Science.gov

Sample records for graph interpretation skills

  1. Measuring Primary Students' Graph Interpretation Skills via a Performance Assessment: A Case Study in Instrument Development

    ERIC Educational Resources Information Center

    Peterman, Karen; Cranston, Kayla A.; Pryor, Marie; Kermish-Allen, Ruth

    2015-01-01

    This case study was conducted within the context of a place-based education project that was implemented with primary school students in the USA. The authors and participating teachers created a performance assessment of standards-aligned tasks to examine 6-10-year-old students' graph interpretation skills as part of an exploratory research

  2. Measuring Primary Students' Graph Interpretation Skills via a Performance Assessment: A Case Study in Instrument Development

    ERIC Educational Resources Information Center

    Peterman, Karen; Cranston, Kayla A.; Pryor, Marie; Kermish-Allen, Ruth

    2015-01-01

    This case study was conducted within the context of a place-based education project that was implemented with primary school students in the USA. The authors and participating teachers created a performance assessment of standards-aligned tasks to examine 6-10-year-old students' graph interpretation skills as part of an exploratory research…

  3. The relationships between spatial ability, logical thinking, mathematics performance and kinematics graph interpretation skills of 12th grade physics students

    NASA Astrophysics Data System (ADS)

    Bektasli, Behzat

    Graphs have a broad use in science classrooms, especially in physics. In physics, kinematics is probably the topic for which graphs are most widely used. The participants in this study were from two different grade-12 physics classrooms, advanced placement and calculus-based physics. The main purpose of this study was to search for the relationships between student spatial ability, logical thinking, mathematical achievement, and kinematics graphs interpretation skills. The Purdue Spatial Visualization Test, the Middle Grades Integrated Process Skills Test (MIPT), and the Test of Understanding Graphs in Kinematics (TUG-K) were used for quantitative data collection. Classroom observations were made to acquire ideas about classroom environment and instructional techniques. Factor analysis, simple linear correlation, multiple linear regression, and descriptive statistics were used to analyze the quantitative data. Each instrument has two principal components. The selection and calculation of the slope and of the area were the two principal components of TUG-K. MIPT was composed of a component based upon processing text and a second component based upon processing symbolic information. The Purdue Spatial Visualization Test was composed of a component based upon one-step processing and a second component based upon two-step processing of information. Student ability to determine the slope in a kinematics graph was significantly correlated with spatial ability, logical thinking, and mathematics aptitude and achievement. However, student ability to determine the area in a kinematics graph was only significantly correlated with student pre-calculus semester 2 grades. Male students performed significantly better than female students on the slope items of TUG-K. Also, male students performed significantly better than female students on the PSAT mathematics assessment and spatial ability. This study found that students have different levels of spatial ability, logical thinking, and mathematics aptitude and achievement levels. These different levels were related to student learning of kinematics and they need to be considered when kinematics is being taught. It might be easier for students to understand the kinematics graphs if curriculum developers include more activities related to spatial ability and logical thinking.

  4. The Relationships between Logical Thinking, Gender, and Kinematics Graph Interpretation Skills

    ERIC Educational Resources Information Center

    Bektasli, Behzat; White, Arthur L.

    2012-01-01

    Problem Statement: Kinematics is one of the topics in physics where graphs are used broadly. Kinematics includes many abstract formulas, and students usually try to solve problems with those formulas. However, using a kinematics graph instead of formulas might be a better option for problem solving in kinematics. Graphs are abstract…

  5. Challenges with Graph Interpretation: A Review of the Literature

    ERIC Educational Resources Information Center

    Glazer, Nirit

    2011-01-01

    With the growing emphasis on the development of scientific inquiry skills, the display and interpretation of data are becoming increasingly important. Graph interpretation competence is, in fact, essential to understanding today's world and to be scientifically literate. However, graph interpretation is a complex and challenging activity. Graph

  6. Challenges with Graph Interpretation: A Review of the Literature

    ERIC Educational Resources Information Center

    Glazer, Nirit

    2011-01-01

    With the growing emphasis on the development of scientific inquiry skills, the display and interpretation of data are becoming increasingly important. Graph interpretation competence is, in fact, essential to understanding today's world and to be scientifically literate. However, graph interpretation is a complex and challenging activity. Graph…

  7. Supporting Fourth Graders' Ability to Interpret Graphs Through Real-Time Graphing Technology: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Deniz, Hasan; Dulger, Mehmet F.

    2012-12-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with real-time graphing software and inquiry-based instruction supported with traditional laboratory equipment in terms of improving fourth graders' ability to interpret motion and temperature graphs. Results of this study showed that there is a significant advantage in using real-time graphing technology to support fourth graders' ability to interpret graphs.

  8. Supporting Fourth Graders' Ability to Interpret Graphs through Real-Time Graphing Technology: A Preliminary Study

    ERIC Educational Resources Information Center

    Deniz, Hasan; Dulger, Mehmet F.

    2012-01-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with

  9. Interpreting a Graph and Constructing Its Derivative Graph: Stability and Change in Students' Conceptions

    ERIC Educational Resources Information Center

    Ubuz, Behiye

    2007-01-01

    This present study investigated engineering students' conceptions and misconceptions related to derivative, particularly interpreting the graph of a function and constructing its derivative graph. Participants were 147 first year engineering students from four universities enrolled in first year undergraduate calculus courses with or without the

  10. Supporting Fourth Graders' Ability to Interpret Graphs through Real-Time Graphing Technology: A Preliminary Study

    ERIC Educational Resources Information Center

    Deniz, Hasan; Dulger, Mehmet F.

    2012-01-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…

  11. Neural complexity: A graph theoretic interpretation

    NASA Astrophysics Data System (ADS)

    Barnett, L.; Buckley, C. L.; Bullock, S.

    2011-04-01

    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end, Tononi [Proc. Natl. Acad. Sci. USA.PNASA60027-842410.1073/pnas.91.11.5033 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system’s dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns [Cereb. Cortex53OPAV1047-321110.1093/cercor/10.2.127 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.71.016114 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish a dependency of neural complexity on cyclic graph motifs.

  12. Expert interpretation of bar and line graphs: the role of graphicacy in reducing the effect of graph format

    PubMed Central

    Peebles, David; Ali, Nadia

    2015-01-01

    The distinction between informational and computational equivalence of representations, first articulated by Larkin and Simon (1987) has been a fundamental principle in the analysis of diagrammatic reasoning which has been supported empirically on numerous occasions. We present an experiment that investigates this principle in relation to the performance of expert graph users of 2 × 2 “interaction” bar and line graphs. The study sought to determine whether expert interpretation is affected by graph format in the same way that novice interpretations are. The findings revealed that, unlike novices—and contrary to the assumptions of several graph comprehension models—experts' performance was the same for both graph formats, with their interpretation of bar graphs being no worse than that for line graphs. We discuss the implications of the study for guidelines for presenting such data and for models of expert graph comprehension. PMID:26579052

  13. Infusing Counseling Skills in Test Interpretation.

    ERIC Educational Resources Information Center

    Rawlins, Melanie E.; And Others

    1991-01-01

    Presents an instructional model based on Neurolinguistic Programming that links counseling student course work in measurement and test interpretation with counseling techniques and theory. A process incorporating Neurolinguistic Programming patterns is outlined for teaching graduate students the counseling skills helpful in test interpretation.

  14. Infusing Counseling Skills in Test Interpretation.

    ERIC Educational Resources Information Center

    Rawlins, Melanie E.; And Others

    1991-01-01

    Presents an instructional model based on Neurolinguistic Programming that links counseling student course work in measurement and test interpretation with counseling techniques and theory. A process incorporating Neurolinguistic Programming patterns is outlined for teaching graduate students the counseling skills helpful in test interpretation.…

  15. Interpretable whole-brain prediction analysis with GraphNet.

    PubMed

    Grosenick, Logan; Klingenberg, Brad; Katovich, Kiefer; Knutson, Brian; Taylor, Jonathan E

    2013-05-15

    Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. PMID:23298747

  16. Pre-Service Science Teachers' Interpretations of Graphs: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Çil, Emine; Kar, Hazel

    2015-01-01

    This study focuses on pre-service science teachers' interpretations of graphs. First, the paper presents data about the freshman and senior pre-service teachers' interpretations of graphs. Then it discusses the effects of pre-service science teacher training program on student teachers' interpretations of graphs. The participants in the study were…

  17. Mathematics. Analyzing and Interpreting Graphs in the Middle Grades: Bottles and Beyond.

    ERIC Educational Resources Information Center

    Niess, Margaret L.

    1995-01-01

    Describes activities designed to encourage students to analyze and interpret graphs. Activities include using software to draw clear bottles, fill them gradually, measure and record the water height, then graph the volume and height relationship; graphing cause and effect relationships between gender, height, and shoe size; and graphing

  18. Assessing and Understanding Line Graph Interpretations Using a Scoring Rubric of Organized Cited Factors

    ERIC Educational Resources Information Center

    Boote, Stacy K.

    2014-01-01

    This study examined how 12- and 13-year-old students' mathematics and science background knowledge affected line graph interpretations and how interpretations were affected by graph question levels. A purposive sample of 14 students engaged in think aloud interviews while completing an excerpted Test of Graphing in Science. Data were…

  19. Assessing and Understanding Line Graph Interpretations Using a Scoring Rubric of Organized Cited Factors

    ERIC Educational Resources Information Center

    Boote, Stacy K.

    2014-01-01

    This study examined how 12- and 13-year-old students' mathematics and science background knowledge affected line graph interpretations and how interpretations were affected by graph question levels. A purposive sample of 14 students engaged in think aloud interviews while completing an excerpted Test of Graphing in Science. Data were

  20. Assessing and Understanding Line Graph Interpretations Using a Scoring Rubric of Organized Cited Factors

    NASA Astrophysics Data System (ADS)

    Boote, Stacy K.

    2014-04-01

    This study examined how 12- and 13-year-old students' mathematics and science background knowledge affected line graph interpretations and how interpretations were affected by graph question levels. A purposive sample of 14 students engaged in think aloud interviews while completing an excerpted Test of Graphing in Science. Data were collected and coded using a rubric of previously cited factors, categorized by Bertin's (Semiology of graphics: Diagrams, networks, maps. The University of Wisconsin Press, Ltd., Madison, 1983) theory of graph interpretation. Data analysis revealed responses varied by graph question level. Across levels, students interpreted graphs in one or more of the three ways: mathematical word problems (focusing on an algorithm), science data to be analyzed (incorporating science knowledge), or no strategy. Although consistently used across levels, the frequency and usefulness of approaches varied by question level.

  1. Let's Do It! Graphing as a Communication Skill

    ERIC Educational Resources Information Center

    Bruni, James V.; Silverman, Helene

    1975-01-01

    Activities involving graphing are described. Beginning with arranging objects in linear arrays, the authors outline a sequence of activities leading up to graphing of grouped data, and circular graphs. (SD)

  2. Improving Graduate Students' Graphing Skills of Multiple Baseline Designs with Microsoft[R] Excel 2007

    ERIC Educational Resources Information Center

    Lo, Ya-yu; Starling, A. Leyf Peirce

    2009-01-01

    This study examined the effects of a graphing task analysis using the Microsoft[R] Office Excel 2007 program on the single-subject multiple baseline graphing skills of three university graduate students. Using a multiple probe across participants design, the study demonstrated a functional relationship between the number of correct graphing

  3. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    ERIC Educational Resources Information Center

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  4. Interpreting Unfamiliar Graphs: A Generative, Activity Theoretic Model

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Lee, Yew Jin

    2004-01-01

    Research on graphing presents its results as if knowing and understanding were something stored in peoples' minds independent of the situation that they find themselves in. Thus, there are no models that situate interview responses to graphing tasks. How, then, we question, are the interview texts produced? How do respondents begin and end

  5. Students' Interpretation of a Function Associated with a Real-Life Problem from Its Graph

    ERIC Educational Resources Information Center

    Mahir, Nevin

    2010-01-01

    The properties of a function such as limit, continuity, derivative, growth, or concavity can be determined more easily from its graph than by doing any algebraic operation. For this reason, it is important for students of mathematics to interpret some of the properties of a function from its graph. In this study, we investigated the competence of…

  6. Generalizing a Categorization of Students' Interpretations of Linear Kinematics Graphs

    ERIC Educational Resources Information Center

    Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul

    2016-01-01

    We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque…

  7. Generalizing a Categorization of Students' Interpretations of Linear Kinematics Graphs

    ERIC Educational Resources Information Center

    Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul

    2016-01-01

    We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque

  8. Bars, Lines, & Pies: A Graphing Skills Program. Expect the Unexpected with Math[R

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2013

    2013-01-01

    "Bars, Lines, & Pies" is a dynamic math program designed to build graphing skills in students, while also showing them the relevance of math in their lives. Developed by The Actuarial Foundation along with Scholastic, the graphing lessons and activities involve engaging, real-world examples about the environment and recycling. In these lessons,…

  9. Effects of Graphing Conventions and Response Options on Interpretation of Small n Graphs

    ERIC Educational Resources Information Center

    Carter, Mark

    2009-01-01

    The present study examined the effects of manipulation of two graphing conventions on judgements of time-series data by novice raters. These conventions involved the presence of phase change lines between baseline and intervention data and whether data points across phase changes were connected. The 1990 study of Matyas and Greenwood was also

  10. Teaching the design and interpretation of graphs through computer-aided graphical data analysis

    NASA Astrophysics Data System (ADS)

    Jackson, David F.; Edwards, Billie Jean; Berger, Carl F.

    Graphs are one of the primary means of exploration and communication in the practice of science, but students in science laboratories are customarily taught only the low-level mechanics of constructing a single kind of graph when given a table of information. The use of a microcomputer can relieve the drudgery of plotting, allowing students to pursue higher-level issues in the design and interpretation of graphs through repeated thought experiments. We introduced computer-assisted graphical data analysis to inner-city high school students with weak math and science backgrounds, emphasizing the dynamic manipulation of various kinds of graphs to answer specific questions. Drawing on extensive recordings and classroom observations, we describe examples of the performance of these students on open-ended problem-solving tasks in which graphs can be used to arrive at meaningful answers to applied data analysis problems.

  11. Graph-based interpretation of the molecular interstellar medium segmentation

    NASA Astrophysics Data System (ADS)

    Colombo, D.; Rosolowsky, E.; Ginsburg, A.; Duarte-Cabral, A.; Hughes, A.

    2015-12-01

    We present a generalization of the giant molecular cloud identification problem based on cluster analysis. The method we designed, SCIMES (Spectral Clustering for Interstellar Molecular Emission Segmentation) considers the dendrogram of emission in the broader framework of graph theory and utilizes spectral clustering to find discrete regions with similar emission properties. For Galactic molecular cloud structures, we show that the characteristic volume and/or integrated CO luminosity are useful criteria to define the clustering, yielding emission structures that closely reproduce `by-eye' identification results. SCIMES performs best on well-resolved, high-resolution data, making it complementary to other available algorithms. Using 12CO(1-0) data for the Orion-Monoceros complex, we demonstrate that SCIMES provides robust results against changes of the dendrogram-construction parameters, noise realizations and degraded resolution. By comparing SCIMES with other cloud decomposition approaches, we show that our method is able to identify all canonical clouds of the Orion-Monoceros region, avoiding the overdivision within high-resolution survey data that represents a common limitation of several decomposition algorithms. The Orion-Monoceros objects exhibit hierarchies and size-line width relationships typical to the turbulent gas in molecular clouds, although `the Scissors' region deviates from this common description. SCIMES represents a significant step forward in moving away from pixel-based cloud segmentation towards a more physical-oriented approach, where virtually all properties of the ISM can be used for the segmentation of discrete objects.

  12. So Many Graphs, So Little Time

    ERIC Educational Resources Information Center

    Wall, Jennifer J.; Benson, Christine C.

    2009-01-01

    Interpreting graphs found in various content areas is an important skill for students, especially in light of high-stakes testing. In addition, reading and understanding graphs is an important part of numeracy, or numeric literacy, a skill necessary for informed citizenry. This article explores the different categories of graphs, provides…

  13. So Many Graphs, So Little Time

    ERIC Educational Resources Information Center

    Wall, Jennifer J.; Benson, Christine C.

    2009-01-01

    Interpreting graphs found in various content areas is an important skill for students, especially in light of high-stakes testing. In addition, reading and understanding graphs is an important part of numeracy, or numeric literacy, a skill necessary for informed citizenry. This article explores the different categories of graphs, provides

  14. Using professional interpreters in undergraduate medical consultation skills teaching

    PubMed Central

    Bansal, Aarti; Swann, Jennifer; Smithson, William Henry

    2014-01-01

    The ability to work with interpreters is a core skill for UK medical graduates. At the University of Sheffield Medical School, this teaching was identified as a gap in the curriculum. Teaching was developed to use professional interpreters in role-play, based on evidence that professional interpreters improve health outcomes for patients with limited English proficiency. Other principles guiding the development of the teaching were an experiential learning format, integration to the core consultation skills curriculum, and sustainable delivery. The session was aligned with existing consultation skills teaching to retain the small-group experiential format and general practitioner (GP) tutor. Core curricular time was found through conversion of an existing consultation skills session. Language pairs of professional interpreters worked with each small group, with one playing patient and the other playing interpreter. These professional interpreters attended training in the scenarios so that they could learn to act as patient and family interpreter. GP tutors attended training sessions to help them facilitate the session. This enhanced the sustainability of the session by providing a cohort of tutors able to pass on their expertise to new staff through the existing shadowing process. Tutors felt that the involvement of professional interpreters improved student engagement. Student evaluation of the teaching suggests that the learning objectives were achieved. Faculty evaluation by GP tutors suggests that they perceived the teaching to be worthwhile and that the training they received had helped improve their own clinical practice in consulting through interpreters. We offer the following recommendations to others who may be interested in developing teaching on interpreted consultations within their core curriculum: 1) consider recruiting professional interpreters as a teaching resource; 2) align the teaching to existing consultation skills sessions to aid integration; and 3) invest in faculty development for successful and sustainable delivery. PMID:25473325

  15. Evaluating Interpreter's Skill by Measurement of Prosody Recognition

    NASA Astrophysics Data System (ADS)

    Tanaka, Saori; Nakazono, Kaoru; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira

    Sign language is a visual language in which main articulators are hands, torso, head, and face. For simultaneous interpreters of Japanese sign language (JSL) and spoken Japanese, it is very important to recognize not only the hands movement but also prosody such like head, eye, posture and facial expression. This is because prosody has grammatical rules for representing the case and modification relations in JSL. The goal of this study is to introduce an examination called MPR (Measurement of Prosody Recognition) and to demonstrate that it can be an indicator for the other general skills of interpreters. For this purpose, we conducted two experiments: the first studies the relationship between the interpreter's experience and the performance score on MPR (Experiment-1), and the second investigates the specific skill that can be estimated by MPR (Experiment-2). The data in Experiment-1 came from four interpreters who had more than 1-year experience as interpreters, and more four interpreters who had less than 1-year experience. The mean accuracy of MPR in the more experienced group was higher than that in the less experienced group. The data in Experiment-2 came from three high MPR interpreters and three low MPR interpreters. Two hearing subjects and three deaf subjects evaluated their skill in terms of the speech or sign interpretation skill, the reliability of interpretation, the expeditiousness, and the subjective sense of accomplishment for the ordering pizza task. The two experiments indicated a possibility that MPR could be useful for estimating if the interpreter is sufficiently experienced to interpret from sign language to spoken Japanese, and if they can work on the interpretation expeditiously without making the deaf or the hearing clients anxious. Finally we end this paper with suggestions for conclusions and future work.

  16. My Bar Graph Tells a Story

    ERIC Educational Resources Information Center

    McMillen, Sue; McMillen, Beth

    2010-01-01

    Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…

  17. Hands-on Materials for Teaching about Global Climate Change through Graph Interpretation

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Hallagan, Jean E.; Shaffer, Barbara

    2008-01-01

    Teachers need to address global climate change with students in their classrooms as evidence for consequences from these environmental changes mounts. One way to approach global climate change is through examination of authentic data. Mathematics and science may be integrated by interpreting graphs from the professional literature. This study…

  18. On the Relation of Abstract and Concrete in Scientists' Graph Interpretations: A Case Study

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Hwang, SungWon

    2006-01-01

    The notions of "abstract" and "concrete" are central to the conceptualization of mathematical knowing and learning. Much of the literature takes a dualist approach, leading to the privileging of the former term at the expense of the latter. In this article, we provide a concrete analysis of a scientist interpreting an unfamiliar graph to show how

  19. Physics Students' Performance Using Computational Modelling Activities to Improve Kinematics Graphs Interpretation

    ERIC Educational Resources Information Center

    Araujo, Ives Solano; Veit, Eliane Angela; Moreira, Marco Antonio

    2008-01-01

    The purpose of this study was to investigate undergraduate students' performance while exposed to complementary computational modelling activities to improve physics learning, using the software "Modellus." Interpretation of kinematics graphs was the physics topic chosen for investigation. The theoretical framework adopted was based on Halloun's

  20. Collaborative Robotic Instruction: A Graph Teaching Experience

    ERIC Educational Resources Information Center

    Mitnik, Ruben; Recabarren, Matias; Nussbaum, Miguel; Soto, Alvaro

    2009-01-01

    Graphing is a key skill in the study of Physics. Drawing and interpreting graphs play a key role in the understanding of science, while the lack of these has proved to be a handicap and a limiting factor in the learning of scientific concepts. It has been observed that despite the amount of previous graph-working experience, students of all ages…

  1. Collaborative Robotic Instruction: A Graph Teaching Experience

    ERIC Educational Resources Information Center

    Mitnik, Ruben; Recabarren, Matias; Nussbaum, Miguel; Soto, Alvaro

    2009-01-01

    Graphing is a key skill in the study of Physics. Drawing and interpreting graphs play a key role in the understanding of science, while the lack of these has proved to be a handicap and a limiting factor in the learning of scientific concepts. It has been observed that despite the amount of previous graph-working experience, students of all ages

  2. Assessing students' abilities to construct and interpret line graphs: Disparities between multiple-choice and free-response instruments

    NASA Astrophysics Data System (ADS)

    Berg, Craig A.; Smith, Philip

    The author is concerned about the methodology and instrumentation used to assess both graphing abilities and the impact of microcomputer-based laboratories (MBL) on students' graphing abilities for four reasons: (1) the ability to construct and interpret graphs is critical for developing key ideas in science; (2) science educators need to have valid information for making teaching decisions; (3) educators and researchers are heralding the arrival of MBL as a tool for developing graphing abilities; and (4) some of the research which supports using MBL appears to have significant validity problems. In this article, the author will describe the research which challenges the validity of using multiple-choice instruments to assess graphing abilities. The evidence from this research will identify numerous disparities between the results of multiple-choice and free-response instruments. In the first study, 72 subjects in the seventh, ninth, and eleventh grades were administered individual clinical interviews to assess their ability to construct and interpret graphs. A wide variety of graphs and situations were assessed. In three instances during the interview, students drew a graph that would best represent a situation and then explained their drawings. The results of these clinical graphing interviews were very different from similar questions assessed through multiple-choice formats in other research studies. In addition, insights into students' thinking about graphing reveal that some multiple-choice graphing questions from prior research studies and standardized tests do not discriminate between right answers/right reasons, right answers/wrong reasons, and answers scored wrong but correct for valid reasons. These results indicate that in some instances multiple-choice questions are not a valid measure of graphing abilities. In a second study, the researcher continued to pursue the questions raised about the validity of multiple-choice tests to assess graphing, researching the following questions: What can be learned about subjects' graphing abilities when students draw their own graphs compared to assessing by means of a multiple-choice instrument? Does the methodology used to assess graphing abilities: (1) affect the percentage of subjects who answer correctly; (2) alter the percentage of subjects affected by the picture of the event phenomenon? Instruments were constructed consisting of three graphing questions that asked students: (a) multiple-choice-choose a graph that best represents the situation; (b) free-response-draw a graph that best represents the situation. The sample of 1416 subjects from an urbadsuburban area in cluded 50% boys/50% girls from grades 8 through 12; subjects from high, medium, and low ability groups; and subjects from both public and private schools. The subjects completed either the multiple-choice or the free draw instrument. The free draw instrument was scored by comparing the subject's response to categories of possible answers that had been identified from the first study. The results show as much as 19% difference in correct responses, three times as many picture of the events from multiple-choice instruments, and significant differences in how multiple-choice and free-response affect various ability levels and grade levels. As such, some of the research studies that used multiple-choice instruments to examine giaphing and the impact of MBL on student's graphing abilities may be invalid.

  3. The Relation between the Working Memory Skills of Sign Language Interpreters and the Quality of Their Interpretations

    ERIC Educational Resources Information Center

    Van Dijk, Rick; Christoffels, Ingrid; Postma, Albert; Hermans, Daan

    2012-01-01

    In two experiments we investigated the relationship between the working memory skills of sign language interpreters and the quality of their interpretations. In Experiment 1, we found that scores on 3-back tasks with signs and words were not related to the quality of interpreted narratives. In Experiment 2, we found that memory span scores for

  4. Line Graph Learning

    ERIC Educational Resources Information Center

    Pitts Bannister, Vanessa R.; Jamar, Idorenyin; Mutegi, Jomo W.

    2007-01-01

    In this article, the learning progress of one fifth-grade student is examined with regard to the development of her graph interpretation skills as she participated in the Junior Science Institute (JSI), a two-week, science intensive summer camp in which participants engaged in microbiology research and application. By showcasing the student's…

  5. Line Graph Learning

    ERIC Educational Resources Information Center

    Pitts Bannister, Vanessa R.; Jamar, Idorenyin; Mutegi, Jomo W.

    2007-01-01

    In this article, the learning progress of one fifth-grade student is examined with regard to the development of her graph interpretation skills as she participated in the Junior Science Institute (JSI), a two-week, science intensive summer camp in which participants engaged in microbiology research and application. By showcasing the student's

  6. The Effect of a Graph-Oriented Computer-Assisted Project-Based Learning Environment on Argumentation Skills

    ERIC Educational Resources Information Center

    Hsu, P. -S.; Van Dyke, M.; Chen, Y.; Smith, T. J.

    2015-01-01

    The purpose of this quasi-experimental study was to explore how seventh graders in a suburban school in the United States developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application. A total of 54 students (three classes) comprised this treatment

  7. The Effect of a Graph-Oriented Computer-Assisted Project-Based Learning Environment on Argumentation Skills

    ERIC Educational Resources Information Center

    Hsu, P. -S.; Van Dyke, M.; Chen, Y.; Smith, T. J.

    2015-01-01

    The purpose of this quasi-experimental study was to explore how seventh graders in a suburban school in the United States developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application. A total of 54 students (three classes) comprised this treatment…

  8. Interpretation of Radiological Images: Towards a Framework of Knowledge and Skills

    ERIC Educational Resources Information Center

    van der Gijp, A.; van der Schaaf, M. F.; van der Schaaf, I. C.; Huige, J. C. B. M.; Ravesloot, C. J.; van Schaik, J. P. J.; ten Cate, Th. J.

    2014-01-01

    The knowledge and skills that are required for radiological image interpretation are not well documented, even though medical imaging is gaining importance. This study aims to develop a comprehensive framework of knowledge and skills, required for two-dimensional and multiplanar image interpretation in radiology. A mixed-method study approach was

  9. Interpretation of Radiological Images: Towards a Framework of Knowledge and Skills

    ERIC Educational Resources Information Center

    van der Gijp, A.; van der Schaaf, M. F.; van der Schaaf, I. C.; Huige, J. C. B. M.; Ravesloot, C. J.; van Schaik, J. P. J.; ten Cate, Th. J.

    2014-01-01

    The knowledge and skills that are required for radiological image interpretation are not well documented, even though medical imaging is gaining importance. This study aims to develop a comprehensive framework of knowledge and skills, required for two-dimensional and multiplanar image interpretation in radiology. A mixed-method study approach was…

  10. The Graphing Skills of Students in Mathematics and Science Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Asli

    Graphical representations play an important role in both science and mathematics education. Graphs can summarize very complex information or relationships very effectively. Although graphs are explicitly taught in mathematics classrooms as an end in themselves, many subject areas such as science or social studies utilize graphs to represent and

  11. Enhancing Table Interpretation Skills via Training in Table Creation

    ERIC Educational Resources Information Center

    Karazsia, Bryan T.

    2013-01-01

    Quantitative and statistical literacy are core domains in the undergraduate psychology curriculum. An important component of such literacy includes interpretation of visual aids, such as tables containing results from statistical analyses. This article presents a new technique for enhancing student interpretation of American Psychological

  12. What Gesture and Speech Reveal about Students' Interpretations of Cartesian Graphs: Perceptions Can Bound Thinking. WCER Working Paper No. 2006-2

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Bieda, Kristen N.

    2006-01-01

    This study investigates middle school mathematics students' views and interpretations of graphical representations as they use graphs to answer algebraic questions--specifically, questions that require them to extrapolate information from graphs. From data gathered in videotaped interviews, students' verbal responses were analyzed as well as any

  13. Beyond Behavioral Skills to Human-Involved Processes: Relational Nursing Practice and Interpretive Pedagogy.

    ERIC Educational Resources Information Center

    Doane, Gweneth A. Hartrick

    2002-01-01

    Behaviorist teaching of communication skills can interfere with learning of humanistic nursing. Interpretive inquiry can help students experience the transformative power for relationships and develop confidence and trust in their capacity for relational nursing practice. (Contains 20 references.) (SK)

  14. Categorization of First-Year University Students' Interpretations of Numerical Linear Distance-Time Graphs

    ERIC Educational Resources Information Center

    Wemyss, Thomas; van Kampen, Paul

    2013-01-01

    We have investigated the various approaches taken by first-year university students (n[image omitted]550) when asked to determine the direction of motion, the constancy of speed, and a numerical value of the speed of an object at a point on a numerical linear distance-time graph. We investigated the prevalence of various well-known general

  15. Categorization of First-Year University Students' Interpretations of Numerical Linear Distance-Time Graphs

    ERIC Educational Resources Information Center

    Wemyss, Thomas; van Kampen, Paul

    2013-01-01

    We have investigated the various approaches taken by first-year university students (n[image omitted]550) when asked to determine the direction of motion, the constancy of speed, and a numerical value of the speed of an object at a point on a numerical linear distance-time graph. We investigated the prevalence of various well-known general…

  16. Function Recognition and Computerized Graphing.

    ERIC Educational Resources Information Center

    Olson, John

    1991-01-01

    General physics students have difficulties interpreting experimental data and finding mathematical functions that produce curves resembling typical data. Proposes utilizing computer programs that generate graphs to develop function-recognition and curve-fitting skills. Discusses advantages of computerized curve fitting. (MDH)

  17. Graphing Reality

    ERIC Educational Resources Information Center

    Beeken, Paul

    2014-01-01

    Graphing is an essential skill that forms the foundation of any physical science. Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations. Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary…

  18. Graphing Reality

    ERIC Educational Resources Information Center

    Beeken, Paul

    2014-01-01

    Graphing is an essential skill that forms the foundation of any physical science. Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations. Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary

  19. Levels of line graph question interpretation with intermediate elementary students of varying scientific and mathematical knowledge and ability: A think aloud study

    NASA Astrophysics Data System (ADS)

    Keller, Stacy Kathryn

    This study examined how intermediate elementary students' mathematics and science background knowledge affected their interpretation of line graphs and how their interpretations were affected by graph question levels. A purposive sample of 14 6th-grade students engaged in think aloud interviews (Ericsson & Simon, 1993) while completing an excerpted Test of Graphing in Science (TOGS) (McKenzie & Padilla, 1986). Hand gestures were video recorded. Student performance on the TOGS was assessed using an assessment rubric created from previously cited factors affecting students' graphing ability. Factors were categorized using Bertin's (1983) three graph question levels. The assessment rubric was validated by Padilla and a veteran mathematics and science teacher. Observational notes were also collected. Data were analyzed using Roth and Bowen's semiotic process of reading graphs (2001). Key findings from this analysis included differences in the use of heuristics, self-generated questions, science knowledge, and self-motivation. Students with higher prior achievement used a greater number and variety of heuristics and more often chose appropriate heuristics. They also monitored their understanding of the question and the adequacy of their strategy and answer by asking themselves questions. Most used their science knowledge spontaneously to check their understanding of the question and the adequacy of their answers. Students with lower and moderate prior achievement favored one heuristic even when it was not useful for answering the question and rarely asked their own questions. In some cases, if students with lower prior achievement had thought about their answers in the context of their science knowledge, they would have been able to recognize their errors. One student with lower prior achievement motivated herself when she thought the questions were too difficult. In addition, students answered the TOGS in one of three ways: as if they were mathematics word problems, science data to be analyzed, or they were confused and had to guess. A second set of findings corroborated how science background knowledge affected graph interpretation: correct science knowledge supported students' reasoning, but it was not necessary to answer any question correctly; correct science knowledge could not compensate for incomplete mathematics knowledge; and incorrect science knowledge often distracted students when they tried to use it while answering a question. Finally, using Roth and Bowen's (2001) two-stage semiotic model of reading graphs, representative vignettes showed emerging patterns from the study. This study added to our understanding of the role of science content knowledge during line graph interpretation, highlighted the importance of heuristics and mathematics procedural knowledge, and documented the importance of perception attentions, motivation, and students' self-generated questions. Recommendations were made for future research in line graph interpretation in mathematics and science education and for improving instruction in this area.

  20. Re-Examining the Power of Video Motion Analysis to Promote the Reading and Creating of Kinematic Graphs

    ERIC Educational Resources Information Center

    Eshach, Haim

    2010-01-01

    One essential skill that students who learn physics should possess is the ability to create and interpret kinematic graphs. However, it is well documented in the literature that students show lack of competence in these abilities. They have problems in connecting graphs and physics concepts, as well as graphs and the real world. The present paper…

  1. Re-Examining the Power of Video Motion Analysis to Promote the Reading and Creating of Kinematic Graphs

    ERIC Educational Resources Information Center

    Eshach, Haim

    2010-01-01

    One essential skill that students who learn physics should possess is the ability to create and interpret kinematic graphs. However, it is well documented in the literature that students show lack of competence in these abilities. They have problems in connecting graphs and physics concepts, as well as graphs and the real world. The present paper

  2. Teacher-Designed Software for Interactive Linear Equations: Concepts, Interpretive Skills, Applications & Word-Problem Solving.

    ERIC Educational Resources Information Center

    Lawrence, Virginia

    No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…

  3. Using the Computer to Teach Methods and Interpretative Skills in the Humanities: Implementing a Project.

    ERIC Educational Resources Information Center

    Jones, Bruce William

    The results of implementing computer-assisted instruction (CAI) in two religion courses and a logic course at California State College, Bakersfield, are examined along with student responses. The main purpose of the CAI project was to teach interpretive skills. The most positive results came in the logic course. The programs in the New Testament…

  4. An Interpretative Phenomenological Analysis of How Professional Dance Teachers Implement Psychological Skills Training in Practice

    ERIC Educational Resources Information Center

    Klockare, Ellinor; Gustafsson, Henrik; Nordin-Bates, Sanna M.

    2011-01-01

    The aim of this study was to examine how dance teachers work with psychological skills with their students in class. Semi-structured interviews were conducted with six female professional teachers in jazz, ballet and contemporary dance. The interview transcripts were analyzed using interpretative phenomenological analysis (Smith 1996). Results

  5. An Interpretative Phenomenological Analysis of How Professional Dance Teachers Implement Psychological Skills Training in Practice

    ERIC Educational Resources Information Center

    Klockare, Ellinor; Gustafsson, Henrik; Nordin-Bates, Sanna M.

    2011-01-01

    The aim of this study was to examine how dance teachers work with psychological skills with their students in class. Semi-structured interviews were conducted with six female professional teachers in jazz, ballet and contemporary dance. The interview transcripts were analyzed using interpretative phenomenological analysis (Smith 1996). Results…

  6. Offline signature verification and skilled forgery detection using HMM and sum graph features with ANN and knowledge based classifier

    NASA Astrophysics Data System (ADS)

    Mehta, Mohit; Choudhary, Vijay; Das, Rupam; Khan, Ilyas

    2010-02-01

    Signature verification is one of the most widely researched areas in document analysis and signature biometric. Various methodologies have been proposed in this area for accurate signature verification and forgery detection. In this paper we propose a unique two stage model of detecting skilled forgery in the signature by combining two feature types namely Sum graph and HMM model for signature generation and classify them with knowledge based classifier and probability neural network. We proposed a unique technique of using HMM as feature rather than a classifier as being widely proposed by most of the authors in signature recognition. Results show a higher false rejection than false acceptance rate. The system detects forgeries with an accuracy of 80% and can detect the signatures with 91% accuracy. The two stage model can be used in realistic signature biometric applications like the banking applications where there is a need to detect the authenticity of the signature before processing documents like checks.

  7. Chemical Understanding and Graphing Skills in an Honors Case-Based Computerized Chemistry Laboratory Environment: The Value of Bidirectional Visual and Textual Representations

    ERIC Educational Resources Information Center

    Dori, Yehudit J.; Sasson, Irit

    2008-01-01

    The case-based computerized laboratory (CCL) is a chemistry learning environment that integrates computerized experiments with emphasis on scientific inquiry and comprehension of case studies. The research objective was to investigate chemical understanding and graphing skills of high school honors students via bidirectional visual and textual

  8. Measures of Fine Motor Skills in People with Tremor Disorders: Appraisal and Interpretation

    PubMed Central

    Norman, Kathleen E.; Hroux, Martin E.

    2013-01-01

    People with Parkinsons disease, essential tremor, or other movement disorders involving tremor have changes in fine motor skills that are among the hallmarks of these diseases. Numerous measurement tools have been created and other methods devised to measure such changes in fine motor skills. Measurement tools may focus on specific features e.g., motor skills or dexterity, slowness in movement execution associated with parkinsonian bradykinesia, or magnitude of tremor. Less obviously, some tools may be better suited than others for specific goals such as detecting subtle dysfunction early in disease, revealing aspects of brain function affected by disease, or tracking changes expected from treatment or disease progression. The purpose of this review is to describe and appraise selected measurement tools of fine motor skills appropriate for people with tremor disorders. In this context, we consider the tools content i.e., what movement features they focus on. In addition, we consider how measurement tools of fine motor skills relate to measures of a persons disease state or a persons function. These considerations affect how one should select and interpret the results of these tools in laboratory and clinical contexts. PMID:23717299

  9. Teaching and Learning about Graphing through Computer-Assisted Problem Solving: Issues in the Design and Interpretation of Graphs, the Design and Use of Educational Software, and Classroom Research Methodology.

    ERIC Educational Resources Information Center

    Jackson, David F.; And Others

    Recent research has demonstrated the promise of graphing software as an aid to teaching graphs in two content areas: line graphs of aspects of motion and graphs of algebraic functions. This study attempted to generalize the idea of computer-assisted graphing to include the use of several kinds of graphs to solve a wider range of problems. A unit

  10. Interviewing patients using interpreters in an oncology setting: initial evaluation of a communication skills module | accrualnet.cancer.gov

    Cancer.gov

    The authors developed a communication skills training module for health professionals who work with professional translators in interviewing patients. The module combines didactic presentation of information and group role-play exercises in which trained medical interpreters help trainees communicate with bilingual patients. The module stresses communication strategies, including optimal seating arrangements that strengthen the clinician-patient relationship and de-emphasize interpreter-patient and interpreter-clinician interactions.

  11. Thinking Skills: Graphic Skills for Social Studies and Science. GED Scoreboost.

    ERIC Educational Resources Information Center

    Castellucci, Marion

    GED "Scoreboost" materials target exactly the skills one needs to pass the General Educational Development (GED) tests. This book focuses on the graphics skills needed for the GED Social Studies and Science tests. Those who take the GED Social Studies and Science tests will need to be able to interpret tables and charts, graphs, drawings and other…

  12. Discovery Through Graphing.

    ERIC Educational Resources Information Center

    Oakes, John M.

    1997-01-01

    Presents an approach that combines the discovery method with graphing skills and allows students to uncover scientific laws on their own. Attempts to make the discovery method more quantitative while still teaching students how to think scientifically. (JRH)

  13. When There Isn't a Right Answer: Interpretation and Reasoning, Key Skills for Twenty-First Century Geoscience

    ERIC Educational Resources Information Center

    Bond, Clare Elizabeth; Philo, Chris; Shipton, Zoe Kai

    2011-01-01

    A key challenge in university geoscience teaching is to give students the skills to cope with uncertainty. Professional geoscientists can rarely be certain of the "right answer" to problems posed by most geological datasets, and reasoning through this uncertainty, being intelligently flexible in interpreting data which are limited in resolution

  14. Examining the effects of technology-enhanced, inquiry-based laboratories on graphing skills, content knowledge, science reasoning ability and attitudes of community college chemistry students

    NASA Astrophysics Data System (ADS)

    Dantley, Scott Jackson

    This study investigated the effects of inquiry-based technology-enhanced, laboratories with the use of Microcomputer Based Laboratory (MBL) activities on graphing skills, content knowledge, science reasoning skills, and attitudes of introductory general chemistry community college students. The study employed a quasi-experimental pretest posttest comparison and treatment group design. The treatment group received a MBL technology. Inquiry-based laboratory activities were used for each. Four major research questions were explored in my study. The following instruments were used: the Modified Lawson Test of Scientific Reasoning; the Test of Graphing in Science (TOGS); the modified laboratory instrument ("Behavior of Gases" and "Lights, Color and Absorption" with accompanies content questions, validated by a panel of chemists, as well as an attitude survey. Mean scores from the Lawson, TOGS, Behavior of Gases and Lights, Color and Absorption labs, content knowledge questions were analyzed using t-tests to determine if a statistical significance exists between their mean scores. Basic statistics were used to analyze the attitude survey. The results from the Lawson revealed that students' mean score performance were not statistically significant between treatment and comparison groups. The t-test results indicated that each group had similar reasoning ability. The TOGS t-test results revealed that the mean scores were not statistically significant between each group. The results suggest that each group had similar graphing abilities. However, significant differences in the mean scores were found on their performance for the "Behavior of Gases" and "Lights, Color and Absorption" laboratories. Conducting a follow-up assessment of content knowledge for Behavior of Gases and Lights, Color and Absorption, revealed that no statistically significant difference exists on their mean scores, suggesting that though treatment students' performance was improved in the laboratory by using MBL; their content knowledge did not increase. Each group was positive about the use of technology.

  15. ``Cheers for Rates of Change'' -- An Introductory Lab Used to Relate Graphs to Physical Systems

    NASA Astrophysics Data System (ADS)

    Forrest, Doug; Whalen, Mary Battershell

    2012-11-01

    Students entering physics courses in high school have seen graphs for years in math and science classes, but often do not have a deep understanding of the physical meaning of the graphs. This introductory activity is designed to allow students to collect data for a real world or physical situation (the height versus volume of water held in everyday drinking glasses), and interpret the meaning of the graph and how it describes the physical situation. This activity is well suited for students who don't have much physics knowledge. It uses familiar objects to start developing the skills of making and interpreting graphs and then relating them to the physical situations they analyze. These skills are used heavily all year in our physics classes, which are based on the Modeling Instruction in Physics framework developed at Arizona State University.

  16. Understanding graphs with two independent variables

    NASA Astrophysics Data System (ADS)

    Cooper, Jennifer L.

    Adults are not necessarily competent users of graphs with two independent variables, despite the frequency of this representational format. The three tasks in this thesis address the impact of interpretation statements and graph patterns. Interpretation statements were based on the statistical effects -- simple effects, main effects, and interactions. Graph patterns were systematically varied based on a novel classification scheme of graphs with two IVs. I suggest that the complexity of a graph's data pattern depends on the consistency of the simple effects' directions and magnitudes. In the first study, undergraduates constructed graphs based on statements about data patterns. Errors reflected a misunderstanding of how two IVs could be combined and represented graphically. When the experimental group had graph-relevant information added (variable labels spatially located on axes), the ability to represent the relationships among the IVs significantly increased. The ability to satisfy the constraints imposed by the statements was not affected. Adding labels specifically targeted skills relevant to graphical literacy. Transfer to a third trial was stronger for those of higher math abilities. The second study focused on the effect of an introductory statistics course. Overall, undergraduates performed well on statements describing the simple effects of the IVs. However, even though they improved from Time 1 to Time 2 for interaction statements, performance on statements about main effects and interactions still showed considerable room for improvement. In the third study, repeated trials of the 20 patterns proposed by the simple effects consistency model established that the proposed classification scheme addresses additional sources of variability in reasoning with graphs (i.e., sources not captured by traditional classification schemes). As the complexity level of the data pattern increased, performance (based on accuracy and RT) decreased, with parallel impacts on performance for each IV's complexity. This suggests that participants responded to conceptual differences among the levels, as the graph's perceptual characteristics vary based on the IV. Further development of a model organizing graph patterns will allow investigation of the interplay between the statement and graph pattern. In turn, this can lead to greater understanding of the graphical reasoning processes and improvements in graphical literacy.

  17. A Cross-Cultural Study of the Effect of a Graph-Oriented Computer-Assisted Project-Based Learning Environment on Middle School Students' Science Knowledge and Argumentation Skills

    ERIC Educational Resources Information Center

    Hsu, P.-S.; Van Dyke, M.; Chen, Y.; Smith, T. J.

    2016-01-01

    The purpose of this mixed-methods study was to explore how seventh graders in a suburban school in the United States and sixth graders in an urban school in Taiwan developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application (GOCAA). A total of 42…

  18. Acquisition of Visual Perceptual Skills from Worked Examples: Learning to Interpret Electrocardiograms (ECGs)

    ERIC Educational Resources Information Center

    van den Berge, Kees; van Gog, Tamara; Mamede, Silvia; Schmidt, Henk G.; van Saase, Jan L. C. M.; Rikers, Remy M. J. P.

    2013-01-01

    Research has shown that for acquiring problem-solving skills, instruction consisting of studying worked examples is more effective and efficient for novice learners than instruction consisting of problem-solving. This study investigated whether worked examples would also be a useful instructional format for the acquisition of visual perceptual

  19. Interpreting Outcomes of Social Skills Training for Students with High-Incidence Disabilities.

    ERIC Educational Resources Information Center

    Gresham, Frank M.; Sugai, George; Horner, Robert H.

    2001-01-01

    This article discusses probable explanations for the weak effects in some meta-analyses that have investigated the effectiveness of social skills training (SST) for students with disabilities and offers specific recommendations for designing and producing more effective SST interventions. Treatment integrity issues, assessment issues, and

  20. Acquisition of Visual Perceptual Skills from Worked Examples: Learning to Interpret Electrocardiograms (ECGs)

    ERIC Educational Resources Information Center

    van den Berge, Kees; van Gog, Tamara; Mamede, Silvia; Schmidt, Henk G.; van Saase, Jan L. C. M.; Rikers, Remy M. J. P.

    2013-01-01

    Research has shown that for acquiring problem-solving skills, instruction consisting of studying worked examples is more effective and efficient for novice learners than instruction consisting of problem-solving. This study investigated whether worked examples would also be a useful instructional format for the acquisition of visual perceptual…

  1. Interpretive Structural Modeling of MLearning Curriculum Implementation Model of English Language Communication Skills for Undergraduates

    ERIC Educational Resources Information Center

    Abdullah, Muhammad Ridhuan Tony Lim; Siraj, Saedah; Asra; Hussin, Zaharah

    2014-01-01

    In the field of distance education, learning mediated through mobile technology or mobile learning (mLearning) has rapidly building a repertoire of influence in distance education research. This paper aims to propose an mLearning curriculum implementation model for English Language and Communication skills course among undergraduates using…

  2. Effect of Scientific Argumentation on the Development of Scientific Process Skills in the Context of Teaching Chemistry

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Kilic, Ziya

    2015-01-01

    This study was conducted in order to determine the differences in integrated scientific process skills (designing experiments, forming data tables, drawing graphs, graph interpretation, determining the variables and hypothesizing, changing and controlling variables) of students (n = 17) who were taught with an approach based on scientific

  3. Expanding our understanding of students' use of graphs for learning physics

    NASA Astrophysics Data System (ADS)

    Laverty, James T.

    It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.

  4. Robustness of random graphs based on graph spectra

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Barahona, Mauricio; Tan, Yue-jin; Deng, Hong-zhong

    2012-12-01

    It has been recently proposed that the robustness of complex networks can be efficiently characterized through the natural connectivity, a spectral property of the graph which corresponds to the average Estrada index. The natural connectivity corresponds to an average eigenvalue calculated from the graph spectrum and can also be interpreted as the Helmholtz free energy of the network. In this article, we explore the use of this index to characterize the robustness of Erd?s-Rnyi (ER) random graphs, random regular graphs, and regular ring lattices. We show both analytically and numerically that the natural connectivity of ER random graphs increases linearly with the average degree. It is also shown that ER random graphs are more robust than the corresponding random regular graphs with the same number of vertices and edges. However, the relative robustness of ER random graphs and regular ring lattices depends on the average degree and graph size: there is a critical graph size above which regular ring lattices are more robust than random graphs. We use our analytical results to derive this critical graph size as a function of the average degree.

  5. Skills

    PubMed Central

    Pritchard, Joshua K.

    2013-01-01

    The SKILLS curriculum is a web-based curriculum of (4k) targets for designing and managing applied behavior analysis-based treatment programs for children with autism and related disorders. PMID:25729511

  6. Advantages of Micro-Based Labs: Electronic Data Acquisition, Computerized Graphing, or Both?

    ERIC Educational Resources Information Center

    Stuessy, Carol L.; Rowland, Paul M.

    1989-01-01

    Discusses a microcomputer-based laboratory (MBL) study (n=75) which uses multiple temperature gathering devices (mercury thermometer, digital thermometer, and computer probe) and graphing methods (hand graphs, delayed computer graphs, and real-time graphs). Reports that MBL real-time graphing provides significant increases in graphing skills. (MVL)

  7. Total Quality & Basic Skills. The TQ Castle--Using Basic Skills Development to Evade Alligators in the Moat.

    ERIC Educational Resources Information Center

    Lewe, Glenda

    1994-01-01

    Key skills required in the total quality workplace are cross-functional teaming, interpreting charts/graphs, oral communication, brainstorming, understanding cause/effect, categorizing ideas, critical pathing, formulating suggestions, analyzing the needs of internal and external customers, and writing status reports. (SK)

  8. Learning to write without writing: Writing accurate descriptions of interactions after learning graph-printed description relations.

    PubMed

    Spear, Jack; Fields, Lanny

    2015-12-01

    Interpreting and describing complex information shown in graphs are essential skills to be mastered by students in many disciplines; both are skills that are difficult to learn. Thus, interventions that produce these outcomes are of great value. Previous research showed that conditional discrimination training that established stimulus control by some elements of graphs and their printed descriptions produced some improvement in the accuracy of students' written descriptions of graphs. In the present experiment, students wrote nearly perfect descriptions of the information conveyed in interaction-based graphs after the establishment of conditional relations between graphs and their printed descriptions. This outcome was achieved with the use of special conditional discrimination training procedures that required participants to attend to many of the key elements of the graphs and the phrases in the printed descriptions that corresponded to the elements in the graphs. Thus, students learned to write full descriptions of the information represented by complex graphs by an automated training procedure that did not involve the direct training of writing. PMID:26077442

  9. Graphing Predictions

    ERIC Educational Resources Information Center

    Connery, Keely Flynn

    2007-01-01

    Graphing predictions is especially important in classes where relationships between variables need to be explored and derived. In this article, the author describes how his students sketch the graphs of their predictions before they begin their investigations on two laboratory activities: Distance Versus Time Cart Race Lab and Resistance; and

  10. Using the Dreyfus Model of Skill Acquisition to Describe and Interpret Skill Acquisition and Clinical Judgment in Nursing Practice and Education

    ERIC Educational Resources Information Center

    Benner, Patricia

    2004-01-01

    Three studies using the Dreyfus model of skill acquisition were conducted over a period of 21 years. Nurses with a range of experience and reported skillfulness were interviewed. Each study used nurses' narrative accounts of actual clinical situations. A subsample of participants were observed and interviewed at work. These studies extend the

  11. Graph Theory

    SciTech Connect

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.

  12. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    ERIC Educational Resources Information Center

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-01-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding…

  13. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    ERIC Educational Resources Information Center

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-01-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding

  14. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    NASA Astrophysics Data System (ADS)

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-06-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding graphs. SmartGraphs allows students to interact with graphs and provides hints and scaffolding to help students, if they need help. SmartGraphs activities can be authored to be useful in teaching and learning a variety of topics that use graphs (such as slope, velocity, half-life, and global warming). A 2-year experimental study in physical science classrooms was conducted with dozens of teachers and thousands of students. In the first year, teachers were randomly assigned to experimental or control conditions. Data show that students of teachers who use SmartGraphs as a supplement to normal instruction make greater gains understanding graphs than control students studying the same content using the same textbooks, but without SmartGraphs. Additionally, teachers believe that the SmartGraphs activities help students meet learning goals in the physical science course, and a great majority reported they would use the activities with students again. In the second year of the study, several specific variations of SmartGraphs were researched to help determine what makes SmartGraphs effective.

  15. Prospective Middle School Mathematics Teachers' Reflective Thinking Skills: Descriptions of Their Students' Thinking and Interpretations of Their Teaching

    ERIC Educational Resources Information Center

    Jansen, Amanda; Spitzer, Sandy M.

    2009-01-01

    In this study, we examined prospective middle school mathematics teachers' reflective thinking skills to understand how they learned from their own teaching practice when engaging in a modified lesson study experience. Our goal was to identify variations among prospective teachers' descriptions of students' thinking and frequency of their

  16. Student Reasoning about Graphs in Different Contexts

    ERIC Educational Resources Information Center

    Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka

    2016-01-01

    This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…

  17. The Graph Choice Chart

    ERIC Educational Resources Information Center

    Webber, Hannah; Nelson, Sarah J.; Weatherbee, Ryan; Zoellick, Bill; Schauffler, Molly

    2014-01-01

    Data literacy is complex. When students investigate the natural world, they must be able to gather data, organize it in tables and spreadsheets, analyze it in context, and describe and interpret it--usually as evidence to support a scientific argument. These skills are echoed in the science and engineering practices of the "Next Generation…

  18. The Graph Choice Chart

    ERIC Educational Resources Information Center

    Webber, Hannah; Nelson, Sarah J.; Weatherbee, Ryan; Zoellick, Bill; Schauffler, Molly

    2014-01-01

    Data literacy is complex. When students investigate the natural world, they must be able to gather data, organize it in tables and spreadsheets, analyze it in context, and describe and interpret it--usually as evidence to support a scientific argument. These skills are echoed in the science and engineering practices of the "Next Generation

  19. Can NNS Skill in Interpreting Implicature in American English Be Improved through Explicit Instruction?--A Pilot Study.

    ERIC Educational Resources Information Center

    Bouton, Lawrence F.

    An ongoing series of studies at the University of Illinois at Urbana-Champaign concerning cross-cultural interpretation of implicature in conversation is discussed. Implicature is defined as the process of making inferences about the meaning of an utterance in the context in which it occurs. The studies focus on non-native speakers' (NNSs')…

  20. Can Comparison of Contrastive Examples Facilitate Graph Understanding?

    ERIC Educational Resources Information Center

    Smith, Linsey A.; Gentner, Dedre

    2011-01-01

    The authors explore the role of comparison in improving graph fluency. The ability to use graphs fluently is crucial for STEM achievement, but graphs are challenging to interpret and produce because they often involve integration of multiple variables, continuous change in variables over time, and omission of certain details in order to highlight…

  1. Graph Classification Based on Optimizing Graph Spectra

    NASA Astrophysics Data System (ADS)

    Vinh, Nguyen Duy; Inokuchi, Akihiro; Washio, Takashi

    Kernel methods such as the SVM are becoming increasingly popular due to their high performance in graph classification. In this paper, we propose a novel graph kernel, called SPEC, based on graph spectra and the Interlace Theorem, as well as an algorithm, called OPTSPEC, to optimize the SPEC kernel used in an SVM for graph classification. The fundamental performance of the method is evaluated using artificial datasets, and its practicality confirmed through experiments using a real-world dataset.

  2. Motion, Technology, Gestures in Interpreting Graphs

    ERIC Educational Resources Information Center

    Robutti, Ornella

    2006-01-01

    This report is part of a long-term research on the construction of mathematical meanings through the interaction with various technologies. The research involved a set of teaching experiments based on body motion with sensors and calculators at different school levels, from kindergarten to secondary school. Here I refer to the one developed in a

  3. Multiple graph label propagation by sparse integration.

    PubMed

    Karasuyama, Masayuki; Mamitsuka, Hiroshi

    2013-12-01

    Graph-based approaches have been most successful in semisupervised learning. In this paper, we focus on label propagation in graph-based semisupervised learning. One essential point of label propagation is that the performance is heavily affected by incorporating underlying manifold of given data into the input graph. The other more important point is that in many recent real-world applications, the same instances are represented by multiple heterogeneous data sources. A key challenge under this setting is to integrate different data representations automatically to achieve better predictive performance. In this paper, we address the issue of obtaining the optimal linear combination of multiple different graphs under the label propagation setting. For this problem, we propose a new formulation with the sparsity (in coefficients of graph combination) property which cannot be rightly achieved by any other existing methods. This unique feature provides two important advantages: 1) the improvement of prediction performance by eliminating irrelevant or noisy graphs and 2) the interpretability of results, i.e., easily identifying informative graphs on classification. We propose efficient optimization algorithms for the proposed approach, by which clear interpretations of the mechanism for sparsity is provided. Through various synthetic and two real-world data sets, we empirically demonstrate the advantages of our proposed approach not only in prediction performance but also in graph selection ability. PMID:24805218

  4. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned

  5. Graphs in Scientific Publications.

    ERIC Educational Resources Information Center

    Cleveland, William S.

    Two surveys were carried out to help increase knowledge of current graph usage in science. A detailed analysis of all graphs in one volume of the journal "Science" revealed that 30 percent had errors. Graphs are used more in some disciplines than in others; a survey of 57 journals revealed natural science journals use far more graphs than

  6. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  7. Graphing Inequalities, Connecting Meaning

    ERIC Educational Resources Information Center

    Switzer, J. Matt

    2014-01-01

    Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…

  8. Are Graphs Finally Surfacing?

    ERIC Educational Resources Information Center

    Beineke, Lowell W.

    1989-01-01

    Explored are various aspects of drawing graphs on surfaces. The Euler's formula, Kuratowski's theorem and the drawing of graphs in the plane with as few crossings as possible are discussed. Some applications including embedding of graphs and coloring of maps are included. (YP)

  9. Graphing Important People

    ERIC Educational Resources Information Center

    Reading Teacher, 2012

    2012-01-01

    The "Toolbox" column features content adapted from ReadWriteThink.org lesson plans and provides practical tools for classroom teachers. This issue's column features a lesson plan adapted from "Graphing Plot and Character in a Novel" by Lisa Storm Fink and "Bio-graph: Graphing Life Events" by Susan Spangler. Students retell biographic events…

  10. Graph-Plotting Routine

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1987-01-01

    Plotter routine for IBM PC (AKPLOT) designed for engineers and scientists who use graphs as integral parts of their documentation. Allows user to generate graph and edit its appearance on cathode-ray tube. Graph may undergo many interactive alterations before finally dumped from screen to be plotted by printer. Written in BASIC.

  11. Graphing Important People

    ERIC Educational Resources Information Center

    Reading Teacher, 2012

    2012-01-01

    The "Toolbox" column features content adapted from ReadWriteThink.org lesson plans and provides practical tools for classroom teachers. This issue's column features a lesson plan adapted from "Graphing Plot and Character in a Novel" by Lisa Storm Fink and "Bio-graph: Graphing Life Events" by Susan Spangler. Students retell biographic events

  12. Reflections on "The Graph"

    ERIC Educational Resources Information Center

    Petrosino, Anthony

    2012-01-01

    This article responds to arguments by Skidmore and Thompson (this issue of "Educational Researcher") that a graph published more than 10 years ago was erroneously reproduced and "gratuitously damaged" perceptions of the quality of education research. After describing the purpose of the original graph, the author counters assertions that the graph

  13. Graphing Inequalities, Connecting Meaning

    ERIC Educational Resources Information Center

    Switzer, J. Matt

    2014-01-01

    Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an

  14. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C. (Richland, WA); Mackey, Patrick S. (Kennewick, WA); Perrine, Kenneth A. (Richland, WA); Foote, Harlan P. (Richland, WA); Thomas, James J. (Richland, WA)

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  15. TIGRE: Combinator graph reduction on the RTX 2000

    NASA Technical Reports Server (NTRS)

    Koopman, Philip, Jr.

    1990-01-01

    An efficient evaluation technique is examined for lazy functional programs based on combinator graph reduction. Graph reduction is widely believed to be slow and inefficient, but an abstract machine called the Threaded Interpretive Graph Reduction Engine (TIGRE) achieves a substantial speedup over previous reduction techniques. The runtime system of TIGRE is a threaded system that permits self-modifying program execution with compiler-guaranteed safety. This paper describes an implementation of TIGRE in Forth for the Harris RTX 2000 stack processor.

  16. Development of a Framework for Graph Choice and Construction

    ERIC Educational Resources Information Center

    Angra, Aakanksha; Gardner, Stephanie M.

    2016-01-01

    Research on graph interpretation and basic construction is extensive, and student difficulties, primarily in K-12 type settings, have been well documented [e.g., graph choice, labels for axes, variables, and scaling axes]. It is important to provide students with repeated opportunities to increase competency and practice critical reflection in…

  17. Speed of evolution on graphs

    NASA Astrophysics Data System (ADS)

    Sui, Xiukai; Wu, Bin; Wang, Long

    2015-12-01

    The likelihood that a mutant fixates in the wild population, i.e., fixation probability, has been intensively studied in evolutionary game theory, where individuals' fitness is frequency dependent. However, it is of limited interest when it takes long to take over. Thus the speed of evolution becomes an important issue. In general, it is still unclear how fixation times are affected by the population structure, although the fixation times have already been addressed in the well-mixed populations. Here we theoretically address this issue by pair approximation and diffusion approximation on regular graphs. It is shown (i) that under neutral selection, both unconditional and conditional fixation time are shortened by increasing the number of neighbors; (ii) that under weak selection, for the simplified prisoner's dilemma game, if benefit-to-cost ratio exceeds the degree of the graph, then the unconditional fixation time of a single cooperator is slower than that in the neutral case; and (iii) that under weak selection, for the conditional fixation time, limited neighbor size dilutes the counterintuitive stochastic slowdown which was found in well-mixed populations. Interestingly, we find that all of our results can be interpreted as that in the well-mixed population with a transformed payoff matrix. This interpretation is also valid for both death-birth and birth-death processes on graphs. This interpretation bridges the fixation time in the structured population and that in the well-mixed population. Thus it opens the avenue to investigate the challenging fixation time in structured populations by the known results in well-mixed populations.

  18. Weighted Graph Colorings

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Chiuan; Shrock, Robert

    2010-02-01

    We study two weighted graph coloring problems, in which one assigns q colors to the vertices of a graph such that adjacent vertices have different colors, with a vertex weighting w that either disfavors or favors a given color. We exhibit a weighted chromatic polynomial Ph( G, q, w) associated with this problem that generalizes the chromatic polynomial P( G, q). General properties of this polynomial are proved, and illustrative calculations for various families of graphs are presented. We show that the weighted chromatic polynomial is able to distinguish between certain graphs that yield the same chromatic polynomial. We give a general structural formula for Ph( G, q, w) for lattice strip graphs G with periodic longitudinal boundary conditions. The zeros of Ph( G, q, w) in the q and w planes and their accumulation sets in the limit of infinitely many vertices of G are analyzed. Finally, some related weighted graph coloring problems are mentioned.

  19. Topologies on directed graphs

    NASA Technical Reports Server (NTRS)

    Lieberman, R. N.

    1972-01-01

    Given a directed graph, a natural topology is defined and relationships between standard topological properties and graph theoretical concepts are studied. In particular, the properties of connectivity and separatedness are investigated. A metric is introduced which is shown to be related to separatedness. The topological notions of continuity and homeomorphism. A class of maps is studied which preserve both graph and topological properties. Applications involving strong maps and contractions are also presented.

  20. Graph theory in structure-property correlations

    NASA Astrophysics Data System (ADS)

    Vinogradova, M. G.; Fedina, Yu. A.; Papulov, Yu. G.

    2016-02-01

    The possibilities of the theoretical graph approach to the construction and interpretation of additive schemes for calculation and prediction are discussed. Working formulas are derived for calculating the thermodynamic properties of alkanes and their substitutes. The obtained algorithms are used to calculate thermodynamic properties of chloroalkanes that correspond to experimental values.

  1. Learning across the Curriculum with Creative Graphing.

    ERIC Educational Resources Information Center

    Johnson, Linda Lee

    1989-01-01

    Describes an instructional technique called "creative graphing" in which students learn to reorder information visually, to interpret the graphic aids of their textbooks more easily, to highlight relationships that are not immediately apparent in the text, and to illuminate ideas for further exploration using charts, trees, stars, chains, and…

  2. Graph Generator Survey

    SciTech Connect

    Lothian, Josh; Powers, Sarah S; Sullivan, Blair D; Baker, Matthew B; Schrock, Jonathan; Poole, Stephen W

    2013-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  3. Recognition of Probe Ptolemaic Graphs

    NASA Astrophysics Data System (ADS)

    Chang, Maw-Shang; Hung, Ling-Ju

    Let G denote a graph class. An undirected graph G is called a probe G graph if one can make G a graph in G by adding edges between vertices in some independent set of G. By definition graph class G is a subclass of probe G graphs. Ptolemaic graphs are chordal and induced gem free. They form a subclass of both chordal graphs and distance-hereditary graphs. Many problems NP-hard on chordal graphs can be solved in polynomial time on ptolemaic graphs. We proposed an O(nm)-time algorithm to recognize probe ptolemaic graphs where n and m are the numbers of vertices and edges of the input graph respectively.

  4. An algorithm for automatic reduction of complex signal flow graphs

    NASA Technical Reports Server (NTRS)

    Young, K. R.; Hoberock, L. L.; Thompson, J. G.

    1976-01-01

    A computer algorithm is developed that provides efficient means to compute transmittances directly from a signal flow graph or a block diagram. Signal flow graphs are cast as directed graphs described by adjacency matrices. Nonsearch computation, designed for compilers without symbolic capability, is used to identify all arcs that are members of simple cycles for use with Mason's gain formula. The routine does not require the visual acumen of an interpreter to reduce the topology of the graph, and it is particularly useful for analyzing control systems described for computer analyses by means of interactive graphics.

  5. Graphs, matrices, and the GraphBLAS: Seven good reasons

    DOE PAGESBeta

    Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less

  6. Graphs, matrices, and the GraphBLAS: Seven good reasons

    SciTech Connect

    Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.

  7. Graphing in the Information Age: Using Data from the World Wide Web.

    ERIC Educational Resources Information Center

    Dixon, Juli K.; Falba, Christy J.

    1997-01-01

    Describes five activities using the World Wide Web that teach students to experience searching, locating, and organizing data. Students learn to summarize statistics, analyze data, make conjectures, and communicate information. They interpret or create bar graphs, line graphs, histograms, and circle graphs. (PVD)

  8. Beyond Slopes and Points: Teaching Students How Graphs Describe the Relationships between Scientific Pheomena

    ERIC Educational Resources Information Center

    Harris, David; Gomez Zwiep, Susan

    2013-01-01

    Graphs represent complex information. They show relationships and help students see patterns and compare data. Students often do not appreciate the illuminating power of graphs, interpreting them literally rather than as symbolic representations (Leinhardt, Zaslavsky, and Stein 1990). Students often read graphs point by point instead of seeing…

  9. Designing Better Graphs by Including Distributional Information and Integrating Words, Numbers, and Images

    ERIC Educational Resources Information Center

    Lane, David M.; Sandor, Aniko

    2009-01-01

    Statistical graphs are commonly used in scientific publications. Unfortunately, graphs in psychology journals rarely portray distributional information beyond central tendency, and few graphs portray inferential statistics. Moreover, those that do portray inferential information generally do not portray it in a way that is useful for interpreting

  10. Turning Spreadsheets into Graphs: An Information Technology Lesson in Whole Brain Thinking

    ERIC Educational Resources Information Center

    Patterson, Thomas F.; Leonard, Jonathan G.

    2005-01-01

    We have concluded that teaching undergraduate students to use spreadsheet software to analyze, interpret, and communicate spreadsheet data through a graph is an information technology exercise in whole brain thinking. In investigating why our students have difficulty constructing proper graphs, we have discovered that graphing requires two

  11. Turning Spreadsheets into Graphs: An Information Technology Lesson in Whole Brain Thinking

    ERIC Educational Resources Information Center

    Patterson, Thomas F.; Leonard, Jonathan G.

    2005-01-01

    We have concluded that teaching undergraduate students to use spreadsheet software to analyze, interpret, and communicate spreadsheet data through a graph is an information technology exercise in whole brain thinking. In investigating why our students have difficulty constructing proper graphs, we have discovered that graphing requires two…

  12. Reflections on "The Graph"

    ERIC Educational Resources Information Center

    Petrosino, Anthony

    2012-01-01

    This article responds to arguments by Skidmore and Thompson (this issue of "Educational Researcher") that a graph published more than 10 years ago was erroneously reproduced and "gratuitously damaged" perceptions of the quality of education research. After describing the purpose of the original graph, the author counters assertions that the graph…

  13. Walking Out Graphs

    ERIC Educational Resources Information Center

    Shen, Ji

    2009-01-01

    In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of

  14. Real World Graph Connectivity

    ERIC Educational Resources Information Center

    Lind, Joy; Narayan, Darren

    2009-01-01

    We present the topic of graph connectivity along with a famous theorem of Menger in the real-world setting of the national computer network infrastructure of "National LambdaRail". We include a set of exercises where students reinforce their understanding of graph connectivity by analysing the "National LambdaRail" network. Finally, we give

  15. Walking Out Graphs

    ERIC Educational Resources Information Center

    Shen, Ji

    2009-01-01

    In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of…

  16. Real World Graph Connectivity

    ERIC Educational Resources Information Center

    Lind, Joy; Narayan, Darren

    2009-01-01

    We present the topic of graph connectivity along with a famous theorem of Menger in the real-world setting of the national computer network infrastructure of "National LambdaRail". We include a set of exercises where students reinforce their understanding of graph connectivity by analysing the "National LambdaRail" network. Finally, we give…

  17. Using Specialized Graph Paper.

    ERIC Educational Resources Information Center

    James, C.

    1988-01-01

    Discusses the use of logarithm and reciprocal graphs in the college physics classroom. Provides examples, such as electrical conductivity, reliability function in the Weibull model, and the Clausius-Clapeyron equation for latent heat of vaporation. Shows graphs with weighting of points. (YP)

  18. Making "Photo" Graphs

    ERIC Educational Resources Information Center

    Doto, Julianne; Golbeck, Susan

    2007-01-01

    Collecting data and analyzing the results of experiments is difficult for children. The authors found a surprising way to help their third graders make graphs and draw conclusions from their data: digital photographs. The pictures bridged the gap between an abstract graph and the plants it represented. With the support of the photos, students

  19. Graphing Electric Potential.

    ERIC Educational Resources Information Center

    De Jong, Marvin L.

    1993-01-01

    Describes the powerful graphing ability of computer algebra systems (CAS) to create three-dimensional graphs or surface graphics of electric potentials. Provides equations along with examples of the printouts. Lists the programs Mathematica, Maple, Derive, Theorist, MathCad, and MATLAB as promising CAS systems. (MVL)

  20. Making "Photo" Graphs

    ERIC Educational Resources Information Center

    Doto, Julianne; Golbeck, Susan

    2007-01-01

    Collecting data and analyzing the results of experiments is difficult for children. The authors found a surprising way to help their third graders make graphs and draw conclusions from their data: digital photographs. The pictures bridged the gap between an abstract graph and the plants it represented. With the support of the photos, students…

  1. Exploring Graphs: WYSIWYG.

    ERIC Educational Resources Information Center

    Johnson, Millie

    1997-01-01

    Graphs from media sources and questions developed from them can be used in the middle school mathematics classroom. Graphs depict storage temperature on a milk carton; air pressure measurements on a package of shock absorbers; sleep-wake patterns of an infant; a dog's breathing patterns; and the angle, velocity, and radius of a leaning bicyclist

  2. A Comparison of Video Modeling, Text-Based Instruction, and No Instruction for Creating Multiple Baseline Graphs in Microsoft Excel

    ERIC Educational Resources Information Center

    Tyner, Bryan C.; Fienup, Daniel M.

    2015-01-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance.

  3. A Comparison of Video Modeling, Text-Based Instruction, and No Instruction for Creating Multiple Baseline Graphs in Microsoft Excel

    ERIC Educational Resources Information Center

    Tyner, Bryan C.; Fienup, Daniel M.

    2015-01-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance.…

  4. Knowing a Lot for One's Age: Vocabulary Skill and Not Age Is Associated with Anticipatory Incremental Sentence Interpretation in Children and Adults

    ERIC Educational Resources Information Center

    Borovsky, Arielle; Elman, Jeffrey L.; Fernald, Anne

    2012-01-01

    Adults can incrementally combine information from speech with astonishing speed to anticipate future words. Concurrently, a growing body of work suggests that vocabulary ability is crucially related to lexical processing skills in children. However, little is known about this relationship with predictive sentence processing in children or adults.

  5. Knowing a Lot for One's Age: Vocabulary Skill and Not Age Is Associated with Anticipatory Incremental Sentence Interpretation in Children and Adults

    ERIC Educational Resources Information Center

    Borovsky, Arielle; Elman, Jeffrey L.; Fernald, Anne

    2012-01-01

    Adults can incrementally combine information from speech with astonishing speed to anticipate future words. Concurrently, a growing body of work suggests that vocabulary ability is crucially related to lexical processing skills in children. However, little is known about this relationship with predictive sentence processing in children or adults.…

  6. The Effect of Using Graphing Calculators in Complex Function Graphs

    ERIC Educational Resources Information Center

    Ocak, Mehmet Akif

    2008-01-01

    This study investigates the role of graphing calculators in multiple representations for knowledge transfer and the omission of oversimplification in complex function graphs. The main aim is to examine whether graphing calculators were used efficiently to see different cases and multiple perspectives among complex function graphs, or whether

  7. Graph structure model

    SciTech Connect

    Dreicer, J.S.

    1990-01-01

    The Graph Structure (GRPHSTRUC) model is a generic software-system tool that was developed to allow a system analyst to conduct studies and design analysis concerning control flow in graph structures. The GRPHSTRUC model is a knowledge-based expert system using icons and object-oriented methodologies. This software tool has been implemented on a Texas Instruments Explorer using the expert system shell called Knowledge Engineering Environment (KEE), Common Lisp methods, and KEE Pictures for graphical display. The GRPHSTRUC model provides a user interface that is designed to allow the user to rapidly and efficiently represent graph components, interconnections, and interrelationships. GRPHSTRUC has been generically designed and developed to use classical graph theory and to allow the display of vertices and links of a graph structure. In particular, the model was developed to assist a computer security analyst in assessing the security of and to conduct security studies and design analysis concerning computer networks. The model is applicable to other disciplines that can be portrayed by graph structures, in particular safeguards. 16 refs.

  8. A comparison of video modeling, text-based instruction, and no instruction for creating multiple baseline graphs in Microsoft Excel.

    PubMed

    Tyner, Bryan C; Fienup, Daniel M

    2015-09-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed. PMID:26173573

  9. Higher-order graph wavelets and sparsity on circulant graphs

    NASA Astrophysics Data System (ADS)

    Kotzagiannidis, Madeleine S.; Dragotti, Pier Luigi

    2015-08-01

    The notion of a graph wavelet gives rise to more advanced processing of data on graphs due to its ability to operate in a localized manner, across newly arising data-dependency structures, with respect to the graph signal and underlying graph structure, thereby taking into consideration the inherent geometry of the data. In this work, we tackle the problem of creating graph wavelet filterbanks on circulant graphs for a sparse representation of certain classes of graph signals. The underlying graph can hereby be data-driven as well as fixed, for applications including image processing and social network theory, whereby clusters can be modelled as circulant graphs, respectively. We present a set of novel graph wavelet filter-bank constructions, which annihilate higher-order polynomial graph signals (up to a border effect) defined on the vertices of undirected, circulant graphs, and are localised in the vertex domain. We give preliminary results on their performance for non-linear graph signal approximation and denoising. Furthermore, we provide extensions to our previously developed segmentation-inspired graph wavelet framework for non-linear image approximation, by incorporating notions of smoothness and vanishing moments, which further improve performance compared to traditional methods.

  10. "What Does This Graph Mean?" Formative Assessment With Science Inquiry to Improve Data Analysis

    NASA Astrophysics Data System (ADS)

    Leech, Andrea Dawn

    This study investigated the use of formative assessment to improve three specific data analysis skills within the context of a high school chemistry class: graph interpretation, pattern recognition, and making conclusions based on data. Students need to be able to collect data, analyze that data, and produce accurate scientific explanations (NRC, 2011) if they want to be ready for college and careers after high school. This mixed methods study, performed in a high school chemistry classroom, investigated the impact of the formative assessment process on data analysis skills that require higher order thinking. We hypothesized that the use of evaluative feedback within the formative assessment process would improve specific data analysis skills. The evaluative feedback was given to the one group and withheld from the other for the first part of the study. The treatment group had statistically better data analysis skills after evaluative feedback over the control. While these results are promising, they must be considered preliminary due to a number of limitations involved in this study.

  11. Selected Social Studies Skills: 88 Reinforcement Lessons for Secondary Students.

    ERIC Educational Resources Information Center

    Stockhaus, Stuart, Ed.

    Presented is a series of 88 lessons designed by classroom teachers to help junior high school students reinforce social studies skills. Lessons are categorized into four main skill areas: (1) using reference aids; (2) understanding tables, graphs, and cartoons; (3) developing graphic skills; and (4) evaluating information. For each skill area,

  12. Validation of the Descriptive Tests of Mathematics Skills.

    ERIC Educational Resources Information Center

    Bridgeman, Brent

    A variety of techniques was used to assess the validity of the Descriptive Tests of Mathematics Skills (DTMS) for making placement decisions. The DTMS is a group of four tests (Arthmetic Skills, Elementary Algebra Skills, Intermediate Algebra Skills, and Functions & Graphs) that was designed to help colleges place each admitted student in the

  13. On the refined counting of graphs on surfaces

    NASA Astrophysics Data System (ADS)

    de Mello Koch, Robert; Ramgoolam, Sanjaye; Wen, Congkao

    2013-05-01

    Ribbon graphs embedded on a Riemann surface provide a useful way to describe the double-line Feynman diagrams of large N computations and a variety of other QFT correlator and scattering amplitude calculations, e.g. in MHV rules for scattering amplitudes, as well as in ordinary QED. Their counting is a special case of the counting of bi-partite embedded graphs. We review and extend relevant mathematical literature and present results on the counting of some infinite classes of bi-partite graphs. Permutation groups and representations as well as double cosets and quotients of graphs are useful mathematical tools. The counting results are refined according to data of physical relevance, such as the structure of the vertices, faces and genus of the embedded graph. These counting problems can be expressed in terms of observables in three-dimensional topological field theory with Sd gauge group which gives them a topological membrane interpretation.

  14. Optimized Graph Search Using Multi-Level Graph Clustering

    NASA Astrophysics Data System (ADS)

    Kala, Rahul; Shukla, Anupam; Tiwari, Ritu

    Graphs find a variety of use in numerous domains especially because of their capability to model common problems. The social networking graphs that are used for social networking analysis, a feature given by various social networking sites are an example of this. Graphs can also be visualized in the search engines to carry search operations and provide results. Various searching algorithms have been developed for searching in graphs. In this paper we propose that the entire network graph be clustered. The larger graphs are clustered to make smaller graphs. These smaller graphs can again be clustered to further reduce the size of graph. The search is performed on the smallest graph to identify the general path, which may be further build up to actual nodes by working on the individual clusters involved. Since many searches are carried out on the same graph, clustering may be done once and the data may be used for multiple searches over the time. If the graph changes considerably, only then we may re-cluster the graph.

  15. Applied and computational harmonic analysis on graphs and networks

    NASA Astrophysics Data System (ADS)

    Irion, Jeff; Saito, Naoki

    2015-09-01

    In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.

  16. Teacher Assessment of Practical Skills in A-Level Chemistry

    ERIC Educational Resources Information Center

    Wood, R.; Ferguson, Carolyn M.

    1975-01-01

    Discusses a two-year assessment undertaken to evaluate the Nuffield A-Level chemistry course. Secondary teachers selected chemistry experiments for assessment purposes and assessed their students in manipulative skills, observational skills, interpretation skills, creative skills, and attitudes. (MLH)

  17. Subdominant pseudoultrametric on graphs

    SciTech Connect

    Dovgoshei, A A; Petrov, E A

    2013-08-31

    Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.

  18. Algebraic distance on graphs.

    SciTech Connect

    Chen, J.; Safro, I.

    2011-01-01

    Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.

  19. Graphing Calculator Mini Course

    NASA Technical Reports Server (NTRS)

    Karnawat, Sunil R.

    1996-01-01

    The "Graphing Calculator Mini Course" project provided a mathematically-intensive technologically-based summer enrichment workshop for teachers of American Indian students on the Turtle Mountain Indian Reservation. Eleven such teachers participated in the six-day workshop in summer of 1996 and three Sunday workshops in the academic year. The project aimed to improve science and mathematics education on the reservation by showing teachers effective ways to use high-end graphing calculators as teaching and learning tools in science and mathematics courses at all levels. In particular, the workshop concentrated on applying TI-82's user-friendly features to understand the various mathematical and scientific concepts.

  20. Flexibility in data interpretation: effects of representational format

    PubMed Central

    Braithwaite, David W.; Goldstone, Robert L.

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design. PMID:24427145

  1. Learning to Study: Study Skills/Study Strategies. Book H.

    ERIC Educational Resources Information Center

    Mangrum, Charles T., II

    This workbook is one of a series that provides students with examples of location skills, organizational skills, interpretation skills, retention skills, test-taking skills, rate skills, and study strategies. Location skills include locating general reference sources and reviewing the card catalog system and the Dewey decimal system.…

  2. Graph for locked rotor current

    NASA Technical Reports Server (NTRS)

    Peck, R. R.

    1972-01-01

    Graph determines effect of stalled motor on a distribution system and eliminates hand calculation of amperage in emergencies. Graph is useful to any manufacturer, contractor, or maintenance department involved in electrical technology.

  3. Using graph approach for managing connectivity in integrative landscape modelling

    NASA Astrophysics Data System (ADS)

    Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger

    2013-04-01

    In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.

  4. Straight Line Graphs

    ERIC Educational Resources Information Center

    Krueger, Tom

    2010-01-01

    In this article, the author shares one effective lesson idea on straight line graphs that he applied in his lower ability Y9 class. The author wanted something interesting for his class to do, something that was fun and engaging with direct feedback, and something that worked because someone else had tried it before. In a word, the author admits

  5. Coloring geographical threshold graphs

    SciTech Connect

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  6. Graph-theoretical exorcism

    SciTech Connect

    Simmons, G.J.

    1985-01-01

    Given a graph G and an ordering phi of the vertices, V(G), we define a parsimonious proper coloring (PPC) of V(G) under phi to be a proper coloring of V(G) in the order phi, where a new color is introduced only when a vertex cannot be properly colored in its order with any of the colors already used.

  7. Introduction to Graphing.

    ERIC Educational Resources Information Center

    Sokol, William

    In this autoinstructional packet, the student is given an experimental situation which introduces him to the process of graphing. The lesson is presented for secondary school students in chemistry. Algebra I and a Del Mod System program (indicated as SE 018 020) are suggested prerequisites for the use of this program. Behavioral objectives are…

  8. GraphLib

    Energy Science and Technology Software Center (ESTSC)

    2013-02-19

    This library is used in several LLNL projects, including STAT (the Stack Trace Analysis Tool for scalable debugging) and some modules in P^nMPI (a tool MPI tool infrastructure). It can also be used standalone for creating and manipulationg graphs, but its API is primarily tuned to support these other projects

  9. Temporal Representation in Semantic Graphs

    SciTech Connect

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  10. Knowing a lot for one's age: Vocabulary skill and not age is associated with anticipatory incremental sentence interpretation in children and adults.

    PubMed

    Borovsky, Arielle; Elman, Jeffrey L; Fernald, Anne

    2012-08-01

    Adults can incrementally combine information from speech with astonishing speed to anticipate future words. Concurrently, a growing body of work suggests that vocabulary ability is crucially related to lexical processing skills in children. However, little is known about this relationship with predictive sentence processing in children or adults. We explore this question by comparing the degree to which an upcoming sentential theme is anticipated by combining information from a prior agent and action. 48 children, aged of 3 to 10, and 48 college-aged adults' eye-movements were recorded as they heard a sentence (e.g., The pirate hides the treasure) in which the object referred to one of four images that included an agent-related, action-related and unrelated distractor image. Pictures were rotated so that, across all versions of the study, each picture appeared in all conditions, yielding a completely balanced within-subjects design. Adults and children quickly made use of combinatory information available at the action to generate anticipatory looks to the target object. Speed of anticipatory fixations did not vary with age. When controlling for age, individuals with higher vocabularies were faster to look to the target than those with lower vocabulary scores. Together, these results support and extend current views of incremental processing in which adults and children make use of linguistic information to continuously update their mental representation of ongoing language. PMID:22632758

  11. A Clustering Graph Generator

    SciTech Connect

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  12. Multiparty entanglement in graph states

    SciTech Connect

    Hein, M.; Eisert, J.; Briegel, H.J.

    2004-06-01

    Graph states are multiparticle entangled states that correspond to mathematical graphs, where the vertices of the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body spin states of distributed quantum systems that play a significant role in quantum error correction, multiparty quantum communication, and quantum computation within the framework of the one-way quantum computer. We characterize and quantify the genuine multiparticle entanglement of such graph states in terms of the Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster states of different dimensions, graphs that occur in quantum error correction, such as the concatenated [7,1,3]-CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. We also present general transformation rules for graphs when local Pauli measurements are applied, and give criteria for the equivalence of two graphs up to local unitary transformations, employing the stabilizer formalism. For graphs of up to seven vertices we provide complete characterization modulo local unitary transformations and graph isomorphisms.

  13. Mining and Indexing Graph Databases

    ERIC Educational Resources Information Center

    Yuan, Dayu

    2013-01-01

    Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.…

  14. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs. PMID:25616091

  15. A Note on Hamiltonian Graphs

    ERIC Educational Resources Information Center

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian

  16. Recursive Feature Extraction in Graphs

    Energy Science and Technology Software Center (ESTSC)

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  17. A Note on Hamiltonian Graphs

    ERIC Educational Resources Information Center

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…

  18. Kevin Bacon and Graph Theory

    ERIC Educational Resources Information Center

    Hopkins, Brian

    2004-01-01

    The interconnected world of actors and movies is a familiar, rich example for graph theory. This paper gives the history of the "Kevin Bacon Game" and makes extensive use of a Web site to analyze the underlying graph. The main content is the classroom development of the weighted average to determine the best choice of "center" for the graph. The

  19. Mining and Indexing Graph Databases

    ERIC Educational Resources Information Center

    Yuan, Dayu

    2013-01-01

    Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.

  20. Interpretations of Literacy

    ERIC Educational Resources Information Center

    Layton, Lyn; Miller, Carol

    2004-01-01

    The National Literacy Strategy (NLS) was introduced into schools in England in 1998 with the aim of raising the literacy attainments of primary-aged children. The Framework for Teaching the Literacy Hour, a key component of the NLS, proposes an interpretation of literacy that emphasises reading, writing and spelling skills. An investigation of the

  1. Knowing a lot for one’s age: Vocabulary skill and not age is associated with anticipatory incremental sentence interpretation in children and adults

    PubMed Central

    Borovsky, Arielle; Elman, Jeffrey; Fernald, Anne

    2012-01-01

    Adults can incrementally combine information from speech with astonishing speed in order to anticipate future words. Concurrently, a growing body of work suggests that vocabulary ability is crucially related to lexical processing skills in young children. However, relatively little is known about this relationship with predictive sentence processing in children or adults. We explore this question by comparing the degree to which an upcoming sentential Theme is anticipated by a combination of information from a preceding Agent and Action. 48 children, aged of 3 to 10, and 48 college-aged adults’ eye-movements were recorded as they looked at a four-alternative forced-choice display while they heard a sentence in which the object referred to one of the pictures (e.g. The pirate hides the treasure) in the presence of an Agent-related, Action-related and Unrelated distractor image. Pictures were rotated across stimuli so that, across all versions of the study, each picture appeared in all conditions, yielding a completely balanced within-subjects design. Adults and children very quickly made use of combinatory information as soon as it became available at the action to generate anticipatory looks to the target object. Speed of anticipatory fixations did not vary with age. However, when controlling for age, individuals with higher vocabularies were faster to look to the target than those with lower vocabulary scores. Together, these results support and extend current views of incremental processing in which adults and children make use of linguistic information to continuously update their mental representation of ongoing language. PMID:22632758

  2. Quantitative Literacy: Working with Log Graphs

    NASA Astrophysics Data System (ADS)

    Shawl, S.

    2013-04-01

    The need for working with and understanding different types of graphs is a common occurrence in everyday life. Examples include anything having to do investments, being an educated juror in a case that involves evidence presented graphically, and understanding many aspect of our current political discourse. Within a science class graphs play a crucial role in presenting and interpreting data. In astronomy, where the range of graphed values is many orders of magnitude, log-axes must be used and understood. Experience shows that students do not understand how to read and interpret log-axes or how they differ from linear. Alters (1996), in a study of college students in an algebra-based physics class, found little understanding of log plotting. The purpose of this poster is to show the method and progression I have developed for use in my ASTRO 101 class, with the goal being to help students better understand the H-R diagram, mass-luminosity relationship, and digital spectra.

  3. What is a complex graph?

    NASA Astrophysics Data System (ADS)

    Kim, Jongkwang; Wilhelm, Thomas

    2008-04-01

    Many papers published in recent years show that real-world graphs G(n,m) ( n nodes, m edges) are more or less complex in the sense that different topological features deviate from random graphs. Here we narrow the definition of graph complexity and argue that a complex graph contains many different subgraphs. We present different measures that quantify this complexity, for instance C1e, the relative number of non-isomorphic one-edge-deleted subgraphs (i.e. DECK size). However, because these different subgraph measures are computationally demanding, we also study simpler complexity measures focussing on slightly different aspects of graph complexity. We consider heuristically defined product measures, the products of two quantities which are zero in the extreme cases of a path and clique, and entropy measures quantifying the diversity of different topological features. The previously defined network/graph complexity measures Medium Articulation and Offdiagonal complexity ( OdC) belong to these two classes. We study OdC measures in some detail and compare it with our new measures. For all measures, the most complex graph G has a medium number of edges, between the edge numbers of the minimum and the maximum connected graph n-1graph complexity measures are characterized with the help of different example graphs. For all measures the corresponding time complexity is given. Finally, we discuss the complexity of 33 real-world graphs of different biological, social and economic systems with the six computationally most simple measures (including OdC). The complexities of the real graphs are compared with average complexities of two different random graph versions: complete random graphs (just fixed n,m) and rewired graphs with fixed node degrees.

  4. Spectral fluctuations of quantum graphs

    SciTech Connect

    Pluhař, Z.; Weidenmüller, H. A.

    2014-10-15

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  5. Spectral fluctuations of quantum graphs

    NASA Astrophysics Data System (ADS)

    Pluhař, Z.; Weidenmüller, H. A.

    2014-10-01

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  6. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  7. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to

  8. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  9. Project on Teaching Charts and Graphs to ABE Students. Part I: Teacher's Guide [and] Part II: Transparency Assembly Package.

    ERIC Educational Resources Information Center

    Renton Vocational Inst., WA.

    The teacher's guide and collection of transparency masters are designed for use in teaching adult basic education (ABE) students how to read and interpret graphs and charts. Covered in the individual lessons of the instructional unit are the reading and interpretation of charts as well as picture, line, bar, and circle graphs. Each unit contains a

  10. Novice Interpretations of Visual Representations of Geosciences Data

    NASA Astrophysics Data System (ADS)

    Burkemper, L. K.; Arthurs, L.

    2013-12-01

    Past cognition research of individual's perception and comprehension of bar and line graphs are substantive enough that they have resulted in the generation of graph design principles and graph comprehension theories; however, gaps remain in our understanding of how people process visual representations of data, especially of geologic and atmospheric data. This pilot project serves to build on others' prior research and begin filling the existing gaps. The primary objectives of this pilot project include: (i) design a novel data collection protocol based on a combination of paper-based surveys, think-aloud interviews, and eye-tracking tasks to investigate student data handling skills of simple to complex visual representations of geologic and atmospheric data, (ii) demonstrate that the protocol yields results that shed light on student data handling skills, and (iii) generate preliminary findings upon which tentative but perhaps helpful recommendations on how to more effectively present these data to the non-scientist community and teach essential data handling skills. An effective protocol for the combined use of paper-based surveys, think-aloud interviews, and computer-based eye-tracking tasks for investigating cognitive processes involved in perceiving, comprehending, and interpreting visual representations of geologic and atmospheric data is instrumental to future research in this area. The outcomes of this pilot study provide the foundation upon which future more in depth and scaled up investigations can build. Furthermore, findings of this pilot project are sufficient for making, at least, tentative recommendations that can help inform (i) the design of physical attributes of visual representations of data, especially more complex representations, that may aid in improving students' data handling skills and (ii) instructional approaches that have the potential to aid students in more effectively handling visual representations of geologic and atmospheric data that they might encounter in a course, television news, newspapers and magazines, and websites. Such recommendations would also be the potential subject of future investigations and have the potential to impact the design features when data is presented to the public and instructional strategies not only in geoscience courses but also other science, technology, engineering, and mathematics (STEM) courses.

  11. The Effects of Data and Graph Type on Concepts and Visualizations of Variability

    ERIC Educational Resources Information Center

    Cooper, Linda L.; Shore, Felice S.

    2010-01-01

    Recognizing and interpreting variability in data lies at the heart of statistical reasoning. Since graphical displays should facilitate communication about data, statistical literacy should include an understanding of how variability in data can be gleaned from a graph. This paper identifies several types of graphs that students typically…

  12. The Effects of Data and Graph Type on Concepts and Visualizations of Variability

    ERIC Educational Resources Information Center

    Cooper, Linda L.; Shore, Felice S.

    2010-01-01

    Recognizing and interpreting variability in data lies at the heart of statistical reasoning. Since graphical displays should facilitate communication about data, statistical literacy should include an understanding of how variability in data can be gleaned from a graph. This paper identifies several types of graphs that students typically

  13. Comparison of Student Understanding of Line Graph Slope in Physics and Mathematics

    ERIC Educational Resources Information Center

    Planinic, Maja; Milin-Sipus, Zeljka; Katic, Helena; Susac, Ana; Ivanjek, Lana

    2012-01-01

    This study gives an insight into the differences between student understanding of line graph slope in the context of physics (kinematics) and mathematics. Two pairs of parallel physics and mathematics questions that involved estimation and interpretation of line graph slope were constructed and administered to 114 Croatian second year high school

  14. Fostering the Development of Quantitative Life Skills through Introductory Astronomy: Can it be Done?

    NASA Astrophysics Data System (ADS)

    Follette, Katherine B.; McCarthy, D. W.

    2012-01-01

    We present preliminary results from a student survey designed to test whether the all-important life skill of numeracy/quantitative literacy can be fostered and improved upon in college students through the vehicle of non-major introductory courses in Astronomy. Many instructors of introductory science courses for non-majors would state that a major goal of our classes is to teach our students to distinguish between science and pseudoscience, truth and fiction, in their everyday lives. It is difficult to believe that such a skill can truly be mastered without a fair amount of mathematical sophistication in the form of arithmetic, statistical and graph reading skills that many American college students unfortunately lack when they enter our classrooms. In teaching what is frequently their "terminal science course in life can we instill in our students the numerical skills that they need to be savvy consumers, educated citizens and discerning interpreters of the ever-present polls, studies and surveys in which our society is awash? In what may well be their final opportunity to see applied mathematics in the classroom, can we impress upon them the importance of mathematical sophistication in interpreting the statistics that they are bombarded with by the media? Our study is in its second semester, and is designed to investigate to what extent it is possible to improve important quantitative skills in college students through a single semester introductory Astronomy course.

  15. Graph Coarsening for Path Finding in Cybersecurity Graphs

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh

    2013-01-01

    n the pass-the-hash attack, hackers repeatedly steal password hashes and move through a computer network with the goal of reaching a computer with high level administrative privileges. In this paper we apply graph coarsening in network graphs for the purpose of detecting hackers using this attack or assessing the risk level of the network's current state. We repeatedly take graph minors, which preserve the existence of paths in the graph, and take powers of the adjacency matrix to count the paths. This allows us to detect the existence of paths as well as find paths that have high risk of being used by adversaries.

  16. Quantization of gauge fields, graph polynomials and graph homology

    NASA Astrophysics Data System (ADS)

    Kreimer, Dirk; Sars, Matthias; van Suijlekom, Walter D.

    2013-09-01

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial-we call it cycle homology-and by graph homology.

  17. Graph theoretical model of a sensorimotor connectome in zebrafish.

    PubMed

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome. PMID:22624008

  18. Entropy and distance of random graphs with application to structural pattern recognition.

    PubMed

    Wong, A K; You, M

    1985-05-01

    The notion of a random graph is formally defined. It deals with both the probabilistic and the structural aspects of relational data. By interpreting an ensemble of attributed graphs as the outcomes of a random graph, we can use its lower order distribution to characterize the ensemble. To reflect the variability of a random graph, Shannon's entropy measure is used. To synthesize an ensemble of attributed graphs into the distribution of a random graph (or a set of distributions), we propose a distance measure between random graphs based on the minimum change of entropy before and after their merging. When the ensemble contains more than one class of pattern graphs, the synthesis process yields distributions corresponding to various classes. This process corresponds to unsupervised learning in pattern classification. Using the maximum likelihood rule and the probability computed for the pattern graph, based on its matching with the random graph distributions of different classes, we can classify the pattern graph to a class. PMID:21869297

  19. Cactus Graphs for Genome Comparisons

    NASA Astrophysics Data System (ADS)

    Paten, Benedict; Diekhans, Mark; Earl, Dent; St. John, John; Ma, Jian; Suh, Bernard; Haussler, David

    We introduce a data structure, analysis and visualization scheme called a cactus graph for comparing sets of related genomes. Cactus graphs capture some of the advantages of de Bruijn and breakpoint graphs in one unified framework. They naturally decompose the common substructures in a set of related genomes into a hierarchy of chains that can be visualized as multiple alignments and nets that can be visualized in circular genome plots.

  20. Contact Graph Routing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic. The information carried by CGR contact plan messages is useful not only for dynamic route computation, but also for the implementation of rate control, congestion forecasting, transmission episode initiation and termination, timeout interval computation, and retransmission timer suspension and resumption.

  1. Graphing the Past

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2014-01-01

    Renee Clary and James Wandersee implemented the Stratigraphy and Data Interpretation Project described in this article when they recognized that some students were having difficulties constructing appropriate graphics and interpreting their constructed graphics for an earlier mathematics-science project in their classrooms. They also previously

  2. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs

  3. Nonlocality for graph states

    NASA Astrophysics Data System (ADS)

    Cabello, A.; Ghne, O.; Moreno, P.; Rodrguez, D.

    2008-03-01

    The possibility of preparing two-photon entangled states encoding three or more qubits in each photon leads to the following problem: If n quabits were distributed between two parties, which quantum pure states and qubit distributions would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell's theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs and provide all existing proofs up to n = 7 qubits. On the other hand, the possibility of preparing n-photon n-qubit graph states leads to the following problem: If n qubits were distributed between n parties, which would be the optimal Bell inequalities? We show all optimal n-party Bell inequalities for the perfect correlations of any graph state of n < 6 qubits. Optimal means that the ratio between the quantum violation and the bound for local hidden-variable theories is the maximum over all possible combinations of perfect correlations. This implies that the required detection efficiencies for loophole-free Bell tests are minimal.

  4. Quantum Graph Analysis

    SciTech Connect

    Maunz, Peter Lukas Wilhelm; Sterk, Jonathan David; Lobser, Daniel; Parekh, Ojas D.; Ryan-Anderson, Ciaran

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  5. Hyperspectral Data Classification Using Factor Graphs

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Mller, R.; Palubinskas, G.; Reinartz, P.

    2012-07-01

    Accurate classification of hyperspectral data is still a competitive task and new classification methods are developed to achieve desired tasks of hyperspectral data use. The objective of this paper is to develop a new method for hyperspectral data classification ensuring the classification model properties like transferability, generalization, probabilistic interpretation, etc. While factor graphs (undirected graphical models) are unfortunately not widely employed in remote sensing tasks, these models possess important properties such as representation of complex systems to model estimation/decision making tasks. In this paper we present a new method for hyperspectral data classification using factor graphs. Factor graph (a bipartite graph consisting of variables and factor vertices) allows factorization of a more complex function leading to definition of variables (employed to store input data), latent variables (allow to bridge abstract class to data), and factors (defining prior probabilities for spectral features and abstract classes; input data mapping to spectral features mixture and further bridging of the mixture to an abstract class). Latent variables play an important role by defining two-level mapping of the input spectral features to a class. Configuration (learning) on training data of the model allows calculating a parameter set for the model to bridge the input data to a class. The classification algorithm is as follows. Spectral bands are separately pre-processed (unsupervised clustering is used) to be defined on a finite domain (alphabet) leading to a representation of the data on multinomial distribution. The represented hyperspectral data is used as input evidence (evidence vector is selected pixelwise) in a configured factor graph and an inference is run resulting in the posterior probability. Variational inference (Mean field) allows to obtain plausible results with a low calculation time. Calculating the posterior probability for each class and comparison of the probabilities leads to classification. Since the factor graphs operate on input data represented on an alphabet (the represented data transferred into multinomial distribution) the number of training samples can be relatively low. Classification assessment on Salinas hyperspectral data benchmark allowed to obtain a competitive accuracy of classification. Employment of training data consisting of 20 randomly selected points for a class allowed to obtain the overall classification accuracy equal to 85.32% and Kappa equal to 0.8358. Representation of input data on a finite domain discards the curse of dimensionality problem allowing to use large hyperspectral data with a moderately high number of bands.

  6. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  7. The Effect of Graphing Calculators on Student Achievement in College Algebra and Pre-Calculus Mathematics Courses

    ERIC Educational Resources Information Center

    Hatem, Neil

    2010-01-01

    This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing

  8. Assessing the Judicious Use of the "Language" of Certain Types of Graphs by 10th Grade Biology Pupils.

    ERIC Educational Resources Information Center

    Dreyfus, Amos; Mazouz, Yossef

    1992-01-01

    Assesses the ability of tenth grade students (n=364) to acquire meanings of graphs that are frequently used in their biology textbooks. Indicates that the main source of failure to process information equally well from tables and graphs was not a lack of basic analytical skills but rather a lack of understanding of the relationship between…

  9. The Effect of Graphing Calculators on College Students' Ability To Solve Procedural and Conceptual Problems in Developmental Algebra.

    ERIC Educational Resources Information Center

    Shore, Mark A.

    The purpose of this study was to investigate the effects of the Casio 9850 and the TI-85 graphing calculators on college students' procedural skills and conceptual understanding in two different developmental mathematics courses. The courses used in this study were Elementary Algebra and Intermediate Algebra. Both the non-graphing calculator group

  10. Graph Interpretation Aspects of Statistical Literacy: A Japanese Perspective

    ERIC Educational Resources Information Center

    Aoyama, Kazuhiro; Stephens, Max

    2003-01-01

    Many educators and researchers are trying to define statistical literacy for the 21st century. Kimura, a Japanese science educator, has suggested that a key task of statistical literacy is the ability to extract qualitative information from quantitative information, and/or to create new information from qualitative and quantitative information.

  11. Graph - Based High Resolution Satellite Image Segmentation for Object Recognition

    NASA Astrophysics Data System (ADS)

    Ravali, K.; Kumar, M. V. Ravi; Venugopala Rao, K.

    2014-11-01

    Object based image processing and analysis is challenging research in very high resolution satellite utilisation. Commonly ei ther pixel based classification or visual interpretation is used to recognize and delineate land cover categories. The pixel based classification techniques use rich spectral content of satellite images and fail to utilise spatial relations. To overcome th is drawback, traditional time consuming visual interpretation methods are being used operational ly for preparation of thematic maps. This paper addresses computational vision principles to object level image segmentation. In this study, computer vision algorithms are developed to define the boundary between two object regions and segmentation by representing image as graph. Image is represented as a graph G (V, E), where nodes belong to pixels and, edges (E) connect nodes belonging to neighbouring pixels. The transformed Mahalanobis distance has been used to define a weight function for partition of graph into components such that each component represents the region of land category. This implies that edges between two vertices in the same component have relatively low weights and edges between vertices in different components should have higher weights. The derived segments are categorised to different land cover using supervised classification. The paper presents the experimental results on real world multi-spectral remote sensing images of different landscapes such as Urban, agriculture and mixed land cover. Graph construction done in C program and list the run time for both graph construction and segmentation calculation on dual core Intel i7 system with 16 GB RAM, running 64bit window 7.

  12. Abstract Interpreters for Free

    NASA Astrophysics Data System (ADS)

    Might, Matthew

    In small-step abstract interpretations, the concrete and abstract semantics bear an uncanny resemblance. In this work, we present an analysis-design methodology that both explains and exploits that resemblance. Specifically, we present a two-step method to convert a small-step concrete semantics into a family of sound, computable abstract interpretations. The first step re-factors the concrete state-space to eliminate recursive structure; this refactoring of the state-space simultaneously determines a store-passing-style transformation on the underlying concrete semantics. The second step uses inference rules to generate an abstract state-space and a Galois connection simultaneously. The Galois connection allows the calculation of the "optimal" abstract interpretation. The two-step process is unambiguous, but nondeterministic: at each step, analysis designers face choices. Some of these choices ultimately influence properties such as flow-, field- and context-sensitivity. Thus, under the method, we can give the emergence of these properties a graph-theoretic characterization. To illustrate the method, we systematically abstract the continuation-passing style lambda calculus to arrive at two distinct families of analyses. The first is the well-known k-CFA family of analyses. The second consists of novel "environment-centric" abstract interpretations, none of which appear in the literature on static analysis of higher-order programs.

  13. Generative Graph Grammar of Neo-Vai?e?ika Formal Ontology (NVFO)

    NASA Astrophysics Data System (ADS)

    Tavva, Rajesh; Singh, Navjyoti

    NLP applications for Sanskrit so far work within computational paradigm of string grammars. However, to compute 'meanings', as in traditional ?? bdabodha prakriy?-s, there is a need to develop suitable graph grammars. Ontological structures are fundamentally graphs. We work within the formal framework of Neo-Vai?e?ika Formal Ontology (NVFO) to propose a generative graph grammar. The proposed formal grammar only produces well-formed graphs that can be readily interpreted in accordance with Vai?e? ika Ontology. We show that graphs not permitted by Vai?e? ika ontology are not generated by the proposed grammar. Further, we write Interpreter of these graphical structures. This creates computational environment which can be deployed for writing computational applications of Vai?e? ika ontology. We illustrate how this environment can be used to create applications like computing ?? bdabodha of sentences.

  14. CANCER MORTALITY MAPS AND GRAPHS

    EPA Science Inventory

    The Cancer Mortality Maps & Graph Web Site provides interactive maps, graphs (which are accessible to the blind and visually-impaired), text, tables and figures showing geographic patterns and time trends of cancer death rates for the time period 1950-1994 for more than 40 cancer...

  15. A PVS Graph Theory Library

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Sjogren, Jon A.

    1998-01-01

    This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all four notions of connectedness.

  16. Graphs and Zero-Divisors

    ERIC Educational Resources Information Center

    Axtell, M.; Stickles, J.

    2010-01-01

    The last ten years have seen an explosion of research in the zero-divisor graphs of commutative rings--by professional mathematicians "and" undergraduates. The objective is to find algebraic information within the geometry of these graphs. This topic is approachable by anyone with one or two semesters of abstract algebra. This article gives the…

  17. Graphs as Statements of Belief.

    ERIC Educational Resources Information Center

    Lake, David

    2002-01-01

    Identifies points where beliefs are important when making decisions about how graphs are drawn. Describes a simple case of the reaction between 'bicarb soda' and orange or lemon juice and discusses how drawing a graph becomes a statement of belief. (KHR)

  18. A Collection of Features for Semantic Graphs

    SciTech Connect

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains briefly features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.

  19. Semi-Markov Graph Dynamics

    PubMed Central

    Raberto, Marco; Rapallo, Fabio; Scalas, Enrico

    2011-01-01

    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs. PMID:21887245

  20. Graph Partitioning and Sequencing Software

    Energy Science and Technology Software Center (ESTSC)

    1995-09-19

    Graph partitioning is a fundemental problem in many scientific contexts. CHACO2.0 is a software package designed to partition and sequence graphs. CHACO2.0 allows for recursive application of several methods for finding small edge separators in weighted graphs. These methods include inertial, spectral, Kernighan Lin and multilevel methods in addition to several simpler strategies. Each of these approaches can be used to partition the graph into two, four, or eight pieces at each level of recursion.more » In addition, the Kernighan Lin method can be used to improve partitions generated by any of the other algorithms. CHACO2.0 can also be used to address various graph sequencing problems, with applications to scientific computing, database design, gene sequencing and other problems.« less

  1. Improving teaching skills: from interactive classroom to applicable knowledge.

    PubMed

    Vujovic, Predrag

    2016-03-01

    Making the transition from more traditional to more interactive lecturing can be successfully achieved by applying numerous teaching techniques. To use lecture time in the most efficient way, a lecturer should first instruct students to acquire basic knowledge before coming to class. Various in-class activities then can be used to help students develop higher thinking skills and gain better understanding of the studied material. These in-class activities can take many forms (multiple-choice questions of various complexities, compare-and-contrast tasks, quantitative and problem-solving tasks, questions dealing with interpretations of tables, graphs, and charts, etc.) and should be designed to help student integrate their knowledge, to facilitate communication among students, and at the same time to allow the lecturer to closely monitor the learning process as it happens in the classroom. PMID:26847251

  2. Multiple directed graph large-class multi-spectral processor

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki

    1988-01-01

    Numerical analysis techniques for the interpretation of high-resolution imaging-spectrometer data are described and demonstrated. The method proposed involves the use of (1) a hierarchical classifier with a tree structure generated automatically by a Fisher linear-discriminant-function algorithm and (2) a novel multiple-directed-graph scheme which reduces the local maxima and the number of perturbations required. Results for a 500-class test problem involving simulated imaging-spectrometer data are presented in tables and graphs; 100-percent-correct classification is achieved with an improvement factor of 5.

  3. Feynman Graphs, Rooted Trees, and Ringel-Hall Algebras

    NASA Astrophysics Data System (ADS)

    Kremnizer, Kobi; Szczesny, Matt

    2009-07-01

    We construct symmetric monoidal categories {mathcal{LRF}, mathcal{LFG}} of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of {mathcal{LRF}, mathcal{LFG}}, {{H}_mathcal{LRF}, {H}_mathcal{LFG}} are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation of the Connes-Kreimer Lie algebras on rooted trees and Feynman graphs as Ringel-Hall Lie algebras.

  4. GRAPH III: a digitizing and graph plotting program

    SciTech Connect

    Selleck, C.B.

    1986-03-01

    GRAPH is an interactive program that allows the user to perform two functions. The first is to plot two dimensional graphs and the second is to digitize graphs or plots to create data files of points. The program is designed to allow the user to get results quickly and easily. It is written in RATIV (a FORTRAN preprocessor) and is currently in use at Sandia under VMS on a VAX computer and CTSS on a Cray supercomputer. The program provides graphical output through all of the Sandia Virtual Device Interface (VDI) graphics devices. 2 refs., 3 figs., 3 tabs.

  5. Gaining a Better Understanding of Estuarine Circulation and Improving Data Visualization Skills Through a Hands-on Contouring Exercise

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Kenna, T. C.

    2008-12-01

    The creation and accurate interpretation of graphs is becoming a lost art among students. The availability of numerous graphing software programs makes the act of graphing data easy but does not necessarily aide students in interpreting complex visual data. This is especially true for contour maps; which have become a critical skill in the earth sciences and everyday life. In multiple classes, we have incorporated a large-scale, hands-on, contouring exercise of temperature, salinity, and density data collected in the Hudson River Estuary. The exercise allows students to learn first-hand how to plot, analyze, and present three dimensional data. As part of a day-long sampling expedition aboard an 80' research vessel, students deploy a water profiling instrument (Seabird CTD). Data are collected along a transect between the Verrazano and George Washington Bridges. The data are then processed and binned at 0.5 meter intervals. The processed data is then used during a later laboratory period for the contouring exercise. In class, students work in groups of 2 to 4 people and are provided with the data, a set of contouring instructions, a piece of large (3' x 3') graph paper, a ruler, and a set of colored markers. We then let the groups work together to determine the details of the graphs. Important steps along the way are talking to the students about X and Y scales, interpolation, and choices of contour intervals and colors. Frustration and bottlenecks are common at the beginning when students are unsure how to even begin with the raw data. At some point during the exercise, students start to understand the contour concept and each group usually produces a finished contour map in an hour or so. Interestingly, the groups take pride in the coloring portion of the contouring as it indicates successful interpretation of the data. The exercise concludes with each group presenting and discussing their contour plot. In almost every case, the hands-on graphing has improved the "students" visualization skills. Contouring has been incorporated into the River Summer (www.riversumer.org, http://www.riversumer.org/) program and our Environmental Measurements laboratory course. This has resulted in the exercise being utilized with undergraduates, high-school teachers, graduate students, and college faculty. We are in the process of making this curricular module available online to educators.

  6. Flying through Graphs: An Introduction to Graph Theory.

    ERIC Educational Resources Information Center

    McDuffie, Amy Roth

    2001-01-01

    Presents an activity incorporating basic terminology, concepts, and solution methods of graph theory in the context of solving problems related to air travel. Discusses prerequisite knowledge and resources and includes a teacher's guide with a student worksheet. (KHR)

  7. Weighted-Set Graph Colorings

    NASA Astrophysics Data System (ADS)

    Shrock, Robert; Xu, Yan

    2010-04-01

    We study a weighted-set graph coloring problem in which one assigns q colors to the vertices of a graph such that adjacent vertices have different colors, with a vertex weighting w that either disfavors or favors a given subset of s colors contained in the set of q colors. We construct and analyze a weighted-set chromatic polynomial Ph( G, q, s, w) associated with this coloring. General properties of this weighted-set chromatic polynomial are proved, and illustrative calculations are presented for various families of graphs. This study extends a previous one for the case s=1 and reveals a number of interesting new features.

  8. Pointed drawings of planar graphs.

    PubMed

    Aichholzer, Oswin; Rote, Gnter; Schulz, Andr; Vogtenhuber, Birgit

    2012-11-01

    We study the problem how to draw a planar graph crossing-free such that every vertex is incident to an angle greater than ?. In general a plane straight-line drawing cannot guarantee this property. We present algorithms which construct such drawings with either tangent-continuous biarcs or quadratic Bzier curves (parabolic arcs), even if the positions of the vertices are predefined by a given plane straight-line drawing of the graph. Moreover, the graph can be drawn with circular arcs if the vertices can be placed arbitrarily. The topic is related to non-crossing drawings of multigraphs and vertex labeling. PMID:23471372

  9. Multigraph: Reusable Interactive Data Graphs

    NASA Astrophysics Data System (ADS)

    Phillips, M. B.

    2010-12-01

    There are surprisingly few good software tools available for presenting time series data on the internet. The most common practice is to use a desktop program such as Excel or Matlab to save a graph as an image which can be included in a web page like any other image. This disconnects the graph from the data in a way that makes updating a graph with new data a cumbersome manual process, and it limits the user to one particular view of the data. The Multigraph project defines an XML format for describing interactive data graphs, and software tools for creating and rendering those graphs in web pages and other internet connected applications. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions; the user can pan and zoom by clicking and dragging, in a familiar "Google Maps" kind of way. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. The Multigraph XML format, or "MUGL" for short, provides a concise description of the visual properties of a graph, such as axes, plot styles, data sources, labels, etc, as well as interactivity properties such as how and whether the user can pan or zoom along each axis. Multigraph reads a file in this format, draws the described graph, and allows the user to interact with it. Multigraph software currently includes a Flash application for embedding graphs in web pages, a Flex component for embedding graphs in larger Flex/Flash applications, and a plugin for creating graphs in the WordPress content management system. Plans for the future include a Java version for desktop viewing and editing, a command line version for batch and server side rendering, and possibly Android and iPhone versions. Multigraph is currently in use on several web sites including the US Drought Portal (www.drought.gov), the NOAA Climate Services Portal (www.climate.gov), the Climate Reference Network (www.ncdc.noaa.gov/crn), NCDC's State of the Climate Report (www.ncdc.noaa.gov/sotc), and the US Forest Service's Forest Change Assessment Viewer (ews.forestthreats.org/NPDE/NPDE.html). More information about Multigraph is available from the web site www.multigraph.org. Interactive Multigraph Display of Real Time Weather Data

  10. Evolutionary games on graphs

    NASA Astrophysics Data System (ADS)

    Szab, Gyrgy; Fth, Gbor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  11. Listening Skills Handbook.

    ERIC Educational Resources Information Center

    Decatur Public Schools District 61, IL.

    Defining listening as the active and conscious process of hearing, recognizing, and interpreting or comprehending language, this guide provides numerous activities to promote the listening skills of primary and intermediate grade students. Specifically, the activities described seek to develop (1) the ability of young students to listen

  12. Graph anomalies in cyber communications

    SciTech Connect

    Vander Wiel, Scott A; Storlie, Curtis B; Sandine, Gary; Hagberg, Aric A; Fisk, Michael

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  13. Multibody graph transformations and analysis

    PubMed Central

    2013-01-01

    This two-part paper uses graph transformation methods to develop methods for partitioning, aggregating, and constraint embedding for multibody systems. This first part focuses on tree-topology systems and reviews the key notion of spatial kernel operator (SKO) models for such systems. It develops systematic and rigorous techniques for partitioning SKO models in terms of the SKO models of the component subsystems based on the path-induced property of the component subgraphs. It shows that the sparsity structure of key matrix operators and the mass matrix for the multibody system can be described using partitioning transformations. Subsequently, the notions of node contractions and subgraph aggregation and their role in coarsening graphs are discussed. It is shown that the tree property of a graph is preserved after subgraph aggregation if and only if the subgraph satisfies an aggregation condition. These graph theory ideas are used to develop SKO models for the aggregated tree multibody systems. PMID:24288438

  14. The Nature of Employability Skills: Empirical Evidence from Singapore

    ERIC Educational Resources Information Center

    Sung, Johnny; Ng, Michael Chi Man; Loke, Fiona; Ramos, Catherine

    2013-01-01

    This paper concerns the changing nature of employability skills, moving from the original life skills or basic skills concepts to the increasingly work-oriented interpretation. The early concept of employability skills linked employability skills to job readiness and holding down employment. However, the work-oriented focus is increasingly linking…

  15. The Nature of Employability Skills: Empirical Evidence from Singapore

    ERIC Educational Resources Information Center

    Sung, Johnny; Ng, Michael Chi Man; Loke, Fiona; Ramos, Catherine

    2013-01-01

    This paper concerns the changing nature of employability skills, moving from the original life skills or basic skills concepts to the increasingly work-oriented interpretation. The early concept of employability skills linked employability skills to job readiness and holding down employment. However, the work-oriented focus is increasingly linking

  16. Interpreting functions of one-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Canty, Reality S.

    The present work examined several factors related to interpreting graphical representations of motion concepts. Since the seminal work of Larkin and Simon (1987), cognitive research has investigated informational equivalence and computational efficiency by contrasting performance across different representations systems such as line versus bar graph (Ali & Peebles, 2012; Shah & Freedman, 2009; Zacks & Tversky, 1999), table versus graph (Speier, 2006; Vessey, 1991) or table versus map (Smelcer & Carmel, 1997). Physics education research has focused on difficulties related to interpreting motion concepts in graphs, accounting for them in terms of misconceptions. Kinematics, the branch of physics concerned with the motion of objects, makes an interesting study of informational equivalence and computational efficiency because its three primary representations -- position-time, velocity-time, and acceleration-time graphs -- can reflect the same information in the same representational system which provides a different type of contrast than has usually been used in this area of cognitive research. In the present work, four experiments were used to test several hypotheses concerned with whether information about the motion of objects can be directly read-off the graph or whether it needed additional processing beyond what was directly visible; Palmer (1987) referred to this as the derivational structure of representations. The main findings across the four experiments were that (a) graph type was not a reliable factor of graph interpretation difficulty, (b) derivational structure was useful for analyzing tasks but there was no evidence supporting it as a process account, (c) graph-based judgment is susceptible to visual features in the graph that trigger powerful spatial-conceptual correspondences particularly height (e.g., higher means more, lower means less), direction of slope (e.g., zero, positive, negative), and curvature (e.g., increasing rate of change, decreasing rate of change), (d) subjects primarily based their judgments on information from these features even when interpretation demanded more elaborate inferences with respect to the actual properties of motion depicted, and (e) domain knowledge was not enough to override the spatial-conceptual correspondences that biased judgment.

  17. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  18. Some Graphs Containing Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2002-01-01

    In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.

  19. Interpreting Bones.

    ERIC Educational Resources Information Center

    Weymouth, Patricia P.

    1986-01-01

    Describes an activity which introduces students to the nature and challenges of paleoanthropology. In the exercise, students identify diagrammed bones and make interpretations about the creature. Presents questions and tasks employed in the lesson. (ML)

  20. Interpretive Experiments

    ERIC Educational Resources Information Center

    DeHaan, Frank, Ed.

    1977-01-01

    Describes an interpretative experiment involving the application of symmetry and temperature-dependent proton and fluorine nmr spectroscopy to the solution of structural and kinetic problems in coordination chemistry. (MLH)

  1. Edge compression techniques for visualization of dense directed graphs.

    PubMed

    Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher

    2013-12-01

    We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis. PMID:24051826

  2. Khovanov homology of graph-links

    SciTech Connect

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  3. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  4. Stability of graph communities across time scales

    PubMed Central

    Delvenne, J.-C.; Yaliraki, S. N.; Barahona, M.

    2010-01-01

    The complexity of biological, social, and engineering networks makes it desirable to find natural partitions into clusters (or communities) that can provide insight into the structure of the overall system and even act as simplified functional descriptions. Although methods for community detection abound, there is a lack of consensus on how to quantify and rank the quality of partitions. We introduce here the stability of a partition, a measure of its quality as a community structure based on the clustered autocovariance of a dynamic Markov process taking place on the network. Because the stability has an intrinsic dependence on time scales of the graph, it allows us to compare and rank partitions at each time and also to establish the time spans over which partitions are optimal. Hence the Markov time acts effectively as an intrinsic resolution parameter that establishes a hierarchy of increasingly coarser communities. Our dynamical definition provides a unifying framework for several standard partitioning measures: modularity and normalized cut size can be interpreted as one-step time measures, whereas Fiedler’s spectral clustering emerges at long times. We apply our method to characterize the relevance of partitions over time for constructive and real networks, including hierarchical graphs and social networks, and use it to obtain reduced descriptions for atomic-level protein structures over different time scales. PMID:20615936

  5. Component evolution in general random intersection graphs

    SciTech Connect

    Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick; Percus, Allon G

    2010-01-01

    We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes and different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.

  6. Primitive recognition using aspect-interpretation model matching in both CAD- and LP-based measurement systems

    NASA Astrophysics Data System (ADS)

    Guoqing Zhou

    Primitive recognition using model matching based on aspect-interpretation for the automatic measurement of CAD-based objects using line photogrammetry is presented here. This concept includes aspect-interpretation, aspect-graph (also called attribute relational graph) and model matching. The aspect-interpretation contains face-aspect codes, face-aspect mergence codes and face-aspect split codes. The aspect-graph includes attribute relational graphs, primitive attribute graphs and attribute hypergraphs. Model matching means matching model aspect-graphs and image aspect-graphs. Finally, the measurement system, which integrates CAD, photogrammetry and Robot, is briefly described. Primitive recognition is experimentally tested and the results show that the proposed recognition scheme is feasible.

  7. Sharing Teaching Ideas: Graphing Families of Curves Using Transformations of Reference Graphs

    ERIC Educational Resources Information Center

    Kukla, David

    2007-01-01

    This article provides for a fast extremely accurate approach to graphing functions that is based on learning function reference graphs and then applying algebraic transformations to these reference graphs.

  8. Design Document. EKG Interpretation Program.

    ERIC Educational Resources Information Center

    Webb, Sandra M.

    This teaching plan is designed to assist nursing instructors assigned to advanced medical surgical nursing courses in acquainting students with the basic skills needed to perform electrocardiographic (ECG or EKG) interpretations. The first part of the teaching plan contains a statement of purpose; audience recommendations; a flow chart detailing…

  9. Design Document. EKG Interpretation Program.

    ERIC Educational Resources Information Center

    Webb, Sandra M.

    This teaching plan is designed to assist nursing instructors assigned to advanced medical surgical nursing courses in acquainting students with the basic skills needed to perform electrocardiographic (ECG or EKG) interpretations. The first part of the teaching plan contains a statement of purpose; audience recommendations; a flow chart detailing

  10. Remote sensing: Principles and interpretation

    SciTech Connect

    Sabins, F.F. Jr.

    1986-01-01

    This book includes explanations of modern remote sensing systems and the skills needed to interpret imaging technology. Examples are provided of imaging systems such as Landsat Thematic Mapper, Seasat, Heat Capacity Mapping Mission, Space Shuttle Imaging Radar, Large Format Camera, Advanced Very High Resolution Radiometer, Coastal Zone Scanner, and Thermal Infrared Multispectral Scanner.

  11. Digital video, learning styles, and student understanding of kinematics graphs

    NASA Astrophysics Data System (ADS)

    Hein, Teresa Lee

    1997-12-01

    Student ability to analyze and interpret motion graphs following laboratory instruction that utilized interactive digital video as well as traditional instructional techniques was investigated. Research presented suggested that digital video tools serve to motivate students and may be an effective mechanism to enhance student understanding of motion concepts. Two laboratory exercises involving motion concepts were developed for this study. Students were divided into two instructional groups. The treatment group used digital video techniques and the control group used traditional techniques to perform the laboratory exercises. Student understanding of motion concepts were assessed, in part, using the Test of Understanding Graphs-Kinematics. Other assessment measures included student responses to a set of written graphical analysis questions and two post-lab activities. Possible relationships between individual learning style preferences and student understanding of motion concepts were also addressed. Learning style preferences were assessed using the Productivity Environmental Preference Survey prior to the instructional treatments. Students were asked to comment in writing about their learning styles before and after they were given the learning style assessment. Student comments revealed that the results they received from Productivity Environmental Preference Survey accurately reflected their learning styles. Results presented in this study showed that no significant relationship exists between students' learning style preferences and their ability to interpret motion graphs as measured by scores on the Test of Understanding Graphs-Kinematics. In addition, the results showed no significant difference between instructional treatment and mean scores on the Test of Understanding Graphs-Kinematics. Analysis of writing activities revealed that students in the treatment group responded more effectively than students in the control group to graphical interpretation questions that closely paralleled the motions they had observed during the laboratory. However, students in both instructional groups displayed similar levels of difficulty when confronted with motions that deviated from what they had observed in the laboratory. After controlling for differences in student ability levels using SAT scores and course grades, a significant difference in mean scores on the Test of Understanding Graphs-Kinematics was observed between males and females. Males and females as a separate population had similar mean SAT scores and course grades. A suggestion was made that the observed difference between males and females based on mean scores on the Test of Understanding Graphs- Kinematics could be due to a gender bias inherent in the instrument. A recommendation was made that future studies could address this observed gender difference.

  12. Library Skills.

    ERIC Educational Resources Information Center

    Paul, Karin; Kuhlthau, Carol C.; Branch, Jennifer L.; Solowan, Diane Galloway; Case, Roland; Abilock, Debbie; Eisenberg, Michael B.; Koechlin, Carol; Zwaan, Sandi; Hughes, Sandra; Low, Ann; Litch, Margaret; Lowry, Cindy; Irvine, Linda; Stimson, Margaret; Schlarb, Irene; Wilson, Janet; Warriner, Emily; Parsons, Les; Luongo-Orlando, Katherine; Hamilton, Donald

    2003-01-01

    Includes 19 articles that address issues related to library skills and Canadian school libraries. Topics include information literacy; inquiry learning; critical thinking and electronic research; collaborative inquiry; information skills and the Big 6 approach to problem solving; student use of online databases; library skills; Internet accuracy;

  13. Basic Skills.

    ERIC Educational Resources Information Center

    Addison-Rutland Supervisory Union, Fair Haven, VT.

    This publication lists basic skills curriculum objectives for kindergarten through eighth grade in the schools of the Addison-Rutland Supervisory Union in Fair Haven, Vermont. Objectives concern language arts, reading, mathematics, science, and social studies instruction. Kindergarten objectives for general skills, physical growth, motor skills,

  14. Discrete Signal Processing on Graphs: Sampling Theory

    NASA Astrophysics Data System (ADS)

    Chen, Siheng; Varma, Rohan; Sandryhaila, Aliaksei; Kovacevic, Jelena

    2015-12-01

    We propose a sampling theory for signals that are supported on either directed or undirected graphs. The theory follows the same paradigm as classical sampling theory. We show that perfect recovery is possible for graph signals bandlimited under the graph Fourier transform. The sampled signal coefficients form a new graph signal, whose corresponding graph structure preserves the first-order difference of the original graph signal. For general graphs, an optimal sampling operator based on experimentally designed sampling is proposed to guarantee perfect recovery and robustness to noise; for graphs whose graph Fourier transforms are frames with maximal robustness to erasures as well as for Erd\\H{o}s-R\\'enyi graphs, random sampling leads to perfect recovery with high probability. We further establish the connection to the sampling theory of finite discrete-time signal processing and previous work on signal recovery on graphs. To handle full-band graph signals, we propose a graph filter bank based on sampling theory on graphs. Finally, we apply the proposed sampling theory to semi-supervised classification on online blogs and digit images, where we achieve similar or better performance with fewer labeled samples compared to previous work.

  15. Interpreting Metonymy.

    ERIC Educational Resources Information Center

    Pankhurst, Anne

    1994-01-01

    This paper examines some of the problems associated with interpreting metonymy, a figure of speech in which an attribute or commonly associated feature is used to name or designate something. After defining metonymy and outlining the principles of metonymy, the paper explains the differences between metonymy, synecdoche, and metaphor. It is…

  16. Performing Interpretation

    ERIC Educational Resources Information Center

    Kothe, Elsa Lenz; Berard, Marie-France

    2013-01-01

    Utilizing a/r/tographic methodology to interrogate interpretive acts in museums, multiple areas of inquiry are raised in this paper, including: which knowledge is assigned the greatest value when preparing a gallery talk; what lies outside of disciplinary knowledge; how invitations to participate invite and disinvite in the same gesture; and what

  17. Interpreting Evidence.

    ERIC Educational Resources Information Center

    Munsart, Craig A.

    1993-01-01

    Presents an activity that allows students to experience the type of discovery process that paleontologists necessarily followed during the early dinosaur explorations. Students are read parts of a story taken from the "American Journal of Science" and interpret the evidence leading to the discovery of Triceratops and Stegosaurus. (PR)

  18. A comparison of auditory and visual graphs for use in physics and mathematics

    NASA Astrophysics Data System (ADS)

    Sahyun, Steven Carl

    The ability to interpret graphical information is a prime concern in physics as graphs are widely used to give quick summaries of data sets, for pattern recognition, and for analysis of information. While visual graphs have been developed so that their content can be readily and concisely discerned, there is great difficulty when someone is unable, because of their environment or due to physical handicaps, to view graphs. An alternative to the visual graph is the auditory graph. An auditory graph uses sound rather than pictures to transmit information. This study shows that useful auditory graphs of single valued x-y data were constructed by mapping the y axis to pitch, the x axis to time, and by including drum beats to mark first and second derivative information. Further audio enhancement was used to indicate negative data values. The study used a World Wide Web based test consisting of a series of math and physics questions. Each question was based on a graph and had multiple-choice answers. The test instrument was refined through a series of pilot tests. The main study compared the results of over 200 introductory physics students at Oregon State University, as well as other selected subjects. A computer program randomly assigned subjects to one of three groups. Each group was presented with the same test but had a different graph presentation method. The presentation methods were: only visual graphs, only auditory graphs, or both auditory and visual graphs. This study shows that students with very little training can use auditory graphs to answer analytical and identification type questions. Student performance for the group using only auditory graphs is 70% of the level attained by subjects using visually presented graphs. In addition, five blind subjects from remote locations participated in this test. Their performance level exceeded that of the first-year physics students. This work also displays the results from a pilot study of various auditory preference choices. Elements of this test may be useful for future auditory graph research and development.

  19. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  20. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  1. Subgraph fluctuations in random graphs

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Mller-Hannemann, Matthias; Htt, Marc-Thorsten

    2012-05-01

    The pattern of over- and under-representations of three-node subgraphs has become a standard method of characterizing complex networks and evaluating how this intermediate level of organization contributes to network function. Understanding statistical properties of subgraph counts in random graphs, their fluctuations, and their interdependences with other topological attributes is an important prerequisite for such investigations. Here we introduce a formalism for predicting subgraph fluctuations induced by perturbations of unidirectional and bidirectional edge densities. On this basis we predict the over- and under-representation of subgraphs arising from a density mismatch between a network and the corresponding pool of randomized graphs serving as a null model. Such mismatches occur, for example, in modular and hierarchical graphs.

  2. Quantum snake walk on graphs

    SciTech Connect

    Rosmanis, Ansis

    2011-02-15

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  3. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  4. The Uniqueness of -Matrix Graph Invariants

    PubMed Central

    Dehmer, Matthias; Shi, Yongtang

    2014-01-01

    In this paper, we examine the uniqueness (discrimination power) of a newly proposed graph invariant based on the matrix defined by Randi? et al. In order to do so, we use exhaustively generated graphs instead of special graph classes such as trees only. Using these graph classes allow us to generalize the findings towards complex networks as they usually do not possess any structural constraints. We obtain that the uniqueness of this newly proposed graph invariant is approximately as low as the uniqueness of the Balaban index on exhaustively generated (general) graphs. PMID:24392099

  5. Statistical spatial graphs to study the topology and geometry of large karst networks

    NASA Astrophysics Data System (ADS)

    Hendrick, M.

    2014-12-01

    Because of the lack of data and the complexity of the patterns observed by speleologists, karst network modeling is a challenge. In this work, we study topological and geometrical properties of large karst networks trough spatial graph models. A statistical mechanics approach is used to explore the set of directed and (possibly) weighted spatial graphs on a given space to extract subset of graphs of given properties. Within this framework, it's possible to generate sets of karst networks having realistic properties (in terms of spatial extension, degree distribution of nodes, number of cycles, total available volume for water transport, ...) and passing trough a given set of fixed points (for example some known inlets and outlets).Spatial graph analogues of the traditional statistical ensembles are defined (the microcanonical, canonical and grand canonical ensembles). We show how choice of (pseudo) Hamiltonians and ensemble parameters influence the structure of typical generated graphs (tree graphs, many loops graphs, hight clustering coefficient graphs, small total length graphs, ...). Two kind of Hamiltonians are studied: - the structural ones, i.e. Hamiltonians which are functions of the topology and the geometrical properties of the graph and - Hamiltonians related to the dynamical process occurring on the graph. An important dynamics related Hamiltonian is the measure of the total dissipated energy by groundwater flow trough the karst network.An ensemble of special interest is the grand canonical ensemble in which the number of nodes (excepted the given set outlets and inlets) and the number of edges are not imposed. This ensemble is useful to investigate how a network can emerge on a prescribed space. We give an interpretation to the parameters defining this ensemble, show some realisations, and discuss the interest of this ensemble for karst generation.

  6. Interacting particle systems on graphs

    NASA Astrophysics Data System (ADS)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations, while for small populations the dynamics are similar to the neutral case. The likelihood for the fitter mutants to drive the resident genotype to extinction is calculated.

  7. Boosting for multi-graph classification.

    PubMed

    Wu, Jia; Pan, Shirui; Zhu, Xingquan; Cai, Zhihua

    2015-03-01

    In this paper, we formulate a novel graph-based learning problem, multi-graph classification (MGC), which aims to learn a classifier from a set of labeled bags each containing a number of graphs inside the bag. A bag is labeled positive, if at least one graph in the bag is positive, and negative otherwise. Such a multi-graph representation can be used for many real-world applications, such as webpage classification, where a webpage can be regarded as a bag with texts and images inside the webpage being represented as graphs. This problem is a generalization of multi-instance learning (MIL) but with vital differences, mainly because instances in MIL share a common feature space whereas no feature is available to represent graphs in a multi-graph bag. To solve the problem, we propose a boosting based multi-graph classification framework (bMGC). Given a set of labeled multi-graph bags, bMGC employs dynamic weight adjustment at both bag- and graph-levels to select one subgraph in each iteration as a weak classifier. In each iteration, bag and graph weights are adjusted such that an incorrectly classified bag will receive a higher weight because its predicted bag label conflicts to the genuine label, whereas an incorrectly classified graph will receive a lower weight value if the graph is in a positive bag (or a higher weight if the graph is in a negative bag). Accordingly, bMGC is able to differentiate graphs in positive and negative bags to derive effective classifiers to form a boosting model for MGC. Experiments and comparisons on real-world multi-graph learning tasks demonstrate the algorithm performance. PMID:25014984

  8. Interpretive Medicine

    PubMed Central

    Reeve, Joanne

    2010-01-01

    Patient-centredness is a core value of general practice; it is defined as the interpersonal processes that support the holistic care of individuals. To date, efforts to demonstrate their relationship to patient outcomes have been disappointing, whilst some studies suggest values may be more rhetoric than reality. Contextual issues influence the quality of patient-centred consultations, impacting on outcomes. The legitimate use of knowledge, or evidence, is a defining aspect of modern practice, and has implications for patient-centredness. Based on a critical review of the literature, on my own empirical research, and on reflections from my clinical practice, I critique current models of the use of knowledge in supporting individualised care. Evidence-Based Medicine (EBM), and its implementation within health policy as Scientific Bureaucratic Medicine (SBM), define best evidence in terms of an epistemological emphasis on scientific knowledge over clinical experience. It provides objective knowledge of disease, including quantitative estimates of the certainty of that knowledge. Whilst arguably appropriate for secondary care, involving episodic care of selected populations referred in for specialist diagnosis and treatment of disease, application to general practice can be questioned given the complex, dynamic and uncertain nature of much of the illness that is treated. I propose that general practice is better described by a model of Interpretive Medicine (IM): the critical, thoughtful, professional use of an appropriate range of knowledges in the dynamic, shared exploration and interpretation of individual illness experience, in order to support the creative capacity of individuals in maintaining their daily lives. Whilst the generation of interpreted knowledge is an essential part of daily general practice, the profession does not have an adequate framework by which this activity can be externally judged to have been done well. Drawing on theory related to the recognition of quality in interpretation and knowledge generation within the qualitative research field, I propose a framework by which to evaluate the quality of knowledge generated within generalist, interpretive clinical practice. I describe three priorities for research in developing this model further, which will strengthen and preserve core elements of the discipline of general practice, and thus promote and support the health needs of the public. PMID:21805819

  9. Understanding Conic Sections Using Alternate Graph Paper

    ERIC Educational Resources Information Center

    Brown, Elizabeth M.; Jones, Elizabeth

    2006-01-01

    This article describes two alternative coordinate systems and their use in graphing conic sections. This alternative graph paper helps students explore the idea of eccentricity using the definitions of the conic sections.

  10. Dr.L: Distributed Recursive (Graph) Layout

    SciTech Connect

    2007-11-19

    Dr. L provides two-dimensional visualizations of very large abstract graph structures. it can be used for data mining applications including biology, scientific literature, and social network analysis. Dr. L is a graph layout program that uses a multilevel force-directed algorithm. A graph is input and drawn using a force-directed algorithm based on simulated annealing. The resulting layout is clustered using a single link algorithm. This clustering is used to produce a coarsened graph (fewer nodes) which is then re-drawn. this process is repeated until a sufficiently small graph is produced. The smallest graph is drawn and then used as a basis for drawing the original graph by refining the series of coarsened graphs that were produced. The layout engine can be run in serial or in parallel.

  11. Standard Distributions: One Graph Fits All

    ERIC Educational Resources Information Center

    Wagner, Clifford H.

    2007-01-01

    Standard distributions are ubiquitous but not unique. With suitable scaling, the graph of a standard distribution serves as the graph for every distribution in the family. The standard exponential can easily be taught in elementary statistics courses.

  12. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  13. Dr.L: Distributed Recursive (Graph) Layout

    Energy Science and Technology Software Center (ESTSC)

    2007-11-19

    Dr. L provides two-dimensional visualizations of very large abstract graph structures. it can be used for data mining applications including biology, scientific literature, and social network analysis. Dr. L is a graph layout program that uses a multilevel force-directed algorithm. A graph is input and drawn using a force-directed algorithm based on simulated annealing. The resulting layout is clustered using a single link algorithm. This clustering is used to produce a coarsened graph (fewer nodes)more » which is then re-drawn. this process is repeated until a sufficiently small graph is produced. The smallest graph is drawn and then used as a basis for drawing the original graph by refining the series of coarsened graphs that were produced. The layout engine can be run in serial or in parallel.« less

  14. Summary: beyond fault trees to fault graphs

    SciTech Connect

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability.

  15. A Comparison of Two Approaches to Training Visual Analysis of AB Graphs

    ERIC Educational Resources Information Center

    Wolfe, Katie; Slocum, Timothy A.

    2015-01-01

    Visual analysis is the primary method of evaluating data in single-subject research. Few studies have evaluated interventions to teach visual analysis skills. The purpose of this study was to evaluate systematic instruction, delivered using computer-based intervention or a recorded lecture, on identifying changes in slope and level in AB graphs.…

  16. A Comparison of Two Approaches to Training Visual Analysis of AB Graphs

    ERIC Educational Resources Information Center

    Wolfe, Katie; Slocum, Timothy A.

    2015-01-01

    Visual analysis is the primary method of evaluating data in single-subject research. Few studies have evaluated interventions to teach visual analysis skills. The purpose of this study was to evaluate systematic instruction, delivered using computer-based intervention or a recorded lecture, on identifying changes in slope and level in AB graphs.

  17. Ancestral Genres of Mathematical Graphs

    ERIC Educational Resources Information Center

    Gerofsky, Susan

    2011-01-01

    Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces

  18. Graphs and Enhancing Maple Multiplication.

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2002-01-01

    Description of a technique in Maple programming language that automatically prints all paths of any desired length along with the name of each vertex, proceeding in order from the beginning vertex to the ending vertex for a given graph. (Author/MM)

  19. Affect and Graphing Calculator Use

    ERIC Educational Resources Information Center

    McCulloch, Allison W.

    2011-01-01

    This article reports on a qualitative study of six high school calculus students designed to build an understanding about the affect associated with graphing calculator use in independent situations. DeBellis and Goldin's (2006) framework for affect as a representational system was used as a lens through which to understand the ways in which

  20. Ancestral Genres of Mathematical Graphs

    ERIC Educational Resources Information Center

    Gerofsky, Susan

    2011-01-01

    Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…

  1. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others

  2. Humidity Graphs for All Seasons.

    ERIC Educational Resources Information Center

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  3. Situating Graphs as Workplace Knowledge

    ERIC Educational Resources Information Center

    Noss, Richard; Bakker, Arthur; Hoyles, Celia; Kent, Phillip

    2007-01-01

    We investigate the use and knowledge of graphs in the context of a large industrial factory. We are particularly interested in the question of "transparency", a question that has been extensively considered in the general literature on tool use and, more recently, by Michael Roth and his colleagues in the context of scientific work. Roth uses the

  4. Short paths in expander graphs

    SciTech Connect

    Kleinberg, J.; Rubinfeld, R.

    1996-12-31

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratio in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.

  5. On geometrical interpretation of the p-adic Maslov index

    NASA Astrophysics Data System (ADS)

    Zelenov, E. I.

    1994-01-01

    A set of selfdual lattices ? in a two-dimensional p-adic symplectic space MediaObjects/220_2005_BF02099983_f2.jpg is provided by an integer valued metric d. A realization of the metric space (?, d) as a graph ? is suggested and this graph has been linked to the Bruhat-Tits tree. An action of symplectic group MediaObjects/220_2005_BF02099983_f3.jpg on a set of cycles of length three of the graph ? is considered and a geometrical interpretation of the p-adic Maslov index is given in terms of this action.

  6. Graph theory findings in the pathophysiology of temporal lobe epilepsy.

    PubMed

    Chiang, Sharon; Haneef, Zulfi

    2014-07-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083

  7. Graph theory findings in the pathophysiology of temporal lobe epilepsy

    PubMed Central

    Chiang, Sharon; Haneef, Zulfi

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083

  8. On cyclomatic complexity and decision graphs

    NASA Astrophysics Data System (ADS)

    Gold, Robert

    2012-09-01

    In this paper we define a reduction for directed graphs that preserves the branching structure and the cyclomatic number but reduces the graph such that the cyclomatic number is equal to the number of the nodes in the reduced graph. As an application we transfer this reduction to control flow graphs of programs in order to get a simpler representation of programs with preserved properties that play an important role in the testing of software.

  9. Chemical Applications of Graph Theory: Part II. Isomer Enumeration.

    ERIC Educational Resources Information Center

    Hansen, Peter J.; Jurs, Peter C.

    1988-01-01

    Discusses the use of graph theory to aid in the depiction of organic molecular structures. Gives a historical perspective of graph theory and explains graph theory terminology with organic examples. Lists applications of graph theory to current research projects. (ML)

  10. Teaching and Assessing Graphing Using Active Learning

    ERIC Educational Resources Information Center

    McFarland, Jenny

    2010-01-01

    As a college biology instructor, I often see graphs in lab reports that do not meet my expectations. I also observe that many college students do not always adequately differentiate between good and poor (or misleading) graphs. The activity described in this paper is the result of my work with students to improve their graphing literacy. The

  11. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  12. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  13. Some Applications of Graph Theory to Clustering

    ERIC Educational Resources Information Center

    Hubert, Lawrence J.

    1974-01-01

    The connection between graph theory and clustering is reviewed and extended. Major emphasis is on restating, in a graph-theoretic context, selected past work in clustering, and conversely, developing alternative strategies from several standard concepts used in graph theory per se. (Author/RC)

  14. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  15. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  16. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  17. Graph Partitioning Models for Parallel Computing

    SciTech Connect

    Hendrickson, B.; Kolda, T.G.

    1999-03-02

    Calculations can naturally be described as graphs in which vertices represent computation and edges reflect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives and discuss their relative merits.

  18. Comparing Graph Similarity Measures for Graphical Recognition

    NASA Astrophysics Data System (ADS)

    Jouili, Salim; Tabbone, Salvatore; Valveny, Ernest

    In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.

  19. Discriminative Feature Selection for Uncertain Graph Classification

    PubMed Central

    Kong, Xiangnan; Yu, Philip S.; Wang, Xue; Ragin, Ann B.

    2015-01-01

    Mining discriminative features for graph data has attracted much attention in recent years due to its important role in constructing graph classifiers, generating graph indices, etc. Most measurement of interestingness of discriminative subgraph features are defined on certain graphs, where the structure of graph objects are certain, and the binary edges within each graph represent the presence of linkages among the nodes. In many real-world applications, however, the linkage structure of the graphs is inherently uncertain. Therefore, existing measurements of interestingness based upon certain graphs are unable to capture the structural uncertainty in these applications effectively. In this paper, we study the problem of discriminative subgraph feature selection from uncertain graphs. This problem is challenging and different from conventional subgraph mining problems because both the structure of the graph objects and the discrimination score of each subgraph feature are uncertain. To address these challenges, we propose a novel discriminative subgraph feature selection method, Dug, which can find discriminative subgraph features in uncertain graphs based upon different statistical measures including expectation, median, mode and ?-probability. We first compute the probability distribution of the discrimination scores for each subgraph feature based on dynamic programming. Then a branch-and-bound algorithm is proposed to search for discriminative subgraphs efficiently. Extensive experiments on various neuroimaging applications (i.e., Alzheimers Disease, ADHD and HIV) have been performed to analyze the gain in performance by taking into account structural uncertainties in identifying discriminative subgraph features for graph classification. PMID:25949925

  20. Study Skills.

    ERIC Educational Resources Information Center

    Thomas, Anne

    1993-01-01

    Three developments lend support to the idea that schools must help teach study skills: (1) advances in cognitive psychology that suggest children are active learners; (2) society's concern for at-risk students; and (3) growing demands for improved student performance. There is evidence that systematic study skills instruction does improve academic

  1. Skills Center.

    ERIC Educational Resources Information Center

    American Association of State Colleges and Universities, Washington, DC.

    The Cortland College Skills Center at the State University of New York, Cortland, helps students learn how they learn best, providing assistance in reading, writing, researching, listening, speaking, vocabulary, study skills, math, and standardized test preparation. Services are offered for learning disabled (LD) and handicapped students, and the…

  2. Fast graph operations in quantum computation

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

    2016-03-01

    The connection between certain entangled states and graphs has been heavily studied in the context of measurement-based quantum computation as a tool for understanding entanglement. Here we show that this correspondence can be harnessed in the reverse direction to yield a graph data structure, which allows for more efficient manipulation and comparison of graphs than any possible classical structure. We introduce efficient algorithms for many transformation and comparison operations on graphs represented as graph states, and prove that no classical data structure can have similar performance for the full set of operations studied.

  3. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  4. Constrained Graph Optimization: Interdiction and Preservation Problems

    SciTech Connect

    Schild, Aaron V

    2012-07-30

    The maximum flow, shortest path, and maximum matching problems are a set of basic graph problems that are critical in theoretical computer science and applications. Constrained graph optimization, a variation of these basic graph problems involving modification of the underlying graph, is equally important but sometimes significantly harder. In particular, one can explore these optimization problems with additional cost constraints. In the preservation case, the optimizer has a budget to preserve vertices or edges of a graph, preventing them from being deleted. The optimizer wants to find the best set of preserved edges/vertices in which the cost constraints are satisfied and the basic graph problems are optimized. For example, in shortest path preservation, the optimizer wants to find a set of edges/vertices within which the shortest path between two predetermined points is smallest. In interdiction problems, one deletes vertices or edges from the graph with a particular cost in order to impede the basic graph problems as much as possible (for example, delete edges/vertices to maximize the shortest path between two predetermined vertices). Applications of preservation problems include optimal road maintenance, power grid maintenance, and job scheduling, while interdiction problems are related to drug trafficking prevention, network stability assessment, and counterterrorism. Computational hardness results are presented, along with heuristic methods for approximating solutions to the matching interdiction problem. Also, efficient algorithms are presented for special cases of graphs, including on planar graphs. The graphs in many of the listed applications are planar, so these algorithms have important practical implications.

  5. Efficient Graph Sequence Mining Using Reverse Search

    NASA Astrophysics Data System (ADS)

    Inokuchi, Akihiro; Ikuta, Hiroaki; Washio, Takashi

    The mining of frequent subgraphs from labeled graph data has been studied extensively. Furthermore, much attention has recently been paid to frequent pattern mining from graph sequences. A method, called GTRACE, has been proposed to mine frequent patterns from graph sequences under the assumption that changes in graphs are gradual. Although GTRACE mines the frequent patterns efficiently, it still needs substantial computation time to mine the patterns from graph sequences containing large graphs and long sequences. In this paper, we propose a new version of GTRACE that permits efficient mining of frequent patterns based on the principle of a reverse search. The underlying concept of the reverse search is a general scheme for designing efficient algorithms for hard enumeration problems. Our performance study shows that the proposed method is efficient and scalable for mining both long and large graph sequence patterns and is several orders of magnitude faster than the original GTRACE.

  6. Fast Approximate Quadratic Programming for Graph Matching

    PubMed Central

    Vogelstein, Joshua T.; Conroy, John M.; Lyzinski, Vince; Podrazik, Louis J.; Kratzer, Steven G.; Harley, Eric T.; Fishkind, Donniell E.; Vogelstein, R. Jacob; Priebe, Carey E.

    2015-01-01

    Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance. PMID:25886624

  7. Fast approximate quadratic programming for graph matching.

    PubMed

    Vogelstein, Joshua T; Conroy, John M; Lyzinski, Vince; Podrazik, Louis J; Kratzer, Steven G; Harley, Eric T; Fishkind, Donniell E; Vogelstein, R Jacob; Priebe, Carey E

    2015-01-01

    Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance. PMID:25886624

  8. On a programming language for graph algorithms

    NASA Technical Reports Server (NTRS)

    Rheinboldt, W. C.; Basili, V. R.; Mesztenyi, C. K.

    1971-01-01

    An algorithmic language, GRAAL, is presented for describing and implementing graph algorithms of the type primarily arising in applications. The language is based on a set algebraic model of graph theory which defines the graph structure in terms of morphisms between certain set algebraic structures over the node set and arc set. GRAAL is modular in the sense that the user specifies which of these mappings are available with any graph. This allows flexibility in the selection of the storage representation for different graph structures. In line with its set theoretic foundation, the language introduces sets as a basic data type and provides for the efficient execution of all set and graph operators. At present, GRAAL is defined as an extension of ALGOL 60 (revised) and its formal description is given as a supplement to the syntactic and semantic definition of ALGOL. Several typical graph algorithms are written in GRAAL to illustrate various features of the language and to show its applicability.

  9. High Performance Descriptive Semantic Analysis of Semantic Graph Databases

    SciTech Connect

    Joslyn, Cliff A.; Adolf, Robert D.; al-Saffar, Sinan; Feo, John T.; Haglin, David J.; Mackey, Greg E.; Mizell, David W.

    2011-06-02

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths such for the Billion Triple Challenge 2010 dataset.

  10. Geometric properties of graph layouts optimized for greedy navigation.

    PubMed

    Lee, Sang Hoon; Holme, Petter

    2012-12-01

    The graph layouts used for complex network studies have been mainly developed to improve visualization. If we interpret the layouts in metric spaces such as Euclidean ones, however, the embedded spatial information can be a valuable cue for various purposes. In this work, we focus on encoding useful navigational information to geometric coordinates of vertices of spatial graphs, which is a reverse problem of harnessing geometric information for better navigation. In other words, the coordinates of the vertices are a map of the topology, not the other way around. We use a recently developed user-centric navigation protocol to explore spatial layouts of complex networks that are optimal for navigation. These layouts are generated with a simple simulated annealing optimization technique. We compare these layouts to others targeted at better visualization and discuss the spatial statistical properties of the optimized layouts for better navigability and its implication. PMID:23368083

  11. Graph Embedded Extreme Learning Machine.

    PubMed

    Iosifidis, Alexandros; Tefas, Anastasios; Pitas, Ioannis

    2016-01-01

    In this paper, we propose a novel extension of the extreme learning machine (ELM) algorithm for single-hidden layer feedforward neural network training that is able to incorporate subspace learning (SL) criteria on the optimization process followed for the calculation of the network's output weights. The proposed graph embedded ELM (GEELM) algorithm is able to naturally exploit both intrinsic and penalty SL criteria that have been (or will be) designed under the graph embedding framework. In addition, we extend the proposed GEELM algorithm in order to be able to exploit SL criteria in arbitrary (even infinite) dimensional ELM spaces. We evaluate the proposed approach on eight standard classification problems and nine publicly available datasets designed for three problems related to human behavior analysis, i.e., the recognition of human face, facial expression, and activity. Experimental results denote the effectiveness of the proposed approach, since it outperforms other ELM-based classification schemes in all the cases. PMID:25751883

  12. Efficient planning by graph rewriting

    SciTech Connect

    Ambite, J.L.; Knoblock, C.A.

    1996-12-31

    Planning involves the generation of a network of actions that achieves a desired goal given an initial state of the world. There has been significant progress in the analysis of planning algorithms, particularly in partial-order and in hierarchical task network (HTN) planning. In this abstract we propose a more general framework in which planning is seen as a graph rewriting process. This approach subsumes previous work and offers new opportunities for efficient planning.

  13. Matrix models and graph colouring

    NASA Astrophysics Data System (ADS)

    Cicuta, Giovanni M.; Molinari, Luca; Montaldi, Emilio

    1993-06-01

    We study an edge-colouring problem on random planar graphs which is one of the simplest vertex models that may be analyzed by standard methods of large N matrix models. The main features of the saddle point solution and its critical behaviour are described. At the critical value of the coupling gcr the eigen value density u(?)M is found to vanish at the border of the support as ?-a2/3.

  14. A bonding model of entanglement for N-qubit graph states

    NASA Astrophysics Data System (ADS)

    Waegell, Mordecai

    2014-10-01

    The class of entangled N-qubit states known as graph states, and the corresponding stabilizer groups of N-qubit Pauli observables, have found a wide range of applications in quantum information processing and the foundations of quantum mechanics. A review of the properties of graph states is given and core spaces of graph states are introduced and discussed. A bonding model of entanglement for generalized graph states is then presented, in which the presence or absence of a bond between two qubits unequivocally specifies whether or not they are entangled. A physical interpretation of these bonds is given, along with a characterization of how they can be created or destroyed by entangling unitary operations and how they can be destroyed by local Pauli measurements. It is shown that local unitary operations do not affect the bond structure of a graph state, and therefore that if two graph states have nonisomorphic bond structures, then local unitary operations and/or reordering of qubits cannot change one into the other. Color multigraphs are introduced to depict the bond structures of graph states and to make some of their properties more apparent.

  15. Models of random graph hierarchies

    NASA Astrophysics Data System (ADS)

    Paluch, Robert; Suchecki, Krzysztof; Hołyst, Janusz A.

    2015-10-01

    We introduce two models of inclusion hierarchies: random graph hierarchy (RGH) and limited random graph hierarchy (LRGH). In both models a set of nodes at a given hierarchy level is connected randomly, as in the Erdős-Rényi random graph, with a fixed average degree equal to a system parameter c. Clusters of the resulting network are treated as nodes at the next hierarchy level and they are connected again at this level and so on, until the process cannot continue. In the RGH model we use all clusters, including those of size 1, when building the next hierarchy level, while in the LRGH model clusters of size 1 stop participating in further steps. We find that in both models the number of nodes at a given hierarchy level h decreases approximately exponentially with h. The height of the hierarchy H, i.e. the number of all hierarchy levels, increases logarithmically with the system size N, i.e. with the number of nodes at the first level. The height H decreases monotonically with the connectivity parameter c in the RGH model and it reaches a maximum for a certain c max in the LRGH model. The distribution of separate cluster sizes in the LRGH model is a power law with an exponent about - 1.25. The above results follow from approximate analytical calculations and have been confirmed by numerical simulations.

  16. Graph theoretical analysis of climate data

    NASA Astrophysics Data System (ADS)

    Zerenner, T.; Hense, A.

    2012-04-01

    Applying methods from graph and network theory to climatological data is a quite new approach and contains numerous difficulties. The atmosphere is a high dimensional and complex dynamical system which per se does not show a network-like structure. It does not consist of well-defined nodes and edges. Thus considering such a system as a network or graph inevitably involves radical simplifications and ambiguities. Nevertheless network analysis has provided useful results for different kinds of complex systems for example in biology or medical science (neural and gene interaction networks). The application of these methods on climate data provides interesting results as well. If the network construction is based on the correlation matrix of the underlying data, the resulting network structures show many well known patterns and characteristics of the atmospheric circulation (Tsonis et al. 2006, Donges et al. 2009). The interpretation of these network structures is yet questionable. Using Pearson Correlation for network construction does not allow to differ between direct and indirect dependencies. An edge does not necessarily represent a causal connection. An interpretation of these structures for instance concerning the stability of the climate system is therefore doubtful. Gene interaction networks for example are often constructed using partial correlations (Wu et al. 2003), which makes it possible to distinguish between direct and indirect dependencies. Although a high value of partial correlation does not guarantee causality it is a step in the direction of measuring causal dependencies. This approach is known as Gaussian Graphical Models, GGMs. For high dimensional datasets such as climate data partial correlations can be obtained by calculating the precision matrix, the inverse covariance matrix. Since the maximum likelihood estimates of covariance matrices of climate datasets are singular the precision matrices can only be estimated for example by using the Graphical Lasso Algorithm, Glasso (Friedman et al. 2007). If "climate networks" are constructed in terms of GGMs and glasso, they exhibit apparently trivial structures. In this type of networks only geographically adjacent nodes are connected by edges. These results bring up several questions which will be discussed in the talk. Are the results of the standard as well as the GGM analysis mere results of the methods? How do large scale structures arise when direct dynamical relations are restricted to geographically nearest neighbours? Is it actually possible to describe the complex dynamical interactions of the atmospheric circulation as a network structure without including additional information about physical relations between the nodes or does this method imply too heavy simplifications to describe the complex system of the atmosphere appropriately?

  17. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods

    PubMed Central

    Phillips, David J.; McGlaughlin, Alec; Ruth, David; Jager, Leah R.; Soldan, Anja

    2015-01-01

    Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randi? index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randi? index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD. PMID:25984446

  18. Computational Genomics Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2005-03-01

    With exciting new discoveries concerning RNA's regulatory cellular roles in gene expression, structural and functional problems associated with DNA's venerable cousin have come to the forefront. RNA folding, for example, is analogous to the well-known protein folding problem, and seeks to link RNA's primary sequence with secondary and tertiary structures. As a single-stranded polynucleotide, RNA's secondary structures are defined by a network of hydrogen bonds, which lead to a variety of stems, loops, junctions, bulges, and other motifs. Supersecondary pseudoknot structures can also occur and, together, lead to RNA's complex tertiary interactions stabilized by salt and solvent ions in the natural cellular milieu. Besides folding, challenges in RNA research include identifying locations and functions of RNA genes, discovering RNA's structural repertoire (folding motifs), designing novel RNAs, and developing new antiviral and antibiotic compounds composed of, or targeting, RNAs. In this talk, I will describe some of these new biological findings concerning RNA and present an approach using graph theory (network theory) to represent RNA secondary structures. Because the RNA motif space using graphs is vastly smaller than RNA's sequence space, many problems related to analyzing and discovering new RNAs can be simplified and studied systematically. Some preliminary applications to designing novel RNAs will also be described.Related ReadingH. H. Gan, S. Pasquali, and T. Schlick, ``A Survey of Existing RNAs using Graph Theory with Implications to RNA Analysis and Design,'' Nuc. Acids Res. 31: 2926--2943 (2003). J. Zorn, H. H. Gan, N. Shiffeldrim, and T. Schlick, ``Structural Motifs in Ribosomal RNAs: Implications for RNA Design and Genomics,'' Biopolymers 73: 340--347 (2004). H. H. Gan, D. Fera, J. Zorn, M. Tang, N. Shiffeldrim, U. Laserson, N. Kim, and T. Schlick,``RAG: RNA-As-Graphs Database -- Concepts, Analysis, and Features,'' Bioinformatics 20: 1285--1291 (2004). U. Laserson, H. H. Gan, and T. Schlick, ``Searching for 2D RNA Geometries in Bacterial Genomes,'' Proceedings of the ACM Symposium on Computational Geometry, June 9--11, New York, pp. 373--377 (2004). (http://socg.poly.edu/home.htm). N. Kim, N. Shiffeldrim, H. H. Gan, and T. Schlick, ``Novel Candidates of RNA Topologies,'' J. Mol. Biol. 341: 1129--1144 (2004). Schlick, ``RAG: RNA-As-Graphs Web Resource,'' BMC Bioinformatics 5: 88--97 (2004) (http://www.biomedcentral.com/1471-2105/5/88). S. Pasquali, H. H. Gan, and T. Schlick, ``Modular RNA Architecture Revealed by Computational Analysis of Existing Pseudoknots and Ribosomal RNAs,'' Nucl. Acids Res., Submitted (2004). T. Schlick, Molecular Modeling: An Interdisciplinary Guide, Springer-Verlag, New York, 2002.

  19. Computing Information Value from RDF Graph Properties

    SciTech Connect

    al-Saffar, Sinan; Heileman, Gregory

    2010-11-08

    Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We compute information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.

  20. Components in time-varying graphs

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Tang, John; Musolesi, Mirco; Russo, Giovanni; Mascolo, Cecilia; Latora, Vito

    2012-06-01

    Real complex systems are inherently time-varying. Thanks to new communication systems and novel technologies, today it is possible to produce and analyze social and biological networks with detailed information on the time of occurrence and duration of each link. However, standard graph metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs in which the links do not change over time, or graphs built from time-varying systems by aggregating all the links as if they were concurrent in time. In this paper, we extend the notion of connectedness, and the definitions of node and graph components, to the case of time-varying graphs, which are represented as time-ordered sequences of graphs defined over a fixed set of nodes. We show that the problem of finding strongly connected components in a time-varying graph can be mapped into the problem of discovering the maximal-cliques in an opportunely constructed static graph, which we name the affine graph. It is, therefore, an NP-complete problem. As a practical example, we have performed a temporal component analysis of time-varying graphs constructed from three data sets of human interactions. The results show that taking time into account in the definition of graph components allows to capture important features of real systems. In particular, we observe a large variability in the size of node temporal in- and out-components. This is due to intrinsic fluctuations in the activity patterns of individuals, which cannot be detected by static graph analysis.

  1. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  2. Using a Problem Solving-Cooperative Learning Approach to Improve Students' Skills for Interpreting [Superscript 1]H NMR Spectra of Unknown Compounds in an Organic Spectroscopy Course

    ERIC Educational Resources Information Center

    Angawi, Rihab F.

    2014-01-01

    To address third- and fourth-year chemistry students' difficulties with the challenge of interpreting [superscript 1]H NMR spectra, a problem solving-cooperative learning technique was incorporated in a Spectra of Organic Compounds course. Using this approach helped students deepen their understanding of the basics of [superscript 1]H NMR

  3. Guidelines for Graphing Data with Microsoft[R] Office 2007[TM], Office 2010[TM], and Office for Mac[TM] 2008 and 2011

    ERIC Educational Resources Information Center

    Barton, Erin E.; Reichow, Brian

    2012-01-01

    The interpretation of single-case data requires systematic visual analysis across and within conditions. Graphs are a vital component for analyzing and communicating single-case design data and a necessary tool for applied researchers and practitioners. Several articles have been published with task analyses for graphing data with the new versions

  4. Skills core

    NASA Astrophysics Data System (ADS)

    Lawson, Laura

    Constantly changing technology and increasing competition mean that private companies are aggressively seeking new employees with high levels of technological literacy, good judgment, and communication and team-building skills. Industry also needs workers educated in science, math, engineering, and technology. But which of these skills are most important? Researchers at Indian River Community College at Fort Pierce, Fla., will attempt to answer that question with an NSF grant of nearly $1 million.

  5. Interpretation Of Biomechanical Data To A Gymnastics Coach

    NASA Astrophysics Data System (ADS)

    Shierman, Gail

    1982-02-01

    Several trials of many different gymnastics skills on various pieces of apparatus were filmed and the results were studied with the coach. The time to accomplish the entire skill as well as the time for each segment of the skill was important to the coach. He was also interested in angle of release or push-off and the path of the center of gravity. Lastly, graphs of velocities and accelerations of limb segments were revealing to the coach. Biomechanical analysis has helped him see why the performances were good; he is more interested in working with the investigator in all the events in gymnastics through the medium of cinematography.

  6. API Requirements for Dynamic Graph Prediction

    SciTech Connect

    Gallagher, B; Eliassi-Rad, T

    2006-10-13

    Given a large-scale time-evolving multi-modal and multi-relational complex network (a.k.a., a large-scale dynamic semantic graph), we want to implement algorithms that discover patterns of activities on the graph and learn predictive models of those discovered patterns. This document outlines the application programming interface (API) requirements for fast prototyping of feature extraction, learning, and prediction algorithms on large dynamic semantic graphs. Since our algorithms must operate on large-scale dynamic semantic graphs, we have chosen to use the graph API developed in the CASC Complex Networks Project. This API is supported on the back end by a semantic graph database (developed by Scott Kohn and his team). The advantages of using this API are (i) we have full-control of its development and (ii) the current API meets almost all of the requirements outlined in this document.

  7. Fast generation of sparse random kernel graphs

    DOE PAGESBeta

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  8. Fast generation of sparse random kernel graphs

    SciTech Connect

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.

  9. Fast Generation of Sparse Random Kernel Graphs

    PubMed Central

    2015-01-01

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most 𝒪(n(logn)2). As a practical example we show how to generate samples of power-law degree distribution graphs with tunable assortativity. PMID:26356296

  10. Incorporating Reading Skills into Art Lessons.

    ERIC Educational Resources Information Center

    Peragallo, Anne M.

    1981-01-01

    Using a ceramics unit, the author illustrates ways of incorporating the following reading skills into an art lesson: following directions; pronunciation, spelling, and vocabulary development; interpreting illustrations; using reference books and materials; notetaking; and skimming. (SJL)

  11. Graph-matching based CTA.

    PubMed

    Maksimov, Dmitry; Hesser, Jrgen; Brockmann, Carolin; Jochum, Susanne; Dietz, Tiina; Schnitzer, Andreas; Dber, Christoph; Schoenberg, Stefan O; Diehl, Steffen

    2009-12-01

    Separating bone, calcification, and vessels in computer tomography angiography (CTA) allows for a detailed diagnosis of vessel stenosis. This paper presents a new, graph-based technique that solves this difficult problem with high accuracy. The approach requires one native data set and one that is contrast enhanced. On each data set, an attributed level-graph is derived and both graphs are matched by dynamic programming to differentiate between bone, on one hand side, and vessel/calcification on the other hand side. Lumen and calcified regions are then separated by a profile technique. Evaluation is based on data from vessels of pelvis and lower extremities of elderly patients. Due to substantial calcification and motion of patients between and during the acquisitions, the underlying approach is tested on a class of difficult cases. Analysis requires 3-5 min on a Pentium IV 3 GHz for a 700 MByte data set. Among 37 patients, our approach correctly identifies all three components in 80% of cases correctly compared to visual control. Critical inconsistencies with visual inspection were found in 6% of all cases; 70% of these inconsistencies are due to small vessels that have 1) a diameter near the resolution of the CT and 2) are passing next to bony structures. All other remaining deviations are found in an incorrect handling of the iliac artery since the slice thickness is near the diameter of this vessel and since the orientation is not in cranio-caudal direction. Increasing resolution is thus expected to solve many the aforementioned difficulties. PMID:19574161

  12. Projective representations from quantum enhanced graph symmetries

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. M.; Khlebnikov, S.; WehefritzKaufmann, B.

    2015-04-01

    We define re-gaugings and enhanced symmetries for graphs with group labels on their edges. These give rise to interesting projective representations of subgroups of the automorphism groups of the graphs. We furthermore embed this construction into several higher levels of generalization using category theory and show that they are natural in that language. These include projective representations of the re-gauging groupoid and a novel generalization to all symmetries of the graph.

  13. Graph Models of Automobile Gears - Kinematics

    NASA Astrophysics Data System (ADS)

    Drewniak, J.; Kopeć, J.; Zawiślak, S.

    2014-08-01

    In the present paper, kinematical analysis of an automotive gear is described. Versatile graph based methods have been utilized for this purpose. An application of mixed, contour and bond graphs gives the same results. It allows the detection of possible mistakes as well as a deeper insight into the designed artifact. The graphs can also be used for further analyses which will be published in a separate document

  14. Imaging geometric graphs using internal measurements

    NASA Astrophysics Data System (ADS)

    Robinson, Michael

    2016-01-01

    This article presents two topologically-motivated algorithms for reconstructing a metric graph from solutions to a wave equation on it. Our algorithms rely on narrowband and visibility measurements, and are therefore of considerable value to urban sensing applications. This is an advancement over the wideband methods traditionally used to study metric graphs. Our methodology exposes and separates the impact of the graph topology and geometry and is driven by a complete cohomological characterization of the space of wave equation solutions.

  15. The MultiThreaded Graph Library (MTGL)

    Energy Science and Technology Software Center (ESTSC)

    2008-07-17

    The MultiThreaded Graph Library (MTGL) is a set of header files that implement graph algorithm in such a way that they can run on massively multithreaded architectures. It is based upon the Boost Graph Library, but doesn???¢????????t use Boost since the latter doesn???¢????????t run well on these architectures.

  16. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  17. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  18. Breddin's graph for tectonic regimes

    NASA Astrophysics Data System (ADS)

    Célérier, Bernard; Séranne, Michel

    2001-05-01

    A simple graphical method is proposed to infer the tectonic regime from a fault and slip data set. An abacus is overlaid on a plot of the rake versus strike of the data. This yields the horizontal principal stress directions and a constraint on the stress tensor aspect ratio, in a manner similar to Breddin's graph for two-dimensional strain analysis. The main requirement is that one of the principal stress directions is close to the vertical. This method is illustrated on monophase synthetic and natural data, but is also expected to help sort out multiphase data sets.

  19. Assessing Students' Metacognitive Skills

    PubMed Central

    Alman, Martha; Gardner, Stephanie; Born, Charles

    2007-01-01

    Objective To develop a diagnostic test for assessing cognitive skills related to metacognition in a physiology course. Methods Cognitive skills believed to be related to metacognition (visualizing lecture information and interpreting diagrams) were identified in a first-professional year (P1) physiology course and test items were constructed for each. Analyses included overall reliability, item discrimination, and variance comparisons of 4 groups to assess the effect of prior physiology coursework and diagnostic test score level on the first examination in physiology. Results Overall reliability was 0.83 (N = 78). Eighty percent of the test items discriminated positively. The average diagnostic test scores of students with or without a prior physiology course did not differ significantly. Students who scored above the class mean on the diagnostic test and who had taken a prior physiology course also had the highest average scores on the physiology examination. Conclusion The diagnostic test provided a measure of a limited number of skills related to metacognition, and preliminary data suggest that such skills are especially important in retaining information. PMID:17429514

  20. Correspondence Analysis and Association Models Constrained by a Conditional Independence Graph.

    ERIC Educational Resources Information Center

    de Falguerolles, Antoine; And Others

    1995-01-01

    The manner in which the conditional independence graph of a multiway contingency table affects the fitting and interpretation of the Goodman association model and of correspondence analysis is considered. Estimation of row and column scores is presented through a framework that includes both models. (SLD)

  1. Students' Reading Images in Kinematics: The Case of Real-Time Graphs.

    ERIC Educational Resources Information Center

    Testa, Italo; Monroy, Gabriella; Sassi, Elena

    2002-01-01

    Describes a study in which secondary school students were called upon to read and interpret documents containing images of real-time kinematics graphs specially designed to address common learning problems and minimize iconic difficulties. Makes suggestions regarding the acquisition of some specific capabilities that are needed to avoid…

  2. Supporting Generative Thinking about Number Lines, the Cartesian Plane, and Graphs of Linear Functions

    ERIC Educational Resources Information Center

    Earnest, Darrell Steven

    2012-01-01

    This dissertation explores fifth and eighth grade students' interpretations of three kinds of mathematical representations: number lines, the Cartesian plane, and graphs of linear functions. Two studies were conducted. In Study 1, I administered the paper-and-pencil Linear Representations Assessment (LRA) to examine students'…

  3. Supporting Generative Thinking about Number Lines, the Cartesian Plane, and Graphs of Linear Functions

    ERIC Educational Resources Information Center

    Earnest, Darrell Steven

    2012-01-01

    This dissertation explores fifth and eighth grade students' interpretations of three kinds of mathematical representations: number lines, the Cartesian plane, and graphs of linear functions. Two studies were conducted. In Study 1, I administered the paper-and-pencil Linear Representations Assessment (LRA) to examine students'

  4. A New SAS program for behavioral analysis of electrical penetration graph data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring feeding behaviors of insects whose piercing-sucking mouthparts are inserted into plant tissue is done by making the insect part of an electronic circuit, using electropenetrography (EPG). Fluctuating voltage signals in the circuit are graphed, and resulting waveforms are interpreted as sp...

  5. Embodied Semiotic Activities and Their Role in the Construction of Mathematical Meaning of Motion Graphs

    ERIC Educational Resources Information Center

    Botzer, Galit; Yerushalmy, Michal

    2008-01-01

    This paper examines the relation between bodily actions, artifact-mediated activities, and semiotic processes that students experience while producing and interpreting graphs of two-dimensional motion in the plane. We designed a technology-based setting that enabled students to engage in embodied semiotic activities and experience two modes of

  6. Graph algorithms in the titan toolkit.

    SciTech Connect

    McLendon, William Clarence, III; Wylie, Brian Neil

    2009-10-01

    Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.

  7. Generation of graph-state streams

    SciTech Connect

    Ballester, Daniel; Cho, Jaeyoon; Kim, M. S.

    2011-01-15

    We propose a protocol to generate a stream of mobile qubits in a graph state through a single stationary parent qubit and discuss two types of its physical implementation, namely, the generation of photonic graph states through an atomlike qubit and the generation of flying atoms through a cavity-mode photonic qubit. The generated graph states fall into an important class that can hugely reduce the resource requirement of fault-tolerant linear optics quantum computation, which was previously known to be far from realistic. In regard to the flying atoms, we also propose a heralded generation scheme, which allows for high-fidelity graph states even under the photon loss.

  8. Simple scale interpolator facilitates reading of graphs

    NASA Technical Reports Server (NTRS)

    Fetterman, D. E., Jr.

    1965-01-01

    Simple transparent overlay with interpolation scale facilitates accurate, rapid reading of graph coordinate points. This device can be used for enlarging drawings and locating points on perspective drawings.

  9. ASGS: an alternative splicing graph web service

    PubMed Central

    Bollina, Durgaprasad; Lee, Bernett T. K.; Tan, Tin Wee; Ranganathan, Shoba

    2006-01-01

    Alternative transcript diversity manifests itself a prime cause of complexity in higher eukaryotes. The Alternative Splicing Graph Server (ASGS) is a web service facilitating the systematic study of alternatively spliced genes of higher eukaryotes by generating splicing graphs for the compact visual representation of transcript diversity from a single gene. Taking a set of transcripts in General Feature Format as input, ASGS identifies distinct reference and variable exons, generates a transcript splicing graph, an exon summary, splicing events classification and a single line graph to facilitate experimental analysis. This freely available web service can be accessed at . PMID:16845045

  10. Basic Skills in Asian Studies: India.

    ERIC Educational Resources Information Center

    Hantula, James

    Designed for an Asian studies program at the secondary level and using learning activities centering on India, the guide develops four basic skills: reading, applying critical thinking, interpreting the geography, and understanding history. Five learning activities are provided for each basic skill and each unit is introduced with a description

  11. A Factor Graph Approach to Automated GO Annotation

    PubMed Central

    Spetale, Flavio E.; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar

    2016-01-01

    As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum. PMID:26771463

  12. A Factor Graph Approach to Automated GO Annotation.

    PubMed

    Spetale, Flavio E; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar

    2016-01-01

    As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum. PMID:26771463

  13. Aspects of Performance on Line Graph Description Tasks: Influenced by Graph Familiarity and Different Task Features

    ERIC Educational Resources Information Center

    Xi, Xiaoming

    2010-01-01

    Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on

  14. Aspects of Performance on Line Graph Description Tasks: Influenced by Graph Familiarity and Different Task Features

    ERIC Educational Resources Information Center

    Xi, Xiaoming

    2010-01-01

    Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on…

  15. GPD: a graph pattern diffusion kernel for accurate graph classification with applications in cheminformatics.

    PubMed

    Smalter, Aaron; Huan, Jun Luke; Jia, Yi; Lushington, Gerald

    2010-01-01

    Graph data mining is an active research area. Graphs are general modeling tools to organize information from heterogeneous sources and have been applied in many scientific, engineering, and business fields. With the fast accumulation of graph data, building highly accurate predictive models for graph data emerges as a new challenge that has not been fully explored in the data mining community. In this paper, we demonstrate a novel technique called graph pattern diffusion (GPD) kernel. Our idea is to leverage existing frequent pattern discovery methods and to explore the application of kernel classifier (e.g., support vector machine) in building highly accurate graph classification. In our method, we first identify all frequent patterns from a graph database. We then map subgraphs to graphs in the graph database and use a process we call "pattern diffusion" to label nodes in the graphs. Finally, we designed a graph alignment algorithm to compute the inner product of two graphs. We have tested our algorithm using a number of chemical structure data. The experimental results demonstrate that our method is significantly better than competing methods such as those kernel functions based on paths, cycles, and subgraphs. PMID:20431140

  16. Multithreaded Algorithms for Graph Coloring

    SciTech Connect

    Catalyurek, Umit V.; Feo, John T.; Gebremedhin, Assefaw H.; Halappanavar, Mahantesh; Pothen, Alex

    2012-10-21

    Graph algorithms are challenging to parallelize when high performance and scalability are primary goals. Low concurrency, poor data locality, irregular access pattern, and high data access to computation ratio are among the chief reasons for the challenge. The performance implication of these features is exasperated on distributed memory machines. More success is being achieved on shared-memory, multi-core architectures supporting multithreading. We consider a prototypical graph problem, coloring, and show how a greedy algorithm for solving it can be e*ectively parallelized on multithreaded architectures. We present in particular two di*erent parallel algorithms. The first relies on speculation and iteration, and is suitable for any shared-memory, multithreaded system. The second uses data ow principles and is targeted at the massively multithreaded Cray XMT system. We benchmark the algorithms on three di*erent platforms and demonstrate scalable runtime performance. In terms of quality of solution, both algorithms use nearly the same number of colors as the serial algorithm.

  17. Feature Tracking Using Reeb Graphs

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Day, Marcus S.; Bell, John B.; Pascucci, Valerio

    2010-08-02

    Tracking features and exploring their temporal dynamics can aid scientists in identifying interesting time intervals in a simulation and serve as basis for performing quantitative analyses of temporal phenomena. In this paper, we develop a novel approach for tracking subsets of isosurfaces, such as burning regions in simulated flames, which are defined as areas of high fuel consumption on a temperature isosurface. Tracking such regions as they merge and split over time can provide important insights into the impact of turbulence on the combustion process. However, the convoluted nature of the temperature isosurface and its rapid movement make this analysis particularly challenging. Our approach tracks burning regions by extracting a temperature isovolume from the four-dimensional space-time temperature field. It then obtains isosurfaces for the original simulation time steps and labels individual connected 'burning' regions based on the local fuel consumption value. Based on this information, a boundary surface between burning and non-burning regions is constructed. The Reeb graph of this boundary surface is the tracking graph for burning regions.

  18. Clique percolation in random graphs

    NASA Astrophysics Data System (ADS)

    Li, Ming; Deng, Youjin; Wang, Bing-Hong

    2015-10-01

    As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l graphs, which gives not only the exact solutions of the critical point, but also the corresponding order parameter. Based on this, we prove theoretically that the fraction ψ of cliques in the giant clique cluster always makes a continuous phase transition as the classical percolation. However, the fraction ϕ of vertices in the giant clique cluster for l >1 makes a step-function-like discontinuous phase transition in the thermodynamic limit and a continuous phase transition for l =1 . More interesting, our analysis shows that at the critical point, the order parameter ϕc for l >1 is neither 0 nor 1, but a constant depending on k and l . All these theoretical findings are in agreement with the simulation results, which give theoretical support and clarification for previous simulation studies of clique percolation.

  19. Analysis of the contact graph routing algorithm: Bounding interplanetary paths

    NASA Astrophysics Data System (ADS)

    Birrane, Edward; Burleigh, Scott; Kasch, Niels

    2012-06-01

    Interplanetary communication networks comprise orbiters, deep-space relays, and stations on planetary surfaces. These networks must overcome node mobility, constrained resources, and significant propagation delays. Opportunities for wireless contact rely on calculating transmit and receive opportunities, but the Euclidean-distance diameter of these networks (measured in light-seconds and light-minutes) precludes node discovery and contact negotiation. Propagation delay may be larger than the line-of-sight contact between nodes. For example, Mars and Earth orbiters may be separated by up to 20.8 min of signal propagation time. Such spacecraft may never share line-of-sight, but may uni-directionally communicate if one orbiter knows the other's future position. The Contact Graph Routing (CGR) approach is a family of algorithms presented to solve the messaging problem of interplanetary communications. These algorithms exploit networks where nodes exhibit deterministic mobility. For CGR, mobility and bandwidth information is pre-configured throughout the network allowing nodes to construct transmit opportunities. Once constructed, routing algorithms operate on this contact graph to build an efficient path through the network. The interpretation of the contact graph, and the construction of a bounded approximate path, is critically important for adoption in operational systems. Brute force approaches, while effective in small networks, are computationally expensive and will not scale. Methods of inferring cycles or other librations within the graph are difficult to detect and will guide the practical implementation of any routing algorithm. This paper presents a mathematical analysis of a multi-destination contact graph algorithm (MD-CGR), demonstrates that it is NP-complete, and proposes realistic constraints that make the problem solvable in polynomial time, as is the case with the originally proposed CGR algorithm. An analysis of path construction to complement hop-by-hop forwarding is presented as the CGR-EB algorithm. Future work is proposed to handle the presence of dynamic changes to the network, as produced by congestion, link disruption, and errors in the contact graph. We conclude that pre-computation, and thus CGR style algorithms, is the only efficient method of routing in a multi-node, multi-path interplanetary network and that algorithmic analysis is the key to its implementation in operational systems.

  20. Enabling Graph Appliance for Genome Assembly

    SciTech Connect

    Singh, Rina; Graves, Jeffrey A; Lee, Sangkeun; Sukumar, Sreenivas R; Shankar, Mallikarjun

    2015-01-01

    In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.

  1. A framework of joint graph embedding and sparse regression for dimensionality reduction.

    PubMed

    Xiaoshuang Shi; Zhenhua Guo; Zhihui Lai; Yujiu Yang; Zhifeng Bao; Zhang, David

    2015-04-01

    Over the past few decades, a large number of algorithms have been developed for dimensionality reduction. Despite the different motivations of these algorithms, they can be interpreted by a common framework known as graph embedding. In order to explore the significant features of data, some sparse regression algorithms have been proposed based on graph embedding. However, the problem is that these algorithms include two separate steps: (1) embedding learning and (2) sparse regression. Thus their performance is largely determined by the effectiveness of the constructed graph. In this paper, we present a framework by combining the objective functions of graph embedding and sparse regression so that embedding learning and sparse regression can be jointly implemented and optimized, instead of simply using the graph spectral for sparse regression. By the proposed framework, supervised, semisupervised, and unsupervised learning algorithms could be unified. Furthermore, we analyze two situations of the optimization problem for the proposed framework. By adopting an ?2,1-norm regularization for the proposed framework, it can perform feature selection and subspace learning simultaneously. Experiments on seven standard databases demonstrate that joint graph embedding and sparse regression method can significantly improve the recognition performance and consistently outperform the sparse regression method. PMID:25706635

  2. Strategic leadership: the essential skills.

    PubMed

    Schoemaker, Paul J H; Krupp, Steve; Howland, Samantha

    2013-01-01

    The more uncertain your environment, the greater the opportunity--if you have the leadership skills to capitalize on it. Research at the Wharton school and at the authors' consulting firm, involving more than 20,000 executives to date, has identified six skills that, when mastered and used in concert, allow leaders to think strategically and navigate the unknown effectively. They are the abilities to anticipate, challenge, interpret, decide, align, and learn. This article describes the six skills in detail and includes a self-assessment that will enable you to identify the ones that most need your attention. The authors have found that strength in one skill cannot easily compensate for a deficit in another. An adaptive strategic leader has learned to apply all six at once. PMID:23390746

  3. Attitudes towards Graphing Calculators in Developmental Mathematics

    ERIC Educational Resources Information Center

    Rajan, Shaun Thomas

    2013-01-01

    The purpose of this exploratory study was to examine instructor and student attitudes towards the use of the graphing calculator in the developmental mathematics classroom. A focus of the study was to see if instructors or students believed there were changes in the conceptual understanding of mathematics as a result of graphing calculator…

  4. Graph Coloring Used to Model Traffic Lights.

    ERIC Educational Resources Information Center

    Williams, John

    1992-01-01

    Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)

  5. A Ring Construction Using Finite Directed Graphs

    ERIC Educational Resources Information Center

    Bardzell, Michael

    2012-01-01

    In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…

  6. Developing Data Graph Comprehension. Third Edition

    ERIC Educational Resources Information Center

    Curcio, Frances

    2010-01-01

    Since the dawn of civilization, pictorial representations and symbols have been used to communicate simple statistics. Efficient and effective, they are still used today in the form of pictures and graphs to record and present data. Who can tie their shoes? How many calories are in your favorite food? Make data and graphs relevant and interesting…

  7. ON CLUSTERING TECHNIQUES OF CITATION GRAPHS.

    ERIC Educational Resources Information Center

    CHIEN, R.T.; PREPARATA, F.P.

    ONE OF THE PROBLEMS ENCOUNTERED IN CLUSTERING TECHNIQUES AS APPLIED TO DOCUMENT RETRIEVAL SYSTEMS USING BIBLIOGRAPHIC COUPLING DEVICES IS THAT THE COMPUTATIONAL EFFORT REQUIRED GROWS ROUGHLY AS THE SQUARE OF THE COLLECTION SIZE. IN THIS STUDY GRAPH THEORY IS APPLIED TO THIS PROBLEM BY FIRST MAPPING THE CITATION GRAPH OF THE DOCUMENT COLLECTION

  8. A Ring Construction Using Finite Directed Graphs

    ERIC Educational Resources Information Center

    Bardzell, Michael

    2012-01-01

    In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite

  9. Degree correlations in random geometric graphs.

    PubMed

    Antonioni, A; Tomassini, M

    2012-09-01

    Spatially embedded networks are important in several disciplines. The prototypical spatial network we assume is the Random Geometric Graph, of which many properties are known. Here we present new results for the two-point degree correlation function in terms of the clustering coefficient of the graphs for two-dimensional space in particular, with extensions to arbitrary finite dimensions. PMID:23031054

  10. Attitudes towards Graphing Calculators in Developmental Mathematics

    ERIC Educational Resources Information Center

    Rajan, Shaun Thomas

    2013-01-01

    The purpose of this exploratory study was to examine instructor and student attitudes towards the use of the graphing calculator in the developmental mathematics classroom. A focus of the study was to see if instructors or students believed there were changes in the conceptual understanding of mathematics as a result of graphing calculator

  11. TI-83 Graphing Calculator Keystroke Guide.

    ERIC Educational Resources Information Center

    Panik, Cathy

    This document presents keystrokes for the Texas Instrument (TI-83) graphing calculator. After presenting some basic TI-83 keystrokes, activities for student practice are listed. This is followed by keystrokes for TI-83 advanced functions such as evaluating function values, finding the zero of a function, finding the intersection of two graphs,

  12. Developing Data Graph Comprehension. Third Edition

    ERIC Educational Resources Information Center

    Curcio, Frances

    2010-01-01

    Since the dawn of civilization, pictorial representations and symbols have been used to communicate simple statistics. Efficient and effective, they are still used today in the form of pictures and graphs to record and present data. Who can tie their shoes? How many calories are in your favorite food? Make data and graphs relevant and interesting

  13. Generative Graph Prototypes from Information Theory.

    PubMed

    Han, Lin; Wilson, Richard C; Hancock, Edwin R

    2015-10-01

    In this paper we present a method for constructing a generative prototype for a set of graphs by adopting a minimum description length approach. The method is posed in terms of learning a generative supergraph model from which the new samples can be obtained by an appropriate sampling mechanism. We commence by constructing a probability distribution for the occurrence of nodes and edges over the supergraph. We encode the complexity of the supergraph using an approximate Von Neumann entropy. A variant of the EM algorithm is developed to minimize the description length criterion in which the structure of the supergraph and the node correspondences between the sample graphs and the supergraph are treated as missing data. To generate new graphs, we assume that the nodes and edges of graphs arise under independent Bernoulli distributions and sample new graphs according to their node and edge occurrence probabilities. Empirical evaluations on real-world databases demonstrate the practical utility of the proposed algorithm and show the effectiveness of the generative model for the tasks of graph classification, graph clustering and generating new sample graphs. PMID:26340255

  14. Cognitive Aids for Guiding Graph Comprehension

    ERIC Educational Resources Information Center

    Mautone, Patricia D.; Mayer, Richard E.

    2007-01-01

    This study sought to improve students' comprehension of scientific graphs by adapting scaffolding techniques used to aid text comprehension. In 3 experiments involving 121 female and 88 male college students, some students were shown cognitive aids prior to viewing 4 geography graphs whereas others were not; all students were then asked to write a

  15. Using a Microcomputer for Graphing Practice.

    ERIC Educational Resources Information Center

    Beichner, Robert J.

    1986-01-01

    Describes a laboratory exercise that introduces physics students to graphing. Presents the program format and sample output of a computer simulation of an experiment which tests the effects of sound intensity on the crawling speed of a snail. Provides students with practice in making exponential or logarithmic graphs. (ML)

  16. The Readability Graph Validated at Primary Levels.

    ERIC Educational Resources Information Center

    Fry, Edward B.

    The validity of Fry's Readability Graph for determining grade level readability scores was compared with the Spache Formula, the cloze technique, and oral reading in the case of seven primary-level books. Descriptions of these four indicated that to determine grade level, Fry's Readability Graph plots the total number of syllables with the total

  17. Critiquing the Culture of Computer Graphing Practices.

    ERIC Educational Resources Information Center

    Brasseur, Lee

    2001-01-01

    Argues that current approaches to computer graphing practices are ill suited to meet the complex needs of real users. Offers an overview of work in two major areas of graphing theory and research: the sociology of science and the educational research of mathematics and scientific students. Suggests what technical communicators can do to improve

  18. Cognitive Aids for Guiding Graph Comprehension

    ERIC Educational Resources Information Center

    Mautone, Patricia D.; Mayer, Richard E.

    2007-01-01

    This study sought to improve students' comprehension of scientific graphs by adapting scaffolding techniques used to aid text comprehension. In 3 experiments involving 121 female and 88 male college students, some students were shown cognitive aids prior to viewing 4 geography graphs whereas others were not; all students were then asked to write a…

  19. Pattern Perception and the Comprehension of Graphs.

    ERIC Educational Resources Information Center

    Pinker, Steven

    Three experiments tested the hypothesis that graphs convey information effectively because they can display global trends as geometric patterns that visual systems encode easily. A novel type of graph was invented in which angles/lengths of line segments joined end-to-end represented variables of rainfall and temperature of a set of months. It was

  20. Skills Center.

    ERIC Educational Resources Information Center

    Canter, Patricia; And Others

    The services of the Living Skills Center for the Visually Handicapped, a habilitative service for blind young adults, are described. It is explained that the Center houses its participants in their own apartments in a large complex and has served over 70 young people in 4 years. The evaluation section describes such assessment instruments as an…

  1. Skills Center.

    ERIC Educational Resources Information Center

    Canter, Patricia; And Others

    The services of the Living Skills Center for the Visually Handicapped, a habilitative service for blind young adults, are described. It is explained that the Center houses its participants in their own apartments in a large complex and has served over 70 young people in 4 years. The evaluation section describes such assessment instruments as an

  2. Coping Skills.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This annotated bibliography lists approximately 150 braille books and 300 audiocassettes of books which address coping skills for people in a variety of situations. All items listed are available in the network library collections provided by the National Library Service for the Blind and Physically Handicapped of the Library of Congress.

  3. Library Skills.

    ERIC Educational Resources Information Center

    Bhullar, Pushpajit K., Ed.; Lawhorne, Anne R., Ed.

    This guide is designed to acquaint students of the University of Missouri-Columbia with the facilities and resources of the Ellis Library, and is intended for students enrolled in Library Science 105: Library Skills. The guide is organized into sections dealing with search strategies and types of library materials. It opens with an orientation to

  4. Explanatory Skills.

    ERIC Educational Resources Information Center

    Miller, George A.

    In assessing the quality of science teaching for an effort such as the National Assessment of Educational Progress (NAEP), it is important to understand what is meant by scientific thinking--the search for explanations. Instruction should involve higher-order cognitive skill development, but it is difficult to measure reasoning and understanding…

  5. Leadership Skills

    ERIC Educational Resources Information Center

    Parish, Thomas S.

    2006-01-01

    While this may not be a "complete list" of what leadership skills one needs to effectively lead in any/every situation, it should provide a great overview of many of the things s/he needs to do, at least initially.

  6. Structure and strategy in encoding simplified graphs

    NASA Technical Reports Server (NTRS)

    Schiano, Diane J.; Tversky, Barbara

    1992-01-01

    Tversky and Schiano (1989) found a systematic bias toward the 45-deg line in memory for the slopes of identical lines when embedded in graphs, but not in maps, suggesting the use of a cognitive reference frame specifically for encoding meaningful graphs. The present experiments explore this issue further using the linear configurations alone as stimuli. Experiments 1 and 2 demonstrate that perception and immediate memory for the slope of a test line within orthogonal 'axes' are predictable from purely structural considerations. In Experiments 3 and 4, subjects were instructed to use a diagonal-reference strategy in viewing the stimuli, which were described as 'graphs' only in Experiment 3. Results for both studies showed the diagonal bias previously found only for graphs. This pattern provides converging evidence for the diagonal as a cognitive reference frame in encoding linear graphs, and demonstrates that even in highly simplified displays, strategic factors can produce encoding biases not predictable solely from stimulus structure alone.

  7. Network coherence in the web graphs

    NASA Astrophysics Data System (ADS)

    Ding, Qingyan; Sun, Weigang; Chen, Fangyue

    2015-10-01

    Network coherence is used to characterize the consensus dynamics with additive stochastic disturbances and can be described by Laplacian spectrum. In this paper, we mainly obtain the scalings of network coherence in the web graphs with a special feature that its fractal dimension is infinite. We then investigate the relationship between the scalings and fractal dimension. Based on the structures of web graphs, we obtain the relationships for Laplacian matrix and Laplacian eigenvalues between web graphs and their corresponding equilateral polygons. We also obtain analytical expressions for the sum of the reciprocals and square reciprocals of all nonzero Laplacian eigenvalues. Finally we calculate first and second order coherence and see that the scalings of network coherence with network size N are N and N3 , which shows that the scalings are not related to the fractal dimension of web graphs. In addition, the scalings of network coherence in web graphs are larger than those performed on some fractal networks.

  8. Graph Mining Meets the Semantic Web

    SciTech Connect

    Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan

    2015-01-01

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.

  9. Quantum graphs and random-matrix theory

    NASA Astrophysics Data System (ADS)

    Pluhař, Z.; Weidenmüller, H. A.

    2015-07-01

    For simple connected graphs with incommensurate bond lengths and with unitary symmetry we prove the Bohigas-Giannoni-Schmit (BGS) conjecture in its most general form. Using supersymmetry and taking the limit of infinite graph size, we show that the generating function for every (P,Q) correlation function for both closed and open graphs coincides with the corresponding expression of random-matrix theory. We show that the classical Perron-Frobenius operator is bistochastic and possesses a single eigenvalue +1. In the quantum case that implies the existence of a zero (or massless) mode of the effective action. That mode causes universal fluctuation properties. Avoiding the saddle-point approximation we show that for graphs that are classically mixing (i.e. for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap) and that do not carry a special class of bound states, the zero mode dominates in the limit of infinite graph size.

  10. On multiplicity of a quantum graph spectrum

    NASA Astrophysics Data System (ADS)

    Kac, I.; Pivovarchik, V.

    2011-03-01

    The Sturm-Liouville equations on the edges of a metric connected graph together with the boundary and matching conditions at the vertices generate a spectral problem for a self-adjoint operator. It is shown that if the graph is not cyclically connected, then the maximal multiplicity of an eigenvalue of such an operator is ? + gT - pTin, where ? is the cyclomatic number of the graph, and gT and pTin are the number of edges and the number of interior vertices, respectively, for the tree obtained by contracting all the cycles of the graph into vertices. If the graph is cyclically connected, then the maximal multiplicity of an eigenvalue is ? + 1.

  11. GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems

    SciTech Connect

    Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen; Schwan, Karsten

    2015-09-30

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host and the device.

  12. A First-Year Course That Teaches Research Skills

    ERIC Educational Resources Information Center

    Czarneski, Debra

    2013-01-01

    In the Fall semester of 2009, I taught a first-year course that focused on skills required to successfully complete undergraduate research. This paper will discuss the Simpson College first-year course requirements, my course goals, the graph theory topics covered, student feedback, and instructor reflection.

  13. The Effect of Graphing Calculators on Student Achievement in College Algebra and Pre-Calculus Mathematics Courses

    ERIC Educational Resources Information Center

    Hatem, Neil

    2010-01-01

    This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…

  14. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). PRE-SPC 11: SPC & Graphs. Instructor Book.

    ERIC Educational Resources Information Center

    Averitt, Sallie D.

    This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills in working with line graphs and teaching

  15. The representation of line graphs through audio-images

    SciTech Connect

    Mansur, D.L.; Blattner, M.M.; Joy, K.I.

    1984-09-25

    Sound-graphs, or graphs in sound, provide an alternative method for forming a holistic image of numerical data, specifically, line graphs. A prototype sound system was constructed to form an audio-image of line graphs with time plotted against pitch as the coordinate system. Software tools to manipulate the audio-image and allow individual exploration of the sound-graph are described. Human factors studies were conducted on the important features of graph characteristics in the sound-graph system as well as on tactile graphs.

  16. Degree distribution and assortativity in line graphs of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiangrong; Trajanovski, Stojan; Kooij, Robert E.; Van Mieghem, Piet

    2016-03-01

    Topological characteristics of links of complex networks influence the dynamical processes executed on networks triggered by links, such as cascading failures triggered by links in power grids and epidemic spread due to link infection. The line graph transforms links in the original graph into nodes. In this paper, we investigate how graph metrics in the original graph are mapped into those for its line graph. In particular, we study the degree distribution and the assortativity of a graph and its line graph. Specifically, we show, both analytically and numerically, the degree distribution of the line graph of an Erdős-Rényi graph follows the same distribution as its original graph. We derive a formula for the assortativity of line graphs and indicate that the assortativity of a line graph is not linearly related to its original graph. Additionally, line graphs of various graphs, e.g. Erdős-Rényi graphs, scale-free graphs, show positive assortativity. In contrast, we find certain types of trees and non-trees whose line graphs have negative assortativity.

  17. Empirical data for the semantic interpretation of prepositional phrases in medical documents.

    PubMed Central

    Romacker, M.; Hahn, U.

    2001-01-01

    We report on the results from an empirical study deal-ing with the semantic interpretation of prepositional phrases in medical free texts. We use a small number of semantic interpretation schemata only, which operate on well-defined configurations in dependency graphs. We provide a quantitative analysis of the performance of the semantic interpreter in terms of recall/precision data, and consider, in qualitative terms, the impact semantic interpretation patterns have on the construction of the underlying medical ontology. PMID:11825251

  18. Approximate von Neumann entropy for directed graphs

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Wilson, Richard C.; Comin, Csar H.; Costa, Luciano da F.; Hancock, Edwin R.

    2014-05-01

    In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks.

  19. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  20. System analysis through bond graph modeling

    NASA Astrophysics Data System (ADS)

    McBride, Robert Thomas

    2005-07-01

    Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.

  1. Massive graph visualization : LDRD final report.

    SciTech Connect

    Wylie, Brian Neil; Moreland, Kenneth D.

    2007-10-01

    Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphs from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.

  2. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE PAGESBeta

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; Lim, Seung-Hwan

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  3. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    SciTech Connect

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; Lim, Seung-Hwan

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existing graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.

  4. Interpreting Arterial Blood Gases Successfully.

    PubMed

    Larkin, Brenda G; Zimmanck, Robert J

    2015-10-01

    Arterial blood gas (ABG) analysis is a crucial skill for perioperative nurses, in particular the RN circulator. This article provides the physiological basis for assessing ABGs perioperatively and presents a systematic approach to blood gas analysis using the Romanski method. Blood gas sample data allow the reader to practice ABG interpretation. In addition, four case studies are presented that give the reader the opportunity to analyze ABGs within the context of surgical patient scenarios. The ability to accurately assess ABGs allows the perioperative nurse to assist surgical team members in restoring a patient's acid-base balance. PMID:26411819

  5. Computing the isoperimetric number of a graph

    SciTech Connect

    Golovach, P.A.

    1995-01-01

    Let G be a finite graph. Denote by {partial_derivative}X, where X {contained_in} VG, the set of edges of the graph G with one end in X and the other end in the set VG{backslash}X. The ratio i(G) = min {vert_bar}{vert_bar}X{vert_bar}/{vert_bar}X{vert_bar}, where the minimum is over all nonempty subsets X of the set VG such that {vert_bar}X{vert_bar} {le} {vert_bar} VG {vert_bar}/2, is called the isoperimetric number of the graph G. It is easy to see that the isoperimetric number may be used as a {open_quotes}measure of connectivity{close_quotes} of the graph. The problem of determining the isoperimetric number is clearly linked with graph partition problems, which often arise in various applications. The isoperimetric number is also important for studying Riemann surfaces. These and other applications of the isoperimetric number justify the analysis of graphs of this kind. The properties of the isoperimetric number are presented in more detail elsewhere. It is shown elsewhere that the computation of the isoperimetric number is an NP-hard problem for graphs with multiple edges. We will show that the decision problem {open_quotes}given the graph G and two integers s and t decide if i(G) {le} s/t{close_quotes} is NP-complete even for simple graphs with vertex degrees not exceeding 3. Note that the isoperimetric number of a tree can be computed by a known polynomial-time algorithm.

  6. Scale-invariant geometric random graphs

    NASA Astrophysics Data System (ADS)

    Xie, Zheng; Rogers, Tim

    2016-03-01

    We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to influence zones that depend on node position in space and time, mimicking the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale invariance for geometric random graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behavior. These properties are similar to those of empirically observed web graphs.

  7. Topological fisheye views for visualizing large graphs.

    PubMed

    Gansner, Emden R; Koren, Yehuda; North, Stephen C

    2005-01-01

    Graph drawing is a basic visualization tool that works well for graphs having up to hundreds of nodes and edges. At greater scale, data density and occlusion problems often negate its effectiveness. Conventional pan-and-zoom, multiscale, and geometric fisheye views are not fully satisfactory solutions to this problem. As an alternative, we propose a topological zooming method. It precomputes a hierarchy of coarsened graphs that are combined on-the-fly into renderings, with the level of detail dependent on distance from one or more foci. A related geometric distortion method yields constant information density displays from these renderings. PMID:16138555

  8. A heterogeneous graph-based recommendation simulator

    SciTech Connect

    Yeonchan, Ahn; Sungchan, Park; Lee, Matt Sangkeun; Sang-goo, Lee

    2013-01-01

    Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.

  9. The MultiThreaded Graph Library (MTGL)

    SciTech Connect

    2008-07-17

    The MultiThreaded Graph Library (MTGL) is a set of header files that implement graph algorithm in such a way that they can run on massively multithreaded architectures. It is based upon the Boost Graph Library, but doesn’t use Boost since the latter doesn’t run well on these architectures.

  10. Cognitive and attitudinal predictors related to graphing achievement among pre-service elementary teachers

    NASA Astrophysics Data System (ADS)

    Szyjka, Sebastian P.

    The purpose of this study was to determine the extent to which six cognitive and attitudinal variables predicted pre-service elementary teachers' performance on line graphing. Predictors included Illinois teacher education basic skills sub-component scores in reading comprehension and mathematics, logical thinking performance scores, as well as measures of attitudes toward science, mathematics and graphing. This study also determined the strength of the relationship between each prospective predictor variable and the line graphing performance variable, as well as the extent to which measures of attitude towards science, mathematics and graphing mediated relationships between scores on mathematics, reading, logical thinking and line graphing. Ninety-four pre-service elementary education teachers enrolled in two different elementary science methods courses during the spring 2009 semester at Southern Illinois University Carbondale participated in this study. Each subject completed five different instruments designed to assess science, mathematics and graphing attitudes as well as logical thinking and graphing ability. Sixty subjects provided copies of primary basic skills score reports that listed subset scores for both reading comprehension and mathematics. The remaining scores were supplied by a faculty member who had access to a database from which the scores were drawn. Seven subjects, whose scores could not be found, were eliminated from final data analysis. Confirmatory factor analysis (CFA) was conducted in order to establish validity and reliability of the Questionnaire of Attitude Toward Line Graphs in Science (QALGS) instrument. CFA tested the statistical hypothesis that the five main factor structures within the Questionnaire of Attitude Toward Statistical Graphs (QASG) would be maintained in the revised QALGS. Stepwise Regression Analysis with backward elimination was conducted in order to generate a parsimonious and precise predictive model. This procedure allowed the researcher to explore the relationships among the affective and cognitive variables that were included in the regression analysis. The results for CFA indicated that the revised QALGS measure was sound in its psychometric properties when tested against the QASG. Reliability statistics indicated that the overall reliability for the 32 items in the QALGS was .90. The learning preferences construct had the lowest reliability (.67), while enjoyment (.89), confidence (.86) and usefulness (.77) constructs had moderate to high reliabilities. The first four measurement models fit the data well as indicated by the appropriate descriptive and statistical indices. However, the fifth measurement model did not fit the data well statistically, and only fit well with two descriptive indices. The results addressing the research question indicated that mathematical and logical thinking ability were significant predictors of line graph performance among the remaining group of variables. These predictors accounted for 41% of the total variability on the line graph performance variable. Partial correlation coefficients indicated that mathematics ability accounted for 20.5% of the variance on the line graphing performance variable when removing the effect of logical thinking. The logical thinking variable accounted for 4.7% of the variance on the line graphing performance variable when removing the effect of mathematics ability.

  11. Interpretive Management: What General Managers Can Learn from Design.

    ERIC Educational Resources Information Center

    Lester, Richard K.; Piore, Michael J.; Malek, Kamal M.

    1998-01-01

    An analytical management approach reflects a traditional perspective and an interpretive approach involves a perspective suited to rapidly changing, unpredictable markets. Both approaches are valid, but each serves different purposes and calls for different strategies and skills. (JOW)

  12. Library Technician Skill Standards.

    ERIC Educational Resources Information Center

    Highline Community Coll., Des Moines, WA.

    This document presents skill standards for library technicians. Introductory sections describe the industry and the job, what skill standards are, how the library technician skill standards were developed, employability skills and critical competencies, and the SCANS (Secretary's Commission on Achieving Necessary Skills) foundation skills profile.

  13. Practical skills of the future innovator

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy

    2015-03-01

    Physics graduates face and often are disoriented by the complex and turbulent world of startups, incubators, emergent technologies, big data, social network engineering, and so on. In order to build the curricula that foster the skills necessary to navigate this world, we will look at the experiences at the Wolfram Science Summer School that gathers annually international students for already more than a decade. We will look at the examples of projects and see the development of such skills as innovative thinking, data mining, machine learning, cloud technologies, device connectivity and the Internet of things, network analytics, geo-information systems, formalized computable knowledge, and the adjacent applied research skills from graph theory to image processing and beyond. This should give solid ideas to educators who will build standard curricula adapted for innovation and entrepreneurship education.

  14. Graph-Based Norm Explanation

    NASA Astrophysics Data System (ADS)

    Croitoru, Madalina; Oren, Nir; Miles, Simon; Luck, Michael

    Norms impose obligations, permissions and prohibitions on individual agents operating as part of an organisation. Typically, the purpose of such norms is to ensure that an organisation acts in some socially (or mutually) beneficial manner, possibly at the expense of individual agent utility. In this context, agents are normaware if they are able to reason about which norms are applicable to them, and to decide whether to comply with or ignore them. While much work has focused on the creation of norm-aware agents, much less has been concerned with aiding system designers in understanding the effects of norms on a system. The ability to understand such norm effects can aid the designer in avoiding incorrect norm specification, eliminating redundant norms and reducing normative conflict. In this paper, we address the problem of norm understanding by providing explanations as to why a norm is applicable, violated, or in some other state. We make use of conceptual graph based semantics to provide a graphical representation of the norms within a system. Given knowledge of the current and historical state of the system, such a representation allows for explanation of the state of norms, showing for example why they may have been activated or violated.

  15. Basic visual observation skills training course: Appendix A. Final report

    SciTech Connect

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the course manual and materials.

  16. Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs

    PubMed Central

    2010-01-01

    Background Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. Results Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy) clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. Conclusions In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning algorithm that allows the decomposition of these objects in a comprehensive fashion. We validated our approach both on artificial and real-world data. It is readily applicable to any further problem. PMID:20961418

  17. High Dimensional Spectral Graph Theory and Non-backtracking Random Walks on Graphs

    NASA Astrophysics Data System (ADS)

    Kempton, Mark

    This thesis has two primary areas of focus. First we study connection graphs, which are weighted graphs in which each edge is associated with a d-dimensional rotation matrix for some fixed dimension d, in addition to a scalar weight. Second, we study non-backtracking random walks on graphs, which are random walks with the additional constraint that they cannot return to the immediately previous state at any given step. Our work in connection graphs is centered on the notion of consistency, that is, the product of rotations moving from one vertex to another is independent of the path taken, and a generalization called epsilon-consistency. We present higher dimensional versions of the combinatorial Laplacian matrix and normalized Laplacian matrix from spectral graph theory, and give results characterizing the consistency of a connection graph in terms of the spectra of these matrices. We generalize several tools from classical spectral graph theory, such as PageRank and effective resistance, to apply to connection graphs. We use these tools to give algorithms for sparsification, clustering, and noise reduction on connection graphs. In non-backtracking random walks, we address the question raised by Alon et. al. concerning how the mixing rate of a non-backtracking random walk to its stationary distribution compares to the mixing rate for an ordinary random walk. Alon et. al. address this question for regular graphs. We take a different approach, and use a generalization of Ihara's Theorem to give a new proof of Alon's result for regular graphs, and to extend the result to biregular graphs. Finally, we give a non-backtracking version of Polya's Random Walk Theorem for 2-dimensional grids.

  18. Fault-tolerant dynamic task graph scheduling

    SciTech Connect

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  19. Reproductive value in graph-structured populations.

    PubMed

    Maciejewski, Wes

    2014-01-01

    Evolutionary graph theory has grown to be an area of intense study. Despite the amount of interest in the field, it seems to have grown separate from other subfields of population genetics and evolution. In the current work I introduce the concept of Fisher's (1930) reproductive value into the study of evolution on graphs. Reproductive value is a measure of the expected genetic contribution of an individual to a distant future generation. In a heterogeneous graph-structured population, differences in the number of connections among individuals translate into differences in the expected number of offspring, even if all individuals have the same fecundity. These differences are accounted for by reproductive value. The introduction of reproductive value permits the calculation of the fixation probability of a mutant in a neutral evolutionary process in any graph-structured population for either the moran birth-death or death-birth process. PMID:24096097

  20. Determining X-chains in graph states

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Yi; Kampermann, Hermann; Bruß, Dagmar

    2016-02-01

    The representation of graph states in the X-basis as well as the calculation of graph state overlaps can efficiently be performed by using the concept of X-chains (Wu et al 2015 Phys. Rev. A 92 012322). We present a necessary and sufficient criterion for X-chains and show that they can efficiently be determined by the Bareiss algorithm. An analytical approach for searching X-chain groups of a graph state is proposed. Furthermore we generalize the concept of X-chains to so-called Euler chains, whose induced subgraphs are Eulerian. This approach helps to determine if a given vertex set is an X-chain and we show how Euler chains can be used in the construction of multipartite Bell inequalities for graph states.

  1. Bipartite graph partitioning and data clustering

    SciTech Connect

    Zha, Hongyuan; He, Xiaofeng; Ding, Chris; Gu, Ming; Simon, Horst D.

    2001-05-07

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, the authors propose a new data clustering method based on partitioning the underlying biopartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. They show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. They point out the connection of their clustering algorithm to correspondence analysis used in multivariate analysis. They also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, they apply their clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency.

  2. An Investigation of the Coauthor Graph.

    ERIC Educational Resources Information Center

    Logan, Elisabeth L.; Shaw, W. M., Jr.

    1987-01-01

    The role of the coauthor relationship in the structure of informal communications networks within disciplines is explored, and the validity of coauthor graphs used to map these relationships is tested for both small and large databases. (CLB)

  3. Graph Theory and the High School Student.

    ERIC Educational Resources Information Center

    Chartrand, Gary; Wall, Curtiss E.

    1980-01-01

    Graph theory is presented as a tool to instruct high school mathematics students. A variety of real world problems can be modeled which help students recognize the importance and difficulty of applying mathematics. (MP)

  4. Illinois Occupational Skill Standards: Machining Skills Cluster.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document of skill standards for the machining skills cluster serves as a guide to workforce preparation program providers in defining content for their programs and to employers to establish the skills and standards necessary for job acquisition. These 67 occupational skill standards describe what people should know and be able to do in an

  5. Continuous Time Group Discovery in Dynamic Graphs

    SciTech Connect

    Miller, K; Eliassi-Rad, T

    2010-11-04

    With the rise in availability and importance of graphs and networks, it has become increasingly important to have good models to describe their behavior. While much work has focused on modeling static graphs, we focus on group discovery in dynamic graphs. We adapt a dynamic extension of Latent Dirichlet Allocation to this task and demonstrate good performance on two datasets. Modeling relational data has become increasingly important in recent years. Much work has focused on static graphs - that is fixed graphs at a single point in time. Here we focus on the problem of modeling dynamic (i.e. time-evolving) graphs. We propose a scalable Bayesian approach for community discovery in dynamic graphs. Our approach is based on extensions of Latent Dirichlet Allocation (LDA). LDA is a latent variable model for topic modeling in text corpora. It was extended to deal with topic changes in discrete time and later in continuous time. These models were referred to as the discrete Dynamic Topic Model (dDTM) and the continuous Dynamic Topic Model (cDTM), respectively. When adapting these models to graphs, we take our inspiration from LDA-G and SSN-LDA, applications of LDA to static graphs that have been shown to effectively factor out community structure to explain link patterns in graphs. In this paper, we demonstrate how to adapt and apply the cDTM to the task of finding communities in dynamic networks. We use link prediction to measure the quality of the discovered community structure and apply it to two different relational datasets - DBLP author-keyword and CAIDA autonomous systems relationships. We also discuss a parallel implementation of this approach using Hadoop. In Section 2, we review LDA and LDA-G. In Section 3, we review the cDTM and introduce cDTMG, its adaptation to modeling dynamic graphs. We discuss inference for the cDTM-G and details of our parallel implementation in Section 4 and present its performance on two datasets in Section 5 before concluding in Section 6.

  6. Speculation and Historical Interpretation for Fifth and Sixth Graders.

    ERIC Educational Resources Information Center

    Schneider, Elizabeth; Gregory, Leslie A.

    2000-01-01

    Describes a unit for fifth- and sixth-grade students that helps develop critical thinking skills. Explains that students read the book, "Leonardo da Vinci" (Diane Stanley), to develop their historical interpretation skills and demonstrate that there is not just one right answer in history. (CMK)

  7. A software tool for dataflow graph scheduling

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1994-01-01

    A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.

  8. Accelerating semantic graph databases on commodity clusters

    SciTech Connect

    Morari, Alessandro; Castellana, Vito G.; Haglin, David J.; Feo, John T.; Weaver, Jesse R.; Tumeo, Antonino; Villa, Oreste

    2013-10-06

    We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.

  9. Program for Generating Graphs and Charts

    NASA Technical Reports Server (NTRS)

    Ackerson, C. T.

    1986-01-01

    Office Automation Pilot (OAP) Graphics Database system offers IBM personal computer user assistance in producing wide variety of graphs and charts and convenient data-base system, called chart base, for creating and maintaining data associated with graphs and charts. Thirteen different graphics packages available. Access graphics capabilities obtained in similar manner. User chooses creation, revision, or chartbase-maintenance options from initial menu; Enters or modifies data displayed on graphic chart. OAP graphics data-base system written in Microsoft PASCAL.

  10. On the Kirchhoff Index of Graphs

    NASA Astrophysics Data System (ADS)

    Das, Kinkar C.

    2013-09-01

    Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ ... ≥ μn-1 > mn = 0. The Kirchhoff index of G is defined as [xxx] In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus-Gaddum-type result for the Kirchhoff index.

  11. Graph mining of networks from genome biology

    SciTech Connect

    Chin, George; Nakamura, Grant C.; Chavarra-Miranda, Daniel; Sofia, Heidi J.

    2007-10-31

    We are developing an advanced toolkit for biological networks, using problems from genome biology to drive this work. We now share our experiences in graph analysis and visualization of microbial genome networks using a collection of new and existing graph mining tools and techniques. We address four key problems in genome biology, the organization of complete genome protein networks, feature extraction across chromosomes in microbial strains, the hierarchical structure of protein families and superfamilies, and positional clustering in the genome.

  12. Pre-Service Elementary Teachers' Understandings of Graphs

    ERIC Educational Resources Information Center

    Alacaci, Cengiz; Lewis, Scott; O'Brien, George E.; Jiang, Zhonghong

    2011-01-01

    Choosing graphs to display quantitative information is a component of "graph sense". An important aspect of pre-service elementary teachers' content knowledge; ability to choose appropriate graphs in applied contexts is investigated in this study. They were given three scenarios followed by four graphs representing the same quantitative data. They…

  13. Pre-Service Elementary Teachers' Understandings of Graphs

    ERIC Educational Resources Information Center

    Alacaci, Cengiz; Lewis, Scott; O'Brien, George E.; Jiang, Zhonghong

    2011-01-01

    Choosing graphs to display quantitative information is a component of "graph sense". An important aspect of pre-service elementary teachers' content knowledge; ability to choose appropriate graphs in applied contexts is investigated in this study. They were given three scenarios followed by four graphs representing the same quantitative data. They

  14. Interpretation training influences memory for prior interpretations.

    PubMed

    Salemink, Elske; Hertel, Paula; Mackintosh, Bundy

    2010-12-01

    Anxiety is associated with memory biases when the initial interpretation of the event is taken into account. This experiment examined whether modification of interpretive bias retroactively affects memory for prior events and their initial interpretation. Before training, participants imagined themselves in emotionally ambiguous scenarios to which they provided endings that often revealed their interpretations. Then they were trained to resolve the ambiguity in other situations in a consistently positive (n = 37) or negative way (n = 38) before they tried to recall the initial scenarios and endings. Results indicated that memory for the endings was imbued with the emotional tone of the training, whereas memory for the scenarios was unaffected. PMID:21171760

  15. Unimodular lattice triangulations as small-world and scale-free random graphs

    NASA Astrophysics Data System (ADS)

    Krger, B.; Schmidt, E. M.; Mecke, K.

    2015-02-01

    Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k?slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.

  16. Graph representation of protein free energy landscape

    SciTech Connect

    Li, Minghai; Duan, Mojie; Fan, Jue; Huo, Shuanghong; Han, Li

    2013-11-14

    The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation of free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.

  17. On convex relaxation of graph isomorphism

    PubMed Central

    Aflalo, Yonathan; Bronstein, Alexander; Kimmel, Ron

    2015-01-01

    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving 2n equality and n2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic. PMID:25713342

  18. On convex relaxation of graph isomorphism.

    PubMed

    Aflalo, Yonathan; Bronstein, Alexander; Kimmel, Ron

    2015-03-10

    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving n2 equality and n2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic. PMID:25713342

  19. Graph representation of protein free energy landscape

    PubMed Central

    Li, Minghai; Duan, Mojie; Fan, Jue; Han, Li; Huo, Shuanghong

    2013-01-01

    The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation of free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system. PMID:24320303

  20. A Graph Based Methodology for Temporal Signature Identification from HER

    PubMed Central

    Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang

    2015-01-01

    Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches.

  1. Using Observations to Interpret Magma Processes in the Sierra Nevada: An Undergraduate Petrology Laboratory Exercise

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.

    2003-12-01

    Undergraduate igneous and metamorphic petrology is often one of the few courses in which students use field, thin section, hand sample and geochemical observations to interpret a suite of related rocks. Many students may not have encountered the idea of separating observation from interpretation prior to petrology; yet being able to distinguish these is an important skill for any budding petrologist to learn. Labs that require students to integrate abstract concepts from the lecture portion of the course to present a coherent story based on observations are essential to producing students that are well versed in petrology. A capstone-type lab allows students use many of their recently acquired skills to solve real problems in petrology. These integrated labs can take a number of forms from a short lab looking at a few related thin sections, to a multi-week lab with specified tasks, to a semester-long project culminating in a paper or a presentation. For the past few years, I have used a suite of rocks from the Sierra Nevada batholith to give petrology students a capstone experience for the igneous portion of the course. Students are given thin sections with hand samples, a map and a table of geochemical analyses and asked to record hand-sample and thin section observations with the idea that these will be used to understand processes that were active during batholith generation. Because students are given geochemical analyses, they are also expected to experiment with the use of graphs (e.g., Harker and spider diagrams) to better understand tables of geochemical analyses. The students use observations about rocks and geochemistry to build a coherent story around these rocks; the final product is a short paper in which they use petrographic observations and geochemical diagrams to back up their interpretations. Although the lab presented is specifically designed around a set of thin sections housed at the University of Wisconsin Oshkosh for an upper level course, the lab is highly adaptable. I present some options for adapting this lab to any set of thin sections and hand samples with associated geochemical analyses. This lab can also be tailored to a variety of skill levels - from 2nd year introductory petrology to a graduate course.

  2. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    PubMed

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples. PMID:19336318

  3. Application of machine learning and expert systems to Statistical Process Control (SPC) chart interpretation

    NASA Technical Reports Server (NTRS)

    Shewhart, Mark

    1991-01-01

    Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.

  4. Graph optimized Laplacian eigenmaps for face recognition

    NASA Astrophysics Data System (ADS)

    Dornaika, F.; Assoum, A.; Ruichek, Y.

    2015-01-01

    In recent years, a variety of nonlinear dimensionality reduction techniques (NLDR) have been proposed in the literature. They aim to address the limitations of traditional techniques such as PCA and classical scaling. Most of these techniques assume that the data of interest lie on an embedded non-linear manifold within the higher-dimensional space. They provide a mapping from the high-dimensional space to the low-dimensional embedding and may be viewed, in the context of machine learning, as a preliminary feature extraction step, after which pattern recognition algorithms are applied. Laplacian Eigenmaps (LE) is a nonlinear graph-based dimensionality reduction method. It has been successfully applied in many practical problems such as face recognition. However the construction of LE graph suffers, similarly to other graph-based DR techniques from the following issues: (1) the neighborhood graph is artificially defined in advance, and thus does not necessary benefit the desired DR task; (2) the graph is built using the nearest neighbor criterion which tends to work poorly due to the high-dimensionality of original space; and (3) its computation depends on two parameters whose values are generally uneasy to assign, the neighborhood size and the heat kernel parameter. To address the above-mentioned problems, for the particular case of the LPP method (a linear version of LE), L. Zhang et al.1 have developed a novel DR algorithm whose idea is to integrate graph construction with specific DR process into a unified framework. This algorithm results in an optimized graph rather than a predefined one.

  5. A graph theoretic approach to scene matching

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1991-01-01

    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.

  6. A graph theoretic approach to scene matching

    NASA Astrophysics Data System (ADS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1991-08-01

    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.

  7. Unraveling Protein Networks with Power Graph Analysis

    PubMed Central

    Royer, Loc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael

    2008-01-01

    Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks. PMID:18617988

  8. Comprehension of Sign Language Interpreting: Deciphering a Complex Task Situation

    ERIC Educational Resources Information Center

    Marschark, Marc; Sapere, Patricia; Convertino, Carol; Seewagen, Rosemarie; Maltzen, Heather

    2004-01-01

    Remarkably few studies have examined the outcomes of sign language interpreting. Three experiments reported here examine deaf students' comprehension of interpreting in American Sign Language and English-based signing (transliteration) as a function of their sign language skills and preferences. In Experiments 1 and 2, groups of deaf students…

  9. Development of Students' Critical-Reasoning Skills through Content-Focused Activities in a General Education Course

    ERIC Educational Resources Information Center

    Fencl, Heidi S.

    2010-01-01

    Students in a general education science course made significant gains in scientific reasoning skills when they were taught using carefully designed hands-on activities and writing assignments. The activities required students to make use of scientific skills such as graphing, predicting outcomes under changing conditions, or designing experiments,

  10. DT-MRI segmentation using graph cuts

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan

    2007-03-01

    An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. In this paper, we extend the interactive multidimensional graph cuts segmentation technique to operate on DT-MRI data by utilizing latest advances in tensor calculus and diffusion tensor dissimilarity metrics. The user interactively selects certain tensors as object ("obj") or background ("bkg") to provide hard constraints for the segmentation. Additional soft constraints incorporate information about both regional tissue diffusion as well as boundaries between tissues of different diffusion properties. Graph cuts are used to find globally optimal segmentation of the underlying 3D DT-MR image among all segmentations satisfying the constraints. We develop a graph structure from the underlying DT-MR image with the tensor voxels corresponding to the graph vertices and with graph edge weights computed using either Log-Euclidean or the J-divergence tensor dissimilarity metric. The topology of our segmentation is unrestricted and both obj and bkg segments may consist of several isolated parts. We test our method on synthetic DT data and apply it to real 2D and 3D MRI, providing segmentations of the corpus callosum in the brain and the ventricles of the heart.

  11. Towards Scalable Graph Computation on Mobile Devices

    PubMed Central

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13? Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  12. Improved transcript isoform discovery using ORF graphs

    PubMed Central

    Majoros, William H.; Lebeck, Niel; Ohler, Uwe; Li, Song

    2014-01-01

    Motivation: High-throughput sequencing of RNA in vivo facilitates many applications, not the least of which is the cataloging of variant splice isoforms of protein-coding messenger RNAs. Although many solutions have been proposed for reconstructing putative isoforms from deep sequencing data, these generally take as their substrate the collective alignment structure of RNA-seq reads and ignore the biological signals present in the actual nucleotide sequence. The majority of these solutions are graph-theoretic, relying on a splice graph representing the splicing patterns and exon expression levels indicated by the spliced-alignment process. Results: We show how to augment splice graphs with additional information reflecting the biology of transcription, splicing and translation, to produce what we call an ORF (open reading frame) graph. We then show how ORF graphs can be used to produce isoform predictions with higher accuracy than current state-of-the-art approaches. Availability and implementation: RSVP is available as C++ source code under an open-source licence: http://ohlerlab.mdc-berlin.de/software/RSVP/. Contact: bmajoros@duke.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24659106

  13. Deformed graph laplacian for semisupervised learning.

    PubMed

    Gong, Chen; Liu, Tongliang; Tao, Dacheng; Fu, Keren; Tu, Enmei; Yang, Jie

    2015-10-01

    Graph Laplacian has been widely exploited in traditional graph-based semisupervised learning (SSL) algorithms to regulate the labels of examples that vary smoothly on the graph. Although it achieves a promising performance in both transductive and inductive learning, it is not effective for handling ambiguous examples (shown in Fig. 1). This paper introduces deformed graph Laplacian (DGL) and presents label prediction via DGL (LPDGL) for SSL. The local smoothness term used in LPDGL, which regularizes examples and their neighbors locally, is able to improve classification accuracy by properly dealing with ambiguous examples. Theoretical studies reveal that LPDGL obtains the globally optimal decision function, and the free parameters are easy to tune. The generalization bound is derived based on the robustness analysis. Experiments on a variety of real-world data sets demonstrate that LPDGL achieves top-level performance on both transductive and inductive settings by comparing it with popular SSL algorithms, such as harmonic functions, AnchorGraph regularization, linear neighborhood propagation, Laplacian regularized least square, and Laplacian support vector machine. PMID:25608310

  14. Three Complexity Results on Coloring P k -Free Graphs

    NASA Astrophysics Data System (ADS)

    Broersma, Hajo; Fomin, Fedor V.; Golovach, Petr A.; Paulusma, Danil

    We prove three complexity results on vertex coloring problems restricted to P k -free graphs, i.e., graphs that do not contain a path on k vertices as an induced subgraph. First of all, we show that the pre-coloring extension version of 5-coloring remains NP-complete when restricted to P 6-free graphs. Recent results of Hong et al. imply that this problem is polynomially solvable on P 5-free graphs. Secondly, we show that the pre-coloring extension version of 3-coloring is polynomially solvable for P 6-free graphs. This implies a simpler algorithm for checking the 3-colorability of P 6-free graphs than the algorithm given by Randerath and Schiermeyer. Finally, we prove that 6-coloring is NP-complete for P 7-free graphs. This problem was known to be polynomially solvable for P 5-free graphs and NP-complete for P 8-free graphs, so there remains one open case.

  15. An analysis of spectral transformation techniques on graphs

    NASA Astrophysics Data System (ADS)

    Djurović, Igor; Sejdić, Ervin; Bulatović, Nikola; Simeunović, Marko

    2015-05-01

    Emerging methods for the spectral analysis of graphs are analyzed in this paper, as graphs are currently used to study interactions in many fields from neuroscience to social networks. There are two main approaches related to the spectral transformation of graphs. The first approach is based on the Laplacian matrix. The graph Fourier transform is defined as an expansion of a graph signal in terms of eigenfunctions of the graph Laplacian. The calculated eigenvalues carry the notion of frequency of graph signals. The second approach is based on the graph weighted adjacency matrix, as it expands the graph signal into a basis of eigenvectors of the adjacency matrix instead of the graph Laplacian. Here, the notion of frequency is then obtained from the eigenvalues of the adjacency matrix or its Jordan decomposition. In this paper, advantages and drawbacks of both approaches are examined. Potential challenges and improvements to graph spectral processing methods are considered as well as the generalization of graph processing techniques in the spectral domain. Its generalization to the time-frequency domain and other potential extensions of classical signal processing concepts to graph datasets are also considered. Lastly, it is given an overview of the compressive sensing on graphs concepts.

  16. Field Geology Reasoning Skills in the Classroom

    NASA Astrophysics Data System (ADS)

    Richardson, Alan

    2013-04-01

    When geology students are confronted with their first rock exposure, they are often bewildered by the volume of information available and the need to filter out the irrelevant and unnecessary while recording the remainder in a format that lends itself to later analysis. In spite of the problems, the first experience of fieldwork provides many students with the inspiration to devote themselves to this branch of science. The critical factor appears to be the realisation that many of the vaguely interesting topics that have previously been studied in isolation all contribute to an understanding of the rocks in front of the observer. Even with only basic facts and limited understanding, the willing student rapidly gains a deeper appreciation of the ways in which the disparate fields of geoscience are inter-related. However, the initial enthusiasm this generates can be lost if the student is unable to record the information systematically and analyse it logically. The current project seeks to develop in students the intellectual skills necessary to analyse an exposure. In many ways finding the answers to any exposure's history is easy; the difficult part is formulating the right questions. By creating a series of 'Outcrop Exercises', I am seeking to imbue students with an appreciation of the way a structured series of questions can lead to understanding. If they go into the field knowing the sort of questions that they will have to ask themselves, they are more likely to understand the nature and purpose of the data they will have to collect. The earliest exercises were designed to enhance a stratigraphy course, and were intended for use by students who already had field experience. Rather than providing them with accepted facies models for the geological past, the data and questions with which they were provided allowed them to generate their own environmental interpretations. The success of these suggested that they had wider applicability: they could be used to develop essential reasoning skills before going into the field; they could form the basis of follow-up work after a field day, or could be used as a substitute for field work if severe weather prevented an excursion. Each Outcrop Exercise consists of an A3 data sheet, a question sheet, specimen cards and, if appropriate, topographic and geologic maps. The most important dimension of each exercise is the nature and structure of the questions, which begin by requiring the student to make simple observations and lead to a comprehensive interpretation of the exposure. The materials are intended to be used in a variety of ways: for example, if the resources are available it is preferable to replace the specimen cards with real specimens; if time is short, data processing can be omitted by supplying students with prepared graphs. With future developments, it will be possible to link exercises together to generate a geological history for a whole area from primary data. These exercises must not be seen as a substitute for real fieldwork, but it is hoped that they will enhance students' appreciation of the data that they must collect in the field.

  17. Interpretation reduces ecological impacts of visitors to world heritage site.

    PubMed

    Littlefair, Carolyn; Buckley, Ralf

    2008-07-01

    Minimal-impact interpretation is widely used to reduce the ecological impacts of visitors to protected areas. We tested whether verbal appeals and/or role-model demonstrations of minimal-impact behavior by a trained guide reduced noise, litter, and trampling impacts on hiking trails in a subtropical rainforest. Interpretation did reduce impacts significantly. Different interpretive techniques were more effective for different impacts. The experimental groups were mature, well-educated professionals; interpretation may differ in effectiveness for different visitors. Interpretation by skilled guides can indeed reduce visitor impacts in protected areas, especially if role modeling is combined with verbal appeals. PMID:18828278

  18. Visibility graph approach to exchange rate series

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi

    2009-10-01

    By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.

  19. Graph determined symbolic dynamics and hybrid systems

    NASA Astrophysics Data System (ADS)

    Ayers, Kimberly Danielle

    In this paper we explore the concept of symbolic dynamical systems whose structure is determined by a directed graph, and then discrete-continuous hybrid systems that arise from such dynamical systems. Typically, symbolic dynamics involve the study of a left shift of a bi-infinite sequence. We examine the case when the bi-infinite system is dictated by a graph; that is, the sequence is a bi-infinite path of a directed graph. We then use the concept to study a system of dynamical systems all on the same compact space M, where "switching" between the systems occurs as given by the bi-infinite sequence in question. The concepts of limit sets, chain recurrent sets, chaos, and Morse sets for these systems are explored.

  20. Directed transport in quantum star graphs

    NASA Astrophysics Data System (ADS)

    Yusupov, Jambul; Dolgushev, Maxim; Blumen, Alexander; Mülken, Oliver

    2016-01-01

    We study the quantum dynamics of Gaussian wave packets on star graphs whose arms feature each a periodic potential and an external time-dependent field. Assuming that the potentials and the field can be manipulated separately for each arm of the star, we show that it is possible to manipulate the direction of the motion of a Gaussian wave packet through the bifurcation point by a suitable choice of the parameters of the external fields. In doing so, one can achieve a transmission of the wave packet into the desired arm with nearly 70 % while also keeping the shape of the wave packet approximately intact. Since a star graph is the simplest element of many other complex graphs, the obtained results can be considered as the first step to wave packet manipulations on complex networks.

  1. Interactive Web Graphs with Fewer Restrictions

    NASA Technical Reports Server (NTRS)

    Fiedler, James

    2012-01-01

    There is growing popularity for interactive, statistical web graphs and programs to generate them. However, it seems that these programs tend to be somewhat restricted in which web browsers and statistical software are supported. For example, the software might use SVG (e.g., Protovis, gridSVG) or HTML canvas, both of which exclude most versions of Internet Explorer, or the software might be made specifically for R (gridSVG, CRanvas), thus excluding users of other stats software. There are more general tools (d3, Rapha lJS) which are compatible with most browsers, but using one of these to make statistical graphs requires more coding than is probably desired, and requires learning a new tool. This talk will present a method for making interactive web graphs, which, by design, attempts to support as many browsers and as many statistical programs as possible, while also aiming to be relatively easy to use and relatively easy to extend.

  2. Dynamic graph system for a semantic database

    SciTech Connect

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  3. Parallel processing of graph reachability in databases

    SciTech Connect

    Wolfson, O. ); Zhang, W. ); Butani, H. ); Kawaguchi, A.; Mok, K. )

    1992-08-01

    In this paper we consider parallel processing of a graph represented by a database relation, and we achieved two objectives. First, we propose a methodology for analyzing the speedup of a parallel processing strategy with the purpose of selecting at runtime one of several candidate strategies, depending the hardware architecture and the input graph. Second, we study the single source reachability problem, namely the problem of computing the set of nodes reachable from a given node in a directed graph. We propose several parallel strategies for solving this problem, and we analyze their performance using our new methodology. The analysis is confirmed experimentally in a UNIX-Ethernet environment. We also extend the results to the transitive closure problem.

  4. Interpretation in Sweden.

    ERIC Educational Resources Information Center

    Hultman, Sven-G.

    1987-01-01

    Describes some of the interpretive developments underway in Sweden. Discusses some programs in both natural and cultural interpretation. Calls for increasing the purpose and content of heritage preservation and conservation to the general public. (TW)

  5. Evidentiary Competence: Sixth Graders' Understanding for Gathering and Interpreting Evidence in Scientific Investigations

    ERIC Educational Resources Information Center

    Jeong, Heisawn; Songer, Nancy B.; Lee, Soo-Young

    2007-01-01

    With the growing emphasis on the development of scientific inquiry skills, there is a strong need for more research on students' ability to collect and interpret evidence. This paper calls attention to the notion of evidentiary competence that refers to the concepts and reasoning skills involved in the collection, organization, and interpretation

  6. Applied photo interpretation for airbrush cartography

    NASA Technical Reports Server (NTRS)

    Inge, J. L.; Bridges, P. M.

    1976-01-01

    New techniques of cartographic portrayal have been developed for the compilation of maps of lunar and planetary surfaces. Conventional photo interpretation methods utilizing size, shape, shadow, tone, pattern, and texture are applied to computer processed satellite television images. The variety of the image data allows the illustrator to interpret image details by inter-comparison and intra-comparison of photographs. Comparative judgements are affected by illumination, resolution, variations in surface coloration, and transmission or processing artifacts. The validity of the interpretation process is tested by making a representational drawing by an airbrush portrayal technique. Production controls insure the consistency of a map series. Photo interpretive cartographic portrayal skills are used to prepare two kinds of map series and are adaptable to map products of different kinds and purposes.

  7. Analytical calculation of average fixation time in evolutionary graphs

    NASA Astrophysics Data System (ADS)

    Askari, Marziyeh; Samani, Keivan Aghababaei

    2015-10-01

    The ability of a mutant individual to overtake the whole of a population is one of the fundamental problems in evolutionary dynamics. Fixation probability and Average Fixation Time (AFT) are two important parameters to quantify this ability. In this paper we introduce an analytical approach for exact calculation of AFT. Using this method we obtain AFT for two types of evolutionary graphs: cycle graph, as a highly homogeneous graph and star graph, as a highly heterogeneous graph. We use symmetries of these graphs to calculate AFT. Analytical results are confirmed with simulation. We also examine the effect of adding some random edges to each of these structures.

  8. An eigenspace projection clustering method for inexact graph matching.

    PubMed

    Caelli, Terry; Kosinov, Serhiy

    2004-04-01

    In this paper, we show how inexact graph matching (that is, the correspondence between sets of vertices of pairs of graphs) can be solved using the renormalization of projections of the vertices (as defined in this case by their connectivities) into the joint eigenspace of a pair of graphs and a form of relational clustering. An important feature of this eigenspace renormalization projection clustering (EPC) method is its ability to match graphs with different number of vertices. Shock graph-based shape matching is used to illustrate the model and a more objective method for evaluating the approach using random graphs is explored with encouraging results. PMID:15382655

  9. Better dual-task processing in simultaneous interpreters

    PubMed Central

    Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone

    2015-01-01

    Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232

  10. Competency in ECG Interpretation Among Medical Students

    PubMed Central

    Kopeć, Grzegorz; Magoń, Wojciech; Hołda, Mateusz; Podolec, Piotr

    2015-01-01

    Background Electrocardiogram (ECG) is commonly used in diagnosis of heart diseases, including many life-threatening disorders. We aimed to assess skills in ECG interpretation among Polish medical students and to analyze the determinants of these skills. Material/Methods Undergraduates from all Polish medical schools were asked to complete a web-based survey containing 18 ECG strips. Questions concerned primary ECG parameters (rate, rhythm, and axis), emergencies, and common ECG abnormalities. Analysis was restricted to students in their clinical years (4th–6th), and students in their preclinical years (1st–3rd) were used as controls. Results We enrolled 536 medical students (females: n=299; 55.8%), aged 19 to 31 (23±1.6) years from all Polish medical schools. Most (72%) were in their clinical years. The overall rate of good response was better in students in years 4th–5th than those in years 1st–3rd (66% vs. 56%; p<0.0001). Competency in ECG interpretation was higher in students who reported ECG self-learning (69% vs. 62%; p<0.0001) but no difference was found between students who attended or did not attend regular ECG classes (66% vs. 66%; p=0.99). On multivariable analysis (p<0.0001), being in clinical years (OR: 2.45 [1.35–4.46] and self-learning (OR: 2.44 [1.46–4.08]) determined competency in ECG interpretation. Conclusions Polish medical students in their clinical years have a good level of competency in interpreting the primary ECG parameters, but their ability to recognize ECG signs of emergencies and common heart abnormalities is low. ECG interpretation skills are determined by self-education but not by attendance at regular ECG classes. Our results indicate qualitative and quantitative deficiencies in teaching ECG interpretation at medical schools. PMID:26541993

  11. Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.

    PubMed

    Itoh, Takayuki; Klein, Karsten

    2015-01-01

    Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset. PMID:26415161

  12. Graph certificates, lookahead in dynamic graph problems, and assembly planning in robotics

    SciTech Connect

    Khanna, S.; Motwani, R.; Wilson, R.H.

    1994-12-31

    Despite intensive efforts in the area of dynamic graph algorithms, no efficient algorithms are known for the dynamic versions of some basic graph problems such as strong connectivity and transitive closure. We provide some explanation for this lack of success by presenting quadratic lower bounds on the strong certificate complexity of such problems, thereby establishing the inapplicability of the only known general technique for designing dynamic graph algorithms, viz., sparsification. These results also provide evidence of the inherent intractability of such dynamic graph problems. Some of our results are based on a general technique for obtaining lower bounds on the strong certificate complexity for a class of graph properties by establishing a relationship with the witness complexity. In many real applications of dynamic graph problems, a certain amount of lookahead is available. Specifically, we consider the problems of assembly planning in robotics and the maintenance of relations in databases which, respectively, give rise to dynamic strong connectivity and transitive closure. We exploit the (naturally available) lookahead in these two applications to circumvent the inherent complexity of the dynamic graph problems. We propose a variant of sparsification, viz., lookahead based sparsification, and apply it to obtain the first efficient fully dynamic algorithms for strong connectivity and transitive closure.

  13. Entanglement in eight-qubit graph states

    NASA Astrophysics Data System (ADS)

    Cabello, Adn; Lpez-Tarrida, Antonio J.; Moreno, Pilar; Portillo, Jos R.

    2009-06-01

    Any 8-qubit graph state belongs to one of the 101 equivalence classes under local unitary operations within the Clifford group. For each of these classes we obtain a representative which requires the minimum number of controlled- Z gates for its preparation, and calculate the Schmidt measure for the 8-partite split, and the Schmidt ranks for all bipartite splits. This results into an extension to 8 qubits of the classification of graph states proposed by Hein, Eisert, and Briegel [M. Hein, J. Eisert, H.J. Briegel, Phys. Rev. A 69 (2004) 062311].

  14. Reduced graphs and their applications in chemoinformatics.

    PubMed

    Birchall, Kristian; Gillet, Valerie J

    2011-01-01

    Reduced graphs provide summary representations of chemical structures by collapsing groups of connected atoms into single nodes while preserving the topology of the original structures. This chapter reviews the extensive work that has been carried out on reduced graphs at The University of Sheffield and includes discussion of their application to the representation and search of Markush structures in patents, the varied approaches that have been implemented for similarity searching, their use in cluster representation, the different ways in which they have been applied to extract structure-activity relationships and their use in encoding bioisosteres. PMID:20838970

  15. Graphing techniques for materials laboratory using Excel

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1994-01-01

    Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.

  16. Graph-state basis for Pauli channels

    SciTech Connect

    Chen Xiaoyu; Jiang Lizhen

    2011-05-15

    Quantum capacities of Pauli channels are not additive, a degenerate quantum code may improve the hashing bound of the capacity. The difficulty in approaching the capacity is how to calculate the coherent information of a generic degenerate quantum code. Using graph state basis, we greatly reduce the problem for the input of quantum error-correcting code. We show that for a graph diagonal state passing through a Pauli channel the output state is diagonalizable and the joint output state of the system and ancilla is block diagonalizable. When the input state is an equal probable mixture of codewords of a stabilizer code, the coherent information can be analytically obtained.

  17. Isomorphisms between Petri nets and dataflow graphs

    NASA Technical Reports Server (NTRS)

    Kavi, Krishna M.; Buckles, Billy P.; Bhat, U. Narayan

    1987-01-01

    Dataflow graphs are a generalized model of computation. Uninterpreted dataflow graphs with nondeterminism resolved via probabilities are shown to be isomorphic to a class of Petri nets known as free choice nets. Petri net analysis methods are readily available in the literature and this result makes those methods accessible to dataflow research. Nevertheless, combinatorial explosion can render Petri net analysis inoperative. Using a previously known technique for decomposing free choice nets into smaller components, it is demonstrated that, in principle, it is possible to determine aspects of the overall behavior from the particular behavior of components.

  18. Quasiperiodic graphs at the onset of chaos.

    PubMed

    Luque, B; Cordero-Gracia, M; Gmez, M; Robledo, A

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers. PMID:24483542

  19. PolyGraph: a Polymer Visualization system

    NASA Astrophysics Data System (ADS)

    Cutkosky, Ashok; Tarazi, Najeeb; Lieberman Aiden, Erez

    2012-02-01

    Rapid advances in computational hardware and parallelization have made complex simulations of large polymers increasingly ubiquitous. However, visualizing such simulations remains a challenge. Here we present PolyGraph, a Blender-powered visualization system for complex polymer simulations. As a specific example, we study molecular dynamics simulations of condensing polymers. We illustrate our initial simulation results, suggesting that formation of local beads is an initial step in the condensation process. (This finding is consistent with earlier conjectures about polymer condensation.) PolyGraph makes it possible to create precise and visually appealing clips of polymer simulations. *contributed equally

  20. Quasiperiodic graphs at the onset of chaos

    NASA Astrophysics Data System (ADS)

    Luque, B.; Cordero-Gracia, M.; Gómez, M.; Robledo, A.

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.

  1. Dual velocity graphs in spatial kinematics

    NASA Astrophysics Data System (ADS)

    Baciu, George

    1996-03-01

    This article introduces a high-level topological representation for general multibody systems, the spatial directed graph. This simplified topological structure emphasizes the principal aspects of motion in multilink systems and forms a concise representation for the entire class of kinematically constrained multibody systems. It is shown that certain kinematic invariants with respect to this representation allow the simple formulation of kinematic constraints. In this context, it is observed that the only variables that are amenable to an operational algebra associated with this graph are the dual velocities. This formalism represents the starting point for the automatic generation of motion equations for generic multibody systems with applications in motion animation, virtual reality, robotics.

  2. From Cognitive Maps to Cognitive Graphs

    PubMed Central

    Chrastil, Elizabeth R.; Warren, William H.

    2014-01-01

    We investigate the structure of spatial knowledge that spontaneously develops during free exploration of a novel environment. We present evidence that this structure is similar to a labeled graph: a network of topological connections between places, labeled with local metric information. In contrast to route knowledge, we find that the most frequent routes and detours to target locations had not been traveled during learning. Contrary to purely topological knowledge, participants typically traveled the shortest metric distance to a target, rather than topologically equivalent but longer paths. The results are consistent with the proposal that people learn a labeled graph of their environment. PMID:25389769

  3. The asymptotics of large constrained graphs

    NASA Astrophysics Data System (ADS)

    Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2014-05-01

    We show, through local estimates and simulation, that if one constrains simple graphs by their densities ? of edges and ? of triangles, then asymptotically (in the number of vertices) for over 95% of the possible range of those densities there is a well-defined typical graph, and it has a very simple structure: the vertices are decomposed into two subsets V1 and V2 of fixed relative size c and 1 - c, and there are well-defined probabilities of edges, gjk, between vj ? Vj, and vk ? Vk. Furthermore the four parameters c, g11, g22 and g12 are smooth functions of (?, ?) except at two smooth phase transition curves.

  4. Journalists as Interpretive Communities.

    ERIC Educational Resources Information Center

    Zelizer, Barbie

    1993-01-01

    Proposes viewing journalists as members of an interpretive community (not a profession) united by its shared discourse and collective interpretations of key public events. Applies the frame of the interpretive community to journalistic discourse about two events central for American journalists--Watergate and McCarthyism. (SR)

  5. Translation and Interpretation.

    ERIC Educational Resources Information Center

    Nicholson, Nancy Schweda

    1995-01-01

    Examines recent trends in the fields of translation and interpretation, focusing on translation and interpretation theory and practice, language-specific challenges, computer-assisted translation, machine translation, subtitling, and translator and interpreter training. An annotated bibliography discusses seven important works in the field. (112

  6. Interpreting. PEPNet Tipsheet

    ERIC Educational Resources Information Center

    Darroch, Kathy; Marshall, Liza

    1998-01-01

    An interpreter's role is to facilitate communication and convey all auditory and signed information so that both hearing and deaf individuals may fully interact. The common types of services provided by interpreters are: (1) American Sign Language (ASL) Interpretation--a visual-gestural language with its own linguistic features; (2) Sign Language…

  7. Interpreting. PEPNet Tipsheet

    ERIC Educational Resources Information Center

    Darroch, Kathleen

    2010-01-01

    An interpreter's role is to facilitate communication and convey all auditory and signed information so that both hearing and deaf individuals may fully interact. The common types of services provided by interpreters are: (1) American Sign Language (ASL) Interpretation--a visual-gestural language with its own linguistic features; (2) Sign Language…

  8. On the nullity of a graph with cut-points?

    PubMed Central

    Gong, Shi-Cai; Xu, Guang-Hui

    2012-01-01

    Let G be a simple graph of order n and A(G) be its adjacency matrix. The nullity of a graph G, denoted by ?(G), is the multiplicity of the eigenvalue zero in the spectrum of A(G). Denote by Ck and Lk the set of all connected graphs with k induced cycles and the set of line graphs of all graphs in Ck, respectively. In 1998, Sciriha [I. Sciriha, On singular line graphs of trees, Congr. Numer. 135 (1998) 7391] show that the order of every tree whose line graph is singular is even. Then Gutman and Sciriha [I. Gutman, I. Sciriha, On the nullity of line graphs of trees, Discrete Math. 232 (2001) 3545] show that the nullity set of L0 is {0,1}. In this paper, we investigate the nullity of graphs with cut-points and deduce some concise formulas. Then we generalize Scirihas result, showing that the order of every graph G is even if such a graph G satisfies that G?Ck and ?(L(G))=k+1, and the nullity set of Lk is {0,1,,k,k+1} for any given k, where L(G) denotes the line graph of the graph G. PMID:22215910

  9. Basic visual observation skills training course: Appendix B. Final report

    SciTech Connect

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the in-class exercises in the five skill areas; pre- and post-course exercises in closure, hidden figures, map memory, and mental rotations; the final examination; a training evaluation form; and the integrating exercise.

  10. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  11. A cultural study of a science classroom and graphing calculator-based technology

    NASA Astrophysics Data System (ADS)

    Casey, Dennis Alan

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.

  12. GRAPH WAVELET ALIGNMENT KERNELS FOR DRUG VIRTUAL SCREENING

    PubMed Central

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-01-01

    In this paper we introduce a novel graph classification algorithm and demonstrate its efficacy in drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to create features capturing graph local topology. We design a novel graph kernel function to utilize the created feature to build predictive models for chemicals. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than 10 fold speed up. PMID:19507286

  13. Comparison Graph of Sea Ice Minimum - 2010 - Duration: 14 seconds.

    NASA Video Gallery

    This animated graph tracks the retreat of sea ice, measured in millions of square kilometers, averaged from the start of the satellite record in 1979 through 2000 (white). Next, the graph follows t...

  14. Evolving Polygons Revisited: Inequalities and Computer Graphing

    ERIC Educational Resources Information Center

    Abramovich, Sergei; Brouwer, Peter

    2009-01-01

    This paper was developed with the goal of enhancing the mathematical preparation of secondary school teachers in the technological paradigm. It shows how two-variable inequalities can be utilized as models for the construction of geometric objects using the software Graphing Calculator 3.5 (produced by Pacific Tech) as a relation grapher. An…

  15. An Ellipse Morphs to a Cosine Graph!

    ERIC Educational Resources Information Center

    King, L .R.

    2013-01-01

    We produce a continuum of curves all of the same length, beginning with an ellipse and ending with a cosine graph. The curves in the continuum are made by cutting and unrolling circular cones whose section is the ellipse; the initial cone is degenerate (it is the plane of the ellipse); the final cone is a circular cylinder. The curves of the

  16. Contextualized trajectory parsing with spatiotemporal graph.

    PubMed

    Liu, Xiaobai; Lin, Liang; Jin, Hai

    2013-12-01

    This work investigates how to automatically parse object trajectories in surveillance videos, which aims at jointly solving three subproblems: 1) spatial segmentation, 2) temporal tracking, and 3) object categorization. We present a novel representation spatiotemporal graph (ST-Graph) in which: 1) Graph nodes express the motion primitives, each representing a short sequence of small-size patches over consecutive images, and 2) every two neighbor nodes are linked with either a positive edge or a negative edge to describe their collaborative or exclusive relationship of belonging to the same object trajectory. Phrasing the trajectory parsing as a graph multicoloring problem, we propose a unified probabilistic formulation to integrate various types of context knowledge as informative priors. An efficient composite cluster sampling algorithm is employed in search of the optimal solution by exploiting both the collaborative and the exclusive relationships between nodes. The proposed framework is evaluated over challenging videos from public datasets, and results show that it can achieve state-of-the-art tracking accuracy. PMID:24136437

  17. Marking Student Programs Using Graph Similarity

    ERIC Educational Resources Information Center

    Naude, Kevin A.; Greyling, Jean H.; Vogts, Dieter

    2010-01-01

    We present a novel approach to the automated marking of student programming assignments. Our technique quantifies the structural similarity between unmarked student submissions and marked solutions, and is the basis by which we assign marks. This is accomplished through an efficient novel graph similarity measure ("AssignSim"). Our experiments

  18. Colour mathematics: with graphs and numbers

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2009-07-01

    The different combinations involved in additive and subtractive colour mixing can often be difficult for students to remember. Using transmission graphs for filters of the primary colours and a numerical scheme to write out the relationships are good exercises in analytical thinking that can help students recall the combinations rather than just attempting to memorize them.

  19. Communication Graph Generator for Parallel Programs

    Energy Science and Technology Software Center (ESTSC)

    2014-04-08

    Graphator is a collection of relatively simple sequential programs that generate communication graphs/matrices for commonly occurring patterns in parallel programs. Currently, there is support for five communication patterns: two-dimensional 4-point stencil, four-dimensional 8-point stencil, all-to-alls over sub-communicators, random near-neighbor communication, and near-neighbor communication.

  20. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522