Science.gov

Sample records for granular jet formation

  1. Effect of finite container size on granular jet formation.

    PubMed

    von Kann, Stefan; Joubaud, Sylvain; Caballero-Robledo, Gabriel A; Lohse, Detlef; van der Meer, Devaraj

    2010-04-01

    When an object is dropped into a bed of fine, loosely packed sand, a surprisingly energetic jet shoots out of the bed. In this work we study the effect that boundaries have on the granular jet formation. We did this by (i) decreasing the depth of the sand bed and (ii) reducing the container diameter to only a few ball diameters. These confinements change the behavior of the ball inside the bed, the void collapse, and the resulting jet height and shape. We map the parameter space of impact with Froude number, ambient pressure, and container dimensions as parameters. From these results we propose an explanation for the thick-thin structure of the jet reported by several groups ([J. R. Royer, Nat. Phys. 1, 164 (2005)], [G. Caballero, Phys. Rev. Lett. 99, 018001 (2007)], and [J. O. Marston, Phys. Fluids 20, 023301 (2008)]). PMID:20481716

  2. Birth and growth of a granular jet.

    PubMed

    Royer, John R; Corwin, Eric I; Conyers, Bryan; Flior, Andrew; Rivers, Mark L; Eng, Peter J; Jaeger, Heinrich M

    2008-07-01

    The interaction between fine grains and the surrounding interstitial gas in a granular bed can lead to qualitatively new phenomena not captured in a simple, single-fluid model of granular flows. This is demonstrated by the granular jet formed by the impact of a solid sphere into a bed of loose, fine sand. Unlike jets formed by impact in fluids, this jet is actually composed of two separate components, an initial thin jet formed by the collapse of the cavity left by the impacting object stacked on top of a second, thicker jet which depends strongly on the ambient gas pressure. This complex structure is the result of an interplay between ambient gas, bed particles, and impacting sphere. Here we present the results of systematic experiments that combine measurements of the jet above the surface varying the release height, sphere diameter, container size, and bed material with x-ray radiography below the surface to connect the changing response of the bed to the changing structure of the jet. We find that the interstitial gas trapped by the low permeability of a fine-grained bed plays two distinct roles in the formation of the jet. First, gas trapped and compressed between grains prevents compaction, causing the bed to flow like an incompressible fluid and allowing the impacting object to sink deep into the bed. Second, the jet is initiated by the gravity driven collapse of the cavity left by the impacting object. If the cavity is large enough, gas trapped and compressed by the collapsing cavity can amplify the jet by directly pushing bed material upwards and creating the thick jet. As a consequence of these two factors, when the ambient gas pressure is decreased, there is a crossover from a nearly incompressible, fluidlike response of the bed to a highly compressible, dissipative response. Compaction of the bed at reduced pressure reduces the final depth of the impacting object, resulting in a smaller cavity and in the demise of the thick jet. PMID:18763946

  3. Impact dynamics of granular jets with noncircular cross sections.

    PubMed

    Cheng, Xiang; Gordillo, Leonardo; Zhang, Wendy W; Jaeger, Heinrich M; Nagel, Sidney R

    2014-04-01

    Using high-speed photography, we investigate two distinct regimes of the impact dynamics of granular jets with noncircular cross sections. In the steady-state regime, we observe the formation of thin granular sheets with anisotropic shapes and show that the degree of anisotropy increases with the aspect ratio of the jet's cross section. Our results illustrate the liquidlike behavior of granular materials during impact and demonstrate that a collective hydrodynamic flow emerges from strongly interacting discrete particles. We discuss the analogy between our experiments and those from the Relativistic Heavy Ion Collider, where similar anisotropic ejecta from a quark-gluon plasma have been observed in heavy-ion impact. PMID:24827235

  4. Subharmonic instability of a self-organized granular jet

    PubMed Central

    Kollmer, J. E.; Pöschel, T.

    2016-01-01

    Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving. PMID:27001207

  5. Subharmonic instability of a self-organized granular jet

    NASA Astrophysics Data System (ADS)

    Kollmer, J. E.; Pöschel, T.

    2016-03-01

    Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving.

  6. Craters and Granular Jets Generated by Underground Cavity Collapse.

    PubMed

    Loranca-Ramos, F E; Carrillo-Estrada, J L; Pacheco-Vázquez, F

    2015-07-10

    We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation. PMID:26207506

  7. Craters and Granular Jets Generated by Underground Cavity Collapse

    NASA Astrophysics Data System (ADS)

    Loranca-Ramos, F. E.; Carrillo-Estrada, J. L.; Pacheco-Vázquez, F.

    2015-07-01

    We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation.

  8. Contraction of an inviscid swirling liquid jet: Comparison with results for a rotating granular jet.

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.

    2007-11-01

    In honor of the tercentenary of Leonhard Euler, we report a new solution of the Euler equations for the shape of an inviscid rotating liquid jet emanating from a tube of inner radius R0 aligned with gravity. Jet contraction is dependent on the exit swirl parameter χ0 = R0 φ0/U0 where φ0 and U0 are the uniform rotation rate and axial velocity of the liquid at the exit. The results reveal that rotation reduces the rate of jet contraction. In the limit χ0-> 0 one recovers the contraction profile for a non-rotating jet and the limit χ0->∞ gives a jet of constant radius. In contrast, experiments and a kinematic model for a rotating non-cohesive granular jet show that it expands rather than contracts when a certain small angular velocity is exceeded. The blossoming profiles are parabolic in nature. The model predicts a jet of uniform radius for χ0-> 0 and a jet with an initially horizontal trajectory in the limit χ0->∞.

  9. Jet-Induced Star Formation

    SciTech Connect

    van Breugel, W; Fragile, C; Anninos, P; Murray, S

    2003-12-16

    Jets from radio galaxies can have dramatic effects on the medium through which they propagate. We review observational evidence for jet-induced star formation in low ('FR-I') and high ('FR-II') luminosity radio galaxies, at low and high redshifts respectively. We then discuss numerical simulations which are aimed to explain a jet-induced starburst ('Minkowski's Object') in the nearby FR-I type radio galaxy NGC 541. We conclude that jets can induce star formation in moderately dense (10 cm{sup -3}), warm (10{sup 4} K) gas; that this may be more common in the dense environments of forming, active galaxies; and that this may provide a mechanism for 'positive' feedback from AGN in the galaxy formation process.

  10. Still Water: Dead Zones and Collimated Ejecta from the Impact of Granular Jets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Turlier, Hervé; Guttenberg, Nicholas; Zhang, Wendy W.; Nagel, Sidney R.

    2013-10-01

    When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.

  11. Profiles of flow discharged from vertical rotating pipes: A contrast between inviscid liquid and granular jets

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.; Medina, A.

    2008-11-01

    The stability of viscous rotating liquid columns and their application to rotating viscous liquid jets aligned under gravity is reviewed. Experiments on stable viscous fluid flow discharged from rotating vertical pipes exhibit very weak contraction. We present an elementary liquid jet analysis to understand this phenomenon. Indeed, our inviscid model of a slender rotating inviscid liquid jet shows that rotation suppresses contraction. Next we study the comparable problem for granular flow. Our model for noncohesive granular flow emanating from a vertical pipe rotating about its central axis, valid for sufficiently large rotation rate, shows that the granular profiles blossom rather than contract. The profiles of both the liquid and granular jets depend on the same dimensionless parameters—an exit Froude number Fr0 and an exit swirl parameter χ0. The limitations of both models are discussed. Experimental data for granular jet profiles compare well with the collision-free granular flow model in its range of applicability. A criterion for the rotation rate at which particles adjacent to the inner wall of the rotating pipe cease to flow is also given and compared to experiment.

  12. Relativistic jets and star formation

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey Vincent; Mukherjee, Dipanjan; Wagner, Alex; Slatyer Sutherland, Ralph

    2015-08-01

    We are conducting simulations of jets interacting with molecular and atomic gas on scales of a few kpc in forming galaxies. Competing processes, such as the dispersion of gas in the galaxy and star formation in the high-pressure environment determine whether positive or negative feedback predominates. We shall present our new simulations including an assessment of these different effects. Our simulations also predict the velocity and velocity dispersion of atomic and molecular gas in galaxies, which are undergoing interaction with relativistic jets. These results are of interest to radio and optical spectral imaging observations of galaxies undergoing feedback.

  13. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials. PMID:24483561

  14. Denitrification accelerates granular sludge formation in sequencing batch reactors.

    PubMed

    Suja, E; Nancharaiah, Y V; Krishna Mohan, T V; Venugopalan, V P

    2015-11-01

    In this study, the role of denitrification on aerobic granular sludge formation in sequencing batch reactors (SBRs) was investigated. Formation of aerobic granular sludge was faster in SBRs fed with varying concentrations of nitrate or nitrite as compared to control, which received no nitrate or nitrite in the feed. The majority of the fed nitrate or nitrite was denitrified in the anoxic static fill phase, prior to aerobic reaction phase. Sludge characterization showed accumulation of calcium and chemical signature of calcium carbonate in the nitrate-fed SBRs. Feeding of sodium nitroprusside, a known nitric oxide (NO) donor, enhanced aggregation, production of extracellular polymeric substances and formation of aerobic granular sludge. The results support the hypothesis that denitrification facilitates cell aggregation and accelerates aerobic sludge granulation through NO signaling and CaCO3 formation. Nitrate or other intermediates of heterotrophic denitrification, therefore, have a positive effect on aerobic granulation in SBRs. PMID:26218539

  15. Pattern formation in wet granular matter under vertical vibrations.

    PubMed

    Butzhammer, Lorenz; Völkel, Simeon; Rehberg, Ingo; Huang, Kai

    2015-07-01

    Experiments on a thin layer of cohesive wet granular matter under vertical vibrations reveal kink-separated domains that collide with the container at different phases. Due to the strong cohesion arising from the formation of liquid bridges between adjacent particles, the domains move collectively upon vibrations. Depending on the periodicity of this collective motion, the kink fronts may propagate, couple with each other, and form rotating spiral patterns in the case of period tripling or stay as standing wave patterns in the case of period doubling. Moreover, both patterns may coexist with granular "gas bubbles"-phase separation into a liquidlike and a gaslike state. Stability diagrams for the instabilities measured with various granular layer mass m and container height H are presented. The onsets for both types of patterns and their dependency on m and H can be quantitatively captured with a model considering the granular layer as a single particle colliding completely inelastically with the container. PMID:26274155

  16. BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS

    SciTech Connect

    Fendt, Christian; Sheikhnezami, Somayeh E-mail: nezami@mpia.de

    2013-09-01

    We investigate the jet launching from accretion disks, in particular the formation of intrinsically asymmetric jet/counter jet systems. We perform axisymmetric MHD simulations of the disk-jet structure on a bipolar computational domain covering both hemispheres. We apply various models such as asymmetric disks with (initially) different scale heights in each hemisphere, symmetric disks into which a local disturbance is injected, and jets launched into an asymmetric disk corona. We consider both a standard global magnetic diffusivity distribution and a novel local diffusivity model. Typical disk evolution first shows substantial disk warping and then results in asymmetric outflows with a 10%-30% mass flux difference. We find that the magnetic diffusivity profile is essential for establishing a long-term outflow asymmetry. We conclude that bipolar asymmetry in protostellar and extragalactic jets can indeed be generated intrinsically and maintained over a long time by disk asymmetries and the standard jet launching mechanism.

  17. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, X.; Narteau, C.; Rozier, O.

    2012-12-01

    Polydisperse granular materials are ubiquitous in the field of geomorphology. Nevertheless, it remains a challenge to address the impact of segregation, stratification and mixing on landscape dynamics and sediment transport. Here, we study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. Not surprisingly, we conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  18. Explosive formation of coherent particle jets

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ruel, J.-F.; Zarei, Z.; Goroshin, S.; Gregoire, Y.; Zhang, F.; Milne, A.; Longbottom, A.

    2014-05-01

    A coherent jet of particles may be generated by accelerating a conical volume of particles by detonating a layer of explosive lining the outside of the cone. Experiments have been carried out to determine the dependence of the velocity history and coherency of the jet on the particle properties and the ratio of the masses of the particles and explosive. Steel particles form thin, coherent jets, whereas lighter glass particles lead to more diffuse jets. For steel particles, the cone angle had little effect on the coherency of the jet. The efficiency of the conversion of chemical to kinetic energy is explored by comparing the experimental jet velocity with the velocity predicted from a formulation of the Gurney method for a conical geometry. The effect of particle density and cone angle on the jet formation and development was also investigated using a multimaterial hydrocode. The simulations give insight into the extent of the deformation of the particle bed in the early stages of explosive particle dispersal.

  19. Time-Dependence and Pattern Formation in Flowing Granular Media.

    NASA Astrophysics Data System (ADS)

    Baxter, George William, III

    1990-01-01

    We study the time dependence and pattern formation of gravity driven flows of granular media in three experiments. In three dimensional flows of sand, the normal stress on the wall of a conical hopper is measured. There is no evidence of characteristic time scales predicted by a linear stability analysis of a current continuum theory of granular media. Instead, the signal is characterized by a power law power spectrum, and the time variation of the normal stress obeys a scaling law consistent with fractional Brownian motion with H ~ 0.2. As one of the best examples to date of fractional Brownian motion in a physical experiment, this provides a unique opportunity for a study of the theory's application. In digital subtraction radiography studies of sand flow through a thin (nearly two dimensional) wedge, density waves are found. The formation and motion of these depends on the geometry of the wedge and the roughness of the sand grains. The waves form in rough sand but not in smooth sand of the same approximate size, demonstrating that grain structure has a dramatic effect on the flow. Also, the position of stagnant regions along the sides of the wedge is found to scale as a power law of the wedge angle. Neither the density waves nor the position of the stagnant regions are predicted by current theories. Finally, a cellular automata model is proposed to model the two dimensional flow of ellipsoidal grains (such as grass seed) through a wedge. By including particle shape and orientation as degrees of freedom, this model is able to capture many features of real physical flows. In sum, these experiments demonstrate that flows of even simple materials like sand or grass seed contain time dependent patterns that are not predicted by current theoretical models. This demonstrates the need to include particle structure and orientation. Finally, the cellular automata model shows that even relatively simple models which include these added degrees of freedom can reproduce the

  20. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2013-04-01

    We study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. We conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  1. Explosive formation of coherent particle jets

    NASA Astrophysics Data System (ADS)

    Frost, David; Ruel, Jean-Frederic; Zarei, Zouya; Goroshin, Sam; Gregoire, Yann; Zhang, Fan; Milne, Alec; Longbottom, Aaron

    2013-06-01

    A high-speed jet of solid particles may be formed by detonating an explosive layer lining the outside of a conically-shaped volume of particles. Experiments have been carried out to determine the velocity history and the coherency of a particle jet formed using this shaped-charge arrangement. Important parameters include the cone angle, the ratio of the masses of the explosive and particles, and the particle size and density. Dense particles (e.g., iron) form thin, stable, coherent jets, whereas lighter particles (e.g., glass or Al) lead to more diffuse jets. The jet velocities observed experimentally were close to the predictions from a Gurney velocity formulation for conical geometry. The effects of cone angle and particle density on the jet formation and development were explored with calculations using a multimaterial hydrocode. The simulations indicate that the converging shock and Mach disk within the particle bed have a strong influence on the uniformity of the particle density field. With iron particles, the particle volume remains coherent whereas for glass particles, during the particle acceleration phase, the shock interactions within the particle bed cause the particles to be concentrated in a thin shell surrounding a low density region.

  2. Pattern formation in vibrated beds of dry and wet granular materials

    NASA Astrophysics Data System (ADS)

    Chuan Lim, Eldin Wee

    2014-01-01

    The Discrete Element Method was coupled with a capillary liquid bridge force model for computational studies of pattern formation in vibrated granular beds containing dry or wet granular materials. Depending on the vibration conditions applied, hexagonal, stripes, or cellular pattern was observed in the dry vibrated granular bed. In each of these cases, the same hexagonal, stripes, or cellular pattern was also observed in the spatial distribution of the magnitudes of particle-particle collision forces prior to the formation of the corresponding actual pattern in physical distributions of the particles. This seemed to suggest that the pattern formation phenomenon of vibrated granular bed systems might be the result of a two-dimensional Newton's cradle effect. In the presence of a small amount of wetness, these patterns were no longer formed in the vibrated granular beds under the same corresponding set of vibration conditions. Despite the relatively much weaker capillary forces arising from the simulated liquid bridges between particles compared with particle-particle collision forces, the spatial distributions of these collision forces, physical distributions of particles, as well as time profiles of average collision forces were altered significantly in comparison with the corresponding distributions and profiles observed for the dry vibrated granular beds. This seemed to suggest the presence of a two-dimensional Stokes' cradle effect in these wet vibrated granular bed systems which disrupted the formation of patterns in the wet granular materials that would have been observed in their dry counterparts.

  3. Formation and inflammation of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Chen, D. Y.; Oppenheim, A. K.

    1984-01-01

    The formation and inflammation of a planar, turbulent jet in an incompressible medium is modeled numerically by the use of the random vortex method amended by a flame propagation algorithm. The results demonstrate the dominant influence of turbulent eddies and their interactions upon the development of the jet. Its growth is shown to consist of three stages: formation of small eddies, pairing of eddies with the same sign of circulation, and pairing of eddies of opposite signs. On this basis a number of features of the jet mechanism are revealed, namely penetration, engulfment, entrainment, and intermittency. Two cases of inflammation are considered. In one, the jet is ignited at the center of the orifice, the solution tracing its own inflammation. In the other, combustion is initiated across its full cross section, the results modeling the action of a turbulent torch as it spreads the flame into the combustible surroundings. In both cases the flow field is still dominated by the turbulent eddies and their interactions. However, the coherence among them is encumbered as a consequence of expansion due to the exothermicity of the combustion process.

  4. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge.

    PubMed

    Pronk, M; Abbas, B; Al-Zuhairy, S H K; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2015-06-01

    When aerobic granular sludge is applied for industrial wastewater treatment, different soluble substrates can be present. For stable granular sludge formation on volatile fatty acids (e.g. acetate), production of storage polymers under anaerobic feeding conditions has been shown to be important. This prevents direct aerobic growth on readily available chemical oxygen demand (COD), which is thought to result in unstable granule formation. Here, we investigate the impact of acetate, methanol, butanol, propanol, propionaldehyde, and valeraldehyde on granular sludge formation at 35 °C. Methanogenic archaea, growing on methanol, were present in the aerobic granular sludge system. Methanol was completely converted to methane and carbon dioxide by the methanogenic archaeum Methanomethylovorans uponensis during the 1-h anaerobic feeding period, despite the relative high dissolved oxygen concentration (3.5 mg O2 L(-1)) during the subsequent 2-h aeration period. Propionaldehyde and valeraldehyde were fully disproportionated anaerobically into their corresponding carboxylic acids and alcohols. The organic acids produced were converted to storage polymers, while the alcohols (produced and from influent) were absorbed onto the granular sludge matrix and converted aerobically. Our observations show that easy biodegradable substrates not converted anaerobically into storage polymers could lead to unstable granular sludge formation. However, when the easy biodegradable COD is absorbed in the granules and/or when the substrate is converted by relatively slow growing bacteria in the aerobic period, stable granulation can occur. PMID:25616527

  5. String Mechanism for Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Dyadechkin, S. A.; Semenov, V. S.; Punsly, B.; Biernat, H. K.

    Here we present our latest studies of relativistic jet formation in the vicinity of a rotating black hole where the reconnection process has been taken into account. In order to simplify the problem, we use Lagrangian formalism and develop a method which enables us to consider a magnetized plasma as a set of magnetic flux tubes [5,6]. Within the limits of the Lagrangian approach, we perform numerical simulations of the flux tube (nonlinear string) behavior which clearly demonstrates the process of relativistic jet formation in the form of outgoing torsional nonlinear aves. It turns out that the jet is produced deep inside the ergosphere where the flux tube takes away spinning energy from the black hole due to the nonlocal Penrose process [2]. This is similar to the Blandford-Znajek (BZ) mechanism to some extent [8], however, the string mechanism is essentially time dependent. It is shown that the leading part of the accreting tube gains negative energy and therefore has to stay in the ergosphere forever. Simultaneously, another part of the tube propagates along the spinning axis away from the hole with nearly the speed of light. As a result, the tube is continuously stretching and our mechanism is essentially time dependent. Obviously, such process cannot last infinitely long and we have to take into account the reconnection process. Due to reconnection, the topology of the flux tube is changed and it gives rise to a plasmoid creation which propagates along spin axis of the hole with relativistic speed carrying off the energy and angular momentum away from the black hole.

  6. The formation of small scale granularities in latex particles

    NASA Technical Reports Server (NTRS)

    Zukoski, C. F.; Saville, D. A.

    1985-01-01

    A series of latices were synthesized using emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonic acid. The final latex particles display an internal granular structure which can be ascribed to the primary particles present in the early stages of particle growth. In these systems, the primary particles appear to have maintained their integrity during the swelling and growth stage.

  7. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.

    1996-05-01

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced. {copyright} {ital 1996 American Institute of Physics.}

  8. Modeling gas formation and mineral precipitation in a granular iron column.

    PubMed

    Jeen, Sung-Wook; Amos, Richard T; Blowes, David W

    2012-06-19

    In granular iron permeable reactive barriers (PRBs), hydrogen gas formation, entrapment and release of gas bubbles, and secondary mineral precipitation have been known to affect the permeability and reactivity. The multicomponent reactive transport model MIN3P was enhanced to couple gas formation and release, secondary mineral precipitation, and the effects of these processes on hydraulic properties and iron reactivity. The enhanced model was applied to a granular iron column, which was studied for the treatment of trichloroethene (TCE) in the presence of dissolved CaCO(3). The simulation reasonably reproduced trends in gas formation, secondary mineral precipitation, permeability changes, and reactivity changes observed over time. The simulation showed that the accumulation of secondary minerals reduced the reactivity of the granular iron over time, which in turn decreased the rate of mineral accumulation, and also resulted in a gradual decrease in gas formation over time. This study provides a quantitative assessment of the evolving nature of geochemistry and permeability, resulting from coupled processes of gas formation and mineral precipitation, which leads to a better understanding of the processes controlling the granular iron reactivity, and represents an improved method for incorporating these factors into the design of granular iron PRBs. PMID:22540940

  9. GRMHD Simulations of Jet Formation with RAISHIN

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Hartmann, D. H.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high-resolution shock capturing scheme. Numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. We describe code performance on some test problems in both special and general relativity. Our new GRMHD code has proven to be accurate to second order and has successfully passed several numerical test problems including highly relativistic and magnetized tests in both special and general relativity. We have performed several simulations of non-rotating and rotating black hole systems with a geometrically thin accretion disk. The simulations show the formation of jets driven by the Lorentz force and the gas pressure. It appears that the rotating black hole creates an additional faster, and more collimated outflow inside a broader, slower outflow that is also generated by the rotating accretion disk around a non-rotating black hole. The kinematic jet structure could thus be a sensitive function of black hole rotation.

  10. Dilute wet granular particles: Nonequilibrium dynamics and structure formation

    NASA Astrophysics Data System (ADS)

    Ulrich, Stephan; Aspelmeier, Timo; Zippelius, Annette; Roeller, Klaus; Fingerle, Axel; Herminghaus, Stephan

    2009-09-01

    We investigate a gas of wet granular particles covered by a thin liquid film. The dynamic evolution is governed by two-particle interactions, which are mainly due to interfacial forces in contrast to dry granular gases. When two wet grains collide, a capillary bridge is formed and stays intact up to a certain distance of withdrawal when the bridge ruptures, dissipating a fixed amount of energy. A freely cooling system is shown to undergo a nonequilibrium dynamic phase transition from a state with mainly single particles and fast cooling to a state with growing aggregates such that bridge rupture becomes a rare event and cooling is slow. In the early stage of cluster growth, aggregation is a self-similar process with a fractal dimension of the aggregates approximately equal to Df≈2 . At later times, a percolating cluster is observed which ultimately absorbs all the particles. The final cluster is compact on large length scales, but fractal with Df≈2 on small length scales.

  11. Formation and Collimation of Jets by Magnetic Forces

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kudoh, T.

    1999-12-01

    Recent development of theory and numerical simulations of magnetically driven jets from young stellar objects is reviewed. Topics to be discussed are: 1) Acceleration of jets: Magnetically driven jets are accelerated by both magneto-centrifugal force and magnetic pressure force. The former (latter) becomes important when magnetic field is strong (weak). The basic properties (i.e., terminal velocity and mass flux) of jets accelerated by these two forces is discussed in detail. We also discuss the condition of production of jets, which is applied to answer the following question: When do jets begin to be accelerated in the course of star formation ? 2) Collimation of jets: Magnetically driven jets can in principle be collimated by pinching effect of toroidal magnetic fields. Recently, some controvertial arguments have been put forward: Are all field lines (and jets) really collimated by pinching effect ? The current status of this issue is discussed. 3) Protostellar flares: Based on theory and numerical simulations, it has recently been recognized that the formation of jets has a close connection with occurrence of flares (possibly due to magnetic reconnection). We discuss how and when magnetic reconnection occurs in relation to jets.

  12. Aerobic granular sludge formation for high strength agro-based wastewater treatment.

    PubMed

    Abdullah, Norhayati; Ujang, Zaini; Yahya, Adibah

    2011-06-01

    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment. PMID:21524907

  13. Granular-front formation in free-surface flow of concentrated suspensions.

    PubMed

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J

    2015-11-01

    A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front. PMID:26651686

  14. Granular-front formation in free-surface flow of concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-11-01

    A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.

  15. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting

    2014-06-16

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  16. High-Speed Jet Formation after Solid Object Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2009-01-01

    A circular disc hitting a water surface creates an impact crater which after collapse leads to a vigorous jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway down the cavity. Two fast sharp-pointed jets are observed shooting up- and downwards from the closure location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern. This flow, however, is not the mechanism feeding the jets. Using high-speed imaging and numerical simulations we show that jetting is fed by the local flow around the base of the jet, which is forced by the colliding cavity walls. We show how the well-known theory of a collapsing void (using a line of sinks on the symmetry axis) can be continued beyond pinch-off to obtain a new and quantitative model for jet formation which agrees well with numerical and experimental data.

  17. Stellar signatures of AGN-jet-triggered star formation

    SciTech Connect

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-12-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  18. Spray formation processes of impinging jet injectors

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-01-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  19. Pattern formation in a sandpile of ternary granular mixtures.

    PubMed

    Shimokawa, Michiko; Suetsugu, Yuki; Hiroshige, Ryoma; Hirano, Takeru; Sakaguchi, Hidetsugu

    2015-06-01

    Pattern formation in a sandpile is investigated by pouring a ternary mixture of grains into a vertical narrow cell. Size segregation in avalanches causes the formation of patterns. Four kinds of patterns emerge: stratification, segregation, upper stratification-lower segregation, and upper segregation-lower stratification. A phase diagram is constructed in a parameter space of θ(11)/θ(33) and θ(22)/θ(33), where θ(11),θ(22), and θ(33) are the repose angles of small, intermediate, and large grains, respectively. To qualitatively understand pattern formation, a phenomenological model based on a roll-or-stay rule is proposed. A similar pattern formation is found in a numerical simulation of the phenomenological model. These results suggest that the ratios of the repose angles of three kinds of grains are important for pattern formation in a sandpile. PMID:26172703

  20. Pattern formation in a sandpile of ternary granular mixtures

    NASA Astrophysics Data System (ADS)

    Shimokawa, Michiko; Suetsugu, Yuki; Hiroshige, Ryoma; Hirano, Takeru; Sakaguchi, Hidetsugu

    2015-06-01

    Pattern formation in a sandpile is investigated by pouring a ternary mixture of grains into a vertical narrow cell. Size segregation in avalanches causes the formation of patterns. Four kinds of patterns emerge: stratification, segregation, upper stratification-lower segregation, and upper segregation-lower stratification. A phase diagram is constructed in a parameter space of θ11/θ33 and θ22/θ33 , where θ11,θ22 , and θ33 are the repose angles of small, intermediate, and large grains, respectively. To qualitatively understand pattern formation, a phenomenological model based on a roll-or-stay rule is proposed. A similar pattern formation is found in a numerical simulation of the phenomenological model. These results suggest that the ratios of the repose angles of three kinds of grains are important for pattern formation in a sandpile.

  1. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  2. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-05-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity ~0.3c) is created, as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (τS=rS/c, where rS≡2GM/c2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r=3rS. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfvén waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the lack of streaming material from an accompanying star.

  3. The formation of slow-massive-wide jets

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2008-07-01

    I propose a model for the formation of slow-massive-wide (SMW) jets by accretion disks around compact objects. This study is motivated by claims for the existence of SMW jets in some astrophysical objects such as in planetary nebulae (PNs) and in some active galactic nuclei in galaxies and in cooling flow clusters. In this model the energy still comes from accretion onto a compact object. The accretion disk launches two opposite jets with velocity of the order of the escape velocity from the accreting object and with mass outflow rate of ˜1-20% of the accretion rate as in most popular models for jet launching; in the present model these are termed fast-first-stage (FFS) jets. However, the FFS jets encounter surrounding gas that originates in the mass accretion process, and are terminated by strong shocks close to their origin. Two hot bubbles are formed. These bubbles accelerate the surrounding gas to form two SMW jets that are more massive and slower than the FFS jets. There are two conditions for this mechanism to work. Firstly, the surrounding gas should be massive enough to block the free expansion of the FFS jets. Most efficiently this condition is achieved when the surrounding gas is replenished. Secondly, the radiative energy losses must be small.

  4. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz

  5. Granular Formation during Apoptosis in Blastocystis sp. Exposed to Metronidazole (MTZ)

    PubMed Central

    Suresh, Kumar; Tan, Tian Chye

    2016-01-01

    The role and function of the granular life cycle stage in Blastocystis sp, remains uncertain despite suggestions being made that the granules are metabolic, reproductive and lipid in nature. This present study aims to understand granular formation by triggering apoptosis in Blastocystis sp. by treating them with metronidazole (MTZ). Blastocystis sp.cultures of 4 sub-types namely 1, 2, 3 and 5 when treated with 0.01 and 0.0001 mg/ml of metronidazole (MTZ) respectively showed many of the parasites to be both viable and apoptotic (VA). Treated subtype 3 isolates exhibited the highest number of granular forms i.e. 88% (p<0.001) (0.0001 mg/ml) and 69% (p<0.01) (0.01 mg/ml) respectively at the 72 h in in vitro culture compared to other subtypes. These VA forms showed distinct granules using acridine orange (AO) and 4’,6-diamino-2-phenylindole (DAPI) staining with a mean per cell ranging from 5 in ST 5 to as high as 16 in ST 3. These forms showed intact mitochondria in both viable apoptotic (VA) and viable non-apoptotic (VNA) cells with a pattern of accumulation of lipid droplets corresponding to viable cells. Granular VA forms looked ultra-structurally different with prominent presence of mitochondria-like organelle (MLO) and a changed mitochondrial trans-membrane potential with thicker membrane and a highly convoluted inner membrane than the less dense non-viable apoptotic (NVA) cells. This suggests that granular formation during apoptosis is a self-regulatory mechanism to produce higher number of viable cells in response to treatment. This study directs the need to search novel chemotherapeutic approaches by incorporating these findings when developing drugs against the emerging Blastocystis sp. infections. PMID:27471855

  6. Granular Formation during Apoptosis in Blastocystis sp. Exposed to Metronidazole (MTZ).

    PubMed

    Dhurga, Devi Balkrishnan; Suresh, Kumar; Tan, Tian Chye

    2016-01-01

    The role and function of the granular life cycle stage in Blastocystis sp, remains uncertain despite suggestions being made that the granules are metabolic, reproductive and lipid in nature. This present study aims to understand granular formation by triggering apoptosis in Blastocystis sp. by treating them with metronidazole (MTZ). Blastocystis sp.cultures of 4 sub-types namely 1, 2, 3 and 5 when treated with 0.01 and 0.0001 mg/ml of metronidazole (MTZ) respectively showed many of the parasites to be both viable and apoptotic (VA). Treated subtype 3 isolates exhibited the highest number of granular forms i.e. 88% (p<0.001) (0.0001 mg/ml) and 69% (p<0.01) (0.01 mg/ml) respectively at the 72 h in in vitro culture compared to other subtypes. These VA forms showed distinct granules using acridine orange (AO) and 4',6-diamino-2-phenylindole (DAPI) staining with a mean per cell ranging from 5 in ST 5 to as high as 16 in ST 3. These forms showed intact mitochondria in both viable apoptotic (VA) and viable non-apoptotic (VNA) cells with a pattern of accumulation of lipid droplets corresponding to viable cells. Granular VA forms looked ultra-structurally different with prominent presence of mitochondria-like organelle (MLO) and a changed mitochondrial trans-membrane potential with thicker membrane and a highly convoluted inner membrane than the less dense non-viable apoptotic (NVA) cells. This suggests that granular formation during apoptosis is a self-regulatory mechanism to produce higher number of viable cells in response to treatment. This study directs the need to search novel chemotherapeutic approaches by incorporating these findings when developing drugs against the emerging Blastocystis sp. infections. PMID:27471855

  7. Prediction of Hot Tear Formation in Vertical DC Casting of Aluminum Billets Using a Granular Approach

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Drezet, J.-M.; Phillion, A. B.; Rappaz, M.

    2013-09-01

    A coupled hydromechanical granular model aimed at predicting hot tear formation and stress-strain behavior in metallic alloys during solidification is applied to the semicontinuous direct chill casting of aluminum alloy round billets. This granular model consists of four separate three-dimensional (3D) modules: (I) a solidification module that is used for generating the solid-liquid geometry at a given solid fraction, (II) a fluid flow module that is used to calculate the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid, (III) a semisolid deformation module that is based on a combined finite element/discrete element method and simulates the rheological behavior of the granular structure, and (IV) a failure module that simulates crack initiation and propagation. To investigate hot tearing, the granular model has been applied to a representative volume within the direct chill cast billet that is located at the bottom of the liquid sump, and it reveals that semisolid deformations imposed on the mushy zone open the liquid channels due to localization of the deformation at grains boundaries. At a low casting speed, only individual pores are able to form in the widest channels because liquid feeding remains efficient. However, as the casting speed increases, the flow of liquid required to compensate for solidification shrinkage also increases and as a result the pores propagate and coalesce to form a centerline crack.

  8. Modeling jet and outflow feedback during star cluster formation

    SciTech Connect

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  9. Formation of periodic and localized patterns in an oscillating granular layer.

    SciTech Connect

    Aranson, I.; Tsimring, L. S.; Materials Science Division; Bar Ilan Univ.; Univ. of California at San Diego

    1998-02-01

    A simple phenomenological model for pattern formation in a vertically vibrated layer of granular particles is proposed. This model exhibits a variety of stable cellular patterns including standing rolls and squares as well as localized excitations (oscillons and worms), similar to recent experimental observations (Umbanhowar et al., 1996). The model is an order parameter equation for the parametrically excited waves coupled to the mass conservation law. The structure and dynamics of the solutions resemble closely the properties of patterns observed in the experiments.

  10. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  11. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  12. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  13. Droplet formation for liquid monopropellant jets

    NASA Astrophysics Data System (ADS)

    Macken, Nelson A.

    1987-02-01

    The hydrodynamic development of droplets for conditions approximating those in the combustion chamber of regenerative liquid propellant guns has been investigated. The report contains a literature survey and discussion of various breakup mechanisms. Aerodynamic interaction is analyzed using classical stability theory and a formulation applied to anticipated working conditions. The model predicts mass removed and droplet size as a function of time. Results indicate that the jet does break up with almost all liquid atomized. Comparison to a simple burning rate model verifies that the hydrodynamic model is primarily responsible for liquid removal from the intact core. Results conflict with recent inverse gun code predictions which suggest significant liquid accumulation is occurring; i.e., the jet does not fully atomize and subsequently burn. A discussion of possible reasons for this discrepancy is included.

  14. Model of coarsening and vortex formation in vibrated granular rods.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Materials Science Division; Univ. of California at San Diego

    2003-02-01

    Neicu et al. observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon based on a coupled system of equations for local rods density and tilt. The density evolution is described by the modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type equation. Our analysis shows that, in accordance with the Cahn-Hilliard dynamics, islands of the ordered phase appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the centers of the islands.

  15. The formation of granular fronts in debris flow - A combined experimental-numerical study

    NASA Astrophysics Data System (ADS)

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-04-01

    Granular fronts are amongst the most spectacular features of debris flows, and are also one of the reasons why such events are associated with a strong destructive power. They are usually believed to be the result of the convective mechanism of the debris flow, combined with internal size segregation of the grains. However, the knowledge about the conditions leading to the formation of a granular front is not up to date. We present a combined study with experimental and numerical features that aims at providing insight into the phenomenon. A stationary, long-lived avalanche is created within a rotating drum. In order to mimic the composition of an actual debris flow, the material is composed by a mixture of a plastic fluid, obtained with water and kaolin powder, and a collection of monodisperse spherical particles heavier than the fluid. Tuning the material properties and the drum settings, we are able to reproduce and control the formation of a granular front. To gain insight into the internal mechanism, the same scenario is replicated in a numerical environment, using a coupling technique between a discrete solver for the particles, the Discrete Element Method, and a continuum solver for the plastic fluid, the Lattice-Boltzmann Method. The simulations compare well with the experiments, and show the internal reorganization of the material transport. The formation of a granular front is shown to be favored by a higher drum rotational speed, which in turn forces a higher shear rate on the particles, breaks their internal organization, and contrasts their natural tendency to settle. Starting from dimensional analysis, we generalize the obtained results and are able to draw implications for debris flow research.

  16. Statistical analysis of granular gases, pattern formation, and crumpling through real space imaging

    NASA Astrophysics Data System (ADS)

    Blair, Daniel L.

    The statistical properties of driven dissipative systems is investigated experimentally with the use of high speed, and high resolution imaging. A variety of experiments that range from idealized granular gases to systems with anisotropic interactions and pattern formation is explored. These experiments can be divided into three classes: granular gases, granular fluids with anisotropic interactions, and pattern formation. The statistical properties of spherical particles that are excited into a dilute gas state are investigated. The particles are constrained to roll on an inclined plane, which reduces the effects of gravity, allowing real space particle tracking with high precision. Energy is given to the particles through a single vibrating boundary. If the driving is at a high frequency and amplitude, the particles resemble molecules of equilibrium liquids or gases. I will demonstrate that a number of fundamental statistical measures of equilibrium fluids, such as distribution of velocities and path lengths are not consistent with those of inelastic gases. However, the particle motion remains diffusive and the velocity autocorrelation functions decays exponentially. Recent theoretical approaches to granular hydrodynamics also are discussed. In the case where the driving frequency and amplitude are sufficiently low, the particles undergo a spontaneous transition from a quiescent to patterned state. The patterns formed are similar to those found in three-dimensional granular fluids. By introducing a temporally dependent measure of the spatial correlation of the velocities, an accurate determination of the wavelength and onset of patterns is determined. The phase averaged temperature is measured to show that patterns arise when the temperature of the layer is at minimum. These results could be used to develop a linear stability analysis of granular fluids. A quasi-two-dimensional granular system of particles with embedded dipole moments is investigated, and it is

  17. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  18. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2012-07-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  19. Liquid Jet Formation in Laser-Induced Forward Transfer

    NASA Astrophysics Data System (ADS)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  20. The Formation of Relativistic Jets from Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Fishman, G. J.

    2003-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamics (GRMHD) simulation for Schwarzschild and Kerr black holes with a free falling corona and thin accretion disk. The initial simulation results with a Schwarzschild metric show that a jet is created as in the previous axisymmetric simulations with mirror symmetry at the equator. However, the time to form the jet is slightly longer than in the 2-D axisymmetric simulation. We expect that the dynamics of jet formation are modified due to the additional freedom in the azimuth dimension without axisymmetry with respect to the Z axis and reflection symmetry respect to the equatorial plane. The jet which is initially formed due to the twisted magnetic fields and shocks becomes a wind at the later time. The wind flows out with a much wider angle than the initial jet. The twisted magnetic fields at the earlier time were untwisted and less pinched. The accretion disk became thicker than the initial condition. Further simulations with initial perturbations will provide insights for accretion dynamics with instabilities such as magneto-rotational instability (MRI) and accretion-eject instability (AEI). These instabilities may contribute to variabilities observed in microquasars and AGN jets.

  1. GRMHD Simulations of Jet Formation with a New Code

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. Various one-dimensional test problems in both special and general relativity show significant improvements over our previous model. We have performed simulations of jet formations from a geometrically thin accretion disk near both nonrotating and rotating black holes. The new simulation results show that the jet is formed in the same manner as in previous work and propagates outward. In the rotating black hole cases, jets form much closer to the black hole's ergosphere and the magnetic field is strongly twisted due the frame-dragging effect. As the magnetic field strength becomes weaker, a larger amount of matter is launched with the jet. On the other hand, when the magnetic field strength becomes stronger, the jet has less matter and becomes poynting-flux dominated. We will also discuss how the jet properties depend on the rotation of a black hole.

  2. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  3. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-01-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation ofjet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity approx.0.3c) is created, as shown by previous two-dimensional axi- symmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (T(sub s) = r(sub s)/c, where r(sub s = 2GM/c(sup 2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r(sub s). At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface ofthe thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfven waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the iack of streaming materiai from an accompanying star.

  4. Deflagration-to-detonation in granular HMX: Ignition, kinetics, and shock formation

    SciTech Connect

    McAfee, J.M.; Asay, B.W.; Bdzil, J.B.

    1993-06-01

    Experimental studies and analysis of the deflagration-to detonation transition (DDT) in granular HMX are continued. Experiments performed using a direct-gasless igniter exhibit the same phenomenology as those ignited with a piston. Simple kinetics and mechanics describe the formation of the {approximately}100% TMD plug in terms of competing pressurization processes. A mass-conservation analysis of the experimentally observed structures shows how the low velocities characteristic of convective burning are amplified to shock-wave velocities through non-convective processes.

  5. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  6. Multi-jets formation using laser forward transfer

    NASA Astrophysics Data System (ADS)

    Biver, Emeric; Rapp, Ludovic; Alloncle, Anne-Patricia; Delaporte, Philippe

    2014-05-01

    The dynamics of multi-jets formation in liquid films has been investigated using the laser-induced forward transfer (LIFT) technique. This technique allows the deposition of micrometer-sized droplets with a high spatial resolution from a donor substrate to a receiver substrate. The donor was a silver nanoparticles ink-coated substrate. The interaction of the laser pulse with the donor ink layer generates an expanding bubble in the liquid which propels a jet towards the receiver. Silver lines have already been printed by depositing overlapping droplets in a “low speed” process. In order to increase the throughput, it is necessary to decrease the time between the depositions of two droplets. By scanning the beam of a high repetition rate UV picosecond laser (343 nm; 30 ps; 500 kHz) with a galvanometric mirror, successive pulses are focused on the silver nanoparticles ink-coated donor substrate. The shape and dynamics of single jets and adjacent jets have been investigated by means of a time-resolved imaging technique. By varying the distance between the laser spots, different behaviours were observed and compared to the printed droplets. A spacing of 25 μm between laser spots was found to generate both stable jets and well-controlled, reproducible droplets at high speed.

  7. VLBA Reveals Formation Region of Giant Cosmic Jet

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Astronomers have gained their first glimpse of the mysterious region near a black hole at the heart of a distant galaxy, where a powerful stream of subatomic particles spewing outward at nearly the speed of light is formed into a beam, or jet, that then goes nearly straight for thousands of light-years. The astronomers used radio telescopes in Europe and the U.S., including the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) to make the most detailed images ever of the center of the galaxy M87, some 50 million light-years away. "This is the first time anyone has seen the region in which a cosmic jet is formed into a narrow beam," said Bill Junor of the University of New Mexico, in Albuquerque. "We had always speculated that the jet had to be made by some mechanism relatively near the black hole, but as we looked closer and closer to the center, we kept seeing an already-formed beam. That was becoming embarrassing, because we were running out of places to put the formation mechanism that we knew had to be there." Junor, along with John Biretta and Mario Livio of the Space Telescope Science Institute, in Baltimore, MD, now have shown that M87's jet is formed within a few tenths of a light-year of the galaxy's core, presumed to be a black hole three billion times more massive than the sun. In the formation region, the jet is seen opening widely, at an angle of about 60 degrees, nearest the black hole, but is squeezed down to only 6 degrees a few light-years away. "The 60-degree angle of the inner part of M87's jet is the widest such angle yet seen in any jet in the universe," said Junor. "We found this by being able to see the jet to within a few hundredths of a light-year of the galaxy's core -- an unprecedented level of detail." The scientists reported their findings in the October 28 issue of the journal Nature. At the center of M87, material being drawn inward by the strong gravitation of the black hole is formed into a rapidly-spinning flat

  8. Jet formation in cerium metal to examine material strength

    SciTech Connect

    Jensen, B. J. Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  9. Jet formation in cerium metal to examine material strength

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Cherne, F. J.; Prime, M. B.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.

    2015-11-01

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2-3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  10. Explaining formation of Astronomical Jets using Dynamic Universe Model

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  11. Master equation calculations of cluster formation in supersonic jets

    NASA Astrophysics Data System (ADS)

    Wolf, K.; Kuge, H.-H.; Kleinermanns, K.

    1991-12-01

    The kinetics of cluster formation in supersonic jets is examined by numerical integration of the master equation system. Some general characteristics of cluster kinetics could be formulated. Excellent agreement between experimental curves of p-cresol (H2O)0, 1, 2, 3 formation as function of H2O pressure and the corresponding calculated curves were obtained assuming successive cluster formation. From the kinetic curves, an unambiguous assignment of cluster size was possible which agreed with mass-resolved REMPI measurements. The fit of the rate coefficients shows the formation of p-cresol (H2O)1 to be faster than p-cresol (H2O)2 and p-cresol (H2O)3.

  12. The Formation of Turbulent Vortex Rings by Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Lawson, John; Dawson, James

    2013-11-01

    Vortex rings formed by synthetic jets are found in many engineering and biological flows. For vortex rings formed both periodically and in isolation, a constraint on vortex formation (``pinch-off'') has been observed which is relevant to unsteady propulsion. However, there is no clear consensus on the physical mechanism of this constraint. We present analysis of time resolved, 2D Particle Image Velocimetry measurements of the velocity and material acceleration field in an axisymmetric, turbulent synthetic jet in air at maximum stroke ratios Lm / D = 2 - 15 . Using the acceleration field, pinch-off may be identified in a manner which is frame invariant and consistent with previous studies. An adverse pressure gradient behind the ring and induced by it plays a role in the pinch-off and separation of the ring from the jet. Recognising this, we revise an existing model for pinch-off: this revision fits our data well. Additionally, we show that as the ring forms, hydrodynamic impulse is delivered via two equally important mechanisms: a material flux and a vortex force. For large Lm / D , this vortex force may deliver a substantial impulse to the ring after pinch-off. This has implications for unsteady propulsion, models of vortex ring formation and existing explanations for pinch-off.

  13. Formation of aerobic granular sludge under adverse conditions: low DO and high ammonia.

    PubMed

    Zhang, Sheng-Hua; Zhang, Xiao-Hu; Lv, Lu; Wang, Qing; Jiang, Qipei

    2013-04-01

    In this study, two adverse environments: low dissolved oxygen (DO) and high ammonia concentration, were employed to investigate the morphology, interspecies quorum sensing, extracellular polymers (EPS) characterization and microbial communities in the formation of aerobic granular sludge. Results showed that low DO could promote filamentous bacterial outgrowth. Under high ammonia concentration aerobic granular sludge (AGS) could still be cultivated, although it was looser and lighter than the control group. During the early stage of the AGS cultivation process, Al-2 activity reached a peak value in all three reactors, and ultrasonic pre-treatment was not beneficial to the release of Al-2. During AGS formation, the production of polysaccharide exhibited increases from 12.2% to 40.3%, 49.6%, and 29.3%. And PS in R2 was the highest as the result of sludge bulking. PS/PN was 1.5 to approximately 8 in the three reactors. Three-dimensional EEM fuorescence spectroscopy variation indicated the change of protein in EPS, and the highest intensity of Peak T1 was obtained. The location shift of Peak T1 was not obvious, and Peaks A, C, and T2 shifted toward longer wavelengths (red shift) of 5 to approximately 60 nm, or shorter wavelengths (blue shift) of 10 to approximately 25 nm on the emission scale and/or excitation scale in all three reactors. This provided spectral information on the chemical structure changes. Bacteria in R3 had the highest species diversity, and all bacteria in beta-Proteobacteria were identified as genus Thauera, which suggested that simultaneous nitrification and denitrification occurred in R3. The filamentous bacteria in seed sludge and R2 were species-richer. There was a low abundance of filamentous bacteria in R1 and R3, which contributed to the granule structure stability. PMID:24620612

  14. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  15. Cometary activity, discrete outgassing areas, and dust-jet formation

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1991-01-01

    Conceptual models for various types of features observed in cometary comae (jets, spirals, halos, fans, etc.), their computer simulation, and the hydrodynamic models for jet formation are critically reviewed, and evidence for anisotropic, strongly collimated flows of ejecta emanating from discrete active regions (vents) on the rotating cometary nuclei is presented. Techniques employed to generate synthetic comet images that simulate the features observed are described, and their relevance to the primary objects of coma-morphology studies is discussed. Modeling of temporal variations in the water emission from discrete active regions suggests that production curves asymmetric with respect to perihelion should be commonplace. Critical comparisons with the activity profiles of Enke's comet and with light curves of disappearing comets and comets that undergo outbursts are presented. Recent developments in the understanding of the processes that cause the nongravitational perturbations of cometary motions are reviewed, and the observed discontinuities are identified with the birth of new sources and/or deactivation of old vents.

  16. WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE

    SciTech Connect

    Heggland, L.; Hansteen, V. H.; Carlsson, M.; De Pontieu, B.

    2011-12-20

    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.

  17. Zonal Flow as Pattern Formation: Merging Jets and the Ultimate Jet Length Scale

    SciTech Connect

    Jeffrey B. Parker and John A. Krommes

    2013-01-30

    Zonal flows are well known to arise spontaneously out of turbulence. It is shown that for statisti- cally averaged equations of quasigeostrophic turbulence on a beta plane, zonal flows and inhomoge- neous turbulence fit into the framework of pattern formation. There are many implications. First, the zonal flow wavelength is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  18. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  19. Relativistic Jet Properties of GeV-TeV Blazars and Possible Implications for the Jet Formation, Composition, and Cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei; Sun, Xiao Na

    We present spectral energy distributions (SEDs) fits to a sample of GeV-TeV flat spectrum radio quasars (FSRQs) and compare the jet properties between FSRQs and BL Lacs. We show that the SEDs can be fit with the single-zone leptonic model, and both the minimum and broken Lorentz factors of relativistic electrons can be constrained, with medians of gamma_{min}˜ 48 and gamma_b˜ 240. No statistical difference on the Doppler factors between the FSRQs and BL Lacs is found. Assuming that the jet power is carried by electron-proton pairs, the magnetic field, and the radiation field, we calculate the powers of these components and the total jet power (P_jet) based on our fitting results, hence derive the radiation efficiency and magnetization parameter of the jets. It is found that the FSRQ jets are dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac jets are dominated by particles and have a lower radiation efficiency than FSRQs. Interestingly, different from BL Lacs, P_jet of FSRQs are proportional to their central black hole (BH) masses. Measuring the jet production and radiation rates per central BH mass with P_jet/L_Edd and P_r/L_Edd, we find P_r/L_Edd~ (P_jet/L_Edd)({1.24±) 0.16} for FSRQs and P_r/L_Edd~ (P_jet/L_Edd)({0.85±) 0.09} for BL Lacs. The distribution of P_jet/L_Edd of FSRQs is in a narrow range, whereas it varies over several orders of magnitude for BL Lacs. These results likely suggest that the essential difference of FSRQs and BL Lacs may be due to the different jet production mechanisms. The dominating formation mechanism of FSRQ jets may be the BZ process. BL Lac jets may be produced via the BP and/or BZ processes, depending on structures and accretion rates of accretion disks. P_jet is correlated with the cavity kinetic power L_kin for our blazar sample. The magnetic field energy in the jets may provide the cavity kinetic energy for FSRQs and the kinetic energy of cold protons in the jets may be crucial for

  20. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi

    2016-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue to the origin of our solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that leads to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s-1. Previous simulations have shown that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct N-body simulations. As found in the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-planetesimal collisions can achieve an impact velocity of about 2.5 km s-1 or higher, as protoplanets approach the isolation mass (Mp,iso). Assuming that the ejected mass is a fraction (Fch) of the colliding planetesimals’ mass, we show that the resultant abundance of chondrules is expressed well by FchMp,iso, as long as the formation of protoplanets is completed within a given disk lifetime. We perform a parameter study and examine how the abundance of chondrules and the timing of their formation change. We find that the impact jetting scenario generally works reasonably well for a certain range of parameters, while more dedicated work would be needed to include other physical processes that are neglected in this work and to examine their effects on chondrule formation.

  1. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    PubMed Central

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; Van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-01-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment. PMID:27319320

  2. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor.

    PubMed

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; Van Loosdrecht, Mark C M; Saikaly, Pascal E

    2016-01-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment. PMID:27319320

  3. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    NASA Astrophysics Data System (ADS)

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-06-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  4. Effects of Gravity on Bubble Formation in an Annular Jet

    NASA Technical Reports Server (NTRS)

    Koepp, R. A.; Parthasarathy, R. N.; Gollahalli, S. R.

    2004-01-01

    The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.

  5. Role of underlayer for segregated structure formation of CoCrPt-SiO2 granular thin film

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Tamai, I.; Takekuma, I.; Nakatani, R.

    2009-05-01

    We have investigated the role of the Ru underlayer for the segregated structure formation of CoCrPt-SiO2 granular thin film to improve the recording performance of CoCrPt-SiO2 perpendicular magnetic recording media. The coercivity of the granular film decreases with decreasing Ru layer thickness, which comes from the change in the segregated structure. Formation of an oxide grain boundary is needed to obtain higher coercivity. According to a morphology analysis, the Ru layer roughness is closely related to the coercivity. The results indicate that the oxide grain boundary formation of the granular layer is enhanced by the roughness of the Ru underlayer. The shapes of the Ru grains probably serve as a template in CoCrPt grain growth and oxide grain boundary formation. As one of the methods for enhancing the roughness of the Ru underlayer, an island shape growth on the low surface energy materials is applicable. The roughness of the Ru layer was increased using a Pd/MgO/Pd seed layer and high coercivity was successfully obtained even when the Ru layer thickness was 3 nm.

  6. Star formation efficiency along the radio jet in Centaurus A

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I.

    2016-02-01

    NGC 5128 (also known as Centaurus A) is the most nearby powerful AGN, widely studied at all wavelengths. Molecular gas has been found in the halo at a distance of ~ 20 kpc from the galaxy center, associated with H i shells, through CO line detection at SEST (Charmandaris et al. 2000, A&A, 356, L1). The molecular gas lies inside some IR and UV bright star-forming filaments that have recently been observed in the direction of the radio jets. These archival data from GALEX (FUV) and Herschel (IR) show that there is dust and very weak star formation (a few 10-5-10-4M⊙ yr-1) on scales of hundreds of parsecs. NGC 5128 is thus a perfect target for detailed studies of the star formation processes at the interface of the jet/gas interaction. On top of analysing combined archival data, we have performed searches of HCN(1-0) and HCO+(1-0) emission with ATCA at the interaction of the northern filaments and the northern H i shell of Centaurus A. Measuring the dense gas is another indicator of star formation efficiency inside the filaments. However, we only derived upper limits L'HCN < 1.6×103 K km s-1 pc2 and L'HCO < 1.6×103 K km s-1 pc2 at 3σ in the synthesised beam of 3.1''. Compared with the CO luminosity, this lead to a dense-to-molecular gas fraction < 23%. We also compared the CO masses with the star formation rate estimates in order to measure a star formation efficiency. Using a standard conversion factor leads to long depletion times (7 Gyr). We then corrected the mass estimates from metallicity effect by using gas-to-dust mass ratio as a proxy. From MUSE data, we estimated the metallicity spread (0.4-0.8Z⊙) in an other region of the filament, that corresponds to gas-to-dust ratios of ~200-400. Assuming the same metallicity range in the CO-detected part of the filament, the CO/H2 conversion ratio is corrected for low metallicity by a factor between 1.4 and 3.2. Such a low-metallicity correction leads to even more massive clouds with higher depletion times (16

  7. Formation of granular structures in trapped Bose-Einstein condensates under oscillatory excitations

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Novikov, A. N.; Bagnato, V. S.

    2014-09-01

    We present experimental observations and numerical simulations of nonequilibrium spatial structures in a trapped Bose-Einstein condensate subject to oscillatory perturbations. In experiment, first, there appear collective excitations, followed by quantum vortices. Increasing the amount of the injected energy leads to the formation of vortex tangles representing quantum turbulence. We study what happens after the regime of quantum turbulence, with increasing further the amount of injected energy. In such a strongly nonequilibrium Bose-condensed system of trapped atoms, vortices become destroyed and there develops a new kind of spatial structure exhibiting essentially heterogeneous spatial density. The structure is reminiscent of fog consisting of high-density droplets, or grains, surrounded by the regions of low density. The grains are randomly distributed in space, where they move. They live for a sufficiently long time to be treated as a type of metastable object. Such structures have been observed in nonequilibrium trapped Bose gases of 87Rb, subject to the action of alternating fields. Here we present experimental results and support them by numerical simulation. The granular, or fog structure is essentially different from the state of wave turbulence that develops after increasing further the amount of injected energy.

  8. [Effect of Increasing Organic Loading Rate on the Formation and Stabilization Process of Aerobic Granular Sludge].

    PubMed

    Liu, Xiao-peng; Wang, Jan-fang; Qian, Fei-yue; Wang, Yan; Chen, Chong-jun; Shen, Yao-liang

    2015-09-01

    In order to evaluate the effect of organic loading rate ( OLR) on the formation of aerobic granular sludge (AGS), a lab-scale cylindrical SBR reactor (sodium acetate as carbon source) was constructed and inoculated with collected sewage sludge. The evolution of morphology, microbial activity and extracellular polymeric substances (EPS) characteristics of sludge samples in the reactor were recorded and analyzed. The results showed that AGS has the highest growth rate under the condition of 3. 20-4. 84 kg.(m3.d)-1 OLR, and a selective discharging strategy of the floccular sludge was suggested to maintain the predominance of AGS in reactor. The accumulated sludge concentration, SVI30, mean granule size, settling velocity and SOUR value of the AGS in steady-state operated SBR was 23. 9 g.L-1, 20 mL.g-1, 1. 4 mm, 102 m.h-1 and 50. 2 mg.(g.h)-1, respectively. The granulation process not only obviously changed the sludge appearance, but also significantly improved the microbial activity. Meanwhile, linear correlation was observed between the variation of protein/polysaccharide concentration and the granule size of AGS. Thus, variation of protein/ polysaccharide concentration of the EPS could be applied as an indicator for optimization of the cultivation method of AGS. PMID:26717698

  9. The formation of turbulent vortex rings by synthetic jets

    NASA Astrophysics Data System (ADS)

    Lawson, J. M.; Dawson, J. R.

    2013-10-01

    An investigation is made into the mechanism of pinch-off for turbulent vortex rings formed by a synthetic jet using time resolved particle image velocimetry measurements in air. During formation, measurements of the material acceleration field show a trailing pressure maximum (TPM) forms behind the vortex core. The adverse pressure gradient behind this TPM inhibits vorticity transport into the ring and the TPM is spatially coincident with the termination of vorticity flux into a control volume moving with the ring. A Lagrangian Coherent Structures (LCS) analysis is shown to be in agreement with the role of the TPM in pinch-off and in identifying the vortex ring before separation. The LCS analysis provides physical insights which form the basis of a revised model of pinch-off, based on kinematics, which predicts the time of formation (formation number) well for the present dataset. The delivery of impulse to the vortex ring is also considered. Two equally important mechanisms are shown to play a role: a material flux and a vortex force. In the case of long maximum stroke ratio, it is demonstrated that a vortex force continues to deliver impulse to the ring after the material flux is terminated at pinch-off and that this contribution may be substantial. This shows that the pinch-off and separation process cannot be considered impulse invariant, which has important implications for unsteady propulsion, present models of vortex ring formation, and existing explanations for vortex ring pinch-off.

  10. Rebound and jet formation of a fluid-filled sphere

    NASA Astrophysics Data System (ADS)

    Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.

    2012-12-01

    This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.

  11. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  12. Theoretical bases of the surface layer formation in the finishing and hardening treatment of details by SPD in flexible granular environment

    NASA Astrophysics Data System (ADS)

    Tamarkin, M. A.; Tishchenko, E. E.; Fedorov, V. P.

    2016-04-01

    The article presents results of theoretical studies of the surface layer formation during finishing and hardening treatment of details by SPD in flexible granular environment. The dependencies are fixed for determining the surface roughness, processing time, the depth of the hardened layer and the degree of hardening for different methods of treatment by SPD in flexible granular environment. The process of residual stresses formation is researched.

  13. Experimental study of ice lens formation using fine granular materials under terrestrial and martian conditions

    NASA Astrophysics Data System (ADS)

    Saruya, T.; Rempel, A. W.; Kurita, K.

    2012-12-01

    Detailed exploration of Mars has yielded a range of direct and indirect evidence for the distribution of ice. Significantly, direct observations of segregated ice (i.e. sediment free) were obtained by Phoenix lander. This segregated ice most likely originated as an ice lens, which formed by the migration and solidification of unfrozen water. Unfrozen water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state below the normal melting temperature. This water is known to migrate in frozen materials and form ice lenses. Zent et al. (2012) developed a numerical model for ice lens formation (Rempel et al. 2004) and demonstrated that the nucleation of ice lenses at the Phoenix landing site was possible in the recent past. However, many questions remain regarding the detailed conditions of ice lens nucleation and growth, even in the terrestrial environment. Further experimental checks of numerical models are especially needed. Here, we describe laboratory investigations of ice lens behavior under both terrestrial conditions and with experimental conditions approaching those in the martian environment. We have performed a series of step-freezing experiments in fine, granular materials to observe the initiation and growth of ice lenses. Our experiments reveal clear and systematic relationships between ice-lens behavior and the imposed cooling temperature and host particle size. We compared our experimental results to numerical predictions from a model of ice lens formation (Rempel et al. 2004) that was applied to our experimental conditions. We find that the trend is consistent between the experiment and model, however, there are important quantitative differences. Most notably, modeled ice-lens nucleation occurred more quickly and enabled ice lenses to grow larger than occurred during our experiments. We infer that some additional mechanisms must be responsible for restricting the formation and growth of ice lenses. Further

  14. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  15. STEADY TWIN-JETS ORIENTATION: IMPLICATIONS FOR THEIR FORMATION MECHANISM

    SciTech Connect

    Soker, Noam; Mcley, Liron E-mail: lironmc@tx.technion.ac.il

    2013-08-01

    We compare the structures of the jets of the pre-planetary nebulae (pre-PNe) CRL618 and the young stellar object (YSO) NGC 1333 IRAS 4A2 and propose that in both cases the jets are launched near periastron passages of a highly eccentric binary system. The pre-PN CRL618 has two ''twin-jets'' on each side, where by ''twin-jets'' we refer to a structure where one side is composed of two very close and narrow jets that were launched at the same time. We analyze the position-velocity diagram of NGC 1333 IRAS 4A2, and find that it also has the twin-jet structure. In both systems, the orientation of the two twin-jets does not change with time. By comparing these two seemingly different objects, we speculate that the constant relative direction of the two twin-jets is fixed by the direction of a highly eccentric orbit of a binary star. For example, a double-arm spiral structure in the accretion disk induced by the companion might lead to the launching of the twin-jets. We predict the presence of a low-mass stellar companion in CRL618 that accretes mass and launches the jets, and a substellar (a planet of a brown dwarf) companion to the YSO NGC 1333 IRAS 4A2 that perturbed the accretion disk. In both cases the orbit has a high eccentricity.

  16. The Effect of Jetting Parameters on the Performance of Droplet Formation for Ink-Jet Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Helmer, Wayne

    1998-01-01

    Heinzl et al. (1985) reports that experiments in ink-jets to produce drawings or signals occurred as early as 1930. Various companies such as IBM and Pitney-Bowes have conducted extensive studies on these devices for many years. Many such reports are available in such journals as the IBM Journal of Research and Development. While numerous articles have been published on the jetting characteristics of ink and water, the literature is rather limited on fluids such as waxes (Gao & Sonin 1994) or non-water based fluids (Passow, et al. 1993). This present study extends the knowledge base to determine the performance of molten waxes in "ink-jet" type printers for rapid prototyping. The purpose of this research was to qualitatively and quantitatively study the droplet formation of a drop-on-demand ink-jet type nozzle system for rapid prototyping.

  17. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  18. LH launcher Arcs Formation and Detection on JET

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. F.; Challis, C. D.; Ekedahl, A.; Goniche, M.; Kirov, K.; Mailloux, J.; Monakhov, I.

    2011-12-01

    Mechanisms of arc formation have been analyzed and the critical electric fields for the multipactor effect calculated, compared to the experimental values and found to be within the normal operational space of the LH system on JET. It has been shown that the characteristic electron energy (20-1000)eV for the highest multipactor resonances (N = 4-9) are within the limits of secondary electron yield above 1 required for multipactoring. Electrons with these energies provide the highest gas desorption efficiency when hitting the waveguide walls. The effect of higher waveguide modes and magnetic field on the multipactor was also considered. The distribution function for electrons accelerated by LH waves in front of the launcher has been calculated. The field emission currents have been estimated and found to be small. It is proposed that emission of Fel5, 16 lines, which can be obtained with improved diagnostics, could be used to detect arcs that are missed by a protection system based on the reflected power. The reliability and time response of these signals are discussed. A similar technique based on the observation of the emission of low ionized atoms can be used for a fast detection of other undesirable events to avoid sputtering or melting of the plasma facing components such as RF antenna. These techniques are especially powerful if they are based on emission uniquely associated with specific locations and components.

  19. LH launcher Arcs Formation and Detection on JET

    SciTech Connect

    Baranov, Yu. F.; Challis, C. D.; Kirov, K.; Mailloux, J.; Monakhov, I.

    2011-12-23

    Mechanisms of arc formation have been analyzed and the critical electric fields for the multipactor effect calculated, compared to the experimental values and found to be within the normal operational space of the LH system on JET. It has been shown that the characteristic electron energy (20-1000)eV for the highest multipactor resonances (N = 4-9) are within the limits of secondary electron yield above 1 required for multipactoring. Electrons with these energies provide the highest gas desorption efficiency when hitting the waveguide walls. The effect of higher waveguide modes and magnetic field on the multipactor was also considered. The distribution function for electrons accelerated by LH waves in front of the launcher has been calculated. The field emission currents have been estimated and found to be small. It is proposed that emission of Fel5, 16 lines, which can be obtained with improved diagnostics, could be used to detect arcs that are missed by a protection system based on the reflected power. The reliability and time response of these signals are discussed. A similar technique based on the observation of the emission of low ionized atoms can be used for a fast detection of other undesirable events to avoid sputtering or melting of the plasma facing components such as RF antenna. These techniques are especially powerful if they are based on emission uniquely associated with specific locations and components.

  20. Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution

    NASA Astrophysics Data System (ADS)

    Mirabel, Igor Felix

    2016-07-01

    Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.

  1. Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Saffaripour, Meghdad

    In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent

  2. Self-assembly and the Formation of Structure in Granular Materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert

    2015-03-01

    Particle systems self-assemble in ways that are sensitive to their environments. Proteins fold, polymers crosslink, and molecular systems form crystals. Granular materials, unlike proteins, polymers or molecules, are not sensitive to temperature, and will only form new structures when they are driven. This raises the question of how a granular state depends on the preparation protocol, and an even more basic question of what is needed to specify a granular state. I will focus on granular systems near jamming, where key state variables include the density and stresses. Systems of frictionless grains follow the Liu-Nagel1 scenario of jamming, with a lowest packing fraction, ϕJ, such that any system with ϕ <ϕJ is unjammed, and all isotopic states (shear stress τ = 0) are jammed for ϕ >ϕJ . For frictional grains the picture changes. For a given ϕ in the range ϕS < ϕ <ϕJ , it is possible to have stress-free (unjammed) states, highly anisotropic fragile states, and robustly jammed states. The fragile and strongly jammed states form spontaneously in response to shear. By inference, ϕ is not a state variable, but recent experiments2 indicate that the non-rattler fraction, fNR is. In ϕS < ϕ <ϕJ , the system response is inherently non-linear; under cyclic shear, the system self-organizes to new steady states via a process that resembles thermal activation, with shear stress replacing energy3. The activation is provided by shear strain. We observe similar relaxation under cyclic compression. An important question is, what is (are) the organizing principle(s) which govern jamming by shear, and systematic reorganization under cyclic driving. NSF grants DMR1206351 and DMS1248071, NASA grant NNX10AU10G, and ARO grant W911NF-1-11-0110

  3. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect

    Nagataki, Shigehiro; Takahashi, Rohta; Mizuta, Akira; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  4. A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.

    2004-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.

  5. Probing the shear-band formation in granular media with sound waves.

    PubMed

    Khidas, Y; Jia, X

    2012-05-01

    We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry change in the packing structure. Moreover, the correlation function of configuration-specific multiply scattered waves reveals an intermittent behavior before the failure of material. PMID:23004745

  6. 3D Effects in the Formation of Zonal Jets Through Inverse Cascade

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Showman, A. P.

    2006-09-01

    The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non-divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.

  7. 3D Effects in the Formation of Zonal Jets Through Inverse Cascade

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Showman, A. P.

    2006-12-01

    The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non- divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.

  8. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    NASA Technical Reports Server (NTRS)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  9. The significance of vortex ring formation to the impulse and thrust of a starting jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, M.

    2003-05-01

    The recent work of Gharib, Rambod, and Shariff [J. Fluid Mech. 360, 121 (1998)] studied vortex rings formed by starting jets generated using a piston-cylinder mechanism. Their results showed that vortex rings generated from starting jets stop forming and pinch off from the generating jet for sufficiently large values of the piston stroke to diameter ratio (L/D), suggesting a maximization principle may exist for propulsion utilizing starting jets. The importance of vortex ring formation and pinch off to propulsion, however, rests on the relative contribution of the leading vortex ring and the trailing jet (which appears after pinch off) to the impulse supplied to the flow. To resolve the relative importance of the vortex ring and trailing jet for propulsion, a piston-cylinder mechanism attached to a force balance is used to investigate the impulse and thrust generated by starting jets for L/D ratios in the range 2-8. Two different velocity programs are used, providing two different L/D values beyond which pinch off is observed, in order to determine the effect of vortex ring pinch off. Measurements of the impulse associated with vortex ring formation show it to be much larger than that expected from the jet velocity alone and proportionally larger than that associated with a trailing jet for L/D large enough to observe pinch off. The latter result leads to a local maximum in the average thrust during a pulse near L/D values associated with vortex rings whose circulation has been maximized. These results are shown to be related to the nozzle exit over-pressure generated during vortex ring formation. The over-pressure is in turn shown to be associated with the acceleration of ambient fluid by vortex ring formation in the form of added and entrained mass.

  10. Interaction between phosphorus removal and hybrid granular sludge formation under low hydraulic selection pressure at alternating anaerobic/aerobic conditions.

    PubMed

    Lang, Longqi; Wan, Junfeng; Zhang, Jing; Wang, Jie; Wang, Yan

    2015-01-01

    The hybrid granular sludge (HGS) formation and its performances on phosphorus removal were investigated in a sequencing batch airlift reactor. Under conditions of low superficial air velocity (SAV = 0.68 cm s(-1)) and relatively long settling time (15-30 min), aerobic granules appeared and coexisted with bio-flocs after 120 days operation. At the stable phase, 54% of total suspended solid (m/m) was granular sludge with the two typical sizes (D(mean) = 1.77 ± 0.33 and 0.89 ± 0.11 mm) in the reactor, where the settling velocity was 98.7 ± 12.4 and 37.8 ± 0.9 m h(-1) for the big and small granules. With progressive extension of anaerobic time from 15 to 60 min before aerobic condition per cycle during the whole experiment, the HGS system can be maintained at a high total phosphorus removal efficiency (ca. 99%) since Day-270. The phosphorus content (wt %) in biomass was respectively 9.54 ± 0.29, 7.60 ± 0.48 and 6.15 ± 0.59 for the big granules, small granules and flocs. PMID:25921951

  11. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation. PMID:26592026

  12. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Kumar, Aloke

    2014-11-01

    It has been recently reported that in presence of low Reynolds number (Re << 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such ``viscous liquid'' state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows.

  13. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    PubMed Central

    Das, Siddhartha; Kumar, Aloke

    2014-01-01

    It has been recently reported that in presence of low Reynolds number (Re ≪ 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such “viscous liquid” state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows. PMID:25410423

  14. Studying the Dynamics of Non-stationary Jet Streams Formation in the Northern Hemisphere Troposphere

    NASA Astrophysics Data System (ADS)

    Emtsev, Sergey; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    In the present study, we investigate dynamics of non-stationary jets formation in troposphere by means of mesoscale simulations in the Weather Research & Forecasting (WRF) modeling system, analyzing jet streams that affected the territory of Belarus over the time period of 2010-2012. For that purpose, we perform modeling on domains with 5 km, 3 km and 1 km grid steps and 35 vertical coordinate levels with an upper boundary of 10 hPa. We focus our attention to identification of basic regularities in formation, movements and transformations of jet streams, as well as to analysis of their characteristic features, geographical position and underlying atmospheric processes and their classification. On the basis of these regularities, we define basic meteorological parameters that can be used to directly or indirectly (as well as qualitatively and quantitatively) identify the presence of jet streams in the specific region of troposphere, and also to determine their localization, stage of development and other characteristics. Furthermore, we estimate energetic parameters of the identified jet streams and their impact on synoptic situation in the surrounding region. Analyzing meteorological fields obtained from satellite observations, we elaborate a methodology of operational detection and localization of non-stationary jet streams from satellite data. Validation of WRF modeling results with these data proves that mesoscale simulations with WRF are able to provide quite successful forecasts of non-stationary tropospheric jet streams occurrence and also determination of their localization and main characteristics up to 3 days in advance.

  15. Formation of Martian araneiforms by gas-driven erosion of granular material

    SciTech Connect

    S. de Villiers; A. Nermoen; B. Jamtveit; J. Mathiesen; P. Meakin; S. C. Werner

    2012-07-01

    Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m-1 km scale branched channels known as spiders or araneiforms and dark dust fans deposited on top of the ice. We show that patterns very similar to araneiforms are formed in a Hele-Shaw cell filled with an unconsolidated granular material by slowly deforming the upper wall upward and allowing it to return rapidly to its original position to drive air and entrained particles through a small hole in the upper wall. Straight, braided and quasiperiodic oscillating channels, unlike meandering channels on Earth were also formed.

  16. Conditions for jet formation in accreting neutron stars: the magnetic field decay

    NASA Astrophysics Data System (ADS)

    García, Federico; Aguilera, Deborah N.; Romero, Gustavo E.

    2011-02-01

    Accreting neutron stars can produce jets only if they are weakly magnetized (B ~ 108 G). On the other hand, neutron stars are compact objects born with strong surface magnetic fields (B ~ 1012 G). In this work we study the conditions for jet formation in a binary system formed by a neutron star and a massive donor star once the magnetic field has decayed due to accretion. We solve the induction equation for the magnetic field diffusion in a realistic neutron star crust and discuss the possibility of jet launching in systems like the recently detected Supergiant Fast X-ray Transients.

  17. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    SciTech Connect

    Merritt, Elizabeth C. Adams, Colin S.; Moser, Auna L.; Hsu, Scott C. Dunn, John P.; Miguel Holgado, A.; Gilmore, Mark A.

    2014-05-15

    We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].

  18. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  19. Impinging jet spray formation using non-Newtonian liquids

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  20. The Significance of Vortex Ring Formation to the Impulse and Thrust of a Starting Jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, Morteza

    2001-11-01

    A jet or pulse ejected into quiescent fluid is referred to as a starting jet and engenders vortex ring formation due to the roll up of the jet shear layer as the pulse is ejected. The recent work of Gharib et al. [JFM, 360, 121-140 (1998)] demonstrated that vortex rings generated by starting jets will stop entraining circulation (pinch off) for sufficiently large values of the ratio of the length of the ejected pulse to the nozzle diameter (L/D). The effect of this pinch-off phenomenon on the thrust and impulse generated by a starting jet is studied using a piston-cylinder arrangement to produce pulses of water into water for a range of L/D. The results show a maximum in the average thrust during a pulse for L/D just before pinch off occurs. This optimum exists because a vortex ring contributes more impulse per unit L/D than the jet trailing a pinched-off vortex ring. The propulsive benefit provided by the leading vortex ring is due to over-pressure at the nozzle exit, which can be related to the acceleration of ambient fluid during ring formation by entrainment and added mass effects. The implications for pulsatile propulsion will be discussed.

  1. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation

    NASA Astrophysics Data System (ADS)

    Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.

    2016-06-01

    River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.

  2. Drop impact into a deep pool: vortex shedding and jet formation

    SciTech Connect

    Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.; Zhang, L. V.; Fezzaa, K.; Deegan, R. D.

    2015-02-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.

  3. Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in MS 0735+7421

    NASA Astrophysics Data System (ADS)

    Li, Shuang-Liang; Cao, Xinwu

    2012-07-01

    Giant X-ray cavities lie in some active galactic nuclei (AGNs) locating in central galaxies of clusters, which are estimated to have stored 1055-1062 erg of energy. Most of these cavities are thought to be inflated by jets of AGNs on a timescale of >~ 107 years. The jets can be either powered by rotating black holes or the accretion disks surrounding black holes, or both. The observations of giant X-ray cavities can therefore be used to constrain jet formation mechanisms. In this work, we choose the most energetic cavity, MS 0735+7421, with stored energy ~1062 erg, to constrain the jet formation mechanisms and the evolution of the central massive black hole in this source. The bolometric luminosity of the AGN in this cavity is ~10-5 L Edd, however, the mean power of the jet required to inflate the cavity is estimated as ~0.02L Edd, which implies that the source has previously experienced strong outbursts. During outbursts, the jet power and the mass accretion rate should be significantly higher than its present values. We construct an accretion disk model in which the angular momentum and energy carried away by jets are properly included to calculate the spin and mass evolution of the massive black hole. In our calculations, different jet formation mechanisms are employed, and we find that the jets generated with the Blandford-Znajek (BZ) mechanism are unable to produce the giant cavity with ~1062 erg in this source. Only the jets accelerated with a combination of the Blandford-Payne and BZ mechanisms can successfully inflate such a giant cavity if the magnetic pressure is close to equipartition with the total (radiation+gas) pressure of the accretion disk. For a dynamo-generated magnetic field in the disk, such an energetic giant cavity can be inflated by the magnetically driven jets only if the initial black hole spin parameter a 0 >~ 0.95. Our calculations show that the final spin parameter a of the black hole is always ~0.9-0.998 for all the computational

  4. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.

    PubMed

    Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J

    2014-10-17

    Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. PMID:25324383

  5. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation.

    PubMed

    Quan, Xiangchun; Zhang, Xin; Xu, Hengduo

    2015-07-01

    Azo dyes are toxic and recalcitrant wastewater pollutants. An innovative technology based on biogenic nanopalladium (Bio-Pd) supported anaerobic granular sludge (AGS) was developed for azo dyes reduction. In-situ formation of Bio-Pd in the AGS was observed by Scanning Electron Microscopy coupled with Energy Dispersive Spectrometer (SEM-EDS). The Pd associated AGS (Pd-AGS) showed enhanced decolorization rates to the three azo dyes of Congo Red, Evans Blue and Orange II, with the degradation kinetic constants increased by 2.3-10 fold compared to the control AGS in the presence of electron donor formate. Impacts of different electron donors on Orange II decolorization were further investigated. Results showed that formic acid, formate, acetate, glucose, ethanol and lactate could serve as electron and hydrogen donors to stimulate Orange II decolorization by the Pd-AGS, and their activities followed the order: formic acid > formate > ethanol > glucose > lactate > acetate. Most of the Bio-Pd was bound with microbes in the AGS with a small fraction in the extracellular polymer substances (EPS). Transmission Electronic Microscopy analysis revealed that the Bio-Pd formed in the periplasmic space, cytoplasm and on the cell walls of bacteria. This study provides a new concept for azo dye reduction, which couples sludge microbial degradation ability with Bio-Pd catalytic ability via in-situ formation and immobilization of Bio-Pd into AGS, and offers an alternative for the current azo dye treatment technology. PMID:25912251

  6. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  7. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by-products (DBPS) including total organic halide, trihalomethanes, haloacetic acids, haloacentonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along with ...

  8. Large format ink-jet poster production: a case report.

    PubMed

    Harris, R

    1998-03-01

    To complement the services offered by the Medical Illustration Department of Frenchay Hospital, Bristol, we decided to look at the possibility of producing posters using the ink-jet process. Our designers wanted to use the full scope of their computers and software to expand their design talents. The method of cutting and pasting sheets of paper onto card seemed old fashioned and denied clients the benefit of the exciting techniques that have become available. After seeking sponsorship, a drug company gave 8000 Pounds towards setting up the department's poster printing service. A Kodak DS1000 printer was installed together with Posterjet and Posterworks software and we went into production, servicing not only our hospital but others in the area who gave their support for the service. High quality photographic reproduction was achieved and clients and consultants were very pleased with the results. The designers were happy that their skills were being used and interest in this and other services in the department have increased. The resulting increased income has helped finance other projects. The printer has enabled us also to see output proofs before sending work off to be offset printed--a very useful tool and a cost-saving process. PMID:9764518

  9. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    SciTech Connect

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  10. Relativistic Jet Properties of GeV-TeV Blazars and Possible Implications for the Jet Formation, Composition, and Cavity Kinematics

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sun, Xiao-Na; Liang, En-Wei; Lu, Rui-Jing; Lu, Ye; Zhang, Shuang-Nan

    2014-06-01

    We fit the spectral energy distributions of a GeV-TeV flat spectrum radio quasar (FSRQ) sample with the leptonic model. Their γmin of the relativistic electron distributions, which significantly affect the estimate of the jet properties, are constrained, with a typical value of ~48. Their jet power, magnetized parameter, radiation efficiency, and jet production and radiation rates per central black hole (BH) mass are derived and compared with those of BL Lacertae (BL Lac) objects. We show that the FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac object jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lac objects, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lac objects. We also show that the jet power is correlated with the cavity kinetic power: the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs, and the kinetic energy of cold protons in the jets may be crucial for the cavity kinetic energy of BL Lac objects. We suggest that the dominating formation mechanism of FSRQ jets may be the Blandford-Znajek process, but BL Lac object jets may be produced via the Blandford-Payne and/or Blandford-Znajek processes, depending on the structures and accretion rates of accretion disks.

  11. Relativistic jet properties of GeV-TeV blazars and possible implications for the jet formation, composition, and cavity kinematics

    SciTech Connect

    Zhang, Jin; Lu, Ye; Zhang, Shuang-Nan; Sun, Xiao-Na; Liang, En-Wei; Lu, Rui-Jing E-mail: lew@gxu.edu.cn

    2014-06-20

    We fit the spectral energy distributions of a GeV-TeV flat spectrum radio quasar (FSRQ) sample with the leptonic model. Their γ{sub min} of the relativistic electron distributions, which significantly affect the estimate of the jet properties, are constrained, with a typical value of ∼48. Their jet power, magnetized parameter, radiation efficiency, and jet production and radiation rates per central black hole (BH) mass are derived and compared with those of BL Lacertae (BL Lac) objects. We show that the FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac object jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lac objects, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lac objects. We also show that the jet power is correlated with the cavity kinetic power: the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs, and the kinetic energy of cold protons in the jets may be crucial for the cavity kinetic energy of BL Lac objects. We suggest that the dominating formation mechanism of FSRQ jets may be the Blandford-Znajek process, but BL Lac object jets may be produced via the Blandford-Payne and/or Blandford-Znajek processes, depending on the structures and accretion rates of accretion disks.

  12. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  13. Mechanisms of microhole formation on glasses by an abrasive slurry jet

    SciTech Connect

    Wang, J.; Nguyen, T.; Pang, K. L.

    2009-02-15

    Abrasive jet micromachining is considered as a promising precision processing technology for brittle materials such as silicon substrates and glasses that are increasingly used in various applications. In this paper, the mechanisms of microhole formation on brittle glasses by an abrasive slurry jet are studied based on the viscous flow and erosion theories. It is shown that the hole cross section is characterized by a ''W'' shape and can be classified into three zones caused, respectively, by jet direct impact, viscous flow, and turbulent flow induced erosion. An analysis of the surface morphology shows that ductile-mode erosion is dominant. The effect of process parameters on material removal is studied which shows that increasing the pressure and erosion time increases the hole depth, but has little effect on the hole diameter.

  14. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA^*, and will be ~ 2,200 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Sep 2013. The cloud is expected to be disrupted by instabilities and tidal forces, and the cloud fragments accrete onto the SMBH on the dynamical timescale of several days to several weeks, suggesting a jet formation in 2013. So we are carrying out daily monitoring observations of SgrA^* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass is, and when the fragment is accreted onto the SMBH. Polarimetric signals from a jet taken with Subaru/HiCIAO will be compared with the finely tuned simulation to understand the timescale of a jet formation, and to investigate the correlation between the accreted mass of the cloud fragment and a luminosity of a newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  15. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  16. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  17. Self-consistent modeling of jet formation process in the nanosecond laser pulse regime

    SciTech Connect

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Hebert, D.

    2009-12-15

    Laser induced forward transfer (LIFT) is a direct printing technique. Because of its high application potential, interest continues to increase. LIFT is routinely used in printing, spray generation and thermal-spike sputtering. Biological material such as cells and proteins have already been transferred successfully for the creation of biological microarrays. Recently, modeling has been used to explain parts of the ejection transfer process. No global modeling strategy is currently available. In this paper, a hydrodynamic code is utilized to model the jet formation process and estimate the constraints obeyed by the bioelements during the transfer. A self-consistent model that includes laser energy absorption, plasma formation via ablation, and hydrodynamic processes is proposed and confirmed with experimental results. Fundamental physical mechanisms via one-dimensional modeling are presented. Two-dimensional (2D) simplified solutions of the jet formation model equations are proposed. Predicted results of the model are jet existence and its velocity. The 2D simulation results are in good agreement with a simple model presented by a previous investigator.

  18. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple

  19. General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman

    2006-01-01

    We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.

  20. Star Formation Suppression Due to Jet Feedback in Radio Galaxies with Shocked Warm Molecular Gas

    NASA Astrophysics Data System (ADS)

    Lanz, Lauranne; Ogle, Patrick M.; Alatalo, Katherine; Appleton, Philip N.

    2016-07-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ˜3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

  1. Investigation of aerosol formation and sulfur speciation in subsonic jet aircraft engines

    NASA Astrophysics Data System (ADS)

    Durlak, Susan Kaye

    1997-12-01

    Combustion-related atmospheric pollutants, both gaseous and particulate, can contribute to short-term health risks, as well as long-term climate change. While aircraft engine emissions may present short-term health risks near airports, aircraft are uniquely able to impact long-term climate change due to their insertion of anthropogenic pollutants in the upper troposphere and lower stratosphere. Aircraft emissions can impact the climate either directly, via emissions of light- scattering particulates, or indirectly, via emission of cloud condensation nuclei (CCN) particulates which influence cloud formation, or through heterogeneous reactions in the atmosphere. Carbonaceous aerosol emissions from aircraft engines can directly impact the climate, whereas speciation of sulfur emissions from aircraft engines can indirectly impact the climate by forming submicron, sulfuric acid particles which then form CCN. The number, size and composition of carbonaceous aerosol, and speciation of sulfur in the exhaust, are the main parameters influencing these emissions' fate in the environment and impact on the climate. However, little is understood about the formation of these pollutants within aircraft engines, due in part to the complexity and cost involved in testing these highly engineered machines. This study examines the feasibility of using a miniature working jet aircraft engine (Sophia J450 Model Jet Engine) to perform lab-scale, controlled tests to explore the formation of aircraft engine emissions. The miniature engine was run at a variety of power levels, and emissions were sampled at the exhaust. Two types of jet fuel (JP-5 and Jet A) and one other fuel (White Gas, or Coleman Fuel) were combusted in the engine. Engine performance is characterized and exhaust carbonaceous aerosol size distribution measurements are compared to full-scale turbojet engines. Measurements were made of sulfur speciation in the exhaust of the miniature jet engine burning Jet A and JP-5 with

  2. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    NASA Astrophysics Data System (ADS)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  3. Newly-Developed 3D GRMHD Code and its Application to Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.

  4. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    NASA Astrophysics Data System (ADS)

    King, M.; Gray, R. J.; Powell, H. W.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Hicks, G. S.; Dover, N. P.; Rusby, D. R.; Carroll, D. C.; Padda, H.; Torres, R.; Kar, S.; Clarke, R. J.; Musgrave, I. O.; Najmudin, Z.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  5. A limit of validity of the straight line hypothesis in shaped charge jet formation modeling

    SciTech Connect

    Curtis, J.P.; Kelly, R.J.

    1997-07-01

    A particular problem in the field of shaped charge jet formation modeling concerns the collision of two fluid streams of different widths and speeds. It is commonly assumed that the flow is incompressible, and that the velocity of the fluid in any of the streams is constant across and normal to its cross section. Then the well-known classically indeterminate mathematical problem arises. In the shaped charge context the indeterminacy of the problem has been addressed by making three assumptions about the flow. Several models have assumed that conservation of kinetic energy holds, and have applied Bernoulli{close_quote}s Law to equate the speeds of the jet and slug in a frame moving with the collision point. One natural choice for the third and final assumption is that the jet and slug lie in a straight line when viewed in this frame, the so-called straight line hypothesis. In this article the inclination of this line relative to the bisector of the two colliding streams is expressed as a function of the parameters of the incoming streams. It is shown that the angle between the jet and the incoming stream supplying momentum at the greater rate increases with the size of the angle between the incoming streams until it reaches a maximum value. It then decreases to zero. It is known that the straight line hypothesis is a good approximation for low values of the angle between the incoming streams, but becomes increasingly inaccurate as this angle increases. The above maximum appears to correspond to the limit of validity of the straight line hypothesis. Recommendations for the utilization of the existing formation models to achieve best accuracy are made, based on this limit.

  6. A PHYSICAL LINK BETWEEN JET FORMATION AND HOT PLASMA IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wu Qingwen; Wang Dingxiong; Cao Xinwu; Ho, Luis C. E-mail: dxwang@hust.edu.cn E-mail: lho@obs.carnegiescience.edu

    2013-06-10

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of {approx}1%, the radio emission-a measure of the jet power-varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L{sub R} {proportional_to} L{sub X}{sup 0.6-0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  7. MHD simulations of protostellar jets: formation and stability of shock diamonds

    NASA Astrophysics Data System (ADS)

    Ustamujic, Sabina

    2016-07-01

    The early stages of a star birth are characterised by a variety of mass ejection phenomena, including outflows and collimated jets, that are strongly related with the accretion process developed in the context of the star-disc interaction. After been ejected, jets move through the ambient medium, interacting and producing shocks and complex structures that are observed at different wavelength bands. In particular, X-ray observations show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary and have been interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of the magnetic field on the collimation performing 2.5D MHD simulations, including the effects of the thermal conduction and the radiative losses. We modelled the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium. We studied the physics that guides the formation of a stationary shock (for instance a shock diamond) and compared the results with observations, via the emission measure distribution vs. temperature and the luminosity synthesised from the simulations.

  8. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  9. Modeling of Jet Formation on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Syal, M. B.; Schultz, P. H.; A'Hearn, M. F.; Farnham, T. L.; Belton, M. J. S.; Dearborn, D. S.

    2011-10-01

    Based upon the premise that surface-controlled processes may contribute to jet formation, we have run simulations of cometary jet activity using CALE [3], a 2-D Arbitrary Lagrangian Eulerian hydrodynamical code developed by Lawrence Livermore National Laboratory (LLNL). The setup for our numerical study is based loosely on the qualitative model for the evolution of a vent suggested in [4], where a structural weakness within the comet's dusty mantle leads to a slumping of warm material into underlying frozen volatiles and a resulting activation of the jet. Results from models using various vent geometries suggest that the mechanism for collimation may be tied to the depthto- width ratio of the vent. As time elapses, the width of the source region expands. Source regions that are enriched in highly volatile CO2 are observed to remain more tightly collimated. Entrained dust and water ice particles comprise the majority of the collimated portion of the flow, while CO2 appears to drive the process. Acceleration near the surface is sufficient to entrain μm-sized grains, which is consistent with theoretical calculations for scattering by icy grains in [2].

  10. Magnetic reconnection resulting from flux emergence: implications for jet formation in the lower solar atmosphere?

    NASA Astrophysics Data System (ADS)

    Ding, J. Y.; Madjarska, M. S.; Doyle, J. G.; Lu, Q. M.; Vanninathan, K.; Huang, Z.

    2011-11-01

    Aims: We aim at investigating the formation of jet-like features in the lower solar atmosphere, e.g. chromosphere and transition region, as a result of magnetic reconnection. Methods: Magnetic reconnection as occurring at chromospheric and transition regions densities and triggered by magnetic flux emergence is studied using a 2.5D MHD code. The initial atmosphere is static and isothermal, with a temperature of 2 × 104 K. The initial magnetic field is uniform and vertical. Two physical environments with different magnetic field strength (25 G and 50 G) are presented. In each case, two sub-cases are discussed, where the environments have different initial mass density. Results: In the case where we have a weaker magnetic field (25 G) and higher plasma density (Ne = 2 × 1011 cm-3), valid for the typical quiet Sun chromosphere, a plasma jet would be observed with a temperature of 2-3 × 104 K and a velocity as high as 40 kms-1. The opposite case of a medium with a lower electron density (Ne = 2 × 1010 cm-3), i.e. more typical for the transition region, and a stronger magnetic field of 50 G, up-flows with line-of-sight velocities as high as ~90 kms-1 and temperatures of 6 × 105 K, i.e. upper transition region - low coronal temperatures, are produced. Only in the latter case, the low corona Fe ix 171 Å shows a response in the jet which is comparable to the O v increase. Conclusions: The results show that magnetic reconnection can be an efficient mechanism to drive plasma outflows in the chromosphere and transition region. The model can reproduce characteristics, such as temperature and velocity for a range of jet features like a fibril, a spicule, a hot X-ray jet or a transition region jet by changing either the magnetic field strength or the electron density, i.e. where in the atmosphere the reconnection occurs.

  11. Modeling of jet-induced geyser formation in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Wendl, M. C.; Hochstein, J. I.; Sasmal, G. P.

    1991-01-01

    Flow patterns predicted by a computational model of jet-induced geyser formation in a reduced gravity environment are presented and comparison is made to patterns predicted by experimentally based correlations. The configuration studied is an idealization of a forthcoming flight experiment to examine cryogenic propellant management issues. A transitional version of the ECLIPSE code used as a computational tool for the analyses is described. It is shown that computationally predicted flow patterns are in qualitative agreement with the correlation-based predictions, and some details of the predicted flow fields are given.

  12. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.

    1996-01-01

    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar

  13. Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2015-11-01

    Numerical simulations of coupled gas-granular flows are used to study properties of shock formation and propagation in media, such as sand or regolith on the moon, asteroids, or comets. The simulations were performed with a multidimensional fully compressible model, GRAF, which solves two sets of coupled Navier-Stokes equations, one for the gas and one for the granular medium. The specific case discussed here is for a subsurface explosion in a granular medium initiated by an equivalent of 200g of TNT in depths ranging from 0.1m to 3m. The background conditions of 100K, 10 Pa and loose initial particle volume fraction of 25% are consistent with an event on a comet. The initial blast creates a cavity as a granular shock expands outwards. Since the gas-phase shock propagates faster than the granular shock in loose, granular material, some gas and particles are ejected before the granular shock arrives. When the granular shock reaches the surface, a cap-like structure forms. This cap breaks and may fall back on the surface and in this process, relatively dense particle clusters form. At lower temperatures, the explosion timescales are increased and entrained particles are more densely packed.

  14. THE JET/COUNTERJET INFRARED SYMMETRY OF HH 34 AND THE SIZE OF THE JET FORMATION REGION

    SciTech Connect

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Lora, V.; Stapelfeldt, K. R.

    2011-04-01

    We present new Spitzer IRAC images of the HH 34 outflow. These are the first images that detect both the knots along the southern jet and the northern counterjet (the counterjet knots were only detected previously in a long-slit spectrum). This result removes the problem of the apparent coexistence of a large-scale symmetry (at distances of up to {approx}1 pc) and a complete lack of symmetry close to the source (at distances of {approx}10{sup 17} cm) for this outflow. We present a quantitative evaluation of the newly found symmetry between the HH 34 jet and counterjet, and show that the observed degree of symmetry implies that the jet production region has a characteristic size <2.8 AU. This is the strongest constraint yet derived for the size of the region in which HH jets are produced.

  15. Efficiency of excimer molecule formation in plasma jets of inert gas mixtures with SF6 and CCl4

    NASA Astrophysics Data System (ADS)

    Rogulich, V. S.; Starodub, V. P.; Shevera, V. S.

    1988-10-01

    The formation of krypton and xenon monofluorides and monochlorides in continuous plasma jets of inert gas mixtures with SF6 and CCl4 molecules is investigated experimentally. Absolute concentrations of KrF, XeF, KrCl, and XeCl excimer molecules in the jet are determined. The energy efficiency of specific input power conversion to the spontaneous B-X emission in the KrF band is estimated at 2-4 percent. Ways of increasing the concentration of excimer molecules in the plasma jet are analyzed.

  16. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  17. Complete multiwavelength evolution of Galactic black hole transients during outburst decay. I. Conditions for 'compact' jet formation

    SciTech Connect

    Kalemci, E.; Dinçer, T.; Chun, Y. Y.; Tomsick, J. A.; Buxton, M. M.; Bailyn, C. D.

    2013-12-20

    Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic black hole transients as their luminosity decreases and the source moves toward a quiescent state. Recent radio observations indicate that the jets turn off completely in the soft state; therefore, multiwavelength monitoring of black hole transients is essential to probe the formation of jets. In this work, we conducted a systematic study of all black hole transients with near infrared and radio coverage during their outburst decays. We characterized the timescales of changes in X-ray spectral and temporal properties and also in near infrared and/or in radio emission. We confirmed that state transitions occur in black hole transients at a very similar fraction of their respective Eddington luminosities. We also found that the near infrared flux increase that could be due to the formation of a compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these results with a model such that the increase in the near infrared flux corresponds to a transition from a patchy, small-scale height corona along with an optically thin outflow to a large-scale height corona that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms of transport of magnetic fields from the outer parts of the disk, and we also consider two alternative explanations for the multiwavelength emission: hot inner accretion flows and irradiation.

  18. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization

    SciTech Connect

    Huo, Yuanping Wang, Junfeng Zuo, Ziwen; Fan, Yajun

    2015-11-15

    A detailed experimental study on the evolution of charged droplet formation and jet transition from a capillary is reported. By means of high-speed microscopy, special attention has been paid to the dynamics of the liquid thread and satellite droplets in the dripping mode, and a method for calculating the surface charge on the satellite droplet is proposed. Jet transition behavior based on the electric Bond number has been visualized, droplet sizes and velocities are measured to obtain the ejection characteristic of the spray plume, and the charge and hydrodynamic relaxation are linked to give explanations for ejection dynamics with different properties. The results show that the relative length is very sensitive to the hydrodynamic relaxation time. The magnitude of the electric field strength dominates the behavior of coalescence and noncoalescence, with the charge relationship between the satellite droplet and the main droplet being clear for every noncoalescence movement. Ejection mode transitions mainly depend on the magnitude of the electric Bond number, and the meniscus dynamics is determined by the ratio of the charge relaxation time to the hydrodynamic relaxation time.

  19. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization

    NASA Astrophysics Data System (ADS)

    Huo, Yuanping; Wang, Junfeng; Zuo, Ziwen; Fan, Yajun

    2015-11-01

    A detailed experimental study on the evolution of charged droplet formation and jet transition from a capillary is reported. By means of high-speed microscopy, special attention has been paid to the dynamics of the liquid thread and satellite droplets in the dripping mode, and a method for calculating the surface charge on the satellite droplet is proposed. Jet transition behavior based on the electric Bond number has been visualized, droplet sizes and velocities are measured to obtain the ejection characteristic of the spray plume, and the charge and hydrodynamic relaxation are linked to give explanations for ejection dynamics with different properties. The results show that the relative length is very sensitive to the hydrodynamic relaxation time. The magnitude of the electric field strength dominates the behavior of coalescence and noncoalescence, with the charge relationship between the satellite droplet and the main droplet being clear for every noncoalescence movement. Ejection mode transitions mainly depend on the magnitude of the electric Bond number, and the meniscus dynamics is determined by the ratio of the charge relaxation time to the hydrodynamic relaxation time.

  20. Modeling of plasma jet production from rail and coaxial guns for imploding plasma liner formation*

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Faehl, R. J.; Kirikpatrick, R. C.; Witherspoon, D.; Cassibry, J.

    2010-11-01

    We study the generation of plasma jets for forming imploding plasma liners using an enhanced version of the ePLAS implicit/hybrid model.^1 Typically, the jets are partially ionized D or Ar gases, in initial 3-10 cm long slugs at 10^16-10^18 electron/cm^3, accelerated for microseconds along 15-30 cm rail or coaxial guns with a 1 cm inter-electrode gap and driven by magnetic fields of a few Tesla. We re-examine the B-field penetration mechanisms that can be active in such wall-connected plasmas,^2 including erosion and EMHD influences, which can subsequently impact plasma liner formation and implosion. For the background and emitted plasma components we discuss optimized PIC and fluid modeling techniques, and the use of implicit fields and hybridized electrons to speed simulation. The plasmas are relatively cold (˜3 eV), so results with fixed atomic Z are compared to those from a simple analytic EOS, and allowing radiative heat loss from the plasma. The use of PIC ions is explored to extract large mean-free-path kinetic effects. 1. R. J. Mason and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986) 2. R. Mason, et al., Phys. Fluids B, 5, 1115 (1993). [4pt] *Research supported in part by USDOE Grant DE-SC0004207.

  1. Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.; Metzger, B. D.; Thompson, T. A.; Quataert, E.

    2012-01-01

    Approximately 1/4-1/2 of short duration gamma-ray bursts (GRBs) are followed by variable X-ray emission lasting ˜100 s with a fluence comparable or exceeding that of the initial burst itself. The long duration and significant energy of this 'extended emission' (EE) poses a major challenge to the standard binary neutron star (NS) merger model. Metzger et al. recently proposed that the EE is powered by the spin-down of a strongly magnetized neutron star (a millisecond protomagnetar), which either survives the NS-NS merger or is created by the accretion-induced collapse (AIC) of a white dwarf. However, the effects of surrounding material on the magnetar outflow have not yet been considered. Here we present time-dependent axisymmetric relativistic magnetohydrodynamic simulations of the interaction of the relativistic protomagnetar wind with a surrounding 10-1-10-3 M⊙ envelope, which represents material ejected during the merger, in the supernova following AIC, or via outflows from the initial accretion disc. The collision between the relativistic magnetar wind and the expanding ejecta produces a termination shock and a magnetized nebula inside the ejecta. A strong toroidal magnetic field builds up in the nebula, which drives a bipolar jet out through the ejecta, similar to the magnetar model developed in the case of long-duration GRBs. We quantify the 'breakout' time and opening angle of the jet θj as a function of the wind energy flux ? and ejecta mass Mej. We show that ? and θj are inversely correlated, such that the beaming-corrected (isotropic) luminosity of the jet (and hence the observed EE) is primarily a function of Mej. Both variability arguments, and the lower limit on the power of magnetar outflows capable of producing bright emission, suggest that the true opening angle of the magnetar jet must be relatively large. The model thus predicts a class of events for which the EE is observable with no associated short GRB. These may appear as long

  2. Numerical simulations of adiabatic axisymmetric accretion flow. I - A new mechanism for the formation of jets

    NASA Technical Reports Server (NTRS)

    Fryxell, B. A.; Taam, Ronald E.; Mcmillan, S. L. W.

    1987-01-01

    Numerical simulations of the uniform axisymmetric flow past a gravitating sphere have been studied. It is found that the structure of the flow is extremely sensitive to the boundary condition at the surface of the gravitating object. For the case in which the boundary is totally absorbing, a steady state flow is reached. However, for a boundary which is not totally absorbing, steady state flows are not obtained. The morphology of the flow is also sensitive to the Mach number at infinity and to the ratio of the free-fall velocity at the surface of the gravitating object to the flow velocity at inifinity. A new mechanism for the formation of jets is identified in which a fraction of the accretion energy is tapped to drive an anisotropic supersonic outflow with collimation provided by a combination of the inertia of matter which surrounds the beam and the development of multiple shock structures.

  3. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  4. Quantifying the Incoming Jet Past Heart Valve Prostheses Using Vortex Formation Dynamics

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga

    2005-11-01

    Heart valve (HV) replacement prostheses are associated with hemodynamic compromises compared to their native counterparts. Traditionally, HV performance and hemodynamics have been quantified using effective orifice size and pressure gradients. However, quality and direction of flow are also important aspects of HV function and relate to HV design, implantation technique, and orientation. The flow past any HV is governed by the generation of shear layers followed by the formation and shedding of organized flow structures in the form of vortex rings (VR). For the first time, vortex formation (VF) in the LV is quantified. Vortex energy measurements allow for calculation of the critical formation number (FN), which is the time at which the VR reaches its maximum strength. Inefficiencies in HV function result in critical FN decrease. This study uses the concept of FN to compare mitral HV prostheses in an in-vitro model (a silicone LV model housed in a piston-driven heart simulator) using Time-resolved Digital Particle Image Velocimetry. Two HVs were studied: a porcine HV and bileaflet MHV, which was tested in an anatomic and non-anatomic orientation. The results suggest that HV orientation and design affect the critical FN. We propose that the critical FN, which is contingent on the HV design, orientation, and physical flow characteristics, serve as a parameter to quantify the incoming jet and the efficiency of the HV.

  5. Impulsive dispersion of a granular layer by a weak blast wave

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L.

    2016-04-01

    The dispersion of particles by blast or shock waves induces the formation of coherent structures taking the shape of particle jets. In the present study, a blast wave, issued from an open shock tube, is generated at the center of a granular ring initially confined in a Hele-Shaw cell. With the present experimental setup, solid particle jet formation is clearly observed in a quasi-two-dimensional configuration. In all instances, the jets are initially generated inside the particle ring and thereafter expelled outward. Furthermore, thanks to the two-dimensional experimental configuration, a general study of the main parameters involved in these types of flows can be performed. Among them, the particle diameter, the density of the particles, the initial size of the ring, the shape of the overpressure generated and the surface friction of the Hele-Shaw cell are investigated. Empirical relationships are deduced from experimental results.

  6. Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to

  7. Production of ultra-small ink jet drops using drop-on-demand (DOD) drop formation

    NASA Astrophysics Data System (ADS)

    Gao, Haijing; Xu, Qi; Harris, Michael; Basaran, Osman

    2009-11-01

    The formation of drops having radii that are smaller than the radii of the nozzle from which they are ejected is an active area of research in drop-on-demand (DOD) ink jet printing. In the last decade, Chen and Basaran (Phys Fluids, 2002; US patent, 2003) showed experimentally and computationally that several fold reduction in drop radius R (an order of magnitude reduction in drop volume V) is possible by judicious use of waveform modulation in which one or more intrinsic time scales such as capillary time, time for vorticity diffusion, and time for piezo actuation are varied. In this paper, we report the results of a computational study through which we have uncovered a novel method for achieving a factor of 5-10 reduction in R (about two to three orders of magnitude reduction in V). Scaling arguments are also developed which yield a simple expression for the size of the ultra-small drops formed as a function of the governing dimensionless groups. Formation of such small drops using DOD technology may prove especially attractive in applications involving direct printing of flexible electronics and solar cells.

  8. The role of stress agents as operating factors in formation and functioning of granular aerobic activated sludge at model domestic wastewater treatment.

    PubMed

    Khokhlachev, Nikolay S; Kalenov, Sergei V; Zanina, Olga S; Tyupa, Dmitry V; Baurina, Marina M; Kuznetsov, Alexander Ye

    2014-09-01

    Maintenance of the wastewater treatment plants and increasing the efficiency of existing aerobic biological reactors depend on the stability of activated sludge characteristics under varying wastewater parameters within significant limits and/or influence of some environmental factors. The steady microbial communities observed in biofilms and anaerobic granules of activated sludge can serve as successful samples of formation of the similar aerobic systems. The granular aerobic sludge obtained in the course of our researches is an ideal "plant" on treatment of biogenic pollution at both low and high concentrations. It demonstrates high ability for treatment and stability to adverse factors. To improve aerobic wastewater treatment characteristics, a possibility of using impact of stress conditions upon activated sludge has been studied. Under conditions of fractional hydrogen peroxide addition at diffused lighting, the granular aerobic activated sludge adapted to hydrogen peroxide has been obtained. This sludge has got good sedimentary properties and it differs from the control sample in the species diversity, improved treatment characteristics and also resistance to the stressor. It also endures an impact of one-time hydrogen peroxide addition up to 1.2-1.5 g H2O2/l. The conditions under which the steady aerobic granules of the diameter from 2 to 5 mm were formed with high treatment ability have been chosen. The granules were being stabilized at passages with hydrogen peroxide treatment and they endured up to 2.4-3.0 g/l of one-time H2O2 addition. PMID:24556977

  9. FAST X-RAY/IR CROSS-CORRELATIONS AND RELATIVISTIC JET FORMATION IN GRS 1915+105

    SciTech Connect

    Lasso-Cabrera, N. M.; Eikenberry, S. S.

    2013-10-01

    We present cross-correlation analyses of simultaneous X-ray and near-infrared (near-IR) observations of the microquasar GRS 1915+105 during relativistic jet-producing epochs (X-ray class α and β). While previous studies have linked the large amplitude IR flares and X-ray behaviors to jet formation in these states, our new analyses are sensitive to much lower amplitude IR variability, providing more sensitive probes of the jet formation process. The X-ray to IR cross-correlation function (CCF) shows significant correlations that vary in form between the different X-ray states. During low/hard dips in both classes, we find no significant X-ray/IR correlation. During high-variability epochs, we find consistently significant correlations in both α and β classes, but with strong differences in the CCF structure. The high variability α CCF shows strong anti-correlation between X-ray/IR, with the X-ray preceding the IR by ∼13 ± 2 s. The high variability β state shows a time-variable CCF structure, which is statistically significant but without a clearly consistent lag. Our simulated IR light curves, designed to match the observed CCFs, show variably flickering IR emission during the class β high-variability epoch, while class α can be fit by IR flickering with frequencies in the range 0.1-0.3 Hz, strengthening ∼10 s after every X-ray subflare. We interpret these features in the context of the X-ray-emitting accretion disk and IR emission from relativistic jet formation in GRS 1915+105, concluding that the CCF analysis places the origin in a synchrotron-emitting relativistic compact jet at a distance from the compact object of ∼0.02 AU.

  10. Large eddy simulation of soot formation in a turbulent non-premixed jet flame

    SciTech Connect

    El-Asrag, Hossam; Menon, Suresh

    2009-02-15

    A recently developed subgrid model for soot dynamics [H. El-Asrag, T. Lu, C.K. Law, S. Menon, Combust. Flame 150 (2007) 108-126] is used to study the soot formation in a non-premixed turbulent flame. The model allows coupling between reaction, diffusion and soot (including soot diffusion and thermophoretic forces) processes in the subgrid domain without requiring ad hoc filtering or model parameter adjustments. The combined model includes the entire process, from the initial phase, when the soot nucleus diameter is much smaller than the mean free path, to the final phase, after coagulation and aggregation, where it can be considered in the continuum regime. A relatively detailed but reduced kinetics for ethylene-air is used to simulate an experimentally studied non-premixed ethylene/air jet diffusion flame. Acetylene is used as a soot precursor species. The soot volume fraction order of magnitude, the location of its maxima, and the soot particle size distribution are all captured reasonably. Along the centerline, an initial region dominated by nucleation and surface growth is established followed by an oxidation region. The diffusion effect is found to be most important in the nucleation regime, while the thermophoretic forces become more influential downstream of the potential core in the oxidation zone. The particle size distribution shows a log-normal distribution in the nucleation region, and a more Gaussian like distribution further downstream. Limitations of the current approach and possible solution strategies are also discussed. (author)

  11. Analytical study of mechanisms for nitric oxide formation during combustion of methane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1975-01-01

    The role of chemical kinetics in the formation of nitric oxide during the combustion of methane was examined analytically by means of a detailed chemical mechanism for the oxidation of methane, for the reaction between hydrocarbon fragments, and for the formation of nitric oxide. By comparing predicted nitric oxide levels with values reported in the literature from jet-stirred combuster experiments, it was determined that the nitric oxide levels observed in fuel-rich flames cannot be described by a mechanism in which the rate of nitric oxide formation is controlled solely by the kinetics of oxygen atom formation. A proposed mechanism for the formation of nitric oxide in methane-rich flames reproduces the observed levels. The oxidation of hydrogen cyanide appears to be an important factor in nitric oxide formation.

  12. Impact conditions required for formation of melt by jetting in silicates

    NASA Technical Reports Server (NTRS)

    Kieffer, S. W.

    1977-01-01

    It is demonstrated that the process of jetting which occurs when particles collide at oblique angles may produce melt at much lower velocities than are required for melt production in head-on collisions. The minimum velocities of impact required for jetting in aluminum, bronzitite, dunite, and quartz are calculated by the method of shock polars. The analysis, which depends on stated assumptions about attained pressures and the occurrence of jetting, uses shock-velocity particle-velocity equations of state with three shock regimes. The treatment indicates that jetting should arise in bronzitite, dunite, and quartz at relative velocities as low as 1-2 km/sec. At such velocities material which passes near the stagnation point in the jet-forming region is subjected to sufficiently high pressures so that it is probably melted.

  13. Eddy formation and propagation in the East Pacific warm pool: Role of subseasonal variability in Central American wind jets

    NASA Astrophysics Data System (ADS)

    Chang, C.; Xie, S.; Schneider, N.; Qiu, B.; Small, R. J.; Zhuang, W.; Taguchi, B.; Sasaki, H.; Lin, X.

    2011-12-01

    Subseasonal variability in sea surface height (SSH) over the East Pacific warm pool off Central America is investigated using satellite observations and an eddy-resolving ocean general circulation model. SSH variability is organized into two southwest-tilted bands on the northwest flank of the Tehuantepec and Papagayo wind jets and colocated with the thermocline troughs. Eddy-like features of wavelength ~ 600 km propagate southwestward along the high-variance bands at a speed of 9-13 cm/s. Wind fluctuations are important for eddy formation in the Gulf of Tehuantepec, with a recurring interval of 40-110 days. When forced by satellite wind observations, the model reproduces the two high-variance bands and the phase propagation of the Tehuantepec eddies. Our observational analysis and model simulation suggest the following evolution of the Tehuantepec eddies. On subseasonal timescale, in response to the gap wind, a coastal anticyclonic eddy forms on the northwest flank of the wind jet and strengthens as it propagates offshore in the following two to three weeks. An energetics analysis based on the model simulation indicates that besides wind work, barotropic and baroclinic instabilities of the mean flow are important for the eddy growth. Both observational and model results suggest eddy re-intensification in response to the subsequent wind jet event. In both the Gulfs of Tehuantepec and Papagayo, subseasonal SSH variability is preferentially excited on the northwest flank of the wind jet. Factors for this asymmetry about the wind jet axis as well as the origins of wind jet variability are discussed

  14. Numerical Study of Gamma-Ray Burst Jet Formation in Collapsars

    SciTech Connect

    Nagataki, S.; Takahashi, R.; Mizuta, A.; Takiwaki, T.; /Garching, Max Planck Inst. /Tokyo U.

    2007-06-08

    Two-dimensional MHD simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self-gravity. It is found that neutrino heating processes are not efficient enough to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest-mass energy in the jet is not as high as several hundred, we conclude that the jets seen in this study are not GRB jets. This result suggests that general relativistic effects will be important to generating a GRB jet. Also, the accretion disk with magnetic fields may still play an important role in launching a GRB jet, although a simulation for much longer physical time ({approx}10-100 s) is required to confirm this effect. It is shown that a considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus, there will be a possibility for the accretion disk to supply the sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Thus, there will be a possibility that r-process nucleosynthesis occurs at such a region. Finally, many neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma rays.

  15. Survey on granularity clustering.

    PubMed

    Ding, Shifei; Du, Mingjing; Zhu, Hong

    2015-12-01

    With the rapid development of uncertain artificial intelligent and the arrival of big data era, conventional clustering analysis and granular computing fail to satisfy the requirements of intelligent information processing in this new case. There is the essential relationship between granular computing and clustering analysis, so some researchers try to combine granular computing with clustering analysis. In the idea of granularity, the researchers expand the researches in clustering analysis and look for the best clustering results with the help of the basic theories and methods of granular computing. Granularity clustering method which is proposed and studied has attracted more and more attention. This paper firstly summarizes the background of granularity clustering and the intrinsic connection between granular computing and clustering analysis, and then mainly reviews the research status and various methods of granularity clustering. Finally, we analyze existing problem and propose further research. PMID:26557926

  16. Formation of plasma channels in the interaction of a nanosecond laser pulse at moderate intensities with helium gas jets.

    PubMed

    De Wispelaere, E; Malka, V; Hüller, S; Amiranoff, F; Baton, S; Bonadio, R; Casanova, M; Dorchies, F; Haroutunian, R; Modena, A

    1999-06-01

    We report on a detailed study of channel formation in the interaction of a nanosecond laser pulse with a He gas jet. A complete set of diagnostics is used in order to characterize the plasma precisely. The evolution of the plasma radius and of the electron density and temperature are measured by Thomson scattering, Schlieren imaging, and Mach-Zehnder interferometry. In gas jets, one observes the formation of a channel with a deep density depletion on axis. Because of ionization-induced defocusing which increases the size of the focal spot and decreases the maximum laser intensity, no channel is observed in the case of a gas-filled chamber. The results obtained in various gas-jet and laser conditions show that the channel radius, as well as the density along the propagation axis, can be adjusted by changing the laser energy and gas-jet pressure. This is a crucial issue when one wants to adapt the channel parameters in order to guide a subsequent high-intensity laser pulse. The experimental results and their comparison with one-dimensional (1D) and two-dimensional hydrodynamic simulations show that the main mechanism for channel formation is the hydrodynamic evolution behind a supersonic electron heat wave propagating radially in the plasma. It is also shown from 2D simulations that a fraction of the long pulse can be self-guided in the channel it creates. The preliminary results and analyses on this subject have been published before [V. Malka et al., Phys. Rev. Lett. 79, 2979 (1997)]. PMID:11969699

  17. Metal and polymer melt jet formation by the high-power laser ablation

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; Gojani, Ardian B.

    2010-02-01

    The laser-induced metal and polymer melt jets are studied experimentally. Two classes of physical phenomena of interest are: first, the process of explosive phase change of laser induced surface ablation and second, the hydrodynamic jetting of liquid melts ejected from a beamed spot. We focus on the dynamic link between these two distinct physical phenomena in a framework of forming and patterning of metallic and polymer jets using a high-power Nd:YAG laser. The microexplosion of ablative spot on a target first forms a pocket of hot liquid melt and then it is followed by a sudden volume change of gas-liquid mixture leading to a pressure-induced spray jet ejection into surrounding medium.

  18. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  19. Granular temperature field of monodisperse granular flows

    NASA Astrophysics Data System (ADS)

    Gollin, Devis; Bowman, Elisabeth; Shepley, Paul

    2015-04-01

    For dry granular flows as well as solid-fluid mixtures such as debris avalanches, the momentum transfer is carried by frictional and collisional stresses. The latter may be described by the granular temperature, which provides a measure of the energy contained within the fluctuating nature of the granular motion. Thus, granular temperature can be used as a valuable means to infer the ability of a granular system to flow. Granular materials are known for the difficulties they pose in obtaining accurate microscale laboratory measurements. This is why many theories, such as the kinetic theory of granular gases, are primarily compared to numerical simulations. However, thanks to recent advancements in optical techniques along with high-speed recording systems, experimentalists are now able to obtain robust measurements of granular temperature. At present, the role of granular temperature in granular flows still entails conjecture. As a consequence, it is extremely important to provide experimental data against which theories and simulations can be judged. This investigation focuses on dry granular flows of sand and spherical beads performed on a simple inclined chute geometry. Fluctuation velocity, granular temperature and velocity patterns are obtained by means of particle image velocimetry (PIV). Flow behaviour is probed for different spatial (interrogation sizes) and temporal (frame rates) resolutions. Through the variation of these parameters an attempt to demonstrate the consistency of the degree of unsteadiness within the flow is made. In many studies a uniform stationary flow state is usually sought or preferably assumed for the simplicity it provides in the calculations. If one tries to measure microscale fields such as granular temperature, this assumption may be inappropriate. Thus, a proper definition of the flow regime should be made in order to estimate the correct flow properties. In addition, PIV analysis is compared against particle tracking velocimetry

  20. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames

    SciTech Connect

    Oldenhof, E.; Tummers, M.J.; van Veen, E.H.; Roekaerts, D.J.E.M.

    2010-06-15

    The stabilisation region of turbulent non-premixed flames of natural gas mixtures burning in a hot and diluted coflow is studied by recording the flame luminescence with an intensified high-speed camera. The flame base is found to behave fundamentally differently from that of a conventional lifted jet flame in a cold air coflow. Whereas the latter flame has a sharp interface that moves up and down, ignition kernels are continuously being formed in the jet-in-hot-coflow flames, growing in size while being convected downstream. To study the lift-off height effectively given these highly variable flame structures, a new definition of lift-off height is introduced. An important parameter determining lift-off height is the mean ignition frequency density in the flame stabilisation region. An increase in coflow temperature and the addition of small quantities of higher alkanes both increase ignition frequencies, and decrease the distance between the jet exit and the location where the first ignition kernels appear. Both mechanisms lower the lift-off height. An increase in jet Reynolds number initially leads to a significant decrease of the location where ignition first occurs. Higher jet Reynolds numbers (above 5000) do not strongly alter the location of first ignition but hamper the growth of flame pockets and reduce ignition frequencies in flames with lower coflow temperatures, leading to larger lift-off heights. (author)

  1. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets

    NASA Astrophysics Data System (ADS)

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K.; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.

  2. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.

    PubMed

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet. PMID:26651794

  3. Near-field shock formation in noise propagation from a high-power jet aircraft.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon. PMID:23363199

  4. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    NASA Astrophysics Data System (ADS)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  5. Formation of jets in Comet 19P/Borrelly by subsurface geysers

    USGS Publications Warehouse

    Yelle, R.V.; Soderblom, L.A.; Jokipii, J.R.

    2004-01-01

    Observations of the inner coma of Comet 19P/Borrelly with the camera on the Deep Space 1 spacecraft revealed several highly collimated dust jets emanating from the nucleus. The observed jets can be produced by acceleration of evolved gas from a subsurface cavity through a narrow orifice to the surface. As long as the cavity is larger than the orifice, the pressure in the cavity will be greater than the ambient pressure in the coma and the flow from the geyser will be supersonic. The gas flow becomes collimated as the sound speed is approached and dust entrainment in the gas flow creates the observed jets. Outside the cavity, the expanding gas loses its collimated character, but the density drops rapidly decoupling the dust and gas, allowing the dust to continue in a collimated beam. The hypothesis proposed here can explain the jets seen in the inner coma of Comet 1P/Halley as well, and may be a primary mechanism for cometary activity. ?? 2003 Published by Elsevier Inc.

  6. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    PubMed

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes. PMID:26876851

  7. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  8. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  9. Development of prediction techniques for multi-jet thermal ground flow fields and fountain formation. [generated by V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Aidala, P.; Wohllebe, F.; Palcza, J. L.

    1977-01-01

    Avoiding detrimental ground interaction is important for practical V/STOL aircraft. This paper reports recent developments in a numerical method for estimating thermal ground footprints. Upwash and fountain formation for arbitrarily oriented jet arrangements is predicted. Flow asymmetry due to roll, pitch, differential thrust or ground inclination is included. The prediction methodology uses simple inviscid relations for energy and momentum conservation along with an empirical entrainment law, applied in independent sectors of the wall jet and upwash. Asymmetrical stagnation line prediction is compared with experiment. Detailed flow measurements for a three-jet interaction are also presented.

  10. Formation of stable nanostructured phases in plasma-jet-treated Ni-Cr powder coatings

    NASA Astrophysics Data System (ADS)

    Alontseva, D. L.; Bratushka, S. N.; Il'yashenko, M. V.; Makhmudov, N. A.; Prokhorenkova, N. V.; Onanchenko, E. L.; Novgorodtsev, A. I.; Pshik, A. V.; Rogoz, V. N.

    2012-08-01

    Samples of steel St3 with Ni-Cr-B-Si-Fe coatings deposited using a plasma jet with subsequent partial melting of the coatings by a plasma jet have been investigated for the first time using the methods of Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray fluorescence analysis, X-ray photoelectron spectroscopy, and nanoindentation. The structure and the phase and elemental compositions of these coatings have been studied. Ni-based nanocrystalline phases and CrNi3-based microcrystalline phases with crystals from 50 to 150 nm in size, extended defects of the microstructure, and nanoregions with different orientations of the crystal lattice and grain sizes on the order of 2-3 nm have been found.

  11. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  12. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  13. Observation of micropinch formation in cathode jet of a low-power laser-induced vacuum discharge

    NASA Astrophysics Data System (ADS)

    Romanov, I. V.; Paperny, V. L.; Korobkin, Yu. V.; Podviaznikov, V. A.; Rupasov, A. A.; Chevokin, V. K.; Shikanov, A. S.

    2016-02-01

    The report presents the results from experimental investigation of micropinch formation in the plasma of a vacuum discharge induced by a 6 ns laser pulse of energy J = 0.5-200 mJ (at a storage voltage from 4 to 15 kV and the discharge current range of 6-26 kA, respectively). The discharge gap images were obtained using a pinhole camera in the EUV and soft X-ray ranges of 15-73 eV and 80-284 eV energy. It is shown that micropinch formation in the plasma cathode jet occurs, mainly, in the matter evaporated by the laser pulse at the discharge ignition near the moment when the current derivative reaches the maximum. It is found that the cathode jet may consist of several pinched areas, and each of them has its own structure, and the improvement of the discharge and laser radiation parameters allows us to reach a stable single pinching of plasma. The parameters of the micropinch (the plasma compression ratio, size, and position of the emitting area in the interelectrode gap) as well as the current flow through the interelectrode gap, at the given storage voltage, are completely governed by the laser radiation characteristics.

  14. Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame

    SciTech Connect

    Lignell, David O.; Chen, Jacqueline H.; Smith, Philip J.

    2008-10-15

    Three-dimensional direct numerical simulation of soot formation with complex chemistry is presented. The simulation consists of a temporally evolving, planar, nonpremixed ethylene jet flame with a validated, 19-species reduced mechanism. A four-step, three-moment, semiempirical soot model is employed. Previous two-dimensional decaying turbulence simulations have shown the importance of multidimensional flame dynamical effects on soot concentration [D.O. Lignell, J.H. Chen, P.J. Smith, T. Lu, C.K. Law, Combust. Flame 151 (1-2) (2007) 2-28]. It was shown that flame curvature strongly impacts the diffusive motion of the flame relative to soot (which is essentially convected with the flow), resulting in soot being differentially transported toward or away from the flame zone. The proximity of the soot to the flame directly influences soot reactivity and radiative properties. Here, the analysis is extended to three dimensions in a temporal jet configuration with mean shear. Results show that similar local flame dynamic effects of strain and curvature are important, but that enhanced turbulent mixing of fuel and oxidizer streams has a first-order effect on transport of soot toward flame zones. Soot modeling in turbulent flames is a challenge due to the complexity of soot formation and transport processes and the lack of detailed experimental soot-flame-flow structural data. The present direct numerical simulation provides the first step toward providing such data. (author)

  15. High-resolution observations of tungsten liner collapse and early jet formation

    SciTech Connect

    Winer, K.A.; Breithaupt, R.D.; Muelder, S.A.; Baum, D.W.

    1996-07-01

    High-resolution photography of collapsing tungsten-lined shaped charges has revealed surface texturing both similar to and strikingly different from that previously observed during copper liner collapse. The behavior of three types of tungsten-lined shaped charges, with different liner designs and high explosives but with similar tungsten processing, were characterized by image-converter camera and fast- framing camera photography, and flash x-ray radiography. 120-mm- diameter, trumpet-shaped Octol charges produced surface blistering near the base of the tungsten liner, probably due to inhomogeneities near the liner-explosive interface resulting from cast loading. 148- mm-diameter, quasi-conical LX-14 charges produced smooth shocked- surface texture similar to that observed in conical, copper-lined LX- 14 (Viper) charges. 81-mm-diameter, conical LX-20 charges produced severe radial texturing throughout the collapsing tungsten liner, which transitioned to azimuthal banding on the jet surface. For each type of charge, obscuring debris from the tungsten jet tip prevented clear imaging of the jet surface at late time. 8 refs., 6 figs., 2 tabs.

  16. Wet granular materials

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Nori, Franco

    2006-04-01

    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g. food processing, pharmaceuticals, ceramics, civil engineering, construction, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g. the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.

  17. Channel Formation in Long Laser Pulse Interaction with a Helium Gas Jet

    SciTech Connect

    Malka, V.; De Wispelaere, E.; Amiranoff, F.; Baton, S.; Bonadio, R.; Coulaud, C.; Haroutunian, R.; Modena, A.; Puissant, D.; Stenz, C.; Hueller, S.; Casanova, M.

    1997-10-01

    Experimental realization of an electron density channel created by a low intensity laser in a helium gas jet is presented. The long (2.5mm) plasma channel is fully ionized and thus prevents undesirable refraction effects for propagation and guiding of a subsequent high intensity laser pulse. The channel parameters are easily controlled and well suited for laser guiding. The radial plasma expansion and the temperature evolution have been measured and compared to hydrodynamic simulations which show that the plasma expansion is governed by a thermal wave during the laser pulse. {copyright} {ital 1997} {ital The American Physical Society}

  18. ON THE ORIGIN OF INTERGRANULAR JETS

    SciTech Connect

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-08-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band H{alpha} images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band H{alpha} images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  19. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  20. Formation of bipolar radio jets and lobes from accretion disk around forming blackhole at the center of protogalaxies

    NASA Astrophysics Data System (ADS)

    Uchida, Y.; Matsumoto, R.; Hirose, S.; Shibata, K.

    We propose that radio jets and lobes from QSO's are 'magnetic bipolar jets from forming blackholes', physically analogous to those of star-formation bipolar flows, but with very much greater energy due to very much greater depth in gravitational potential. We perform 2.5D MHD simulations for the situation in which the condensing mass of the accretion disk associated with the blackhole brought the magnetic flux with it, deforming the magnetic field into an hourglass shape. The differential rotation of the disk rotating at its neck continuously produces magnetic twists and sends them out in the form of nonlinear torsional Alfven waves to the bipolar directions. The gas of the disk atmosphere and the halo is accelerated helically when these nonlinear torsional Alfven waves (NTAWs) propagate through them. These NTAWs, at the same time, dynamically pinch the initially hourglass-shaped field into a collimated rod-shaped structure, and in some cases cause helical instability to make it into a winding structure.

  1. Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction.

    PubMed

    Williams, Bryce A; Mahajan, Ankit; Smeaton, Michelle A; Holgate, Collin S; Aydil, Eray S; Francis, Lorraine F

    2015-06-01

    A three-step method to create dense polycrystalline semiconductor thin films from nanocrystal liquid dispersions is described. First, suitable substrates are coated with nanocrystals using aerosol-jet printing. Second, the porous nanocrystal coatings are compacted using a weighted roller or a hydraulic press to increase the coating density. Finally, the resulting coating is annealed for grain growth. The approach is demonstrated for making polycrystalline films of copper zinc tin sulfide (CZTS), a new solar absorber composed of earth-abundant elements. The range of coating morphologies accessible through aerosol-jet printing is examined and their formation mechanisms are revealed. Crack-free albeit porous films are obtained if most of the solvent in the aerosolized dispersion droplets containing the nanocrystals evaporates before they impinge on the substrate. In this case, nanocrystals agglomerate in flight and arrive at the substrate as solid spherical agglomerates. These porous coatings are mechanically compacted, and the density of the coating increases with compaction pressure. Dense coatings annealed in sulfur produce large-grain (>1 μm) polycrystalline CZTS films with microstructure suitable for thin-film solar cells. PMID:25989610

  2. Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code

    NASA Astrophysics Data System (ADS)

    Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro

    1999-09-01

    Relativistic jets are observed in both active galactic nuclei (AGNs) and ``microquasars'' in our Galaxy. It is believed that these relativistic jets are ejected from the vicinity of black holes. To investigate the formation mechanism of these jets, we have developed a new general relativistic magnetohydrodynamic (GRMHD) code. We report on the basic methods and test calculations to check whether the code reproduces some analytical solutions, such as a standing shock and a Keplerian disk with a steady state infalling corona or with a corona in hydrostatic equilibrium. We then apply the code to the formation of relativistic MHD jets, investigating the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a nonrotating corona (either in a steady state infall or in hydrostatic equilibrium) around a nonrotating black hole. The numerical results show the following: as time goes on, the disk loses angular momentum as a result of magnetic braking and falls into the black hole. The infalling motion of the disk, which is faster than in the nonrelativistic case because of general relativistic effects below 3rS (rS is the Schwarzschild radius), is strongly decelerated around r=2rS by centrifugal force to form a shock inside the disk. The magnetic field is tightly twisted by the differential rotation, and plasma in the shocked region of the disk is accelerated by the JXB force to form bipolar relativistic jets. In addition, and interior to, this magnetically driven jet, we also found a gas-pressure-driven jet ejected from the shocked region by the gas-pressure force. This two-layered jet structure is formed not only in the hydrostatic corona case but also in the steady state falling corona case.

  3. An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Jacoby, T. N. L.; Rogberg, P. H. T.; Wordsworth, R. D.; Yamazaki, Y. H.; Miki-Yamazaki, K.; Young, R. M. B.; Sommeria, J.; Didelle, H.; Viboud, S.

    2015-08-01

    A series of rotating, thermal convection experiments were carried out on the Coriolis platform in Grenoble, France, to investigate the formation and energetics of systems of zonal jets through nonlinear eddy/wave-zonal flow interactions on a topographic β-plane. The latter was produced by a combination of a rigid, conically sloping bottom and the rotational deformation of the free upper surface. Convection was driven by a system of electrical heaters laid under the (thermally conducting) sloping bottom and led to the production of intense, convective vortices. These were observed to grow in size as each experiment proceeded and led to the development of weak but clear azimuthal jet-like flows, with a radial scale that varied according to the rotation speed of the platform. Detailed analyses reveal that the kinetic energy-weighted radial wavenumber of the zonal jets, kJy, scales quite closely either with the Rhines wavenumber as kJy ≃ 2(βT/2urms)1/2, where urms is the rms total or eddy velocity and βT is the vorticity gradient produced by the sloping topography, or the anisotropy wavenumber as k J y ≃ 1 . 25 ( βT 3 / ɛ ) 1 / 5 , where ɛ is the upscale turbulent energy transfer rate. Jets are primarily produced by the direct quasi-linear action of horizontal Reynolds stresses produced by trains of topographic Rossby waves. The nonlinear production rate of zonal kinetic energy is found to be strongly unsteady, however, with fluctuations of order 10-100 times the amplitude of the mean production rate for all cases considered. The time scale of such fluctuations is found to scale consistently with either an inertial time scale, τ p ˜ 1 . / √{ u r m s β T } , or the Ekman spin-down time scale. Kinetic energy spectra show some evidence for a k-5/3 inertial subrange in the isotropic component, suggestive of a classical Kolmogorov-Batchelor-Kraichnan upscale energy cascade and a steeper spectrum in the zonal mean flow, though not as steep as k-5, as

  4. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak

    SciTech Connect

    Hillesheim, J.

    2016-01-01

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge E-r. We observe fine-scale spatial structures in the edge E-r well with a wave number k(r rho i) approximate to 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.

  5. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak.

    PubMed

    Hillesheim, J C; Delabie, E; Meyer, H; Maggi, C F; Meneses, L; Poli, E; Jet Contributors

    2016-02-12

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi≈0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E×B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition. PMID:26918997

  6. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGESBeta

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; Delabie, E.

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while belowmore » the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  7. Sustained inertial-capillary oscillations and jet formation in displacement flow in a tube

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Spelt, Peter D. M.

    2011-12-01

    We study inertial effects in the displacement of a fluid in a capillary by a more viscous fluid, using a numerical method. A level-set approach is employed to track the meniscus, and a Navier slip boundary condition is imposed in order to alleviate a stress singularity at the moving contact line. Various flow regimes are identified with a Reynolds number and a capillary number as the main parameters. At relatively low Reynolds number, the meniscus forms a steady shape, and the interfacial curvature at the tube centre can change from being concave to convex upon increasing the Reynolds number if the displacing fluid is wetting to the tube surface. For wetting displacing fluids, beyond a critical Reynolds number, a quasi-steady solution is no longer found: instead, the interface undergoes non-dampened periodic oscillations and, at even larger values of the Reynolds number, quasi-periodically, and the interface evolves from simple wavy shapes to complex shapes with multiple wavy units. This oscillating state is observed for sufficiently small contact angle values defined from the displacing fluid (<80°). Beyond a second critical Reynolds number, the displacing fluid forms a jet and the meniscus advances with a nearly constant speed which decreases with Re. This is also observed at large contact angle values. In a developing jet, however, the interface shape remains partially quasi-steady, near the contact line region and the tube centre. The flow behaviour is shown to be robust over a range of other governing parameters, including the capillary number and the slip length. The potential implications of the work on network models of two-phase flow through porous media are discussed.

  8. Spontaneous formation of vorticity staircase and multiple jets in a 1D barotropic model with parameterized eddy mixing

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Nakamura, N.

    2009-12-01

    Spontaneous formation of a vorticity staircase and multiple jets is simulated using a one dimensional barotropic model on a beta-plane with parameterized eddy mixing. The model represents nearly inviscid geostrophic turbulence characterized by a uniform forcing of pseudomomentum, nonuniform dissipation due to mixing, and no frictional damping of the mean flow. The dissipation of pseudomomentum (diffusive flux of vorticity) is modeled with the effective diffusivity parameterization proposed recently by Ferrari and Nikurashin(2009). Rossby wave dynamics and upscale energy cascade are not modeled explicitly but implicit in the parameterization. The parameterized effective diffusivity is a decreasing function of squared vorticity gradient, revealing the active role of (potential) vorticity gradient as a barrier to mixing, consistent with the Rossby elasticity idea. Not only does the parameterized diffusivity agree well with the effective diffusivity of a direct numerical simulation, but it allows the 1D model to reproduce other salient features of the direct simulation, most notably the formation of a welldefined vorticity staircase from a uniform vorticity gradient, through inhomogeneous mixing of vorticity. The staircase formation starts as a small-scale, antidiffusive instability in vorticity gradient that develops when the eddy scale is comparable to the Rhines scale. This spawns numerous gaps (barriers) in diffusivity and corresponding small steps in vorticity, but many of them become unstable and disappear later, until a few stable ones remain. The final number of barriers (vorticity steps) is predictable to a good approximation with a few model parameters.

  9. Oblique impact of dense granular sheets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.

    2013-11-01

    Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.

  10. On granular elasticity

    PubMed Central

    Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua

    2015-01-01

    Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049

  11. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.

    PubMed

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman

    2012-07-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use. PMID:24415802

  12. Granular flow: Dry and wet

    NASA Astrophysics Data System (ADS)

    Mitarai, N.; Nakanishi, H.

    2012-04-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing on the shear flow of dry granular materials and granule-liquid mixture.

  13. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  14. Formation of A Polarization Jet During The Injection of Ions Into The Inner Magnetosphere: Modelling and Comparisons With Measurements

    NASA Astrophysics Data System (ADS)

    Buzulukova, N. Yu.; Khalipov, V. L.; Galperin, Yu. I.; Vovchenko, V. V.; Stepanov, A. E.; Bondar, E. D.

    Polarization Jet (PJ) - a narrow strip of fast westward convection in the evening sec- tor of inner magnetosphere/ionosphere (often just inside the plasmapause location) - is associated with substorm particle injections, but its origin is still not fully ex- plained. Strong PJ electric field sharply changes drift motion of magnetospheric and ionospheric particles. Combination of ExB and gradient drift in the energy range of several tens of keV is supposed to be responsible for the PJ formation . But none of the existing convection models includes PJ electric field, and so does not allow its mod- elling. We describe a simple model of PJ electric field based on recent measurements, and investigate drifts of injected particles within PJ. Obtained model parameters of PJ are compared with available recent observations from low- and high-altitude satellites and ground-based measurements. One of the model predictions concerns formation of so-called "nose structures" - deep penetrations into the inner magnetosphere of ions with energies 20-50 keV with a characteristic dispersion. We attempt to clarify rela- tions between PJ events and "nose structures" using model results and observations.

  15. Dynamics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.

    1996-01-01

    Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, l/f noise, and fractional Brownian motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales in such quantities as the stress can be very large-as much as an order of magnitude greater than the mean.

  16. Vibrheology of Granular Matter

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua; Wortel, Geert; van Hecke, Martin

    2009-03-01

    We show how weak agitations substantially modify the rheology of granular materials. We experimentally probe dry granular flows in a weakly vibrated split bottom shear cell -- the weak vibrations act as the agitation source. By tuning the applied stress and vibration strength, and monitoring the resulting strain, we uncover a rich phase diagram in which non-trivial transitions separate a jammed phase, a creep flow case, and a steady flow case.

  17. Impact Craters on Comets from a Granular Material Perspective

    NASA Astrophysics Data System (ADS)

    de Niem, D.; Kührt, E.

    2015-02-01

    The contribution applies an algorithm for finite-deformation elasticity and plasticity to demonstrate new results for the behaviour of granular materials during impact crater formation in a low-gravity environment.

  18. Stable Drop Formation and Deposition Control in Ink Jet Printing of Polyvinylidene Fluoride Solution

    NASA Astrophysics Data System (ADS)

    Thorne, Nathaniel; Yang, Xin; Sun, Ying; Complex Fluids and Multiphase Transport Lab-Drexel University Team

    2013-11-01

    Using inkjet printing as an additive fabrication method is an enabling technology for low-cost, high-throughput production of flexible electronics and photonics. Polymeric materials, such as Polyvinylidene fluoride (PVDF), are widely used as dielectric materials for microelectronics, batteries, among others. However, due to its large molecular weight and incompatibility with moisture in air, the stable drop formation of PVDF solution is quite challenging. In this study, we examine the effects of solute concentration, nozzle back pressure, ejection waveform, and ambient moisture on the formation of PVDF droplets. The deposition dynamics of inkjet-printed PVDF solutions are then examined as a function of the solvent concentration. Bi-solvents of different surface tensions and vapor pressures are used to induce Marangoni flows in order to suppress the coffee-ring effect. The deposition of a single droplet and the interactions between multiple drops are examined for a better control of the deposition uniformity. Printing of lines and patterns with reduced instability is also discussed.

  19. A reexamination of the formation of exhaust condensation trails by jet aircraft

    SciTech Connect

    Hanson, H.M.; Hanson, D.M.

    1995-11-01

    With the end of World War II, it became apparent that a study should be undertaken to identify the factors controlling the production of aircraft condensation trails (contrails). This early work provided a theoretical prediction of T{sub c}, the critical temperature at which the values of the relative humidity and pressure are such that the formation of the contrail phenomenon will occur. As empirical data were obtained, the general agreement at increased altitude was not precise and several studies were made to obtain both theoretical and empirical fits that would provide a {open_quotes}yes/no{close_quotes} decision. These modifications did allow a better decision for the formation of contrails but were found to be increasingly inaccurate at greater altitudes. This study provides an improved algorithm that yields a theoretical prediction that is in general agreement with the available empirical data at all altitudes. It demonstrates that there is a need for additional effort in the identification and precision of relative humidity and pressure that are input to this computation. 7 refs., 3 figs.

  20. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  1. Formation of downstream high-speed jets by a rippled nonstationary quasi-parallel shock: 2-D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Lembege, B.; Lu, Q.; Guo, F.

    2016-03-01

    Experimental observations from space missions (including more recently Cluster and Time History of Events and Macroscale Interactions during Substorms data) have clearly revealed the existence of high-speed jets (HSJs) in the downstream region of the quasi-parallel terrestrial bow shock. Presently, two-dimensional hybrid simulations are performed in order to investigate the formation of such HSJs through a rippled quasi-parallel shock front. The simulation results show that (i) such shock fronts are strongly nonstationary along the shock normal, and (ii) ripples are evidenced along the shock front as the upstream ULF waves (excited by interaction between incident and reflected ions) are convected back to the front by the solar wind and contribute to the rippling formation. Then, these ripples are inherent structures of a quasi-parallel shock. As a consequence, new incident solar wind ions interact differently at different locations along the shock surface, and the ion bulk velocity strongly differs locally as ions are transmitted downstream. Preliminary results show that (i) local bursty patterns of turbulent magnetic field may form within the rippled front and play the role of local secondary shock; (ii) some incident ion flows penetrate the front, suffer some deflection (instead of being decelerated) at the locations of these secondary shocks, and are at the origin of well-structured (filamentary) HSJs downstream; and (iii) the spatial scales of HSJs are in a good agreement with experimental observations. Such downstream HSJs are shown to be generated by local curvature effects (front rippling) and the nonstationarity of the shock front itself.

  2. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, an asymmetry in the hydrodynamic end effects will exist which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length. PMID:25920825

  3. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps

    NASA Astrophysics Data System (ADS)

    Oosterhuis, Joris P.; Bühler, Simon; van der Meer, Theo H.; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, there will exist an asymmetry in the hydrodynamic end effects which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length.

  4. AGN jet power, formation of X-ray cavities, and FR I/II dichotomy in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Kawakatu, Nozomu; Shlosman, Isaac

    2016-04-01

    We investigate the ability of jets in active galactic nuclei to break out of the ambient gas with sufficiently large advance velocities. Using observationally estimated jet power, we analyze 28 bright elliptical galaxies in nearby galaxy clusters. Because the gas density profiles in the innermost regions of galaxies have not been resolved so far, we consider two extreme cases for temperature and density profiles. We also follow two types of evolution for the jet cocoons: being driven by the pressure inside the cocoon [Fanaroff-Riley (FR) type I], and being driven by the jet momentum (FR type II). Our main result is that regardless of the assumed form of the density profiles, jets with observed powers of ≲1044 erg s-1 are not powerful enough to evolve as FR II sources. Instead, they evolve as FR I sources and appear to be decelerated below the buoyant velocities of the cocoons when jets were propagating through the central dense regions of the host galaxies. This explains why FR I sources are more frequent than FR II sources in clusters. Furthermore, we predict the sizes of X-ray cavities from the observed jet powers and compare them with the observed ones-they are consistent within a factor of two if the FR I type evolution is realized. Finally, we find that the jets with a power ≳1044 erg s-1 are less affected by the ambient medium, and some of them, but not all, could serve as precursors of the FR II sources.

  5. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Zhakhovskii, V. V.; Khokhlov, V. A.

    2015-01-01

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d f . An important gauge is metal heating depth d T at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d f < d T (thin film) and d f ≫ d T (bulk target). Radius R L of the spot of heating by an optical laser is the next (after d f ) important geometrical parameter. The morphology of film bulging in cases where d f < d T on the substrate (blistering) changes upon a change in radius R L in the range from diffraction limit R L ˜ λ to high values of R L ≫ λ, where λ ˜ 1 μm is the wavelength of optical laser radiation. When d f < d T , R L ˜ λ, and F abs > F m, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola ( F abs and F m are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  6. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    SciTech Connect

    Inogamov, N. A.; Zhakhovskii, V. V.; Khokhlov, V. A.

    2015-01-15

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d{sub f}. An important gauge is metal heating depth d{sub T} at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d{sub f} < d{sub T} (thin film) and d{sub f} ≫ d{sub T} (bulk target). Radius R{sub L} of the spot of heating by an optical laser is the next (after d{sub f}) important geometrical parameter. The morphology of film bulging in cases where d{sub f} < d{sub T} on the substrate (blistering) changes upon a change in radius R{sub L} in the range from diffraction limit R{sub L} ∼ λ to high values of R{sub L} ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d{sub f} < d{sub T}, R{sub L} ∼ λ, and F{sub abs} > F{sub m}, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F{sub abs} and F{sub m} are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  7. Influence of Geometry and Flow Variation on Jet Mixing and NO Formation in a Model Staged Combustor Mixer with Eight Orifices

    NASA Technical Reports Server (NTRS)

    Samuelsen, G. S.; Sowa, W. A.; Hatch, M. S.

    1996-01-01

    A series of non-reacting parametric experiments was conducted to investigate the effect of geometric and flow variations on mixing of cold jets in an axis-symmetric, heated cross flow. The confined, cylindrical geometries tested represent the quick mix region of a Rich-Burn/Quick-Mix/Lean-Burn (RQL) combustor. The experiments show that orifice geometry and jet to mainstream momentum-flux ratio significantly impact the mixing characteristic of jets in a cylindrical cross stream. A computational code was used to extrapolate the results of the non-reacting experiments to reacting conditions in order to examine the nitric oxide (NO) formation potential of the configurations examined. The results show that the rate of NO formation is highest immediately downstream of the injection plane. For a given momentum-flux ratio, the orifice geometry that mixes effectively in both the immediate vicinity of the injection plane, and in the wall regions at downstream locations, has the potential to produce the lowest NO emissions. The results suggest that further study may not necessarily lead to a universal guideline for designing a low NO mixer. Instead, an assessment of each application may be required to determine the optimum combination of momentum-flux ratio and orifice geometry to minimize NO formation. Experiments at reacting conditions are needed to verify the present results.

  8. Richtmyer-Meshkov jet formation from rear target ripples in plastic and plastic/aluminum laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Weaver, J. L.; Schmitt, A. J.; Obenschain, S. P.

    2015-11-01

    We report experimental observations of jets produced from the rear surface of laser targets after a passage of the laser-driven shock wave. As in our previous work, Aglitskiy et al., Phys. Plasmas (2012), the jets are produced via the shaped-charge mechanism, a manifestation of a Richtmyer-Meshkov instability for a particular case of the Atwood number A =-1. The experiments done on the KrF Nike laser facility with laser wavelength 248 nm, a 4 ns pulse, and low-energy drive regime that used only 1 to 3 overlapping Nike beams and generated ablative pressure below 1 Mbar. Our 50 um thick planar targets were rippled on the rear side with wavelength 45 μm and peak-to-valley amplitude 15 μm. The targets were made either of solid plastic or of aluminum with a 10 μm thick plastic ablator attached to avoid the radiation preheat. The jets were extremely well collimated, which made possible our side-on observations with monochromatic x-ray imaging. We saw a regular set of jets, clearly separated along the 500 μm line of sight. Aluminum jets were found to be slightly better collimated than plastic jets. A quasi-spherical late-time expansion of Al jets starting from the tips has not been previously seen in experiments or simulations. Work supported by the US DOE/NNSA.

  9. Dynamics of Sheared Granular Materials

    NASA Astrophysics Data System (ADS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-11-01

    characterize the transition region in an earth-bound experiment. In the DE modeling, we analyze dynamics of a sheared granular system in Couette geometry in two (2D) and three (3D) space dimensions. Here, the idea is to both better understand what we might encounter in a reduced-g environment, and at a deeper level to deduce the physics of sheared systems in a density regime that has not been addressed by past experiments or simulations. One aspect of the simulations addresses sheared 2D system in zero-g environment. For low volume fractions, the expected dynamics of this type of system is relatively well understood. However, as the volume fraction is increased, the system undergoes a phase transition, as explained above. The DES concentrate on the evolution of the system as the solid volume fraction is slowly increased, and in particular on the behavior of very dense systems. For these configurations, the simulations show that polydispersity of the sheared particles is a crucial factor that determines the system response. Figures 1 and 2 below, that present the total force on each grain, show that even relatively small (10 %) nonuniformity of the size of the grains (expected in typical experiments) may lead to significant modifications of the system properties, such as velocity profiles, temperature, force propagation, and formation shear bands. The simulations are extended in a few other directions, in order to provide additional insight to the experimental system analyzed above. In one direction, both gravity, and driving due to vibrations are included. These simulations allow for predictions on the driving regime that is required in the experiments in order to analyze the jamming transition. Furthermore, direct comparison of experiments and DES will allow for verification of the modeling assumptions. We have also extended our modeling efforts to 3D. The (preliminary) results of these simulations of an annular system in zero-g environment will conclude the presentation.

  10. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    characterize the transition region in an earth-bound experiment. In the DE modeling, we analyze dynamics of a sheared granular system in Couette geometry in two (2D) and three (3D) space dimensions. Here, the idea is to both better understand what we might encounter in a reduced-g environment, and at a deeper level to deduce the physics of sheared systems in a density regime that has not been addressed by past experiments or simulations. One aspect of the simulations addresses sheared 2D system in zero-g environment. For low volume fractions, the expected dynamics of this type of system is relatively well understood. However, as the volume fraction is increased, the system undergoes a phase transition, as explained above. The DES concentrate on the evolution of the system as the solid volume fraction is slowly increased, and in particular on the behavior of very dense systems. For these configurations, the simulations show that polydispersity of the sheared particles is a crucial factor that determines the system response. Figures 1 and 2 below, that present the total force on each grain, show that even relatively small (10 %) nonuniformity of the size of the grains (expected in typical experiments) may lead to significant modifications of the system properties, such as velocity profiles, temperature, force propagation, and formation shear bands. The simulations are extended in a few other directions, in order to provide additional insight to the experimental system analyzed above. In one direction, both gravity, and driving due to vibrations are included. These simulations allow for predictions on the driving regime that is required in the experiments in order to analyze the jamming transition. Furthermore, direct comparison of experiments and DES will allow for verification of the modeling assumptions. We have also extended our modeling efforts to 3D. The (preliminary) results of these simulations of an annular system in zero-g environment will conclude the presentation.

  11. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  12. An Experimental and Computational Study on Soot Formation in a Coflow Jet Flame Under Microgravity and Normal Gravity

    NASA Technical Reports Server (NTRS)

    Ma, Bin; Cao, Su; Giassi, Davide; Stocker, Dennis P.; Takahashi, Fumiaki; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.

    2014-01-01

    Upon the completion of the Structure and Liftoff in Combustion Experiment (SLICE) in March 2012, a comprehensive and unique set of microgravity coflow diffusion flame data was obtained. This data covers a range of conditions from weak flames near extinction to strong, highly sooting flames, and enabled the study of gravitational effects on phenomena such as liftoff, blowout and soot formation. The microgravity experiment was carried out in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS), while the normal gravity experiment was performed at Yale utilizing a copy of the flight hardware. Computational simulations of microgravity and normal gravity flames were also carried out to facilitate understanding of the experimental observations. This paper focuses on the different sooting behaviors of CH4 coflow jet flames in microgravity and normal gravity. The unique set of data serves as an excellent test case for developing more accurate computational models.Experimentally, the flame shape and size, lift-off height, and soot temperature were determined from line-of-sight flame emission images taken with a color digital camera. Soot volume fraction was determined by performing an absolute light calibration using the incandescence from a flame-heated thermocouple. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the chemically reacting flow, and the soot evolution was modeled by the sectional aerosol equations. The governing equations and boundary conditions were discretized on an axisymmetric computational domain by finite differences, and the resulting system of fully coupled, highly nonlinear equations was solved by a damped, modified Newtons method. The microgravity sooting flames were found to have lower soot temperatures and higher volume fraction than their normal gravity counterparts. The soot distribution tends to shift from the centerline of the flame to the wings from normal gravity to

  13. Discrete blasts in granular material yield two-stage process of cavitation and granular fountaining

    NASA Astrophysics Data System (ADS)

    Andrews, Robin; White, James; Dürig, Tobi; Zimanowski, Bernd

    2014-05-01

    A discrete blast within granular material, such as a single subterranean explosion within a debris-filled diatreme structure, is typically considered to produce a single uprush of material. Our experiments demonstrate that apparent "debris jet deposits" can be formed by a two-stage process of cavitation and subsequent granular fountaining. Bench-scale experiments reported here demonstrate that for a range of overpressures and depths, individual, discrete, buried gas blasts open space and expel particles from the blast site in two largely decoupled stages. Expanding gas initially pierces material nearest the blast source to open a cavity above it; then a fountain of grains rises from the source into the cavity. This staged motion dynamically segregates source grains from host-material grains, and the rates of cavity opening vs. fountain rise show a power-law decay relationship with initial pressure. Our experimental analysis has implications for maar-diatreme systems, field-scale detonation experiments, and underground nuclear testing.

  14. Discrete blasts in granular material yield two-stage process of cavitation and granular fountaining

    NASA Astrophysics Data System (ADS)

    Andrews, Robin G.; White, James D. L.; Dürig, Tobi; Zimanowski, Bernd

    2014-01-01

    A discrete blast within granular material, such as a single subterranean explosion within a debris-filled diatreme structure, is typically considered to produce a single uprush of material. Our experiments demonstrate that apparent "debris jet deposits" can be formed by a two-stage process of cavitation and subsequent granular fountaining. Bench-scale experiments reported here demonstrate that for a range of overpressures and depths, individual, discrete, buried gas blasts open space and expel particles from the blast site in two largely decoupled stages. Expanding gas initially pierces material nearest the blast source to open a cavity above it; then a fountain of grains rises from the source into the cavity. This staged motion dynamically segregates source grains from host-material grains, and the rates of cavity opening versus fountain rise show a power law decay relationship with initial pressure. Our experimental analysis has implications for maar-diatreme systems, field-scale detonation experiments, and underground nuclear testing.

  15. Microfluidics of soft granular gels

    NASA Astrophysics Data System (ADS)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  16. Modeling Granular Materials

    NASA Astrophysics Data System (ADS)

    Brackbill, J. U.

    2000-11-01

    Granular materials are often cited as examples of systems with complex and unusual properties. Much of this complexity is captured by computational models in which the actual material properties of individual grains are idealized and simplified. Because material properties can be important under extreme conditions, we consider assemblies of grains with more realistic properties. Our model grains may deform, their resulting stresses are computed from elastic / plastic constitutive models, and their interactions with each other include Coulomb friction and bonding. Our model equations are solved using a particle-in-cell (PIC) method, which combines a Lagrangian representation of the materials with an adaptive grid [1]. Our contact model between grains is linear in the number of grains, and we model assemblies with statistically significant numbers of grains. With our model, we have studied the response of dense granular material to shear, with especial attention to the probability density function governing the volume distribution of stress for mono- and poly-disperse samples, circular and polygonal grains, and various values of microscopic friction coefficients, yield stresses, and packing fractions [2]. Remarkably, PDF's are similar in form for all cases simulated, and similar to those observed in experiments with granular materials under both compression and shear. Namely, the simulations yield an exponential probability of large stresses above the mean, and there is a finite chance that a few grains in a large assembly are subjected to extreme stresses at any given time, even at low strain rates. For energetic materials, such as explosives, this is a signficant finding. We have also studied the relationship between distributions of boundary tractions and volume distributions of stress. The ratio of normal and tangential components of traction on the boundary defines a bulk frictional response, which we find increases with the inter-granular friction coefficient

  17. Challenges in Predicting Planetary Granular Mechanics

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  18. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  19. Granular metamaterials for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  20. Multi-scale modelling of granular avalanches

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2013-06-01

    Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios (`h/r' < 2), however MPM predicts larger run-out distances for columns with higher aspect ratios (`h/r' > 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations.

  1. Complex flows in granular and quantum systems

    NASA Astrophysics Data System (ADS)

    Herrera, Mark Richard

    In this thesis we investigate three problems involving complex flows in granular and quantum systems. (a) We first study the dynamics of granular particles in a split-bottom shear cell experiment. We utilize network theory to quantify the dynamics of the granular system at the mesoscopic scale. We find an apparent phase transition in the formation of a giant component of broken links as a function of applied shear. These results are compared to a numerical model where breakages are based on the amount of local stretching in the granular pile. (b) Moving to quantum mechanical systems, we study revival and echo phenomena in systems of anharmonically confined atoms, and find a novel phenomena we call the "pre-revival echo". We study the effect of size and symmetry of the perturbations on the various echoes and revivals, and form a perturbative model to describe the phenomena. We then model the effect of interactions using the Gross-Pitaevskii Equation and study interactions' effect on the revivals. (c) Lastly, we continue to study the effect of interactions on particles in weakly anharmonic traps. We numerically observe a "dynamical localization" phenomena in the presence of both anharmonicity and interactions. States may remain localized or become spread out in the potential depending on the strength and sign of the anharmonicity and interactions. We formulate a model for this phenomena in terms of a classical phase space.

  2. Full-scale granular sludge Anammox process.

    PubMed

    Abma, W R; Schultz, C E; Mulder, J W; van der Star, W R L; Strous, M; Tokutomi, T; van Loosdrecht, M C M

    2007-01-01

    The start-up of the first full scale Anammox reactor is complete. The reactor shows stable operation, even at loading rates of 10 kg N/m3.d. This performance is the result of the formation of Anammox granules, which have a high density and settling velocities exceeding 100 m/h. With this performance, the Anammox granular sludge technology has been proven on full scale. PMID:17546966

  3. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  4. Wet granular materials submitted to thermal cycling

    NASA Astrophysics Data System (ADS)

    Lumay, Geoffroy; Ludewig, Francois; Fiscina, Jorge; Pakpour, Maryam; Vandewalle, Nicolas; Dorbolo, Stephane

    2015-03-01

    Many phenomenons observed in nature are related to the particular behavior of wet granular materials submitted to temperature cycling: ice-lens formation in soil leading to frost heaving, landslides, structures formation in permafrost, stone heave and possibly some geological formations observed on Mars. We present experimental results concerning the effect of thermal cycling on the packing fraction of equal spheres with the presence of water. First, the case corresponding to completely immersed granular piles is considered. Afterward, the effect of thermal cycling on unsaturated granular piles is discussed. The pile is submitted to temperature cycling ranging from T1 to T2. If the temperature is always higher than 4°C, the temperature increase (or decrease) induces a dilatation (or contraction) of the grains and of the water. We show that the packing fraction variation is mainly related to water dilatation and contraction. If the temperature decreases under 0°C during a cycle, the water situated between the grains experiences a strong dilatation during the freezing step and a contraction during the ice melting step. In this case, we show how the freeze-thaw transition affects the packing fraction of the pile.

  5. Granular convection in microgravity.

    PubMed

    Murdoch, N; Rozitis, B; Nordstrom, K; Green, S F; Michel, P; de Lophem, T-L; Losert, W

    2013-01-01

    We investigate the role of gravity on convection in a dense granular shear flow. Using a microgravity-modified Taylor-Couette shear cell under the conditions of parabolic flight microgravity, we demonstrate experimentally that secondary, convective-like flows in a sheared granular material are close to zero in microgravity and enhanced under high-gravity conditions, though the primary flow fields are unaffected by gravity. We suggest that gravity tunes the frictional particle-particle and particle-wall interactions, which have been proposed to drive the secondary flow. In addition, the degree of plastic deformation increases with increasing gravitational forces, supporting the notion that friction is the ultimate cause. PMID:23383851

  6. A Chiral Granular Gas

    NASA Astrophysics Data System (ADS)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  7. A chiral granular gas.

    PubMed

    Tsai, J-C; Ye, Fangfu; Rodriguez, Juan; Gollub, J P; Lubensky, T C

    2005-06-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations. PMID:16090323

  8. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are

  9. Jets from young stars

    NASA Astrophysics Data System (ADS)

    Bally, John

    2007-10-01

    Most stars produce spectacular jets during their formation. There are thousands of young stars within 500 pc of the Sun and many power jets. Thus protostellar jets may be the most common type of collimated astrophysical outflow. Shocks powered by outflows excite many emission lines, exhibit a rich variety of structure, and motions with velocities ranging from 50 to over 500 km s-1. Due to their relative proximity, proper motions and structural changes can be observed in less than a year. I review the general properties of protostellar jets, summarize some results from recent narrow-band imaging surveys of entire clouds, discuss irradiated jets, and end with some comments concerning outflows from high-mass young stellar objects. Protostellar outflows are ideal laboratories for the exploration of the jet physics.

  10. Spatiotemporally resolved granular acoustics

    NASA Astrophysics Data System (ADS)

    Owens, Eli; Daniels, Karen

    2011-03-01

    Acoustic techniques provide a non-invasive method of characterizing granular material properties; however, there are many challenges in formulating accurate models of sound propagation due to the inherently heterogeneous nature of granular materials. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of the amplitude of the acoustic wave. We observe that the average wave amplitude is largest within particles experiencing the largest forces. The force-dependence of this amplitude is in qualitative agreement with a simple Hertzian-like model for contact area. In addition, we investigate the power spectrum of the propagating signal using the piezoelectric sensors. For a Gaussian wave packet input, we observe a broad spectrum of transmitted frequencies below the driving frequency, and we quantify the characteristic frequencies and corresponding length scales of our material as the system pressure is varied.

  11. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-06-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  12. Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; McKinney, Jonathan C.; Markoff, Sera; Tchekhovskoy, Alexander

    2014-05-01

    Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high-luminosity hard-to-soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence the accretion state directly, and hence the magnetic field structure is an important second parameter in explaining observations of accreting black holes across the mass and luminosity scales.

  13. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  14. Exploring morphological variations of a laser-induced water jet in temporal evolution: formation of an air bubble enclosing a water drop

    NASA Astrophysics Data System (ADS)

    Chen, Ross C. C.; Yu, Y. T.; Su, K. W.; Chen, Y. F.

    2013-11-01

    We explore the spatio-temporal dynamics of a water jet that is generated by laser-induced water breakdown beneath a flat free surface. We find that morphological variations in the temporal evolution can be divided into three categories depending on the depth parameter γ, which is the ratio of the water-breakdown depth to the maximum bubble radius. For a depth parameter in the range 0.8 ≤ γ ≤ 1.03, we observe an intriguing pattern formation in which an air bubble perfectly encloses a water drop through the process of the Plateau-Rayleigh instability.

  15. Water drop dynamics on a granular layer

    NASA Astrophysics Data System (ADS)

    Llorens, Coraline; Biance, Anne-Laure; Ybert, Christophe; Pirat, Christophe; Liquids; Interfaces Team

    2015-11-01

    Liquid drop impacts, either on a solid surface or a liquid bath, have been studied for a while and are still subject of intense research. Less is known concerning impacts on granular layers that are shown to exhibit an intermediate situation between solid and liquid. In this study, we focus on water drop impacts on granular matter made of micrometer-sized spherical glass beads. In particular, we investigate the overall dynamics arising from the interplay between liquid and grains throughout the impact. Depending on the relevant parameters (impact velocity, drop and grain sizes, as well as their wetting properties), various behaviors are evidenced. In particular, the behavior of the beads at the liquid-gas interface (ball-bearing vs imbibition) is shown to greatly affect the spreading dynamics of the drop, as well as satellite droplets formation, beads ejection, and the final crater morphology.

  16. Impact of liquid droplets on granular media

    NASA Astrophysics Data System (ADS)

    Delon, G.; Terwagne, D.; Dorbolo, S.; Vandewalle, N.; Caps, H.

    2011-10-01

    The crater formation due to the impact of a water droplet onto a granular bed has been experimentally investigated. Three parameters were tuned: the impact velocity, the size of the droplet, and the size of the grains. The aim is to determine the influence of the kinetic energy on the droplet pattern. The shape of the crater depends on the kinetic energy at the moment the droplet starts to impact the bed. The spreading and recession of the liquid during the impact were carefully analyzed from the dynamical point of view, using image analysis of high-speed video recordings. The different observed regimes are characterized by the balance between the impregnation time of the water by the granular bed by the water and the capillary time responsible for the recession of the drop.

  17. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  18. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  19. Shock formation in supersonic cluster jets and its effect on axially modulated laser-produced plasma waveguides.

    PubMed

    Yoon, S J; Goers, A J; Hine, G A; Magill, J D; Elle, J A; Chen, Y-H; Milchberg, H M

    2013-07-01

    We examine the generation of axially modulated plasmas produced from cluster jets whose supersonic flow is intersected by thin wires. Such plasmas have application to modulated plasma waveguides. By appropriately limiting shock waves from the wires, plasma axial modulation periods can be as small as 70 μm, with plasma structures as narrow as 45 µm. The effect of shocks is eliminated with increased cluster size accompanied by a reduced monomer component of the flow. PMID:23842374

  20. Granular mechanics and rifting

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Hayman, Nicholas W.; Lavier, Luc L.

    2013-04-01

    Numerical models have proved useful in the interpretation of seismic-scale images of rifted margins. In an effort to both test and further illuminate predictions of numerical models, workers have made some strides using map-scale field relations, microstructures, and strain analyses. Yet, fundamental predictions of modeling and tectonic restorations are not able to capture critical observations. For example, many models and interpretations call on continuous faults with restorable kinematic histories. In contrast, s-reflectors and other interpreted shear fabrics in the middle crust tend to be discontinuous and non-planar across a margin. Additionally, most rift-evolution models and interpretations call on end-member ductile flow laws over a range of mechanical and thermal conditions. In contrast, field observations have found that a range of "brittle" fault rocks (e.g., cataclasites and breccias) form in the deeper crust. Similarly, upper crustal materials in deep basins and fault zones can deform through both distributed and localized deformation. Altogether, there appears to be reason to bring a new perspective to aspects of the structural evolution of rifted margins. A granular mechanics approach to crustal deformation studies has several important strengths. Granular materials efficiently localize shear and exhibit a range of stick-slip behaviors, including quasi-viscous rheological responses. These behaviors emerge in discrete element models, analog-materials experiments, and natural and engineered systems regardless of the specific micromechanical flow law. Yet, strictly speaking, granular deformation occurs via failure of frictional contacts between elastic grains. Here, we explore how to relate granular-mechanics models to mesoscale (outcrop) structural evolution, in turn providing insight into basin- and margin- scale evolution. At this stage we are focusing on analog-materials experiments and micro-to-mesoscale observations linking theoretical predictions

  1. Heterogeneities in granular dynamics.

    PubMed

    Mehta, A; Barker, G C; Luck, J M

    2008-06-17

    The absence of Brownian motion in granular media is a source of much complexity, including the prevalence of heterogeneity, whether static or dynamic, within a given system. Such strong heterogeneities can exist as a function of depth in a box of grains; this is the system we study here. First, we present results from three-dimensional, cooperative and stochastic Monte Carlo shaking simulations of spheres on heterogeneous density fluctuations. Next, we juxtapose these with results obtained from a theoretical model of a column of grains under gravity; frustration via competing local fields is included in our model, whereas the effect of gravity is to slow down the dynamics of successively deeper layers. The combined conclusions suggest that the dynamics of a real granular column can be divided into different phases-ballistic, logarithmic, activated, and glassy-as a function of depth. The nature of the ground states and their retrieval (under zero-temperature dynamics) is analyzed; the glassy phase shows clear evidence of its intrinsic ("crystalline") states, which lie below a band of approximately degenerate ground states. In the other three phases, by contrast, the system jams into a state chosen randomly from this upper band of metastable states. PMID:18541918

  2. Sequential plug formation, disintegration by Vulcanian explosions, and the generation of granular Pyroclastic Density Currents at Tungurahua volcano (2013-2014), Ecuador

    NASA Astrophysics Data System (ADS)

    Hall, Minard L.; Steele, Alexander L.; Bernard, Benjamin; Mothes, Patricia A.; Vallejo, Silvia X.; Douillet, Guilhem A.; Ramón, Patricio A.; Aguaiza, Santiago X.; Ruiz, Mario C.

    2015-11-01

    Following 84 years of repose, Tungurahua volcano, Ecuador initiated its present eruptive episode in October 1999, but its PDC activity only began in July 2006. A period of highly energetic Vulcanian eruptions started in 2012, those of 14 July 2013, 18 October 2013, and 1 February 2014 being the most important. These eruptions were well-monitored by a 5-station broadband seismic and acoustic array. Repeated repose intervals of ~ 3.5 months between Vulcanian events (VEI ~ 2) suggest that gases in the ascending juvenile magma experienced sequential pressurization cycles, as magma of preceding eruptive events solidified to form plugs that sealed the conduit. Every 34 months plug failure occurred, abrupt decompression followed, and the resulting Vulcanian explosions are associated with the highest seismic and acoustic energies ever registered anywhere. Small to moderate-sized PDC flows associated with the explosions and fountain collapses were generated and traveled ≤ 7 km down the steep N, NW, and W flanks of Tungurahua's cone at velocities of 11 to 18 m/s, although a small lateral blast and its PDC were clocked at 33 m/s descending the N flank. The explosive fragmentation of the plugs (a dense microcrystalline andesite) and the juvenile magma (a vesiculated glassy andesite) comprise the principal rock fragments of the PDC deposits. Each deposit typically consisting of two layers; a thin upper layer of large segregated and abraded clasts with few fines and a thicker lower layer that is fines-rich with few large clasts. Many deposits were studied and photographed within a few days of their formation, which are presented.

  3. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  4. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  5. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    SciTech Connect

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.

    2012-10-15

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the 'feedout' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  6. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  7. Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-06-01

    Atmospheric pressure plasma jets have many beneficial effects in their use in surface treatment and, in particular, plasma medicine. One of these benefits is the controlled production of reactive oxygen and nitrogen species (RONS) in the active discharge through the molecular gases added to the primary noble gas in the input mixture, and through the interaction of reactive species in the plasma effluent with the ambient air. In this computational investigation, a parametric study was performed on the production of RONS in a multiply pulsed atmospheric pressure plasma jet sustained in a He/O2 mixture and flowing into ambient humid air. The consequences of flow rate, O2 fraction, voltage, and repetition rate on reactant densities after a single discharge pulse, after 30 pulses, and after the same total elapsed time were investigated. At the end of the first discharge pulse, voltage has the greatest influence on RONS production. However, the systematic trends for production of RONS depend on repetition rate and flow rate in large part due to the residence time of RONS in the plasma zone. Short residence times result in reactive species produced by the previous pulse still being in the discharge tube or in the path of the ionization wave at the next pulse. The RONS therefore accumulate in the tube and in the near effluent on a pulse-to-pulse basis. This accumulation enables species requiring multiple reactions among the primary RONS species to be produced in greater numbers.

  8. Influence of atmospheric waves on the formation and the maintenance of the subtropical jet during the Northern Hemisphere winter—A new method for analyzing the responses to specific forcings

    NASA Astrophysics Data System (ADS)

    Kuroda, Yuhji

    2016-05-01

    This paper introduces a new analysis method that can isolate the responses to specific forcings within meteorological data. By using the zonal mean primitive equations on the sphere, it is possible to break down the meridional circulation, the acceleration of zonal wind, temperature change, and surface pressure change into their individual contributions, which are directly associated with various forcings. This analysis technique can be applied to a wide range of problems relating to climate and its variability. To demonstrate the application of the technique, the formation and maintenance of the subtropical jet during the Northern Hemisphere winter are examined. It is found that atmospheric waves play a crucial role in both the climatological maintenance and the day-to-day (and month-to-month) variabilities of the jet. While stationary waves are the dominant catalyst for maintaining the jet in its climatological state, synoptic waves play an important role in generating the month-to-month variability of the jet.

  9. Rotating plasma jets in the photospheric intergranular lanes

    NASA Astrophysics Data System (ADS)

    Lemmerer, Birgit; Hanslmeier, Arnold; Muthsam, Herbert; Piantschitsch, Isabell; Zaqarashvili, Teimuraz

    2016-07-01

    High resolution simulations and observations of the solar photosphere reveal the population of small granular cells with diameters less than 600 km. However, the underlying mechanisms of their generation are still unclear. Simulations show that the majority of small granules may not result from fragmentation of larger granular cells but instead evolve and dissolve in the intergranular lanes. We study the dynamics of these granular cells in high resolution simulations. We found that the small granules show a jet-like behavior with strong horizontal and vertical vortex motions. A newly developed algorithm that tracks the evolution of the 3D plasma cells in the convection zone and lower photosphere shows strong vertical vorticity within the small granular cells. The rotating plasma jets, which are visible as small granules, may generate magnetized vortex flows and torsional Alfvén waves observed at upper layers and hence can play a distinct role in the energy supply to the chromosphere and corona.

  10. Equation of state of wet granular matter

    NASA Astrophysics Data System (ADS)

    Fingerle, A.; Herminghaus, S.

    2008-01-01

    An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb . The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T) , of wet granular matter for D=2 , valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures Tgranular droplets reported for the free cooling of one-dimensional wet granular matter [A. Fingerle and S. Herminghaus, Phys. Rev. Lett. 97, 078001 (2006)], and extends the effect to higher dimensional systems. Since the limiting case of sticky bonds, Ecb≫T , is of relevance for aggregation in general, simulations have been performed which show very good

  11. Swirling granular solidlike clusters

    NASA Astrophysics Data System (ADS)

    Scherer, Michael A.; Kötter, Karsten; Markus, Mario; Goles, Eric; Rehberg, Ingo

    2000-04-01

    Experiments and three-dimensional numerical simulations are presented to elucidate the dynamics of granular material in a cylindrical dish driven by a horizontal, periodic motion. The following phenomena are obtained both in the experiments and in the simulations: First, for large particle numbers N the particles describe hypocycloidal trajectories. In this state the particles are embedded in a solidlike cluster (``pancake'') which counter-rotates with respect to the external driving (reptation). Self-organization within the cluster occurs such that the probability distribution of the particles consists of concentric rings. Second, the system undergoes phase transitions. These can be identified by changes of the quantity dEkin/dN (Ekin is the mean kinetic energy) between zero (rotation), positive (reptation), and negative values (appearance of the totality of concentric rings).

  12. Granular Materials Research at NASA-Glenn

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Daidzic, Nihad; Green, Robert D.; Nakagawa, Masami; Nayagam, Vedha; Rame, Enrique; Wilkinson, Allen

    2002-01-01

    This paper presents viewgraphs of granular materials research at NASA-Glenn. The topics include: 1) Impulse dispersion of a tapered granular chain; 2) High Speed Digital Images of Tapered Chain Dynamics; 3) Impulse Dispersion; 4) Three Dimensional Granular Bed Experimental Setup; 5) Magnetic Resonance Imaging of Fluid Flow in Porous Media; and 6) Net Charge on Granular Materials (NCharG).

  13. Vortices in vibrated granular rods

    NASA Astrophysics Data System (ADS)

    Neicu, Toni; Kudrolli, Arshad

    2002-03-01

    We report the first experimental observation of vortex patterns in granular rods inside a container that is vibrated vertically . The experiments were carried out with an anodized aluminum circular container which is rigidly attached to an electromagnetic shaker and the patterns are imaged using a high-frame rate digital camera. At low rod numbers and driving amplitudes, the rods are observed to lie horizontally. Above a critical number or packing fraction of rods, moving domains of vertical rods are spontaneously observed to form which coexist with horizontal rods. These small domains of vertical rods coarsen over time to form a few large vortices. The size of the vortices increases with the number of rods. We are able to track the ends of the vertical rods and obtain the velocity fields of the vortices. The mean azimuthal velocity as a function of distance from the center of the vortex is obtained as a function of the packing fraction. We will report the phase diagram of the various patterns observed as function of number of rods and driving amplitude. The mechanism for the formation and motion of the domains of vertical rods will be also discussed.

  14. Shear jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2013-03-01

    For frictionless particles with purely repulsive interactions, there is a critical packing fraction ϕJ below which no jammed states exist. Frictional granular particles in the regime of ϕ <ϕJ act differently under shear: early experiments by Zhang & Behringer at Duke University show jammed states can be created by the application of shear stress. Compared to the states above ϕJ, the shear-jammed states (SJS) are mechanically more fragile, but they can resist shear. Formation of these states requires the anisotropic contact network as a backbone and these new states must be incorporated into a more general jamming picture (Bi et al Nature 2011). If time permits, I will present some new results from recent experiments at SJTU aimed towards understanding the more detailed nature of SJS and the transition from unjammed states to SJS. This work is in collaboration with Bob Behringer at Duke University, Dapeng Bi (now at Syracuse) and Bulbul Chakraborty at Brandeis University. The work at SJTU is in collaboration with Ling Zhang and several undergrads in the physics department.

  15. Congenital granular-cell myoblastoma.

    PubMed

    Cussen, L J; MacMahon, R A

    1975-04-01

    The clinical and pathologic features of congenital granular-cell myoblastoma in five infant girls are reported. One lesion, treated expectantly, progressively decreased in size and after 3 yr and 9 mo could not be detected, while two lesions which were imcompletely excised did not recur. It is suggested that congenital granular-cell myoblastoma is caused by an intrauterine stimulus, and that this stimulus may possible be production of estrogen by the fetus. Congential granular-cell myoblastoma should be treated expectantly or by limited excision, and has an excellent prognosis. PMID:164527

  16. Granular temperature profiles in three-dimensional vibrofluidized granular beds

    SciTech Connect

    Wildman, R. D.; Huntley, J. M.; Parker, D. J.

    2001-06-01

    The motion of grains in a three-dimensional vibrofluidized granular bed has been measured using the technique of positron emission particle tracking, to provide three-dimensional packing fraction and granular temperature distributions. The mean square fluctuation velocity about the mean was calculated through analysis of the short time mean squared displacement behavior, allowing measurement of the granular temperature at packing fractions of up to {eta}{similar_to}0.15. The scaling relationship between the granular temperature, the number of layers of grains, and the base velocity was determined. Deviations between the observed scaling exponents and those predicted by recent theories are attributed to the influence of dissipative grain-sidewall collisions.

  17. On wind-type flows in astrophysical jets. III - Temporal evolution of perturbations and the formation of shocks

    NASA Technical Reports Server (NTRS)

    Trussoni, E.; Ferrari, A.; Rosner, R.; Tsinganos, K.

    1988-01-01

    The temporal evolution of disturbances in a spherically symmetric polytropic wind from a central object is studied. Such disturbances may be due to localized momentum addition/subtraction, as, for example, by MHD waves, heating/cooling mechanisms in the outflow, or localized deviations from spherical symmetric expansion. The evolution of an initial perturbed state to a continuous or discontinuous final equilibrium state, as predicted by previous analytic calculations for stationary flows, is followed. It is shown that some of the predicted discontinuous equilibrium states are not physically accessible, while the attainment of the remaining equilibrium states depends on both the temporal and the spatial parameters characterizing the perturbation. The results are derived for solar conditions, but in fact can be applied to outflows in other astrophysical systems. In particular, applications to the solar wind and flows in astrophysical jets are discussed.

  18. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  19. Granular size segregation in underwater sand ripples.

    PubMed

    Rousseaux, G; Caps, H; Wesfreid, J-E

    2004-02-01

    We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different "exotic" patterns and their geophysical implications are presented. PMID:15052430

  20. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  1. Fuzzy jets

    DOE PAGESBeta

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  2. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  3. Intermittency in dilute granular flows

    NASA Astrophysics Data System (ADS)

    Guo, Wenxuan; Zhang, Qiang; Wylie, Jonathan J.

    2016-07-01

    In this letter, we show that dilute granular systems can exhibit a type of intermittency that has no analogue in gas dynamics. We consider a simple system in which a very dilute set of granular particles falls under gravity through a nozzle. This setting is analogous to the classical problem of high-speed nozzle flow in the study of compressible gases. It is well known that very dilute granular systems exhibit behavior qualitatively similar to gases, and that gas flowing through a nozzle does not exhibit intermittency. Nevertheless, we show that the intermittency in dilute granular nozzle flows can occur and corresponds to complicated transitions between supersonic and subsonic regimes. We also provide detailed explanations of the mechanism underlying this phenomenon.

  4. Optimized Simulation of Granular Materials

    NASA Astrophysics Data System (ADS)

    Holladay, Seth

    Visual effects for film and animation often require simulated granular materials, such as sand, wheat, or dirt, to meet a director's needs. Simulating granular materials can be time consuming, in both computation and labor, as these particulate materials have complex behavior and an enormous amount of small-scale detail. Furthermore, a single cubic meter of granular material, where each grain is a cubic millimeter, would contain a billion granules, and simulating all such interacting granules would take an impractical amount of time for productions. This calls for a simplified model for granular materials that retains high surface detail and granular behavior yet requires significantly less computational time. Our proposed method simulates a minimal number of individual granules while retaining particulate detail on the surface by supporting surface particles with simplified interior granular models. We introduce a multi-state model where, depending on the material state of the interior granules, we replace interior granules with a simplified simulation model for the state they are in and automate the transitions between those states. The majority of simulation time can thus be focused on visible portions of the material, reducing the time spent on non-visible portions, while maintaining the appearance and behavior of the mass as a whole.

  5. Dual fragmentation modes of the explosively dispersed granular materials.

    PubMed

    Xue, Kun; Yu, Qiqi; Bai, Chunhua

    2014-09-01

    Granular materials subjected to blast loading caused by a central explosion exhibit a distinctive dual jetting phenomenon. A large number of fine particle jets are ejected from the outer edge of the charge upon the reflection of the shock wave from the free surface, and are soon overtaken and overlapped by a second set of much thicker particle jets from the inner edge. Our numerical studies suggest that these two distinct sets of particle jets arise from a subsequent fragmentation of the outer and inner particle layers formed during shock interaction. The instability onset of the inner particle layer, which remains intact after the spallation of the outer particle layer, corresponds to the destabilizing viscous forces prevailing over the stabilizing inertial forces. The physical mechanism responsible for the spallation of the outer particle layer is accounted for by a three-phase cavitation model consisting of nucleation, unconditioned and conditioned growth of voids. The theoretically predicted fragmentation onset and fragment size are well consistent with the experimental results. Moreover, by incorporating the moisture effect into the granular material model, results of the cavitation model indicate an increased number of jets generated by saturated particles, as observed in experiments. With minor shock energy being consumed on the saturated particle compaction thanks to the remarkably low compressibility of saturated particles, the shock wave retains the steep front during propagation and subsequently produces a sharp reflection wave leading to a considerably higher strain relaxation rate in saturated particles than that in dry particles. The pressure relaxation duration prescribes the time the activated nucleation sites are allowed to communicate with each other. Consequently nucleation sites in saturated particles have more chances to survive and fully develop than those in dry particles giving rise to smaller fragments. PMID:25260327

  6. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  7. SEARCH FOR CIRCUMSTELLAR DISKS AND RADIO JETS IN THE MASSIVE STAR-FORMATION REGION IRAS 23033+5951

    SciTech Connect

    Rodriguez, T.; Trinidad, M. A.; Migenes, V. E-mail: trinidad@astro.ugto.mx

    2012-08-20

    We present radio continuum (1.3 and 3.6 cm) and H{sub 2}O maser observations toward the high-mass star-forming region IRAS 23033+5951 carried out with the VLA-EVLA (in transition phase) in the A configuration. Three radio continuum sources are detected at 3.6 cm, which are aligned in the east-west direction. However, no continuum emission is detected in the region at 1.3 cm. Based on the continuum information, we find that the two continuum sources detected in the region could be consistent with ultracompact H II regions harboring ZAMS B2 and B2.5 stars; however, we do not rule out that they could be associated with a radio jet. In addition, nine water maser spots are detected toward IRAS 23033+5951, which are clustered in two groups and located about 2'' to the south of the continuum sources. The spatio-kinematical distribution of the water masers suggests that they are tracing a circumstellar disk associated with a central star ZAMS B0, which could be the least evolved source in the region and has not developed an H II region yet. Moreover, as the circumstellar disk seems to be associated with the CO molecular outflow observed in the region, this conforms to a disk-YSO-outflow system, similar to that found in low-mass stars.

  8. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  9. [Large granular lymphocyte leukemia].

    PubMed

    Lazaro, Estibaliz; Caubet, Olivier; Menard, Fanny; Pellegrin, Jean-Luc; Viallard, Jean-François

    2007-11-01

    Large granular lymphocyte (LGL) leukemia is a clonal proliferation of cytotoxic cells, either CD3(+) (T-cell) or CD3(-) (natural killer, or NK). Both subtypes can manifest as indolent or aggressive disorders. T-LGL leukemia is associated with cytopenias and autoimmune diseases and most often has an indolent course and good prognosis. Rheumatoid arthritis and Felty syndrome are frequent. NK-LGL leukemias can be more aggressive. LGL expansion is currently hypothesized to be a virus (Ebstein Barr or human T-cell leukemia viruses) antigen-driven T-cell response that involves disruption of apoptosis. The diagnosis of T-LGL is suggested by flow cytometry and confirmed by T-cell receptor gene rearrangement studies. Clonality is difficult to determine in NK-LGL but use of monoclonal antibodies specific for killer cell immunoglobulin-like receptor (KIR) has improved this process. Treatment is required when T-LGL leukemia is associated with recurrent infections secondary to chronic neutropenia. Long-lasting remission can be obtained with immunosuppressive treatments such as methotrexate, cyclophosphamide, and cyclosporine A. NK-LGL leukemias may be more aggressive and refractory to conventional therapy. PMID:17596907

  10. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    NASA Astrophysics Data System (ADS)

    Scheid, James Eric

    Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a

  11. Granular chaos and mixing: Whirled in a grain of sand

    SciTech Connect

    Shinbrot, Troy

    2015-09-15

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.

  12. Segregation of granular mixtures in a spherical tumbler.

    PubMed

    Finger, Tilo; von Rüling, Florian; Lévay, Sára; Szabó, Bence; Börzsönyi, Tamás; Stannarius, Ralf

    2016-03-01

    Segregation of polydisperse granular materials in rotating containers is a ubiquitous but still not satisfactorily understood phenomenon. This study describes axial segregation of bidisperse granular mixtures of glass beads in a spherical container, rotating about its horizontal axis. Depending on the filling fraction of the mixer and on the composition of the mixture, qualitatively different spontaneously formed patterns are observed. For technical applications, the well-localized segregated bands allow a convenient separation of individual components of the mixtures. It is particularly surprising that the initial compositions of the granular mixtures have a fundamental influence on the location of the segregated bands. This evidences a collective pattern forming mechanism. The spontaneous formation of these bands cannot simply be traced back to individual particle dynamics. Existing models for segregation in spherical mixers are critically examined and extensions are suggested. PMID:27078432

  13. Order-disorder transition in swirled granular disks

    NASA Astrophysics Data System (ADS)

    Krinninger, Philip; Fischer, Andreas; Fortini, Andrea

    2014-07-01

    We study the order-disorder transition of horizontally swirled dry and wet granular disks by means of computer simulations. Our systematic investigation of the local order formation as a function of amplitude and period of the external driving force shows that a large cluster of hexagonally ordered particles forms for both dry and wet granular particles at intermediate driving energies. Disordered states are found at small and large driving energies. Wet granular particles reach a higher degree of local hexagonal order with respect to the dry case. For both cases we report a qualitative phase diagram showing the amount of local order at different state points. Furthermore, we find that the transition from hexagonal order to a disordered state is characterized by the appearance of particles with square local order.

  14. Segregation of granular mixtures in a spherical tumbler

    NASA Astrophysics Data System (ADS)

    Finger, Tilo; von Rüling, Florian; Lévay, Sára; Szabó, Bence; Börzsönyi, Tamás; Stannarius, Ralf

    2016-03-01

    Segregation of polydisperse granular materials in rotating containers is a ubiquitous but still not satisfactorily understood phenomenon. This study describes axial segregation of bidisperse granular mixtures of glass beads in a spherical container, rotating about its horizontal axis. Depending on the filling fraction of the mixer and on the composition of the mixture, qualitatively different spontaneously formed patterns are observed. For technical applications, the well-localized segregated bands allow a convenient separation of individual components of the mixtures. It is particularly surprising that the initial compositions of the granular mixtures have a fundamental influence on the location of the segregated bands. This evidences a collective pattern forming mechanism. The spontaneous formation of these bands cannot simply be traced back to individual particle dynamics. Existing models for segregation in spherical mixers are critically examined and extensions are suggested.

  15. Factors influencing the density of aerobic granular sludge.

    PubMed

    Winkler, M-K H; Kleerebezem, R; Strous, M; Chandran, K; van Loosdrecht, M C M

    2013-08-01

    In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation staining. The volume fraction occupied by precipitates was determined by computed tomography scanning. PHREEQC was used to estimate potential formation of precipitates to determine a density of the inorganic fraction. Densities of bacteria were investigated by Percoll density centrifugation. The volume fractions were then coupled with the corresponding densities and the total density of a granule was calculated. The sensitivity of the density of the entire granule on the corresponding settling velocity was evaluated by changing the volume fractions of precipitates or bacteria in a settling model. Results from granules originating from a Nereda reactor for simultaneous phosphate COD and nitrogen removal revealed that phosphate-accumulating organisms (PAOs) had a higher density than glycogen-accumulating organisms leading to significantly higher settling velocities for PAO-dominated granules explaining earlier observations of the segregation of the granular sludge bed inside reactors. The model showed that a small increase in the volume fraction of precipitates (1-5 %) strongly increased the granular density and thereby the settling velocity. For nitritation-anammox granular sludge, mainly granular diameter and not density differences are causing a segregation of the biomass in the bed. PMID:23064481

  16. Three-phase fracturing in granular material

    NASA Astrophysics Data System (ADS)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  17. Rainwater Channelization and Infiltration in Granular Media

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare; Wei, Yuli; Barrois, Remi; Durian, Douglas; Dreyfus, Remi; Compass Team

    2013-03-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. We determine effects of grain diameter and surface wetting properties on the formation and infiltration of water channels. For hydrophilic granular media, rainwater initially infiltrates a shallow top layer of soil creating a uniform horizontal wetting front before instabilities occur and grow to form water channels. For hydrophobic media, rainwater ponds on the soil surface rather than infiltrates and water channels may still occur at a later time when the hydraulic pressure of the ponding water exceeds the capillary repellency of the soil. We probe the kinetics of the fingering instabilities that serve as precursors for the growth and drainage of water channels. We also examine the effects of several different methods on improving rainwater channelization such as varying the level of pre-saturation, modifying the soil surface flatness, and adding superabsorbent hydrogel particles.

  18. Cosmic jets

    SciTech Connect

    Blandford, R.D.; Begelman, M.C.; Rees, M.J.

    1982-05-01

    Observations with radio telescopes have revealed that the center of many galaxies is a place of violent activity. This activity is often manifested in the production of cosmic jets. Each jet is a narrow stream of plasma that appears to squirt out of the center of a galaxy emitting radiowaves as it does so. New techniques in radio astronomy have shown how common jets are in the universe. These jets take on many different forms. The discovery of radio jets has helped in the understanding of the double structure of the majority of extragalactic radio sources. The morphology of some jets and explanations of how jets are fueled are discussed. There are many difficulties plaguing the investigation of jets. Some of these difficulties are (1) it is not known how much power the jets are radiating, (2) it is hard to tell whether a jet delieated by radio emission is identical to the region where ionized gas is flowing, and (3) what makes them. (SC)

  19. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  20. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGESBeta

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  1. Dynamic granularity of imaging systems

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-01

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the "dynamic granularity" G dyn as a standardized, objective relation between a detector's spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. This relation can partly be explained through consideration of the signal's photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system's performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. This article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia's Z-Backlighter facility.

  2. Silo collapse under granular discharge.

    PubMed

    Gutiérrez, G; Colonnello, C; Boltenhagen, P; Darias, J R; Peralta-Fabi, R; Brau, F; Clément, E

    2015-01-01

    We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d/√[Rt]. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results. PMID:25615503

  3. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows. PMID:20866801

  4. Granular fountains: Convection cascade in a compartmentalized granular gas

    NASA Astrophysics Data System (ADS)

    van der Meer, Devaraj; van der Weele, Ko; Reimann, Peter

    2006-06-01

    This paper extends the two-compartment granular fountain [D. van der Meer, P. Reimann, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 92, 184301 (2004)] to an arbitrary number of compartments: The tendency of a granular gas to form clusters is exploited to generate spontaneous convective currents, with particles going down in the well-filled compartments and going up in the diluted ones. We focus upon the bifurcation diagram of the general K -compartment system, which is constructed using a dynamical flux model and which proves to agree quantitatively with results from molecular dynamics simulations.

  5. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics

    SciTech Connect

    Dizière, A.; Pelka, A.; Ravasio, A.; Yurchak, R.; Loupias, B.; Falize, E.; Kuramitsu, Y.; Sakawa, Y.; Morita, T.; Pikuz, S.; Koenig, M.

    2015-01-15

    In this paper, we present experimental results obtained on the LULI2000 laser facility regarding structure and dynamics of astrophysical jets propagating in interstellar medium. The jets, generated by using a cone-shaped target, propagate in a nitrogen gas that mimics the interstellar medium. X-ray radiography as well as optical diagnostics were used to probe both high and low density regions. In this paper, we show how collimation of the jets evolves with the gas density.

  6. Interfacial Instability during Granular Erosion

    NASA Astrophysics Data System (ADS)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-01

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  7. Granular Rayleigh-Taylor instability

    SciTech Connect

    Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.; Maaloey, Knut Joergen; Toussaint, Renaud

    2009-06-18

    A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.

  8. Interfacial Instability during Granular Erosion.

    PubMed

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results. PMID:26919014

  9. Shear Instabilities in Granular Flows

    NASA Astrophysics Data System (ADS)

    Shinbrot, Troy

    2003-03-01

    Unstable waves have long been studied in fluid shear layers. These waves affect transport in the atmosphere and oceans as well as slipstream stability behind ships, planes, and heat transfer devices. Corresponding instabilities in granular flows have not previously been documented, despite the importance of these flows in geophysical and industrial systems. We report here that breaking waves can form at the interface between two streams of identical grains downstream of a splitter plate. These waves appear abruptly in flow down an inclined plane as either shear rate or angle of incline is changed, and we analyze a granular flow model that qualitatively agrees with our experimental data. The waves appear from the model to be a manifestation of a competition between shear and extensional strains in the flowing granular bed, and we propose a dimensionless group to govern the transition between steady and wavy flows.

  10. Shear instabilities in granular flows

    NASA Astrophysics Data System (ADS)

    Goldfarb, David J.; Glasser, Benjamin J.; Shinbrot, Troy

    2002-01-01

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows.

  11. Shear instabilities in granular flows.

    PubMed

    Goldfarb, David J; Glasser, Benjamin J; Shinbrot, Troy

    2002-01-17

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows. PMID:11797003

  12. Hierarchical Structures in Granular Matter

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, J.; Carrillo-Estrada, J. L.; Ruiz-Suárez, J. C.

    2013-12-01

    Granular matter, under the proper conditions of vibration, exhibits a behavior that closely resembles that of gases, liquids or solids. In a vibrated mix of glass particles and magnetic steel particles, it is also possible to observe aggregation phenomena, as well as, processes of reconstruction of the generated clusters. In this work we discuss the effects of the so called granular temperature on the evolution of the agglomerates generated by the magnetic interactions. On the basis of a fractal analysis and the measured mass distribution, we analyze experimental results on the static structural aspects of the aggregates originated by two methods we call: granular diffusion limited aggregation (GDLA) and growth limited by concentration (GLC).

  13. Water Jetting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  14. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  15. Initiation of immersed granular avalanches

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  16. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  17. Density waves in granular flow

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.

    Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.

  18. DUNE - a granular flow code

    SciTech Connect

    Slone, D M; Cottom, T L; Bateson, W B

    2004-11-23

    DUNE was designed to accurately model the spectrum of granular. Granular flow encompasses the motions of discrete particles. The particles are macroscopic in that there is no Brownian motion. The flow can be thought of as a dispersed phase (the particles) interacting with a fluid phase (air or water). Validation of the physical models proceeds in tandem with simple experimental confirmation. The current development team is working toward the goal of building a flexible architecture where existing technologies can easily be integrated to further the capability of the simulation. We describe the DUNE architecture in some detail using physics models appropriate for an imploding liner experiment.

  19. Jet formation in GRBs: a semi-analytic model of MHD flow in Kerr geometry with realistic plasma injection

    SciTech Connect

    Globus, Noemie; Levinson, Amir

    2014-11-20

    We construct a semi-analytic model for magnetohydrodynamic (MHD) flows in Kerr geometry that incorporates energy loading via neutrino annihilation on magnetic field lines threading the horizon. We compute the structure of the double-flow established in the magnetisphere for a wide range of energy injection rates and identify the different operation regimes. At low injection rates, the outflow is powered by the spinning black hole via the Blandford-Znajek mechanism, whereas at high injection rates, it is driven by the pressure of the plasma deposited on magnetic field lines. In the intermediate regime, both processes contribute to the outflow formation. The parameter that quantifies the load is the ratio of the net power injected below the stagnation radius and the maximum power that can be extracted magnetically from the black hole.

  20. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  1. Granular physics in low-gravity enviroments

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Maciel, A.; Heredia, L.; Richeri, P.; Nesmachnow, S.

    2011-10-01

    The granular media are formed by a set of macroscopic objects (named grains) which interact through temporal or permanent contacts. Several processes has been identified which require a full understanding, like: grain blocking, formation of arcs, size segregation, response to shakes and impacts, etc. These processes has been studied experimentally in the laboratory, and, in the last decades, numerically. The Discrete Element Method (DEM) simulate the mechanical behavior in a media formed by a set of particles which interact through their contact points. We describe the implementation of DEM for the study of several relevant processes in minor bodies of the Solar System. We present the results of simulations of the process of size segregation in low-gravity environments, the so-called Brazil nut effect, in the cases of Eros and Itokawa. The segregation of particles with different densities is also analyzed, with the application to the case of P/Hartley 2. The surface shaking in these different gravity environments could produce the ejection of particles from the surface at very low relative velocities. The shaking that cause the above processes is due to impacts or explosions like the release of energy by the liberation of internal stresses or the reaccommodation of material. We run simulations of the passage of seismic wave produced at impact through a granular media.

  2. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    SciTech Connect

    Gressel, O.; Nelson, R. P.; Turner, N. J.; Ziegler, U. E-mail: r.p.nelson@qmul.ac.uk E-mail: uziegler@aip.de

    2013-12-10

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

  3. Unconditional jetting.

    PubMed

    Gañán-Calvo, Alfonso M

    2008-08-01

    Capillary jetting of a fluid dispersed into another immiscible phase is usually limited by a critical capillary number, a function of the Reynolds number and the fluid property ratios. Critical conditions are set when the minimum spreading velocity of small perturbations v_{-};{*} along the jet (marginal stability velocity) is zero. Here we identify and describe parametric regions of high technological relevance, where v_{-};{*}>0 and the jet flow is always supercritical independently of the dispersed liquid flow rate; within these relatively broad regions, the jet does not undergo the usual dripping-jetting transition, so that either the jet can be made arbitrarily thin (yielding droplets of any imaginably small size), or the issuing flow rate can be made arbitrarily small. In this work, we provide illustrative analytical studies of asymptotic cases for both negligible and dominant inertia forces. In this latter case, requiring a nonzero jet surface velocity, axisymmetric perturbation waves "surf" downstream for all given wave numbers, while the liquid bulk can remain static. In the former case (implying small Reynolds flow) we found that the jet profile small slope is limited by a critical value; different published experiments support our predictions. PMID:18850933

  4. Dynamic granularity of imaging systems

    DOE PAGESBeta

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  5. Dynamic granularity of imaging systems

    SciTech Connect

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  6. Mechanics of granular materials (MGM)

    NASA Astrophysics Data System (ADS)

    Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.

    1996-07-01

    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extent derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.

  7. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.

    1996-01-01

    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.

  8. An infrequent histopathological subtype of ameloblastoma: Adenoid granular cell ameloblastoma with dentinoid.

    PubMed

    Salehinejad, Jahanshah; Gholami, Mahdi; Eshghpour, Majid; Mehri, Tahere

    2016-01-01

    Adenoid ameloblastoma with dentinoid is a rare odontogenic tumor. Granular cell ameloblastoma also is a less common histological subtype of ameloblastoma. In this report, the patient was a 31-year-old male. The lesion was located in the right mandible and was unicystic with well-defined borders. The tumor tissue was showing a combination of follicular, plexiform, and desmoplastic patterns of ameloblastoma with wide areas of granular cells, fibrous stroma, glandular pattern, and dentinoid calcified. Very few cases of distinct forms of ameloblastoma that show the formation of dentinoid has been reported. However, there are no cases of adenoid granular cell ameloblastoma with dentinoid reported. PMID:27605998

  9. An infrequent histopathological subtype of ameloblastoma: Adenoid granular cell ameloblastoma with dentinoid

    PubMed Central

    Salehinejad, Jahanshah; Gholami, Mahdi; Eshghpour, Majid; Mehri, Tahere

    2016-01-01

    Adenoid ameloblastoma with dentinoid is a rare odontogenic tumor. Granular cell ameloblastoma also is a less common histological subtype of ameloblastoma. In this report, the patient was a 31-year-old male. The lesion was located in the right mandible and was unicystic with well-defined borders. The tumor tissue was showing a combination of follicular, plexiform, and desmoplastic patterns of ameloblastoma with wide areas of granular cells, fibrous stroma, glandular pattern, and dentinoid calcified. Very few cases of distinct forms of ameloblastoma that show the formation of dentinoid has been reported. However, there are no cases of adenoid granular cell ameloblastoma with dentinoid reported.

  10. Particle deposition in granular media: Progress report

    SciTech Connect

    Tien, Chi

    1987-01-01

    This paper discusses topics on particle deposition in granular media. The six topics discussed are: experimental determination of initial collection efficiency in granular beds - an assessment of the effect of instrument sensitivity and the extent of particle bounce-off; deposition of polydispersed aerosols in granular media; in situ observation of aerosol deposition in a two-dimensional model filter; solid velocity in cross-flow granular moving bed; aerosol deposition in granular moving bed; and aerosol deposition in a magnetically stabilized fluidized bed. (LSP)

  11. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  12. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    SciTech Connect

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  13. Stop and restart of granular clock in a vibrated compartmentalized bidisperse granular system

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Yi; Hu, Mao-Bin; Jiang, Rui; Wu, Yong-Hong

    2013-01-01

    This paper studies a bidisperse granular mixture consisting of two species of stainless steel spheres in a vertically vibrated compartmentalized container. The experiments show that with proper vibration acceleration, the granular clock stops when horizontal segregation of the large spheres residing in the far end from the barrier wall occurs. When the segregation is broken, the granular clock restarts. We present the phase diagrams of vibration acceleration versus container width and small particle number, which exhibits three different regions, namely, clustering state, stop-restart of the granular clock, and the granular clock. A generalized flux model is proposed to reproduce the phenomenon of stop and restart of the granular clock.

  14. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ∼ 0.5–3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}ȯ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1–5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr‑1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10–15 Myr) compact starburst.

  15. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ˜ 0.5-3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.

  16. Jets in black-hole binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    I will review selected aspects of observations and theory of jets in black-hole binaries. The radio and gamma-ray emission of jets differs significantly between the low and high-mass X-ray binaries, which appears to be due jet-wind interaction (in particular, formation of recollimation shocks) in the latter. Also, both radio and X-ray emission of the jets can be significantly absorbed in the stellar wind of the donors in high-mass binaries. I will also review the theory of radiative processes in jets, their contributions to broad-band spectra, estimates of the jet power, the role of black-hole spin in powering jets, and the possibility that the base of the jet is the main source of X-ray emission (the lamppost model).

  17. Mott transition in granular aluminum

    NASA Astrophysics Data System (ADS)

    Bachar, N.; Lerer, S.; Levy, A.; Hacohen-Gourgy, S.; Almog, B.; Saadaoui, H.; Salman, Z.; Morenzoni, E.; Deutscher, G.

    2015-01-01

    A Mott transition in granular Al films is observed by probing the increase of the spin-flip scattering rate of conduction electrons as the nanosize metallic grains are being progressively decoupled. The presence of free spins in granular Al films is directly demonstrated by μ SR measurements. Analysis of the magnetoresistance in terms of an effective Fermi energy shows that it becomes of the order of the grains electrostatic charging energy at a room temperature resistivity ρ300 K≈50000 μ Ω cm , at which a metal to insulator transition is known to exist. As this transition is approached the magnetoresistance exhibits a heavy-fermion-like behavior, consistent with an increased electron effective mass.

  18. Electrification of Shaken Granular Media

    NASA Astrophysics Data System (ADS)

    Kara, Onur; Nordsiek, Freja; Lathrop, Daniel

    2015-11-01

    Granular charging of particle laden flows are widespread and has long been observed. Volcanic ash clouds, desert sandstorms, dust devils, thunderstorms and snowstorms all undergo electrification at large scale. However the mechanism by which such processes occur, is not yet well understood. We confine granular particles to an oscillating cylindrical chamber which is enclosed and sealed by two conducting plates. The primary measurement obtained is the voltage between the two plates. We find that collective effects occurring in the bulk of the material play a significant role in the electrification process. We extend the previous results by the addition of photodectection capabilities to the experimental chamber. We present simultaneous measurements of voltage and light emission.

  19. Dilatancy in Slow Granular Flows

    NASA Astrophysics Data System (ADS)

    Kabla, Alexandre J.; Senden, Tim J.

    2009-06-01

    When walking on wet sand, each footstep leaves behind a temporarily dry impression. This counterintuitive observation is the most common illustration of the Reynolds principle of dilatancy: that is, a granular packing tends to expand as it is deformed, therefore increasing the amount of porous space. Although widely called upon in areas such as soil mechanics and geotechnics, a deeper understanding of this principle is constrained by the lack of analytical tools to study this behavior. Using x-ray radiography, we track a broad variety of granular flow profiles and quantify their intrinsic dilatancy behavior. These measurements frame Reynolds dilatancy as a kinematic process. Closer inspection demonstrates, however, the practical importance of flow induced compaction which competes with dilatancy, leading more complex flow properties than expected.

  20. Dilatancy in slow granular flows.

    PubMed

    Kabla, Alexandre J; Senden, Tim J

    2009-06-01

    When walking on wet sand, each footstep leaves behind a temporarily dry impression. This counterintuitive observation is the most common illustration of the Reynolds principle of dilatancy: that is, a granular packing tends to expand as it is deformed, therefore increasing the amount of porous space. Although widely called upon in areas such as soil mechanics and geotechnics, a deeper understanding of this principle is constrained by the lack of analytical tools to study this behavior. Using x-ray radiography, we track a broad variety of granular flow profiles and quantify their intrinsic dilatancy behavior. These measurements frame Reynolds dilatancy as a kinematic process. Closer inspection demonstrates, however, the practical importance of flow induced compaction which competes with dilatancy, leading more complex flow properties than expected. PMID:19658906

  1. Compaction Behavior of Granular Materials

    NASA Astrophysics Data System (ADS)

    Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.

    1996-03-01

    We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.

  2. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  3. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  4. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  5. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  6. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  7. An inkjet vision measurement technique for high-frequency jetting

    NASA Astrophysics Data System (ADS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  8. Modeling Coronal Jets with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.; Pariat, E.; Antiochos, S. K.; Deforest, C. E.

    2008-05-01

    We report on a comparative study of coronal jet formation with and without reconnection using two different simulation strategies. Coronal jets are features on the solar surface that appear to have some properties in common with coronal mass ejections, but are less energetic, massive, and broad. Magnetic free energy is built up over time and then suddenly released, which accelerates plasma outward in the form of a coronal jet. We compare results from the ARMS adaptive mesh and FLUX reconnection-less codes to study the role of reconnection in this system. This is the first direct comparison between FLUX and a numerical model with a 3D spatial grid.

  9. Anisotropy of weakly vibrated granular flows.

    PubMed

    Wortel, Geert H; van Hecke, Martin

    2015-10-01

    We experimentally probe the anisotropy of weakly vibrated flowing granular media. Depending on the driving parameters-flow rate and vibration strength-this anisotropy varies significantly. We show how the anisotropy collapses when plotted as a function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggest that for small anisotropies, the shear stresses vanish. Anisotropy of the fabric of granular media thus plays a crucial role in determining the rheology of granular flows. PMID:26565148

  10. Anisotropy of weakly vibrated granular flows

    NASA Astrophysics Data System (ADS)

    Wortel, Geert H.; van Hecke, Martin

    2015-10-01

    We experimentally probe the anisotropy of weakly vibrated flowing granular media. Depending on the driving parameters—flow rate and vibration strength—this anisotropy varies significantly. We show how the anisotropy collapses when plotted as a function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggest that for small anisotropies, the shear stresses vanish. Anisotropy of the fabric of granular media thus plays a crucial role in determining the rheology of granular flows.

  11. The contribution of exopolysaccharides induced struvites accumulation to ammonium adsorption in aerobic granular sludge.

    PubMed

    Lin, Y M; Bassin, J P; van Loosdrecht, M C M

    2012-03-15

    Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides. PMID:22209260

  12. Ellerman Bombs with Jets: Cause and Effect

    NASA Astrophysics Data System (ADS)

    Reid, A.; Mathioudakis, M.; Scullion, E.; Doyle, J. G.; Shelyag, S.; Gallagher, P.

    2015-05-01

    Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1 m Solar Telescope to study EB events on the solar disk and at the limb. Both data sets show that EBs are connected to the foot points of forming chromospheric jets. The limb observations show that a bright structure in the Hα blue wing connects to the EB initially fueling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of Hα. In the disk data set, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes. Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5-10 km s-1, while their chromospheric counterparts range from 50 to 80 km s-1. MURaM simulations of quiet Sun reconnection show that micro-jets with properties similar to those of the observations follow the line of reconnection in the photosphere, with associated Hα brightening at the location of increased temperature.

  13. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  14. Explicit particle-dynamics model for granular materials

    SciTech Connect

    Walton, O.R.

    1982-05-01

    Discrete-particle simulation of granular-material motion is developing into a viable method for studying how various interparticulate forces affect the bulk behavior of granular solids. A two-dimensional, polygonal-particle computer model, developed from the ideas of Cundall (1976), and incorporating other techniques from molecular dynamics, is being used in a study of the flow behavior of rubblized oil shale. Direct comparison with physical tests involving multiblock systems have verified the model's ability to predict the motion of real materials. Computer generated movies and high-speed motion pictures of physical tests involving gravity flow of 2-dimensional polygonal particles show formation of temporary arches followed by dynamic rupture and reformation of new arches. Direct shear tests on oil-shale rubble involving very large displacements indicate significant circulatory motion in the rubble. Computer simulation of the direct shear tests show similar behavior.

  15. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  16. Pneumatic fractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  17. Inter/intra granular exchange and thermal activation in nanoscale granular magnetic materials

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Saharan, L.; Hrkac, G.; Schrefl, T.; Ikeda, Y.; Takano, K.; Miles, J. J.; Thomson, T.

    2011-09-01

    We explain the effect of inter/intra granular exchange coupling and thermal activation on the switching behavior of nano-scale granular magnetic materials. For an ideal, non-interacting granular system, the minimum switching field occurs at 45° from the easy axis of the grains. We show through simulation and measurements, using a CoCrPt oxide-segregated granular film as a model system, that there is a clear shift in the angle of applied field at which the minimum switching field occurs. This arises solely due to incoherent reversal induced by inter-granular exchange coupling or incoherency within larger grains, rather than thermal activation.

  18. Aging in humid granular media.

    PubMed

    Restagno, Frédéric; Ursini, Cécile; Gayvallet, Hervé; Charlaix, Elisabeth

    2002-08-01

    Aging behavior is an important effect in the friction properties of solid surfaces. In this paper we investigate the temporal evolution of the static properties of a granular medium by studying the aging over time of the maximum stability angle of submillimetric glass beads. We report the effect of several parameters on these aging properties, such as the wear on the beads, the stress during the resting period, and the humidity content of the atmosphere. Aging effects in an ethanol atmosphere are also studied. These experimental results are discussed at the end of the paper. PMID:12241167

  19. Theoretical model of granular compaction

    SciTech Connect

    Ben-Naim, E.; Knight, J.B.; Nowak, E.R. |; Jaeger, H.M.; Nagel, S.R.

    1997-11-01

    Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume argument shows that this number grows as N = {rho}/(1 {minus} {rho}). The time scale associated with such events increases exponentially e{sup {minus}N}, and as a result a logarithmically slow approach to the final state is found {rho} {infinity} {minus}{rho}(t) {approx_equal} 1/lnt.

  20. Hydrodynamic modes for granular gases.

    PubMed

    Dufty, James W; Brey, J Javier

    2003-09-01

    The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum, assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the velocity distribution in the reference homogeneous cooling state. PMID:14524742

  1. Thermoelectric performance of granular semiconductors.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Materials Science Division; California State Univ.

    2009-01-01

    We study the effects of doping and confinement on the thermoelectric properties of nanocrystalline semiconductors. We calculate the thermopower and figure of merit for temperatures less than the charging energy. For weakly coupled semiconducting grains it is shown that the figure of merit is optimized for grain sizes of order 5 nm for typical materials, and that its value can be larger than one. Using the similarities between granular semiconductors and electron or Coulomb glasses allows for a quantitative description of inhomogeneous semiconducting thermoelectrics.

  2. Where the Granular Flows Bend

    NASA Astrophysics Data System (ADS)

    Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Bonet, J. A.; Domingo, V.; Schmidt, W.; Barthol, P.; Knölker, M.

    2010-11-01

    Based on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes, the spectral line width of the Fe I 5250.2 Å line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/SUNRISE are important requisites to detect this interesting phenomenon.

  3. Modelling of the material transport and layer formation in the divertor of JET: Comparison of ITER-like wall with full carbon wall conditions

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Matveev, D.; Borodin, D.; Airila, M.; Brezinsek, S.; Groth, M.; Wiesen, S.; Widdowson, A.; Beal, J.; Esser, H. G.; Likonen, J.; Bekris, N.; Ding, R.

    2015-08-01

    Impurity transport within the inner JET divertor has been modelled with ERO to estimate the transport to and the resulting deposition at remote areas. Various parametric studies involving divertor plasma conditions and strike point position have been performed. In JET-ILW (beryllium main chamber and tungsten divertor) beryllium, flowing from the main chamber into the divertor and then effectively reflected at the tungsten divertor tiles, is transported to remote areas. The tungsten flux to remote areas in L-Mode is in comparison to the beryllium flux negligible due to small sputtering. However, tungsten is sputtered during ELMs in H-Mode conditions. Nevertheless, depending on the plasma conditions, strike point position and the location of the remote area, the maximum resulting tungsten flux to remote areas is at least ∼3 times lower than the corresponding beryllium flux. Modelled beryllium and tungsten deposition on a rotating collector probe located below tile 5 is in good agreement with measurements if the beryllium influx into the inner divertor is assumed to be in the range of 0.1% relative to the deuterium ion flux and erosion due to fast charge exchange neutrals is considered. Comparison between JET-ILW and JET-C is presented.

  4. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR).

    PubMed

    Zhu, Liang; Lv, Mei-le; Dai, Xin; Zhou, Jia-heng; Xu, Xiang-yang

    2013-07-01

    The aerobic granular sludge technology has a great potential in treatment of municipal wastewater and industrial wastewater containing toxic non-degradable pollutants. However, the formation and structural stability of aerobic granular sludge is susceptible to toxic shock. In the study, the effect of 4-chloroaniline (4-ClA) as a common toxic pollutant on the granular structure and performance was investigated, and the mechanism was revealed to provide more information on 4-ClA degradation with aerobic granular sludge process. The results showed that a 4-ClA shock at influent 200 mg L(-1) could cause the disintegration of aerobic granular sludge and decrease of the pollutant removal performance. The analysis of extracellular polymeric substances (EPS) within the mature and disintegrated granular sludge showed that the decrease of protein content in EPS, especially the components like Amide I 3-turn helix and β-sheet structures and aspartate, was not good for the stability of aerobic granular sludge. The microbial community results demonstrated that the disappearance of dominant bacteria like Kineosphaera limosa or appearance like Acinetobacter, might contribute to the reduction of EPS and disintegration of aerobic granular sludge. PMID:23685649

  5. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  6. AT THE SOURCE OF AN EXTRAGALACTIC JET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Artist's concept of the formation region of M87's jet. An accretion disk (red-yellow) surrounds the black hole, and its magnetic field lines twist tightly to channel the outpouring subatomic particles into a narrow jet. The jet opens widely near the black hole, then is shaped into a narrower beam within a light-year of the black hole. Credit: NASA and Ann Feild (Space Telescope Science Institute)

  7. Granular fingers on jammed systems: new fluidlike patterns arising in grain-grain invasion experiments.

    PubMed

    Pinto, S F; Couto, M S; Atman, A P F; Alves, S G; Bernardes, A T; de Resende, H F V; Souza, E C

    2007-08-10

    In this Letter we report spontaneous pattern formation in dense granular assemblies confined to a Hele-Shaw cell and quasistatic regime. Varied unexpected patterns, ranging from rounded to fingered, are observed due to the displacement of one granular material by another. Computer simulations reproduce the major features observed in these experiments. Two mechanisms are responsible for the pattern formation: crystallization of the injected grains and plastic deformation of the displaced grains. The experiment suggests analogies with viscous fingering and jamming transition experiments. PMID:17930866

  8. Centrifuge modelling of granular flows

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  9. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  10. Modeling Size Polydisperse Granular Flows

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  11. Extensional Rheology of Granular Staples

    NASA Astrophysics Data System (ADS)

    Franklin, Scott

    2013-03-01

    Collections of U-shaped granular materials (e.g. staples) show a surprising resistance to being pulled apart. We conduct extensional stress-strain experiments on staple piles with vary arm/spine (barb) ratio. The elongation is not smooth, with the pile growing in bursts, reminiscent of intruder motion through ordinary and rod-like granular materials. The force-distance curve shows a power-law scaling, consistent with previous intruder experiments. Surprisingly, there is significant plastic creep of the pile as particles rearrange slightly in response to the increasing force. There is a broad distribution of yield forces that does not seem to evolve as the pile lengthens, suggesting that each yield event is independent of the pile's history. The distribution of yield forces can be interpreted in the context of a Weibullian weakest-link theory that predicts the maximum pile strength to decrease sharply with increasing pile length. From this interpretation arise length and force scales that may be used to characterize the sample. This research supported in part by the NSF (CBET-#1133722) and ACS-PRF (#51438-UR10).

  12. Study of transient jet gases

    NASA Astrophysics Data System (ADS)

    Saber, Aaron Jaan

    1988-03-01

    This work involves the use of flash lamp schlieren and the development of flash lamp light slicing (planar imaging) and their employment in visualization of transient gas jets discharging into the atmosphere and the mixing that ensues. Details of the flash lamp light slicing system design are provided. Visualization of flows from a pulsed valve discharge system and a shock tube open at the downstream end of the driven section are used to simulate real discharges. Gas flow Mach numbers for discharges of air into the atmosphere range to about 0.4. Axial light slicing images show development of the starting jets, including the formation of the starting vortex and coherent structures that form along the jet shaft. Transverse light slicing images reveal the development of scallops and cusps inside the head of the jet. Voids in the jet were observed at about 4 to 6 diameters from the exit plane. This may imply that ambient and jet gases differentiate at some points downstream. These features suggest cyclic development of jet features. The results can also be used to validate and calibrate computational fluid dynamic (CFD) computer codes used to predict the behavior of fluids under varying initial and boundary conditions.

  13. Radiative jets from variable sources

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Cantó, J.; de Colle, F.; Esquivel, A.; Kajdic, P.; Rodríguez-González, A.; Velázquez, P. F.

    2009-08-01

    We present a series of numerical simulations which explore different aspects of the formation of working surfaces in HH jets. These working surfaces can be at the head of the jet (resulting from a ``turning on'' of the ejection) or within the body of the jet (resulting from a time-variability of the ejection). We explore the effect of having a conical outflow of different opening angles and the effect of having a non-top hat ejection velocity cross section. We also illustrate the differences that are obtained by varying the resolution of the simulations, and by changing from 2D (axisymmetric) to 3D descriptions of the flow. Finally, we describe the effect of a toroidal magnetic field on the working surfaces of the jet.

  14. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement.

    PubMed

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M Suleman; Krammer, Gernot

    2011-12-25

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93-106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100-200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and

  15. Rupture in cemented granular media: application to wheat endosperm

    NASA Astrophysics Data System (ADS)

    Topin, V.; Delenne, J.-Y.; Radjai, F.

    2009-06-01

    The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.

  16. Visualizing 3D fracture morphology in granular media

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2015-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  17. Visualizing 3D Fracture Morphology in Granular Media

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2015-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  18. Acoustic loads prediction on jet aircraft

    NASA Astrophysics Data System (ADS)

    Reddy, N. N.

    1992-07-01

    A nearfield aircraft noise prediction computer program is presented for the F-22 aircraft. The dominant sources of noise are jet turbulent mixing noise, jet broadband shock noise, and fluctuating pressure under the turbulent boundary layer. All results from this investigation are presented in viewgraph format.

  19. Acoustic loads prediction on jet aircraft

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.

    1992-01-01

    A nearfield aircraft noise prediction computer program is presented for the F-22 aircraft. The dominant sources of noise are jet turbulent mixing noise, jet broadband shock noise, and fluctuating pressure under the turbulent boundary layer. All results from this investigation are presented in viewgraph format.

  20. Numerical Simulations of Granular Processes

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran

  1. Jets in air-jet family

    NASA Technical Reports Server (NTRS)

    Navia, C. E.; Sawayanagi, K.

    1985-01-01

    The A-jet families on Chacaltaya emulsion chamber experiments were analyzed by the study of jets which are reconstructed by a grouping procedure. It is demonstrated that large-E sub J R sub J events are characterized by small number of jets and two-jet like asymmetric shape, binocular events and the other type. This type has a larger number of jets and more symmetrical shape in the P sub t plane.

  2. Compression of granular pillars with constant width at top and bottom

    NASA Astrophysics Data System (ADS)

    Takehara, Yuka; Rieser, Jennifer; Gollub, Jerry; Durian, Douglas

    2013-03-01

    Granular media display both elastic and plastic behavior, including the formation of shear bands under extreme loading. In this study, we performed two-dimensional granular pillar compression experiments and tracked of grain- and macro- scale flows via video imaging and force measurement. Especially we focus on the condition that the top and bottom widths of the granular pillars are constrained to avoid free expansion along the contact edge. This causes more energy to be stored elastically deep inside of the pillars, which gives rise to a different kind of shear banding than for free top/bottom widths. Furthermore we tried several series of experiments with different elastic/frictional particles and also ordered/disordered systems. We demonstrate how the micro properties and packing structure contribute to the formation of shear band to discuss the mechanical failure in disordered packing.

  3. Weak and compact radio emission in early massive star formation regions: an ionized jet toward G11.11–0.12P1

    SciTech Connect

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.

  4. Marine Jet

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The marine turbine pump pictured is the Jacuzzi 12YJ, a jet propulsion system for pleasure or commercial boating. Its development was aided by a NASA computer program made available by the Computer Software Management and Information Center (COSMIC) at the University of Georgia. The manufacturer, Jacuzzi Brothers, Incorporated, Little Rock, Arkansas, used COSMIC'S Computer Program for Predicting Turbopump Inducer Loading, which enabled substantial savings in development time and money through reduction of repetitive testing.

  5. Microstructural observations of reconsolidated granular salt to 250°C

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Hansen, F.; Bauer, S. J.; Stormont, J.

    2014-12-01

    Very low permeability is a principal reason salt formations are considered viable hosts for disposal of nuclear waste and spent nuclear fuel. Granular salt is likely to be used as back-fill material and as a seal system component. Granular salt is expected to reconsolidate to a low permeability condition because of external pressure from the surrounding salt formation. Understanding the consolidation processes--known to depend on the stress state, moisture availability and temperature--is important for predicting achievement of sealing functions and long-term repository performance. As granular salt consolidates, initial void reduction is accomplished by brittle processes of grain rearrangement and cataclastic flow. At porosities of less than 10%, grain boundary processes and crystal-plastic mechanisms govern further porosity reduction. We investigate the micro-mechanisms operative in granular salt that has been consolidated under high temperatures to relatively low porosity. These conditions would occur proximal to heat-generating canisters. Mine-run salt from the Waste Isolation Pilot Plant was used to create cylindrical samples which were consolidated at 250°C and stresses to 20 MPa. From samples consolidated to fractional densities of 86% and 97% polished thin sections, etched cleavage chips, and fragments were fabricated. Microstructural techniques included scanning electron and optical microscopy. Microstructure of undeformed mine-run salt was compared to the deformed granular salt. Observed deformation mechanisms include glide, cross slip, climb, fluid-assisted creep, pressure-solution redeposition, and annealing. Documentation of operative deformation mechanisms within the consolidating granular salt, particularly at grain boundaries, is essential to establish effects of moisture, stress, and temperature. Future work will include characterization of pore structures. Information gleaned in these studies supports evaluation of a constitutive model for

  6. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  7. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  8. Aerofractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  9. Quantitative DEM of granular packings

    NASA Astrophysics Data System (ADS)

    Brodu, Nicolas; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    We introduce a new model for simulating granular assemblies. This model explicitely accounts for the cross-influence of multiple contacts on grains. It maintains the surface deformations of the grains induced by the contacts, improving on the classical non-deformable interpenetrable spheres model, for a reasonable computational cost. We show that both multiple contacts and surface deformations are necessary for reproducing quantitatively the 3D force measurements we recently demonstrated. We also show that friction has a dramatic effect on the forces and number of contacts, so it cannot be ignored even for very small values. This work was funded by NASA grant NNX10AU01G, NSF grant DMR12-06351 and ARO grant W911NF-1-11-0110.

  10. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  11. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  12. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  13. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  14. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  15. Drag-force regimes in granular impact

    NASA Astrophysics Data System (ADS)

    Tiwari, Mukesh; Mohan, T. R. Krishna; Sen, Surajit

    2014-12-01

    We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.

  16. Drag-force regimes in granular impact.

    PubMed

    Tiwari, Mukesh; Mohan, T R Krishna; Sen, Surajit

    2014-12-01

    We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences. PMID:25615080

  17. Saturn's ring "propellers": gravitational or granular?

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Lawney, B. P.; Jenkins, J. T.

    2010-05-01

    Propeller-shaped brightness features observed in Saturn's A ring are density disturbances, usually thought to be induced by gravity. Embedded masses larger than tens of meters disturb the smooth Keplerian shear of typical small ring particles (cm to m in radius) sufficiently to be visible in Cassini images. Instead we investigate whether propeller formation could be solely a collisional phenomenon involving the collisional energy dissipation, moon-to-particle size ratio, and the initial areal fractional coverage. Our two-dimensional, event-driven molecular dynamics simulation, which is carried out within Hill's equations and ignores gravity between the moon and the particles, develops "propeller-like” structures. We argue that the relatively low agitation and density of ring material is responsible for a low sound speed, resulting in predominantly supersonic flow of ring particles relative to the moon. In this framework, "propellers” are viewed as the locus of a granular shock, analogous to shocks in compressible gases, across which the ring material experiences significant changes in density, velocity, pressure, and the analog of temperature. We model these changes analytically and through numerical simulations to determine the propeller's size. We anticipate that inferences about the embedded objects will change with this different model.

  18. Force distributions in granular materials

    NASA Astrophysics Data System (ADS)

    Jaeger, Heinrich M.

    2002-03-01

    A fundamental problem in the study of disordered materials concerns the propagation of forces. Static granular media, such as sand particles inside a rigid container, have emerged as an important model system as they embody the zero temperature limit of disordered materials comprised of hardsphere repulsive particles. In this talk, I will review recent results on the distribution forces along the boundaries of granular material subjected to an applied load. While the spatial distribution of mean forces sensitively reflects the (macroscopic) packing structure of the material, the ensemble-averaged probability distribution of force fluctuations around the mean value, P(f), exhibits universal behavior. The shape of P(f) is found to be independent not only of the macroscopic packing arrangement but also of the inter-particle friction and, over a wide range, of the applied external stress. This shape is characterized by an exponential decay in the probability density for fluctuations above the mean force and only a small reduction, by no more than a factor two, for fluctuations below the mean [1]. Surprisingly, the exponential, non-Gaussian behavior appears to hold up even in the case of highly compressible grains, and it also has been observed in simulations of supercooled liquids [2]. I will discuss the implications of these findings on our current understanding of stress transmission in disordered media in general, and on glassy behavior in particular. [1] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 63, 041304 (2001). [2] S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86, 111 (2001). * Work performed in collaboration with D. L. Blair, J. M. Erikson, A. H. Marshall, N. W. Mueggenburg, and S. R. Nagel.

  19. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  20. Impact compaction of a granular material

    SciTech Connect

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequently used for computational modeling.

  1. Discrete breathers in one-dimensional diatomic granular crystals.

    PubMed

    Boechler, N; Theocharis, G; Job, S; Kevrekidis, P G; Porter, Mason A; Daraio, C

    2010-06-18

    We report the experimental observation of modulational instability and discrete breathers in a one-dimensional diatomic granular crystal composed of compressed elastic beads that interact via Hertzian contact. We first characterize their effective linear spectrum both theoretically and experimentally. We then illustrate theoretically and numerically the modulational instability of the lower edge of the optical band. This leads to the dynamical formation of long-lived breather structures, whose families of solutions we compute throughout the linear spectral gap. Finally, we experimentally observe the manifestation of the modulational instability and the resulting generation of localized breathing modes with quantitative characteristics that agree with our numerical results. PMID:20867305

  2. Penetration of granular projectiles into a water target.

    PubMed

    González-Gutiérrez, Jorge; Carrillo-Estrada, J L; Ruiz-Suárez, J C

    2014-01-01

    The penetration of low-speed projectiles into a water target has been studied in the last several years to understand the physics behind the formation and collapse of cavities. In such studies, the projectiles employed were solid bodies or liquid drops. Here we report similar impact experiments using granular projectiles, with the aim to investigate how the morphology of the cavities is determined by the balance between the dynamic pressure exerted by the fluid and the cohesive strength of the impactors. From the results we present and discuss in this manuscript, we speculate on the dynamics of meteorite disintegration in the atmosphere of our planet. PMID:25342448

  3. Self-organization of hydrophobic soil and granular surfaces

    NASA Astrophysics Data System (ADS)

    McHale, Glen; Shirtcliffe, Neil J.; Newton, Michael I.; Pyatt, F. Brian; Doerr, Stefan H.

    2007-01-01

    Soil can become extremely water repellent following forest fires or oil spillages, thus preventing penetration of water and increasing runoff and soil erosion. Here the authors show that evaporation of a droplet from the surface of a hydrophobic granular material can be an active process, lifting, self-coating, and selectively concentrating small solid grains. Droplet evaporation leads to the formation of temporary liquid marbles and, as droplet volume reduces, particles of different wettabilities compete for water-air interfacial surface area. This can result in a sorting effect with self-organization of a mixed hydrophobic-hydrophilic aggregate into a hydrophobic shell surrounding a hydrophilic core.

  4. Penetration of Granular Projectiles into a Water Target

    PubMed Central

    González-Gutiérrez, Jorge; Carrillo-Estrada, J. L.; Ruiz-Suárez, J. C.

    2014-01-01

    The penetration of low-speed projectiles into a water target has been studied in the last several years to understand the physics behind the formation and collapse of cavities. In such studies, the projectiles employed were solid bodies or liquid drops. Here we report similar impact experiments using granular projectiles, with the aim to investigate how the morphology of the cavities is determined by the balance between the dynamic pressure exerted by the fluid and the cohesive strength of the impactors. From the results we present and discuss in this manuscript, we speculate on the dynamics of meteorite disintegration in the atmosphere of our planet. PMID:25342448

  5. BOOK REVIEW: Kinetic Theory of Granular Gases

    NASA Astrophysics Data System (ADS)

    Trizac, Emmanuel

    2005-11-01

    inelasticity of inter-grain encounters—as velocity independent is inconsistent with the mechanical point of view. An asymptotic expression for the impact velocity dependence of ɛ is therefore derived for visco-elastic spheres. The important inelastic Boltzmann equation is introduced in part II and the associated velocity distribution characterized for a force-free medium (so-called free cooling regime). Transport processes can then be analyzed in part III at the single particle level, and part IV from a more macroscopic viewpoint. The corresponding Chapman Enskog-like hydrodynamic approach is worked out in detail, in a clear fashion. Finally, the tendency of granular gases to develop instabilities is illustrated in part V where the hydrodynamic picture plays a pivotal role. This book clearly sets the stage. For the sake of simplicity, the authors have discarded some subtle points, such as the open questions underlying the hydrodynamic description (why include the temperature among the hydrodynamic modes, and what about the separation of space and time scales between kinetic and hydrodynamic excitations?). Such omissions are understandable. To a certain extent however, the scope of the book is centered on previous work by the authors, and I have a few regrets. Special emphasis is put on the (variable ɛ) visco-elastic model, which enhances the technical difficulty of the presentation. On the other hand, the important physical effects including scaling laws, hydrodynamic behaviour and structure formation, can be understood in two steps, from the results derived within the much simpler constant ɛ model, allowing subsequently \\varepsilon to depend on the granular temperature. The authors justify their choice with the inconsistency of the constant ɛ route. The improvements brought by the visco-elastic model remain to be assessed, since the rotational degrees of freedom, discarded in the book, play an important role and require due consideration of both tangential and normal

  6. Capillary Movement in Granular Beds in Microgravity

    NASA Technical Reports Server (NTRS)

    Yendler, Boris S.; Bula, Ray J.; Kliss, Mark (Technical Monitor)

    1996-01-01

    Understanding the dynamics of capillary flow through unsaturated porous media is very important for the development of an effective water and nutrient delivery system for growing plants in microgravity and chemical engineering applications. Experiments were conducted on the Space Shuttle during the STS-63 mission using three experimental cuvettes called "Capillary Testbed-M." These experiments studied the effect of bead diameter on capillary flow by comparing the capillary flow in three different granular beds. It was observed that the speed of water propagation in the granular bed consisting of 1.5 mm diameter particles was less than that in the bed consisting of 1.0 mm. diameter particles. Such results contradict the existing theory of capillary water propagation in granular beds. It was found also that in microgravity water propagates independently in adjacent layers of a layered granular bed .

  7. Mechanisms for slow strengthening in granular materials

    PubMed

    Losert; Geminard; Nasuno; Gollub

    2000-04-01

    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F(max) experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time tau. The layer strength increases roughly logarithmically with tau only if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements, and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by a cycling of the applied shear stress. PMID:11088198

  8. NMR Measurements of Granular Flow and Compaction

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  9. Tunable magneto-granular phononic crystals

    NASA Astrophysics Data System (ADS)

    Allein, F.; Tournat, V.; Gusev, V. E.; Theocharis, G.

    2016-04-01

    This paper reports on the study of the dynamics of 1D magneto-granular phononic crystals composed of a chain of spherical steel beads inside a properly designed magnetic field. This field is induced by an array of permanent magnets, located in a holder at a given distance from the chain. The theoretical and experimental results of the band gap structure are displayed, including all six degrees of freedom for the beads, i.e., three translations and three rotations. Experimental evidence of transverse-rotational modes of propagation is presented; moreover, by changing the strength of the magnetic field, the dynamic response of the granular chain is tuned. The combination of non-contact tunability with the potentially strong nonlinear behavior of granular systems ensures the suitability of magneto-granular phononic crystals as nonlinear, tunable mechanical metamaterials for use in controlling elastic wave propagation.

  10. Granular crystals: Nonlinear dynamics meets materials engineering

    SciTech Connect

    Porter, Mason A.; Kevrekidis, Panayotis G.; Daraio, Chiara

    2015-11-01

    In this article, the freedom to choose the size, stiffness, and spatial distribution of macroscopic particles in a lattice makes granular crystals easily tailored building blocks for shock-absorbing materials, sound-focusing devices, acoustic switches, and other exotica.

  11. Acoustical properties of double porosity granular materials.

    PubMed

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics. PMID:22087905

  12. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  13. Rheology of weakly vibrated granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, J. A.; Wortel, G.; van Hecke, M.

    2009-06-01

    We show how weak vibrations substantially modify the rheology of granular materials. We experimentally probe dry granular flows in a weakly vibrated split bottom shear cell—the weak vibrations modulate gravity and act as an agitation source. By tuning the applied stress and vibration strength, and monitoring the resulting strain as a function of time, we uncover a rich phase diagram in which non-trivial transitions separate a jammed phase, a creep flow case, and a steady flow case.

  14. Rheology of weakly vibrated granular media

    NASA Astrophysics Data System (ADS)

    Wortel, Geert H.; Dijksman, Joshua A.; van Hecke, Martin

    2014-01-01

    We probe the rheology of weakly vibrated granular flows as function of flow rate, vibration strength, and pressure by performing experiments in a vertically vibrated split-bottom shear cell. For slow flows, we establish the existence of a vibration-dominated granular flow regime, where the driving stresses smoothly vanish as the driving rate is diminished. We distinguish three qualitatively different vibration-dominated rheologies, most strikingly a regime where the shear stresses no longer are proportional to the pressure.

  15. Shear dispersion in dense granular flows

    DOE PAGESBeta

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  16. Granular Cell Tumor: An Uncommon Benign Neoplasm

    PubMed Central

    Gayen, Tirthankar; Das, Anupam; Shome, Kaushik; Bandyopadhyay, Debabrata; Das, Dipti; Saha, Abanti

    2015-01-01

    Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor. PMID:26120181

  17. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  18. Advanced Thermally Stable Jet Fuels

    SciTech Connect

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  19. Contact micromechanics in granular media with clay

    SciTech Connect

    Ita, S.L.

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  20. Impact phenomena in fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Mayor, Patrick; Katsuragi, Hiroaki; Durian, Douglas

    2009-03-01

    Projectiles dropped into granular media form a crater and come to rest in a particular way that has been actively investigated in numerous studies. These impact phenomena illustrate how particulate materials respond to externally applied forces. Several recent experiments have focused on the penetration of projectiles impacting granular materials at relatively low speeds, and measured the dynamics of the impact process, yielding force laws accounting for the observations. We present results showing how granular impacts are affected when the load on the grains is modified using a vertical gas flow. Balls or cylinders are dropped into a dry, noncohesive granular medium and we measure the penetration depth when gas is flown upward (thus unloading the contacts) or downward (loading the contacts). We observe that the frictional drag decreases linearly with the flow rate, and vanishes completely once the system is fluidized. Different projectile geometries allow us to separate the effect of normal and tangential frictional forces. We also consider the case of objects that are lowered quasistatically into the granular medium and measure the net vertical force exerted by the granular system on the objects at each immersion depth. We then discuss how this resistance force compares with the forces observed in actual impacts experiments.

  1. Steady flow dynamics during granular impact

    NASA Astrophysics Data System (ADS)

    Clark, Abram H.; Kondic, Lou; Behringer, Robert P.

    2016-05-01

    We study experimentally and computationally the dynamics of granular flow during impacts where intruders strike a collection of disks from above. In the regime where granular force dynamics are much more rapid than the intruder motion, we find that the particle flow near the intruder is proportional to the instantaneous intruder speed; it is essentially constant when normalized by that speed. The granular flow is nearly divergence free and remains in balance with the intruder, despite the latter's rapid deceleration. Simulations indicate that this observation is insensitive to grain properties, which can be explained by the separation of time scales between intergrain force dynamics and intruder dynamics. Assuming there is a comparable separation of time scales, we expect that our results are applicable to a broad class of dynamic or transient granular flows. Our results suggest that descriptions of static-in-time granular flows might be extended or modified to describe these dynamic flows. Additionally, we find that accurate grain-grain interactions are not necessary to correctly capture the granular flow in this regime.

  2. Linking acoustic emission signatures with grain-scale mechanical interactions during granular shearing

    NASA Astrophysics Data System (ADS)

    Michlmayr, G.; Cohen, D.; Or, D.

    2012-04-01

    Acoustic Emissions (AE) are high frequency (kHz range) elastic body waves, generated in deforming granular material during particle collisions, frictional slip, or other types of abrupt grain-scale mechanical interactions. The direct link with particle micro-mechanics makes AE a useful tool for gaining insights into mechanical aspects of progressive shear failure in granular material and slow granular flows. The formation of shear plane in granular matter involves numerous internal restructuring and failure events with distinct dynamics resembling features of critical phase transition. Following establishment of a shear plane, subsequent deformation involves episodic slip events interrupted by arrested flow (stick-slip behavior). We developed a model for interpreting measured AE signatures in terms of micro-failures during progressive granular shear a considering AE generation mechanisms and propagation of acoustic signals within granular material. Results from shear frame experiments include information on strains, stresses and acoustic emissions during deformation controlled tests on glass beads and sand. The number of failure associated AE event rates peaks with maximum shear resistance of the granular material. Intermittent slip events during stick-slip deformation are found to be closely related to low frequency AE events (~1kHz). Statistics of AE events and their temporal development are reproduced using a simple fiber-bundle model. A conceptual AE generation and propagation model accounts for conversion of mechanical events into elastic waves. In addition to gaining insights concerning grain-scale mechanical interactions, the AE method offers a useful tool for monitoring hazardous geologic mass movements, such as landslides, rock avalanches or debris flows.

  3. Sedimentation of granular columns in the viscous and weakly inertial regimes.

    PubMed

    Chraïbi, Hamza; Amarouchene, Yacine

    2013-10-01

    We investigate the dynamics of granular columns of point particles that interact via long-range hydrodynamic interactions and fall under the action of gravity. We investigate the influence of inertia using the Green's function for the Oseen equation. The initial conditions (density and aspect ratio) are systematically varied. Our results suggest that universal self-similar laws may be sufficient to characterize the temporal and structural evolution of the granular columns. A characteristic time above which an instability is triggered (which may enable the formation of clusters) is also retrieved and discussed. PMID:24229164

  4. Interaction of Relativistic Jets with Their Environments

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, M. C.

    2014-01-01

    Relativistic jets such as those emitted by active galactic nuclei are observed to be collimated over great distances, but the cause of this collimation is uncertain. Also not fully understood are the means by which these jets become accelerated to their extreme velocities. To probe these questions, I examine the possibility of collimation and acceleration of relativistic jets by the pressure of the ambient medium surrounding the jet base, in the limit in which the jet interior has lost causal contact with its surroundings. I model the jet with an ultrarelativistic equation of state, injected into an ambient medium that has a pressure that decreases as a power of spherical radius, p ~ r^-n. Within the range 2jet interior will be out of causal contact, but the outer layers of the jet gradually collimate toward the jet axis, leading to the formation of a shocked boundary layer. By constructing partially self-similar solutions to the fluid equations within this boundary layer, I examine the impact of the external pressure profile on the behavior of the fluid in the layer. I determine both the structure of the jet and the rate of energy conversion from internal to kinetic as the jet propagates outward, establishing both the collimation and acceleration profiles of the jet. I will discuss the differences in predicted jet behavior based on whether the jet is purely hydrodynamic or whether the model also includes the effects of a toroidal magnetic field threading the jet interior. I will also describe the conditions that create specific observed jet morphology, such as the "hollow cone" structure seen in jets such as M87. Finally, I will discuss the specific application of these models to describe the relativistic jets that are created by some tidal disruption events --- events in which a star passing near a supermassive black hole (SMBH) is torn apart by tidal forces, and the star material then accretes back onto the SMBH --- such as in the observations of Swift

  5. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The packing of particles can change radically during cyclic loading such as in an earthquake or when shaking a container to compact a powder. A large hole (1) is maintained by the particles sticking to each other. A small, counterclockwise strain (2) collapses the hole, and another large strain (3) forms more new holes which collapse when the strain reverses (4). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (after T.L. Youd, Packing Changes and Liquefaction Susceptibility, Journal of the Geotechnical Engieering Division, 103: GT8,918-922, 1977)(Credit: NASA/Marshall Space Flight Center.)(Credit: University of Colorado at Boulder).

  6. Smarticles: smart, active granular matter

    NASA Astrophysics Data System (ADS)

    Savoie, Will; Pazouki, Arman; Negrut, Dan; Goldman, Daniel

    We investigate a granular medium composed of smart, active particles, or ``smarticles''. Previously, we discovered that ensembles of ``u''-shaped particles exhibited geometrically-induced cohesion by mechanically entangling via particle interpenetration [Gravish et al., PRL, 2012]; the strength and/or extent of entanglement could be varied by changing particle level entanglement by changes in arm-to-base length of the u-particle. Since changing this parameter on demand is inconvenient, we develop a power-autonomous programmable robot composed of two motors and three links with an on-board microcontroller. This smarticle can be activated to change its configuration (specified by its two joint angles) through audio communication. To complement these experiments, since study large ensembles of smarticles is cost and labor prohibitive, we also develop a simulated smarticle in the Chrono multibody simulation environment. We systematically study ensemble cohesiveness and compaction as a function of shape changes of the smarticles. We find that suitable activation of smarticles allows ensembles to become cohesive to ``grip'' rigid objects and lose cohesion to release on command. Work supported by ARO.

  7. Chemotaxis of large granular lymphocytes

    SciTech Connect

    Pohajdak, B.; Gomez, J.; Orr, F.W.; Khalil, N.; Talgoy, M.; Greenberg, A.H.

    1986-01-01

    The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-..beta.. and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1/sup +/ cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 ..mu..m nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (> 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML(/sup 3/H)P, suggesting that LGL bear receptors for the chemotactic peptide.

  8. Discrete Element Modeling of Complex Granular Flows

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Asphaug, E. I.

    2010-12-01

    Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes

  9. Inclusive Jets in PHP

    NASA Astrophysics Data System (ADS)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  10. Granular segregation in quasi-2d rectangular bin

    NASA Astrophysics Data System (ADS)

    Gharat, Sandip H.; Khakhar, D. V.

    2013-06-01

    Experiments are carried out in quasi two-dimensional rectangular bin (two vertical glass plate separated by a gap of 10 mm) to study the effect of feed composition on segregation of granular mixtures during heap formation by intermittent feeding. The stainless steel (SS 316) balls of different sizes (1 and 2 mm) are used as model granular materials. The heap is formed by repeatedly pouring a fixed mass of the mixture. Each feeding results in the formation of a layer of the mixture on the surface of the heap. Results presented here are for binary mixtures with different size and equal density. Profiles of the number fraction of big particles along the flow direction averaged across the depth of the layer are plotted. In each layer formed by a pouring, segregation results in the small particles being deposited first. Thus, the small particles are concentrated in the upper part of the layer and the large particles in the lower part with a mixed region between the two. The extent of segregation is found to increase with decrease in concentration of big particles in the mixture.

  11. Accretion flows govern black hole jet properties

    NASA Astrophysics Data System (ADS)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  12. Corporate Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Gulfstream Aerospace Corporation, Savannah, GA, used a version of a NASA program called WIBCO to design a wing for the Gulfstream IV (G-IV) which will help to reduce transonic drag (created by shock waves that develop as an airplane approaches the speed of sound). The G-IV cruises at 88 percent of the speed of sound, and holds the international record in its class for round-the-world flight. They also used the STANS5 and Profile programs in the design. They will use the NASA program GASP to help determine the gross weight, range, speed, payload and optimum wing area of an intercontinental supersonic business jet being developed in cooperation with Sukhoi Design Bureau, a Soviet organization.

  13. Numerical calculation of granular entropy: counting the uncountable

    NASA Astrophysics Data System (ADS)

    Frenkel, Daan

    In 1989, Sir Sam Edwards introduced the concept of `granular entropy', defined as the logarithm of the number of distinct packings of N granular particles in a fixed volume V. The proposal was rather controversial but much of the debate was sterile because the granular entropy could not even be computed for systems as small as 20 particles - hardly a good approximation of the thermodynamic limit. In my talk I will describe how granular entropies of much larger systems can now be computed, using a novel algorithm. Interestingly, it turns out the definition of granular entropy will have to be modified to guarantee that granular entropy is extensive.

  14. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  15. Axisymmetric instability in a thinning electrified jet

    NASA Astrophysics Data System (ADS)

    Dharmansh; Chokshi, Paresh

    2016-04-01

    The axisymmetric stability of an electrified jet is analyzed under electrospinning conditions using the linear stability theory. The fluid is considered Newtonian with a finite electrical conductivity, modeled as a leaky dielectric medium. While the previous studies impose axisymmetric disturbances on a cylindrical jet of uniform radius, referred to as the base state, in the present study the actual thinning jet profile, obtained as the steady-state solution of the one-dimensional slender filament model, is treated as the base state. The analysis takes into account the role of variation in the jet variables like radius, velocity, electric field, and surface charge density along the thinning jet in the stability behavior. The eigenspectrum of the axisymmetric disturbance growth rate is constructed from the linearized disturbance equations discretized using the Chebyshev collocation method. The most unstable growth rate for the thinning jet is significantly different from that for the uniform radius jet. For the same electrospinning conditions, while the uniform radius jet is predicted to be highly unstable, the thinning jet profile is found to be unstable but with a relatively very low growth rate. The stabilizing role of the thinning jet is attributed to the variation in the surface charge density as well as the extensional deformation rate in the fluid ignored in the uniform radius jet analysis. The dominant mode for the thinning jet is an oscillatory conducting mode driven by the field-charge coupling. The disturbance energy balance finds the electric force to be the dominant force responsible for the disturbance growth, potentially leading to bead formation along the fiber. The role of various material and process parameters in the stability behavior is also investigated.

  16. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  17. Advanced thermally stable jet fuels

    SciTech Connect

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  18. Granular Materials and Risks in ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilki8nson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today s massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  19. Granular Materials and Risks In ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  20. Characteristics of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.

    2016-03-01

    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  1. Supersonic gas jets

    NASA Astrophysics Data System (ADS)

    Dulov, V. G.

    The papers presented in this volume provide an overview of the current state of research in the gas dynamics of jet flows. In particular, attention is given to free supersonic jets and to the interaction of supersonic jets with one another and with obstacles under stationary and nonstationary flow conditions. Papers are presented on a method for calculating a weakly anisotropic supersonic turbulent jet in a subsonic slipstream; composite supersonic jets; the principal gas-dynamic characteristics of the processes occurring in gas-jet-driven shock-wave generators; and the construction of models for supersonic jet flows. For individual items see A84-16902 to A84-16918

  2. Jet Reconstruction and Calibration in the ATLAS Calorimeters

    SciTech Connect

    Jorgensen Roca, Sigrid

    2006-10-27

    Many physics studies in ATLAS require precise reconstruction and calibration of particle jet kinematics. Among these are the reconstruction of the top quark mass, the search for the Higgs boson, and possible supersymmetric particles. The ATLAS calorimeter system has been designed to meet these requirements across a wide acceptance in pseudorapidity (|{eta}|<5). Different calorimeter technologies are applied in different rapidity regions to optimize the performance with respect to coverage, containment, highest possible spatial granularity, and the best possible energy resolution, in the difficult and changing experimental conditions characteristic for each of these regions.In this talk we briefly illustrate the ATLAS calorimeter features most relevant for the jet measurement. The general approach to calorimeter jet calibration is two-fold. First, the jet signal shape is used to correct for detector effects such as non-compensation and energy losses in inactive materials. This followed by corrections for biases introduced by the jet clustering algorithms and effects from the collision physics environment. We intend to discuss this calibration procedure and the different strategies available to implement it, in the context of the evaluation of the jet reconstruction performance for various available jet clustering algorithms, including a fixed cone and the Kt algorithm. A focus in this discussion is on the expected initial run condition at ATLAS start-up.

  3. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.

  4. "Waveguidability" of idealized jets

    NASA Astrophysics Data System (ADS)

    Manola, Iris; Selten, Frank; Vries, Hylke; Hazeleger, Wilco

    2013-09-01

    It is known that strong zonal jets can act as waveguides for Rossby waves. In this study we use the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data to analyze the connection between jets and zonal waves at timescales beyond 10 days. Moreover, a barotropic model is used to systematically study the ability of idealized jets to trap Rossby wave energy ("waveguidability") as a function of jet strength, jet width, and jet location. In general, strongest waveguidability is found for narrow, fast jets. In addition, when the stationary wave number is integer, a resonant response is found through constructive interference. In Austral summer, the Southern Hemispheric jet is closest to the idealized jets considered and it is for this season that similar jet-zonal wave relationships are identified in the ECMWF reanalysis data.

  5. Coexistence and transition between shear zones in slow granular flows.

    PubMed

    Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang

    2013-10-01

    We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength. PMID:24138274

  6. Plastic deformation in a metallic granular chain

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.; Carlson, William

    2016-03-01

    Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.

  7. Convection in vibrated annular granular beds

    NASA Astrophysics Data System (ADS)

    Wildman, R. D.; Martin, T. W.; Krouskop, P. E.; Talbot, J.; Huntley, J. M.; Parker, D. J.

    2005-06-01

    The response to vibration of a granular bed, consisting of a standard cylindrical geometry but with the addition of a dissipative cylindrical inner wall, has been investigated both experimentally (using positron emission particle tracking) and numerically (using hard sphere molecular dynamics simulation). The packing fraction profiles and granular temperature distributions (in both vertical and horizontal directions) were determined as a function of height and distance from the axis. The two sets of results were in reasonable agreement. The molecular dynamics simulations were used to explore the behavior of the granular bed in the inner wall-outer wall coefficient of restitution phase space. It was observed that one could control the direction of the toroidal convection rolls by manipulating the relative dissipation at the inner and outer walls via the coefficients of restitution, and with several layers of grains it was seen that double convection rolls could also be formed, a result that was subsequently confirmed experimentally.

  8. Unsteady granular flows down an inclined plane.

    PubMed

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations. PMID:27176375

  9. Unsteady granular flows down an inclined plane

    NASA Astrophysics Data System (ADS)

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

  10. Statistical mechanics of dense granular media

    NASA Astrophysics Data System (ADS)

    Nicodemi, M.; Coniglio, A.; de Candia, A.; Fierro, A.; Ciamarra, M. Pica; Tarzia, M.

    2005-12-01

    We discuss some recent results on Statistical Mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bydisperse granular assemblies. We show that "jamming" corresponds to a phase transition from a "fluid" to a "glassy" phase, observed when crystallization is avoided. The nature of such a "glassy" phase turns out to be the same found in mean field models for glass formers. This gives quantitative evidence to the idea of a unified description of the "jamming" transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and "geometric" effects.

  11. Statistical mechanics of dense granular media

    NASA Astrophysics Data System (ADS)

    Coniglio, A.; Fierro, A.; Nicodemi, M.; Pica Ciamarra, M.; Tarzia, M.

    2005-06-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects.

  12. Creep and aging in jammed granular materials

    NASA Astrophysics Data System (ADS)

    Srivastava, Ishan; Fisher, Timothy

    Granular materials flow (or unjam) when stressed above the Coulomb yield stress, but a slow creep is observed when the applied stresses are low. In this work, using a recently introduced enthalpy-based variable-cell simulation method, we will present results on the creep and slow aging dynamics in granular systems comprised of soft particles of varying shape that are hydrostatically jammed and subjected to an external stress. We observe a two-stage creep with an initial fast exponential evolution followed by a slow logarithmic evolution over long time scales. We correlate the slow creeping dynamics with micromechanical evolution at the grain scale, such as increasing dynamical heterogeneity and force-chain rearrangements. Results will also be presented on the effect of grain shape (faceted vs. spherical) on the creep and aging dynamics. Finally, a continuum granular fluidity model is developed to rationalize these observations.

  13. Impact compaction of a granular material

    DOE PAGESBeta

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less

  14. Energy Conservation for Granular Coal Injection into a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Su, Buxin; Zhang, Jianliang; Shao, Jiugang; Zuo, Haibin; Ren, Shan

    2012-08-01

    Due to the lack of knowledge regarding the combustion of granular coal injected into a blast furnace, injection characteristics of granular coal were first studied through proximate analysis, element analysis, and research of explosivity, ignition point, meltability of ash, grindability, calorific value, etc. Using a sampling device in the raceway combined with petrographic analysis, during the combustion process of granular coal with high crystal water and volatile in raceway, cracks and bursts were found, leading to a reduction of particle size. Based on a model of mass control and dynamic theory of particle combustion, the transition dynamic model for cracking in combustion of granular coal was found, and the critical value of cracking ratio (ΩP) for granular coal combustion in the raceway was calculated. Finally, the utilization ratio and energy efficiency of granular coal used in the blast furnace were discussed, offering theoretical foundation and technical support for intensifying granular coal combustion and promoting granular coal injection.

  15. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    NASA Astrophysics Data System (ADS)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  16. Supersonic gas jets for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Veisz, L.

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  17. Axisymmetric collapses of granular columns

    NASA Astrophysics Data System (ADS)

    Lube, Gert; Huppert, Herbert E.; Sparks, R. Stephen J.; Hallworth, Mark A.

    2004-06-01

    Experimental observations of the collapse of initially vertical columns of small grains are presented. The experiments were performed mainly with dry grains of salt or sand, with some additional experiments using couscous, sugar or rice. Some of the experimental flows were analysed using high-speed video. There are three different flow regimes, dependent on the value of the aspect ratio a {=} h_i/r_i, where h_i and r_i are the initial height and radius of the granular column respectively. The differing forms of flow behaviour are described for each regime. In all cases a central, conically sided region of angle approximately 59(°) , corresponding to an aspect ratio of 1.7, remains undisturbed throughout the motion. The main experimental results for the final extent of the deposit and the time for emplacement are systematically collapsed in a quantitative way independent of any friction coefficients. Along with the kinematic data for the rate of spread of the front of the collapsing column, this is interpreted as indicating that frictional effects between individual grains in the bulk of the moving flow only play a role in the last instant of the flow, as it comes to an abrupt halt. For a {<} 1.7, the measured final runout radius, r_infty, is related to the initial radius by r_infty {=} r_i(1 {+} 1.24a); while for 1.7 {<} a the corresponding relationship is r_infty {=} r_i(1 {+} 1.6a(1/2) ). The time, t_infty, taken for the grains to reach r_infty is given by t_infty {=} 3(h_i/g)(1/2} {=} 3(r_i/g)({1/2}a^{1/2)) , where g is the gravitational acceleration. The insights and conclusions gained from these experiments can be applied to a wide range of industrial and natural flows of concentrated particles. For example, the observation of the rapid deposition of the grains can help explain details of the emplacement of pyroclastic flows resulting from the explosive eruption of volcanoes.

  18. Characterizing the rheology of fluidized granular matter.

    PubMed

    Desmond, Kenneth W; Villa, Umberto; Newey, Mike; Losert, Wolfgang

    2013-09-01

    In this study we characterize the rheology of fluidized granular matter subject to secondary forcing. Our approach consists of first fluidizing granular matter in a drum half filled with grains via simple rotation and then superimposing oscillatory shear perpendicular to the downhill flow direction. The response of the system is mostly linear, with a phase lag between the grain motion and the oscillatory forcing. The rheology of the system can be well characterized by the GDR MiDi model if the system is forced with slow oscillations. The model breaks down when the forcing time scale becomes comparable to the characteristic time for energy dissipation in the flow. PMID:24125256

  19. Cluster Instability in Freely Evolving Granular Gases

    NASA Astrophysics Data System (ADS)

    Brey, J. Javier

    A granular medium is formed by a large number of macroscopic particles or grains. Here large must be understood at a macroscopic level, i.e. a few thousands or even a few hundreds is already a large number in the present context, as compared with molecular systems which contain a number of atoms or molecules of the order of the Avogadro number. In this lecture, we will restrict ourselves to dry granular systems in which there is not any other fluid around the grains. Also, electrical effects are not considered. Under these circumstances, the grain-grain interaction can be taken as purely repulsive with no attractive part.

  20. How granularity issues concern biomedical ontology integration.

    PubMed

    Schulz, Stefan; Boeker, Martin; Stenzhorn, Holger

    2008-01-01

    The application of upper ontologies has been repeatedly advocated for supporting interoperability between domain ontologies in order to facilitate shared data use both within and across disciplines. We have developed BioTop as a top-domain ontology to integrate more specialized ontologies in the biomolecular and biomedical domain. In this paper, we report on concrete integration problems of this ontology with the domain-independent Basic Formal Ontology (BFO) concerning the issue of fiat and aggregated objects in the context of different granularity levels. We conclude that the third BFO level must be ignored in order not to obviate cross-granularity integration. PMID:18487840

  1. Preliminary Results of a Microgravity Investigation to Measure Net Charge on Granular Materials

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Myers, Jerry G.; Hansen, Bonnie L.

    2003-01-01

    Accurate characterization of the electrostatic charge on granular materials has typically been limited to materials with diameters on the order of 10 microns and below due to high settling velocities of larger particles. High settling velocities limit both the time and the acceptable uncertainty with which a measurement can be made. A prototype device has been developed at NASA Glenn Research Center (GRC) to measure coulombic charge on individual particles of granular materials that are 50 to 500 microns in diameter. This device, a novel extension of Millikan's classic oil drop experiment, utilizes the NASA GRC 2.2 second drop tower to extend the range of electrostatic charge measurements to accommodate moderate size granular materials. A dielectric material with a nominal grain diameter between 1.06 and 250 microns was tribocharged using a dry gas jet, suspended in a 5x10x10 cm enclosure during a 2.2 second period of microgravity and exposed to a known electric field. The response was recorded on video and post processed to allow tracking of individual particles. By determining the particle trajectory and velocity, estimates of the coulombic charge were made. Over 30 drops were performed using this technique and the analysis showed that first order approximations of coulombic charge could successfully be obtained, with the mean charge of 3.4E-14 coulombs measured for F-75 Ottawa quartz sand. Additionally, the measured charge showed a near-Gaussian distribution, with a standard deviation of 2.14E -14 coulombs.

  2. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  3. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2–8 Mm, lifetime of 2–7 min, maximum upward velocity of 10– 50 km/s, and deceleration of 100–350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates

  4. CONTROL OF INTERFACIAL DUST CAKE TO IMPROVE EFFICIENCY OF MOVING BED GRANULAR FILTERS

    SciTech Connect

    Robert C. Brown; Gerald M. Colver

    2002-10-31

    The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second objective is to better understand dust capture interfacial phenomena and cake formation in moving bed filters. The experimental bed tested in the present study has several unique design features configured as cold flow, axially symmetric, counter-current flow to simulate a filter operating at high temperatures (1088 K) and elevated pressures (10 atmospheres). The granular filter is evaluated in two separate performance studies: (1) optimization of particle collection efficiency and bed pressure drop in a factorial study at near-atmospheric operating pressures through appropriate use of granular bed materials, particle sizes, and feed rates; and (2) high temperature and high pressure model simulation conducted at above-atmospheric pressures and room temperature utilizing dust and granular flow rates, granular size, system pressure, and superficial velocity. The factorial study involves a composite design of 16 near-atmospheric tests, while the model simulation study is comprised of 7 above-atmospheric tests. Similarity rules were validated in tests at four different mass dust ratios and showed nearly constant collection efficiencies ({approx} 99.5 {+-} 0.3%) for operating pressures of 160 kPa gage (23.2 psig) at room temperature (20 C), which simulates the hydrodynamic conditions expected for typical gasification streams (1088 K, 10 atmospheres). An important outcome from the near-atmospheric pressure studies are relationships developed using central composite design between the independent variables, superficial velocity (0.16-0.22 m/s), dust feed rate (0.08-0.74 kg/hr), and granular flow rate (3.32-15.4 kg/hr). These operating equations were optimized in contour plots for bed conditions that simultaneously satisfy low-pressure drop and high particle collection efficiency.

  5. Force and flow at the onset of drag in plowed granular media.

    PubMed

    Gravish, Nick; Umbanhowar, Paul B; Goldman, Daniel I

    2014-04-01

    We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕ<ϕc FD increases monotonically with displacement and is independent of drag velocity for the range of velocities examined (<10 cm/s). For ϕ>ϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ>ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ>ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ>ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕ<ϕc the shear strain is not localized, the shear band fluctuates in space and time, and the average shear increases monotonically with displacement. Laser speckle measurements made at the granular surface ahead of the plate reveal that for ϕ<ϕc particles are in motion far from the intruder and shearing region. For ϕ>ϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region. PMID:24827236

  6. Force and flow at the onset of drag in plowed granular media

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Umbanhowar, Paul B.; Goldman, Daniel I.

    2014-04-01

    We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕ <ϕc FD increases monotonically with displacement and is independent of drag velocity for the range of velocities examined (<10 cm/s). For ϕ >ϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ >ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ >ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ >ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕ <ϕc the shear strain is not localized, the shear band fluctuates in space and time, and the average shear increases monotonically with displacement. Laser speckle measurements made at the granular surface ahead of the plate reveal that for ϕ <ϕc particles are in motion far from the intruder and shearing region. For ϕ >ϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region.

  7. On Radiative Acceleration of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Takahara, F.

    1997-10-01

    The formation and acceleration of relativistic jets by radiative forces in black hole systems are investigated. Under a variety of circumstances, we calculate the bulk acceleration and radiative cooling of a confined plasma cell, immersed in different types of radiation fields and interacting by Compton scattering. Both non-relativistic (cold) and relativistic (hot) jet plasma, comprising mixtures of electron-proton and electron-positron components, are treated. We pay attention to some conceivable effects, previously neglected, which may possibly enhance the bulk acceleration; among them are an anisotropically radiating accretion disk surface, beamed secondary radiation from the inner jet, and scattering in the energy dependent Klein-Nishina regime. Our results are discussed in the context of relativistic jets in active galactic nuclei and Galactic black hole candidates, and the conditions necessary for successfully reproducing their observed properties are highlighted. In particular, the velocities of the recently discovered superluminal jets in Galactic black hole candidates (Lorentz factors of Γ ~ 2.5) are readily and very robustly accounted for if the jet is composed primarily of electron-positron pairs and the disk luminosity is near the Eddington value; the jet kinetic power can be consistent with optical depth and pair annihilation constraints. On the other hand, severe difficulty is met in attaining the velocities of AGN jets (Γ ~ 10), which can only be realized when a significant amount of beamed secondary radiation is present. We also contemplate additional important issues, such as global energetics.

  8. Particles size segregation and roll waves in dense granular flows

    NASA Astrophysics Data System (ADS)

    Viroulet, Sylvain; Baker, James; Kokelaar, Peter; Gray, Nico

    2015-11-01

    Geophysical granular flows, such as landslides, snow avalanches and pyroclastic flows commonly involve particles with different sizes which are prone to segregate during the flow. This particle-size segregation may lead to the formation of regions with different frictional properties which can have a feedback on the flow. This study aims to understand this effect in the context of bi-disperse roll waves in shallow granular free-surface flows. Experiments have been performed in a 3 meter long chute using several mixtures of spherical glass beads of diameter 75-150 and 400-600 microns flowing on a rough bed. These show that the waves propagate at constant speed that depends on the initial mixture composition. In addition, during their propagation, a higher concentration of large particles is localized at the front of the waves. A theoretical and numerical approach is presented using depth-averaged equations for the conservation of mass, momentum and depth-averaged small particle concentration. Results without frictional feedback are investigated and compared to those that include the enhanced frictional resistance to motion of the large grains.

  9. Numerical simulation of subaqueous chute flows of granular materials.

    PubMed

    Varsakelis, C; Papalexandris, M V

    2015-05-01

    In this paper we report on numerical studies of unsteady, gravity-driven flow of a subaqueous erodible granular bed on an inclined plane. According to our simulations, the evolution of the flow can be partitioned in three phases. In the first phase, due to the onset of an interfacial instability, the material interface deforms into a series of long waves. In the second phase, these waves are transformed to skewed vortex ripples that grow in time and eventually coalesce. The computed wavelengths of these ripples are in good agreement with previously reported experimental measurements. In the third phase of the flow evolution, the high fluid velocities wash out the vortex ripples and a layer of rapidly moving particles is formed at the material interface. The predicted granular velocities comprise two segments: a concave one at the vicinity of the material interface, where the maximum is attained, followed by a slightly convex one, where they decrease monotonically to zero. The same trend has been reported in experimental results for the corresponding steady flows. Finally, we investigate via a parametric study the effect of the configuration stresses, which represent contact forces between grains. As it turns out, such stresses have a stabilizing effect, in the sense that increasing their magnitude inhibits the formation of vortex ripples. PMID:25985944

  10. Shock induced chemistry in granular Ni/Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Germann, Timothy; Kober, Edward; Strachan, Alejandro

    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. However, fundamental questions of the initiation and propagation mechanisms on the nanoscale remain to be addressed, which is a roadblock to their widespread application. Motivated by experimental work which has shown that high-energy ball milling can significantly improve the reactivity as well as the ease of ignition of Ni/Al inter-metallic composites, we present large scale (~ 41 million atom) molecular dynamics simulations of shock-induced chemistry in granular Ni/Al nano-composites, which are designed to capture the microstructure that is obtained post milling. Shock propagation in these granular composites is observed to be extremely diffuse at low piston velocities, leading to a large inhomogeneity in the local stress states of the material. At higher piston velocities, the shock front is more homogeneous as a consequence of a change in the compaction mechanism; from plastic deformation mediated pore collapse at low piston velocities, to fluid filling of the pores at higher impact velocities. The flow of molten ejecta into the pores subsequently leads to the formation of vortices, where the reaction progresses much faster than in the bulk.

  11. Impact and Penetration of Granular Materials by Discrete Element Simulations

    NASA Astrophysics Data System (ADS)

    Garvin, Justin W.; Lechman, Jeremy B.; Lane, J. Matthew D.

    2008-03-01

    Granular material response to impact is important in a range of fields, from munitions delivery, to meteorite collision and crater formation. Recently a model for the force experienced on a penetrator has been proposed [L.S. Tsimring and D. Volfson, Powders and Grains 2005, 1215-1223] and shown to fit experimental data well [H. Katsuragi and D.J. Durian, Nature Physics, Vol. 3, June 2007]. This model describes two components of the force: i) a velocity dependent, depth independent term related to the inertial force required to mobilize a volume of grains in front of the penetrator; and ii) a velocity independent, depth dependent, Coulomb friction-like term. In the current study, massively parallel, discrete element simulations have been performed to study the penetration of a large spherical impactor into a multi-million particle bed of granular material. Results agree with previous work for slow impact speeds (< 400cm/s). In addition, the current work extends the comparison with the proposed model to higher speeds (˜1000cm/s). The physics of the phenomenon is discussed along with the challenges for modeling and simulation in the even higher velocity regime.

  12. Recovery of palladium(II) by methanogenic granular sludge.

    PubMed

    Pat-Espadas, Aurora M; Field, James A; Otero-Gonzalez, Lila; Razo-Flores, Elías; Cervantes, Francisco J; Sierra-Alvarez, Reyes

    2016-02-01

    This is the first report that demonstrates the ability of anaerobic methanogenic granular sludge to reduce Pd(II) to Pd(0). Different electron donors were evaluated for their effectiveness in promoting Pd reduction. Formate and H2 fostered both chemically and biologically mediated Pd reduction. Ethanol only promoted the reduction of Pd(II) under biotic conditions and the reduction was likely mediated by H2 released from ethanol fermentation. No reduction was observed in biotic or abiotic assays with all other substrates tested (acetate, lactate and pyruvate) although a large fraction of the total Pd was removed from the liquid medium likely due to biosorption. Pd(II) displayed severe inhibition towards acetoclastic and hydrogenotrophic methanogens, as indicated by 50% inhibiting concentrations as low as 0.96 and 2.7 mg/L, respectively. The results obtained indicate the potential of utilizing anaerobic granular sludge bioreactor technology as a practical and promising option for Pd(II) reduction and recovery offering advantages over pure cultures. PMID:26408982

  13. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge.

    PubMed

    Zheng, Ping; Lin, Feng-mei; Hu, Bao-lan; Chen, Jian-song

    2004-01-01

    The anaerobic ammonia oxidation (Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100.83 mmol/(L x d) and 98.95 mmol/(L x d). The performance of Anammox reactor was efficient and stable. PMID:15137666

  14. A new DBD-driven atmospheric pressure plasma jet source on air or nitrogen

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victir A.; Skakun, Victor S.; Tarasenko, Victor F.; Pechenitsin, Dmitrii S.; Kuznetsov, Vladimir S.

    2015-12-01

    The paper proposes a new atmospheric pressure plasma jet (APPJ) source for operation in air and nitrogen. The conditions for the formation of stable plasma jets 4 cm long are determined. Energy and spectral measurement data are presented.

  15. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single

  16. Granular Elasticity’ and the loss of elastic stability in granular materials

    SciTech Connect

    P. W. Humrickhouse

    2009-07-01

    A recently proposed hyperelastic model for granular materials, called "granular elasticity", identifies a yield angle as a result of thermodynamic instability. GE gives yield angles that are smaller than those found in real materials; a generalization of the theory is considered here that includes dependence on the third strain invariant. This generalization proves unsuccessful, as it gives smaller, not larger, yield angles. Fully convex hyperelastic models are identified as a point for future investigation.

  17. DOWNFLOW GRANULAR FILTRATION OF ACTIVATED SLUDGE EFFLUENTS

    EPA Science Inventory

    The performance of downflow granular filters subjected to effluents from activated sludge processes was investigated at the EPA-DC Pilot Plant in Washington, D.C. Several media combinations were investigated, including both single anthracite and dual anthracite-sand configuration...

  18. Granular Gas in a Periodic Lattice

    ERIC Educational Resources Information Center

    Dorbolo, S.; Brandenbourger, M.; Damanet, F.; Dister, H.; Ludewig, F.; Terwagne, D.; Lumay, G.; Vandewalle, N.

    2011-01-01

    Glass beads are placed in the compartments of a horizontal square grid. This grid is then vertically shaken. According to the reduced acceleration [image omitted] of the system, the granular material exhibits various behaviours. By counting the number of beads in each compartment after shaking, it is possible to define three regimes. At low…

  19. Granular materials interacting with thin flexible rods

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2016-01-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  20. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  1. Granular dynamics under shear with deformable boundaries

    NASA Astrophysics Data System (ADS)

    Geller, Drew; Backhaus, Scott; Ecke, Robert

    2015-03-01

    Granular materials under shear develop complex patterns of stress as the result of granular positional rearrangements under an applied load. We consider the simple planar shear of a quasi two-dimensional granular material consisting of bi-dispersed nylon cylinders confined between deformable boundaries. The aspect ratio of the gap width to total system length is 50, and the ratio of particle diameter to gap width is about 10. This system, designed to model a long earthquake fault with long range elastic coupling through the plates, is an interesting model system for understanding effective granular friction because it essentially self tunes to the jamming condition owing to the hardness of the grains relative to that of the boundary material, a ratio of more than 1000 in elastic moduli. We measure the differential strain displacements of the plates, the inhomogeneous stress distribution in the plates, the positions and angular orientations of the individual grains, and the shear force, all as functions of the applied normal stress. There is significant stick-slip motion in this system that we quantify through our quantitative measurements of both the boundary and the grain motion, resulting in a good characterization of this sheared 2D hard sphere system.

  2. Drag on intruder in dense granular flows

    NASA Astrophysics Data System (ADS)

    Zheng, Hu; Bares, Jonathan; Wang, Dong; Behringer, Robert

    2015-11-01

    We perform an experimental study on an intruder dragged at a constant force in a quasi-statically cyclic-sheared granular medium. A Teflon disk is embedded in a layer of bidisperse photoelastic disks. The granular medium is contained in a horizontal square cell, which can be deformed into a parallelogram with the same area to produce simple shear. We find that the forward motion of the intruder happens at the fragile state during shear reversals, while only reversible affine motion could be found at the Jammed state. There is a burst of non-affine motion for the granular particles at each shear reversal. For a range of packing fractions, the cumulative intruder displacement shows a linear increase proportional to the number of cycles of shear. To explain the behavior of intruder motion, we analyze the coordination number, density, affine and non-affine motion of disk-granular system variations as the shear strain. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  3. Urea phosphate as granular or fluid fertilizers

    SciTech Connect

    Blouin, G.M.

    1984-01-01

    Studies are being conducted of the production and agronomic characteristics of the phosphoric acid-urea adduct, urea phosphate, and of the various granular and fluid fertilizers that can be produced from it. Flowsheets are given for the production of urea phosphate. Characteristics of unpurified and purified urea phosphate are also given. (DLC)

  4. A numerical laboratory for granular solids

    SciTech Connect

    Trent, B.C.; Margolin, L.G.; Lawrence Livermore National Lab., CA )

    1989-01-01

    The behavior of cemented granular material is complex and difficult to characterize. Physical tests on laboratory-size specimens are time consuming and often inconclusive, due to the variable nature of the bulk material. As an alternate approach, we have used the distinct element method to construct numerical samples of cemented granular material. The model allows us to verify which are the important microphysical processes determining material behavior. We can do parameter studies, continuously varying the material properties of the bonding material and the topology of the bonds themselves, to see how the macroscopic properties depend upon the microscopic structure. We illustrate our program with two types of calculations. The first series consists of measuring the macroscopic p-wave and the s-wave speeds of the numerical sample, and using them to infer elastic properties of the bulk material. We also investigate how the number and size of the bonds influence bulk response. In the second series, we look at crack growth in granular materials. The Griffith theory of crack growth assumes an ideally flat crack. In granular materials and in our simulation, the crack is formed when many consecutive bonds in the material are broken.

  5. Testing ergodicity in dense granular systems

    NASA Astrophysics Data System (ADS)

    Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey

    2008-03-01

    The Edwards' entropy formalism provides a statistical mechanical framework for describing dense granular systems. Experiments on vibrated granular columns and numerical simulations of quasi- static shear flow of dense granular systems have provided indirect evidence that the Edwards' theory may accurately describe certain aspects of these systems. However, a fundamental assumption of the Edwards' description---that all mechanically stable (MS) granular packings at a given packing fraction and externally imposed stress are equally accessible---has not been explicitly tested. We investigate this assumption by generating all mechanically stable hard disk packings in small bidisperse systems using a protocol where we successively compress or decompress the system followed by energy minimization. We then apply quasi-static shear flow at zero pressure to these MS packings and record the MS packings that occur during the shear flow. We generate a complete library of the allowed MS packings at each value of shear strain and determine the frequency with which each MS packing occurs. We find that the MS packings do not occur with equal probability at any value of shear strain. In fact, in small systems we find that the evolution becomes periodic with a period that grows with system-size. Our studies show that ergodicity can be improved by either adding random fluctuations to the system or increasing the system size.

  6. EPA'S RESEARCH PROGRAM IN GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Research into Granular Activated Carbon (GAC) for use in drinking water treatment has a long history in the Drinking Water Research Division and its predecessor organizations. tudies were conducted by the U.S. Public Health Service in the late fifties and early sixties to examine...

  7. Motile Fluids: Granular, Colloidal and Living

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2014-03-01

    My talk will present our recent results from theory, simulation and experiment on flocking, swarming and instabilities in diverse realizations of active systems. The findings I will report include: flocking at a distance in vibrated granular monolayers; the active hydrodynamics of self-propelled solids; clusters, asters and oscillations in colloidal chemotaxis. Supported by a J C Bose Fellowship.

  8. Measuring the configurational temperature of granular media

    NASA Astrophysics Data System (ADS)

    Schröter, Matthias

    2009-03-01

    Twenty years ago Edwards and Oakeshott suggested developing a statistical mechanics of static granular media based on the idea that the logarithm of the number of mechanically stable states of a specific sample constitutes the relevant entropy [1]. From this entropy then, a configurational temperature, named compactivity, could be derived. However, in the absence of an appropriate thermometer to measure compactivity, the question if it is indeed a relevant state variable remained untested. Only recently it was shown that the steady state volume fluctuations of a periodically driven sample can be used to measure the compactivity of a granular sample including its dependence on volume fraction and surface friction of the particles [2]. This opens up the possibility of studying questions like the existence of a zeroth law of granular thermodynamics or the relationship between compactivity and other forms of granular temperature. [1] Edwards and Oakeshott, Physica A 157, 1080 (1989). [2] M. Schr"oter, D. Goldman, and H. L. Swinney Phys. Rev. E 71, 030301(R) (2005)

  9. An experimental study of wave propagation and velocity distributions in a vertically driven time-dependent granular gas

    NASA Astrophysics Data System (ADS)

    Perez, John Anthony

    ballistic component, but rarely both. Our work here will show that neither component can be ignored. To our knowledge, this thesis represents the first experimental visualization of collisional transport in a granular system. Further, we have identified its essential role in the formation of a granular shock wave. We measure the speed of these shock waves at different densities and show that a theoretical speed of sound prediction is difficult with the currently available models. Our findings suggest that a typical granular hydrostatic pressure equation fails to fully capture the collisional contribution to pressure. We make suggestions for how the theory could be improved.

  10. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Case, Andrew; Phillips, Michael W.

    2006-10-01

    High velocity dense plasma jets are under continued experimental development for a variety of fusion applications including refueling, disruption mitigation, rotation drive, and magnetized target fusion. The technical goal is to accelerate plasma slugs of density >10^17 cm-3 and total mass >100 micrograms to velocities >200 km/s. The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section geometry to prevent formation of the blow-by instability. Injected plasma is generated by electrothermal capillary discharges using either cylindrical capillaries or a newer toroidal spark gap arrangement that has worked at pressures as low as 3.5 x10-6 Torr in bench tests. Experimental plasma data will be presented for a complete 32 injector accelerator system recently built for driving rotation in the Maryland MCX experiment which utilizes the cylindrical capillaries, and also for a 50 spark gap test unit currently under construction.

  11. Rheology of Dense Granular Mixtures and Slurries

    NASA Astrophysics Data System (ADS)

    Tewoldebrhan, Bereket Yohannes

    Dense granular flows, characterized by multiple contacts between grains, are common in many industrial processes and natural events, such as debris flows. Understanding the characteristics of these flows is crucial to predict quantities such as bedrock erosion and distance traveled by debris flows. However, the rheological properties of these flows are complicated due to wide particle size distribution and presence of interstitial fluids. Models for dense sheared granular materials indicate that their rheological properties depend on particle size, but the representative particle size for mixtures is not obvious. Using the discrete element method (DEM) we study sheared granular binary mixtures in a Couette cell to determine the relationship and rheological parameters such as stress and effective coefficient of friction and particle size distribution. The results indicate that the stress does not depend monotonically on the average particle size as it does in models derived from simple dimensional consideration. The stress has an additional dependence on a measure of the effective free volume per particle that is adapted from an expression for packing of monosized particles near the jammed state. The effective friction also has a complicated dependence on particle size distribution. For these systems of relatively hard particles, these relationships are governed largely by the ratio between average collision times and mean-free-path times. The characteristics of shallow free surface flows, important for applications such as debris flows, are different from confined systems. To address this, we also study shallow granular flows in a rotating drum. The stress at the boundary, height profiles and segregation patterns from DEM simulations are quantitatively similar to the results obtained from physical experiments of shallow granular flows in rotating drums. Individual particle-bed impacts rather than enduring contacts dominate the largest forces on the drum bed, which

  12. Granular Mechanics in the Asteroid Regime

    NASA Astrophysics Data System (ADS)

    Sanchez, Paul; Swift, M. R.; Scheeres, D. J.

    2009-09-01

    We study the granular mechanics properties of asteroid regolith and of asteroids modeled as gravitational aggregates using soft-sphere molecular simulation codes. For definiteness we assume parameters similar to the asteroid Itokawa, for which we have detailed observational data. Essential questions that can be studied using the techniques of granular mechanics are why large blocks dominate 80% of the surface of Itokawa and why the remaining 20% is uniformly covered with smaller particles, indicating global segregation mechanisms at work on this body. The prime energy source proposed for the segregation of granular materials on asteroids has been seismic shaking due to hypervelocity impacts with asteroids much smaller than the target body. We analyze the detailed mechanics of segregation physics in the asteroid environment due to such interactions. First we analyze the so-called Brazil Nut Effect (BNE), which preferentially causes larger particles to rise to the highest potential energy in a granular material. We note that the regions of highest potential on Itokawa are dominated by larger blocks, while the potential lows are dominated by smaller blocks. We verify and characterise the BNE effect in an asteroid environment under a variety of boundary and shaking conditions. We also extend our analyses to a global-scale simulation of aggregates, modeling the response of self-gravitating granules of a mixture of sizes to impacts. Analysis of such global-scale systems show additional mechanics that may account for the exposure of large blocks on the surface. Specifically we find that hypervelocity impacts are more effective in removing and transporting smaller regolith, exposing sub-surface larger blocks that might otherwise be covered in finer grained material. We discuss the scaling of granular mechanics effects from local regolith to global aggregate scale.

  13. Analysis of laser-produces jets from locally heated targets

    NASA Astrophysics Data System (ADS)

    Schmitz, Holger; Robinson, Alex

    2015-11-01

    Recent simulations showed that it might be possible to produce a jet by locally heating a foil target with a high intensity laser, so as to produce a single blast wave which then drives jet formation. In contrast to many earlier experimental setups, the jets in this configuration are formed by a two stage process similar to that thought to be responsible for jets from young stellar objects. As the blast wave expands into the ambient medium it creates an inverse conical density structure. This inverse cone focuses the flow into a conically converging flow which then turns into a narrow jet. The realisation of this two step process in an experiment could make it possible to study the formation of stellar jets in the laboratory. We present new results investigating the criteria that lead to the creation of the inverse conical structure and the subsequent jet formation. The localised heating necessary for driving the jet is achieved by guiding the electrons in self generated magnetic fields at resistivity gradients. We present simulations demonstrating the geometries that lead to the localised heating suitable for jet formation. This work is funded by the European Research Council, grant STRUCMAGFAST (ERC-StG-2012).

  14. Supporting user-defined granularities in a spatiotemporal conceptual model

    USGS Publications Warehouse

    Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.

    2002-01-01

    Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.

  15. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2012-01-01

    The presentation highlights jet-noise research conducted in the Subsonic Fixed Wing, Supersonics, and Environmentally Responsible Aviation Projects in the Fundamental Aeronautics Program at NASA. The research efforts discussed include NASA's updated Aircraft NOise Prediction Program (ANOPP2), acoustic-analogy-based prediction tools, jet-surface-interaction studies, plasma-actuator investigations, N+2 Supersonics Validation studies, rectangular-jet experiments, twin-jet experiments, and Hybrid Wind Body (HWB) activities.

  16. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  17. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  18. Deflagration-to-detonation transition in granular pentaerythritol tetranitrate

    NASA Astrophysics Data System (ADS)

    Luebcke, P. E.; Dickson, P. M.; Field, J. E.

    1996-04-01

    The deflagration-to-detonation transition process has been observed in pressed granular columns of the explosive pentaerythritol tetranitrate. Charges were confined within a steel housing which had been fitted with a polycarbonate window to allow direct recording by high-speed streak photography. The explosive was thermally ignited by a gasless pyrotechnic mixture to minimize pre-pressurization of the charge. The results indicate that upon ignition, early choked flow of the combustion gases prevents the continued propagation of the combustion via a convective heat transfer mechanism and that the propagation of reaction becomes governed by a leading compaction wave which causes ignition through the mechanical formation of hot spots. Detonation finally occurs when the leading front of an accelerating plug of highly compacted material (density close to the theoretical maximum) formed between the reaction front and the leading compaction wave, attains the critical pressure necessary for shock-to-detonation transition.

  19. Transition to a labyrinthine phase in a driven granular medium

    NASA Astrophysics Data System (ADS)

    Merminod, Simon; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2015-12-01

    Labyrinthine patterns arise in two-dimensional physical systems submitted to competing interactions, in fields ranging from solid-state physics to hydrodynamics. For systems of interacting particles, labyrinthine and stripe phases were studied in the context of colloidal particles confined into a monolayer, both numerically by means of Monte Carlo simulations and experimentally using superparamagnetic particles. Here we report an experimental observation of a labyrinthine phase in an out-of-equilibrium system constituted of macroscopic particles. Once sufficiently magnetized, they organize into short chains of particles in contact and randomly orientated. We characterize the transition from a granular gas state towards a solid labyrinthine phase, as a function of the ratio of the interaction strength to the kinetic agitation. The spatial local structure is analyzed by means of accurate particle tracking. Moreover, we explain the formation of these chains using a simple model.

  20. Prewhirl Jet Model

    NASA Technical Reports Server (NTRS)

    Meng, S. Y.; Jensen, M.; Jackson, E. D.

    1985-01-01

    Simple accurate model of centrifugal or rocket engine pumps provides information necessary to design inducer backflow deflector, backflow eliminator and prewhirl jet in jet mixing zones. Jet design based on this model shows improvement in inducer suction performance and reduced cavitation damage.