Science.gov

Sample records for graphite reactor physics

  1. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  2. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  3. FSV experience in support of the GT-MHR reactor physics, fuel performance, and graphite

    SciTech Connect

    Baxter, A.M.; McEachern, D.; Hanson, D.L.; Vollman, R.E.

    1994-11-01

    The Fort St. Vrain (FSV) power plant was the most recent operating graphite-moderated, helium-cooled nuclear power plant in the United States. Many similarities exist between the FSV design and the current design of the GT-MHR. Both designs use graphite as the basic building blocks of the core, as structural material, in the reflectors, and as a neutron moderator. Both designs use hexagonal fuel elements containing cylindrical fuel rods with coated fuel particles. Helium is the coolant and the power densities vary by less than 5%. Since material and geometric properties of the GT-MHR core am very similar to the FSV core, it is logical to draw upon the FSV experience in support of the GT-MHR design. In the Physics area, testing at FSV during the first three cycles of operation has confirmed that the calculational models used for the core design were very successful in predicting the core nuclear performance from initial cold criticality through power operation and refueling. There was excellent agreement between predicted and measured initial core criticality and control rod positions during startup. Measured axial flux distributions were within 5% of the predicted value at the peak. The isothermal temperature coefficient at zero power was in agreement within 3%, and even the calculated temperature defect over the whole operating range for cycle 3 was within 8% of the measured defect. In the Fuel Performance area, fuel particle coating performance, and fission gas release predictions and an overall plateout analysis were performed for decommissioning purposes. A comparison between predicted and measured fission gas release histories of Kr-85m and Xe-138 and a similar comparison with specific circulator plateout data indicated good agreement between prediction and measured data. Only I-131 plateout data was overpredicted, while Cs-137 data was underpredicted.

  4. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  5. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  6. Optimized Conditioning of Activated Reactor Graphite

    SciTech Connect

    Tress, G.; Doehring, L.; Pauli, H.; Beer, H.-F.

    2002-02-25

    The research reactor DIORIT at the Paul Scherrer Institute was decommissioned in 1993 and is now being dismantled. One of the materials to be conditioned is activated reactor graphite, approximately 45 tons. A cost effective conditioning method has been developed. The graphite is crushed to less than 6 mm and added to concrete and grout. This graphite concrete is used as matrix for embedding dismantling waste in containers. The waste containers that would have been needed for separate conditioning and disposal of activated reactor graphite are thus saved. Applying the new method, the cost can be reduced from about 55 SFr/kg to about 17 SFr/kg graphite.

  7. US graphite reactor D&D experience

    SciTech Connect

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  8. WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  10. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. . Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. ); Croessmann, D.; Whitley, J. ); Holland, D.; Smolik, G. ); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  11. Physical aging in graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time.

  12. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  13. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

    SciTech Connect

    Grover, S.B.; Metcalfe, M.P.

    2002-03-14

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on the ir graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment.

  14. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

    SciTech Connect

    Grover, Stanley Blaine; Metcalfe, M. P.

    2002-04-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on their graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment.

  15. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    SciTech Connect

    Strizak, Joe P; Burchell, Timothy D; Windes, Will

    2011-12-01

    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements for nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.

  16. TSX graphite for extended use in the N-Reactor

    SciTech Connect

    Kennedy, C.R.

    1985-08-01

    This report reviews the limited amount of irradiation data available for grade TSX graphite with the purpose of obtaining reasonable estimates of material behavior. The results are enhanced by obtaining generalized behavior characteristics demonstrated by similar grades of graphite, such as CSF, AGOT, and PGA. Intent of this work is to furnish the necessary coefficients to describe the material behavior for inclusion in the constitutive equations for the anisotropic graphite grade TSX. Estimates of the free-dimensional changes of TSX graphite as a function of temperature and fluence have been made and shown to be in good agreement with the data. The effects of irradiation on other physical properties, such as elastic moduli, conductivity, and coefficient of thermal expansion, are also described. The irradiation creep characteristics of TSX graphite are also estimated on the basis of data for similar grades of graphite in the US and Europe. Crude approximations of stresses generated in the keyed structure were made to demonstrate the magnitude of the problem. The results clearly predict that the filler-block keys will fail and the tube-block keys will not. It is also indicated that the overall stack height growth will be increased by 25 to 38 mm (1 to 1.5 in.) because of creep.

  17. INITIAL COMPARISON OF BASELINE PHYSICAL AND MECHANICAL PROPERTIES FOR THE VHTR CANDIDATE GRAPHITE GRADES

    SciTech Connect

    Carroll, Mark C

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration that is capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades

  18. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  19. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    SciTech Connect

    Hawari, Ayman I

    2011-08-30

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 1021 to 1022 n/cm2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: 1) simulate radiation damage in graphite under various irradiation and temperature conditions, 2) generate the thermal neutron scattering cross sections for damaged graphite, and 3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  20. Disparate changes in the physical properties of graphite. [HTGR

    SciTech Connect

    Morgan, W.C.

    1983-07-01

    The strength of graphite is rapidly degraded by small amounts of oxidation; thus, where graphite is used as a structural material (such as the core-support components of a High Temperature Gas-Cooled Reactor) it is highly desirable that the strength of these components can be assessed by nondestructive means. This author has shown that large disparate changes (either increases or decreases) in ultrasonic velocities, elastic moduli, and/or compressive strength can occur during the initial stages of oxidation; thereafter, the continued changes with oxidation are best-fit as a linear function of density. The purpose of this paper is to examine in more detail the disparate changes in the elastic moduli and compressive strength of oxidized graphite samples functions of density.

  1. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  2. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    SciTech Connect

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  3. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  4. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  5. REACTOR HAVING NaK-UO$sub 2$ SLURRY HELICALLY POSITIONED IN A GRAPHITE MODERATOR

    DOEpatents

    Rodin, M.B.; Carter, J.C.

    1962-05-15

    A reactor utilizing 20% enriched uranium consists of a central graphite island in cylindrical form, with a spiral coil of tubing fitting against the central island. An external graphite moderator is placed around the central island and coil. A slurry of uranium dioxide dispersed in alkali metal passes through the coil to transfer heat externally to the reactor. There are also conventional controls for regulating the nuclear reaction. (AEC)

  6. A safety assessment of the use of graphite in nuclear reactors licensed by the US NRC

    SciTech Connect

    Schweitzer, D.G.; Gurinsky, D.H.; Kaplan, E.; Sastre, C.

    1987-09-01

    This report reviews existing literature and knowledge on graphite burning and on stored energy accumulation and releases in order to assess what role, if any, a stored energy release can have in initiating or contributing to hypothetical graphite burning scenarios in research reactors. It also addresses the question of graphite ignition and self-sustained combustion in the event of a loss-of-coolant accident (LOCA). The conditions necessary to initiate and maintain graphite burning are summarized and discussed. From analyses of existing information it is concluded that only stored energy accumulations and releases below the burning temperature (650/sup 0/C) are pertinent. After reviewing the existing knowledge on stored energy it is possible to show that stored energy releases do not occur spontaneously, and that the maximum stored energy that can be released from any reactor containing graphite is a very small fraction of the energy produced during the first few minutes of a burning incident. The conclusions from these analyses are that the potential to initiate or maintain a graphite burning incident is essentially independent of the stored energy in the graphite, and depends on other factors that are unique for these reactors, research reactors, and for Fort St. Vrain. In order to have self-sustained rapid graphite oxidation in any of these reactors, certain necessary conditions of geometry, temperature, oxygen supply, reaction product removal, and a favorable heat balance must be maintained. There is no new evidence associated with either the Windscale Accident or the Chernobyl Accident that indicates a credible potential for a graphite burning accident in any of the reactors considered in this review.

  7. Light water reactor health physics.

    PubMed

    Prince, Robert J; Bradley, Scott E

    2004-11-01

    In this article an overview of the historical development of light water reactor health physics programs is presented. Operational health physics programs have developed and matured as experience in operating and maintaining light water reactors has been gained. Initial programs grew quickly in both size and complexity with the number and size of nuclear units under construction and in operation. Operational health physics programs evolved to face various challenges confronted by the nuclear industry, increasing the effectiveness of radiological safety measures. Industry improvements in radiological safety performance have resulted in significant decreases in annual collective exposures from a high value of 790 person-rem in 1980 to 117 person-rem per reactor in 2002. Though significant gains have been made, the continued viability of the nuclear power industry is confronted with an aging workforce, as well as the challenges posed by deregulation and the need to maintain operational excellence. PMID:15551785

  8. Light water reactor health physics.

    PubMed

    Prince, Robert J; Bradley, Scott E

    2005-06-01

    In this article an overview of the historical development of light water reactor health physics programs is presented. Operational health physics programs have developed and matured as experience in operating and maintaining light water reactors has been gained. Initial programs grew quickly in both size and complexity with the number and size of nuclear units under construction and in operation. Operational health physics programs evolved to face various challenges confronted by the nuclear industry, increasing the effectiveness of radiological safety measures. Industry improvements in radiological safety performance have resulted in significant decreases in annual collective exposures from a high value of 790 person-rem in 1980 to 117 person-rem per reactor in 2002. Though significant gains have been made, the continued viability of the nuclear power industry is confronted with an aging workforce, as well as the challenges posed by deregulation and the need to maintain operational excellence. PMID:15891460

  9. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite

    NASA Astrophysics Data System (ADS)

    Strativnov, Eugene V.

    2015-05-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  10. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.

    PubMed

    Strativnov, Eugene V

    2015-12-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising. PMID:26058505

  11. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    SciTech Connect

    Brown, Thomas; Poncet, Bernard

    2013-07-01

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. The BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36

  12. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  13. Activation analysis of concrete and graphite in the experimental reactor RUS.

    PubMed

    Cometto, M; Ridikas, D; Aubert, M C; Damoy, F; Ancius, D

    2005-01-01

    The decommissioning and dismantling of nuclear installations after their service life involves the necessary disassembling, handling and disposing of a large amount of radioactive equipment and structures. In particular, the concrete that has been used as a biological reactor shield and graphite that has been used as a moderator-reflector represent the majority of waste, requiring geological disposal. To reduce this undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the activations of the structures should be accurately evaluated. In the framework of the decommissioning and the dismantling of the experimental reactor of the University of Strasbourg, detailed activation estimates have been conducted to characterise the graphite and the structural materials present in the reactor environment. For this purpose, the chemical compositions of fresh graphite samples and different types of concrete have been determined by activation analysis in the research reactors OSIRIS and ORPHEE of CEA Saclay (France). Then, the activations of graphite, concrete and other materials have been calculated in the whole reactor, as a function of the three main nuclear data libraries, i.e. ENDF, JEF and JENDL. In parallel, the activations of representative graphite and concrete samples have been measured experimentally. The comparison of theoretical predictions with experimental values validates the approach and the methodology used in the present study and tests the consistency and the reliability of the nuclear data used for activation analysis. We believe that a similar approach could also be used for the decommissioning of industrial nuclear reactors. PMID:16381692

  14. Requirements for Reactor Physics Design

    SciTech Connect

    Diamond,D.J.

    2008-04-11

    It has been recognized that there is a need for requirements and guidance for design and operation of nuclear power plants. This is becoming more important as more reactors are being proposed to be built. In parallel with activities in individual countries are norms established by international organizations. This paper discusses requirements/guidance for neutronic design and operation as promulgated by the U.S. Nuclear Regulatory Commission (NRC). As an example, details are given for one reactor physics parameter, namely, the moderator temperature reactivity coefficient. The requirements/guidance from the NRC are discussed in the context of those generated for the International Atomic Energy Agency. The requirements/guidance are not identical from the two sources although they are compatible.

  15. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  16. Radiation Effects in Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    The requirements for a solid moderator are reviewed and the reasons that graphite has become the solid moderator of choice discussed. The manufacture and properties of some currently available near-isotropic and isotropic grades are described. The major features of a graphite moderated reactors are briefly outlined. Displacement damage and the induced structural and dimensional changes in graphite are described. Recent characterization work on nano-carbons and oriented pyrolytic graphites that have shed new light on graphite defect structures are reviewed, and the effect of irradiation temperature on the defect structures is highlighted. Changes in the physical properties of nuclear graphite caused by neutron irradiation are reported. Finally, the importance of irradiation induced creep is presented, along with current models and their deficiencies.

  17. Ultra-thin Graphitic Film: Synthesis and Physical Properties.

    PubMed

    Kaplas, Tommi; Kuzhir, Polina

    2016-12-01

    A scalable technique of chemical vapor deposition (CVD) growth of ultra-thin graphitic film is proposed. Ultra-thin graphitic films grown by a one-step CVD process on catalytic copper substrate have higher crystallinity than pyrolytic carbon grown on a non-catalytic surface and appear to be more robust than a graphene monolayer. The obtained graphitic material, not thicker than 8 nm, survives during the transfer process from a Cu substrate without a template polymer layer, typically used in the graphene transfer process to protect graphene. This makes the transfer process much more simple and cost-effective. Having electrical and optical properties compatible with what was observed for a few layers of CVD graphene, the proposed ultra-thin graphitic film offers new avenues for implementing 2D materials in real-world devices. PMID:26831692

  18. Ultra-thin Graphitic Film: Synthesis and Physical Properties

    NASA Astrophysics Data System (ADS)

    Kaplas, Tommi; Kuzhir, Polina

    2016-02-01

    A scalable technique of chemical vapor deposition (CVD) growth of ultra-thin graphitic film is proposed. Ultra-thin graphitic films grown by a one-step CVD process on catalytic copper substrate have higher crystallinity than pyrolytic carbon grown on a non-catalytic surface and appear to be more robust than a graphene monolayer. The obtained graphitic material, not thicker than 8 nm, survives during the transfer process from a Cu substrate without a template polymer layer, typically used in the graphene transfer process to protect graphene. This makes the transfer process much more simple and cost-effective. Having electrical and optical properties compatible with what was observed for a few layers of CVD graphene, the proposed ultra-thin graphitic film offers new avenues for implementing 2D materials in real-world devices.

  19. Probing Unparticle Physics in Reactor Neutrinos

    SciTech Connect

    Bolanos, A.

    2008-11-13

    Unparticle physics is studied by using reactor neutrino data. We obtain limits to the scalar unparticle couplings depending on different values for the parameter d. We found that, as has been already noticed, reactor neutrino data is a good tool to put constraints on unparticle physics. Thanks to a detailed analysis of the experimental characteristics of reactor data we find better constraints than the previously reported.

  20. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  1. Method to Assess the Radionuclide Inventory of Irradiated Graphite from Gas-Cooled Reactors - 13072

    SciTech Connect

    Poncet, Bernard

    2013-07-01

    About 17,000 t of irradiated graphite waste will be produced from the decommissioning of the six French gas-cooled nuclear reactors. Determining the radionuclide (RN) content of this waste is of relevant importance for safety reasons and in order to determine the best way to manage them. For many reasons the impurity content that gave rise to the RNs in irradiated graphite by neutron activation during operation is not always well known and sometimes actually unknown. So, assessing the RN content by the use of traditional calculation activation, starting from assumed impurity content, leads to a false assessment. Moreover, radiochemical measurements exhibit very wide discrepancies especially on RN corresponding to precursor at the trace level such as natural chlorine corresponding to chlorine 36. This wide discrepancy is unavoidable and is due to very simple reasons. The level of impurity is very low because the uranium fuel used at that very moment was not enriched, so it was a necessity to have very pure nuclear grade graphite and the very low size of radiochemical sample is a simple technical constraint because device size used to get mineralization product for measurement purpose is limited. The assessment of a radionuclide inventory only based on few number of radiochemical measurements lead in most cases, to a gross over or under-estimation that is detrimental for graphite waste management. A method using an identification calculation-measurement process is proposed in order to assess a radiological inventory for disposal sizing purpose as precise as possible while guaranteeing its upper character. This method present a closer approach to the reality of the main phenomenon at the origin of RNs in a reactor, while also incorporating the secondary effects that can alter this result such as RN (or its precursor) release during reactor operation. (authors)

  2. Microscopic physical and chemical properties of graphite intercalation compounds

    SciTech Connect

    Eklund, P.C.

    1992-08-24

    Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

  3. Surface chemistry and physics of deuterium retention in lithiated graphite

    SciTech Connect

    Taylor, C. N.; Krstic, Predrag S; Allain, J. P.; Heim, B.; Skinner, C. H.; Kugel, H.

    2011-01-01

    Lithium wall conditioning in TFTR, CDX-U, T-11M, TJ-II and NSTX is found to yield enhanced plasma performance manifest, in part, through improved deuterium particle control. X-ray photoelectron spectroscopy (XPS) experiments examine the affect of D irradiation on lithiated graphite and show that the surface chemistry of lithiated graphite after D ion bombardment (500 eV/amu) is fundamentally different from that of non-Li conditioned graphite. Instead of simple LiD bonding seen in pure liquid Li, graphite introduces additional complexities. XPS spectra show that Li-O-D (533.0 {+-} 0.6 eV) and Li-C-D (291.4 {+-} 0.6 eV) bonds, for a nominal Li dose of 2 {micro}m, become 'saturated' with D at fluences between 3.8 and 5.2 x 10{sup 17} cm{sup -2}. Atomistic modeling indicate that Li-O-D-C interactions may be a result of multibody effects as opposed to molecular bonding.

  4. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    SciTech Connect

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  5. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste

    NASA Astrophysics Data System (ADS)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Khodja, H.

    2015-06-01

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO2-cooled nuclear fission reactors (called UNGG for "Uranium Naturel-Graphite-Gaz") to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D+ ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO2) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the total amount produced

  6. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  7. Evaluation of graphite/steam interactions for ITER (International Thermonuclear Experimental Reactor) accident scenarios

    SciTech Connect

    Smolik, G.R.; Merrill, B.J.; Piet, S.J.; Holland, D.F.

    1990-01-01

    This paper presents the results of an experimental/analytical study designed to determine the quantity of hydrogen generated during an accident involving coolant leakage into the plasma chamber of the International Thermonuclear Experimental Reactor (ITER). This hydrogen could represent a potential explosive hazard, provided the proper conditions exist, causing machine damage and release of radioactive material. We measured graphite/steam reaction rates for several graphites and carbon-based composites at temperatures between 1000 and 1700{degree}C. The effects of steam flow rate and partial pressure were also examined. The measured reaction rates correlated well with two Arrhenius type relationships. We used the relationships for GraphNOL N3M in thermal model to determine that for ITER the quantity of hydrogen produced would range between 5 and 35 kg, depending upon how the graphite tiles are attached to the first wall. While 5 kg is not a significant concern, 35 kg presents an explosive hazard. 16 refs., 7 figs., 1 tab.

  8. 2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012

    SciTech Connect

    Fertig, Herbert

    2012-06-22

    This conference will highlight the urgency for research on graphitic carbon materials and gather scientists in physics, chemistry, and engineering to tackle the challenges in this field. The conference will focus on scalable synthesis, characterization, novel physical and electronic properties, structure-properties relationship studies, and new applications of the carbon materials. Contributors

  9. Physics: A New Reactor Physics Analysis Toolkit

    SciTech Connect

    C. Rabiti; Y. Wang; G. Palmiotti; H. Hiruta; J. Cogliati; A. Alfonsi

    2011-06-01

    In the last year INL has internally pursued the development of a new reactor analysis tool: PHISICS. The software is built in a modular approach to simplify the independent development of modules by different teams and future maintenance. Most of the modules at the time of this summary are still under development (time dependent transport driver, depletion, cross section I/O and interpolation, generalized perturbation theory), while the transport solver INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) has already been widely used1, 2, 3, 4. For this reason we will focus mainly on the presentation of the transport solver INSTANT

  10. Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-05-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any

  11. Reactor Physics Characterization of the HTR Module with UCO Fuel

    SciTech Connect

    Gerhard Strydom

    2011-01-01

    ABSTRACT The HTR Module [1] is a graphite-moderated, helium cooled pebble bed High Temperature Reactor (HTR) design that has been extensively used as a reference template for the former South African and current Chinese HTR [2] programs. This design utilized spherical fuel elements packed into a dynamic pebble bed, consisting of TRISO coated uranium oxide (UO2) fuel kernels with a U-235 enrichment of 7.8% and a Heavy Metal loading of 7 grams per pebble. The main objective of this study is to compare several important reactor physics and core design parameters for the HTR Module and an identical design utilizing UCO fuel kernels. Fuel kernels of this type are currently being tested in the Idaho National Laboratory’s (INL) Advanced Test Reactor (ATR) as part of the larger Next Generation Nuclear Plant (NGNP) project. The PEBBED-THERMIX [3] code, which was developed specifically for the analysis of pebble bed HTRs, was used to compare the coupled neutronic and thermal fluid performance of the two designs.

  12. Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

  13. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    SciTech Connect

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  14. Physics design of the upgraded TREAT reactor

    SciTech Connect

    Bhattacharyya, S.K.; Lell, R.M.; Liaw, J.R.; Ulrich, A.J.; Wade, D.C.; Yang, S.T.

    1980-01-01

    With the deferral of the Safety Test Facility (STF), the TREAT Upgrade (TU) reactor has assumed a lead role in the US LMFBR safety test program for the foreseeable future. The functional requirements on TU require a significant enhancement of the capability of the current TREAT reactor. A design of the TU reactor has been developed that modifies the central 11 x 11 fuel assembly array of the TREAT reactor such as to provide the increased source of hard spectrum neutrons necessary to meet the functional requirements. A safety consequence of the increased demands on TU is that the self limiting operation capability of TREAT has proved unattainable, and reliance on a safety grade Plant Protection System is necessary to ensure that no clad damage occurs under postulated low-probability reactivity accidents. With that constraint, the physics design of TU provides a means of meeting the functional requirements with a high degree of confidence.

  15. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-10-01

    The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  16. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    SciTech Connect

    Rigali, M.J.; Nagy, B.

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 {+-} 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab.

  17. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  18. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    SciTech Connect

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may be exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.

  19. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    SciTech Connect

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A.; Shaw, S.E.

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  20. Finite Element Based Stress Analysis of Graphite Component in High Temperature Gas Cooled Reactor Core Using Linear and Nonlinear Irradiation Creep Models

    SciTech Connect

    Mohanty, Subhasish; Majumdar, Saurindranath

    2015-01-01

    Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  1. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor

    NASA Astrophysics Data System (ADS)

    Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo

    2015-01-01

    A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 105 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 105 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 105 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10-12 m2/s, much less than 1.21 × 10-6 m2/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe135 penetration.

  2. NGNP Graphite Selection and Acquisition Strategy

    SciTech Connect

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  3. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  4. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    SciTech Connect

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A

    2011-05-31

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  5. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  6. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    DeHart, Mark D; Bowman, Stephen M

    2011-01-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  7. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    Mark D. DeHart; Stephen M. Bowman

    2011-05-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  8. Critical Configuration and Physics Mesaurements for Graphite Reflected Assemblies of U(93.15)O2 Fuel Rods (1.27-CM Pitch)

    SciTech Connect

    Margaret A. Marshall

    2011-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory's Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950's efforts were made to study 'power plants for the production of electrical power in space vehicles'. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in FY 1964, 1965, and 1966. A summary of the program's effort was compiled in 1967. The delayed critical experiments served as a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated 253 stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. 'The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.' The experiment studied within this evaluation was the first of the series and had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Information for this evaluation was compiled from Reference 1 and 2, reports on subsequent experiments in the series, and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

  9. Evaluated Neutron Nuclear Data for Reactor Physics Calculations.

    Energy Science and Technology Software Center (ESTSC)

    1988-09-15

    Version 00 The data file KEDAK contains the evaluated neutron nuclear data for a number of materials important for the reactor physics, specific physical experiments, burn up calculations, shielding and other applications.

  10. OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15’, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  11. Computational prediction of dust production in graphite moderated pebble bed reactors

    NASA Astrophysics Data System (ADS)

    Rostamian, Maziar

    The scope of the work reported here, which is the computational study of graphite wear behavior, supports the Nuclear Engineering University Programs project "Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" funded by the US Department of Energy. In this work, modeling and simulating the contact mechanics, as anticipated in a PBR configuration, is carried out for the purpose of assessing the amount of dust generated during a full power operation year of a PBR. A methodology that encompasses finite element analysis (FEA) and micromechanics of wear is developed to address the issue of dust production and its quantification. Particularly, the phenomenon of wear and change of its rate with sliding length is the main focus of this dissertation. This work studies the wear properties of graphite by simulating pebble motion and interactions of a specific type of nuclear grade graphite, IG-11. This study consists of two perspectives: macroscale stress analysis and microscale analysis of wear mechanisms. The first is a set of FEA simulations considering pebble-pebble frictional contact. In these simulations, the mass of generated graphite particulates due to frictional contact is calculated by incorporating FEA results into Archard's equation, which is a linear correlation between wear mass and wear length. However, the experimental data by Johnson, University of Idaho, revealed that the wear rate of graphite decreases with sliding length. This is because the surfaces of the graphite pebbles become smoother over time, which results in a gradual decrease in wear rate. In order to address the change in wear rate, a more detailed analysis of wear mechanisms at room temperature is presented. In this microscale study, the wear behavior of graphite at the asperity level is studied by simulating the contact between asperities of facing surfaces. By introducing the effect of asperity removal on wear rate, a nonlinear

  12. Evaluation of graphite/steam interactions for ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect

    Smolik, G.R.; Merrill, B.J.; Piet, S.J.; Holland, D.F.

    1990-09-01

    In this report we present the results of an experimental/analytical study designed to determine the quantity of hydrogen generated during a coolant inleakage accident in ITER. This hydrogen could represent a potential explosive hazard, provided the proper conditions exist, causing machine damage and release of radioactive material. We have measured graphite/steam reaction rates for several graphites and carbon-based composites at temperatures between 1000 C and 1700 C. The effects of steam flow rate, and partial pressure were also examined. The measured reaction rates correlated well with two Arrhenius type relationships. We have used the relationships for GraphNOL N3M in a thermal model to determine that for ITER the quantity of hydrogen produced would range between 5 and 35 kg, depending upon how the graphite tiles are attached to the first wall. While 5 kg is not a significant concern, 35 kg presents an explosive hazard. 20 refs., 14 figs., 1 tab.

  13. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  14. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies.

  15. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  16. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    SciTech Connect

    Huy, N.Q.; Thong, H.V.; Khang, N.P.

    1994-12-31

    The Dalat nuclear research reactor was reconstructed from the TRIGA Mark II reactor, built in 1963 with a nominal power of 250 kW, and reached its planned nominal power of 500 kW for the first time in February 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at a deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc.

  17. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  18. Study of interaction between radioactive nuclides and graphite surface by the first-principles and statistic physics

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofeng; Fang, Chao; Li, Xin; Lai, Wensheng; Sun, Lifeng; Liang, Tongxiang

    2013-11-01

    The adsorption and desorption of four kinds of main radioactive productions (cesium, iodine, strontium and silver) on graphite surface in high temperature gas cooled reactors (HTGRs) have been studied. Using the first-principles density-functional theory, adsorptive geometry, energy and electron structure on the perfect and defective graphite surfaces have been calculated. It turns out that the adsorption of Cs, I and Sr atoms belongs to chemisorption while the adsorption of Ag is a pure physisorption. When introducing a vacancy in graphite surface, nuclide adatoms will be trapped by the vacancy and form chemical bonds with three nearest neighbor carbon atoms, leading to significant increase of the adsorption energy. In addition, a model of grand canonical ensemble is employed to deduce the adsorption rate as a function of temperature and partial pressure of nuclides produced. The transition temperate from adsorption to desorption of nuclides on graphite surface is defined as the inflexion point of the adsorption rate and its variation with nuclide density is obtained.

  19. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  20. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  1. METHODS AND RESULTS OF RECONSTRUCTION OF NOBLE GAS RELEASES FROM THE STACKS OF THE MAYAK PA GRAPHITE REACTORS OVER THE WHOLE PERIOD OF THEIR OPERATION

    SciTech Connect

    Glagolenko, Y. V.; Drozhko, Evgeniy G.; Mokrov, Y.; Pyatin, N. P.; Rovny, Sergey I.; Anspaugh, L. R.; Napier, Bruce A.

    2008-06-01

    Brief analysis of design features and operational modes of Mayak PA industrial graphite-uranium reactors (PUGRs) is given. The above mentioned Mayak PA PUGRs determined the rates of releases of radioactive noble gases (RNG) from activation (41Ar) and fission (isotopes of Krypton and Xenon) through the vent stack of the reactor. Information is given on methods and results of experimental determination of RNG atmospheric releases for the period starting from 1965 till PUGRs decommissioning in 1987-1990. A calculation method for reconstruction of radioactive noble gas releases is proposed and justified. The results of reconstruction are given. It is shown that maximum rates of RNG releases from PUGRs high stacks were observed in the 1950s, when ordinary atmospheric air was used as a cover gas for the reactor graphite stacks and gas purification systems (flow-type gas holders) had not been installed yet.

  2. Determination of Neutron Spectra in a Graphite Sphere for Fusion Reactor Studies

    NASA Astrophysics Data System (ADS)

    Bashter, I. B.; Cooper, P. N.

    Calculated and experimental results for the neutron spectra at different radii in a graphite sphere irradiated with 14.1 MeV neutrons were shown to be in satisfactory agreement over the energy range 14.1 to 1.8 MeV neutrons. A group of curves were constructed which gives the radius of a graphite sphere shield required to attenuate the neutron intensity to a certain value. The data set used in the present work, with carbon-12 cross section, is shown to be useful for spherical calculations.Translated AbstractDie Bestimmung der Neutronenspektren in einer GraphitkugelDie Übereinstimmung experimentell bestimmter und berechneter Neutronenspektren in Abhängigkeit vom Ort in einer Graphitkugel wird in einem Energiebereich von 14,1 bis 1,8 MeV (bei einer Ausgangsenergie von 14,1 MeV je Neutron) gezeigt. Eine Gruppe von Kurven wird konstruiert, die den für eine bestimmte Dämpfung der Neutronenintensität notwendigen Radius einer Graphitkugel angeben. Es wird nachgewiesen, daß die in der Arbeit benutzte Datenbank für den 12C-Wirkungsquerschnitt in sphärischen Geometrien anwendbar ist.

  3. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    SciTech Connect

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  4. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, G.; Byun, T. S.; Pappano, P.; Snead, L. L.; Burchell, T. D.

    2015-07-01

    We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.

  5. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    SciTech Connect

    Vasudevamurthy, Gokul; Byun, Thak Sang; Pappano, Pete; Snead, Lance L.; Burchell, Tim D.

    2015-03-13

    We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mmdiameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.

  6. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR GRAPHITE REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)

    SciTech Connect

    Margaret A. Marshall

    2012-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first experiment in the series was evaluated in HEU-COMP-FAST-001. It had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, which is studied in this evaluation, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The experiment has been determined to represent an acceptable benchmark experiment. Information for this evaluation was compiled from published reports on all three parts of the experimental series (Reference 1-5) and the experimental logbook as

  7. Computational mathematics and physics of fusion reactors.

    PubMed

    Garabedian, Paul R

    2003-11-25

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  8. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  9. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  10. Lessons Learned from the Application of Bulk Characterization to Individual Containers on the Brookhaven Graphite Research Reactor Decommissioning Project at Brookhaven National Laboratory - 12056

    SciTech Connect

    Kneitel, Terri; Rocco, Diane

    2012-07-01

    When conducting environmental cleanup or decommissioning projects, characterization of the material to be removed is often performed when the material is in-situ. The actual demolition or excavation and removal of the material can result in individual containers that vary significantly from the original bulk characterization profile. This variance, if not detected, can result in individual containers exceeding Department of Transportation regulations or waste disposal site acceptance criteria. Bulk waste characterization processes were performed to initially characterize the Brookhaven Graphite Research Reactor (BGRR) graphite pile and this information was utilized to characterize all of the containers of graphite. When the last waste container was generated containing graphite dust from the bottom of the pile, but no solid graphite blocks, the material contents were significantly different in composition from the bulk waste characterization. This error resulted in exceedance of the disposal site waste acceptance criteria. Brookhaven Science Associates initiated an in-depth investigation to identify the root causes of this failure and to develop appropriate corrective actions. The lessons learned at BNL have applicability to other cleanup and demolition projects which characterize their wastes in bulk or in-situ and then extend that characterization to individual containers. (authors)

  11. Chapter 20: Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    Graphite is truly a unique material. Its structure, from the nano- to the millimeter scale give it remarkable properties that lead to numerous and diverse applications. Graphite bond anisotropy, with strong in-plane covalent bonds and weak van der Waals type bonding between the planes, gives graphite its unique combination of properties. Easy shear of the crystal, facilitated by weak interplaner bonds allows graphite to be used as a dry lubricant, and is responsible for the substances name! The word graphite is derived from the Greek to write because of graphites ability to mark writing surfaces. Moreover, synthetic graphite contains within its structure, porosity spanning many orders of magnitude in size. The thermal closure of these pores profoundly affects the properties for example, graphite strength increases with temperature to temperatures in excess of 2200 C. Consequently, graphite is utilized in many high temperature applications. The basic physical properties of graphite are reviewed here. Graphite applications include metallurgical; (aluminum and steel production), single crystal silicon production, and metal casting; electrical (motor brushes and commutators); mechanical (seals, bearings and bushings); and nuclear applications, (see Chapter 91, Nuclear Graphite). Here we discuss the structure, manufacture, properties, and applications of Graphite.

  12. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    SciTech Connect

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  13. Reactor physics verification of the MCNP6 unstructured mesh capability

    SciTech Connect

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  14. Modeling Fission Product Sorption in Graphite Structures

    SciTech Connect

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  15. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1987-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  16. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  17. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    SciTech Connect

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical

  18. An Overview of the International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    Briggs, J. Blair; Gulliford, Jim

    2014-10-09

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  19. RMC - A Monte Carlo code for reactor physics analysis

    SciTech Connect

    Wang, K.; Li, Z.; She, D.; Liang, J.; Xu, Q.; Qiu, A.; Yu, J.; Sun, J.; Fan, X.; Yu, G.

    2013-07-01

    A new Monte Carlo neutron transport code RMC has been being developed by Department of Engineering Physics, Tsinghua University, Beijing as a tool for reactor physics analysis on high-performance computing platforms. To meet the requirements of reactor analysis, RMC now has such functions as criticality calculation, fixed-source calculation, burnup calculation and kinetics simulations. Some techniques for geometry treatment, new burnup algorithm, source convergence acceleration, massive tally and parallel calculation, and temperature dependent cross sections processing are researched and implemented in RMC to improve the efficiency. Validation results of criticality calculation, burnup calculation, source convergence acceleration, tallies performance and parallel performance shown in this paper prove the capabilities of RMC in dealing with reactor analysis problems with good performances. (authors)

  20. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  1. Thermal neutron scattering in graphite

    NASA Astrophysics Data System (ADS)

    Al-Qasir, Iyad Ibrahim

    Generation IV Very High Temperature Reactor (VHTR) concepts, are graphite moderated and gas cooled thermal spectrum reactors. The characteristics of the low energy (E < 1 eV) neutron spectrum in these reactors will be dictated by the process of neutron slowing-down and thermalization in the graphite moderator. The ability to accurately predict this process in these reactors can have significant neutronic and safety implications. In reactor design calculations, thermal neutron scattering cross section libraries are needed for the prediction of the thermal neutron environment in the core. Currently used libraries (ENDF/B-VII) are a product of the 1960s and remain based on many physical approximations. In addition, these libraries show noticeable discrepancies with experimental data. In this work, investigation of thermal neutron scattering in graphite as a function of temperature was performed. The fundamental input for the calculation of thermal neutron scattering cross sections, i.e., the phonon frequency distribution and/or the dispersion relations, was generated using a modern approach that is based on quantum mechanical electronic structure (ab initio) simulations combined with a lattice dynamics direct method supercell approach. The calculations were performed using the VASP and PHONON codes. The VASP calculations used the local density approximation, and the projector augmented-wave pseudopotential. A supercell of 144 atoms was used; and the integration over the Brillouin zone was confined to a 3x3x4 k-mesh generated by the Monkhorst-Pack scheme. A plane-wave basis set with an energy cutoff of 500 eV was applied. The corresponding dispersion relations, heat capacity, and phonon frequency distribution show excellent agreement with experimental data. Despite the use of the above techniques to produce more accurate input data, the examination of the results indicated persistence of the inconsistencies between calculations and measurements at neutron energies

  2. The International Reactor Physics Experiment Evaluation Project (IRPhEP)

    SciTech Connect

    Blair Briggs, J.; Sartori, E.; Scott, L.

    2006-07-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined. (authors)

  3. The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    SciTech Connect

    J. Blair Briggs; Enrico Sartori; Lori Scott

    2006-09-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined.

  4. Graphite for the nuclear industry

    SciTech Connect

    Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.; Strizak, J.P.

    1991-01-01

    Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactor systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.

  5. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal....

  6. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal....

  7. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal....

  8. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  9. Oxidation Resistant Graphite Studies

    SciTech Connect

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  10. Effects of Spatial Variations in Packing Fraction on Reactor Physics Parameters in Pebble-Bed Reactors

    SciTech Connect

    William K. Terry; A. M. Ougouag; Farzad Rahnema; Michael Scott McKinley

    2003-04-01

    The well-known spatial variation of packing fraction near the outer boundary of a pebble-bed reactor core is cited. The ramifications of this variation are explored with the MCNP computer code. It is found that the variation has negligible effects on the global reactor physics parameters extracted from the MCNP calculations for use in analysis by diffusion-theory codes, but for local reaction rates the effects of the variation are naturally important. Included is some preliminary work in using first-order perturbation theory for estimating the effect of the spatial variation of packing fraction on the core eigenvalue and the fision density distribution.

  11. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  12. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  13. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  14. Laser nanoablation of graphite

    NASA Astrophysics Data System (ADS)

    Frolov, V. D.; Pivovarov, P. A.; Zavedeeev, E. V.; Komlenok, M. S.; Kononenko, V. V.; Konov, V. I.

    2014-01-01

    Experimental data on laser ablation of highly oriented pyrolitic graphite by nanosecond pulsed UV ( nm) and green ( nm) lasers are presented. It was found that below graphite vaporization threshold 1 J/cm, the nanoablation regime can be realized with material removal rates as low as 10 nm/pulse. The difference between physical (vaporization) and physical-chemical (heating + oxidation) ablation regimes is discussed. Special attention is paid to the influence of laser fluence and pulse number on ablation kinetics. Possibility of laser-induced graphite surface nanostructuring has been demonstrated. Combination of tightly focused laser beam and sharp tip of scanning probe microscope was applied to improve material nanoablation.

  15. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  16. Graphite design handbook

    SciTech Connect

    Ho, F.H.

    1988-09-01

    The objectives of the Graphite Design Handbook (GDH) are to provide and maintain a single source of graphite properties and phenomenological model of mechanical behavior to be used for design of MHTGR graphite components of the Reactor System, namely, core support, permanent side reflector, hexagonal reflector elements, and prismatic fuel elements; to provide a single source of data and material models for use in MHTGR graphite component design, performance, and safety analyses; to present properties and equations representing material models in a form which can be directly used by the designer or analyst without the need for interpretation and is compatible with analytical methods and structural criteria used in the MHTGR project, and to control the properties and material models used in the MHTGR design and analysis to proper Quality Assurance standards and project requirements. The reference graphite in the reactor internal components is the nuclear grade 2020. There are two subgrades of interest, the cylinder nuclear grade and the large rectangular nuclear grade. The large rectangular nuclear grade is molded in large rectangular blocks. It is the reference material for the permanent side reflector and the central column support structure. The cylindrical nuclear grade is isostatically pressed and is intended for use as the core support component. This report gives the design properties for both H-451 and 2020 graphite as they apply to their respective criteria. The properties are presented in a form for design, performance, and safety calculations that define or validate the component design. 103 refs., 20 figs., 19 tabs.

  17. Graphite criteria peer review

    SciTech Connect

    1986-09-01

    This report documents a review of the stress criteria proposed for the graphite components of the modular high temperature gas-cooled reactor (MHTGR) core. The review was conducted by a panel of six independent consultants, chosen for their expertise over a range of relevant disciplines.

  18. Graphite technology development plan

    SciTech Connect

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  19. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  20. Physics of reactor safety. Quarterly report, October-December 1980. Volume IV

    SciTech Connect

    Not Available

    1981-02-01

    The work in the Applied Physics Division includes reports on reactor safety modeling and assessment by members of the Reactor Safety Appraisals Section. Work on reactor core thermal-hydraulics is performed in ANL's Components Technology Division, emphasizing 3-dimensional code development for LMFBR accidents under natural convection conditions.

  1. BENCHMARK EVALUATION OF THE START-UP CORE REACTOR PHYSICS MEASUREMENTS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR

    SciTech Connect

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the start-up core reactor physics measurements performed with Japan’s High Temperature Engineering Test Reactor, in support of the Next Generation Nuclear Plant Project and Very High Temperature Reactor Program activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include updated evaluation of the initial six critical core configurations (five annular and one fully-loaded). The calculated keff eigenvalues agree within 1s of the benchmark values. Reactor physics measurements that were evaluated include reactivity effects measurements such as excess reactivity during the core loading process and shutdown margins for the fully-loaded core, four isothermal temperature reactivity coefficient measurements for the fully-loaded core, and axial reaction rate measurements in the instrumentation columns of three core configurations. The calculated values agree well with the benchmark experiment measurements. Fully subcritical and warm critical configurations of the fully-loaded core were also assessed. The calculated keff eigenvalues for these two configurations also agree within 1s of the benchmark values. The reactor physics measurement data can be used in the validation and design development of future High Temperature Gas-cooled Reactor systems.

  2. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  3. Conceptual study of fusion-driven transmutation reactor with ITER physics and engineering constraints

    NASA Astrophysics Data System (ADS)

    Hong, Bong

    2011-10-01

    A conceptual study of fusion-driven transmutation reactor was performed based on ITER physics and engineering constraints. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor.

  4. Recent improvements of reactor physics codes in MHI

    NASA Astrophysics Data System (ADS)

    Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki

    2015-12-01

    This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.

  5. Recent improvements of reactor physics codes in MHI

    SciTech Connect

    Kosaka, Shinya Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki

    2015-12-31

    This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.

  6. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    SciTech Connect

    Not Available

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  7. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    NASA Astrophysics Data System (ADS)

    Bang, Youngsuk

    hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.

  8. The Treatment of PPCP-Containing Sewage in an Anoxic/Aerobic Reactor Coupled with a Novel Design of Solid Plain Graphite-Plates Microbial Fuel Cell

    PubMed Central

    Chang, Yi-Tang; Yang, Chu-Wen; Chang, Yu-Jie; Chang, Ting-Chieh; Wei, Da-Jiun

    2014-01-01

    Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm2 and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production. PMID:25197659

  9. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  10. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Additional requirements for physical protection at nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional requirements for physical protection at nonpower...

  11. Simple Coupling of Reactor Physics Effects and Uncertain Nuances

    Energy Science and Technology Software Center (ESTSC)

    2012-08-27

    The "Simple Coupling of Reactor Physics Effects and Uncertain Nuances" (SCORPEUN) code is a simple r-z 1-group neutron diffusion code where each r-mesh is coupled to a single-flow-channel model that represents all flow-channels in that r-mesh. This 1-D model assesses q=m*Cp*deletaT for each z-mesh in that channel. This flow channel model is then coupled to a simple 1-D heat conduction model for ascertaining the peak center-line fuel temperature in a hypothetical pin assigned to thatmore » flow channel. The code has property lookup capability for water, Na, Zirc, HT9, metalic fuel, oxide fuel, etc. It has linear interpolation features for micro-scopic cross-sections with respect to coolant density and fuel temperature. ***This last feature has not been fully tested and may need development***. The interpolated microscopic cross-sections are then combined (using the water density from the T/H calculation) to generate macroscopic diffusion coefficient, removal cross-section and nu-sigmaF for each r-z mesh of the neutron diffusion code.« less

  12. Simple Coupling of Reactor Physics Effects and Uncertain Nuances

    SciTech Connect

    Bays, Samuel

    2012-08-27

    The "Simple Coupling of Reactor Physics Effects and Uncertain Nuances" (SCORPEUN) code is a simple r-z 1-group neutron diffusion code where each r-mesh is coupled to a single-flow-channel model that represents all flow-channels in that r-mesh. This 1-D model assesses q=m*Cp*deletaT for each z-mesh in that channel. This flow channel model is then coupled to a simple 1-D heat conduction model for ascertaining the peak center-line fuel temperature in a hypothetical pin assigned to that flow channel. The code has property lookup capability for water, Na, Zirc, HT9, metalic fuel, oxide fuel, etc. It has linear interpolation features for micro-scopic cross-sections with respect to coolant density and fuel temperature. ***This last feature has not been fully tested and may need development***. The interpolated microscopic cross-sections are then combined (using the water density from the T/H calculation) to generate macroscopic diffusion coefficient, removal cross-section and nu-sigmaF for each r-z mesh of the neutron diffusion code.

  13. Reactor physics studies for assessment of tramp uranium methods

    SciTech Connect

    Grimm, P.; Vasiliev, A.; Wieselquist, W.; Ferroukhi, H.; Ledergerber, G.

    2012-07-01

    This paper presents calculation studies towards validation of a methodology for estimations of the tramp uranium mass from water chemistry measurements. Particular emphasis is given to verify, from a reactor physics point of view, the justification basis for the so-called 'Pu-based model' versus the 'U-based model' as a key assumption for the methodology. The computational studies are carried out for a typical BWR fuel assembly with CASMO-5M and MCNPX. By approximating the evolution of fissile nuclides and the fraction of {sup 235}U fissions to total fissions in different zones of a fuel rod, including tramp uranium on the clad surface, it is found that Pu gives the dominant contribution to fissions for tramp uranium after an irradiation on the outer clad surface of at least one cycle in a BWR. Thus, the use of the so-called Pu model for the determination of the tramp uranium mass (this means in particular using the yields for {sup 239}Pu fission) appears justified in the cases considered. On that basis, replacing the older U model by a Pu model is recommended. (authors)

  14. AGC-2 Graphite Preirradiation Data Package

    SciTech Connect

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  15. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  16. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  17. Physics of reactor safety. Quarterly report, July-September 1980. Volume III

    SciTech Connect

    Not Available

    1980-11-01

    This Quarterly progress report summarizes work done during the months of July-September 1980 in Argonne National Laboratory's Applied Physics and Components Technology Divisions for the Division of Reactor Safety Research of the US Nuclear Regulatory Commission. The work in the Applied Physics Division includes reports on reactor safety modeling and assessment by members of the Reactor Safety Appraisals Section. Work on reactor core thermal-hydraulics is performed in ANL's Components Technology Division, emphasizing 3-dimensional code development for LMFBR accidents under natural convection conditions. An executive summary is provided including a statement of the findings and recommendations of the report.

  18. Baseline Graphite Characterization: First Billet

    SciTech Connect

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  19. GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Graphite Gamma Scan Results

    SciTech Connect

    Mark W. Drigert

    2014-04-01

    This report documents the measurement and data analysis of the radio isotopic content for a series of graphite specimens irradiated in the first Advanced Graphite Creep (AGC) experiment, AGC-1. This is the first of a series of six capsules planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphites. The AGC-1 capsule was irradiated in the Advanced Test Reactor (ATR) at INL at approximately 700 degrees C and to a peak dose of 7 dpa (displacements per atom). Details of the irradiation conditions and other characterization measurements performed on specimens in the AGC-1 capsule can be found in “AGC-1 Specimen Post Irradiation Data Report” ORNL/TM 2013/242. Two specimens from six different graphite types are analyzed here. Each specimen is 12.7 mm in diameter by 25.4 mm long. The isotope with the highest activity was 60Co. Graphite type NBG-18 had the highest content of 60Co with an activity of 142.89 µCi at a measurement distance of 47 cm.

  1. Inhibition of Oxidation in Nuclear Graphite

    SciTech Connect

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  2. Solid State Reactor Final Report

    SciTech Connect

    Mays, G.T.

    2004-03-10

    were undertaken: (1) establishing the design and safety-related basis via neutronic and reactor control assessments with the graphite foam as heat transfer medium; (2) evaluating the thermal performance of the graphite foam for heat removal, reactor stability, reactor operations, and overall core thermal characteristics; (3) characterizing the physical properties of the graphite foam under normal and irradiated conditions to determine any effects on structure, dimensional stability, thermal conductivity, and thermal expansion; and (4) developing a power conversion system design to match the reactor operating parameters.

  3. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  4. Code System for Reactor Physics and Fuel Cycle Simulation.

    Energy Science and Technology Software Center (ESTSC)

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  5. Code System for Reactor Physics and Fuel Cycle Simulation.

    SciTech Connect

    TEUCHERT, E.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.

  6. Microscopic physical and chemical properties of graphite intercalation compounds. Final report, August 1, 1984--July 31, 1985

    SciTech Connect

    Eklund, P.C.

    1992-08-24

    Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

  7. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  8. The ignition physics study group supports the compact ignition tokamak and engineering test reactor programs

    SciTech Connect

    Sheffield, J.

    1987-01-01

    This report presents a collection of Vugraphs dealing with the Compact Ignition Tokamak (CIT) and the Engineering Test Reactor (ETR). The role of the Ignition Physics Study Group is defined. Several design goals are presented. (JDH)

  9. New Reactor Physics Benchmark Data in the March 2012 Edition of the IRPhEP Handbook

    SciTech Connect

    John D. Bess; J. Blair Briggs; Jim Gulliford

    2012-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the experimental data are lost, the high cost to repeat many of these measurements may be prohibitive. The purpose of the IRPhEP is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [1]. Several new evaluations have been prepared for inclusion in the March 2012 edition of the IRPhEP Handbook.

  10. Physics Characterization of a Heterogeneous Sodium Fast Reactor Transmutation System

    SciTech Connect

    Samuel E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even mass number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both a non-flattened and a pancake core geometry. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of the same size.

  11. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  12. Sealing nuclear graphite with pyrolytic carbon

    NASA Astrophysics Data System (ADS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-10-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR).

  13. Interlayer interactions in graphites

    PubMed Central

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-01-01

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures. PMID:24192753

  14. Interlayer interactions in graphites

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-Xian

    2013-11-01

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  15. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  16. Structural graphitic carbon foams

    SciTech Connect

    Kearns, K.M.; Anderson, H.J.

    1998-12-31

    Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

  17. Capability assessment for application of clay mixture as barrier material for irradiated zirconium alloy structure elements long-term processing for storage during decommissioning of uranium-graphite nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kotlyarevskiy, S. G.; Pavliuk, A. O.; Zakharova, E. V.; Volkova, A. G.

    2016-06-01

    The radionuclide composition and the activity level of the irradiated zirconium alloy E110, the radionuclide immobilization strength and the retention properties of the mixed clay barrier material with respect to the radionuclides identified in the alloy were investigated to perform the safety assessment of handling structural units of zirconium alloy used for the technological channels in uranium-graphite reactors. The irradiated zirconium alloy waste contained the following activation products: 93mNb and the long-lived 94Nb, 93Zr radionuclides. Radionuclides of 60Co, 137Cs, 90Sr, and actinides were also present in the alloy. In the course of the runs no leaching of niobium and zirconium isotopes from the E110 alloy was detected. Leach rates were observed merely for 60Co and 137Cs present in the deposits formed on the internal surface of technological channels. The radionuclides present were effectively adsorbed by the barrier material. To ensure the localization of radionuclides in case of the radionuclide migration from the irradiated zirconium alloy into the barrier material, the sorption properties were determined of the barrier material used for creating the long-term storage point for the graphite stack from uranium-graphite reactors.

  18. 78 FR 50313 - Physical Protection of Irradiated Reactor Fuel in Transit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... safety. On May 20, 2013 (78 FR 29520), the NRC published the final rule for 10 CFR 73.37, ``Physical... 3150-AI64 Physical Protection of Irradiated Reactor Fuel in Transit AGENCY: Nuclear Regulatory... Transportation of Spent Nuclear Fuel Greater than 100 Grams,'' dated October 10, 2002, and subsequent...

  19. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  20. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  1. Physics-magnetics trade studies for tandem mirror reactors

    SciTech Connect

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-03-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e).

  2. Nuclear Data Measurements for 21st Century Reactor Physics Applications

    SciTech Connect

    Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

    2003-03-01

    The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor

  3. The impact of improved physics on commercial tokamak reactors

    SciTech Connect

    Galambos, J.D.; Perkins, L.J.; Haney, S.; Mandrekas, J.

    1994-01-01

    Improvements in the confinement and beta capability of tokamak devices have long been a goal of the fusion program. We examine the impact of improvements in present day confinement and beta capabilities on commercial tokamak reactors. We characterize confinement with the achievable enhancement factor (H) over the ITER89 Power scaling confinement time, and beta by the Troyon coefficient g. A surprisingly narrow range of plasma confinement and beta are found to be useful in minimizing the cost of electricity for a tokamak reactor. Improvements in only one of these quantities is not useful beyond some point, without accompanying improvements in the other. For the plasma beta limited by a Troyon coefficient (g) near 4.3 (%mT/MA), confinement levels characterized by H factor enhancements of only 2 are useful for our nominal steady-state driven tokamak. These confinement levels are similar to those observed in present day experiments. If the permissible Troyon beta coefficient is near 6, the useful H factor confinement range increases to 2.5, still close to present day confinement levels. Inductively driven, pulsed reactors have somewhat increased useful ranges of confinement, relative to the steady-state cases. For a Troyon beta limit coefficient g near 4.3, H factors up to 2.5 are useful, and for g near 6, H factors up to 3 are useful.

  4. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. PMID:25770393

  5. Removal of carbon-14 from irradiated graphite

    NASA Astrophysics Data System (ADS)

    Dunzik-Gougar, Mary Lou; Smith, Tara E.

    2014-08-01

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. On of the isotopes of great concern for long-term disposal of irradiated graphite is carbon-14 (14C), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates 14C is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented here is to develop a practical method by which 14C can be removed. In parallel with these efforts, the same irradiated graphite material is being characterized to identify the chemical form of 14C in irradiated graphite. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam®, were exposed to liquid nitrogen (to increase the quantity of 14C precursor) and neutron-irradiated (1013 neutrons/cm2/s). During post-irradiation thermal treatment, graphite samples were heated in the presence of an inert carrier gas (with or without the addition of an oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon only were performed at 900 °C and 1400 °C to evaluate the selective removal of 14C. Thermal treatment also was performed with the addition of 3 and 5 vol% oxygen at temperatures 700 °C and 1400 °C. Thermal treatment experiments were evaluated for the effective selective removal of 14C. Lower temperatures and oxygen levels correlated to more efficient 14C removal.

  6. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    SciTech Connect

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-09-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10’s initial criticality experiment for use as benchmarks for reactor physics codes.

  7. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  8. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  9. Reactor physics and standards in the framework of European collaborations

    SciTech Connect

    Conde, H. ); Rowlands, J.; Salvatores, M. ); Sowerby, M. )

    1992-01-01

    This paper discusses some aspects of the standardization of data within European collaborations on reactors. It is not always possible to use identical standards because national projects often have excellent reasons for not changing, e.g., back compatibility. In such cases, intercomparisons are made. Most recommended standards are based on Joint Evaluated File (JEF) Project evaluations. Because of the key role of integral measurements in the validation of recommended data, intercomparison of integral measurement techniques has also been an important activity. The JEF Project is a collaboration between the member countries of the Nuclear Energy Agency (NEA) Data Bank. The main aim of the project is to provide neutron cross-section libraries for thermal and fast reactor calculations. It has been agreed that the standards for cross-section measurements will be the ENDF/B-VI standards internationally accepted by the Organization for European Cooperation and Development/NEA and the International Atomic Energy Agency nuclear data committees. There are close links with the European Fusion File Project.

  10. Global variance reduction for Monte Carlo reactor physics calculations

    SciTech Connect

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-07-01

    Over the past few decades, hybrid Monte-Carlo-Deterministic (MC-DT) techniques have been mostly focusing on the development of techniques primarily with shielding applications in mind, i.e. problems featuring a limited number of responses. This paper focuses on the application of a new hybrid MC-DT technique: the SUBSPACE method, for reactor analysis calculation. The SUBSPACE method is designed to overcome the lack of efficiency that hampers the application of MC methods in routine analysis calculations on the assembly level where typically one needs to execute the flux solver in the order of 10{sup 3}-10{sup 5} times. It places high premium on attaining high computational efficiency for reactor analysis application by identifying and capitalizing on the existing correlations between responses of interest. This paper places particular emphasis on using the SUBSPACE method for preparing homogenized few-group cross section sets on the assembly level for subsequent use in full-core diffusion calculations. A BWR assembly model is employed to calculate homogenized few-group cross sections for different burn-up steps. It is found that using the SUBSPACE method significant speedup can be achieved over the state of the art FW-CADIS method. While the presented speed-up alone is not sufficient to render the MC method competitive with the DT method, we believe this work will become a major step on the way of leveraging the accuracy of MC calculations for assembly calculations. (authors)

  11. Physics requirements for pellet fueling of mirror reactors

    SciTech Connect

    Hamilton, G.W.

    1983-11-15

    Requirements for pellet fueling of mirror reactors, such as the Mirror Advanced Reactor Study (MARS), have been assessed. To avoid perturbing the MARS central-cell plasma density more than 10%, we have determined that the fuel injected per pellet must not exceed 2 x 10/sup 21/ deuterium-tritium (DT) atoms. This implies a maximum radius of 2 mm for each of the frozen DT pellets and a repetition rate of at least 6.2 pellets/s. Furthermore, the required pellet velocity will depend on the plasma density and temperature, including the effects of fusion products such as 3.5-MeV alphas, the shapes of these profiles, and the effectiveness of fueling the center of the plasma by radial diffusion. Under MARS conditions, the velocity requirement for frozen DT pellets will range from 4 to 20 km/s. To minimize this requirement, we will inject the pellets near the end of the central cell where the plasma radius is reduced by the strong magnetic field and where trapped alphas can be avoided by design of the magnetic field. To meet these fueling objectives, we are looking for new technologies for increasing the pellet speeds. One technology under consideration is the railgun for high-speed acceleration.

  12. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    SciTech Connect

    Merzari, E.; Shemon, E. R.; Yu, Y. Q.; Thomas, J. W.; Obabko, A.; Jain, Rajeev; Mahadevan, Vijay; Tautges, Timothy; Solberg, Jerome; Ferencz, Robert Mark; Whitesides, R.

    2015-12-21

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.

  13. Reactor Physics Characterization of Transmutation Targeting Options in a Sodium Fast Reactor

    SciTech Connect

    Samuel E. Bays

    2007-04-01

    In sodium fast reactor designs, the fuel related inherent negative reactivity feedback is accomplished mainly through parasitic capture in U-238. However for an efficient minor actinide burning system, it is desirable to reduce or eliminate U-238 entirely to suppress further transuranic actinide generation. Consequently, reactivity feedback is accomplished by enhancing axial neutron streaming during a loss of coolant void situation. This is done by flattening “pancake” the active core geometry. Flattening the reactor also increases axial leakage which removes neutrons that could otherwise be used to destroy minor actinides. Therefore, it is important to tailor the neutron spectrum in the core for optimized feedback and minor actinide destruction simultaneously by using minor actinide and fission product targets.

  14. DEVELOPMENTS IN SENSITIVITY METHODOLOGIES AND THE VALIDATION OF REACTOR PHYSICS CALCULATIONS

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores

    2012-04-01

    The sensitivities methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  15. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    SciTech Connect

    Shemon, E. R.; Grudzinski, J. J.; Lee, C. H.; Thomas, J. W.; Yu, Y. Q.

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  16. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    DOE PAGESBeta

    Palmiotti, Giuseppe; Salvatores, Massimo

    2012-01-01

    The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  17. Statistical Comparison of the Baseline Mechanical Properties of NBG-18 and PCEA Graphite

    SciTech Connect

    Mark C. Carroll; David T. Rohrbaugh

    2013-08-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR), a graphite-moderated, helium-cooled design that is capable of producing process heat for power generation and for industrial process that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties by providing comprehensive data that captures the level of variation in measured values. In addition to providing a comprehensive comparison between these values in different nuclear grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons and variations between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between the two grades of graphite that were initially favored in the two main VHTR designs. NBG-18, a medium-grain pitch coke graphite from SGL formed via vibration molding, was the favored structural material in the pebble-bed configuration, while PCEA, a smaller grain, petroleum coke, extruded graphite from GrafTech was favored for the prismatic configuration. An analysis of the comparison between these two grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  18. Students' assessment of interactive distance experimentation in nuclear reactor physics laboratory education

    NASA Astrophysics Data System (ADS)

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-10-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research reactors limit their accessibility to few educational programmes around the world. The concept of the Internet Reactor Laboratory (IRL) was introduced earlier as a new approach that utilises distance education in nuclear reactor physics laboratory education. This paper presents an initial assessment of the implementation of the IRL between the PULSTAR research reactor at North Carolina State University in the USA and the Department of Nuclear Engineering at Jordan University of Science and Technology (JUST) in Jordan. The IRL was implemented in teaching the Nuclear Reactor laboratory course for two semesters. Feedback from surveyed students verifies that the outcomes attained from using IRL in experimentation are comparable to that attainable from other on-campus laboratories performed by the students.

  19. Change in macrostructure and porosity of graphite on prolonged irradiation

    SciTech Connect

    Virgil'ev, Y.S.; Butyrin, G.M.; Kalyagina, I.P.; Nikishina, L.M.; Shurshakova, T.N.

    1986-02-01

    This work studies the variation in the microstructure of strongly irradiated reactor-grade graphite samples by mercury porosimetry, optical microscopy, and x-ray analysis. The chief characteristics of the samples are listed. Experimental study of the nature of porous and crystal structure of reactor graphite show that prolonged neutron irradiation at 360 and 1220 degrees K up to a luence of 10/sup 22/ neutrons/cm/sup 2/ causes marked irreversible changes in the graphite macrostructure.

  20. Reactor physics studies in the GCFR Phase III critical assembly

    SciTech Connect

    Morman, J A

    1980-03-01

    The third phase of the gas cooled fast reactor (GCFR) program, ZPR-9 Assembly 30, is based on a multi-zoned core of PuO/sub 2/-UO/sub 2/ with radial and axial blankets of UO/sub 2/. Studies performed in this assembly will be compared to the previous phases of the GCFR program and will help to define parameters in this power-flattened demonstration plant-type core. Measurements in the Phase III program included small sample reactivity worths of various materials, central reaction rates and reaction rate distributions, absorption-to-fission ratios and the central point conversion ratio and the worth of steam entry into a small central zone. The reactivity change associated with the construction of a central pin zone in the core and axial blanket was measured. Reaction rate and steam entry measurements were repeated in the pin environment. Standard analysis methods using ENDF/B-IV data are described and the results are compared to measurements performed during the program.

  1. Evolution of the core physics concept for the Canadian supercritical water reactor

    SciTech Connect

    Pencer, J.; Colton, A.; Wang, X.; Gaudet, M.; Hamilton, H.; Yetisir, M.

    2013-07-01

    The supercritical water cooled reactor (SCWR) is one of the advanced reactor concepts chosen by the GEN-IV International Forum (GIF) for research and development efforts. Canada's contribution is the Canadian SCWR, a heavy water moderated, pressure tube supercritical light water cooled reactor. Recent developments in the SCWR lattice and core concepts, primarily the introduction of a large central flow tube filled with coolant combined with a two-ring fuel assembly, have enabled significant improvements compared to earlier concepts. These improvements include a reduction in coolant void reactivity (CVR) by more than 10 mk, and an almost 40% increase in fuel exit burnup, which is achieved via balanced power distribution between the fuel pins in the fuel assembly. In this paper the evolution of the physics concept is reviewed, and the present lattice and core physics concepts are presented.

  2. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  3. Feasibility of Isotopic Measurements: Graphite Isotopic Ratio Method

    SciTech Connect

    Wood, Thomas W.; Gerlach, David C.; Reid, Bruce D.; Morgan, W. C.

    2001-04-30

    This report addresses the feasibility of the laboratory measurements of isotopic ratios for selected trace constituents in irradiated nuclear-grade graphite, based on the results of a proof-of-principal experiment completed at Pacific Northwest National Laboratory (PNNL) in 1994. The estimation of graphite fluence through measurement of isotopic ratio changes in the impurity elements in the nuclear-grade graphite is referred to as the Graphite Isotope Ratio Method (GIRM). Combined with reactor core and fuel information, GIRM measurements can be employed to estimate cumulative materials production in graphite moderated reactors. This report documents the laboratory procedures and results from the initial measurements of irradiated graphite samples. The irradiated graphite samples were obtained from the C Reactor (one of several production reactors at Hanford) and from the French G-2 Reactor located at Marcoule. Analysis of the irradiated graphite samples indicated that replicable measurements of isotope ratios could be obtained from the fluence sensitive elements of Ti, Ca, Sr, and Ba. While these impurity elements are present in the nuclear-grade graphite in very low concentrations, measurement precision was typically on the order of a few tenths of a percent to just over 1 percent. Replicability of the measurements was also very good with measured values differing by less than 0.5 percent. The overall results of this initial proof-of-principal experiment are sufficiently encouraging that a demonstration of GIRM on a reactor scale basis is planned for FY-95.

  4. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    ERIC Educational Resources Information Center

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of…

  5. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Transportation in 49 CFR § 172.202 and § 172.203(d). (iii) A listing of the routes... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED)...

  6. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Department of Transportation in 49 CFR § 172.202 and § 172.203(d). (iii) A listing of the routes... 10 Energy 2 2012-01-01 2012-01-01 false Requirements for physical protection of irradiated reactor fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED)...

  7. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Department of Transportation in 49 CFR § 172.202 and § 172.203(d). (iii) A listing of the routes... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED)...

  8. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in 49 CFR 172.202 and 172.203(d). (iii) A listing of the routes to be used within the State or Tribal... 10 Energy 2 2013-01-01 2013-01-01 false Requirements for physical protection of irradiated reactor fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED)...

  9. 78 FR 69139 - Physical Security-Design Certification and Operating Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...On September 30, 2013, the U.S. Nuclear Regulatory Commission (NRC) published a request for public comment on draft revision of NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' LWR Edition: Section 13.6.2, ``Physical Security--Design Certification and Operating Reactors.'' The public comment period was originally scheduled to close on......

  10. 78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... in the Federal Register on May 20, 2013 (78 FR 29519) (RIN 3150-AI64), that amended its security... public comment on November 3, 2010 (75 FR 67636). The NRC received comments from eight commenters during... COMMISSION 10 CFR Part 73 RIN 3150-AI64 Physical Protection of Shipments of Irradiated Reactor Fuel...

  11. Resistivity Architecture and Physical State of the Great Basin: Separate and Joint Roles of Fluids and Graphite

    NASA Astrophysics Data System (ADS)

    Doerner, W. M.; Wannamaker, P. E.; Sodergren, T. L.; Stodt, J. A.; Hasterok, D. P.; Unsworth, M. J.

    2002-12-01

    Dense profiles of MT soundings in the active Great Basin extensional province and the neighboring stable Colorado Plateau are integrated to provide a view of large scale structure, tectonic activity, fluid state, thermal regime and strength of the crust and upper mantle. Resistivity cross sections were derived from the MT data over the period range 0.005-10,000 s, subjected to strike analysis, using a 2-D inversion algorithm damping model departures against a-priori structure. To first order, Great Basin resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Early and Late Paleozoic, low-resistivity graphitized shales form important conductive marker sequences in the stratigraphy for unraveling structure. Degree of graphitization and conductance correlates with that of compressional shear deformation and hydrocarbon source maturity. Resistive crystalline core complex massifs adjoin their host stratigraphy across crustal-scale, steeply-dipping fault zones providing pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes appear to nucleate. We find the most important domain for graphite in conductivity to be the upper half or brittle regime of the crust with an origin in organic-bearing sedimentary rocks, but with important later remobilization by fluids during thermal events. Average lower crustal resistivity is low under both central and eastern Great Basin sub-provinces and is quasi one-dimensional. Deep temperatures and volcanic products suggest oxidizing conditions in the lower crust, so high conductivity is interpreted to reflect a low porosity (<1 vol. %) of hypersaline brines and possible water

  12. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  13. AGC-3 Graphite Preirradiation Data Analysis Report

    SciTech Connect

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  14. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Shi, Weili; Chen, Yongmei; Yang, Quanling; Wang, Mengkui; Liu, Bin; Tang, Zhen; Jiang, Ming; Fang, De; Xiong, Chuanxi

    2016-02-01

    The superior properties of graphene in applications ranging from electronic devices to composites have been extensively reported. So far, no mass production of defect-free few-layer graphene has been attained. The authors of this study have demonstrated a high-yield method to produce defect-free few-layer graphene by exfoliation of graphite in a degradable water-soluble polymer (I) with cholamine modification, and the obtained intercalated (D-I) chemical structure was confirmed by Fourier transform infrared spectroscopy. The electron donor forms π-π stacking interactions with the graphene sheets during sonication, which prevents the exfoliated graphene from restacking. The method is environment-friendly compared with other liquid exfoliation methods, and the aqueous and ethanolic solutions of graphene are stable for long durations. The authors also confirmed the presence of gossamer graphene sheets, which have typical wrinkled and folded structures, by using high resolution transmission electron microscopy. Atomic force microscopy images revealed that graphene sheets with a thickness of approximately 1 nm were uniformly distributed.

  15. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  16. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems. PMID:25551649

  17. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  18. Multi-physics nuclear reactor simulator for advanced nuclear engineering education

    SciTech Connect

    Yamamoto, A.

    2012-07-01

    Multi-physics nuclear reactor simulator, which aims to utilize for advanced nuclear engineering education, is being introduced to Nagoya Univ.. The simulator consists of the 'macroscopic' physics simulator and the 'microscopic' physics simulator. The former performs real time simulation of a whole nuclear power plant. The latter is responsible to more detail numerical simulations based on the sophisticated and precise numerical models, while taking into account the plant conditions obtained in the macroscopic physics simulator. Steady-state and kinetics core analyses, fuel mechanical analysis, fluid dynamics analysis, and sub-channel analysis can be carried out in the microscopic physics simulator. Simulation calculations are carried out through dedicated graphical user interface and the simulation results, i.e., spatial and temporal behaviors of major plant parameters are graphically shown. The simulator will provide a bridge between the 'theories' studied with textbooks and the 'physical behaviors' of actual nuclear power plants. (authors)

  19. AGC-2 Graphite Pre-irradiation Data Package

    SciTech Connect

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  20. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  1. Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan

    SciTech Connect

    Lin, S.-T.

    2006-11-17

    A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.

  2. Reactor physics analyses of the advanced neutron source three-element core

    SciTech Connect

    Gehin, J.C.

    1995-08-01

    A reactor physics analysis was performed for the Advanced Neutron Source reactor with a three-element core configuration. The analysis was performed with a two-dimensional r-z 20-energy-group finite-difference diffusion theory model of the 17-d fuel cycle. The model included equivalent r-z geometry representations of the central control rods, the irradiation and production targets, and reflector components. Calculated quantities include fuel cycle parameters, fuel element power distributions, unperturbed neutron fluxes in the reflector and target regions, reactivity perturbations, and neutron kinetics parameters.

  3. Surface characterization of TFTR first wall graphite tiles used during DT operations

    SciTech Connect

    Paffett, M. T.; Willms, R. S.; Gentile, C.; Skinner, C.

    2001-01-01

    Surface characterization studies were performed on graphite tiles used as first wall materials during DT operation of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. These ex situ analysis studies revealed a number of interesting and unexpected features. In this work we examined the spatial and (where possible) the depth distribution of impurity species deposited onto the plasma facing surfaces using Xray Photo-electron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS).

  4. HTGR Reactor Physics and Burnup Calculations Using the Serpent Monte Carlo Code

    SciTech Connect

    Leppanen, Jaakko; DeHart, Mark D

    2009-01-01

    One of the main advantages of the continuous-energy Monte Carlo method is its versatility and the capability to model any fuel or reactor configuration without major approximations. This capability becomes particularly valuable in studies involving innovative reactor designs and next-generation systems, which often lie beyond the capabilities of deterministic LWR transport codes. In this study, a conceptual prismatic HTGR fuel assembly was modeled using the Serpent Monte Carlo reactor physics burnup calculation code, under development at VTT Technical Research Centre of Finland since 2004. A new explicit particle fuel model was developed to account for the heterogeneity effects. The results are compared to other Monte Carlo and deterministic transport codes and the study also serves as a test case for the modules and methods in SCALE 6.

  5. Empirical correlation of residual gamma radiation resulting from operation of the Health Physics Research Reactor

    SciTech Connect

    Chou, T.L.; Ragan, G.E.; Sims, C.S.

    1985-04-01

    An empirical equation has been developed which gives gamma dose equivalent rate as a function of time, distance, and fission yield after a pulsed operation of Oak Ridge National Laboratory's (ORNL) unshielded Health Physics Research Reactor (HPRR). A related expression which is applicable to steady-state reactor operation has been mathematically derived from the aforementioned empirical equation. The two relations can be used to predict the gamma dose equivalent rate to within 25% for times between 1 minute and 90 minutes after reactor shutdown. Similar agreement is expected for up to several days. In most cases the relations are expected to overestimate the gamma dose equivalent rate. 5 refs., 4 figs., 1 tab.

  6. Integral Reactor Physics Benchmarks - the International Criticality Safety Benchmark Evaluation Project (icsbep) and the International Reactor Physics Experiment Evaluation Project (irphep)

    NASA Astrophysics Data System (ADS)

    Briggs, J. Blair; Nigg, David W.; Sartori, Enrico

    2006-04-01

    Since the beginning of the nuclear industry, thousands of integral experiments related to reactor physics and criticality safety have been performed. Many of these experiments can be used as benchmarks for validation of calculational techniques and improvements to nuclear data. However, many were performed in direct support of operations and thus were not performed with a high degree of quality assurance and were not well documented. For years, common validation practice included the tedious process of researching integral experiment data scattered throughout journals, transactions, reports, and logbooks. Two projects have been established to help streamline the validation process and preserve valuable integral data: the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP). The two projects are closely coordinated to avoid duplication of effort and to leverage limited resources to achieve a common goal. A short history of these two projects and their common purpose are discussed in this paper. Accomplishments of the ICSBEP are highlighted and the future of the two projects outlined.

  7. Osiris: A Modern, High-Performance, Coupled, Multi-Physics Code For Nuclear Reactor Core Analysis

    SciTech Connect

    Procassini, R J; Chand, K K; Clouse, C J; Ferencz, R M; Grandy, J M; Henshaw, W D; Kramer, K J; Parsons, I D

    2007-02-26

    To meet the simulation needs of the GNEP program, LLNL is leveraging a suite of high-performance codes to be used in the development of a multi-physics tool for modeling nuclear reactor cores. The Osiris code project, which began last summer, is employing modern computational science techniques in the development of the individual physics modules and the coupling framework. Initial development is focused on coupling thermal-hydraulics and neutral-particle transport, while later phases of the project will add thermal-structural mechanics and isotope depletion. Osiris will be applicable to the design of existing and future reactor systems through the use of first-principles, coupled physics models with fine-scale spatial resolution in three dimensions and fine-scale particle-energy resolution. Our intent is to replace an existing set of legacy, serial codes which require significant approximations and assumptions, with an integrated, coupled code that permits the design of a reactor core using a first-principles physics approach on a wide range of computing platforms, including the world's most powerful parallel computers. A key research activity of this effort deals with the efficient and scalable coupling of physics modules which utilize rather disparate mesh topologies. Our approach allows each code module to use a mesh topology and resolution that is optimal for the physics being solved, and employs a mesh-mapping and data-transfer module to effect the coupling. Additional research is planned in the area of scalable, parallel thermal-hydraulics, high-spatial-accuracy depletion and coupled-physics simulation using Monte Carlo transport.

  8. Evaluation of the Start-Up Core Physics Tests at Japan's High Temperature Engineering Test Reactor (Annular Core Loadings)

    SciTech Connect

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2010-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The Japanese government approved construction of the HTTR in the 1989 fiscal year budget; construction began at the Oarai Research and Development Center in March 1991 and was completed May 1996. Fuel loading began July 1, 1998, from the core periphery. The first criticality was attained with an annular core on November 10, 1998 at 14:18, followed by a series of start-up core physics tests until a fully-loaded core was developed on December 16, 1998. Criticality tests were carried out into January 1999. The first full power operation with an average core outlet temperature of 850ºC was completed on December 7, 2001, and operational licensing of the HTTR was approved on March 6, 2002. The HTTR attained high temperature operation at 950 ºC in April 19, 2004. After a series of safety demonstration tests, it will be used as the heat source in a hydrogen production system by 2015. Hot zero-power critical, rise-to-power, irradiation, and safety demonstration testing , have also been performed with the HTTR, representing additional means for computational validation efforts. Power tests were performed in steps from 0 to 30 MW, with various tests performed at each step to confirm

  9. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    SciTech Connect

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  10. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  11. Time-Dependent Behavior of a Graphite/Thermoplastic Composite and the Effects of Stress and Physical Aging

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1995-01-01

    Experimental studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. Isothermal tensile creep/aging test techniques developed for polymers were adapted for testing of the composite material. Time dependent transverse and shear compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(8) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress.

  12. Multi-physics design and analyses of long life reactors for lunar outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.

    event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete

  13. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems: Annual and Final Report

    SciTech Connect

    Kevan D. Weaver; Theron Marshall; James Parry

    2005-10-01

    The Idaho National Laboratory (INL) contribution to the Nuclear Energy Research Initiative (NERI) project number 2002-005 was divided into reactor physics, and thermal-hydraulics and plant design. The research targeted credible physics and thermal-hydraulics models for a gas-cooled fast reactor, analyzing various fuel and in-core fuel cycle options to achieve a true breed and burn core, and performing a design basis Loss of Coolant Accident (LOCA) analysis on that design. For the physics analysis, a 1/8 core model was created using different enrichments and simulated equilibrium fuel loadings. The model was used to locate the hot spot of the reactor, and the peak to average energy deposition at that location. The model was also used to create contour plots of the flux and energy deposition over the volume of the reactor. The eigenvalue over time was evaluated using three different fuel configurations with the same core geometry. The breeding capabilities of this configuration were excellent for a 7% U-235 model and good in both a plutonium model and a 14% U-235 model. Changing the fuel composition from the Pu fuel which provided about 78% U-238 for breeding to the 14% U-235 fuel with about 86% U-238 slowed the rate of decrease in the eigenvalue a noticeable amount. Switching to the 7% U-235 fuel with about 93% U-238 showed an increase in the eigenvalue over time. For the thermal-hydraulic analysis, the reactor design used was the one forwarded by the MIT team. This reactor design uses helium coolant, a Brayton cycle, and has a thermal power of 600 MW. The core design parameters were supplied by MIT; however, the other key reactor components that were necessary for a plausible simulation of a LOCA were not defined. The thermal-hydraulic and plant design research concentrated on determining reasonable values for those undefined components. The LOCA simulation was intended to provide insights on the influence of the Reactor Cavity Cooling System (RCCS), the

  14. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    SciTech Connect

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-06-10

    The aim of the research presented here was to identify the chemical form of 14C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14C, with a half-life of 5730 years.

  15. Collection and analysis of Health Physics Research Reactor operational and use data

    SciTech Connect

    Sims, C.S.

    1985-04-01

    The Health Physics Research Reactor (HPRR) is the primary research tool at the Dosimetry Applications Research (DOSAR) Facility. In addition to use by the DOSAR staff, the HPRR is used by a wide segment of the scientific community for a variety of experimental purposes. This report is a compilation and analysis of data concerning HPRR uses, users, and operations through the end of FY 1984. 17 refs., 12 tabs.,

  16. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    SciTech Connect

    J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

    2012-03-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  17. A bibliography on finite element and related methods analysis in reactor physics computations (1971--1997)

    SciTech Connect

    Carpenter, D.C.

    1998-01-01

    This bibliography provides a list of references on finite element and related methods analysis in reactor physics computations. These references have been published in scientific journals, conference proceedings, technical reports, thesis/dissertations and as chapters in reference books from 1971 to the present. Both English and non-English references are included. All references contained in the bibliography are sorted alphabetically by the first author`s name and a subsort by date of publication. The majority of the references relate to reactor physics analysis using the finite element method. Related topics include the boundary element method, the boundary integral method, and the global element method. All aspects of reactor physics computations relating to these methods are included: diffusion theory, deterministic radiation and neutron transport theory, kinetics, fusion research, particle tracking in finite element grids, and applications. For user convenience, many of the listed references have been categorized. The list of references is not all inclusive. In general, nodal methods were purposely excluded, although a few references do demonstrate characteristics of finite element methodology using nodal methods (usually as a non-conforming element basis). This area could be expanded. The author is aware of several other references (conferences, thesis/dissertations, etc.) that were not able to be independently tracked using available resources and thus were not included in this listing.

  18. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  19. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  20. Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs

    SciTech Connect

    Willaim Windes; G. Strydom; J. Kane; R. Smith

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  1. Time dependent behavior of a graphite/thermoplastic composite and the effects of stress and physical aging

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1993-01-01

    Two complimentary studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. The first of these studies, experimental in nature, used isothermal tensile creep/aging test techniques developed for polymers and adapted them for testing of the composite material. From these tests, the time dependent transverse (S22) and shear (S66) compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(sub g) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress. The second part of the study relied upon isothermal uniaxial tension tests of IM7/8320 to determine the effects of physical aging on the nonlinear material behavior at elevated temperature. An elastic/viscoplastic constitutive model was used to quantify the effects of aging on the rate-independent plastic and rate-dependent viscoplastic response. Sensitivity of the material constants required by the model to aging time were determined for aging times up to 65 hours. Verification of the analytical model indicated that the effects of prior aging on the nonlinear stress/strain/time data of matrix dominated laminates can be predicted.

  2. Multi-physics design and analyses of long life reactors for lunar outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.

    event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete

  3. Acoustic emission from irradiated nuclear graphite

    NASA Astrophysics Data System (ADS)

    Burchell, T. D.; Rose, A. P. G.; McEnaney, B.

    1986-08-01

    Measurements of acoustic emission (AE) from a range of four unirradiated nuclear graphites during three-point bend tests are reported. Results are in agreement with the trends found in earlier work using different AE apparatus. The technique is applied to the testing of small beam specimens cut from irradiated Civil Advanced Gas-cooled Reactor (CAGR) graphite fuel sleeves after discharge from the reactor. The AE information is explained by considering separately the known changes in graphite microstructure that occur in the reactor due to radiolytic oxidation and fast neutron irradiation. Coarsening of the material due to radiolytic oxidation increases the total number of AE events and the proportion of events of low amplitude. Fast neutron irradiation increases the fracture stress and makes the stress-strain curve more linear. As a consequence, the number of AE events is reduced along with the proportion of events of low amplitude.

  4. Diversion assumptions for high-powered research reactors

    SciTech Connect

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  5. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    NASA Astrophysics Data System (ADS)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  6. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of 10 CFR part 73, each licensee who transports or delivers to a carrier for transport irradiated... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in...

  7. 10 CFR 73.55 - Requirements for physical protection of licensed activities in nuclear power reactors against...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of licensed activities in nuclear power reactors against radiological sabotage. 73.55 Section 73.55 Energy NUCLEAR... power reactor licensee, licensed under 10 CFR part 50, shall implement the requirements of this...

  8. 10 CFR 73.55 - Requirements for physical protection of licensed activities in nuclear power reactors against...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of licensed activities in nuclear power reactors against radiological sabotage. 73.55 Section 73.55 Energy NUCLEAR... power reactor licensee, licensed under 10 CFR part 50, shall implement the requirements of this...

  9. 10 CFR 73.35 - Requirements for physical protection of irradiated reactor fuel (100 grams or less) in transit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fuel (100 grams or less) in transit. 73.35 Section 73.35 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.35 Requirements for physical protection of irradiated reactor fuel (100 grams or less) in... quantity of irradiated reactor fuel weighing 100 grams (0.22 pounds) or less in net weight of...

  10. Benchmarking of Graphite Reflected Critical Assemblies of UO2

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2011-11-01

    A series of experiments were carried out in 1963 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 253 tightly-packed fuel rods (1.27 cm triangular pitch) with graphite reflectors [1], the second part used 253 graphite-reflected fuel rods organized in a 1.506 cm triangular pitch [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods with a 1.506 cm triangular pitch. [3] Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. The first part of this experimental series has been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5] and is discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems. [6

  11. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    SciTech Connect

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPh

  12. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  13. Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1

    NASA Astrophysics Data System (ADS)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Seki, R.; Suzuki, C.; Yokoyama, M.; Satake, S.; Sagara, A.; The FFHR Design Group

    2015-06-01

    1D physics analysis of the plasma start-up scenario of the large helical device (LHD)-type helical reactor FFHR-d1 was conducted. The time evolution of the plasma profile is calculated using a simple model based on the LHD experimental observations. A detailed assessment of the magnetohydrodynamic equilibrium and neo-classical energy loss was conducted using the integrated transport analysis code TASK3D. The robust controllability of the fusion power was confirmed by feedback control of the pellet fuelling and a simple staged variation of the external heating power with a small number of simple diagnostics (line-averaged electron density, edge electron density and fusion power). A baseline operation control scenario (plasma start-up and steady-state sustainment) of the FFHR-d1 reactor for both self-ignition and sub-ignition operation modes was demonstrated.

  14. Overview of the 2014 Edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook)

    SciTech Connect

    John D. Bess; J. Blair Briggs; Jim Gulliford; Ian Hill

    2014-10-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.

  15. Designing a TAC thermometer from a VHTR graphite structure

    SciTech Connect

    Smith, James A. Kotter, Dale; Garrett, Steven L.; Ali, Randall A.

    2015-03-31

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. Very High Temperature Reactors are pushing the in core temperatures even higher. A unique sensing approach will be discussed to address the necessary high temperature measurements. Thermoacoustic thermometry exploits high temperatures and uses materials that are immune to the effects of ionizing radiation to create a temperature sensor that is self-powered and wireless. In addition, the form-factor for the Thermoacoustic Thermometer (TACT) can be designed to be integrated within common in-pile structures. There are no physical moving parts required for TACT and the sensor is self-powered, as it uses the nuclear fuel for its heat source. TACT data will be presented from a laboratory prototype mimicking the design necessary for a VHTR graphite structure.

  16. Designing a TAC thermometer from a VHTR graphite structure

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Kotter, Dale; Garrett, Steven L.; Ali, Randall A.

    2015-03-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. Very High Temperature Reactors are pushing the in core temperatures even higher. A unique sensing approach will be discussed to address the necessary high temperature measurements. Thermoacoustic thermometry exploits high temperatures and uses materials that are immune to the effects of ionizing radiation to create a temperature sensor that is self-powered and wireless. In addition, the form-factor for the Thermoacoustic Thermometer (TACT) can be designed to be integrated within common in-pile structures. There are no physical moving parts required for TACT and the sensor is self-powered, as it uses the nuclear fuel for its heat source. TACT data will be presented from a laboratory prototype mimicking the design necessary for a VHTR graphite structure.

  17. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    SciTech Connect

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  18. Newly Available Reactor Physics Benchmark data in the March 2011 Edition of the IRPhEP Handbook

    SciTech Connect

    John D. Bess; J. Blair Briggs; Jim Gulliford

    2011-06-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the data are compromised, it is unlikely that any of these measurements would be repeated in the future. The purpose of the IRPhEP is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Several new evaluations have been prepared for inclusion in the March 2011 edition of the IRPhEP Handbook.

  19. AGC-2 Graphite Preirradiation Data Analysis Report

    SciTech Connect

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  20. Benchmark Data Through The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    SciTech Connect

    J. Blair Briggs; Dr. Enrico Sartori

    2005-09-01

    The International Reactor Physics Experiments Evaluation Project (IRPhEP) was initiated by the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency’s (NEA) Nuclear Science Committee (NSC) in June of 2002. The IRPhEP focus is on the derivation of internationally peer reviewed benchmark models for several types of integral measurements, in addition to the critical configuration. While the benchmarks produced by the IRPhEP are of primary interest to the Reactor Physics Community, many of the benchmarks can be of significant value to the Criticality Safety and Nuclear Data Communities. Benchmarks that support the Next Generation Nuclear Plant (NGNP), for example, also support fuel manufacture, handling, transportation, and storage activities and could challenge current analytical methods. The IRPhEP is patterned after the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and is closely coordinated with the ICSBEP. This paper highlights the benchmarks that are currently being prepared by the IRPhEP that are also of interest to the Criticality Safety Community. The different types of measurements and associated benchmarks that can be expected in the first publication and beyond are described. The protocol for inclusion of IRPhEP benchmarks as ICSBEP benchmarks and for inclusion of ICSBEP benchmarks as IRPhEP benchmarks is detailed. The format for IRPhEP benchmark evaluations is described as an extension of the ICSBEP format. Benchmarks produced by the IRPhEP add new dimension to criticality safety benchmarking efforts and expand the collection of available integral benchmarks for nuclear data testing. The first publication of the "International Handbook of Evaluated Reactor Physics Benchmark Experiments" is scheduled for January of 2006.

  1. A physical pulverization strategy for preparing a highly active composite of CoOx and crushed graphite for lithium-oxygen batteries.

    PubMed

    Ming, Jun; Kwak, Won-Jin; Park, Jin-Bum; Shin, Chang-Dae; Lu, Jun; Curtiss, Larry; Amine, Khalil; Sun, Yang-Kook

    2014-07-21

    A new physical pulverization strategy has been developed to prepare a highly active composite of CoOx and crushed graphite (CG) for the cathode in lithium-oxygen batteries. The effect of CoOx loading on the charge potential in the oxygen evolution reaction (Li(2)O(2) →2 Li(+) +O(2) +2e(-)) was investigated in coin-cell tests. The CoOx (38.9 wt %)/CG composite showed a low charge potential of 3.92 V with a delivered capacity of 2 mAh cm(-2) under a current density of 0.2 mA cm(-2). The charge potential was 4.10 and 4.15 V at a capacity of 5 and 10 mAh cm(-2), respectively, with a current density of 0.5 mA cm(-2). The stability of the electrolyte and discharge product on the gas-diffusion layer after the cycling were preliminarily characterized by (1)H nuclear magnetic resonance spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The high activity of the composite was further analyzed by electrochemical impedance spectroscopy, cyclic voltammetry, and potential-step chronoamperometry. The results indicate that our near-dry milling method is an effective and green approach to preparing a nanocomposite cathode with high surface area and porosity, while using less solvent. Its relative simplicity compared with the traditional solution method could facilitate its widespread application in catalysis, energy storage, and materials science. PMID:24962019

  2. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

    SciTech Connect

    Mahurin, R.; Greene, Geoffrey L; Koehler, Paul Edward; Cianciolo, Vince

    2005-05-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focusing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated.

  3. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

    PubMed Central

    Mahurin, Rob; Greene, Geoffrey; Kohler, Paul; Cianciolo, Vince

    2005-01-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focussing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated. PMID:27308114

  4. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor.

    PubMed

    Mahurin, Rob; Greene, Geoffrey; Kohler, Paul; Cianciolo, Vince

    2005-01-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focussing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated. PMID:27308114

  5. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  6. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  7. Fission Product Sorptivity in Graphite

    SciTech Connect

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar; Viswanath, Dabir; Walton, Kyle; Haffner, Robert

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  8. A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors

    SciTech Connect

    Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

    2000-06-01

    The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

  9. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Heyong, Huo; Ke, Tang; Rogers, John; Haste, Martin; Christodoulou, Marios

    A new cold neutron radiography beamline has been designed and constructed for the Mianyang reactor at the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics. This paper describes the components of the system and demonstrates the achievable image resolution.

  10. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.