separations and configurations, the interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error (BSSE). In addition, symmetry-adapted perturbation theory (SAPT) calculations were performed with the same basis set in order to determine the character of the interaction energy of the most stable configuration of each complex at different intermolecular separations in order to make a comparison with the CCSD(T) results. The CCSD(T) calculated potential energy surface of each complex was fitted to an analytic expression to obtain the values of the isotropic dipole-dipole ( ? ) and dipole-quadruple ( ? ) dispersion coefficients of each complex. Finally, the interaction second virial coefficients (B12) were obtained using the calculated potential energy surface and used together with the experimental second virial coefficients of pure gases (CS2, Ar, Ne and He) to obtain the second virial coefficient of mixtures of CS2 with rare gas at different temperatures and mole fractions.

  10. Status and prospect of the Swiss continuous Cs fountain FoCS-2

    NASA Astrophysics Data System (ADS)

    Jallageas, A.; Devenoges, L.; Petersen, M.; Morel, J.; Bernier, L.-G.; Thomann, P.; Südmeyer, T.

    2016-06-01

    The continuous cesium fountain clock FoCS-2 at METAS presents many unique characteristics and challenges in comparison with standard pulsed fountain clocks. For several years FoCS-2 was limited by an unexplained frequency sensitivity on the velocity of the atoms, in the range of 140 • 10-15. Recent experiments allowed us to identify the origin of this problem as undesirable microwave surface currents circulating on the shield of the coaxial cables that feed the microwave cavity. A strong reduction of this effect was obtained by adding microwave absorbing coatings on the coaxial cables and absorbers inside of the vacuum chamber. This breakthrough opens the door to a true metrological validation of the fountain. A series of simulation tools have already been developed and proved their efficiency in the evaluation of some of the uncertainties of the continuous fountain. With these recent improvements, we are confident in the future demonstration of an uncertainty budget at the 10-15 level and below.

  11. Computer Simulation of Electron Thermalization in CsI and CsI(Tl)

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Cannon, Bret D.; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2011-09-15

    A Monte Carlo (MC) model was developed and implemented to simulate the thermalization of electrons in inorganic scintillator materials. The model incorporates electron scattering with both longitudinal optical and acoustic phonons. In this paper, the MC model was applied to simulate electron thermalization in CsI, both pure and doped with a range of thallium concentrations. The inclusion of internal electric fields was shown to increase the fraction of recombined electron-hole pairs and to broaden the thermalization distance and thermalization time distributions. The MC simulations indicate that electron thermalization, following {gamma}-ray excitation, takes place within approximately 10 ps in CsI and that electrons can travel distances up to several hundreds of nanometers. Electron thermalization was studied for a range of incident {gamma}-ray energies using electron-hole pair spatial distributions generated by the MC code NWEGRIM (NorthWest Electron and Gamma Ray Interaction in Matter). These simulations revealed that the partition of thermalized electrons between different species (e.g., recombined with self-trapped holes or trapped at thallium sites) vary with the incident energy. Implications for the phenomenon of nonlinearity in scintillator light yield are discussed.

  12. Triplet-singlet conversion in ultracold Cs{sub 2} and production of ground-state molecules

    SciTech Connect

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier; Pichler, Marin

    2011-02-15

    We propose a process to convert ultracold metastable Cs{sub 2} molecules in their lowest triplet state into (singlet) ground-state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled A {sup 1{Sigma}}{sub u}{sup +}-b {sup 3{Pi}}{sub u} states. Using spectroscopic data and accurate quantum chemistry calculations for Cs{sub 2} potential curves and transition dipole moments, we show that this process competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  13. Measurement of |V{sub cs}| with DELPHI experiment

    SciTech Connect

    Golob, Bostjan

    1998-10-19

    Pair production of charged weak bosons W{sup {+-}} at LEP2 collider can be exploited to measure the absolute value of the V{sub cs} element of Cabbibo-Kobayashi-Maskawa matrix. The value can be most accurately extracted from the measured hadronic branching ratio of W{sup {+-}} bosons. An independent method to obtain the |V{sub cs}| value consists of tagging the flavour of primary quarks in jets, produced in W{sup {+-}} decays. Using both methods on the data collected with DELPHI experiment during 1996 and 1997 runs, we obtained |V{sub cs}|=0.99{+-}0.06(stat.){+-}0.04(syst.). Combined result of |V{sub cs}| measurements with four LEP experiments enables a test of CKM matrix unitarity.

  14. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  15. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  16. /sup 137/Cs radioactive dating of Lake Ontario sediment cores

    SciTech Connect

    Ward, T.E.; Breeden, J.; Komisarcik, K.; Porter, R.; Czuczwa, J.; Kaminski, R.; McVeety, B.D.

    1987-12-01

    The distribution of /sup 137/Cs in sediment cores from Lake Ontario provides estimates of the sediment accumulation rates. Geochronology with /sup 210/Pb dating and distribution of Ambrosia (ragweed) pollen compare well with /sup 137/Cs dating. These methods can determine with precision, changes in sedimentation occurring over the past 100 years or so. Typical sedimentation rates of 0.18-0.36 cm/yr were measured. 16 refs., 3 figs., 2 tabs.

  17. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  18. Intracellular potassium stabilizes human ether-à-go-go-related gene channels for export from endoplasmic reticulum.

    PubMed

    Wang, Lu; Dennis, Adrienne T; Trieu, Phan; Charron, Francois; Ethier, Natalie; Hebert, Terence E; Wan, Xiaoping; Ficker, Eckhard

    2009-04-01

    Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na(+)/K(+) pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K(+)-either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media-is sufficient to disrupt hERG trafficking. In K(+)-depleted cells, hERG trafficking can be restored by permeating K(+) or Rb(+) ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K(+)](i)-mediated conformational defect directly in the hERG channel protein. PMID:19139152

  19. Intracellular Potassium Stabilizes Human Ether-à-go-go-Related Gene Channels for Export from Endoplasmic ReticulumS⃞

    PubMed Central

    Wang, Lu; Dennis, Adrienne T.; Trieu, Phan; Charron, Francois; Ethier, Natalie; Hebert, Terence E.; Wan, Xiaoping; Ficker, Eckhard

    2009-01-01

    Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na+/K+ pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K+—either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media—is sufficient to disrupt hERG trafficking. In K+-depleted cells, hERG trafficking can be restored by permeating K+ or Rb+ ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K+]i-mediated conformational defect directly in the hERG channel protein. PMID:19139152

  20. Channel Properties of Nax Expressed in Neurons

    PubMed Central

    Matsumoto, Masahito; Hiyama, Takeshi Y.; Kuboyama, Kazuya; Suzuki, Ryoko; Fujikawa, Akihiro; Noda, Masaharu

    2015-01-01

    Nax is a sodium-concentration ([Na+])-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o) in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95) through its PSD95/Disc-large/ZO-1 (PDZ)-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells. PMID:25961826

  1. Syntheses, structures, and optical properties of the indium/germanium selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4}

    SciTech Connect

    Ward, Matthew D.; Pozzi, Eric A.; Van Duyne, Richard P.; Ibers, James A.

    2014-04-01

    The three solid-state indium/germanium selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4} have been synthesized at 1173 K. The structure of Cs{sub 4}In{sub 8}GeSe{sub 16} is a three-dimensional framework whereas those of CsInSe{sub 2} and CsInGeSe{sub 4} comprise sheets separated by Cs cations. Both Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} display In/Ge disorder. From optical absorption measurements these compounds have band gaps of 2.20 and 2.32 eV, respectively. All three compounds are charge balanced. - Graphical abstract: Structure of Cs{sub 4}In{sub 8}GeSe{sub 16}. - Highlights: • The solid-state In/Ge selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4} have been synthesized. • Both Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} display In/Ge disorder. • Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} have band gaps of 2.20 eV and 2.32 eV, respectively.

  2. Cs-137 and Sr-90 level in diary products

    NASA Astrophysics Data System (ADS)

    Petukhov, V. L.; Gorb, T. S.; Petukhov, I. V.; Dukhanov, Yu. A.; Sevryuk, I. Z.; Patrashkov, S. A.; Korotkevich, O. S.

    2003-05-01

    About 70% of radioactive substances fell on the territory of the Byelorussia Republic after the Chernobyl Atom Power Station Disaster. Cs-137 and Sr-90 accumulation dynamics was studied in milk of the cows from the highest polluted Braginsky area. 408 milk samples of Black and White cows were investigated. In 1995 average Cs-137 and Sr-90 levels were 61.00 and 3.73 Bk/dm^3 respectively. Cs-137 and Sr-90 levels exceeded Byelorussia Republic upperlimits RDU 96 in 10 and 50% of milk samples respectively. After 5 years (by 2000) Cs-137 and Sr-90 levels had become almost 3 and 2 times less (21.70 Bk/dm^3 and 1.72 Bk/dm^3 respectively). Cs-137 and Sr-90 levels exceeded RDU 96 in 1.5 and 5.5% of milk samples respectively. In the same periods Cs-137 and Sr-90 levels were 7 and 2 times higher than the similar indexes in the relatively clean Novosibirsk area. Thus, radioactive element levels in milk of Black and White cows of the Byelorussia Republic decreased significantly for the past years.

  3. The Transfer of Dissolved Cs-137 from Soil to Plants

    SciTech Connect

    Prorok, V.V.; Melnichenko, L.Yu.; Mason, C.F.V.; Ageyev, V.A.; Ostashko, V.V.

    2006-07-01

    Rapidly maturing plants were grown simultaneously at the same experimental sites under natural conditions at the Chernobyl Exclusion Zone. Roots of the plants were side by side in the soil. During two seasons we selected samples of the plants and of the soils several times every season. Content of Cs-137 in the plant and in the soil solution extracted from the samples of soils was measured. Results of measurements of the samples show that, for the experimental site, Cs-137 content in the plant varies with date of the sample selection. The plant:soil solution Cs-137 concentration ratio depends strongly on the date of selection and also on the type of soil. After analysis of the data we conclude that Cs-137 plant uptake is approximately proportional to the content of dissolved Cs-137 in the soil per unit of volume, and the plant:soil solution Cs-137 concentration ratio for the soil is approximately proportional to the soil moisture. (authors)

  4. Calcium channel blocker overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  5. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  6. Optimal channels for channelized quadratic estimators.

    PubMed

    Kupinski, Meredith K; Clarkson, Eric

    2016-06-01

    We present a new method for computing optimized channels for estimation tasks that is feasible for high-dimensional image data. Maximum-likelihood (ML) parameter estimates are challenging to compute from high-dimensional likelihoods. The dimensionality reduction from M measurements to L channels is a critical advantage of channelized quadratic estimators (CQEs), since estimating likelihood moments from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. The channelized likelihood is then used to form ML estimates of the parameter(s). In this work we choose an imaging example in which the second-order statistics of the image data depend upon the parameter of interest: the correlation length. Correlation lengths are used to approximate background textures in many imaging applications, and in these cases an estimate of the correlation length is useful for pre-whitening. In a simulation study we compare the estimation performance, as measured by the root-mean-squared error (RMSE), of correlation length estimates from CQE and power spectral density (PSD) distribution fitting. To abide by the assumptions of the PSD method we simulate an ergodic, isotropic, stationary, and zero-mean random process. These assumptions are not part of the CQE formalism. The CQE method assumes a Gaussian channelized likelihood that can be a valid for non-Gaussian image data, since the channel outputs are formed from weighted sums of the image elements. We have shown that, for three or more channels, the RMSE of CQE estimates of correlation length is lower than conventional PSD estimates. We also show that computing CQE by using a standard nonlinear optimization method produces channels that yield RMSE within 2% of the analytic optimum. CQE estimates of anisotropic correlation length estimation are reported to demonstrate this technique on a two-parameter estimation problem. PMID:27409452

  7. Channel catfish pond fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most successful aquaculture enterprise in the U.S. is channel catfish Ictalurus punctatus production. In the U.S., 257 million kg of channel catfish were sold in 2007 at a value of $455 million. Large-scale commercial channel catfish culture began in the late 1950s and expanded rapidly from 1978...

  8. Purification and Characterization of a Novel Class IIa Bacteriocin, Piscicocin CS526, from Surimi-Associated Carnobacterium piscicola CS526

    PubMed Central

    Yamazaki, Koji; Suzuki, Minako; Kawai, Yuji; Inoue, Norio; Montville, Thomas J.

    2005-01-01

    The bacteriocin piscicocin CS526 was inactivated by proteolytic enzymes, was stable at 100°C for 30 min, had a pH range of 2 to 8, and was active against Enterococcus, Listeria, Pediococcus, and Leuconostoc. The N-terminal sequence was YGNGL, not the YGNGV consensus motif common in class IIa bacteriocins (alternate residues underlined). The molecular mass of piscicocin CS526, which had a bactericidal mode of action, was ∼4,430 Da. PMID:15640235

  9. Influence of oxygen doping and hydration on photostimulated luminescence of CsBr and CsBr:Eu2+

    NASA Astrophysics Data System (ADS)

    Appleby, G. A.; Kroeber, P.; Zimmermann, J.; Seggern, H. von

    2011-04-01

    Powdered samples of CsBr:O2- and CsBr:Eu2+,O2- with oxygen concentrations ranging from 0.01 to 5.00 mol% have been synthesized and are shown to have photostimulated luminescence (PSL) properties which are strongly influenced by the oxygen concentration. In europium free CsBr:O2-, it was found that weak PSL emission at 460 nm arises from oxygen impurities while with oxygen concentrations higher than 0.05 mol% the emission shifts to the 379 nm emission of the CsBr matrix, which is attributed to the nonexcitability of oxygen agglomerates. The F-center concentration in CsBr:O2- is observed to increase with oxygen concentration, due to an increase in Br-vacancies as charge compensation centers for the O2- ions. In all CsBr:Eu2+ samples studied, intense PSL emission arises only following room temperature hydration in an atmosphere of 99% relative humidity, and it is concluded that the presence of water molecules is essential for the PSL in CsBr:Eu2+. In CsBr:Eu2+,O2- this enhancement effect of PSL intensity is reduced as the oxygen concentration increases above 0.05 mol% due to competition between the Eu2+ and O2- luminescence centers. It was found that the effects of hydration can be partially reversed following exposure to a vacuum while the material is rendered completely PSL inactive following thermal annealing up to 600 °C which is caused by agglomeration of the highly mobile Eu2+ ions and subsequent loss of Eu2+ luminescence.

  10. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  11. The third-generation turbocharged engine for the Audi 5000 CS and 5000 CS Quattro

    SciTech Connect

    Stock, D.

    1986-01-01

    In September 1985 the new Audi 5000 CS Quattro was introduced to the American market. This luxurious high performance touring sedan has been equipped with a more advanced turbocharged engine with intercooler and electronic engine management giving improved performance, excellent torque, faster response and better fuel economy. The basic engine is the tried-and-tested Audi 5-cylinder unit. The turbocharged engine's ancillary systems, the electronic ignition control and fuel injection have all been newly developed, carefully optimized and well matched in the special demands of a turbocharged engine. The ignition system controls the engine and fuel injection and delivers analog and digital signals to the car's instrument panel display. The system also has an integrated self-diagnostic function.

  12. VUV fluorescence following electron-impact dissociative excitation of CS{sub 2}

    SciTech Connect

    Brotton, S. J.; McConkey, J. W.

    2011-01-15

    Electron-impact dissociation of CS{sub 2} has been studied by observation of the atomic spectral emission features in the range 115-170 nm. Absolute photoemission cross sections are presented over the complete wavelength range for an incident electron energy of 100 eV. As an example, the measured cross section of the strong C i emission at 165.7 nm, which is a prominent feature in many solar and other extraterrestrial spectra, is (1.45{+-}0.19)x10{sup -18} cm{sup 2}. Comparison with earlier cross-sectional measurements suggest that these were too high by a factor of more than three. Excitation functions of the dominant C i (156.1 nm) and S i (147.4 nm) emission lines have been measured for electron-impact energies from threshold to 360 eV. From appearance energy measurements in the near-threshold region, likely fragmentation channels are identified which involve both two-fragment breakup and total fragmentation of the parent CS{sub 2}.

  13. Ephedrine QoS: An Antidote to Slow, Congested, Bufferless NoCs

    PubMed Central

    Fang, Juan; Yao, Zhicheng; Sui, Xiufeng; Bao, Yungang

    2014-01-01

    Datacenters consolidate diverse applications to improve utilization. However when multiple applications are colocated on such platforms, contention for shared resources like networks-on-chip (NoCs) can degrade the performance of latency-critical online services (high-priority applications). Recently proposed bufferless NoCs (Nychis et al.) have the advantages of requiring less area and power, but they pose challenges in quality-of-service (QoS) support, which usually relies on buffer-based virtual channels (VCs). We propose QBLESS, a QoS-aware bufferless NoC scheme for datacenters. QBLESS consists of two components: a routing mechanism (QBLESS-R) that can substantially reduce flit deflection for high-priority applications and a congestion-control mechanism (QBLESS-CC) that guarantees performance for high-priority applications and improves overall system throughput. We use trace-driven simulation to model a 64-core system, finding that, when compared to BLESS, a previous state-of-the-art bufferless NoC design, QBLESS, improves performance of high-priority applications by an average of 33.2% and reduces network-hops by an average of 42.8%. PMID:25250386

  14. Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block.

    PubMed Central

    Ismailov, I I; Berdiev, B K; Shlyonsky, V G; Benos, D J

    1997-01-01

    A family of novel epithelial Na+ channels (ENaCs) have recently been cloned from several different tissues. Three homologous subunits (alpha, beta, gamma-ENaCs) from the core conductive unit of Na(+)-selective, amiloride-sensitive channels that are found in epithelia. We here report the results of a study assessing the regulation of alpha,beta,gamma-rENaC by Ca2+ in planar lipid bilayers. Buffering of the bilayer bathing solutions to [Ca2+] < 1 nM increased single-channel open probability by fivefold. Further investigation of this phenomenon revealed that Ca2+ ions produced a voltage-dependent block, affecting open probability but not the unitary conductance of ENaC. Imposing a hydrostatic pressure gradient across bilayers containing alpha,beta,gamma-rENaC markedly reduced the sensitivity of these channels to inhibition by [Ca2+]. Conversely, in the nominal absence of Ca2+, the channels lost their sensitivity to mechanical stimulation. These results suggest that the previously observed mechanical activation of ENaCs reflects a release of the channels from block by Ca2+. Images FIGURE 3 FIGURE 4 PMID:9138565

  15. Enterotoxigenic Escherichia coli CS6 gene products and their roles in CS6 structural protein assembly and cellular adherence.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Fukumoto, Megumi; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) produces a variety of colonization factors necessary for attachment to the host cell, among which CS6 is one of the most prevalent in ETEC isolates from developing countries. The CS6 operon is composed of 4 genes, cssA, cssB, cssC, and cssD. The molecular mechanism of CS6 assembly and cell surface presentation, and the contribution of each protein to the attachment of the bacterium to intestinal cells remain unclear. In the present study, a series of css gene-deletion mutants of the CS6 operon were constructed in the ETEC genetic background, and their effect on adhesion to host cells and CS6 assembly was studied. Each subunit deletion resulted in a reduction in the adhesion to intestinal cells to the same level of laboratory E. coli strains, and this effect was restored by complementary plasmids, suggesting that the 4 proteins are necessary for CS6 expression. Bacterial cell fractionation and western blotting of the mutant strains suggested that the formation of a CssA-CssB-CssC complex is necessary for recognition by CssD and transport of CssA-CssB to the outer membrane as a colonization factor. PMID:21729748

  16. The OH-Initiated Oxidation of CS2 in the Presence of NO: FTIR Matrix-Isolation and Theoretical Studies.

    PubMed

    Bil, A; Grzechnik, K; Sałdyka, M; Mielke, Z

    2016-09-01

    We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products. PMID:27491274

  17. 30/20 GHz satellite communication experiments using small earth stations in CS project

    NASA Astrophysics Data System (ADS)

    Saruwatari, T.; Uchida, K.; Matsumoto, K.; Iguchi, M.; Ohashi, H.; Isobe, S.

    Design features and the results of preliminary performance tests of small earth terminals (SETs) for the Japanese CS-II 20/30 GHz communications satellites are described. The tests covered 1- and 2-m antennas with 2 W IMPATT transmitters and FET receivers with less than 750 K noise temperature. Delta-M FM SCPC and MCPC data treatment and transmission equipment were used with the vehicle-mounted antennas. Measurements were made of the C/No and bit error rates and the effect of S/N performance on FM transmission. The stations received and transmitted newspaper data for publication and formed links of a computer network. The FM-SCPC link permitted broadcast of 220 channels between a central station and the small antennas. Communication could not be stabilized between small antennas during rainy conditions.

  18. Structural and Functional Diversity of Acidic Scorpion Potassium Channel Toxins

    PubMed Central

    He, Ya-Wen; Pan, Na; Ding, Jiu-Ping; Cao, Zhi-Jian; Liu, Mai-Li; Li, Wen-Xin; Yi, Hong; Jiang, Ling; Wu, Ying-Liang

    2012-01-01

    Background Although the basic scorpion K+ channel toxins (KTxs) are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K+ channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. Principal Findings Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new α-KTx subfamilies (α-KTx28, α-KTx29, and α-KTx30), and two are new members of the known κ-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the α-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized α-helix-loop-β-sheet (CS-α/β) fold motif that has no apparent α-helixs and β-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a Kd of 11.69 µM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized α-helix-loop-helix (CS-α/α) fold scaffold motif, blocked both Kv1.3 and KCNQ1 channels. StKTx23 toxin, with a cystine-stabilized α-helix-loop-β-sheet (CS-α/β) fold motif, could inhibit Kv1.3 channel, but not the KCNQ1 channel. Conclusions/Significance These findings characterize the structural and functional diversity of acidic KTxs, and could accelerate the development and clinical use of acidic KTxs as pharmacological tools and potential drugs. PMID

  19. Three new phosphates with isolated P2O7 units: noncentrosymmetric Cs2Ba3(P2O7)2 and centrosymmetric Cs2BaP2O7 and LiCsBaP2O7.

    PubMed

    Li, Lin; Han, Shujuan; Lei, Bing-Hua; Wang, Ying; Li, Hongyi; Yang, Zhihua; Pan, Shilie

    2016-03-01

    Three new phosphates, a noncentrosymmetric (NCS) Cs2Ba3(P2O7)2 and centrosymmetric (CS) Cs2BaP2O7 and LiCsBaP2O7, have been synthesized from high-temperature solutions for the first time. Analysis of the structures determined by single-crystal X-ray diffraction showed that although the three compounds contained isolated P2O7 units, they yielded different three-dimensional (3D) networks: Cs2Ba3(P2O7)2 crystallized in the NCS Orthorhombic space group P212121, Cs2BaP2O7 in the CS monoclinic space group P21/n, and LiCsBaP2O7, having an identical stoichiometry with Cs2BaP2O7, crystallized in monoclinic space group, P21/c. Structural comparisons suggested the differences between their 3D frameworks to be due to differences between the sizes and coordination environments of the cations. Characterizations including thermal and optical analyses showed Cs2Ba3(P2O7)2 and Cs2BaP2O7 to melt congruently, and Cs2Ba3(P2O7)2 to exhibit a wide transparent region with a cut-off edge below 176 nm. The NLO properties and electronic structures of these compounds were investigated using first-principles calcualtions. PMID:26831497

  20. Uptake and transfer factors of 137Cs by mushrooms.

    PubMed

    Heinrich, G

    1992-01-01

    The 137Cs content of 118 species (668 samples) of higher fungi collected in the period from August 1984 to October 1989 at three different locations in Styria, Austria, was determined by gamma-spectrometry. The Cs-content of most mushrooms has been increasing since September 1986. In order to find out which factors determine the 137Cs-contamination of mushrooms and the transfer-value soil to mushroom, the concentration of total and plant-available radiocesium in soils as well as the pH-value, the content of humus, clay, silt, sand, exchangeable cations, the composition of the clay minerals, and the particle size distribution of the soils of two different locations were examined. The higher the 137Cs contamination of the soil, the thicker the layer of humus and the higher the content of humus, the lower the pH-value, and the lower the amount of essential cations, especially of K+, the higher the amount of 137Cs plant-available will be. Therefore, the contamination of the mushrooms in the coniferous forest of Koralpenblick (1000 m) is higher than in the mixed forest at the Rosenberg around Graz at approx. 500 m height. Of 26 different species of mushrooms measured at both sites, only 61% show the highest TF-values soil to mushrooms also at the Koralpenblick. In the spruce forest at Koralpenblick there are many species of mushrooms with high 137Cs-contamination which were not found at the Rosenberg. However, the properties of the species to which a mushroom belongs are more important than environmental conditions and soil properties. The transfer values of 40K stay within narrow bounds, whereas those of 137Cs differ widely. PMID:1589573

  1. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels

    PubMed Central

    Gnanasambandam, Radhakrishnan; Bae, Chilman; Gottlieb, Philip A.; Sachs, Frederick

    2015-01-01

    Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35–55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection. PMID:25955826

  2. Bacterial Ion Channels.

    PubMed

    Compton, Emma L R; Mindell, Joseph A

    2010-09-01

    Bacterial ion channels were known, but only in special cases, such as outer membrane porins in Escherichia coli and bacterial toxins that form pores in their target (bacterial or mammalian) membranes. The exhaustive coverage provided by a decade of bacterial genome sequencing has revealed that ion channels are actually widespread in bacteria, with homologs of a broad range of mammalian channel proteins coded throughout the bacterial and archaeal kingdoms. This review discusses four groups of bacterial channels: porins, mechano-sensitive (MS) channels, channel-forming toxins, and bacterial homologs of mammalian channels. The outer membrane (OM) of gram-negative bacteria blocks access of essential nutrients; to survive, the cell needs to provide a mechanism for nutrients to penetrate the OM. Porin channels provide this access by forming large, nonspecific aqueous pores in the OM that allow ions and vital nutrients to cross it and enter the periplasm. MS channels act as emergency release valves, allowing solutes to rapidly exit the cytoplasm and to dissipate the large osmotic disparity between the internal and external environments. MS channels are remarkable in that they do this by responding to forces exerted by the membrane itself. Some bacteria produce toxic proteins that form pores in trans, attacking and killing other organisms by virtue of their pore formation. The review focuses on those bacterial toxins that kill other bacteria, specifically the class of proteins called colicins. Colicins reveal the dangers of channel formation in the plasma membrane, since they kill their targets with exactly that approach. PMID:26443789

  3. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  4. C. elegans TRP channels

    PubMed Central

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    TRP (transient receptor potential) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  5. In situ7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process

    NASA Astrophysics Data System (ADS)

    Hu, Jian Zhi; Zhao, Zhenchao; Hu, Mary Y.; Feng, Ju; Deng, Xuchu; Chen, Xilin; Xu, Wu; Liu, Jun; Zhang, Ji-Guang

    2016-02-01

    Cesium ion (Cs+) has been reported to be an effective electrolyte additive to suppress Li dendrite growth which prevents the application of lithium (Li) metal as an anode for rechargeable Li batteries. In this work, we investigated the effect of Cs+ additive on Li depositions using quantitative in situ7Li and 133Cs nuclear magnetic resonance (NMR) with planar symmetric Li cells. It's found that the addition of Cs+ can significantly enhance both the formation of well aligned Li nanorods and reversibility of the Li electrode. In situ133Cs NMR directly confirms that Cs+ migrates to Li electrode to form a positively charged electrostatic shield during the charging process. Much more electrochemical "active" Li was found in Li films deposited with Cs+ additive, while more electrochemical "dead" and thicker Li rods were identified in Li films deposited without Cs+. Combining the in situ and the previous ex-situ results, a Li deposition model has been proposed to explain these observations.

  6. Development of Jacketing Technologies for Iter CS and TF Conductor

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Nakajima, H.; Matsui, K.; Kawano, K.; Takano, K.; Tsutsumi, F.; Okuno, K.; Teshima, O.; Soejima, K.

    2008-03-01

    The Japan Atomic Energy Agency (JAEA) has developed jacketing technologies for ITER Toroidal Field (TF) and Central Solenoid (CS) conductor. Full scale TF and CS conduits were fabricated using carbon-reduced SUS316LN and boron-added (˜40 ppm) high manganese stainless steel (0.025C -22Mn -13Cr -9Ni -0.12N: JK2LB), respectively. Welding condition was optimized so that back bead does not interfere a cable insertion. The weld joint samples were compacted by a compaction machine that was newly constructed and tested at 4.2 K. Mechanical characteristics at 4K of CS, TF conduits and CS welded joint satisfied ITER mechanical requirements. TF welded joint shows slightly lower value of 0.2% yield strength (885 MPa) than that of ITER requirement (900 MPa). The TF conduit contains nitrogen content of 0.14%, which is minimum value in ITER specification. The lower nitrogen content may be caused by the release of nitrogen from molten metal during non-filler welding resulting in a 4 K strength decrease. To satisfy the ITER requirements, minimum nitrogen contents of conduit should be increased from 0.14% to 0.15% at least. Therefore, JAEA successfully developed TF and CS conduits with welding technologies and finalized the procurement specification for ITER conductor jacketing.

  7. Photoelectron Emission Studies in CsBr at 257 nm

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.; /Stanford U., Elect. Eng. Dept. /SLAC, SSRL

    2006-09-28

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films.

  8. Radiation stability of CsBr:Eu needle image plates

    SciTech Connect

    Batentschuk, M.; Neudert, S.; Weidner, M.; Osvet, A.; Struye, L.; Tahon, J.-P.; Leblans, P.

    2009-10-15

    Needle image plates (NIPs) based on CsBr:Eu are a good alternative to the BaFBr:Eu powder image plates due to their higher sensitivity and improved spatial resolution. The x-ray radiation stability of the NIPs produced by Agfa Gevaert was investigated and it was found that the radiation stability of the optimized NIPs is as high as that of the commercial CsI:Tl single crystals and much higher than reported in literature for the CsBr:Eu NIPs. The dependence of the sensitivity of the NIPs on the accumulated dose was determined for three different types of x-ray irradiation. It is shown that degradation of the sensitivity starts at about 10 Gy and it is the strongest for the most hard x-ray beam. If the energy absorbed by a NIP is taken into account, the degradation does not depend on the hardness of the applied x-ray beam. It is suggested that the main reason for the observed high radiation stability of the CsBr:Eu NIPs is the use of the oxygen-free Eu{sup 2+}-containing precursor CsEuBr{sub 3} for the doping in the manufacturing process.

  9. Optimal High-TC Superconductivity in Cs3C60

    NASA Astrophysics Data System (ADS)

    Harshman, Dale; Fiory, Anthony

    The highest superconducting transition temperatures in the (A1-xBx)3C60 superconducting family are seen in the A15 and FCC structural phases of Cs3C60 (optimized under hydrostatic pressure), exhibiting measured values for near-stoichiometric samples of TC0 meas . = 37.8 K and 35.7 K, respectively. It is argued these two Cs-intercalated C60 compounds represent the optimal materials of their respective structures, with superconductivity originating from Coulombic e- h interactions between the C60 molecules, which host the n-type superconductivity, and mediating holes associated with the Cs cations. A variation of the interlayer Coulombic pairing model [Harshman and Fiory, J. Supercond. Nov. Magn. 28 ̲, 2967 (2015), and references therein] is introduced in which TC0 calc . ~ 1 / lζ , where l relates to the mean spacing between interacting charges on surfaces of the C60 molecules, and ζ is the average radial distance between the surface of the C60 molecules and the neighboring Cs cations. For stoichiometric Cs3C60, TC0 calc . = 38.08 K and 35.67 K for the A15 and FCC macrostructures, respectively; the dichotomy is attributable to differences in ζ.

  10. Glass transition and fragility in the simple molecular glassformer CS2 from CS2-S2Cl2 solution studies

    NASA Astrophysics Data System (ADS)

    Zhao, Zuofeng; Huang, Wei; Richert, Ranko; Angell, C. Austen

    2010-04-01

    With an interest in finding the fragility for a simple, single component, molecular glassformer, we have determined the dielectric relaxation and glass transition behavior for a series of glasses in the CS2-S2Cl2 and CS2-toluene systems. Crystallization of CS2 can be completely avoided down to the composition 20 mol% second component, and the fragility proves almost independent of CS2 content in each system. Since the glass temperature Tg obtained from both thermal studies and from dielectric relaxation (using Tg,diel=Tτ =100 s) is quite linear over the whole composition range in each system, and since relaxation time data for pure CS2 fall on the same master plot when scaled by the linearly extrapolated Tg value, we deduce that pure CS2 has the same high fragility as the binary solutions. The value is m =86, as for ortho-terphenyl (OTP). Based on observations of independent studies for the vibrational density of states (VDoS) (of inherent structures for OTP and instantaneous, at-temperature structures for CS2), we attribute the high fragility to an excess vibrational heat capacity (defined by Cp (vib, excess)=dS(vib, excess)/d ln T) originating in the behavior of the low frequency modes of the VDoS (the boson peak modes). Both low frequency DoS and anharmonicity increase with increasing temperature, augmenting the configurational entropy drive to the top of the system energy landscape. The surprising implication is that fragility is determined in the vibrational, not configurational, manifold of microstates.

  11. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating.

    PubMed

    Wang, Wuyang; Linsdell, Paul

    2012-09-14

    Multiple transmembrane (TM) segments line the pore of the cystic fibrosis transmembrane conductance regulator Cl(-) channel; however, the relative alignment of these TMs and their relative movements during channel gating are unknown. To gain three-dimensional structural information on the outer pore, we have used patch clamp recording to study the proximity of pairs of cysteine side chains introduced into TMs 6 and 11, using both disulfide cross-linking and Cd(2+) coordination. Following channel activation, disulfide bonds could apparently be formed between three cysteine pairs (of 15 studied): R334C/T1122C, R334C/G1127C, and T338C/S1118C. To examine the state dependence of cross-linking, we combined these cysteine mutations with a nucleotide-binding domain mutation (E1371Q) that stabilizes the channel open state. Investigation of the effects of the E1371Q mutation on disulfide bond formation and Cd(2+) coordination suggests that although R334C/T1122C and T338C/S1118C are closer together in the channel open state, R334C/G1127C are close together and can form disulfide bonds only when the channel is closed. These results provide important new information on the three-dimensional structure of the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore: TMs 6 and 11 are close enough together to form disulfide bonds in both open and closed channels. Moreover, the altered relative locations of residues in open and in closed channels that we infer allow us to propose that channel opening and closing may be associated with a relative translational movement of TMs 6 and 11, with TM6 moving "down" (toward the cytoplasm) during channel opening. PMID:22843683

  12. Relative Movements of Transmembrane Regions at the Outer Mouth of the Cystic Fibrosis Transmembrane Conductance Regulator Channel Pore during Channel Gating*

    PubMed Central

    Wang, Wuyang; Linsdell, Paul

    2012-01-01

    Multiple transmembrane (TM) segments line the pore of the cystic fibrosis transmembrane conductance regulator Cl− channel; however, the relative alignment of these TMs and their relative movements during channel gating are unknown. To gain three-dimensional structural information on the outer pore, we have used patch clamp recording to study the proximity of pairs of cysteine side chains introduced into TMs 6 and 11, using both disulfide cross-linking and Cd2+ coordination. Following channel activation, disulfide bonds could apparently be formed between three cysteine pairs (of 15 studied): R334C/T1122C, R334C/G1127C, and T338C/S1118C. To examine the state dependence of cross-linking, we combined these cysteine mutations with a nucleotide-binding domain mutation (E1371Q) that stabilizes the channel open state. Investigation of the effects of the E1371Q mutation on disulfide bond formation and Cd2+ coordination suggests that although R334C/T1122C and T338C/S1118C are closer together in the channel open state, R334C/G1127C are close together and can form disulfide bonds only when the channel is closed. These results provide important new information on the three-dimensional structure of the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore: TMs 6 and 11 are close enough together to form disulfide bonds in both open and closed channels. Moreover, the altered relative locations of residues in open and in closed channels that we infer allow us to propose that channel opening and closing may be associated with a relative translational movement of TMs 6 and 11, with TM6 moving “down” (toward the cytoplasm) during channel opening. PMID:22843683

  13. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  14. Development of certified matrix reference materials for quality assurance of screening ¹³⁴Cs and ¹³⁷Cs in food.

    PubMed

    Ishizu, H; Yamada, T

    2013-11-01

    A certified reference material using activated alumina powder certified for activity of (134)Cs and (137)Cs was developed. The results of the verification and the certification are described. The certified reference material can be used for quality assurance of screening activity measurements of (134)Cs and (137)Cs in food/foodstuffs. Commercially available equipments were experimentally tested using the CRM and another CRM including (40)K. The results of these tests are also shown. PMID:23561914

  15. Patterns and dynamics of Cs-137 soil contamination on the plot scale of the Bryansk Region (Russia): the role of processes, connectivity

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Sokolov, Alexander; Saveliev, Anatoly

    2014-05-01

    parameters, general additive models were used. According to results of modeling using a detailed and a generalized grid it has been found (Linnik, Saveliev et.al., 2007), that in accumulation zones (depressions) 137Cs deposit was lower when Laplace operator was positive (Laplace1>0=915 kBq/m2; Laplace2>0=921 kBq/m2) than in wash-out zones, singled out by negative values of Laplace operator (Laplace1<0=978 kBq/m2; Laplace2<0=979 kBq/m2). The inversion effect revealed in 137Cs deposit distribution could not be accounted for be processes of surface 137Cs wash-off as the chain of depressions was isolated. We found that connectivity of subsurface moving soil moisture saturation was made up by a number of small and shallow channels, covered by litter, they served as 137Cs travel paths at the period of spring wetting in April-May 1986. The total 137Cs output in soluble form from this plot calculated for the two models was 5,9% and 6,4%. References: Linnik V.G., Saveliev A.A., Govorun A.P., Ivanitsky O.M., Sokolov A.V. Spatial Variability and Topographic Factors of 137Cs Soil Contamination at a Field Scale// International Journal of Ecology & Development, 2007, Vol. 8, No.7, p.8-25.

  16. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    SciTech Connect

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  17. Performance verification tests of JT-60SA CS model coil

    NASA Astrophysics Data System (ADS)

    Obana, Tetsuhiro; Murakami, Haruyuki; Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku; Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi

    2015-11-01

    As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb3Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of -0.62% for the Nb3Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  18. Quasi-freestanding graphene on Ni(111) by Cs intercalation.

    PubMed

    Alattas, M; Schwingenschlögl, U

    2016-01-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy. PMID:27225324

  19. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  20. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    NASA Astrophysics Data System (ADS)

    Alattas, M.; Schwingenschlögl, U.

    2016-05-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  1. Precision measurement of the ionization energy of Cs i

    NASA Astrophysics Data System (ADS)

    Deiglmayr, Johannes; Herburger, Holger; Saßmannshausen, Heiner; Jansen, Paul; Schmutz, Hansjürg; Merkt, Frédéric

    2016-01-01

    We present absolute-frequency measurements for the transitions from the 6 s1 /2 ground state of 133Cs to n p1 /2 and n p3 /2 Rydberg states. The transition frequencies are determined by one-photon UV spectroscopy in ultracold samples of Cs atoms using a narrow-band laser system referenced to a frequency comb. From a global fit of the ionization energy EI and the quantum defects of the two series we determine an improved value of EI/h c =31 406.467 732 5 (14 ) cm-1 for the ionization energy of Cs with a relative uncertainty of 5 ×10-11 . We also report improved values for the quantum defects of the n p1 /2 , n p3 /2 , n s1 /2 , and n d5 /2 series.

  2. CS based confocal microwave imaging algorithm for breast cancer detection.

    PubMed

    Sun, Y P; Zhang, S; Cui, Z; Qu, L L

    2016-04-29

    Based on compressive sensing (CS) technology, a high resolution confocal microwave imaging algorithm is proposed for breast cancer detection. With the exploitation of the spatial sparsity of the target space, the proposed image reconstruction problem is cast within the framework of CS and solved by the sparse constraint optimization. The effectiveness and validity of the proposed CS imaging method is verified by the full wave synthetic data from numerical breast phantom using finite-difference time-domain (FDTD) method. The imaging results have shown that the proposed imaging scheme can improve the imaging quality while significantly reducing the amount of data measurements and collection time when compared to the traditional delay-and-sum imaging algorithm. PMID:27177106

  3. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  4. Accumulation of K+ and Cs+ in Tropical Plant Species

    NASA Astrophysics Data System (ADS)

    Velasco, H.; Anjos, R. M.; Zamboni, C. B.; Macario, K. D.; Rizzotto, M.; Cid, A. S.; Medeiros, I. M. A.; Fernández, J.; Rubio, L.; Audicio, P.; Lacerda, T.

    2010-08-01

    Concentrations of K+ and 137Cs+ in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K+, Cs+ ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that 137Cs+ is positively correlated to 40K+ concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they pass through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of 40K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the 40K experimental results in the fruit ripening processes of lemon trees.

  5. Energetics and structural stability of Cs3C60

    SciTech Connect

    Saito, Susumu; Umemoto, Koichiro; Louie, Steven G.; Cohen, MarvinL.

    2003-12-15

    Using the ab initio pseudo potential total-energy method and the density-functional theory, we study the energetics of face-centered-cubic Cs3C60 which is a material of great interest as a possible high transition-temperature superconductor. At the optimized lattice constant the volume per C60 is found to be smaller than the most stable hexagon-coordination A15 phase, while the total energy of the fcc phase is about 0.9 eV higher than the A15 phase. These results indicate that a low-temperature and high-pressure synthesis method might be a possible way to produce the fcc Cs3C60 phase. In addition, it is also found that the A15 Cs3C60 should show a phase transformation from a hexagon-coordination phase to a pentagon-coordination phase under hydrostatic pressure.

  6. Fundamental studies on the Cs dynamics under ion source conditions

    SciTech Connect

    Friedl, R. Fantz, U.

    2014-02-15

    The performance of surface conversion based negative hydrogen ion sources is mainly determined by the caesium dynamics. Therefore, fundamental investigations in vacuum and plasma are performed at a flexible laboratory setup with ion source parameters. Studies on the influence of Cs on the plasma parameters of H{sub 2} and D{sub 2} plasmas showed that n{sub e} and T{sub e} in the bulk plasma are not affected by relevant amounts of Cs and no isotopic differences could be observed. The coating of the vessel surfaces with Cs, however, leads to a considerable gettering of hydrogen atoms from the plasma volume and to the decrease of n{sub e} close to a sample surface due to the formation of negative ions.

  7. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    PubMed Central

    Alattas, M.; Schwingenschlögl, U.

    2016-01-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy. PMID:27225324

  8. The preliminary results of the measurements of environmental levels of 40K and 137Cs in Venezuela

    NASA Astrophysics Data System (ADS)

    LaBrecque, J. J.; Rosales, P. A.; Carias, O.

    1992-02-01

    The study of the beta-particle radioactivity in air and 90Sr in rainwater collected at Instituto Venezolano de Investigaciones Cientificas, IVIC, that began in 1959 in conjunction with the U.S. Atomic Energy Commission was discontinued in 1963. But after the Chernobyl nuclear power plant accident in the USSR, work on the radioactive contamination in Venezuela has been renewed. Initially the measurement of 134Cs and 137Cs in imported foodstuffs, such as milk powders and meats were undertaken, and these have now been extended to measurements of environmental levels of 40K and 137Cs in soils, sea sediments and foodstuffs. The data present herein are the only readily available data on radioactive contamination in the environment in Venezuela since 1963. The measurements were performed with a simple Nal(Tl) detector and two single channel analyzers as well as with a 25% efficient hyper-pure germanium semiconductor coupled to a multichannel analyzer system. Finally, these results can be used as baseline values (environmental background) in case of a nuclear accident in the region, as well as to screen imported foodstuff which is suspected to be contaminated.

  9. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  10. Cs-137 concentration in reindeer and its fodder plants.

    PubMed

    Rissanen, K; Rahola, T

    1989-09-01

    Radionuclides, especially the long-lived 137Cs (physical half-life 30 years), are accumulated efficiently in the northern, subarctic, lichen-reindeer-man foodchain. Until the Chernobyl accident the fallout nuclides studied originated from nuclear weapons tests. After this accident some fresh fallout was deposited in Finnish Lapland. Lichens grow very slowly and collect nutrients very efficiently from air, rain and snow. During winter the basic fodder plants for reindeer are lichens and some winter-green plants, shrubs and dry leaves. During the bare-ground season, the reindeer eat various grasses, herbs and leaves etc. Lichens constitute 30-50 per cent of the entire vegetable mass consumed by the reindeer in a year. The highest 137Cs-concentration 2500 Bq/kg dry weight was found in lichen in the middle of the 1960s. In 1985 the concentration had decreased to about 240 Bq/kg dry weight. After the Chernobyl accident the 137Cs-concentration in lichen varied from 200 to 2000 Bq/kg dry weight in Finnish Lapland. In reindeer fodder plant samples collected in the 1980s before the Chernobyl accident the 137Cs-concentration varied from 5 to 970 Bq/kg dry weight. The highest 137Cs-concentration in reindeer meat, about 2500 Bq/kg fresh weight, was found in 1965 and thereafter decreased to about 300 Bq/kg fresh weight in the winter before the Chernobyl accident. After the accident the mean 137Cs-concentration in reindeer meat from the 1986-87 slaughtering period was 720 Bq/kg fresh weight and in 1987-88, 630 Bq/kg fresh weight. PMID:2814447

  11. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.

    PubMed

    Bar-Haim, Shay; Aharon, Ayelet; Ben-Moshe, Tal; Marantz, Yael; Senderowitz, Hanoch

    2009-03-01

    were obtained in both cases: For the cannabinoid receptor 1 (CB1), SeleX-CS outperformed the best single score and afforded an enrichment factor of 41 at 1% of the screening library compared with the best single score value of 15 (GOLD_Fitness). For the chemokine receptor type 2 (CCR2) SeleX-CS afforded an enrichment factor of 72 (again at 1% of the screening library) once more outperforming any single score (enrichment factor of 20 by GSCORE). Moreover, SeleX-CS demonstrated success rates of 67% (CCR2) and 73% (CB1) when applied to ranking an external test set. In both cases, the new algorithm also afforded good derichment of inactive compounds (i.e., the ability to push inactive compounds to the bottom of the ranked library). The method was then extended to rank a lead optimization series targeting the Kv4.3 potassium ion channel, resulting in a Spearman's correlation coefficient, p = 0.63 (n = 40), between the SeleX-CS-based rank and the actual pKi values. These results suggest that SeleX-CS is a powerful method for ranking screening libraries in the lead discovery phase and also merits consideration as a lead optimization tool. PMID:19231809

  12. Electrical insulation systems for the ITER CS modules

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Martovetsky, N. N.

    2014-01-01

    For the U.S. fabricated ITER Central Solenoid (CS), six, almost identical, modules will be fabricated, then stacked together. The electrical insulation systems of the CS modules consist of turn, layer, and ground insulation. These electrical systems also serve to bond the coil conductors together. For this purpose, an epoxy resin is transferred into the coil assembly using a carefully designed vacuum-pressure impregnation process. The most important testing procedures, data, and design criteria for the key low-temperature, mechanical, and electrical properties are reviewed. Design of these systems is discussed.

  13. Naphthomycins L-N, ansamycin antibiotics from Streptomyces sp. CS.

    PubMed

    Yang, Yin-He; Fu, Xiao-Li; Li, Liang-Qun; Zeng, Ying; Li, Cheng-Yun; He, Yi-Neng; Zhao, Pei-Ji

    2012-07-27

    Previous analyses of the naphthomycin biosynthetic gene cluster and a comparison with known naphthomycin-type products from Streptomyces sp. CS have suggested that new products can be found from this strain. In this study, screening by LC-MS of Streptomyces sp. CS products formed under different culture conditions revealed several unknown peaks in the product spectra of extracts derived from oatmeal medium cultures. Three new naphthomycins, naphthomycins L (1), M (2), and N (3), and the known naphthomycins A (4), E (5), and D (6) were obtained. The structures were elucidated using spectroscopic data from 1D and 2D NMR and HRESIMS experiments. PMID:22742732

  14. Genetic effects of testicular incorporation of 137Cs in mice.

    PubMed

    Ramaiya, L K; Pomerantseva, M D; Chekhovich, A V; Lyaginskaya, A M; Kuznetsov, A S

    1994-08-01

    A comparative estimation of the frequencies of genetic disorders induced in germ cells of male mice by a single or long-term exposure to incorporated 137Cs or to external gamma-radiation has been carried out. The frequencies of dominant lethal mutations induced by a single exposure were similar with both types of radiation. In stem cell spermatogonia the frequency of reciprocal translocations was significantly lower in the case of single 137Cs administration than upon external gamma-radiation. Upon long-term administration the genetic efficiencies of both types of radiation were similar. PMID:7519738

  15. Rotational quenching of CS in ultracold 3He collisions

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-08-01

    Quantum mechanical scattering calculations of rotational quenching of CS (v = 0) collision with 3He are performed at ultracold temperatures and results are compared with isotopic 4He collision. Rotational quenching cross sections and rate coefficients have been calculated in the ultracold region for rotational levels up to j = 10 using the He-CS potential energy surface computed at the CCSD(T)/aug-cc-pVQZ level of theory. The quenching cross sections are found to be two orders of magnitude larger for the 3He than the 4He isotope under ultracold conditions. Wigner threshold law is found to be valid below 10-3 K temperature.

  16. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  17. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  18. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.

  19. Satellite bands of the RbCs molecule in the range of highly excited states

    NASA Astrophysics Data System (ADS)

    Rakić, Mario; Beuc, Robert; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Vexiau, Romain; Pichler, Goran; Skenderović, Hrvoje

    2016-05-01

    We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases.

  20. Satellite bands of the RbCs molecule in the range of highly excited states.

    PubMed

    Rakić, Mario; Beuc, Robert; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Vexiau, Romain; Pichler, Goran; Skenderović, Hrvoje

    2016-05-28

    We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases. PMID:27250309

  1. Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand.

    PubMed

    Zhuang, Jie; Flury, Markus; Jin, Yan

    2003-11-01

    In this study, a series of saturated column experiments were conducted to investigate effects of colloids on Cs transport in two types of porous media (Hanford sediment characteristic of 2:1 clay minerals and silica Ottawa sand). The colloids used were obtained by reacting Hanford sediment with simulated tank waste solutions. Because of the highly nonlinear nature of Cs sorption found in batch experiments, we used two different concentrations of Cs (7.5 x 10(-5) M and 1.4 x 10(-8) M) for the transport experiments. The presence of colloids facilitated the transport of Cs through both Hanford sediment and Ottawa sand via association of Cs with mobile colloidal particles. Due to the nonlinearity of the Cs sorption, the colloid-facilitated Cs transportwas more pronounced atthe low Cs concentration (1.4 x 10(-8) M) than at the high concentration (7.5 x 10(-5) M) when expressed relative to the inflow Cs concentration. In the absence of colloids, no Cs moved through the 10-cm long columns during the experiment within about 20 pore volumes, exceptfor the high Cs concentration in the Ottawa sand where a complete Cs breakthrough was obtained. Also, it was found that colloid-associated Cs could be partially stripped off from colloids during the transport. The stripping effect was controlled by both Cs concentration and sorption capacity of the transport matrix. PMID:14620817

  2. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  3. 137 Cs Activities and 135 Cs/ 137 Cs Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.; Clark, Sue B.; Kelley, Morgan; Delmore, James E.

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. 137Cs distribution patterns, 135Cs/137Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that 135Cs/137Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).

  4. 137Cs activities and 135Cs/137Cs isotopic ratios from soils at Idaho National Laboratory: a case study for contaminant source attribution in the vicinity of nuclear facilities.

    PubMed

    Snow, Mathew S; Snyder, Darin C; Clark, Sue B; Kelley, Morgan; Delmore, James E

    2015-03-01

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. (137)Cs distribution patterns, (135)Cs/(137)Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that (135)Cs/(137)Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest). PMID:25633972

  5. Accumulation and distribution of 137Cs in tropical plants

    NASA Astrophysics Data System (ADS)

    Anjos, R. M.; Carvalho, C.; Mosquera, B.; Veiga, R.; Sanches, N.; Bastos, J.; Macario, K.

    2007-02-01

    The accumulation and distribution of 40K and 137Cs in several tropical plant species were studied through measurements of gamma-ray spectra, focusing on establishing the suitability of using radiocesium to trace the plant uptake of nutrients such as potassium.

  6. A CS1 Pedagogical Approach to Parallel Thinking

    ERIC Educational Resources Information Center

    Rague, Brian William

    2010-01-01

    Almost all collegiate programs in Computer Science offer an introductory course in programming primarily devoted to communicating the foundational principles of software design and development. The ACM designates this introduction to computer programming course for first-year students as CS1, during which methodologies for solving problems within…

  7. Fallout 137Cs in reindeer herders in Arctic Norway.

    PubMed

    Skuterud, Lavrans; Thørring, Håvard

    2015-03-01

    Reindeer herders in the Arctic were among the most heavily exposed populations to the global fallout from nuclear weapons testing in the 1950s and 1960s, due to high transfer of radionuclides in the lichens-reindeer-human food chain. Annual studies of (137)Cs in reindeer herders in Kautokeino, Norway, were initiated in 1965 to monitor radiation doses and follow environmental (137)Cs behavior. The (137)Cs concentrations declined from the peak in 1965 with effective half-times of 6-8 years, only interrupted by a temporary doubling in levels from 1986 to 1987 due to the Chernobyl fallout. During the period of 1950-2010 an average herder received an integrated effective dose from incorporated (137)Cs of about 18 mSv. This dose represents an insignificant increase in the risk for developing cancer. Health studies even show a significantly lower cancer incidence among Sámis and reindeer herders in northern Norway compared to other populations in the same area. PMID:25671344

  8. Crystalline hosts to accommodate the transmutation of Cs and Sr

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Roy, R.; Pepin, J.; Agrawal, D. K.

    1982-04-01

    Certain deleterious effects on a solid nuclear waste form, though not yet quantitatively defined, could occur due to transmutations such as 137Cs+ yields 137 Ba2+ and 90Sr2+ yields 90Zr4+ (t sub /1/2/ = 30 yr in both cases). The relevant causes of such possible effects are the changes in ionic valence and size. This report explicitly formulates a chemical mitigation strategy: if the transmuting species can be incorporated in a multiple-cation host, in which one of the inert cations is a variable-valence transition metal, the valence change aspect of transmutation can be mitigated by a complementary valence change of the transition metal ion. The present work consisted of chemically simulating the transmutation, the goal being to find a Cs- and Sr-bearing single-phase host that would remain single-phase after the transmutation had occurred. Of several structures tried, perovskite appears to be the most promising, as the A-site can accommodate the approximately 20% size change that occurs when Cs decays to Ba. Ta and Nb were used as the variable-valence ions in the B site. Although not explicity studied here, magnetoplumbite seems likely to accommodate the Cs yields Ba transmutation. The application of the results to unpartitioned and partitioned nuclear wastes is discussed.

  9. Measurements of Cs absorption and retention in man.

    PubMed

    Henrichs, H; Paretzke, H G; Voigt, G; Berg, D

    1989-10-01

    One of the consequences of the Chernobyl reactor accident in 1986 was a comparatively high contamination of foodstuffs in Southern Federal Republic of Germany. In order to test radioecological models predicting the radiological consequences of such accidents, several thousand measurements were performed to determine Cs body burdens in members of the public. For the interpretation of these data and as a contribution to the improvement of the available database on the biokinetics of Cs isotopes in humans, we followed a small group of volunteers after their consumption of highly contaminated venison. Intakes, excretion rates and total body activities were measured during a period of more than 200 d. The data obtained were evaluated in terms of a compartment model to derive gastrointestinal uptakes, biological half-lives and dose conversion factors. The resulting uptake factors range from 65-90%, the half-lives of the long-term retention from 45 to 200 d. The majority of the resulting dose conversion factors lie below the values recommended by the ICRP, showing that the ICRP model is a reasonable and safe description of the Cs biokinetics in our study group, while the great variability of the results shows that it is not an accurate representation of the individual Cs retention. PMID:2793472

  10. ac Stark shift of the Cs microwave atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Rosenbusch, P.; Ghezali, S.; Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2009-01-01

    We analyze the ac Stark shift of the Cs microwave atomic clock transition theoretically and experimentally. Theoretical and experimental data are in good agreement with each other. Results indicate the absence of a magic wavelength at which there would be no differential shift of the clock states having zero projections of the total angular momentum.

  11. Equation of state and metallization of CsI

    SciTech Connect

    Aidun, J.; Bukowinski, M.S.T.; Ross, M.

    1984-03-01

    Self-consistent, nonrelativistic augmented-plane-wave (APW) calculations for CsI were carried out to generate the band structure, the static-lattice equation of state (EOS), and the volume dependence of the electronic energy-band gap. The theoretical room-temperature isothermal compression curve agrees well with static and ultrasonic measurements at low pressure. Our calculations do not agree with two recent sets of diamond-anvil-cell measurements above 10 GPa. The calculated band gaps are too small at low pressure, but, at high pressure, are consistent with both the experimental results and the Herzfeld-model prediction. These results suggest that the insulator-to-metal transition occurs in the range 100 +- 10 GPa. A calculation of the shock compression curve of CsI shows that the thermally excited electrons cause a significant softening of the Hugoniot curve. The experimental zero-pressure band gaps of the isoelectronic compounds Xe, CsI, and BaTe are linearly correlated with ln(v/v/sub H/), where v/sub H/ is the specific volume of metallization predicted by the Herzfeld model. Based on this correlation, and on the similarity of the APW calculated EOS's of Xe and CsI, which agree closely with experimental compression measurements, we predict that BaTe will become metallic at approximately 30 GPa.

  12. Web-CS: Infrastructure for Web-Based Competitions.

    ERIC Educational Resources Information Center

    Aerts, A. T. M.; Bierhoff, P. F. M.; De Bra, P. M. E.

    This paper presents a World Wide Web-based infrastructure for cooperation between many different parties. The infrastructure is designed for Web-based competitions involving an editorial board, designers of assignments or events, evaluators, different organizational layers, and contestants. Web-CS is entirely Web-based: all the communication…

  13. Measurements of Cs absorption and retention in man

    SciTech Connect

    Henrichs, H.; Paretzke, H.G.; Voigt, G.; Berg, D. )

    1989-10-01

    One of the consequences of the Chernobyl reactor accident in 1986 was a comparatively high contamination of foodstuffs in Southern Federal Republic of Germany. In order to test radioecological models predicting the radiological consequences of such accidents, several thousand measurements were performed to determine Cs body burdens in members of the public. For the interpretation of these data and as a contribution to the improvement of the available database on the biokinetics of Cs isotopes in humans, we followed a small group of volunteers after their consumption of highly contaminated venison. Intakes, excretion rates and total body activities were measured during a period of more than 200 d. The data obtained were evaluated in terms of a compartment model to derive gastrointestinal uptakes, biological half-lives and dose conversion factors. The resulting uptake factors range from 65-90%, the half-lives of the long-term retention from 45 to 200 d. The majority of the resulting dose conversion factors lie below the values recommended by the ICRP, showing that the ICRP model is a reasonable and safe description of the Cs biokinetics in our study group, while the great variability of the results shows that it is not an accurate representation of the individual Cs retention.

  14. Changing CS Features Alters Evaluative Responses in Evaluative Conditioning

    ERIC Educational Resources Information Center

    Unkelbach, Christian; Stahl, Christoph; Forderer, Sabine

    2012-01-01

    Evaluative conditioning (EC) refers to changes in people's evaluative responses toward initially neutral stimuli (CSs) by mere spatial and temporal contiguity with other positive or negative stimuli (USs). We investigate whether changing CS features from conditioning to evaluation also changes people's evaluative response toward these CSs. We used…

  15. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  16. 137Cs in the fungal compartment of Swedish forest soils.

    PubMed

    Vinichuk, Mykhaylo M; Johanson, Karl J; Taylor, Andy F S

    2004-05-01

    The (137)Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of (137)Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m(-2) in a peat soil and 47-189 g m(-2) in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the (137)Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total (137)Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%. PMID:15081731

  17. CHeCS: International Space Station Medical Hardware Catalog

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  18. External doses to humans from 137Cs in soil.

    PubMed

    Krstić, D; Nikezić, D

    2006-09-01

    Calculations of absorbed doses in organs of the human body and the total effective dose due to Cs in soil as a source of external exposure are presented in this work. Calculations were done using the MCNP-4B software package. The assumption was made that photons with an energy of 662 keV are emitted in a cylindrical volumetric source in soil up to the depth of 20 cm. Depth distributions of Cs at 19 locations around Kragujevac (a city in central Serbia) were measured by a HPGe detector. An ORNL phantom of an adult human standing on the soil above the center of a cylindrical radioactive source was used to calculate the conversion coefficients, i.e., absorbed doses in an organ per unit specific activity. The conversion coefficients in organs are given as a function of the source depth in soil. The largest absorbed dose was found in skin. The annual effective dose in humans was estimated from these calculations and the measured activity depth profile of Cs in soil. The average effective dose was found to be 3.17 microSv y. This value was rather small in comparison with other sources of natural ionizing radiation. One may conclude that Cs was a negligible source of external exposure in the area around the city. PMID:16891900

  19. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  20. RFI channels, 2

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.

    1981-01-01

    The cutoff parameters for a class of channel models exhibiting burst noise behavior were calculated and the performance of interleaved coding strategies was evaluated. It is concluded that, provided the channel memory is large enough and is properly exploited, interleaved coding is nearly optimal.

  1. Venus - Sinuous Channel

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This full resolution radar mosaic from Magellan at 49 degrees south latitude, 273 degrees east longitude of an area with dimensions of 130 by 190 kilometers (81 by 118 miles), shows a 200 kilometer (124 mile) segment of a sinuous channel on Venus. The channel is approximately 2 kilometers (1.2 miles) wide. These channel-like features are common on the plains of Venus. In some places they appear to have been formed by lava which may have melted or thermally eroded a path over the plains' surface. Most are 1 to 3 kilometers (0.6 to 2 miles) wide. They resemble terrestrial rivers in some respects, with meanders, cutoff oxbows, and abandoned channel segments. However, Venus channels are not as tightly sinuous as terrestrial rivers. Most are partly buried by younger lava plains, making their sources difficult to identify. A few have vast radar-dark plains units associated with them, suggesting large flow volumes. These channels appear to be older than other channel types on Venus, as they are crossed by fractures and wrinkle ridges, and are often buried by other volcanic materials. In addition, they appear to run both upslope and downslope, suggesting that the plains were warped by regional tectonism after channel formation. Resolution of the Magellan data is about 120 meters (400 feet).

  2. Worst configurations (instantons) for compressed sensing over reals: a channel coding approach

    SciTech Connect

    Chertkov, Michael; Chilappagari, Shashi K; Vasic, Bane

    2010-01-01

    We consider Linear Programming (LP) solution of a Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees the error-free reconstruction over reals for properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop a technique to discover sparse vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns, so called instantons, degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design CS-Instanton Search Algorithm (ISA) generating a sparse vector, called CS-instanton, such that the BasP fails on the instanton, while its action on any modification of the CS-instanton decreasing a properly defined norm is successful. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. Performance of the CS-ISA is tested on example of a randomly generated 512 * 120 matrix, that outputs the shortest instanton (error vector) pattern of length 11.

  3. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  4. Generalized channeled polarimetry.

    PubMed

    Alenin, Andrey S; Tyo, J Scott

    2014-05-01

    Channeled polarimeters measure polarization by modulating the measured intensity in order to create polarization-dependent channels that can be demodulated to reveal the desired polarization information. A number of channeled systems have been described in the past, but their proposed designs often unintentionally sacrifice optimality for ease of algebraic reconstruction. To obtain more optimal systems, a generalized treatment of channeled polarimeters is required. This paper describes methods that enable handling of multi-domain modulations and reconstruction of polarization information using linear algebra. We make practical choices regarding use of either Fourier or direct channels to make these methods more immediately useful. Employing the introduced concepts to optimize existing systems often results in superficial system changes, like changing the order, orientation, thickness, or spacing of polarization elements. For the two examples we consider, we were able to reduce noise in the reconstruction to 34.1% and 57.9% of the original design values. PMID:24979633

  5. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  6. Syntheses and single-crystal structures of CsTh(MoO 4) 2Cl and Na 4Th(WO 4) 4

    NASA Astrophysics Data System (ADS)

    Bang Jin, Geng; Soderholm, L.

    2011-02-01

    Colorless crystals of CsTh(MoO 4) 2Cl and Na 4Th(WO 4) 4 have been synthesized at 993 K by the solid-state reactions of ThO 2, MoO 3, CsCl, and ThCl 4 with Na 2WO 4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO 4) 2Cl is orthorhombic, consisting of two adjacent [Th(MoO 4) 2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO 4) 2 and reformulated as Th(MoO 4) 2·CsCl. The Th atom coordinates to seven monodentate MoO 4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na 4Th(WO 4) 4 adopts a scheelite superlattice structure. The three-dimensional framework of Na 4Th(WO 4) 4 is constructed from corner-sharing ThO 8 square antiprisms and WO 4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO 4) 2Cl, monoclinic, P2 1/ c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å 3, R( F)=2.65% for I>2 σ( I); Na 4Th(WO 4) 4, tetragonal, I4 1/ a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å 3, R( F)=3.02% for I>2 σ( I).

  7. Prescription dose in permanent {sup 131}Cs seed prostate implants

    SciTech Connect

    Yue Ning; Heron, Dwight E.; Komanduri, Krishna; Huq, M. Saiful

    2005-08-15

    Recently, {sup 131}Cs seeds have been introduced for prostate permanent seed implants. This type of seed has a relatively short half-life of 9.7 days and has its most prominent emitted photon energy peaks in the 29-34 keV region. Traditionally, 145 and 125 Gy have been prescribed for {sup 125}I and {sup 103}Pd seed prostate implants, respectively. Since both the half-life and dosimetry characteristics of {sup 131}Cs seed are quite different from those of {sup 125}I and {sup 103}Pd, the appropriate prescription dose for {sup 131}Cs seed prostate implant may well be different. This study was designed to use a linear quadratic radiobiological model to determine an appropriate dose prescription scheme for permanent {sup 131}Cs seed prostate implants. In this model, prostate edema was taken into consideration. Calculations were also performed for tumors of different doubling times and for other related radiobiological parameters of different values. As expected, the derived prescription dose values were dependent on type of tumors and types of edema. However, for prostate cancers in which tumor cells are relatively slow growing and are reported to have a mean potential doubling time of around 40 days, the appropriate prescription dose for permanent {sup 131}Cs seed prostate implants was determined to be: 127{sub -12}{sup +5}Gy if the experiences of {sup 125}I seed implants were followed and 121{sub -3}{sup +0}Gy if the experiences of {sup 103}Pd seed implants were followed.

  8. Impedance Analysis and Single-Channel Recordings on Nano-Black Lipid Membranes Based on Porous Alumina

    PubMed Central

    Römer, Winfried; Steinem, Claudia

    2004-01-01

    Ordered porous alumina substrates with pore diameters of 55 and 280 nm, respectively, were produced and utilized as a support to prepare membranes suspending the pores of the material. Highly ordered porous alumina was prepared by an anodization process followed by dissolution of the remaining aluminum and alumina at the backside of the pores. The dissolution process of Al2O3 at the backside of the pores was monitored by electrical impedance spectroscopy ensuring the desired sieve-like structure of the porous alumina. One side of the porous material with an area of 7 mm2 was coated with a thin gold layer followed by chemisorption of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol. The hydrophobic monolayer on top of the upper surface was a prerequisite for the formation of suspending membranes, termed nano-black lipid membranes (nano-BLMs). The formation process, and long-term and mechanical stability of the nano-BLMs were followed by electrical impedance spectroscopy indicating the formation of lipid bilayers with typical specific membrane capacitances of (0.65 ± 0.2) μF/cm2 and membrane resistances of up to 1.6 × 108 Ω cm2. These high membrane resistances allowed for single-channel recordings. Gramicidin as well as alamethicin was successfully inserted into the nano-BLMs exhibiting characteristic conductance states. PMID:14747331

  9. Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl− channel TMEM16A

    PubMed Central

    Zhang, Xiao-Dong; Lee, Jeong-Han; Lv, Ping; Chen, Wei Chun; Kim, Hyo Jeong; Wei, Dongguang; Wang, Wenying; Sihn, Choong-Ryoul; Doyle, Karen Jo; Rock, Jason R.; Chiamvimonvat, Nipavan; Yamoah, Ebenezer N.

    2015-01-01

    The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent posthearing neurons with broad dynamic range is unknown. Here, we demonstrated using pharmacological approaches, caged-Ca2+ photolysis, and gramicidin patch recordings that the prehearing SGN uses Ca2+-activated Cl− conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable state. Immunostaining of the cochlea preparation revealed the identity and expression of the Ca2+-activated Cl− channel transmembrane member 16A (TMEM16A) in SGNs. Moreover, null deletion of TMEM16A reduced the Ca2+-activated Cl− currents and action potential firing in SGNs. To determine whether Cl− ions and TMEM16A are involved in the transition between pre- and posthearing features of SGNs we measured the intracellular Cl− concentration [Cl−]i in SGNs. Surprisingly, [Cl−]i in SGNs from prehearing mice was ∼90 mM, which was significantly higher than posthearing neurons, ∼20 mM, demonstrating discernible altered roles of Cl− channels in the developing neuron. The switch in [Cl−]i stems from delayed expression of the development of intracellular Cl− regulating mechanisms. Because the Cl− channel is the only active ion-selective conductance with a reversal potential that lies within the dynamic range of SGN action potentials, developmental alteration of [Cl−]i, and hence the equilibrium potential for Cl− (ECl), transforms pre- to posthearing phenotype. PMID:25675481

  10. Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A.

    PubMed

    Zhang, Xiao-Dong; Lee, Jeong-Han; Lv, Ping; Chen, Wei Chun; Kim, Hyo Jeong; Wei, Dongguang; Wang, Wenying; Sihn, Choong-Ryoul; Doyle, Karen Jo; Rock, Jason R; Chiamvimonvat, Nipavan; Yamoah, Ebenezer N

    2015-02-24

    The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent posthearing neurons with broad dynamic range is unknown. Here, we demonstrated using pharmacological approaches, caged-Ca(2+) photolysis, and gramicidin patch recordings that the prehearing SGN uses Ca(2+)-activated Cl(-) conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable state. Immunostaining of the cochlea preparation revealed the identity and expression of the Ca(2+)-activated Cl(-) channel transmembrane member 16A (TMEM16A) in SGNs. Moreover, null deletion of TMEM16A reduced the Ca(2+)-activated Cl(-) currents and action potential firing in SGNs. To determine whether Cl(-) ions and TMEM16A are involved in the transition between pre- and posthearing features of SGNs we measured the intracellular Cl(-) concentration [Cl(-)]i in SGNs. Surprisingly, [Cl(-)]i in SGNs from prehearing mice was ∼90 mM, which was significantly higher than posthearing neurons, ∼20 mM, demonstrating discernible altered roles of Cl(-) channels in the developing neuron. The switch in [Cl(-)]i stems from delayed expression of the development of intracellular Cl(-) regulating mechanisms. Because the Cl(-) channel is the only active ion-selective conductance with a reversal potential that lies within the dynamic range of SGN action potentials, developmental alteration of [Cl(-)]i, and hence the equilibrium potential for Cl(-) (ECl), transforms pre- to posthearing phenotype. PMID:25675481

  11. Measurement of intrinsic radioactive backgrounds from the 137Cs and U/Th chains in CsI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Kui; Yue, Qian; Lin, Shin-Ted; Li, Yuan-Jing; Tang, Chang-Jian; Wong Tsz-King, Henry; Xing, Hao-Yang; Yang, Chao-Wen; Zhao, Wei; Zhu, Jing-Jun

    2015-04-01

    The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The timing, energy and spatial correlations, as well as the capability of pulse shape discrimination provide powerful methods for the measurement of intrinsic radiopurities. The experimental design, detector performance and event-selection algorithms are described. A total of 359×3 kg-days data from three prototypes of CsI(Tl) crystals were taken at China Jinping Underground Laboratory (CJPL), which offers a good shielding environment. The contamination levels of internal isotopes from 137Cs, 232Th and 238U series, as well as the upper bounds of 235U series are reported. Identification of the whole α peaks from U/Th decay chains and derivation of those corresponding quenching factors are achieved. Supported by National Natural Science Foundation of China (11275107, 11175099)

  12. The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses.

    PubMed

    Jang, Ha-Young; Rhee, Jiye; Carlson, John E; Ahn, Sung-Ju

    2014-09-15

    Aquaporin (AQP) proteins are involved in water homeostasis in cells at all taxonomic levels of life. Phosphorylation of some AQPs has been proposed to regulate water permeability via gating of the channel itself. We analyzed plasma membrane intrinsic proteins (PIP) from Camelina and characterized their biological functions under both stressful and favorable conditions. A three-dimensional theoretical model of the Camelina AQP proteins was built by homology modeling which could prove useful in further functional characterization of AQPs. CsPIP2;1 was strongly and constitutively expressed in roots and leaves of Camelina, suggesting that this gene is related to maintenance of homeostasis during salt and drought stresses. CsPIP2s exhibited water channel activity in Xenopus oocytes. We then examined the roles of CsPIP2;1 phosphorylation at Ser273 and Ser277 in the regulation of water permeability using phosphorylation mutants. A single deletion strain of CsPIP2;1 was generated to serve as the primary host for testing AQP expression constructs. A Ser277 to alanine mutation (to prevent phosphorylation) did not change CsPIP2;1 water permeability while a Ser273 mutation to alanine did affect water permeability. Furthermore, a CsPIP2;1 point mutation when ectopically expressed in yeast resulted in lower growth in salt and drought conditions compared with controls, and confirmation of Ser273 as the phosphorylation site. Our results support the idea that post-translational modifications in the Ser273 regulatory domains of the C-terminus fine tune water flux through CsPIP2;1. PMID:25046761

  13. Transport of 137Cs to the Southern Hemisphere in an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi; Bryan, Frank O.; Lindsay, Keith; Danabasoglu, Gokhan

    2011-04-01

    137Cs originating from global fallout is transported into the ocean interior by advection and diffusion, and the 137Cs concentration is reduced by radioactive decay. 137Cs concentrations in the global ocean can be simulated by global integration of the coarse-resolution Parallel Ocean Program to understand the mechanism of material transport in the ocean. We investigated the transport mechanism of 137Cs to the Southern Hemisphere using an ocean general circulation model (OGCM) and compared the simulated results with observations of 137Cs concentrations in the Southern Hemisphere. 137Cs was deposited on the ocean surface mainly as global fallout originating from atmospheric nuclear weapons testing since 1945, and the global distribution of cumulative 137Cs deposition has been reconstructed from global measurements of 137Cs in rain, seawater, and soil. We estimated the global distribution of 137Cs deposition from 1945 to 2003 using these distribution data, 137Cs deposition data observed at the Meteorological Research Institute, Tsukuba, Japan, from 1958 to 2003, and 137Cs deposition data for 1945-1957 estimated from ice-core data. We compared the simulated results with 137Cs sections from the South Pacific, Indian, and South Atlantic Oceans obtained during the BEAGLE2003 cruise in 2003. The simulated 137Cs sections were in good agreement with the observations, except for the effects of mesoscale eddies, which not be simulated by the model because of its coarse resolution. OGCMs can simulate the general pattern of 137Cs distribution in the world’s oceans and improve our understanding of the transport mechanism leading to those 137Cs distributions on a time scale of several decades. The model simulation results suggest that the 137Cs deposited in the North Pacific advected to the South Pacific and Indian Ocean, and then to the South Atlantic over about four decades. The North Pacific is thus an important source area of 137Cs to the Southern Hemisphere.

  14. Computational Exploration of the Surface Properties of Cs2Te5 Photoemissive Material

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Nemeth, Karoly; Harkay, Katherine; Spentzouris, Linda; Terry, Jeff

    2013-03-01

    Cs2Te is a broadly used photoemissive material due to its exceptionally high quantum efficiency (~ 20%). Our group has recently predicted that the acetylation of this material (Cs2TeC2) would lower its workfunction down to about 2.4 eV from ~ 3 eV, and preserve its high quantum efficiency. Such a modification is advantageous because visible light can be used in the operation of such a photoemissive device instead of ultraviolet light. To explore other variants of Cs2Te, we conducted DFT-based computational analysis of the photoemissive properties of Cs2Te5 which is a known phase of Cs and Te. Cs2Te5 attracted our attention for its rod-like 1D Te substructures embedded in a Cs matrix. This structure is similar to Cs2TeC2 as Cs2TeC2 contains TeC2 polymeric rods in a Cs matrix. In addition to that, exploration of various Cesium Telluride phases is necessary to better understand the working of Cs2Te photocathodes. We have calculated surface energies, workfunctions, and optical absorption spectra of several different surfaces of Cs2Te5. A comparison of the properties of various Cs2Te5 surfaces and their utilization in photoemissive devices will be presented.

  15. Characterization of Interlayer Cs+ in Clay Samples Using Secondary Ion Mass Spectrometry with Laser Sample Modification

    SciTech Connect

    G. S. Groenewold; R. Avci; C. Karahan; K. Lefebre; R. V. Fox; M. M. Cortez; A. K. Gianotto; J. Sunner; W. L. Manner

    2004-04-01

    Ultraviolet laser irradiation was used to greatly enhance the secondary ion mass spectrometry (SIMS) detection of Cs+ adsorbed to soil consisting of clay and quartz. Imaging SIMS showed that the enhancement of the Cs+ signal was spatially heterogeneous: the intensity of the Cs+ peak was increased by factors up to 100 for some particles but not at all for others. Analysis of standard clay samples exposed to Cs+ showed a variable response to laser irradiation depending on the type of clay analyzed. The Cs+ abundance was significantly enhanced when Cs+-exposed montmorillonite was irradiated and then analyzed using SIMS, which contrasted with the behavior of Cs+-exposed kaolinite, which displayed no Cs+ enhancement. Exposed illitic clays displayed modest enhancement of Cs+ upon laser irradiation, intermediate between that of kaolinite and montmorillonite. The results for Cs+ were rationalized in terms of adsorption to interlayer sites within the montmorillonite, which is an expandable phyllosilicate. In these locations, Cs+ was not initially detectable using SIMS. Upon irradiation, Cs+ was thermally redistributed, which enabled detection using SIMS. Since neither the illite nor the kaolinite is an expandable clay, adsorption to inner-layer sites does not occur, and either modest or no laser enhancement of the Cs+ signal is observed. Laser irradiation also produced unexpected enhancement of Ti+ from illite and kaolinite clays that contained small quantities of Ti, which indicates the presence of microscopic titanium oxide phases in the clay materials.

  16. Effect of graded hydration on the dynamics of an ion channel peptide: a fluorescence approach.

    PubMed

    Kelkar, Devaki A; Chattopadhyay, Amitabha

    2005-02-01

    Water plays an important role in determining the folding, structure, dynamics, and, in turn, the function of proteins. We have utilized a combination of fluorescence approaches such as the wavelength-selective fluorescence approach to monitor the effect of varying degrees of hydration on the organization and dynamics of the functionally important tryptophan residues of gramicidin in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate. Our results show that tryptophans in gramicidin, present in the single-stranded beta6.3 conformation, experience slow solvent relaxation giving rise to red-edge excitation shift (REES). In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of the reverse micelle. Interestingly, the extent of REES is found to be independent of the [water]/[surfactant] molar ratio (w(o)). We attribute this to heterogeneity in gramicidin tryptophan localization. Fluorescence intensity and mean fluorescence lifetime of the gramicidin tryptophans show significant reductions with increasing w(o) indicating sensitivity to increased polarity. Since the dynamics of hydration is related to folding, structure, and eventually function of proteins, we conclude that REES could prove to be a potentially sensitive tool to explore the dynamics of proteins under conditions of changing hydration. PMID:15542551

  17. Effect of Graded Hydration on the Dynamics of an Ion Channel Peptide: A Fluorescence Approach

    PubMed Central

    Kelkar, Devaki A.; Chattopadhyay, Amitabha

    2005-01-01

    Water plays an important role in determining the folding, structure, dynamics, and, in turn, the function of proteins. We have utilized a combination of fluorescence approaches such as the wavelength-selective fluorescence approach to monitor the effect of varying degrees of hydration on the organization and dynamics of the functionally important tryptophan residues of gramicidin in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate. Our results show that tryptophans in gramicidin, present in the single-stranded β6.3 conformation, experience slow solvent relaxation giving rise to red-edge excitation shift (REES). In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of the reverse micelle. Interestingly, the extent of REES is found to be independent of the [water]/[surfactant] molar ratio (wo). We attribute this to heterogeneity in gramicidin tryptophan localization. Fluorescence intensity and mean fluorescence lifetime of the gramicidin tryptophans show significant reductions with increasing wo indicating sensitivity to increased polarity. Since the dynamics of hydration is related to folding, structure, and eventually function of proteins, we conclude that REES could prove to be a potentially sensitive tool to explore the dynamics of proteins under conditions of changing hydration. PMID:15542551

  18. Measurements and Observations of 134Cs and 137Cs around a Nuclear Power Plant in Busan, South Korea

    NASA Astrophysics Data System (ADS)

    Chong, H. Y.; Park, J. N.; Kim, J. S.

    2015-12-01

    The purpose of this study is to know the change of representative species 134Cs and 137Cs of artificial radionuclides from the nuclear power station nearby for the last five years(2010~2014). The Kori Nuclear Power Plant, nuclear power facility located near Busan, is located in the south-east coast of Korea and about 21km north-east away from the Haeundae and about 25km south away from the Ulsan. An administrative district is Jangan-eup, Gijang-gun, Busan, Korea. A point was selected on the basis of the "Environmental Radiation Monitoring Plan around Nuclear Power Plants" and periodically samples were collected and analyzed. The samples were collected from the soils of the surface in the Wolnae area (NW, 1.7km). The soil samples were analyzed by gamma spectrometer with High Purity Germanium detector (HPGe) of 40% relative efficiency and were measured for 80,000 sec. As a results of soil analysis, 137Cs were detected in samples only selected in March 2013. The activity concentration of 137Cs founded in the soil sample was 0.513±0.052Bq/kg-dry. In the other hands, the concentration of 137Cs in the year 2010, 2011, 2012, and 2014 were below the minimum detectable activity (MDA). 40K, natural radionuclides which is widely present, was detected in the soil samples and other artificial radionuclides were not detected. The result of overall comparison of the environmental radioactivity survey around Kori Nuclear Power Plant for the last five years is that radioactivity levels are within average range. However, it is necessary to continue to carefully observe a fine change in regional or the monthly radiation concentration.

  19. A magnesium-carboxylate framework showing luminescent sensing for CS{sub 2} and nitroaromatic compounds

    SciTech Connect

    Wu, Zhao-Feng; Tan, Bin; Feng, Mei-Ling; Du, Cheng-Feng; Huang, Xiao-Ying

    2015-03-15

    A magnesium metal-organic framework compound, namely [NH{sub 2}(CH{sub 3}){sub 2}][Mg{sub 3}(NDC){sub 2.5}(HCO{sub 2}){sub 2}(DMF){sub 0.75}(H{sub 2}O){sub 0.25}]·1.25DMF·0.75H{sub 2}O (1) (H{sub 2}NDC=1,4-naphthalene dicarboxylic acid, DMF=N,N′-dimethylformamide), has been synthesized in solvothermal conditions and structurally characterized. It features a three-dimensionally anionic framework with aligned channels parallel to the b-axis. Luminescent studies indicated that it showed significant luminescence quenching for carbon disulfide (CS{sub 2}) and nitrobenzene after being activated, at a content of only 3.0 and 0.1 vol% in DMF, respectively. In addition, the activated sample showed sensitive luminescence quenching for 1,3,5-trinitrophenol with a low concentration of 5×10{sup −5} mol/L. - Graphical abstract: Presented is a microporous 3D Mg-MOF, namely, [NH{sub 2}(CH{sub 3}){sub 2}][Mg{sub 3}(NDC){sub 2.5}(HCO{sub 2}){sub 2}(DMF){sub 0.75}(H{sub 2}O){sub 0.25}]·1.25DMF·0.75H{sub 2}O (1) (H{sub 2}NDC=1,4-naphthalene dicarboxylic acid) showing significant luminescence quenching for carbon disulfide and nitrobenzene. - Highlights: • A microporous 3D metal-organic framework based on Mg. • The compound shows significant luminescence quenching for CS{sub 2} and nitrobenzene after activated. • The compound shows sensitive luminescence quenching for 1,3,5-trinitrophenol with a low concentration of 5×10{sup −5} mol/L.

  20. Blockade of ENaCs by Amiloride Induces c-Fos Activation of the Area Postrema

    PubMed Central

    Miller, Rebecca L.; Denny, George O.; Knuepfer, Mark M.; Kleyman, Thomas R.; Jackson, Edwin K.; Salkoff, Lawrence B.; Loewy, Arthur D.

    2015-01-01

    Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2 hours later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO). Tyrosine hydroxylase-immunoreactive (catecholamine) AP neurons were activated, but tryptophan hydroxylase-immunoreactive (serotonin) neurons were unaffected. The AP projects to FoxP2-expressing neurons in the dorsolateral pons which include the pre-locus coeruleus nucleus and external lateral part of the parabrachial nucleus; both cell groups were c-Fos activated following systemic injections of amiloride. In contrast, another AP projection target - the aldosterone-sensitive neurons of the nucleus tractus solitarius which express the enzyme 11-β-hydroxysteriod dehydrogenase type 2 (HSD2) were not activated. As shown here, plasma concentrations of amiloride used in these experiments were near or below the IC50 level for ENaCs. Amiloride did not induce changes in blood pressure, heart rate, or regional vascular resistance, so sensory feedback from the cardiovascular system was probably not a causal factor for the c-Fos activity seen in the CVOs. In summary, amiloride may have a dual effect on sodium homeostasis causing a loss of sodium via the kidney and inhibiting sodium appetite by activating the central satiety pathway arising from the AP. PMID:25557402

  1. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  2. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  3. Expression characteristics of CS-ACS1, CS-ACS2 and CS-ACS3, three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in cucumber (Cucumis sativus L.) fruit under carbon dioxide stress.

    PubMed

    Mathooko, F M; Mwaniki, M W; Nakatsuka, A; Shiomi, S; Kubo, Y; Inaba, A; Nakamura, R

    1999-02-01

    We investigated the expression pattern of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes, CS-ACS1, CS-ACS2 and CS-ACS3 in cucumber (Cucumis sativus L.) fruit under CO2 stress. CO2 stress-induced ethylene production paralleled the accumulation of only CS-ACS1 transcripts which disappeared upon withdrawal of CO2. Cycloheximide inhibited the CO2 stress-induced ethylene production but superinduced the accumulation of CS-ACS1 transcript. At higher concentrations, cycloheximide also induced the accumulation of CS-ACS2 and CS-ACS3 transcripts. In the presence of CO2 and cycloheximide, the accumulation of CS-ACS2 transcript occurred within 1 h, disappeared after 3 h and increased greatly upon withdrawal of CO2. Inhibitors of protein kinase and types 1 and 2A protein phosphatases which inhibited and stimulated, respectively, CO2 stress-induced ethylene production had little effect on the expression of these genes. The results presented here identify CS-ACS1 as the main ACC synthase gene responsible for the increased ethylene biosynthesis in cucumber fruit under CO2 stress and suggest that this gene is a primary response gene and its expression is under negative control since it is expressed by treatment with cycloheximide. The results further suggest that the regulation of CO2 stress-induced ethylene biosynthesis by reversible protein phosphorylation does not result from enhanced ACC synthase transcription. PMID:10202812

  4. Channel coding for satellite mobile channels

    NASA Astrophysics Data System (ADS)

    Wong, K. H. H.; Hanzo, L.; Steele, R.

    1989-09-01

    The deployment of channel coding and interleaving to enhance the bit-error performance of a satellite mobile radio channel is addressed for speech and data transmissions. Different convolutional codes (CC) using Viterbi decoding with soft decision are examined with interblock interleaving. Reed-Solomon (RS) codes with Berlekamp-Massey hard decision decoding or soft decision trellis decoding combined with block interleaving are also investigated. A concatenated arrangement employing RS and CC coding as the outer and inner coders, respectively, is used for transmissions via minimum shift keying over Gaussian and Rayleigh fading channels. For an interblock interleaving period of 2880 bits, a concatenated arrangement of an RS(48,36), over the Galois field GF(256) and punctured PCC(3,1,7) yielding an overall coding rate of 1/2, provides a coding gain of 42dB for a BER of 10 to the -6th, and an uncorrectable error detection probability of 1 - 10 to the -9th.

  5. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development

    PubMed Central

    Xu, Siguang; Liu, Cui; Ma, Yana; Ji, Hong-Long; Li, Xiumin

    2016-01-01

    The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics. PMID:27403419

  6. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development.

    PubMed

    Xu, Siguang; Liu, Cui; Ma, Yana; Ji, Hong-Long; Li, Xiumin

    2016-01-01

    The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na(+)) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics. PMID:27403419

  7. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih

    PubMed Central

    Baker, Emma C.; Layden, Michael J.; van Rossum, Damian B.; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps. PMID:26555239

  8. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.

    PubMed

    Baker, Emma C; Layden, Michael J; van Rossum, Damian B; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps. PMID:26555239

  9. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity.

    PubMed Central

    Gincel, Dan; Shoshan-Barmatz, Varda

    2002-01-01

    The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission. PMID:12496091

  10. Characterization of ion channels on the surface membrane of adult rat skeletal muscle.

    PubMed Central

    Chua, M; Betz, W J

    1991-01-01

    The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system. PMID:1714780

  11. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  12. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  13. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  14. TRP channels in disease.

    PubMed

    Jordt, S E; Ehrlich, B E

    2007-01-01

    The transient receptor potential (TRP) channels are a large family of proteins with six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging from sensing of thermal and chemical signals to reloading intracellular stores after responding to an extracellular stimulus. Mutations in TRPs are linked to pathophysiology and specific diseases. An understanding of the role of TRPs in normal physiology is just beginning; the progression from mutations in TRPs to pathophysiology and disease will follow. In this review, we focus on two distinct aspects of TRP channel physiology, the role of TRP channels in intracellular Ca2+ homeostasis, and their role in the transduction of painful stimuli in sensory neurons. PMID:18193640

  15. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  16. Channel in Kasei

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 November 2004 The Kasei Valles are a suite of very large, ancient outflow channels. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the youngest channel system in the Kasei Valles. Torrents of mud, rocks, and water carved this channel as flow was constricted through a narrow portion of the valley. Layers exposed by the erosion that created the channel can be seen in its walls. This 1.4 meters (5 feet) per pixel image is located near 21.1oN, 72.6oW. The picture covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  17. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  18. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  19. ENaCs and ASICs as therapeutic targets

    PubMed Central

    Qadri, Yawar J.; Rooj, Arun K.

    2012-01-01

    The epithelial Na+ channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity. PMID:22277752

  20. Ablation of CsI by XUV Capillary Discharge Laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  1. Pretreatment/Radionuclide Separations of Cs/Tc from Supernates

    SciTech Connect

    Thompson, M.C.

    1998-09-01

    Significant improvements have been made in ion exchange and solvent extraction materials and processes available for separation of the radionuclides cesium and technetium from both acid and alkaline waste solutions. New ion exchange materials and solvent extraction reagents are more selective for Cs over sodium and potassium than previous materials. The higher selectivity gives higher Cs capacity and improved separation processes. Technetium removal has been improved by new ion exchange resins, which have either improved capacity or easier elution. Several different crown ethers have been shown to extract pertechnetate ion selectively over other anions. Organic complexants in some waste solutions reduce pertechnetate ion and stabilize the reduced species. Selective oxidation allows conversion to pertechnetate without oxidation of the organic complexants.

  2. Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment.

    PubMed

    Rogatsky, Eduard; Jayatillake, Harsha; Goswami, Gayotri; Tomuta, Vlad; Stein, Daniel

    2005-11-01

    The development of a sensitive assay for the quantitative analysis of carbohydrates from human plasma using LC/MS/MS is described in this paper. After sample preparation, carbohydrates were cationized by Cs(+) after their separation by normal phase liquid chromatography on an amino based column. Cesium is capable of forming a quasi-molecular ion [M + Cs](+) with neutral carbohydrate molecules in the positive ion mode of electrospray ionization mass spectrometry. The mass spectrometer was operated in multiple reaction monitoring mode, and transitions [M + 133] --> 133 were monitored (M, carbohydrate molecular weight). The new method is robust, highly sensitive, rapid, and does not require postcolumn addition or derivatization. It is useful in clinical research for measurement of carbohydrate molecules by isotope dilution assay. PMID:16182559

  3. 137Cs desorption from lichen using acid solutions

    NASA Astrophysics Data System (ADS)

    Čučulović, A. A.; Veselinović, D.; Miljanić, S. S.

    2009-09-01

    Desoprtion of 137Cs from samples of Cetraria islandica lichen using HCl ( A) and HNO3 ( B) acid solutions with pH values from 2.00 to 3.75 was investigated. After five consecutive desorptions lasting 24 h it was shown that between 52.2% (solution B pH 3.28) and 72.2% (solution A pH 2.00) of 137Cs was desorbed from the lichen and the initial desorptions were the most successful. Lichen desorbed with the stated solutions did not undergo structural changes. The amount of absorbed water from solutions A and B, used for desorption from lichen, in relation to the starting volume (expressed in %) showed that solution concentration did not take place. Lichen act as neutralizing agents because the pH of the lichen thallus is higher than the pH value of the solution used

  4. Decontamination Efficiencies of Pot-Type Water Purifiers for 131I, 134Cs and 137Cs in Rainwater Contaminated during Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Higaki, Shogo; Hirota, Masahiro

    2012-01-01

    Rainwater was contaminated by a large release of radionuclides into the environment during the Fukushima Daiichi nuclear disaster. It became a matter of concern for Japan when several water purification plants detected 131I contamination in the drinking water. In the present study, the decontamination efficiency of two easily obtainable commercial water purifiers were examined for rainwater contaminated with 131I, 134Cs and 137Cs. The water purifiers removed 94.2–97.8% of the 131I and 84.2–91.5% of the 134Cs and 137Cs after one filtration. Seven filtrations removed 98.2–99.6% of the 131I and over 98.0% of the 134Cs and 137Cs. From a practical perspective, over the fourth filtrations were not needed because of no significant improvements after the third filtration. PMID:22615935

  5. Fracture channel waves

    SciTech Connect

    Nihei, K.T.; Yi, W.; Myer, L.R.; Cook, N.G.; Schoenberg, M.

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A{sub 0} mode) and demonstrates the ease with which a fracture channel wave can be generated and detected. {copyright} 1999 American Geophysical Union

  6. Mechanosensitive channels in microbes.

    PubMed

    Kung, Ching; Martinac, Boris; Sukharev, Sergei

    2010-01-01

    All cells, including microbes, detect and respond to mechanical forces, of which osmotic pressure is most ancient and universal. Channel proteins have evolved such that they can be directly stretched open when the membrane is under turgor pressure. Osmotic downshock, as in rain, opens bacterial mechanosensitive (MS) channels to jettison osmolytes, relieving pressure and preventing cell lysis. The ion flux through individual channel proteins can be observed directly with a patch clamp. MS channels of large and small conductance (MscL and MscS, respectively) have been cloned, crystallized, and subjected to biophysical and genetic analyses in depth. They are now models to scrutinize how membrane forces direct protein conformational changes. Eukaryotic microbes have homologs from animal sensory channels of the TRP superfamily. The MS channel in yeast is also directly sensitive to membrane stretch. This review examines the key concept that proteins embedded in the lipid bilayer can respond to the changes in the mechanical environment the lipid bilayer provides. PMID:20825352

  7. Protection from Extinction by Concurrent Presentation of an Excitor or an Extensively Extinguished CS

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2007-01-01

    One conditioned taste aversion experiment with rats assessed the impact of extinguishing a target conditioned stimulus (CS), S, in compound with a second CS, A, upon conditioned responding elicited by CS S when presented alone at test. Following initial conditioning treatment with CSs A and S, the experiment manipulated number of extinction trials…

  8. Novel Oxidation of Cyclosporin A: Preparation of Cyclosporin Methyl Vinyl Ketone (Cs-MVK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclosporin A (CsA) was converted into cyclosporin methyl vinyl ketone (Cs-MVK) by either a biocatalytic method utilizing 1-hydroxybenzotriazole-mediated laccase oxidation or by a chemical oxidation using t-butyl hydroperoxide and potassium ­periodate as co-oxidants. Cs-MVK is a novel, versatile sy...

  9. High gradient rf gun studies of CsBr photocathodes

    SciTech Connect

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  10. Measurement of the Kerr nonlinear refractive index of Cs vapor

    NASA Astrophysics Data System (ADS)

    Araújo, Michelle O.; de S. Cavalcante, Hugo L. D.; Oriá, Marcos; Chevrollier, Martine; de Silans, Thierry Passerat; Castro, Romeu; Moretti, Danieverton

    2013-12-01

    Atomic vapors are systems well suited for nonlinear optics studies but very few direct measurements of their nonlinear refractive index have been reported. Here we use the z-scan technique to measure the Kerr coefficient, n2, for a Cs vapor. Our results are analyzed through a four-level model, and we show that coherence between excited levels as well as cross-population effects contribute to the Kerr nonlinearity.

  11. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  12. Predictors of Urinary Morbidity in Cs-131 Prostate Brachytherapy Implants

    SciTech Connect

    Smith, Ryan P.; Jones, Heather A.; Beriwal, Sushil; Gokhale, Abhay; Benoit, Ronald

    2011-11-01

    Purpose: Cesium-131 is a newer radioisotope being used in prostate brachytherapy (PB). This study was conducted to determine the predictors of urinary morbidity with Cs-131 PB. Methods and Materials: A cohort of 159 patients underwent PB with Cs-131 at our institution and were followed by using Expanded Prostate Cancer Index Composite (EPIC) surveys to determine urinary morbidity over time. EPIC scores were obtained preoperatively and postoperatively at 2 and 4 weeks, and 3 and 6 months. Different factors were evaluated to determine their individual effect on urinary morbidity, including patient characteristics, disease characteristics, treatment, and dosimetry. Multivariate analysis of covariance was carried out to identify baseline determinants affecting urinary morbidity. Factors contributing to the need for postoperative catheterization were also studied and reported. Results: At 2 weeks, patient age, dose to 90% of the organ (D90), bladder neck maximum dose (D{sub max}), and external beam radiation therapy (EBRT) predicted for worse function. At 4 weeks, age and EBRT continued to predict for worse function. At the 3-month mark, better preoperative urinary function, preoperative alpha blockers, bladder neck D{sub max}, and EBRT predicted for worse urinary morbidity. At 6 months, better preoperative urinary function, preoperative alpha blockers, bladder neck D{sub max}, and EBRT were predictive of increased urinary problems. High bladder neck D{sub max} and poor preoperative urinary function predicted for the need for catheterization. Conclusions: The use of EBRT plus Cs-131 PB predicts for worse urinary toxicity at all time points studied. Patients should be cautioned about this. Age was a consistent predictor of worsened morbidity immediately following Cs-131 PB, while bladder D{sub max} was the only consistent dosimetric predictor. Paradoxically, patients with better preoperative urinary function had worse urinary morbidity at 3 and 6 months, consistent with

  13. Exoelectron emission at Cs surfaces by accelerated O 2 molecules

    NASA Astrophysics Data System (ADS)

    Böttcher, A.; Morgante, A.; Gießel, T.; Greber, T.; Ertl, G.

    1994-12-01

    The exoemission in the reaction of O 2 with Cs surfaces is found to depend strongly on the translational energy of the impinging O 2 molecules. Seeded beam experiments show that in the initial oxidation state exoemisson increases with increasing O 2 velocity. Above 0.5 eV of kinetic energy the increase is found to be proportional to exp (- v∗/ v) with a value v∗ of 1.6 × 10 4m/s.

  14. DAO Spectroscopic classification of ASASSN-16cs = SN 2016asf

    NASA Astrophysics Data System (ADS)

    Balam, D. D.; Graham, M. L.

    2016-03-01

    A spectrum was obtained of ASASSN-16cs (ATEL #8784) = 2016asf on March 08.32 UT using the 1.82-m Plaskett telescope (National Research Council of Canada) covering the range 380-710 nm (resolution 0.32 nm). Cross-correlation with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows 2016asf to be a normal type-Ia supernova approximately 10 days pre-maximum light.

  15. On the 1593 Å transition of CS2

    NASA Astrophysics Data System (ADS)

    McDiarmid, Ruth; Doering, J. P.

    1989-08-01

    The optical absorption spectrum of the 1593 Å transition of static (room temperature) and jet-cooled CS2 has been remeasured to determine the temperature dependence of the spectrum and to better characterize the experimental band shapes and intensities. Based on these results and others, current assignment controversies are resolved and the separation between the singlet and triplet components of the excited state, the excited state vibrational frequencies, and electronic and vibronic properties of the excited state are determined.

  16. High gradient rf gun studies of CsBr photocathodes

    NASA Astrophysics Data System (ADS)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-01

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV /m fields without breaking down or emitting dark current. They can operate in 2 ×10-9 torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  17. Free energy of formation of Cs{sub 3}PuCl{sub 6} and CsPu{sub 2}Cl{sub 7}

    SciTech Connect

    Willamson, M.A.; Kleinschmidt, P.D.

    1992-09-01

    The free energy, enthalpy and entropy of formation of the compounds Cs{sub 3}PuCl{sub 6} and CsPu{sub 2}Cl{sub 7} have been determined by measuring the sublimation pressures for the reactions: CsCl(s) = CsCl(g), 2/5 Cs{sub 3}PuCl{sub 6}(s) = 1/5 CsPu{sub 2}Cl{sub 7}(s) + CsCl(g), and CsPu{sub 2}Cl{sub 7}(s) = 2 PuCl{sub 3}(s) + CsCl(g). The pressures are measured using Knudsen effusion mass spectrometry over the temperature range 600 to 850 K. For the formation of Cs{sub 3}PuCl{sub 6} from CsCl and PuCl{sub 3}, {Delta}G{sub 298}{sup 0} = {minus}77.3 +/{minus} 8.5 kJ/mole, {Delta}H{sub 298}{sup 0} = {minus}82.1 +/{minus} 7.8 kJ mole, and {Delta}S{sup 298}{sup 0} = {minus}16.2 +/{minus} 10.9 J/K mole. For CsPu{sub 2}Cl{sub 7}, {Delta}G{sub 298}{sup 0} = {minus}39.4 +/{minus} 3.5 kJ/mole, {Delta}H{sub 298}{sup 0} = {minus}40.8 +/{minus} 3.2 kJ/mole, and {Delta}S{sub 298}{sup 0} = {minus}4.6 +/{minus} 4.2 J/K mole.

  18. Free energy of formation of Cs sub 3 PuCl sub 6 and CsPu sub 2 Cl sub 7

    SciTech Connect

    Willamson, M.A.; Kleinschmidt, P.D.

    1992-01-01

    The free energy, enthalpy and entropy of formation of the compounds Cs{sub 3}PuCl{sub 6} and CsPu{sub 2}Cl{sub 7} have been determined by measuring the sublimation pressures for the reactions: CsCl(s) = CsCl(g), 2/5 Cs{sub 3}PuCl{sub 6}(s) = 1/5 CsPu{sub 2}Cl{sub 7}(s) + CsCl(g), and CsPu{sub 2}Cl{sub 7}(s) = 2 PuCl{sub 3}(s) + CsCl(g). The pressures are measured using Knudsen effusion mass spectrometry over the temperature range 600 to 850 K. For the formation of Cs{sub 3}PuCl{sub 6} from CsCl and PuCl{sub 3}, {Delta}G{sub 298}{sup 0} = {minus}77.3 +/{minus} 8.5 kJ/mole, {Delta}H{sub 298}{sup 0} = {minus}82.1 +/{minus} 7.8 kJ mole, and {Delta}S{sup 298}{sup 0} = {minus}16.2 +/{minus} 10.9 J/K mole. For CsPu{sub 2}Cl{sub 7}, {Delta}G{sub 298}{sup 0} = {minus}39.4 +/{minus} 3.5 kJ/mole, {Delta}H{sub 298}{sup 0} = {minus}40.8 +/{minus} 3.2 kJ/mole, and {Delta}S{sub 298}{sup 0} = {minus}4.6 +/{minus} 4.2 J/K mole.

  19. CsPbCl 3 nanocrystals dispersed in the Rb 0,8Cs 0,2Cl matrix studied by far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Voloshynovskii, A.; Savchyn, P.; Karbovnyk, I.; Myagkota, S.; Cestelli Guidi, M.; Piccinini, M.; Popov, A. I.

    2009-04-01

    The comparative far-infrared spectroscopy studies of Rb 0.8Cs 0.2Cl and Rb 0.8Cs 0.2Cl containing CsPbCl 3 nanocrystals between 170 and 320 K are reported. The effect of cesium lead chloride nanocrystals on the phonon modes of the host matrix, particularly manifested in different temperature behavior of LO-TO splitting and the temperature dependence of high frequency dielectric constant, are demonstrated.

  20. ARIES-CS Magnet Conductor and Structure Evaluation

    SciTech Connect

    Wang, X. R.; Raffary, A. R.; Bromberg, L.; Schultz, J. H.; Ku, L. P.; Lyon, J. F.; Mulang, L.; Waganer, L.; El-GuebalyUniv. Wisco, L.; MartinUniv Wiscons, C.

    2008-10-01

    The ARIES-CS study focusing on the conceptual design and assessment of a compact stellarator power plant identified the important advantages and key issues associated with such a design. The coil configuration and structural support approach represent key design challenges, with the final design and material choices affected by a number of material and geometry constraints. This paper describes the design configuration and analysis and material choices for the ARIES-CS magnets and its structure. To meet aggressive cost and assembly/maintenance goals, the magnets are designed as lifetime components. Due to the very complex geometry, one of the goals of the study was to provide a robust operational design. This decision has significant implications on cost and manufacturing requirements. Concepts with both conventional and advanced superconductors have been explored. The coil structure design approach adopted is to wind all six modular coils of one field period in grooves in one monolithic coil structural shell (one per field period). The coil structural shells are then bolted together to form a strong structural shell to react the net radial forces. Extensive engineering analyses of the coil system have been performed using ANSYS shell and solid modeling. These include electromagnetic (EM) analyses to calculate the magnetic fields and EM forces and structural analyses to evaluate the structural responses and optimize the coil support system, which has a considerable impact on the cost of the ARIES-CS power plant.

  1. The USMLE Step 2 CS: Time for a change.

    PubMed

    Alvin, Matthew D

    2016-08-01

    The United States Medical Licensing Examination (USMLE(®)) Steps are a series of mandatory licensing assessments for all allopathic (MD degree) medical students in their transition from student to intern to resident physician. Steps 1, 2 Clinical Knowledge (CK), and 3 are daylong multiple-choice exams that quantify a medical student's basic science and clinical knowledge as well as their application of that knowledge using a three-digit score. In doing so, these Steps provide a standardized assessment that residency programs use to differentiate applicants and evaluate their competitiveness. Step 2 Clinical Skills (CS), the only other Step exam and the second component of Step 2, was created in 2004 to test clinical reasoning and patient-centered skills. As a Pass/Fail exam without a numerical scoring component, Step 2 CS provides minimal differentiation among applicants for residency programs. In this personal view article, it is argued that the current Step 2 CS exam should be eliminated for US medical students and propose an alternative consistent with the mission and purpose of the exam that imposes less of a burden on medical students. PMID:27007882

  2. An iterative hard thresholding algorithm for CS MRI

    NASA Astrophysics Data System (ADS)

    Rajani, S. R.; Reddy, M. Ramasubba

    2012-02-01

    The recently proposed compressed sensing theory equips us with methods to recover exactly or approximately, high resolution images from very few encoded measurements of the scene. The traditional ill-posed problem of MRI image recovery from heavily under-sampled κ-space data can be thus solved using CS theory. Differing from the soft thresholding methods that have been used earlier in the case of CS MRI, we suggest a simple iterative hard thresholding algorithm which efficiently recovers diagnostic quality MRI images from highly incomplete κ-space measurements. The new multi-scale redundant systems, curvelets and contourlets having high directionality and anisotropy, and thus best suited for curved-edge representation are used in this iterative hard thresholding framework for CS MRI reconstruction and their performance is compared. The κ-space under-sampling schemes such as the variable density sampling and the more conventional radial sampling are experimented at the same sampling rate and the effect of encoding scheme on iterative hard thresholding compressed sensing reconstruction is studied.

  3. The Rorschach Comprehensive System (CS) Psychometric Validity of Individual Variables.

    PubMed

    Tibon Czopp, Shira; Zeligman, Ruth

    2016-01-01

    Since the publication of the Rorschach Inkblot Method (Rorschach, 1921/1942 ), theorists, researchers, and practitioners have been debating the nature of the task, its conceptual foundation, and most important its psychometric properties. The validity of the Rorschach Comprehensive System (CS; Exner, 1974 , 2003; Exner & Weiner, 1995 ) has been supported by several meta-analyses that used different types of nontest external criterion for validating individual variables. In a recent meta-analysis, Mihura, Meyer, Dumitrascu, and Bombel ( 2013 ) found coefficients ranging from modest to excellent for most of the selected CS variables, with 13 of them reported as showing "little to no support." This article focuses on these variables. Although endorsing Mihura et al.'s mainly validating findings, we also suggest that the evidence presented for the little or no validity of these 13 variables is not quite compelling enough to warrant changing their definition or coding, or removing them from the system. We point to some issues concerning the description and interpretation of these variables and the appropriateness of the external criteria used for exploring their validity, and suggest considering these issues in further CS research. Implications of Mihura et al.'s meta-analysis for clinical and forensic practice are discussed. PMID:27153465

  4. Matched field localization based on CS-MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng

    2016-04-01

    The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.

  5. A (137)Cs erosion model with moving boundary.

    PubMed

    Yin, Chuan; Ji, Hongbing

    2015-12-01

    A novel quantitative model of the relationship between diffused concentration changes and erosion rates using assessment of soil losses was developed. It derived from the analysis of surface soil (137)Cs flux variation under persistent erosion effect and based on the principle of geochemistry kinetics moving boundary. The new moving boundary model improves the basic simplified transport model (Zhang et al., 2008), and mainly applies to uniform rainfall areas which show a long-time soil erosion. The simulation results for this kind of erosion show under a long-time soil erosion, the influence of (137)Cs concentration will decrease exponentially with increasing depth. Using the new model fit to the measured (137)Cs depth distribution data in Zunyi site, Guizhou Province, China which has typical uniform rainfall provided a good fit with R(2) = 0.92. To compare the soil erosion rates calculated by the simple transport model and the new model, we take the Kaixian reference profile as example. The soil losses estimated by the previous simplified transport model are greater than those estimated by the new moving boundary model, which is consistent with our expectations. PMID:26327366

  6. A retrieved upper limit of CS in Neptune's atmosphere

    NASA Astrophysics Data System (ADS)

    Iino, T.; Mizuno, A.; Nagahama, T.; Hirota, A.; Nakajima, T.

    2012-12-01

    We present our new result of CS(J=7-6), CO(J=3-2) observations of Neptune's atmosphere carried out with 10-m ASTE sub-mm waveband telescope on August 2010. As a result, while CS line was not detected with 6.4 mK 1-sigma r.m.s. noise level, CO line was detected as 282 mK with 9.7 mK noise level in antenna temperature scale. All of the observations were carried out with 512 MHz bandwidth and 500 kHz resolution, the total integration time for CS and CO were 23 m 40 s and 11 m 00 s, respectively. Abundances have been obtained from the comparison between the intensity and the synthesis spectra modeled by plane parallel 1-D radiative transfer code assuming various mixing ratio of each gas. The retrieved upper limit of CS mixing ratio was 0.03 ppb throughout tropopause to stratosphere. CO mixing ratio have been retrieved 1.0 ppm with errors +0.3 and -0.2 ppm, and the result was consistent with previous observation [1]. The origin of abundant CO in Neptune's atmosphere has been long discussed since its mixing ratio is 30 - 500 times higher than the value of other gas giants [2][3][4]. Assuming that all of CO is produced by thermochemical equilibrium process in deep interior of Neptune, required O/H value in interior is 440 times higher than the solar value [5]. For this reason, it is claimed that the external CO supply source, such as the impact of comet or asteroid, is also the possible candidates of the origin of CO along with the internal supply source [6]. In this observation, we searched the remnant gas of cometary impact in Neptune's atmosphere. Along with CO and HCN, CS could be one of the possible candidate of the remnant gas of cometary impact since CS was largely produced after the impact of comet SL/9 on Jupiter while many other major sulfur compounds have not been detected. Actually, derived < 0.00003 [CS]/[CO] value from our observations is 1000 times more smaller than the value of Jupiter of 0.037 [7]. Our observation result shows the depletion of CS in

  7. Elastic scattering of electrons from Rb, Cs and Fr atoms

    NASA Astrophysics Data System (ADS)

    Gangwar, R. K.; Tripathi, A. N.; Sharma, L.; Srivastava, R.

    2010-04-01

    Differential, integrated elastic, momentum-transfer and total cross sections as well as differential S, T and U spin parameters for scattering of electrons from rubidium, caesium and francium atoms in the incident energy range up to 300 eV are calculated using a relativistic Dirac equation. The projectile electron-target atom interaction is represented by both real and complex parameter-free optical potentials for obtaining the solution of a Dirac equation for scattered electrons. The Dirac-Fock wavefunctions have been used to represent the Rb, Cs and Fr target atoms. The results of differential cross sections and spin asymmetry parameter S for e-Rb and e-Cs have been compared with the available experimental and theoretical results. Detailed results are reported for the elastic scattering of electrons from the ground states of a francium atom for the first time in the wide range of incident electron energies. The results of electron-Fr elastic scattering show the similar features to those obtained in the case of e-Rb and e-Cs elastic scattering.

  8. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  9. Morphodynamics of Floodplain Chute Channels

    NASA Astrophysics Data System (ADS)

    David, S. R.; Edmonds, D. A.

    2015-12-01

    Floodplain chute channel formation is a key process that can enable rivers to transition from single-thread to multi-thread planform geometries. Floodplain chute channels are usually incisional channels connecting topographic lows across point bars and in the floodplain. Surprisingly, it is still not clear what conditions promote chute channel formation and what governs their morphodynamic behavior. Towards this end we have initiated an empirical and theoretical study of floodplain chute channels in Indiana, USA. Using elevation models and satellite imagery we mapped 3064 km2 of floodplain in Indiana, and find that 37.3% of mapped floodplains in Indiana have extensive chute channel networks. These chute channel networks consist of two types of channel segments: meander cutoffs of the main channel and chute channels linking the cutoffs together. To understand how these chute channels link meander cutoffs together and eventually create floodplain channel networks we use Delft3D to explore floodplain morphodynamics. Our first modeling experiment starts from a generic floodplain prepopulated with meander cutoffs to test under what conditions chute channels form.We find that chute channel formation is optimized at an intermediate flood discharge. If the flood discharge is too large the meander cutoffs erosively diffuse, whereas if the floodwave is too small the cutoffs fill with sediment. A moderately sized floodwave reworks the sediment surrounding the topographic lows, enhancing the development of floodplain chute channels. Our second modeling experiments explore how floodplain chute channels evolve on the West Fork of the White River, Indiana, USA. We find that the floodplain chute channels are capable of conveying the entire 10 yr floodwave (Q=1330m3/s) leaving the inter-channel areas dry. Moreover, the chute channels can incise into the floodplain while the margins of channels are aggrading, creating levees. Our results suggest that under the right conditions

  10. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101)

    SciTech Connect

    DE Kurath; DL Blanchard; JR Bontha

    2000-07-12

    The current BNFL Inc. flow sheet for the pretreatment of the Hanford High-Level tank wastes includes the use of Superlig{reg_sign} materials for the removal of {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium selective Superlig 632 and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The work contained in this report involves testing the Superlig 644 ion exchange material in a small dual column system (15 mL each; L/D = 5.7). The sample processed was approximately 2.5 L of diluted waste [Na{sup +}] = 4.6M from Tank 241-AW-101 (Envelope A). This waste had been previously clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested including resin bed preparation, loading, feed displacement water rinse, elution and resin regeneration. During the initial run, the lag column did not perform as expected so that the {sup 137}Cs concentration in the effluent composite was above the LAW treatment limits. This required a second column run with the partially decontaminated feed that was conducted at a higher flow rate. A summary of performance measures for both runs is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 143 for the lead column in run 1 is very similar to the value obtained by the Savannah River Technology Center during Phase 1A testing. The larger Cs {lambda} value for run 2 reflects a general trend for the effective capacity of the SL-644 material to increase as the cesium concentration decreases. The low value for the lag column during the first run indicates that it did not perform as expected. This may have been due to insufficient conditioning of the bed prior to the start of the loading step or to air in the bed that caused channeling. Equilibrium data obtained with batch contacts using the AW-101 Cs

  11. Three Homologous Subunits Form a High Affinity Peptide-gated Ion Channel in Hydra*

    PubMed Central

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D.; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J. P.; Holstein, Thomas W.; Gründer, Stefan

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na+ channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na+ channels (HyNaCs) 2–4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na+ channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na+ selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission. PMID:20159980

  12. [Rapid determination of 137Cs in environmental samples--purification of 137Cs by ammonium molybdophosphate column separation].

    PubMed

    Nonaka, N; Sato, K; Higuchi, H; Hamaguchi, H

    1976-10-01

    A rapid method for the determination of 137Cs in environmental samples was proposed. The principal technic employed in this study is based on column separation of 137Cs using ammonium molybdophosphate mixed with glass fiber to eliminate contribution of natural radionuclides such as 40K and 87Rb. The separation of cesium from potassium and rubidium was performed by the elution with 0.5m ammonium nitrate solution. The time required for separation of cesium was five hours as compared with the conventional cation exchange separation which required thirteen hours. The chemical yield of cesium carrier was normally more than 90 percent. The results obtained were compared with that by the conventional methods using Bio-Rex cation exchange separation and the good agreement between the two methods was obtained. PMID:1037401

  13. Thermoelectric properties of quaternary Uranium chalcogenides Cs2Pt3US6 and Cs2Pt3USe6

    NASA Astrophysics Data System (ADS)

    Shah, Fahad Ali; Azam, Sikander

    2014-08-01

    Electronic and thermoelectric behaviors of Cs2Pt3US6 and Cs2Pt3USe6 compounds have been revealed in the present work. The calculations have been performed with the help of full potential linearized augmented plane wave method (FP-LAPW). Engel-Vosko generalize gradient approximation was used for the exchange correlation energy. Thermoelectric properties were deal with generalized BoltzTraP program. Band structure calculation resulted in metallic nature of the materials. Calculated Fermi surfaces have been found to consist of two sheets. Bonding characteristics have studied with the help of electron charge density in (1 1 0) crystallographic plane. Seebeck coefficient, electric conductivity, power factor, figure of merit and thermal conductivity has been calculated.

  14. The cytosolic inactivation domains of BKi channels in rat chromaffin cells do not behave like simple, open-channel blockers.

    PubMed Central

    Solaro, C R; Ding, J P; Li, Z W; Lingle, C J

    1997-01-01

    Most BK-type voltage- and Ca(2+)-dependent K+ channels in rat chromaffin cells exhibit rapid inactivation. This inactivation is abolished by brief trypsin application to the cytosolic face of membrane patches. Here we examine the effects of cytosolic channel blockade and pore occupancy on this inactivation process, using inside-out patches and whole-cell recordings. Occupancy of a superficial pore-blocking site by cytosolic quaternary blockers does not slow inactivation. Occupancy of a deeper pore-blocking site by cytosolic application of Cs+ is also without effect on the onset of inactivation. Although the rate of inactivation is relatively unaffected by changes in extracellular K+, the rate of recovery from inactivation (at -80 and -140 mV with 10 microM Ca2+) is faster with increases in extracellular K+ but is unaffected by the impermeant ion, Na+. When tail currents are compared after repolarization, either while channels are open or after inactivation, no channel reopening is detectable during recovery from inactivation. BK inactivation appears to be mechanistically distinct from that of other inactivating voltage-dependent channels. Although involving a trypsin-sensitive cytosolic structure, the block to permeation does not appear to occur directly at the cytosolic mouth or inner half of the ion permeation pathway. PMID:9251798

  15. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  16. Mechanical stretch induces lung α-epithelial Na(+) channel expression.

    PubMed

    Mustafa, Shamimunisa B; Isaac, John; Seidner, Steven R; Dixon, Patricia S; Henson, Barbara M; DiGeronimo, Robert J

    2014-10-01

    ABSTRACT During fetal development physiological stretching helps drive lung growth and maturation. At birth, the α-subunit of the alveolar epithelial sodium channel (α-ENaC) is a critical factor in helping to facilitate clearance of lung fluid during the perinatal period. The effects of stretch, however, on α-ENaC expression in the fetal lung have yet to be elucidated. In an effort to explore this question, we used both an in vitro cell culture model that exposes cells to repetitive cyclic stretch (CS) as well as an in vivo preterm animal model of mechanical ventilation (MV). We found that murine lung epithelial (MLE-12) cells exposed to repetitive CS showed a significant rise in α-ENaC mRNA expression. Total and cell-surface protein abundance of α-ENaC were also elevated after 24 h of CS. Stretch-induced increases in α-ENaC expression were suppressed in the presence of either actinomycin D or cycloheximide. Pharmacological inhibition of the extracellular signal-regulated protein kinase (ERK1/2) did not attenuate stretch-induced increases in α-ENaC protein, whereas inhibition of p38 MAPK or c-Jun NH2-terminal kinase (JNK) did. In 29-day preterm rabbits, alveolar stretching secondary to postnatal MV markedly elevated fetal lung α-ENaC expression compared to spontaneously breathing counterparts. In summary, our findings indicate that mechanical stretch promotes α-ENaC expression. PMID:25058750

  17. Effect of selective sorptive agents on leachability of {sup 137}Cs and {sup 90}Sr

    SciTech Connect

    Spence, R.D.

    1998-06-01

    Decades ago it was established that illite effectively improves {sup 137}Cs leach resistance. Subsequently, illite has become a standard ingredient used at Oak Ridge National Laboratory in grouts developed to stabilize {sup 137}Cs. Adding illite improves {sup 137}Cs leach resistance by three orders of magnitude, and increasing the illite concentration can add another order of magnitude improvement. Adding crystalline silicotitanate, a selective sorptive agent developed more recently for {sup 137}Cs, not only improves {sup 137}Cs leach resistance by an order-of-magnitude over that obtained using illite but also improves {sup 85}Sr leach resistance by two orders of magnitude.

  18. Control of competence by related non-coding csRNAs in Streptococcus pneumoniae R6

    PubMed Central

    Laux, Anke; Sexauer, Anne; Sivaselvarajah, Dineshan; Kaysen, Anne; Brückner, Reinhold

    2015-01-01

    The two-component regulatory system CiaRH of Streptococcus pneumoniae is involved in β-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, virulence, and competence. The response regulator CiaR controls, among other genes, expression of five highly similar small non-coding RNAs, designated csRNAs. These csRNAs control competence development by targeting comC, encoding the precursor of the competence stimulating peptide, which is essential to initiate the regulatory cascade leading to competence. In addition, another gene product of the CiaR regulon, the serine protease HtrA, is also involved in competence control. In the absence of HtrA, five csRNAs could suppress competence, but one csRNA alone was not effective. To determine if all csRNAs are needed, reporter gene fusions to competence genes were used to monitor competence gene expression in the presence of different csRNAs. These experiments showed that two csRNAs were not enough to prevent competence, but combinations of three csRNAs, csRNA1,2,3, or csRNA1,2,4 were sufficient. In S. pneumoniae strains expressing only csRNA5, a surprising positive effect was detected on the level of early competence gene expression. Hence, the role of the csRNAs in competence regulation is more complex than anticipated. Mutations in comC (comC8) partially disrupting predicted complementarity to the csRNAs led to competence even in the presence of all csRNAs. Reconstitution of csRNA complementarity to comC8 restored competence suppression. Again, more than one csRNA was needed. In this case, even two mutated csRNAs complementary to comC8, csRNA1–8 and csRNA2–8, were suppressive. In conclusion, competence in S. pneumoniae is additively controlled by the csRNAs via post-transcriptional regulation of comC. PMID:26257773

  19. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  20. TRP Channels and Analgesia

    PubMed Central

    Premkumar, Louis S.; Abooj, Mruvil

    2013-01-01

    Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control etc. PMID:22910182

  1. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  2. MLKL forms cation channels

    PubMed Central

    Xia, Bingqing; Fang, Sui; Chen, Xueqin; Hu, Hong; Chen, Peiyuan; Wang, Huayi; Gao, Zhaobing

    2016-01-01

    The mixed lineage kinase domain-like (MLKL) protein is a key factor in tumor necrosis factor-induced necroptosis. Recent studies on necroptosis execution revealed a commitment role of MLKL in membrane disruption. However, our knowledge of how MLKL functions on membrane remains very limited. Here we demonstrate that MLKL forms cation channels that are permeable preferentially to Mg2+ rather than Ca2+ in the presence of Na+ and K+. Moreover, the N-terminal domain containing six helices (H1-H6) is sufficient to form channels. Using the substituted cysteine accessibility method, we further determine that helix H1, H2, H3, H5 and H6 are transmembrane segments, while H4 is located in the cytoplasm. Finally, MLKL-induced membrane depolarization and cell death exhibit a positive correlation to its channel activity. The Mg2+-preferred permeability and five transmembrane segment topology distinguish MLKL from previously identified Mg2+-permeable channels and thus establish MLKL as a novel class of cation channels. PMID:27033670

  3. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the

  4. CS1 is a novel topoisomerase IIα inhibitor with favorable drug resistance profiles

    SciTech Connect

    Shen, Yan; Chen, Wang; Zhao, Baobing; Hao, Huilin; Li, Zhenyu; Lu, Chunhua; Shen, Yuemao

    2014-10-24

    Highlights: • CS1 is a novel nonintercalating topoisomerase IIα poison. • CS1 shows potent in vitro and in vivo antitumor activity. • CS1 shows 6–10-fold less toxicity to normal cells compared with etoposide. • CS1 is not a substrate of P-glycoprotein and multidrug resistance irrelevant. - Abstract: DNA topoisomerase II (Topo II) is an essential nuclear enzyme and a validated target for anticancer agent screening. CS1, a novel 2-phenylnaphthalene, had potent cytotoxicity against nine tested tumor cell lines and showed 6–10-fold less toxicity against normal cell lines compared with etoposide. In addition, CS1 showed potential anti-multidrug resistance capabilities. kDNA decatenation, DNA relaxation and cleavage complex assays indicated that CS1 acted as a nonintercalating topoisomerase IIα (Topo IIα) inhibitor by stabilizing the DNA-Topo IIα cleavage complex. CS1 also induced DNA breaks in MDA-MB-231 cells evidenced by comet tails and the accumulation of γH2AX foci. The ability of CS1 in inducing DNA breaks mediated by Topo II resulted in G2/M phase arrest and apoptosis. Moreover, CS1 exhibited dramatic in vivo antitumor activity and lower toxicity compared with etoposide. This work supports the development of CS1 as a promising candidate for the treatment of cancer by targeting Topo IIα.

  5. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae.

    PubMed

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-06-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. PMID:25841115

  6. Kir4.1 K+ channels are regulated by external cations.

    PubMed

    Edvinsson, Johan M; Shah, Anish J; Palmer, Lawrence G

    2011-01-01

    The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K(+)-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K(+) concentrations ([K(+)]o). We found that Kir4.1 is regulated by K(+)o. Increased [K(+)]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K(+) from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K(+)o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs(+) and Ba(2+) substitute for K(+) and prevent deactivation of the channel in the absence of K(+)o. Cs(+) blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb(+) and NH4(+) permeate Kir4.1, only Rb(+) is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel's sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4(+) to permeate the channel without inducing these changes. PMID:21532341

  7. Characterization of apamin-sensitive Ca(2+)-activated potassium channels in human leukaemic T lymphocytes.

    PubMed

    Hanselmann, C; Grissmer, S

    1996-11-01

    1. The whole-cell recording mode of the patch-clamp technique was used to study the effect of extracellularly applied ions, toxins and drugs on voltage-independent, apamin-sensitive Ca(2+)-activated K+ channels, K(Ca), expressed in the Jurkat human leukaemic T cell line. 2. Extracellular Ba2+ and Sr+ produced a voltage-dependent block. The equilibrium dissociation constant of the Ba2+/K(Ca) channel complex increased e-fold for a 20 mV change of potential. Ba2+ block of Jurkat K(Ca) channels is therefore as steep as expected from the movement of a single divalent cation about half-way into the electric field of the membrane from the outside. 3. We determined the ion selectivity as well as the conductance of these channels. Calculated permeability ratios, PX/PK, for these K(Ca) channels were 1.0, 0.96, 0.26 and 0.53 for K+, Rb+, Cs+ and NH4+, respectively. Conductance ratios, gX/gK, for the same ions were 1.0, 1.0, 0.67 and 0.11, respectively. Most strikingly this channel can also carry significant current with Cs+ as current carrier. 4. Scyllatoxin (ScTX), a thirty-one amino acid peptide toxin, reduced current through these K(Ca) channels with a half-blocking concentration of approximately 0.3 nM independent of the pH. Other drugs that were able to reduce current through these channels include the classical calcium antagonists diltiazem and verapamil. In contrast, nifedipine, clotrimazole and kaliotoxin (100 nM) were unable to block current through these channels in Jurkat T cells. PMID:8930831

  8. Characterization of an inward rectifying cationic channel in onion guard cell vacuoles

    SciTech Connect

    Amodeo, G.; Zeiger, E.; Escobar, A. )

    1993-05-01

    Ion channels modulate the large ion fluxes across the guard cell plasma membrane and tonoplast that are required for stomatal movement. In contrast to the well known ion channels at the plasma membrane, those at the guard cell tonoplast have not been described. We used patch clamping with guard cell protoplasts (GCP) from Allium cepa cotyledons to study channels from isolated tonoplast patches. The GCPs, obtained after a brief digestion time, released their vacuoles when exposed to an osmotic shock in the presence of EGTA. In inside-out patches bathed in symmetrical solutions (200 mM KCl as predominant ion) a 207[plus minus]1.6 pS channel was the most frequently observed. The channel was activated at negative potential and showed a very large rectification in the open probability in the absence of divalent cations in the vacuolar side. Replacement of monovalent ions in the bath solution gave a sequence of selectivity: Na[sup +]>K[sup +]>Rb[sup +]>Cs[sup +]. Both conduction and gating were investigated at the single channel level. Pulse protocols were achieved for the kinetic analysis of the activation and deactivation of the ionic channel. Records at different potentials were averaged to generate the ensemble profile of the macroscopic conductance. The analysis showed that this channel has at least one closed state and two open states. We suggest that this predominant inward rectifying cationic channel has an important role in the modulation of fluxes between the vacuole and cytosol of guard cells.

  9. Cs and Ag co-incorporation in cubic silicon carbide

    NASA Astrophysics Data System (ADS)

    Londono-Hurtado, Alejandro; Heim, Andrew J.; Kim, Sungtae; Szlufarska, Izabela; Morgan, Dane

    2013-08-01

    Understanding the diffusion of fission products Cs and Ag through the SiC layer of TRISO particles is of particular interest for the progress and improvement of the High Temperature Gas Reactor (HTGR) technologies. Although the SiC layer acts as a barrier for fission products, there is experimental evidence of Cs and Ag diffusion through this layer. Previous considerations of Ag and Cs in SiC have focused on the element interacting with SiC, but have not considered the possibility of co-incorporation with another species. This paper presents a ab initio study on the co-incorporation of Cs and Ag with an anion (Iodine (I) or Oxygen (O)) into SiC as an alternative incorporation mechanism. It is found that for crystalline SiC, Ag co-incorporation with Iodine (I) and Oxygen (O) into SiC is not energetically favorable, while Cs co-incorporation with O is a preferred mechanism under some oxygen partial pressures of interest. However, Cs-O co-incorporation into the crystalline portion of SiC is not sufficiently strong to enable a Cs solubility that accounts for the Cs release observed in some experiments. Formation energies are a function of the chemical potential of Si and C. Calculations in this paper are performed for Si-rich and C-rich conditions, which constitute the boundaries for which the formation energies are allowed to vary. Calculation of the electronic potential shift is required in order to ensure that the Fermi level in a defected cell is defined with respect to the same valence band level in the undefected cell [21,23]. The potential shift is calculated by aligning low energy levels in the total density of states (DOS) [24]. Spurious interactions between images of the charged defects make it necessary to correct for unphysical electrostatic interactions. Both the monopole-monopole and monopole-quadrupole Makov Payne corrections are used for this purpose. However, strain and incompletely corrected electrostatic interactions can still lead to significant

  10. Chaos in quantum channels

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  11. Trp channels and itch.

    PubMed

    Sun, Shuohao; Dong, Xinzhong

    2016-05-01

    Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments. PMID:26385480

  12. Dequantization Via Quantum Channels

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas

    2016-08-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large-m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  13. Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels.

    PubMed

    Kumar, Y Pavan; Das, Rabindra Nath; Schütte, Ole Mathis; Steinem, Claudia; Dash, Jyotirmayee

    2016-06-01

    In nature, ion channels facilitate the transport of ions across biological membranes. The development of artificial ion channels that can mimic the fundamental functions of the natural ones would be of great importance to biological research. Artificial ion channels based on nucleoside derivatives are expected to be biocompatible with functions that can be controlled by the presence or absence of biologically relevant molecules. This protocol describes the detailed procedures for the synthesis and ion-channel activity of four diguanosine derivatives, each made up of two guanosine moieties separated by a covalent linker (e.g., PEG). The procedure describes the preparation of guanosine azide and guanosine alkine building blocks, as well as the preparation of four distinct synthetic linkers each containing either two alkynes or two azides. The diguanosine derivatives are synthesized using a 'one-pot' modular synthetic approach based on Cu(I)-catalyzed azide and alkyne cycloaddition. The ion-channel activity of these diguanosine derivatives for the transportation of ions across a phospholipid bilayer is investigated using voltage-clamp experiment. By using the PEG-containing diguanosine as an example, we describe how to determine the ion-channel activity in the presence of different metal ions (e.g., Na(+), K(+) and Cs(+)) and the inhibition of the ion-channel activity using the nucleobase cytosine. The approximate time frame for the synthesis of the PEG dinucleoside is 3 d, and that for the experiments to evaluate its ability to transport K(+) ion across a phospholipid bilayer is ∼8-10 h. PMID:27149327

  14. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  15. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  16. The neutron channeling phenomenon.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials. PMID:9463884

  17. Fukushima 137Cs at the base of planktonic food webs off Japan

    NASA Astrophysics Data System (ADS)

    Baumann, Z.; Fisher, N. S.; Gobler, C. J.; Buesseler, K. O.; George, J. A.; Breier, C. F.; Nishikawa, J.

    2015-12-01

    The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of suspended particulate matter (SPM) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (∼102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.

  18. Ion selectivity of porcine skeletal muscle Ca2+ release channels is unaffected by the Arg615 to Cys615 mutation.

    PubMed Central

    Shomer, N H; Mickelson, J R; Louis, C F

    1994-01-01

    The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel. PMID:7948678

  19. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.

    PubMed Central

    Burnashev, N; Villarroel, A; Sakmann, B

    1996-01-01

    1. Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) subunits (GluR-A or GluR-B) and kainate receptor (KAR) subunit (GluR-6) in their unedited (Q)- and edited (R)-forms were expressed in HEK 293 cells. To estimate the dimensions of the narrow portion of these channels, biionic reversal potentials for organic cations of different mean diameters were determined with Cs+ as the internal reference ion. 2. Homomeric channels assembled from Q-form subunits were cation selective. The relation between the relative permeability and the mean size of different organic cations suggests that the diameter of the narrow portion of Q-form channels is approximately 0.78 nm for AMPAR and 0.75 nm for KAR channels. 3. Homomeric channels assembled from R-form subunits were permeant for anions and cations. When probed with CsC1 gradients the relative chloride permeability (PC1/PCs) was estimated as 0.14 for GluR-B(R) and 0.74 for GluR-6(R)-subunit channels. The permeability versus mean size relation for large cations measured with the weakly permeant F- as anion, indicates that for the R-form KAR channels the apparent pore diameter is close to 0.76 nm. 4. Heteromeric AMPAR and KAR channels co-assembled from Q- and R-form subunits were cation selective. The diameter of the narrow portion of these channels is estimated to be in the range between 0.70 and 0.74 nm. 5. The results indicated that the diameters of the narrow portion of AMPAR and KAR channels of different subunit composition and of widely different ion selectivity are comparable. Therefore, the differences in the anion versus cation selectivity, in Ca2+ permeability and in channel conductance are likely to be determined by the difference in charge density of the channel. PMID:8910205

  20. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging.

    PubMed

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652