Science.gov

Sample records for grasshopper pathogens differentiated

  1. Pathotypes in the Entomophaga grylli species complex of grasshopper pathogens differentiated with random amplification of polymorphic DNA and cloned-DNA probes.

    PubMed Central

    Bidochka, M J; Walsh, S R; Ramos, M E; Leger, R J; Silver, J C; Roberts, D W

    1995-01-01

    The zygomycetous fungus Entomophaga grylli is a pathogen that shows host-specific variance to grasshopper subfamilies. Three pathotypes of the E. grylli species complex were differentiated by three molecular techniques. In the first method, the three pathotypes showed different fragment patterns generated by random amplification of polymorphic DNA (RAPD). There was little or no interisolate variability in RAPD fragment patterns within each pathotype. Passage of an isolate of pathotype 3, originally from an Australian grasshopper (Praxibulus sp.), through a North America grasshopper resulted in no differences in the resultant RAPD fragment patterns. In the second method, polymorphic RAPD fragments were used to probe the genomic DNA from the three pathotypes, and pathotype-specific fragments were found. In the third method, restriction fragments from genomic DNA of the three pathotypes were cloned and screened for pathotype specificity. A genomic probe specific for each pathotype was isolated. These probes did not hybridize to DNA from Entomophaga aulicae or from grasshoppers. To facilitate the use of RAPD analysis and other molecular tools to identify pathotypes, a method for extracting DNA from resting spores from infected grasshoppers was developed. The DNA from the fractured resting spores was of sufficient integrity to be blotted and probed with the pathotype-specific DNA probes, thus validating the use of these probes for pathotype identification in field-collected grasshoppers. PMID:7574596

  2. Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae).

    PubMed

    Amarasekare, Kaushalya G; Edelson, J V

    2004-10-01

    The effect of temperature on activity of insecticides for controlling grasshoppers in leafy green vegetables was evaluated. Insecticides evaluated had differing modes of action and included diflubenzuron, azadirachtin, Beauveria bassiana, spinosad, endosulfan, esfenvalerate, and naled. We evaluated these insecticides for efficacy to third instars of differential grasshopper, Melanoplus differentialis (Thomas), at temperatures ranging from 10 to 35 degrees C. In the laboratory, treatment with esfenvalerate resulted in 100% mortality at temperatures of 10 to 35 degrees C, and efficacy was not temperature dependent. Treatment with spinosad resulted in similar mortality as with esfenvalerate at all temperatures except 10 degrees C. The activity of B. bassiana was greatest at 25 degrees C and was adversely affected by high and low temperatures. Treatment with diflubenzuron resulted in increased mortality at high temperatures, and at 35 degrees C its activity was similar to that of esfenvalerate and spinosad. The activity of azadirachtin ranged from 19 to 31% and was not influenced by temperature. In field studies, spinosad, diflubenzuron, and esfenvalerate provided differing levels of mortality both at application and when nymphs were exposed to 1-h-old residues. However, only spinosad and diflubenzuron provided similar levels of mortality when nymphs were exposed to 24-h-old residues. The residual activity of endosulfan, naled, esfenvalerate, and spinosad decreased with increasing time (0-24 h) after exposure to sunlight and high summer temperatures. Compared with other insecticides, naled had a short residual activity period and activity was dependent upon immediate contact with the nymphs or their substrate. B. bassiana was inactive under high temperatures and intense sunlight as occurs in summer. PMID:15568348

  3. Discordant patterns of genetic and phenotypic differentiation in five grasshopper species codistributed across a microreserve network.

    PubMed

    Ortego, Joaquín; García-Navas, Vicente; Noguerales, Víctor; Cordero, Pedro J

    2015-12-01

    Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal-related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large-scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation. PMID:26475782

  4. Differentiations of Chitin Content and Surface Morphologies of Chitins Extracted from Male and Female Grasshopper Species

    PubMed Central

    Kaya, Murat; Lelešius, Evaldas; Nagrockaitė, Radvilė; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25 – 90nm wide nanofibers and 90 – 250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers’ chitins; 88.45–95.48% and for commercial chitin; 94.95%. PMID:25635814

  5. Grasshoppers and Crickets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The order Orthoptera includes many commonly recognized insects, including grasshoppers, crickets, and katydids. Among those that may cause damage in forage and rangeland crops, short-horned grasshoppers (Acrididae) are the best known. Long-horned grasshoppers (Tettigoniidae), mole crickets (Gryllota...

  6. A PCR-based method to identify Entomophaga spp. infections in North American grasshoppers.

    PubMed

    Casique-Valdes, Rebeca; Sanchez-Peña, Sergio; Ivonne Torres-Acosta, R; Bidochka, Michael J

    2012-01-01

    A PCR-based method was developed for the detection and identification of two species of grasshopper-specific pathogens belonging to the genus Entomophaga in North America, Entomophaga calopteni and Entomophaga macleodii. Two separate sets of primers specific for amplification of a DNA product from each species of Entomophaga as well as a positive control were utilized. Grasshoppers were collected from two sites in Mexico during an epizootic with grasshoppers found in "summit disease", typical of Entomophaga infections. There was a preponderance of Melanopline grasshoppers infected by E. calopteni. The described method is an accurate tool for identification of North American grasshopper infections by Entomophaga species. PMID:22146240

  7. Households at Grasshopper Pueblo.

    ERIC Educational Resources Information Center

    Reid, J. Jefferson; Whittlesey, Stephanie M.

    1982-01-01

    Describes the archaeological reconstruction of domestic life in Grasshopper, Arizona, a mogollon pueblo community which began around 1300 A.D. Categories of space and domestic activities are discussed. An analysis of variations in the patterns of household types within the pueblo is included. (AM)

  8. Mechanical Vectors Enhance Fungal Entomopathogen Reduction of the Grasshopper Pest Camnula pellucida (Orthoptera: Acrididae).

    PubMed

    Kistner, Erica J; Saums, Marielle; Belovsky, Gary E

    2015-02-01

    Mounting scientific evidence indicates that pathogens can regulate insect populations. However, limited dispersal and sensitivity to abiotic conditions often restricts pathogen regulation of host populations. While it is well established that arthropod biological vectors increase pathogen incidence in host populations, few studies have examined whether arthropod mechanical vectors (an organism that transmits pathogens but is not essential to the life cycle of the pathogen) influence host-pathogen dynamics. The importance of mechanical dispersal by ant scavengers, Formica fusca (L.), in a grasshopper-fungal entomopathogen system was investigated. We examined the ability of ants to mechanically disperse and transmit the pathogen, Entomophaga grylli (Fresenius) pathotype 1, to its host, the pest grasshopper Camnula pellucida (Scudder), in a series of laboratory experiments. Fungal spores were dispersed either externally on the ant's body surface or internally through fecal deposition. In addition, a third of all grasshoppers housed with fungal-inoculated ants became infected, indicating that ants can act as mechanical vectors of E. grylli. The effect of ant mechanical vectors on E. grylli incidence was also examined in a field experiment. Ant access to pathogen-exposed experimental grasshopper populations was restricted using organic ant repellent, thereby allowing us to directly compare mechanical and natural transmission. Ants increased grasshopper pathogen mortality by 58%, which led to greater pathogen reductions of grasshopper survival than natural transmission. Taken together, our results indicate that ants enhance E. grylli reduction of grasshopper pest numbers. Therefore, mechanical transmission of pathogens may be an important overlooking component of this grasshopper-fungal pathogen system. PMID:26308817

  9. Phylogenetic Characterization of Encephalitozoon Romaleae (Microsporidia) from a Grasshopper Host: Relationship to Encephalitozoon spp. Infecting Humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encephalitozoon species are the most common microsporidian pathogens of humans and domesticated animals. We recently discovered a new microsporidium, Encephalitozoon romaleae, infecting the eastern lubber grasshopper Romalea microptera. To understand its evolutionary relationships, we compared par...

  10. Epidemiological differentiation of pathogenic strains of Salmonella enteritidis by ribotyping.

    PubMed Central

    Landeras, E; González-Hevia, M A; Alzugaray, R; Mendoza, M C

    1996-01-01

    The usefulness of two-way ribotyping, performed with SphI and PstI, as a genetic marker for a series of pathogenic Salmonella enteritidis strains is reported. Eighteen combined ribotypes were differentiated, a discrimination index of 0.77 was reached, a genetic relationship dendrogram was traced, and the results were applied in an epidemiological study. PMID:8862603

  11. CONTROL OF RANGELAND GRASSHOPPERS USING PRESCRIBED FIRE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers (Orthoptera: Acrididae) are considered among the most damaging rangeland pests yet desired for the development of many wildlife species. Most grasshoppers are innocuous, but control with insecticides is non-discriminatory among species. Our objectives were to evaluate the effects of p...

  12. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. PMID:27084693

  13. Ferocious Fighting between Male Grasshoppers

    PubMed Central

    Umbers, Kate D. L.; Tatarnic, Nikolai J.; Holwell, Gregory I.; Herberstein, Marie E.

    2012-01-01

    Contests among individuals over mating opportunities are common across diverse taxa, yet physical conflict is relatively rare. Due to the potentially fatal consequences of physical fighting, most animals employ mechanisms of conflict resolution involving signalling and ritualistic assessment. Here we provide the first evidence of ubiquitous escalated fighting in grasshoppers. The chameleon grasshopper (Kosciuscola tristis) is an Australian alpine specialist, in which males engage in highly aggressive combat over ovipositing females. We describe discrete agonistic behaviours including mandible flaring, mounting, grappling, kicking and biting, and their use depending on the individual’s role as challenger or defender. We show that male role predicts damage, with challengers being more heavily damaged than males defending females (defenders). Challengers also possess wider mandibles than defenders, but are similar in other metrics of body size. Our data suggest that fights escalate between males matched in body size and that mandibles are used as weapons in this species. This system represents an exciting opportunity for future research into the evolution of costly fighting behaviour in an otherwise placid group. PMID:23166725

  14. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    PubMed

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  15. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation

    PubMed Central

    Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-01-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  16. PRESCRIBED FIRE EFFECTS ON GRASSHOPPER ASSEMBLAGES IN THE SOUTHERN PLAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers (Acrididae) can have profound influences on the flora and fauna of grasslands. Severe outbreaks periodically devastate crops and forage resources. However, grasshoppers provide an important food source for many wildlife species. Given the potential impacts of grasshoppers, it is impo...

  17. Assessment of grasshopper abundance in cereal crops using pan traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers and locusts frequently invade cereal crops from adjacent source habitats. To protect the crops from grasshopper damage, areas bordering crop fields may be treated with insecticides. Study of grasshopper dispersal into crops and evaluation of various management alternatives is hindered b...

  18. Influence of Weather Variables and Plant Communities on Grasshopper Density in the Southern Pampas, Argentina

    PubMed Central

    de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta

    2011-01-01

    temperature had no significant effect on total grasshopper density, these weather variables and plant communities had differential influence on the dominant grasshopper species. PMID:22220572

  19. The spore differentiation pathway in the enteric pathogen Clostridium difficile.

    PubMed

    Pereira, Fátima C; Saujet, Laure; Tomé, Ana R; Serrano, Mónica; Monot, Marc; Couture-Tosi, Evelyne; Martin-Verstraete, Isabelle; Dupuy, Bruno; Henriques, Adriano O

    2013-01-01

    Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum. PMID

  20. The Spore Differentiation Pathway in the Enteric Pathogen Clostridium difficile

    PubMed Central

    Pereira, Fátima C.; Saujet, Laure; Tomé, Ana R.; Serrano, Mónica; Monot, Marc; Couture-Tosi, Evelyne; Martin-Verstraete, Isabelle; Dupuy, Bruno; Henriques, Adriano O.

    2013-01-01

    Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σF in the forespore, and σE in the mother cell control early stages of development and are replaced, at later stages, by σG and σK, respectively. Starting with σF, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σE is partially independent of σF, that σG activity is not dependent on σE, and that the activity of σK does not require σG. We also show that σK is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σF-to-σE, σE-to-σG, and σG-to-σK cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum. PMID:24098139

  1. Differential proteome and secretome analysis during rice-pathogen interaction.

    PubMed

    Wang, Yiming; Kim, Sang Gon; Wu, Jingni; Kim, Sun Tae; Kang, Kyu Young

    2014-01-01

    Substantial evidences implicate that sample preparation and protein extraction in proteomic studies of plant-pathogen interactions are critical to understand cross talk between host and pathogen. Therefore, interest is growing in applying proteomics techniques to investigate simultaneously secreted proteins from rice and pathogen. We have found, however, that most proteins of interest are low abundant so that proper prefractionation or extraction of secreted proteins from extracellular space (ECS) in the rice leaf is required to excavate relevant protein. This chapter describes the preparation of sample and extraction procedure to enrich the proteins interested before separation by 2-DE or LC-MS/MS. This method significantly increases the sensitivity of proteomic comparisons. PMID:24136547

  2. Proteases as Markers for Differentiation of Pathogenic and Nonpathogenic Species of Acanthamoeba

    PubMed Central

    Khan, Naveed A.; Jarroll, Edward L.; Panjwani, Noorjahan; Cao, Zhiyi; Paget, Timothy A.

    2000-01-01

    Acanthamoeba keratitis is a vision-threatening infection caused by pathogenic species of the genus Acanthamoeba. Although not all Acanthamoeba spp. can cause keratitis, it is important to differentiate pathogenic species and isolates from nonpathogens. Since extracellular proteases may play a role in ocular pathology, we used colorimetric, cytopathic, and zymographic assays to assess extracellular protease activity in pathogenic and nonpathogenic Acanthamoeba. Colorimetric assays, using azo-linked protein as a substrate, showed extracellular protease activity in Acanthamoeba-conditioned medium and differentiated pathogenic and nonpathogenic Acanthamoeba. Monolayers of immortalized corneal epithelial cells in four-well plates were used for cytopathic effect (CPE) assays. Pathogenic Acanthamoeba isolates exhibited marked CPE on immortalized corneal epithelial cells, while nonpathogenic isolates did not exhibit CPE. Protease zymography was performed with Acanthamoeba-conditioned medium as well as with Acanthamoeba- plus epithelial-cell-conditioned medium. The zymographic protease assays showed various banding patterns for different strains of Acanthamoeba. In pathogenic Acanthamoeba isolates, all protease bands were inhibited by phenylmethylsulfonyl fluoride (PMSF), suggesting serine type proteases, while in nonpathogenic strains only partial inhibition was observed by using PMSF. The pathogenic Acanthamoeba strains grown under typical laboratory conditions without epithelial cells exhibited one overexpressed protease band of 107 kDa in common; this protease was not observed in nonpathogenic Acanthamoeba strains. The 107-kDa protease exhibited activity over a pH range of 5 to 9.5. PMID:10921939

  3. Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens

    PubMed Central

    Powell, Amy J; Conant, Gavin C; Brown, Douglas E; Carbone, Ignazio; Dean, Ralph A

    2008-01-01

    Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life

  4. ENHANCEMENT OF BEAUVERIA BASSIANA AGAINST GRASSHOPPERS WITH VEGETABLE OIL CARRIERS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is registered in the U.S. for control of grasshoppers, but efficacious use rates and product costs have been serious deterrents of adoption. Canola and certain other vegetable oils contain the fatty acids that stimulate necrophily and necrophagy in grasshoppers. Using these oils ...

  5. SELECTIVE CONTROL OF RANGELAND GRASSHOPPERS WITH PRESCRIBED FIRE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers (Orthoptera: Acrididae) are considered among the most damaging rangeland pests, but are necessary for the survival of many wildlife species. Most grasshoppers are innocuous, but control with insecticides is non-discriminatory among species. The objectives were to evaluate the effects ...

  6. Multilocus sequence typing of Metarhizium anisopliae var acridum isolates as microbial agents for locust and grasshopper control. Genbank Accession numbers FJ787311 to FJ787325

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing interest in the biological control of locusts and grasshoppers (Acrididae) has led to the development of biopesticides based on naturally occurring pathogens which offers an environmentally safe alternative to chemical pesticides. However, the fungal strains which are being sought for biop...

  7. Influence of a large late summer precipitation event on food limitation and grasshopper population dynamics in a northern Great Plains grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the ecological processes that generate grasshopper outbreaks, and the complex ecological interactions between grasshoppers, weather conditions and plants that cause fluctuations in grasshopper populations remain poorly understood. The effects of initial and increasing grasshopp...

  8. Organophosphate residues in grasshoppers from sprayed rangelands

    USGS Publications Warehouse

    Stromborg, K.L.; McEwen, L.C.; Lamont, T.

    1984-01-01

    Grasshoppers (Orthoptera) were collected in pastures that had been sprayed with malathion and acephate to estimate the secondary exposure of insectivorous birds to these pesticides. Residues of malathion were below 3 ppm at 30 'and 54 hours after spraying and no malaoxon was detected. In contrast, acephate was found at 8 and 9 ppm 4 hours after spray; 3-5 ppm of the toxic metabolite methamidophos were also detected at that time. By 53 hours postspray, acephate levels declined to 2 ppm and methamidophos to less than 1 ppm. These results suggest that although malathion may not be a hazard to insectivorous species. acephate may be hazardous through metabolic transformation to methamidophos.

  9. Twenty-Five Fun Things to Do with Grasshoppers.

    ERIC Educational Resources Information Center

    Dyche, Steven E.

    1981-01-01

    Briefly described are 25 "hands on" classroom activities which require live, freshly killed, or preserved grasshoppers. Topics of activities include predator-prey relationships, feeding habits, locomotion, dissection, anatomy, and population estimates. (DS)

  10. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti

    PubMed Central

    2013-01-01

    Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected

  11. Role of nitrogen-metabolism genes expressed during pathogenicity of the alkalinizing Colletotrichum gloeosporioides and their differential expression in acidifying pathogens.

    PubMed

    Miyara, I; Shnaiderman, C; Meng, X; Vargas, W A; Diaz-Minguez, J M; Sherman, A; Thon, M; Prusky, D

    2012-09-01

    Pathogens can actively alter fruit pH around the infection site, signaling modulation of pathogenicity-factor expression, as found for alkalinizing (Colletotrichum and Alternaria spp.) and acidifying (Penicillium, Botrytis, and Sclerotinia spp.) fungi. The nitrogen-metabolism genes GDH2, GS1, GLT, and MEP genes are differentially expressed during colonization by Colletotrichum gloeosporioides, and a Δgdh2 strain reduces ammonia accumulation and pathogenicity. We analyzed the contribution of transporters GLT and MEPB to C. gloeosporiodes pathogenicity. Germinating spores of Δglt strains showed reduced appressorium formation; those of ΔmepB mutants showed rapid ammonia uptake and accumulation inside the hyphae, indicating deregulated uptake. Both mutants reduced pathogenicity, indicating that these transporters function during alkalinizing species pathogenicity. We compared the expressions of these genes in C. gloeosporioides and Sclerotinia sclerotiorum, and found five to 10-fold higher expression at the transcript level in the former. Interestingly, GLT and MEPB in the alkalinizing species showed no and very low sequence identity, respectively, with their counterparts in the acidifying species. Knockout analysis of GLT and MEPB and their differential transcript regulation in the alkalinizing and acidifying species suggest that the ammonia accumulation contributing to pathogenicity in the former is modulated by factors at the gene-regulation levels that are lacking in the acidifying species. PMID:22571816

  12. Immunogenetic Variation and Differential Pathogen Exposure in Free-Ranging Cheetahs across Namibian Farmlands

    PubMed Central

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone

    2012-01-01

    Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. PMID:23145096

  13. Oviposition site selection by the grasshoppers Melanoplus borealis and M. sanguinipes (Orthoptera: Acrididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female grasshoppers can affect the fitness of their offspring through their selection of oviposition sites. Successful embryological development depends on suitable temperature and moisture levels, factors which may vary considerably on a fine scale in natural environments where grasshoppers occur. ...

  14. An Integrated Lab-on-Chip for Rapid Identification and Simultaneous Differentiation of Tropical Pathogens

    PubMed Central

    Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L.; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H.; Snounou, Georges; Rénia, Laurent; Ng, Lisa F. P.

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. PMID:25078474

  15. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    PubMed

    Tan, Jeslin J L; Capozzoli, Monica; Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H; Snounou, Georges; Rénia, Laurent; Ng, Lisa F P

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. PMID:25078474

  16. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    NASA Astrophysics Data System (ADS)

    Rodrigo-Navarro, Aleixandre; Rico, Patricia; Saadeddin, Anas; Garcia, Andres J.; Salmeron-Sanchez, Manuel

    2014-07-01

    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications.

  17. Effects of fall fire and livestock grazing on grasshopper populations in the Little Missouri National Grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Habitat management practices such as burning or livestock grazing can influence grasshopper population dynamics and may impact the likelihood of grasshopper outbreaks. A recent study suggests that one form of grazing management can reduce rangeland grasshopper populations in the northern Great Plain...

  18. Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens.

    PubMed

    Cecil, Jessica D; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Chen, Yu-Yen; Singleton, William; Gause, Katelyn T; Yan, Yan; Caruso, Frank; Reynolds, Eric C

    2016-01-01

    Highly purified outer membrane vesicles (OMVs) of the periodontal pathogens, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were produced using tangential flow ultrafiltration, ultracentrifugation and Optiprep density gradient separation. Cryo-TEM and light scattering showed OMVs to be single lipid-bilayers with modal diameters of 75 to 158 nm. Enumeration of OMVs by nanoparticle flow-cytometry at the same stage of late exponential culture indicated that P. gingivalis was the most prolific OMV producer. P. gingivalis OMVs induced strong TLR2 and TLR4-specific responses and moderate responses in TLR7, TLR8, TLR9, NOD1 and NOD2 expressing-HEK-Blue cells. Responses to T. forsythia OMVs were less than those of P. gingivalis and T. denticola OMVs induced only weak responses. Compositional analyses of OMVs from the three pathogens demonstrated differences in protein, fatty acids, lipopolysaccharide, peptidoglycan fragments and nucleic acids. Periodontal pathogen OMVs induced differential pattern recognition receptor responses that have implications for their role in chronic periodontitis. PMID:27035339

  19. Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens

    PubMed Central

    Lenzo, Jason C.; Holden, James A.; Chen, Yu-Yen; Singleton, William; Gause, Katelyn T.; Yan, Yan; Caruso, Frank; Reynolds, Eric C.

    2016-01-01

    Highly purified outer membrane vesicles (OMVs) of the periodontal pathogens, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were produced using tangential flow ultrafiltration, ultracentrifugation and Optiprep density gradient separation. Cryo-TEM and light scattering showed OMVs to be single lipid-bilayers with modal diameters of 75 to 158 nm. Enumeration of OMVs by nanoparticle flow-cytometry at the same stage of late exponential culture indicated that P. gingivalis was the most prolific OMV producer. P. gingivalis OMVs induced strong TLR2 and TLR4-specific responses and moderate responses in TLR7, TLR8, TLR9, NOD1 and NOD2 expressing-HEK-Blue cells. Responses to T. forsythia OMVs were less than those of P. gingivalis and T. denticola OMVs induced only weak responses. Compositional analyses of OMVs from the three pathogens demonstrated differences in protein, fatty acids, lipopolysaccharide, peptidoglycan fragments and nucleic acids. Periodontal pathogen OMVs induced differential pattern recognition receptor responses that have implications for their role in chronic periodontitis. PMID:27035339

  20. Caution: Reptile pets shuttle grasshopper allergy and asthma into homes.

    PubMed

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Jensen, Sebastian A F; Robibaro, Bruno; Kinaciyan, Tamar

    2015-01-01

    The numbers of reptiles in homes has at least doubled in the last decade in Europe and the USA. Reptile purchases are increasingly triggered by the attempt to avoid potentially allergenic fur pets like dogs and cats. Consequently, reptiles are today regarded as surrogate pets initiating a closer relationship with the owner than ever previously observed. Reptile pets are mostly fed with insects, especially grasshoppers and/or locusts, which are sources for aggressive airborne allergens, best known from occupational insect breeder allergies. Exposure in homes thus introduces a new form of domestic allergy to grasshoppers and related insects. Accordingly, an 8-year old boy developed severe bronchial hypersensitivity and asthma within 4 months after purchase of a bearded dragon. The reptile was held in the living room and regularly fed with living grasshoppers. In the absence of a serological allergy diagnosis test, an IgE immunoblot on grasshopper extract and prick-to-prick test confirmed specific sensitization to grasshoppers. After 4 years of allergen avoidance, a single respiratory exposure was sufficient to trigger a severe asthma attack again in the patient. Based on literature review and the clinical example we conclude that reptile keeping is associated with introducing potent insect allergens into home environments. Patient interviews during diagnostic procedure should therefore by default include the question about reptile pets in homes. PMID:26322151

  1. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    PubMed Central

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-01-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7–10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation. PMID:26902619

  2. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-02-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7-10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation.

  3. Canalization of freeze tolerance in an alpine grasshopper.

    PubMed

    Hawes, Timothy C

    2015-10-01

    In the Rock and Pillar Range, New Zealand, the alpine grasshopper, Sigaus australis Hutton, survives equilibrium freezing (EF) all-year round. A comparison of freeze tolerance (FT) in grasshoppers over four austral seasons for a 1 year period finds that: (a) the majority (>70%) of the sample population of grasshoppers survive single freeze-stress throughout the year; (b) exposure to increased freeze stress (multiple freeze-stress events) does not lead to a loss of freeze tolerance; and (c) responses to increased freeze stress reveal seasonal tuning of the FT adaptation to environmental temperatures. The Rock and Pillar sample population provides a clear example of the canalization of the FT adaptation. Seasonal variability in the extent of tolerance of multiple freezing events indicates that physiology is modulated to environmental temperatures by phenotypic plasticity - i.e. the FT adaptation is permanent and adjustable. PMID:26210007

  4. Red List of grasshoppers of the Wadden Sea area

    NASA Astrophysics Data System (ADS)

    Holst, K.; Grein, G.; Dierking, U.; van Wingerden, W. K. R. E.

    1996-10-01

    In typical coastal habitats of the Wadden Sea, 15 species of grasshoppers are threatened in at least one subregion. Of these, 14 species are threatened in the entire area and are therefore placed on the trilateral Red List. The situation in the Danish part of the Wadden Sea could only be taken into consideration in a limited way due to the latest available data in Denmark from 1969. The status of 2 species of grasshoppers in the entire Wadden Sea area is critical, 4 species are endangered, the status of 3 species is vulnerable and of 5 species susceptible.

  5. Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment

    PubMed Central

    O’Grady, Eoin P.; Sokol, Pamela A.

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections. PMID:22919581

  6. Population genetics of Mioscirtus wagneri, a grasshopper showing a highly fragmented distribution.

    PubMed

    Ortego, Joaquín; Aguirre, Maria Pilar; Cordero, Pedro J

    2010-02-01

    The genetic consequences of population fragmentation and isolation are major issues in conservation biology. In this study we analyse the genetic variability and structure of the Iberian populations of Mioscirtus wagneri, a specialized grasshopper exclusively inhabiting highly fragmented hypersaline low grounds. For this purpose we have used seven species-specific microsatellite markers to type 478 individuals from 24 localities and obtain accurate estimates of their genetic variability. Genetic diversity was relatively low and we detected genetic signatures suggesting that certain populations of M. wagneri have probably passed through severe demographic bottlenecks. We have found that the populations of this grasshopper show a strong genetic structure even at small geographical scales, indicating that they mostly behave as isolated populations with low levels of gene flow among them. Thus, several populations can be regarded as independent and genetically differentiated units which require adequate conservation strategies to avoid eventual extinctions that in highly isolated localities are not likely to be compensated for with the arrival of immigrants from neighbouring populations. Overall, our results show that these populations probably represent the 'fragments' of a formerly more widespread population and highlight the importance of protecting Iberian hypersaline environments due to the high number of rare and endangered species they sustain. PMID:20051009

  7. Differentially Evolved Genes of Salmonella Pathogenicity Islands: Insights into the Mechanism of Host Specificity in Salmonella

    PubMed Central

    Eswarappa, Sandeepa M.; Janice, Jessin; Nagarajan, Arvindhan G.; Balasundaram, Sudhagar V.; Karnam, Guruswamy; Dixit, Narendra M.; Chakravortty, Dipshikha

    2008-01-01

    Background The species Salmonella enterica (S. enterica) includes many serovars that cause disease in avian and mammalian hosts. These serovars differ greatly in their host range and their degree of host adaptation. The host specificity of S. enterica serovars appears to be a complex phenomenon governed by multiple factors acting at different stages of the infection process, which makes identification of the cause/s of host specificity solely by experimental methods difficult. Methodology/Principal Findings In this study, we have employed a molecular evolution and phylogenetics based approach to identify genes that might play important roles in conferring host specificity to different serovars of S. enterica. These genes are ‘differentially evolved’ in different S. enterica serovars. This list of ‘differentially evolved’ genes includes genes that encode translocon proteins (SipD, SseC and SseD) of both Salmonella pathogenicity islands 1 and 2 encoded type three secretion systems, sptP, which encodes an effector protein that inhibits the mitogen-activated protein kinase pathway of the host cell, and genes which encode effector proteins (SseF and SifA) that are important in placing the Salmonella-containing vacuole in a juxtanuclear position. Conclusions/Significance Analysis of known functions of these ‘differentially evolved genes’ indicates that the products of these genes directly interact with the host cell and manipulate its functions and thereby confer host specificity, at least in part, to different serovars of S. enterica that are considered in this study. PMID:19050757

  8. The diversity of caeliferins in American grasshoppers, what possible function?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caeliferins is a new class of compounds recently identified from regurgitant of the American grasshopper (Schistocerca americana)1. Two closely related caeliferins were shown to induce the release of volatiles in corn plants comparable to what earlier has been shown with volicitin and other fatty a...

  9. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  10. Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African savannah.

    PubMed

    van der Plas, Fons; Olff, Han

    2014-06-01

    African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots ('control plots') with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino ('megaherbivore exclosures'), and (iii) plots with tall fences, excluding all herbivores larger than rodents ('complete ungulate exclosures'). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30% taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities. PMID:24705648

  11. Spatial Genetic Structure and Mitochondrial DNA Phylogeography of Argentinean Populations of the Grasshopper Dichroplus elongatus

    PubMed Central

    Rosetti, Natalia; Remis, Maria Isabel

    2012-01-01

    Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss

  12. Antineoplastic Agents 553. The Texas Grasshopper Brachystola magna1

    PubMed Central

    Pettit, George R.; Meng, Yanhui; Herald, Delbert L.; Knight, John C.; Day, John F.

    2011-01-01

    Bioassay (P388 lymphocytic leukemia cell line and human cancer cell lines) -guided separation of an extract prepared from the previously chemically uninvestigated Texas grasshopper Brachystola magna led to isolation of the cancer cell growth inhibitory pancratistatin (1), narciclasine (2) and ungeremine (3). Pancratistatin (1) was first isolated from the bulbs of Hymenocallis littoralis (a.k.a. Pancratium littorale Jacq) and the original crystal structure was deduced by X-ray analysis of a monomethyl ether derivative. In the present study a crystal of pancratistatin (1) was isolated from an extract of B. magna, which led to the X-ray crystal structure of this anticancer drug. Since isoquinoline derivatives 1–3 are previously known only as constituents of amaryllidaceous plants, some of the interesting implications of their rediscovery in the grasshopper B. magna that does not appear to utilize amaryllis family plants were discussed. PMID:16124772

  13. Antineoplastic agents. 553. The Texas grasshopper Brachystola magna.

    PubMed

    Pettit, George R; Meng, Yanhui; Herald, Delbert L; Knight, John C; Day, John F

    2005-08-01

    Bioassay (P388 lymphocytic leukemia cell line and human cancer cell lines) guided separation of an extract prepared from the previously chemically uninvestigated Texas grasshopper Brachystola magna led to isolation of the cancer cell growth inhibitory pancratistatin (1), narciclasine (2), and ungeremine (3). Pancratistatin (1) was first isolated from the bulbs of Hymenocallis littoralis), and the original crystal structure was deduced by X-ray analysis of a monomethyl ether derivative. In the present study pancratistatin (1) was isolated from an extract of B. magna, which led to the X-ray crystal structure of this anticancer drug. Since isoquinoline derivatives 1-3 are previously known only as constituents of amaryllidaceous plants, some of the interesting implications of their rediscovery in the grasshopper B. magna that does not appear to utilize amaryllis family plants were discussed. PMID:16124772

  14. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences

    PubMed Central

    2013-01-01

    Background The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀ sex chromosome systems. Results Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C0t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. PMID:23937327

  15. Genomic gigantism: DNA loss is slow in mountain grasshoppers.

    PubMed

    Bensasson, D; Petrov, D A; Zhang, D X; Hartl, D L; Hewitt, G M

    2001-02-01

    Several studies have shown DNA loss to be inversely correlated with genome size in animals. These studies include a comparison between Drosophila and the cricket, Laupala, but there has been no assessment of DNA loss in insects with very large genomes. Podisma pedestris, the brown mountain grasshopper, has a genome over 100 times as large as that of Drosophila and 10 times as large as that of Laupala. We used 58 paralogous nuclear pseudogenes of mitochondrial origin to study the characteristics of insertion, deletion, and point substitution in P. pedestris and Italopodisma. In animals, these pseudogenes are "dead on arrival"; they are abundant in many different eukaryotes, and their mitochondrial origin simplifies the identification of point substitutions accumulated in nuclear pseudogene lineages. There appears to be a mononucleotide repeat within the 643-bp pseudogene sequence studied that acts as a strong hot spot for insertions or deletions (indels). Because the data for other insect species did not contain such an unusual region, hot spots were excluded from species comparisons. The rate of DNA loss relative to point substitution appears to be considerably and significantly lower in the grasshoppers studied than in Drosophila or Laupala. This suggests that the inverse correlation between genome size and the rate of DNA loss can be extended to comparisons between insects with large or gigantic genomes (i.e., Laupala and Podisma). The low rate of DNA loss implies that in grasshoppers, the accumulation of point mutations is a more potent force for obscuring ancient pseudogenes than their loss through indel accumulation, whereas the reverse is true for Drosophila. The main factor contributing to the difference in the rates of DNA loss estimated for grasshoppers, crickets, and Drosophila appears to be deletion size. Large deletions are relatively rare in Podisma and Italopodisma. PMID:11158383

  16. Allocation of Nutrients to Somatic Tissues in Young Ovariectomized Grasshoppers

    PubMed Central

    Judd, Evan T.; Hatle, John D.; Drewry, Michelle D.; Wessels, Frank J.; Hahn, Daniel A.

    2010-01-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma “relative” to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of 13C and 15N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  17. Allocation of nutrients to somatic tissues in young ovariectomized grasshoppers.

    PubMed

    Judd, Evan T; Hatle, John D; Drewry, Michelle D; Wessels, Frank J; Hahn, Daniel A

    2010-11-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma "relative" to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of ¹³C and ¹⁵N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  18. Chemical cues from females trigger male courtship behaviour in grasshoppers.

    PubMed

    Finck, Jonas; Kuntze, Janine; Ronacher, Bernhard

    2016-05-01

    Gomphocerine grasshoppers use species-specific calling songs for sex recognition and mate attraction. In two closely related species, Chorthippus biguttulus and C. mollis, acoustic communication is the only experimentally characterized communication channel that elicits male courtship behaviour. However, courtship in these species involves extensive close-range interactions that are likely to be mediated by other signalling modalities, in particular chemical cues. We developed a bioassay to determine if female cuticular hydrocarbons (CHCs) act as chemical cues that induce courtship behaviour, and if males assess variation in CHCs to determine whether or not to court a female. The results of this approach provide evidence that grasshopper males use species- and sex-specific information from CHC signals and respond with a courtship song to the CHC profile of conspecific females but not to the CHC profile of heterospecific females and conspecific males. We conclude that males of C. biguttulus and C. mollis use multimodal channels for mating decisions, based on both acoustic and olfactory cues. We discuss various factors that might favour the evolution of male choosiness in grasshoppers. PMID:27025933

  19. Differential molecular response of apple rootstocks to replant disease causing soil-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diversity of soil-borne fungal pathogens cause apple “replant diseases” (ARD) with a range of symptoms from diminished productivity to tree death. The molecular mechanisms behind host resistance to these necrotrophic pathogens in perennial root tissues are unknown. It is known from other pathosy...

  20. Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria.

    PubMed

    Liu, Xiaobo; Marrakchi, Mouna; Xu, Dawei; Dong, He; Andreescu, Silvana

    2016-06-15

    Rapid and sensitive detection of bacterial pathogens is critical for assessing public health, food and environmental safety. We report the use of modularly designed and site-specifically oriented synthetic antimicrobial peptides (sAMPs) as novel recognition agents enabling detection and quantification of bacterial pathogens. The oriented assembly of the synthetic peptides on electrode surfaces through an engineered cysteine residue coupled with impedimetric detection facilitated rapid and sensitive detection of bacterial pathogens with a detection limit of 10(2)CFU/mL for four bacterial strains including Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The approach enabled differentiation between live and dead bacteria. The fabrication of the sAMPs functionalized surface and the importance of the sAMPs orientation for providing optimum recognition and detection ability against pathogens are discussed. The proposed methodology provides a universal platform for the detection of bacterial pathogens based on engineered peptides, as alternative to the most commonly used immunological and gene based assays. The method can also be used to fabricate antimicrobial coatings and surfaces for inactivation and screening of viable bacteria. PMID:26802747

  1. IGS Minisatellites Useful for Race Differentiation in Colletotrichum lentis and a Likely Site of Small RNA Synthesis Affecting Pathogenicity.

    PubMed

    Durkin, Jonathan; Bissett, John; Pahlavani, Mohammadhadi; Mooney, Brent; Buchwaldt, Lone

    2015-01-01

    Colletotrichum lentis is a fungal pathogen of lentil in Canada but rarely reported elsewhere. Two races, Ct0 and Ct1, have been identified using differential lines. Our objective was to develop a PCR-probe differentiating these races. Sequences of the translation elongation factor 1α (tef1α), RNA polymerase II subunit B2 (rpb2), ATP citrate lyase subunit A (acla), and internal transcribed spacer (ITS) regions were monomorphic, while the intergenic spacer (IGS) region showed length polymorphisms at two minisatellites of 23 and 39 nucleotides (nt). A PCR-probe (39F/R) amplifying the 39 nt minisatellite was developed which subsequently revealed 1-5 minisatellites with 1-12 repeats in C. lentis. The probe differentiated race Ct1 isolates having 7, 9 or 7+9 repeats from race Ct0 having primarily 2 or 4 repeats, occasionally 5, 6, or 8, but never 7 or 9 repeats. These isolates were collected between 1991 and 1999. In a 2012 survey isolates with 2 and 4 repeats increased from 34% to 67%, while isolated with 7 or 9 repeats decreased from 40 to 4%, likely because Ct1 resistant lentil varieties had been grown. The 39 nt repeat was identified in C. gloeosporioides, C. trifolii, Ascochyta lentis, Sclerotinia sclerotiorum and Botrytis cinerea. Thus, the 39F/R PCR probe is not species specific, but can differentiate isolates based on repeat number. The 23 nt minisatellite in C. lentis exists as three length variants with ten sequence variations differentiating race Ct0 having 14 or 19 repeats from race Ct1 having 17 repeats, except for one isolate. RNA-translation of 23 nt repeats forms hairpins and has the appropriate length to suggest that IGS could be a site of small RNA synthesis, a hypothesis that warrants further investigation. Small RNA from fungal plant pathogens able to silence genes either in the host or pathogen thereby aiding infection have been reported. PMID:26340001

  2. IGS Minisatellites Useful for Race Differentiation in Colletotrichum lentis and a Likely Site of Small RNA Synthesis Affecting Pathogenicity

    PubMed Central

    Durkin, Jonathan; Bissett, John; Pahlavani, Mohammadhadi; Mooney, Brent; Buchwaldt, Lone

    2015-01-01

    Colletotrichum lentis is a fungal pathogen of lentil in Canada but rarely reported elsewhere. Two races, Ct0 and Ct1, have been identified using differential lines. Our objective was to develop a PCR-probe differentiating these races. Sequences of the translation elongation factor 1α (tef1α), RNA polymerase II subunit B2 (rpb2), ATP citrate lyase subunit A (acla), and internal transcribed spacer (ITS) regions were monomorphic, while the intergenic spacer (IGS) region showed length polymorphisms at two minisatellites of 23 and 39 nucleotides (nt). A PCR-probe (39F/R) amplifying the 39 nt minisatellite was developed which subsequently revealed 1–5 minisatellites with 1–12 repeats in C. lentis. The probe differentiated race Ct1 isolates having 7, 9 or 7+9 repeats from race Ct0 having primarily 2 or 4 repeats, occasionally 5, 6, or 8, but never 7 or 9 repeats. These isolates were collected between 1991 and 1999. In a 2012 survey isolates with 2 and 4 repeats increased from 34% to 67%, while isolated with 7 or 9 repeats decreased from 40 to 4%, likely because Ct1 resistant lentil varieties had been grown. The 39 nt repeat was identified in C. gloeosporioides, C. trifolii, Ascochyta lentis, Sclerotinia sclerotiorum and Botrytis cinerea. Thus, the 39F/R PCR probe is not species specific, but can differentiate isolates based on repeat number. The 23 nt minisatellite in C. lentis exists as three length variants with ten sequence variations differentiating race Ct0 having 14 or 19 repeats from race Ct1 having 17 repeats, except for one isolate. RNA-translation of 23 nt repeats forms hairpins and has the appropriate length to suggest that IGS could be a site of small RNA synthesis, a hypothesis that warrants further investigation. Small RNA from fungal plant pathogens able to silence genes either in the host or pathogen thereby aiding infection have been reported. PMID:26340001

  3. Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuing challenge in Orthoptera ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variatio...

  4. Populations of the northern grasshopper, Melanoplus borealis (Orthoptera: Acrididae), in Alaska are rarely food limited

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers can cause substantial losses to forage on rangelands and pastures and to field crops, but chemical control of grasshopper pests is rarely justified because of the low per-area value of forages, the extensive areas needed to be treated to protect crops, and because of potential impacts t...

  5. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  6. Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect herbivory can produce a pulse of mineral nitrogen (N) in soil from the decomposition of frass and cadavers. In this study we examined how diet quality affects rates of N and carbon (C) mineralization from grasshopper frass and cadavers. Frass was collected from grasshoppers fed natural or mer...

  7. EFFECTS OF THE TIMING AND INTENSITY OF SHEEP GRAZING ON GRASSHOPPER POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshopper outbreaks on rangeland result in competition with wildlife and livestock for limited resources. Little effort has focused on management strategies that may reduce the likelihood or intensity of grasshopper outbreaks. Recent research suggests that habitat manipulation in the form of graz...

  8. Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster)

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Cully, J.F.; Bala, T.; Ray, C.; Collinge, S.K.

    2007-01-01

    Rodent-associated Bartonella species are generally host-specific parasites in North America. Here evidence that Bartonella species can 'jump' between host species is presented. Northern grasshopper mice and other rodents were trapped in the western USA. A study of Bartonella infection in grasshopper mice demonstrated a high prevalence that varied from 25% to 90% by location. Bartonella infection was detected in other rodent species with a high prevalence as well. Sequence analyses of gltA identified 29 Bartonella variants in rodents, 10 of which were obtained from grasshopper mice. Among these 10, only six variants were specific to grasshopper mice, whereas four were identical to variants specific to deer mice or 13-lined ground squirrels. Fourteen of 90 sequenced isolates obtained from grasshopper mice were strains found more commonly in other rodent species and were apparently acquired from these animals. The ecological behavior of grasshopper mice may explain the occurrence of Bartonella strains in occasional hosts. The observed rate at which Bartonella jumps from a donor host species to the grasshopper mouse was directly proportional to a metric of donor host density and to the prevalence of Bartonella in the donor host, and inversely proportional to the same parameters for the grasshopper mouse. ?? 2007 Federation of European Microbiological Societies.

  9. Effects of nymph-overwintering grasshopper density on Ageneotettix deorum survival in a northern mixed grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although most pest grasshopper species in North America hatch in late spring or early summer, some species hatch in late summer and become adults in late spring. It is not well understood how they impact densities of later developing pest grasshopper species. In an earlier study examining temporall...

  10. Expired and Pathogen-Inactivated Platelet Concentrates Support Differentiation and Immunomodulation of Mesenchymal Stromal Cells in Culture.

    PubMed

    Jonsdottir-Buch, Sandra Mjoll; Sigurgrimsdottir, Hildur; Lieder, Ramona; Sigurjonsson, Olafur Eysteinn

    2015-01-01

    Platelet lysates have been reported as suitable cell culture supplement for cultures of mesenchymal stromal cells (MSCs). The demand for safe and animal-free cultures of MSCs is linked to the potential application of MSCs in clinics. While the use of platelet lysates offers an alternative to animal serum in MSC cultures, obtaining supplies of fresh platelet concentrates for lysate production is challenging and raises concerns due to the already existing shortage of platelet donors. We have previously demonstrated that expired platelet concentrates may represent a good source of platelets for lysate production without competing with blood banks for platelet donors. The INTERCEPT Blood System™ treatment of platelet concentrates allows for prolonged storage up to 7 days, using highly specific technology based on amotosalen and UV-A light. The INTERCEPT system has therefore been implemented in blood processing facilities worldwide. In this study, we evaluated the suitability of INTERCEPT-treated, expired platelet concentrates, processed into platelet lysates, for the culture of MSCs compared to nontreated expired platelets. Bone marrow-derived MSCs were cultured in media supplemented with either platelet lysates from traditionally prepared expired platelet concentrates or in platelet lysates from expired and pathogen-inactivated platelet concentrates. The effects of pathogen inactivation on the ability of the platelets to support MSCs in culture were determined by evaluating MSC immunomodulation, immunophenotype, proliferation, and trilineage differentiation. Platelet lysates prepared from expired and pathogen-inactivated platelet concentrates supported MSC differentiation and immunosuppression better compared to traditionally prepared platelet lysates from expired platelet units. Pathogen inactivation of platelets with the INTERCEPT system prior to use in MSC culture had no negative effects on MSC immunophenotype or proliferation. In conclusion, the use of expired

  11. The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus

    PubMed Central

    Ma, Chuan; Liu, Chunxiang; Yang, Pengcheng; Kang, Le

    2009-01-01

    Background The two closely related species of band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus, display significant differences in distribution, biological characteristics and habitat preferences. They are so similar to their respective congeneric species that it is difficult to differentiate them from other species within each genus. Hoppers of the two species have quite similar morphologies to that of Locusta migratoria, hence causing confusion in species identification. Thus we determined and compared the mitochondrial genomes of G. marmoratus and O. asiaticus to address these questions. Results The complete mitochondrial genomes of G. marmoratus and O. asiaticus are 15,924 bp and 16,259 bp in size, respectively, with O. asiaticus being the largest among all known mitochondrial genomes in Orthoptera. Both mitochondrial genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and an A+T-rich region in the same order as those of the other analysed caeliferan species, but different from those of the ensiferan species by the rearrangement of trnD and trnK. The putative initiation codon for the cox1 gene in the two species is ATC. The presence of different sized tandem repeats in the A+T-rich region leads to size variation between their mitochondrial genomes. Except for nad2, nad4L, and nad6, most of the caeliferan mtDNA genes exhibit low levels of divergence. In phylogenetic analyses, the species from the suborder Caelifera form a monophyletic group, as is the case for the Ensifera. Furthermore, the two suborders cluster as sister groups, supporting the monophyly of Orthoptera. Conclusion The mitochondrial genomes of both G. marmoratus and O. asiaticus harbor the typical 37 genes and an A+T-rich region, exhibiting similar characters to those of other grasshopper species. Characterization of the two mitochondrial genomes has enriched our knowledge on mitochondrial genomes of Orthoptera. PMID

  12. Divergent Egg Physiologies in Two Closely Related Grasshopper Species: Taeniopoda eques versus Romalea microptera (Orthoptera: Romaleidae)

    PubMed Central

    STAUFFER, TIMOTHY W.; HATLE, JOHN D.; WHITMAN, DOUGLAS W.

    2013-01-01

    We compared egg survivorship and egg development time at different soil moistures for two closely related grasshopper species from divergent habitats: marsh-inhabiting Romalea microptera (Beauvois) versus desert-inhabiting Taeniopoda eques (Burmeister). These two species can interbreed and produce viable offspring. In nature, both species have a similar 8–9 mo subterranean egg stage, but their soil environments differ dramatically in water content. We predicted that the eggs of the two species would exhibit differential survivorship and development times under different moisture levels. Our laboratory results show that the eggs of both species survived a wide range of soil moistures (≈ 0.5 to 90%), maintained for 3 mo. However, the eggs of the marsh grasshopper, R. microptera, better tolerated the highest soil moistures (95 and 100%), whereas the eggs of the desert species, T. eques, better tolerated the lowest soil moistures (0.0 and 0.1%). Sixty-five percent of marsh-inhabiting R. microptera eggs, but no desert T. eques eggs, survived 3 mo submersion under water. In contrast, 49% of desert T. eques eggs, but only 3.5% of R. microptera eggs, survived after being laid into oven-dried sand and then maintained with no additional water until hatch. In the laboratory at 26°C, the two species differed significantly in the mean length of the oviposition-to-hatch interval: 176 d for R. microptera versus 237 d for T. eques. These divergent traits presumably benefit these insects in their divergent habitats. Our results suggest the evolution of physiological divergence that is consistent with adaptations to local environments. PMID:22182625

  13. Divergent egg physiologies in two closely related grasshopper species: Taeniopoda eques versus Romalea microptera (Orthoptera: Romaleidae).

    PubMed

    Stauffer, Timothy W; Hatle, John D; Whitman, Douglas W

    2011-02-01

    We compared egg survivorship and egg development time at different soil moistures for two closely related grasshopper species from divergent habitats: marsh-inhabiting Romalea microptera (Beauvois) versus desert-inhabiting Taeniopoda eques (Burmeister). These two species can interbreed and produce viable offspring. In nature, both species have a similar 8-9 mo subterranean egg stage, but their soil environments differ dramatically in water content. We predicted that the eggs of the two species would exhibit differential survivorship and development times under different moisture levels. Our laboratory results show that the eggs of both species survived a wide range of soil moistures (≈ 0.5 to 90%), maintained for 3 mo. However, the eggs of the marsh grasshopper, R. microptera, better tolerated the highest soil moistures (95 and 100%), whereas the eggs of the desert species, T. eques, better tolerated the lowest soil moistures (0.0 and 0.1%). Sixty-five percent of marsh-inhabiting R. microptera eggs, but no desert T. eques eggs, survived 3 mo submersion under water. In contrast, 49% of desert T. eques eggs, but only 3.5% of R. microptera eggs, survived after being laid into oven-dried sand and then maintained with no additional water until hatch. In the laboratory at 26 °C, the two species differed significantly in the mean length of the oviposition-to-hatch interval: 176 d for R. microptera versus 237 d for T. eques. These divergent traits presumably benefit these insects in their divergent habitats. Our results suggest the evolution of physiological divergence that is consistent with adaptations to local environments. PMID:22182625

  14. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    PubMed

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects. PMID:26678139

  15. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    PubMed Central

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  16. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach.

    PubMed

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  17. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Mahmood, Maziah; Abdullah, Siti N A; Hanafi, Mohamed M; Nejat, Naghmeh; Latif, Muhammad A; Sahebi, Mahbod

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  18. Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge.

    PubMed Central

    Yang, Z; Park, H; Lacy, G H; Cramer, C L

    1991-01-01

    Potato genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were expressed in response to pathogen, elicitor, and wounding. HMGR catalyzes the rate-limiting step in isoprenoid biosynthesis leading to accumulation of phytoalexins and steroid glycoalkaloids. Wounding caused increases in HMGR mRNA levels. A rapid and transient peak occurred 30 minutes after wounding, followed by a slower peak at 14 hours; both were correlated with increased enzyme activity. Induction of HMGR mRNA by the soft rot pathogen Erwinia carotovora subsp carotovora or arachidonic acid began 8 hours after challenge and continued through 22 hours. Potato HMGR is encoded by a gene family. An HMGR gene-specific probe was used to demonstrate that one isogene of the HMGR family is pathogen activated and is distinct from isogene(s) that are wound activated. This provides evidence that defense-related increases in HMGR activity are due to mRNA level increases and that HMGR isogenes are activated differentially by wounding or pathogen challenge. PMID:1840919

  19. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae

    PubMed Central

    Mahmood, Maziah; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Nejat, Naghmeh; Latif, Muhammad A.

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  20. Differential gene expression in Acromyrmex leaf-cutting ants after challenges with two fungal pathogens.

    PubMed

    Yek, Sze H; Boomsma, Jacobus J; Schiøtt, Morten

    2013-04-01

    Social insects in general and leaf-cutting ants in particular have increased selection pressures on their innate immune system due to their social lifestyle and monoclonality of the symbiotic fungal cultivar. As this symbiosis is obligate for both parties, prophylactic behavioural defences against infections are expected to increase either ant survival or fungus-garden survival, but also to possibly trade off when specific infections differ in potential danger. We examined the effectiveness of prophylactic behaviours and modulations of innate immune defences by a combination of inoculation bioassays and genome-wide transcriptomic studies (RNA-Seq), using an ant pathogen (Metarhizium brunneum) and a fungus-garden pathogen (Escovopsis weberi) and administering inoculations both directly and indirectly (via the symbiotic partner). Upon detection of pathogen conidia, ant workers responded by increasing both general activity and the frequency of specific defence behaviours (self-grooming, allo-grooming, garden-grooming) independent of the pathogen encountered. This trend was also evident in the patterns of gene expression change. Both direct and indirect (via fungus garden) inoculations with Metarhizium induced a general up-regulation of gene expression, including a number of well-known immune-related genes. In contrast, direct inoculation of the fungus garden by Escovopsis induced an overall down-regulation of ant gene expression, whereas indirect inoculation (via the ants) did not, suggesting that increased activity of ants to remove this fungus-garden pathogen is costly and involves trade-offs with the activation of other physiological pathways. PMID:23480581

  1. Differential Gene Expression for Curvularia eragrostidis Pathogenic Incidence in Crabgrass (Digitaria sanguinalis) Revealed by cDNA-AFLP Analysis

    PubMed Central

    Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng

    2013-01-01

    Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis. PMID:24116044

  2. Multiplex polymerase chain reaction for the detection and differentiation of avian influenza viruses and other poultry respiratory pathogens.

    PubMed

    Rashid, S; Naeem, K; Ahmed, Z; Saddique, N; Abbas, M A; Malik, S A

    2009-12-01

    A multiplex reverse transcription-PCR (mRT-PCR) was developed and standardized for the detection of type A influenza viruses, avian influenza virus (AIV) subtype H7, H9, and H5 hemagglutinin gene with simultaneous detection of 3 other poultry respiratory pathogens, Newcastle disease virus (NDV), infectious bronchitis virus (IBV), and infectious laryngotracheitis virus (ILTV). Seven sets of specific oligonucleotide primers were used in this study for the M gene of AIV and hemagglutinin gene of subtypes H7, H9, and H5 of AIV. Three sets of other specific oligonucleotide primers were used for the detection of avian respiratory pathogens other than AIV. The mRT-PCR DNA products were visualized by agarose gel electrophoresis and consisted of DNA fragments of 1,023 bp for M gene of AIV, 149 bp for IBV, 320 bp for NDV, and 647 bp for ILTV. The second set of primers used for m-RT-PCR of H7N3, H9N2, and H5N1 provided DNA products of 300 bp for H7, 456 bp for H5, and 808 bp for H9. The mRT-PCR products for the third format consisted of DNA fragments of 149 bp for IBV, 320 bp for NDV, 647 bp for ILTV, 300 bp for H7, 456 bp for H5, and 808 bp for H9. The sensitivity and specificity of mRT-PCR was determined and the test was found to be sensitive and specific for the detection of AIV and other poultry respiratory pathogens. In this present study, multiplex PCR technique has been developed to simultaneously detect and differentiate the 3 most important subtypes of AIV along with the 3 most common avian respiratory pathogens prevalent in poultry in Pakistan. Therefore, a mRT-PCR that can rapidly differentiate between these pathogens will be very important for the control of disease transmission in poultry and in humans, along with the identification of 3 of the most common respiratory pathogens often seen as mixed infections in poultry, and hence economic losses will be reduced in poultry. PMID:19903950

  3. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat.

    PubMed

    Bürling, Kathrin; Hunsche, Mauricio; Noga, Georg

    2011-09-15

    In recent years, several sensor-based approaches have been established to early detect single plant stresses, but the challenge of discriminating between simultaneously occurring stressors still remains. Earlier studies on wheat plants strongly affected by pathogens and nitrogen deficiency indicated that chlorophyll fluorescence might be suited to distinguish between the two stressors. Nevertheless, there is lack of information on the pre-symptomatic detection of synchronized occurrence of slight N-deficiency and the early stages of pathogen infection. The usefulness of the blue, green, and yellow fluorescence signals in this context has not yet been explored. We hypothesized that differentiation between wheat plants' physiological reaction due to N-deficiency and leaf rust (Puccinia triticina) as well as N-deficiency and powdery mildew (Blumeria graminis f. sp. tritici) might be accomplished by means of UV laser-induced fluorescence spectral measurements between 370 and 620nm in addition to chlorophyll fluorescence (640-800nm). Plants were provided with either a normal or a modified Hoagland nutrient solution in order to induce a slight N deficit. Pathogen inoculation was carried out on the second fully developed leaf. Four experimental groups were evaluated: (a) N-full-supply [N+]; (b) N-deficiency [N-]; (c) N-full-supply+pathogen [N+/LR] or [N+/PM]; (d) N-deficiency+pathogen [N-/LR] or [N-/PM]. The results revealed that, in addition to the amplitude ratio of R/FR fluorescence, B/G fluorescence also facilitated reliable and robust discrimination among the four experimental groups. The discrimination among the experimental groups was accomplished as early as one and two days after inoculation for powdery mildew and leaf rust infection, respectively. During the 3days evaluation period, the differences among the treatment groups became more evident. Moreover, several other amplitude ratios and half-bandwidth ratios proved to be suited to early detect fungal

  4. Novel utilization of the outer membrane proteins for the identification and differentiation of pathogenic versus nonpathogenic microbial strains using mass spectrometry-based proteomics approach

    NASA Astrophysics Data System (ADS)

    Jabbour, Rabih E.; Wade, Mary; Deshpande, Samir V.; McCubbin, Patrick; Snyder, A. Peter; Bevilacqua, Vicky

    2012-06-01

    Mass spectrometry based proteomic approaches are showing promising capabilities in addressing various biological and biochemical issues. Outer membrane proteins (OMPs) are often associated with virulence in gram-negative pathogens and could prove to be excellent model biomarkers for strain level differentiation among bacteria. Whole cells and OMP extracts were isolated from pathogenic and non-pathogenic strains of Francisella tularensis, Burkholderia thailandensis, and Burkholderia mallei. OMP extracts were compared for their ability to differentiate and delineate the correct database organism to an experimental sample and for the degree of dissimilarity to the nearest-neighbor database strains. This study addresses the comparative experimental proteome analyses of OMPs vs. whole cell lysates on the strain-level discrimination among gram negative pathogenic and non-pathogenic strains.

  5. Analysis of the Habitat of Henslow's Sparrows and Grasshopper Sparrows Compared to Random Grassland Areas

    SciTech Connect

    Maier, K.; Walton, R.; Kasper, P.

    2006-01-01

    ABSTRAC T Henslow’s Sparrows are endangered prairie birds, and Grasshopper Sparrows are considered rare prairie birds. Both of these birds were abundant in Illinois, but their populations have been declining due to loss of the grasslands. This begins an ongoing study of the birds’ habitat so Fermilab can develop a land management plan for the Henslow’s and Grasshoppers. The Henslow’s were found at ten sites and Grasshoppers at eight sites. Once the birds were located, the vegetation at their sites was studied. Measurements of the maximum plant height, average plant height, and duff height were taken and estimates of the percent of grass, forbs, duff, and bare ground were recorded for each square meter studied. The same measurements were taken at ten random grassland sites on Fermilab property. Several t-tests were performed on the data, and it was found that both Henslow’s Sparrows and Grasshopper Sparrows preferred areas with a larger percentage of grass than random areas. Henslow’s also preferred areas with less bare ground than random areas, while Grasshoppers preferred areas with more bare ground than random areas. In addition, Grasshopper Sparrows preferred a lower percentage of forbs than was found in random areas and a shorter average plant height than the random locations. Two-sample variance tests suggested significantly less variance for both Henslow’s Sparrows and Grasshopper Sparrows for maximum plant height in comparison to the random sites.

  6. Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom.

    PubMed

    Rowe, Ashlee H; Rowe, Matthew P

    2008-10-01

    Predators feeding on toxic prey may evolve physiological resistance to the preys' toxins. Grasshopper mice (Onychomys spp.) are voracious predators of scorpions in North American deserts. Two species of grasshopper mice (Onychomys torridus and Onychomys arenicola) are broadly sympatric with two species of potentially lethal bark scorpion (Centruroides exilicauda and Centruroides vittatus) in the Sonoran and Chihuahuan deserts, respectively. Bark scorpions produce toxins that selectively bind sodium (Na(+)) and potassium (K(+)) ion channels in vertebrate nerve and muscle tissue. We previously reported that grasshopper mice showed no effects of bark scorpion envenomation following natural stings. Here we conducted a series of toxicity tests to determine whether grasshopper mice have evolved resistance to bark scorpion neurotoxins. Five populations of grasshopper mice, either sympatric with or allopatric to bark scorpions, were injected with bark scorpion venom; LD50s were estimated for each population. All five populations of grasshopper mice demonstrated levels of venom resistance greater than that reported for non-resistant Mus musculus. Moreover, venom resistance in the mice showed intra- and interspecific variability that covaried with bark scorpion sympatry and allopatry, patterns consistent with the hypothesis that venom resistance in grasshopper mice is an adaptive response to feeding on their neurotoxic prey. PMID:18687353

  7. Taxonomic and Functional Resilience of Grasshoppers (Orthoptera, Caelifera) to Fire in South Brazilian Grasslands.

    PubMed

    Ferrando, C P R; Podgaiski, L R; Costa, M K M; Mendonça, M D S

    2016-08-01

    Fire is a frequent disturbance in grassland ecosystems enabling variability in habitat characteristics and creating important environmental filters for community assembly. Changes in vegetation have a large influence on herbivore insect assemblages. Here, we explored the responses of grasshoppers to disturbance by fire in grasslands of southern Brazil through a small-scale experiment based in paired control and burned plots. The resilience of grasshoppers was assessed by monitoring changes to their abundance, taxonomic, and functional parameters along time. Burned patches have been already recolonized by grasshoppers 1 month after fire and did not differ in terms of abundance and richness from control areas in any evaluated time within 1 year. Simpson diversity decreased 1 month after fire due to the increased dominance of Dichroplus misionensis (Carbonell) and Orphulella punctata (De Geer). In this period, grasshoppers presented in average a smaller body and a larger relative head size; these are typically nymph characteristics, which are possibly indicating a preference of juveniles for the young high-quality vegetation, or a diminished vulnerability to predation in open areas. Further, at 6 months after fire grasshoppers with smaller relative hind femur and thus lower dispersal ability seemed to be benefitted in burned patches. Finally, 1 year after fire grasshoppers became more similar to each other in relation to their set of traits. This study demonstrates how taxonomic and functional aspects of grasshopper assemblages can be complementary tools to understand their responses to environmental change. PMID:26957086

  8. Closely Related NAC Transcription Factors of Tomato Differentially Regulate Stomatal Closure and Reopening during Pathogen Attack[W][OPEN

    PubMed Central

    Du, Minmin; Zhai, Qingzhe; Deng, Lei; Li, Shuyu; Li, Hongshuang; Yan, Liuhua; Huang, Zhuo; Wang, Bao; Jiang, Hongling; Huang, Tingting; Li, Chang-Bao; Wei, Jianing; Kang, Le; Li, Jingfu; Li, Chuanyou

    2014-01-01

    To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms. PMID:25005917

  9. Unbiased reconstruction of a mammalian transcriptional network mediating the differential response to pathogens

    PubMed Central

    Amit, Ido; Garber, Manuel; Chevrier, Nicolas; Leite, Ana Paula; Donner, Yoni; Eisenhaure, Thomas; Guttman, Mitchell; Grenier, Jennifer K.; Li, Weibo; Zuk, Or; Schubert, Lisa A.; Birditt, Brian; Shay, Tal; Goren, Alon; Zhang, Xiaolan; Smith, Zachary; Deering, Raquel; McDonald, Rebecca C.; Cabili, Moran; Bernstein, Bradley E; Rinn, John L.; Meissner, Alex; Root, David E.; Hacohen, Nir; Regev, Aviv

    2010-01-01

    Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data, yet have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We apply this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells (DCs) to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins and constructed a network model consisting of two dozen core regulators and 76 fine-tuners that help explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly-applicable, comprehensive and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells. PMID:19729616

  10. Customizable PCR-microplate array for differential identification of multiple pathogens

    PubMed Central

    Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen

    2014-01-01

    Customizable PCR-microplate arrays were developed for the rapid identification of Francisella tularensis subsp. tularensis, Salmonella Typhi, Shigella dysenteriae, Yersinia pestis, Vibrio cholerae Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Saintpaul, Francisella tularensis subsp. novicida, Vibrio parahaemolyticus, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of the pathogens above. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers. A mixed aliquot of genomic DNA from 38 different strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Results show specific amplifications on all the three custom plates. In a preliminary test to evaluate the sensitivity of these assays in laboratory-inoculated samples, detection limits as low as 9 cfu/g/ml S. Typhimurium were obtained from beef hot dog, and 78 cfu/ml from milk. Such microplate arrays could serve as valuable tools for initial identification or secondary confirmation of these pathogens. PMID:24215700

  11. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation.

    PubMed

    Obar, Joshua J; Jellison, Evan R; Sheridan, Brian S; Blair, David A; Pham, Quynh-Mai; Zickovich, Julianne M; Lefrançois, Leo

    2011-11-15

    In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation. PMID:21987662

  12. Pathogen induced inflammatory environment controls effector and memory CD8+ T cell differentiation1

    PubMed Central

    Obar, Joshua J.; Jellison, Evan R.; Sheridan, Brian S.; Blair, David A.; Pham, Quynh-Mai; Zickovich, Julianne M.; Lefrançois, Leo

    2011-01-01

    In response to infection CD8+ T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived (SLEC; CD127lowKLRG1high) and memory-precursor (MPEC; CD127highKLRG1low) effector cells from an early-effector cell (EEC) that is CD127lowKLRG1low in phenotype. CD8+ T cell differentiation during vesicular stomatitis virus (VSV) infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in EEC differentiation into SLECs. SLEC generationwas dependent on Ebi3 expression. Furthermore, SLEC differentiation during VSV infection wasenhanced by administration ofCpG-DNA, through an IL-12 dependent mechanism. Moreover, CpG-DNAtreatment enhanced effector CD8+ T cell functionality and memory subset distribution, but in an IL-12 independent manner. Population dynamics were dramatically different during secondary CD8+ T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127highKLRG1highmemory cells, both of which were intrinsic to the memory CD8+ T cell. These subsets persisted for several months, but were less effective in recall than MPECs. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8+ T cell differentiation. PMID:21987662

  13. Gene expression in human fungal pathogen Coccidioides immitis changes as arthroconidia differentiate into spherules and mature

    PubMed Central

    2013-01-01

    Background Coccidioides immitis is a dimorphic fungus that causes disease in mammals, including human beings. It grows as a mycelium containing arthroconidia in the soil and in the host arthroconidia differentiates into a unique structure called a spherule. We used a custom open reading frame oligonucleotide microarray to compare the transcriptome of C. immitis mycelia with early (day 2) and late stage (day 8) spherules grown in vitro. All hybridizations were done in quadruplicate and stringent criteria were used to identify significantly differentially expressed genes. Results 22% of C. immitis genes were differentially expressed in either day 2 or day 8 spherules compared to mycelia, and about 12% of genes were differentially expressed comparing the two spherule time points. Oxireductases, including an extracellular superoxide dismutase, were upregulated in spherules and they may be important for defense against oxidative stress. Many signal transduction molecules, including pleckstrin domain proteins, protein kinases and transcription factors were downregulated in day 2 spherules. Several genes involved in sulfur metabolism were downregulated in day 8 spherules compared to day 2 spherules. Transcription of amylase and α (1,3) glucan synthase was upregulated in spherules; these genes have been found to be important for differentiation to yeast in Histoplasma. There were two homologs of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD); transcription of one was up- and the other downregulated. We tested the effect of a 4-HPPD inhibitor, nitisinone, on mycelial and spherule growth and found that it inhibited mycelial but not spherule growth. Conclusions Transcription of many genes was differentially expressed in the process of arthroconidia to spherule conversion and spherule maturation, as would be expected given the magnitude of the morphologic change. The transcription profile of early stage (day 2) spherules was different than late stage (day 8) endosporulating

  14. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae

    PubMed Central

    Jacob, Stefan; Foster, Andrew J; Yemelin, Alexander; Thines, Eckhard

    2014-01-01

    The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1p and MoHik1p were previously reported to be components of the HOG pathway in M. oryzae. The ΔMosln1 mutant is more susceptible to salt stress compared to ΔMohik1, whereas ΔMohik1 appears to be stronger affected by osmotic or sugar stress. In contrast to yeast, the HOG signaling cascade in phytopathogenic fungi apparently comprises more elements. Furthermore, vegetative growth of the mutants ΔMohik5 and ΔMohik9 was found to be sensitive to hypoxia-inducing NaNO2-treatment. Additionally, it was monitored that NaNO2-treatment resulted in MoHog1p phosphorylation. As a consequence we assume a first simplified model for hypoxia signaling in M. oryzae including the HOG pathway and the HIKs MoHik5p and MoHik9p. PMID:25103193

  15. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing

    PubMed Central

    Broz, Petr; von Moltke, Jakob; Jones, Jonathan W.; Vance, Russell E.; Monack, Denise M.

    2010-01-01

    Summary Activation of the cysteine protease Caspase-1 is a key event in the innate immune response to infections. Synthesized as a pro-protein, Caspase-1 undergoes autoproteolysis within multi-protein complexes called inflammasomes. Activated Caspase-1 is required for proteolytic processing and release of the cytokines interleukin-1β and interleukin-18, and can also cause rapid macrophage cell death. We show that macrophage cell death and cytokine maturation in response to infection with diverse bacterial pathogens can be separated genetically and that two distinct inflammasome complexes mediate these events. Inflammasomes containing the signaling adaptor Asc form a single large ‘focus’ in which Caspase-1 undergoes autoproteolysis and processes IL-1β/IL-18. In contrast, Asc-independent inflammasomes activate Caspase-1 without autoproteolysis and do not form any large structures in the cytosol. Caspase-1 mutants unable to undergo autoproteolysis promoted rapid cell death, but processed IL-1β/18 inefficiently. Our results suggest the formation of spatially and functionally distinct inflammasomes complexes in response to bacterial pathogens. PMID:21147462

  16. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens

    PubMed Central

    McGrann, Graham R. D.; Steed, , Andrew; Burt, Christopher; Nicholson, Paul; Brown, James K. M.

    2015-01-01

    Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens. PMID:25873675

  17. Influence of individual body size on reproductive traits in Melanopline grasshoppers (Orthoptera: Acrididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body size is a fundamental trait of an organism, affecting most aspects of its performance, including reproduction. Numerous biotic and environmental factors can influence individual body size and reproduction in grasshoppers. Using data from four experiments, I examined intraspecific relationships ...

  18. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China.

    PubMed

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans. PMID:25667606

  19. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China

    PubMed Central

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans. PMID:25667606

  20. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures

    PubMed Central

    Haller, D; Bode, C; Hammes, W; Pfeifer, A; Schiffrin, E; Blum, S

    2000-01-01

    BACKGROUND AND AIM—Intestinal epithelial cells (IEC) are thought to participate in the mucosal defence against bacteria and in the regulation of mucosal tissue homeostasis. Reactivity of IEC to bacterial signals may depend on interactions with immunocompetent cells. To address the question of whether non-pathogenic bacteria modify the immune response of the intestinal epithelium, we co-cultivated enterocyte-like CaCO-2 cells with human blood leucocytes in separate compartments of transwell cultures.
METHODS—CaCO-2/PBMC co-cultures were stimulated with non-pathogenic bacteria and enteropathogenic Escherichia coli. Expression of tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-8, monocyte chemoattracting protein 1 (MCP-1), and IL-10 was studied by enzyme linked immunosorbent assays (cytokine secretion) and by semiquantitative reverse transcription-polymerase chain reaction.
RESULTS—Challenge of CaCO-2 cells with non-pathogenic E coli and Lactobacillus sakei induced expression of IL-8, MCP-1, IL-1β, and TNF-α mRNA in the presence of underlying leucocytes. Leucocyte sensitised CaCO-2 cells produced TNF-α and IL-1β whereas IL-10 was exclusively secreted by human peripheral blood mononuclear cells. CaCO-2 cells alone remained hyporesponsive to the bacterial challenge. Lactobacillus johnsonii, an intestinal isolate, showed reduced potential to induce proinflammatory cytokines but increased transforming growth factor beta mRNA in leucocyte sensitised CaCO-2 cells. TNF-α was identified as one of the early mediators involved in cellular cross talk. In the presence of leucocytes, discriminative activation of CaCO-2 cells was observed between enteropathogenic E coli and non-pathogenic bacteria.
CONCLUSION—The differential recognition of non-pathogenic bacteria by CaCO-2 cells required the presence of underlying leucocytes. These results strengthen the hypothesis that bacterial signalling at the mucosal surface is dependent on a network of

  1. Analysis of the habitat of Henslow's sparrows and Grasshopper sparrows compared to random grassland areas

    SciTech Connect

    Maier, Kristen; Walton, Rod; Kasper, Peter; /Fermilab

    2005-01-01

    Henslow's Sparrows are endangered prairie birds, and Grasshopper Sparrows are considered rare prairie birds. Both of these birds were abundant in Illinois, but their populations have been declining due to loss of the grasslands. This begins an ongoing study of the birds habitat so Fermilab can develop a land management plan for the Henslow's and Grasshoppers. The Henslow's were found at ten sites and Grasshoppers at eight sites. Once the birds were located, the vegetation at their sites was studied. Measurements of the maximum plant height, average plant height, and duff height were taken and estimates of the percent of grass, forbs, duff, and bare ground were recorded for each square meter studied. The same measurements were taken at ten random grassland sites on Fermilab property. Several t-tests were performed on the data, and it was found that both Henslow's Sparrows and Grasshopper Sparrows preferred areas with a larger percentage of grass than random areas. Henslow's also preferred areas with less bare ground than random areas, while Grasshoppers preferred areas with more bare ground than random areas. In addition, Grasshopper Sparrows preferred a lower percentage of forbs than was found in random areas and a shorter average plant height than the random locations. Two-sample variance tests suggested significantly less variance for both Henslow's Sparrows and Grasshopper Sparrows for maximum plant height in comparison to the random sites. For both birds, the test suggested a significant difference in the variance of the percentage of bare ground compared to random sites, but only the Grasshopper Sparrow showed significance in the variation in the percentage of forbs.

  2. Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Bletz, M C; Rebollar, E A; Harris, R N

    2015-02-10

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is responsible for massive declines and extinctions of amphibians worldwide. The most common method for detecting Bd is quantitative polymerase chain reaction (qPCR). qPCR is a highly sensitive detection technique, but its ability to determine the presence and accurately quantify the amount of Bd is also contingent on the efficiency of the DNA extraction method used prior to PCR. Using qPCR, we compared the extraction efficiency of 3 different extraction methods commonly used for Bd detection across a range of zoospore quantities: PrepMan Ultra Reagent, Qiagen DNeasy Blood and Tissue Kit, and Mobio PowerSoil DNA Isolation Kit. We show that not all extraction methods led to successful detection of Bd for the low zoospore quantities and that there was variation in the estimated zoospore equivalents among the methods, which demonstrates that these methods have different extraction efficiencies. These results highlight the importance of considering the extraction method when comparing across studies. The Qiagen DNeasy kit had the highest efficiency. We also show that replicated estimates of less than 1 zoospore can result from known zoospore concentrations; therefore, such results should be considered when obtained from field data. Additionally, we discuss the implications of our findings for interpreting previous studies and for conducting future Bd surveys. It is imperative to use the most efficient DNA extraction method in tandem with the highly sensitive qPCR technique in order to accurately diagnose the presence of Bd as well as other pathogens. PMID:25667331

  3. Analysis of Spatial Pattern among Grasshopper and Vegetation in Heihe based on GIS

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Wang, KeMing; Zhao, Chengzhang; Zhang, Qi-peng

    Geostatistics was used to analyze the grasshopper and dominant plants population spatial pattern and their relationship in the upper reaches of Heihe River under GIS platform. The results showed that the plants and grasshoppers populations have strong spatial correlation in study area. The Semivariogram curve of Chorthippus brunneus huabeiensis, Filchnerella, Aneurolepidium dasystanchys and Artemisia dalailamae is spherical model, Gomphocerus licenti and Stipa krylovii's Semivariogram curve is exponential and Gaussian model respectively, and their spatial autocorrelation scope is 10.8, 11.3, 11.5, 12.4, 23.5 and 59.7 meters respectively. Stipa krylovii and Artemisia dalailamae spatial distribution was patchy, Aneurolepidium dasystanchys showed flaky distribution; Gomphocerus licenti and Chorthippus brunneus huabeiensis mainly located in southeast areas with high coverage of Stipa krylovii and Aneurolepidium dasystanchys. Filchnerella nearly located in North areas with high coverage of Artemisia dalailamae, but were rarely found in south and east areas. The effects of different plants coverage on grasshopper abundance are significantly different. Filchnerella abundance and Artemisia dalailamae coverage showed significantly positive correlation, Chorthippus brunneus huabeiensis and Gomphocerus licenti positively correlated with Aneurolepidium dasystanchys and Stipa krylovii. Grasshopper spatial patterns and occurrence numbers are both influenced by grasshopper biological characteristics and plant community composition, which reflected complex coupled relation between grasshopper and plant.

  4. Differential effects of catecholamines on in vitro growth of pathogenic bacteria

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Sonnenfeld, Gerald

    2002-01-01

    Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.

  5. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions.

    PubMed

    Duarte, João H; Zelenay, Santiago; Bergman, Marie-Louise; Martins, Ana C; Demengeot, Jocelyne

    2009-04-01

    Induction of Forkhead-box p3 (Foxp3) expression in developing T cells upon peptide-MHC encountering has been proposed to define a lineage of committed Treg cells. However, sustained expression of Foxp3 is required for Treg function and what maintains Foxp3 expression in peripheral Treg remains obscure. To address this issue, we monitored natural Treg phenotype and function upon adoptive transfer into lymphocyte-deficient mice. We first show that about 50% of Foxp3-GFP(+) Treg isolated from Foxp3(gfp) KI animals loose Foxp3 expression in severe lymphopenic conditions. We next evidence that the cytokine IL-2, either produced by co-transferred conventional T cells or administrated i.v. prevents Foxp3 downregulation. Moreover, we document that Treg that lost Foxp3 expression upon adoptive transfer produce IL-2 are not suppressive and promote tissue infiltration and damage upon secondary transfer into alymphoid mice. Our findings that Treg convert into pathogenic Th cells in absence of IL-2 provide new clues to the success of Treg-based immune therapies. PMID:19291701

  6. Comparative cytogenetic analysis of two grasshopper species of the tribe Abracrini (Ommatolampinae, Acrididae)

    PubMed Central

    de França Rocha, Marília; de Melo, Natoniel Franklin; de Souza, Maria José

    2011-01-01

    The grasshopper species Orthoscapheus rufipes and Eujivarus fusiformis were analyzed using several cytogenetic techniques. The karyotype of O. rufipes, described here for the first time, had a diploid number of 2n = 23, whereas E. fusiformis had a karyotype with 2n = 21. The two species showed the same mechanism of sex determination (XO type) but differed in chromosome morphology. Pericentromeric blocks of constitutive heterochromatin (CH) were detected in the chromosome complement of both species. CMA3/DA/DAPI staining revealed CMA3-positive blocks in CH regions in four autosomal bivalents of O. rufipes and in two of E. fusiformis. The location of active NORs differed between the two species, occurring in bivalents M6 and S9 of O. rufipes and M6 and M7 of E. fusiformsi. The rDNA sites revealed by FISH coincided with the number and position of the active NORs detected by AgNO3 staining. The variability in chromosomal markers accounted for the karyotype differentiation observed in the tribe Abracrini. PMID:21734819

  7. Identification of new pathogenic races of common bunt and dwarf bunt fungi, and evaluation of known races using an expanded set of differential cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic races of Tilletia caries and T. foetida, which cause common bunt of wheat (Triticum aestivum), and T. contraversa, which causes dwarf bunt of wheat, have been identified previously by their reaction to ten monogenic differential wheat lines, each containing single bunt resistance genes Bt...

  8. Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium Erwinia chrysanthemi 3937▿

    PubMed Central

    Boughammoura, Aïda; Matzanke, Berthold F.; Böttger, Lars; Reverchon, Sylvie; Lesuisse, Emmanuel; Expert, Dominique; Franza, Thierry

    2008-01-01

    During infection, the phytopathogenic enterobacterium Erwinia chrysanthemi has to cope with iron-limiting conditions and the production of reactive oxygen species by plant cells. Previous studies have shown that a tight control of the bacterial intracellular iron content is necessary for full virulence. The E. chrysanthemi genome possesses two loci that could be devoted to iron storage: the bfr gene, encoding a heme-containing bacterioferritin, and the ftnA gene, coding for a paradigmatic ferritin. To assess the role of these proteins in the physiology of this pathogen, we constructed ferritin-deficient mutants by reverse genetics. Unlike the bfr mutant, the ftnA mutant had increased sensitivity to iron deficiency and to redox stress conditions. Interestingly, the bfr ftnA mutant displayed an intermediate phenotype for sensitivity to these stresses. Whole-cell analysis by Mössbauer spectroscopy showed that the main iron storage protein is FtnA and that there is an increase in the ferrous iron/ferric iron ratio in the ftnA and bfr ftnA mutants. We found that ftnA gene expression is positively controlled by iron and the transcriptional repressor Fur via the small antisense RNA RyhB. bfr gene expression is induced at the stationary phase of growth. The σS transcriptional factor is necessary for this control. Pathogenicity tests showed that FtnA and the Bfr contribute differentially to the virulence of E. chrysanthemi depending on the host, indicating the importance of a perfect control of iron homeostasis in this bacterial species during infection. PMID:18165304

  9. Differential Regulation of β-1,3-Glucanase Messenger RNAs in Response to Pathogen Infection

    PubMed Central

    Ward, Eric R.; Payne, George B.; Moyer, Mary B.; Williams, Shericca C.; Dincher, Sandra S.; Sharkey, Kevin C.; Beck, James J.; Taylor, Hope T.; Ahl-Goy, Patricia; Meins, Frederick; Ryals, John A.

    1991-01-01

    The acidic, extracellular, glucan endo-1,3-β-glucosidases (EC 3.2.1.39; β-1,3-glucanases), pathogenesis-related proteins-2, -N, and -O (i.e. PR-2, PR-N, and PR-O) were purified from Nicotiana tabacum (tobacco) and their partial amino acid sequences determined. Based on these data, complementary DNA (cDNA) clones encoding the proteins were isolated. Additional cDNAs were isolated that encoded proteins approximately 90% identical with PR-2, PR-N, and PR-O. Although the proteins encoded by these cDNAs have not been identified, their deduced amino acid sequences have slightly basic or neutral calculated isoelectric points, as well as carboxy-terminal extensions. These physical characteristics are shared by the vacuolar form of β-1,3-glucanase and other vacuolar localized analogs of PR proteins, suggesting that the unidentified proteins may be similarly localized. A preliminary evolutionary model that separates the β-1,3-glucanase gene family from tobacco into at least five distinct subfamilies is proposed. The expression of β-1,3-glucanase messenger RNAs (mRNAs) in response to infection by tobacco mosaic virus was examined. Messages for the acidic glucanases were induced similarly to the mRNAs for other PR proteins. However, the basic glucanase showed a different response, suggesting that different isoforms are differentially regulated by tobacco mosaic virus infection at the mRNA level. ImagesFigure 1Figure 5Figure 6 PMID:16668198

  10. An experimental analysis of grasshopper community responses to fire and livestock grazing in a northern mixed-grass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically-based grasshopper management strategy must necessari...

  11. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in Nile tilapia (Oreochromis niloticus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is an emerging pathogen of fish and has caused significant morbidity amd mortality worldwide. The work in this study assessed whether pathogenic differences exist among isolates from different geographic locations. Nile tilapia (Oreochromis niloticus L.) were administered an...

  12. Differentiation of Yersinia enterocolitica biotype 1A from pathogenic Yersinia enterocolitica biotypes by detection of β-glucosidase activity: comparison of two chromogenic culture media and Vitek2.

    PubMed

    Karhukorpi, Jari; Päivänurmi, Marjut

    2014-01-01

    Aesculin hydrolysis (ESC) is one of the key reactions in differentiating pathogenic Yersinia enterocolitica biotypes 1B, 2, 3, 4 and 5 from the less-pathogenic biotype 1A. Because the ESC reaction is caused by β-glucosidase (βGLU) activity of the bacteria, we studied whether two commonly used methods (BBL CHROMagar Orientation and Vitek2 Gram-negative identification card) could be used in assessing βGLU activity of 74 Yersinia strains. Both methods were sensitive (100 % and 97 %) and specific (100 % and 100 %) in differentiating βGLU-positive YE BT1A from βGLU-negative Y. enterocolitica biotypes. For a subset of strains (n = 69), a new selective CHROMagar Yersinia showed excellent agreement with the strains' βGLU activity. Thus all the methods evaluated in this study may be used to differentiate between YE BT1A and other Y. enterocolitica biotypes. PMID:24072767

  13. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    PubMed Central

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  14. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae).

    PubMed

    Bugrov, Alexander G; Jetybayev, Ilyas E; Karagyan, Gayane H; Rubtsov, Nicolay B

    2016-01-01

    Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in the

  15. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants.

    PubMed Central

    Schaller, A; Oecking, C

    1999-01-01

    Systemin is an important mediator of wound-induced defense gene activation in tomato plants, and it elicits a rapid alkalinization of the growth medium of cultured Lycopersicon peruvianum cells. A possible mechanistic link between proton fluxes across the plasma membrane and the induction of defense genes was investigated by modulating plasma membrane H+-ATPase activity. Inhibitors of H+-ATPase (erythrosin B, diethyl stilbestrol, and vanadate) were found to alkalinize the growth medium of L. peruvianum cell cultures and to induce wound response genes in whole tomato plants. Conversely, an activator of the H+-ATPase (fusicoccin) acidified the growth medium of L. peruvianum cell cultures and suppressed systemin-induced medium alkalinization. Likewise, in fusicoccin-treated tomato plants, the wound- and systemin-triggered accumulation of wound-responsive mRNAs was found to be suppressed. However, fusicoccin treatment of tomato plants led to the accumulation of salicylic acid and the expression of pathogenesis-related genes. Apparently, the wound and pathogen defense signaling pathways are differentially regulated by changes in the proton electrochemical gradient across the plasma membrane. In addition, alkalinization of the L. peruvianum cell culture medium was found to depend on the influx of Ca2+ and the activity of a protein kinase. Reversible protein phosphorylation was also shown to be involved in the induction of wound response genes. The plasma membrane H+-ATPase as a possible target of a Ca2+-activated protein kinase and its role in defense signaling are discussed. PMID:9927643

  16. Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes

    PubMed Central

    Hussmann, Katherine L.

    2014-01-01

    The neuroinflammatory response to West Nile virus (WNV) infection can be either protective or pathological depending on the context. Although several studies have examined chemokine profiles within brains of WNV-infected mice, little is known about how various cell types within the central nervous system (CNS) contribute to chemokine expression. Here, we assessed chemokine expression in brain microvascular endothelial cells and astrocytes, which comprise the major components of the blood–brain barrier (BBB), in response to a non-pathogenic (WNV-MAD78) and a highly pathogenic (WNV-NY) strain of WNV. Higher levels of the chemokine CCL5 were detected in WNV-MAD78-infected brain endothelial monolayers compared with WNV-NY-infected cells. However, the opposite profile was observed in WNV-infected astrocytes, indicating that pathogenic and non-pathogenic strains of WNV provoke different CCL5 profiles at the BBB. Thus, cells comprising the BBB may contribute to a dynamic pro-inflammatory response within the CNS that evolves as WNV infection progresses. PMID:24413421

  17. Morphometric Variations in the Grasshopper, Chromacris speciosa from Two Localities of Pernambuco in Northeastern Brazil

    PubMed Central

    Cisneiros, Roberta Araújo; de Almeida, Argus Vasconcelos; de Melo, Gabriel Rivas; da Câmara, Cláudio Augusto Gomes

    2012-01-01

    The present study describes morphometric variations in the grasshopper, Chromacris speciosa (Thunberg, 1824) (Orthoptera: Acridoidea: Romaleidae) from two locations in the state of Pernambuco, Brazil. The distance between the sites chosen for collections (Recife and São Lourenço da Mata) is approximately 16 km. The investigation was based on a comparative study of external morphological characteristics of the grasshoppers. Morphometric measurements took into account the different body parts and appendages. Statistical analysis of the measurements revealed significant differences in the size of the specimens between the two locations. Homogeneity tests of the covariance and equality matrices between mean vectors of the results revealed that the grasshopper populations in Recife and São Lourenço da Mata are distinctly different. These findings provide morphological evidence for intraspecific variation in morphological characteristics of the C. speciosa populations from the two locations. PMID:23421530

  18. Diversity and relatedness enhance survival in colour polymorphic grasshoppers.

    PubMed

    Caesar, Sofia; Karlsson, Magnus; Forsman, Anders

    2010-01-01

    Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals. PMID:20526364

  19. Effects of parental radiation exposure on developmental instability in grasshoppers

    PubMed Central

    BEASLEY, D. E.; BONISOLI-ALQUATI, A.; WELCH, S. M.; MØLLER, A. P.; MOUSSEAU, T. A.

    2014-01-01

    Mutagenic and epigenetic effects of environmental stressors and their transgenerational consequences are of interest to evolutionary biologists because they can amplify natural genetic variation. We studied the effect of parental exposure to radioactive contamination on offspring development in lesser marsh grasshopper Chorthippus albomarginatus. We used a geometric morphometric approach to measure fluctuating asymmetry (FA), wing shape and wing size. We measured time to sexual maturity to check whether parental exposure to radiation influenced offspring developmental trajectory and tested effects of radiation on hatching success and parental fecundity. Wings were larger in early maturing individuals born to parents from high radiation sites compared to early maturing individuals from low radiation sites. As time to sexual maturity increased, wing size decreased but more sharply in individuals from high radiation sites. Radiation exposure did not significantly affect FA or shape in wings nor did it significantly affect hatching success and fecundity. Overall, parental radiation exposure can adversely affect offspring development and fitness depending on developmental trajectories although the cause of this effect remains unclear. We suggest more direct measures of fitness and the inclusion of replication in future studies to help further our understanding of the relationship between developmental instability, fitness and environmental stress. PMID:22507690

  20. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  1. Visually targeted reaching in horse-head grasshoppers

    PubMed Central

    Niven, Jeremy E.; Ott, Swidbert R.; Rogers, Stephen M.

    2012-01-01

    Visually targeted reaching to a specific object is a demanding neuronal task requiring the translation of the location of the object from a two-dimensionsal set of retinotopic coordinates to a motor pattern that guides a limb to that point in three-dimensional space. This sensorimotor transformation has been intensively studied in mammals, but was not previously thought to occur in animals with smaller nervous systems such as insects. We studied horse-head grasshoppers (Orthoptera: Proscopididae) crossing gaps and found that visual inputs are sufficient for them to target their forelimbs to a foothold on the opposite side of the gap. High-speed video analysis showed that these reaches were targeted accurately and directly to footholds at different locations within the visual field through changes in forelimb trajectory and body position, and did not involve stereotyped searching movements. The proscopids estimated distant locations using peering to generate motion parallax, a monocular distance cue, but appeared to use binocular visual cues to estimate the distance of nearby footholds. Following occlusion of regions of binocular overlap, the proscopids resorted to peering to target reaches even to nearby locations. Monocular cues were sufficient for accurate targeting of the ipsilateral but not the contralateral forelimb. Thus, proscopids are capable not only of the sensorimotor transformations necessary for visually targeted reaching with their forelimbs but also of flexibly using different visual cues to target reaches. PMID:22764161

  2. Visually targeted reaching in horse-head grasshoppers.

    PubMed

    Niven, Jeremy E; Ott, Swidbert R; Rogers, Stephen M

    2012-09-22

    Visually targeted reaching to a specific object is a demanding neuronal task requiring the translation of the location of the object from a two-dimensionsal set of retinotopic coordinates to a motor pattern that guides a limb to that point in three-dimensional space. This sensorimotor transformation has been intensively studied in mammals, but was not previously thought to occur in animals with smaller nervous systems such as insects. We studied horse-head grasshoppers (Orthoptera: Proscopididae) crossing gaps and found that visual inputs are sufficient for them to target their forelimbs to a foothold on the opposite side of the gap. High-speed video analysis showed that these reaches were targeted accurately and directly to footholds at different locations within the visual field through changes in forelimb trajectory and body position, and did not involve stereotyped searching movements. The proscopids estimated distant locations using peering to generate motion parallax, a monocular distance cue, but appeared to use binocular visual cues to estimate the distance of nearby footholds. Following occlusion of regions of binocular overlap, the proscopids resorted to peering to target reaches even to nearby locations. Monocular cues were sufficient for accurate targeting of the ipsilateral but not the contralateral forelimb. Thus, proscopids are capable not only of the sensorimotor transformations necessary for visually targeted reaching with their forelimbs but also of flexibly using different visual cues to target reaches. PMID:22764161

  3. Synchrotron imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry

    PubMed Central

    Henry, Joanna R.; Kirkton, Scott D.; Westneat, Mark W.; Fezzaa, Kamel; Lee, Wah-Keat; Harrison, Jon F.

    2009-01-01

    As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure and function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O2) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O2), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton. PMID:19710392

  4. A Test of the Thermal Melanism Hypothesis in the Wingless Grasshopper Phaulacridium vittatum

    PubMed Central

    Harris, Rebecca M.; McQuillan, Peter; Hughes, Lesley

    2013-01-01

    Altitudinal clines in melanism are generally assumed to reflect the fitness benefits resulting from thermal differences between colour morphs, yet differences in thermal quality are not always discernible. The intra-specific application of the thermal melanism hypothesis was tested in the wingless grasshopper Phaulacridium vittatum (Sjöstedt) (Orthoptera: Acrididae) first by measuring the thermal properties of the different colour morphs in the laboratory, and second by testing for differences in average reflectance and spectral characteristics of populations along 14 altitudinal gradients. Correlations between reflectance, body size, and climatic variables were also tested to investigate the underlying causes of clines in melanism. Melanism in P. vittatum represents a gradation in colour rather than distinct colour morphs, with reflectance ranging from 2.49 to 5.65%. In unstriped grasshoppers, darker morphs warmed more rapidly than lighter morphs and reached a higher maximum temperature (lower temperature excess). In contrast, significant differences in thermal quality were not found between the colour morphs of striped grasshoppers. In support of the thermal melanism hypothesis, grasshoppers were, on average, darker at higher altitudes, there were differences in the spectral properties of brightness and chroma between high and low altitudes, and temperature variables were significant influences on the average reflectance of female grasshoppers. However, altitudinal gradients do not represent predictable variation in temperature, and the relationship between melanism and altitude was not consistent across all gradients. Grasshoppers generally became darker at altitudes above 800 m a.s.l., but on several gradients reflectance declined with altitude and then increased at the highest altitude. PMID:23909454

  5. Synchrotron imaging of the grasshopper tracheal system : morphological and physiological components of tracheal hypermetry.

    SciTech Connect

    Greenlee, K. J.; Henry, J. R.; Kirkton, S. D.; Westneat, M. W.; Fezzaa, K.; Lee, W.; Harrison, J. F.; North Dakota State Univ.; Arizona State Univ.; Union Coll.; Field Museum of Natural History

    2009-11-01

    As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure and function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O{sub 2}) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O{sub 2}), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton.

  6. Revision of the grasshopper genus Sedulia Stål, 1878 (Acrididae: Catantopinae) from Malay Peninsula.

    PubMed

    Tan, Ming Kai; Robillard, Tony; Kamaruddin, Khairul Nizam

    2016-01-01

    Southeast Asia is a highly biodiverse region with many species of grasshoppers described since the 19th century. Historical species descriptions are however often not comprehensive and do not meet the modern criteria of taxonomy. Previously used characters for identification need to be re-examined. Here, we aim to revise the taxonomy of the grasshopper genus Sedulia Stål, 1878. Using morphology and simple morphometry, we compared and investigated interspecific and intraspecific variations among the two species of Sedulia. We also redescribed both species and constructed a key to species and closely related genera. PMID:27394817

  7. Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.

    2012-12-01

    Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation

  8. Preferential Occupancy of R2 Retroelements on the B Chromosomes of the Grasshopper Eyprepocnemis plorans

    PubMed Central

    Montiel, Eugenia E.; Cabrero, Josefa; Ruiz-Estévez, Mercedes; Burke, William D.; Eickbush, Thomas H.; Camacho, Juan Pedro M.; López-León, María Dolores

    2014-01-01

    R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements. PMID:24632855

  9. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii

    PubMed Central

    Qiu, Zhongying; Liu, Fei; Lu, Huimeng; Yuan, Hao; Zhang, Qin; Huang, Yuan

    2016-01-01

    Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), a manually-annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s), 36 unigenes encoding carboxylesterases (CarEs) and 36 unigenes encoding glutathione S-transferases (GSTs) in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs) from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome. PMID:27455245

  10. B-Chromosome Ribosomal DNA Is Functional in the Grasshopper Eyprepocnemis plorans

    PubMed Central

    Ruiz-Estévez, Mercedes; Cabrero, Josefa; Camacho, Juan Pedro M.

    2012-01-01

    B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B24 chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B24 chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes. PMID:22570730

  11. Effect of Ethanol on Differential Protein Production and Expression of Potential Virulence Functions in the Opportunistic Pathogen Acinetobacter baumannii

    PubMed Central

    Nwugo, Chika C.; Arivett, Brock A.; Zimbler, Daniel L.; Gaddy, Jennifer A.; Richards, Ashley M.; Actis, Luis A.

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments. PMID:23284824

  12. Loss of Abaxial Leaf Epicuticular Wax in Medicago truncatula irg1/palm1 Mutants Results in Reduced Spore Differentiation of Anthracnose and Nonhost Rust Pathogens[W

    PubMed Central

    Uppalapati, Srinivasa Rao; Ishiga, Yasuhiro; Doraiswamy, Vanthana; Bedair, Mohamed; Mittal, Shipra; Chen, Jianghua; Nakashima, Jin; Tang, Yuhong; Tadege, Million; Ratet, Pascal; Chen, Rujin; Schultheiss, Holger; Mysore, Kirankumar S.

    2012-01-01

    To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, and one anthracnose pathogen, Colletotrichum trifolii, on the abaxial leaf surface. Cytological and chemical analyses revealed that the inhibition of rust preinfection structures in irg1 mutants is due to complete loss of the abaxial epicuticular wax crystals and reduced surface hydrophobicity. The composition of waxes on abaxial leaf surface of irg1 mutants had >90% reduction of C30 primary alcohols and a preferential increase of C29 and C31 alkanes compared with the wild type. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, which also controls dissected leaf morphology in M. truncatula. Transcriptome analysis of irg1/palm1 mutants revealed downregulation of eceriferum4, an enzyme implicated in primary alcohol biosynthesis, and MYB96, a major transcription factor that regulates wax biosynthesis. Our results demonstrate that PALM1 plays a role in regulating epicuticular wax metabolism and transport and that epicuticular wax influences spore differentiation of host and nonhost fungal pathogens. PMID:22294617

  13. Microdissection studies on the polarity of unequal division in grasshopper neuroblasts. I. Subsequent divisions in neuroblast-type cells produced against the polarity by micromanipulation.

    PubMed

    Yamashiki, N; Kawamura, K

    1986-09-01

    Equal or unequal division against the polarity of normal division was induced in grasshopper neuroblasts by means of a microdissection technique. The subsequent cell divisions were traced in order to analyse the factors that determine the polarity. Daughter cells of two types (neuroblast-type and ganglion cell type) were produced by operations in which the mitotic apparatus was rotated or shifted. Cell types were classified by such characteristics as nuclear shape, mitotic activity, and inequality or equality of the subsequent cytokinesis. It became evident that the fate of daughter cells was determined simply by the cytoplasmic volume. In 27 cases out of 40 microdissecting operations, both sister cells were recognized as of neuroblast type. Mitosis of these neuroblast-type sister cells proceeded asynchronously. The time required for neuroblast-type cells to reach metaphase of the second division depended on their volume. It is considered that the polarity of unequal division in grasshopper neuroblasts may be maintained by a joint action of the cap cells attaching to one of the polar regions of the cell and the cortex differentiated in the previous cell division. PMID:3743651

  14. A remarkable new pygmy grasshopper (Orthoptera, Tetrigidae) in Miocene amber from the Dominican Republic

    PubMed Central

    Heads, Sam W.; Thomas, M. Jared; Wang, Yinan

    2014-01-01

    Abstract A new genus and species of pygmy grasshopper (Orthoptera: Tetrigidae) is described from Early Miocene (Burdigalian) Dominican amber. Electrotettix attenboroughi Heads & Thomas, gen. et sp. n. is assigned to the subfamily Cladonotinae based on the deeply forked frontal costa, but is remarkable for the presence of tegmina and hind wings, hitherto unknown in this subfamily. PMID:25147472

  15. Grasshoppers Regulate N:P Stoichiometric Homeostasis by Changing Phosphorus Contents in Their Frass

    PubMed Central

    Zhang, Zijia; Elser, James J.; Cease, Arianne J.; Zhang, Ximei; Yu, Qiang; Han, Xingguo; Zhang, Guangming

    2014-01-01

    Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands. PMID:25089521

  16. Stage-based mortality of grassland grasshoppers (Acrididae) from wandering spider (Lycosidae) predation

    NASA Astrophysics Data System (ADS)

    Oedekoven, Mark A.; Joern, Anthony

    1998-12-01

    Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland ( Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.

  17. Excretion of cadmium and zinc during moulting in the grasshopper Omocestus viridulus (Orthoptera)

    SciTech Connect

    Lindqvist, L.; Block, M. )

    1994-10-01

    Nymphs of Omocestus viridulus (Orthoptera) were reared on grass leaves containing known amounts of [sup 109]Cd or [sup 65]Zn. After the animals molted to adults, contents of these metals were measured in the grasshoppers, in the cast of exuviae and in the feces produced during rearing. Dry weights of adult bodies and exuviae were lower for [sup 109]Cd-treated grasshoppers than for those given [sup 65]Zn. Exuviae accounted for only a minor part of the excreted [sup 109]Cd and [sup 65]Zn. The [sup 109]Cd was assimilated from food to a much smaller extent than was [sup 65]Zn. After 15 d of rearing, [approximately] 50% of the ingested [sup 65]Zn, but only 10% of the ingested [sup 109]Cd, remained in the grasshoppers. Because the amount of [sup 109]Cd in the grasshopper nymphs decreased with time, whereas that of the exuviae were constant, content in exuviae constituted a larger portion of the total content of [sup 109]Cd with increasing time between feeding of [sup 109]Cd and molting. For [sup 65]Zn there was no such trend.

  18. Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Hilborn, Robert C.

    2004-04-01

    The butterfly effect has become a popular metaphor for sensitive dependence on initial conditions—the hallmark of chaotic behavior. I describe how, where, and when this term was conceived in the 1970s. Surprisingly, the butterfly metaphor was predated by more than 70 years by the grasshopper effect.

  19. Infection of Melanoplus Sanguinipes Grasshoppers Following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical to understanding the epidemiology of sporadic disease outbreaks in the western U.S. Migratory grasshoppers (Melanoplus sanguinipes, Fabricius) have been implicated as reservoirs and mechanical vectors of VS...

  20. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  1. Heat dosage and oviposition depth influence egg mortality of two common rangeland grasshopper species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland fire is a common naturally occurring event and management tool, with the amount and structure of biomass controlling transfer of heat belowground. Temperatures grasshopper eggs are exposed to during rangeland fires are mediated by species specific oviposition traits. This experiment examin...

  2. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of compounds has been isolated from the regurgitant of the grasshopper species Schistocerca americana. These compounds (named here caeliferins) are comprised of saturated and monounsaturated, sulfated alpha-hydroxy fatty acids in which the omega carbon is functionalized with either a su...

  3. Novel fatty acid-related compounds from the American bird grasshopper, Schistocerca americana, elicit plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of compounds has been isolated from the regurgitant of the grasshopper, Schistocerca americana. These compounds (named caeliferins) are comprised of unusual saturated and monounsaturated, alpha- and omega-substituted fatty acids. The regurgitant contains a series of these compounds wit...

  4. Grasshoppers regulate N:p stoichiometric homeostasis by changing phosphorus contents in their frass.

    PubMed

    Zhang, Zijia; Elser, James J; Cease, Arianne J; Zhang, Ximei; Yu, Qiang; Han, Xingguo; Zhang, Guangming

    2014-01-01

    Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands. PMID:25089521

  5. Status assessment and conservation plan for the Grasshopper Sparrow (Ammodramus savannarum)

    USGS Publications Warehouse

    Ruth, Janet M.

    2015-01-01

    The Grasshopper Sparrow (Ammodramus savannarum) breeds in grassland habitats throughout much of the U.S., southern and southeastern Canada, and northern Mexico. Additional subspecies are resident in Central America, northern South America, and the Caribbean. It winters primarily in the coastal states of the southeastern U.S., southern portions of the southwestern states, and in Mexico, Central America, and the Caribbean. The species prefers relatively open grassland with intermediate grass height and density and patchy bare ground; because it is widely distributed across different grassland types in North America, it selects different vegetation structure and species composition depending on what is available. In the winter, they use a broader range of grassland habitats including open grasslands, as well as weedy fields and grasslands with woody vegetation. Analyses show significant range-wide population declines from the late 1960s through the present, primarily caused by habitat loss, degradation, and fragmentation. Grasshopper Sparrow is still a relatively common and broadly distributed species, but because of significant population declines and stakeholder concerns, the species is considered of conservation concern nationally and at the state level for numerous states. Many factors, often related to different grassland management practices (e.g., grazing, burning, mowing, management of shrub encroachment, etc.) throughout the species’ range, have impacts on Grasshopper Sparrow distribution, abundance, and reproduction and may represent limiting factors or threats given steep declines in this species’ population. Because of the concerns for this species, Grasshopper Sparrow has been identified as a focal species by the U.S. Fish and Wildlife Service (USFWS) and this Status Assessment and Conservation Plan for Grasshopper Sparrow has been developed. Through literature searches and input from stakeholders across its range, this plan presents information about

  6. Modulation of CD4+ T Cell-Dependent Specific Cytotoxic CD8+ T Cells Differentiation and Proliferation by the Timing of Increase in the Pathogen Load

    PubMed Central

    Tzelepis, Fanny; Persechini, Pedro M.; Rodrigues, Mauricio M.

    2007-01-01

    Background Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8+ T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8+ T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Methodology/Principal Findings Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8+ T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8+ cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8+ cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8+ cytotoxic T cells was dependent on MHC class II restricted CD4+ T cells. Conclusions/Significance Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4+ T cell-dependent expansion of pathogen-specific CD8+ cytotoxic T cells. PMID:17460760

  7. Population Genetic Structure of the Grasshopper Eyprepocnemis plorans in the South and East of the Iberian Peninsula

    PubMed Central

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Gómez, Ricardo; Perfectti, Francisco; Camacho, Juan Pedro Martínez

    2013-01-01

    The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260–655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average GST =  0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans. PMID:23520552

  8. The Entomophaga grylli (Fresenius) Batko species complex (Zygomycetes: Entomophthorales) infecting grasshoppers in Ilheus (Bahia) Brazil: notes and new records

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi from the Entomophthoraceae (Zygomycotina; Zygomycetes: Entomophthorales) belonging to the Entomophaga grylli species complex have been found in the state of Bahia, Brazil, to affect populations of grasshoppers (Orthoptera: Acrididae) of the species Rhammatocerus brasiliensis Bruner, Rhammatoce...

  9. Spore loads of Paranosema locustae (Microsporidia) in heavily infected grasshoppers (Orthoptera: Acridoidea) of the Argentine Pampas and Patagonia.

    PubMed

    Plischuk, Santiago; Bardi, Christian J; Lange, Carlos E

    2013-09-01

    Paranosema locustae, an entomopathogen of grasshoppers and locusts, remains the only microsporidium registered as a biocontrol agent. After introductions from North America, it became established in grasshopper communities of Argentina. We measured the infection intensity of field collected, heavily infected male and female adults of individuals belonging to six grasshopper species, five melanoplines (Melanoplinae) (Baeacris pseudopunctulatus, Dichroplus maculipennis, Dichroplus vittatus, Neopedies brunneri, Scotussa lemniscata), and one gomphocerine (Gomphocerinae) (Staurorhectus longicornis). Average spore load among heavily infected grasshoppers ranged from 8.7±0.5×10(7) to 1.1±0.7×10(9). Only females of B. pseudopunctulatus and S. longicornis showed significantly higher spore loads than the males. PMID:23796497

  10. Environmental factors governing population dynamics of rangeland grasshoppers: The first application of GIS and remote sensing to acridology in Russia

    NASA Astrophysics Data System (ADS)

    Latchininsky, Alexandre Vsevolodovich

    Grasshoppers (Orthoptera: Acrididae) are pests of rangeland and crops in temperate Eurasia (Siberia) where landscapes are dominated by short-grass vegetation and have many common features with the prairies of the Great Plains of North America. The zone of economic importance of grasshoppers in Siberia is localized in its southern part between 50° and 55°N and 68° and 132°E. In particular, grasshopper infestations are concentrated in close proximity to Lake Baikal, the world's deepest lake, holding one-fifth of the Earth's total fresh water supply. From a biodiversity perspective, Lake Baikal is unparalleled because >80% of its 1,085 plant and 1,550 animal species are endemic. Broad-scale pesticide applications in the zone close to the Baikal ecosystem can seriously aggravate the hazards of environmental pollution, with potentially catastrophic consequences on a vast scale. Specific composition and density of grasshopper communities were studied over a variety of habitats. Of about 50 local grasshopper species, two gomphocerines, Aeropus sibiricus and Chorthippus albomarginatus, dominated grasshopper communities in dry and mesic habitats, respectively. These species accounted for the most of the crop damage during recent outbreaks in the 1990s requiring large-scale insecticidal control. Annual fluctuations of grasshopper infestations appeared to track changes in air temperature and summer precipitation, but only a synthetic "Aridity index" was statistically significant. Spatial distribution of historic grasshopper infestations was studied using GIS (ERDAS IMAGINERTM) and remote sensing (Landsat TM satellite imagery) and was found to be significantly clumped. The highest grasshopper densities were associated with dry grasslands in transitional zones between foothills and valleys characterized by a particular elevation (600--650 m), soil type (sod-forest, or pararendzina), amount of April--October precipitation (250 mm) and degree of grazing (moderate

  11. Predator-Prey Interactions are Context Dependent in a Grassland Plant-Grasshopper-Wolf Spider Food Chain.

    PubMed

    Laws, Angela N; Joern, Anthony

    2015-06-01

    Species interactions are often context dependent, where outcomes vary in response to one or more environmental factors. It remains unclear how abiotic conditions like temperature combine with biotic factors such as consumer density or food quality to affect resource availability or influence species interactions. Using the large grasshopper Melanoplus bivittatus (Say) and a common wolf spider [Rabidosa rabida (Walkenaer)], we conducted manipulative field experiments in tallgrass prairie to examine how spider-grasshopper interactions respond to manipulations of temperature, grasshopper density, and food quality. Grasshopper survival was density dependent, as were the effects of spider presence and food quality in context-dependent ways. In high grasshopper density treatments, predation resulted in increased grasshopper survival, likely as a result of reduced intraspecific competition in the presence of spiders. Spiders had no effect on grasshopper survival when grasshoppers were stocked at low densities. Effects of the experimental treatments were often interdependent so that effects were only observed when examined together with other treatments. The occurrence of trophic cascades was context dependent, where the effects of food quality and spider presence varied with temperature under high-density treatments. Temperature weakly affected the impact of spider presence on M. bivittatus survivorship when all treatments were considered simultaneously, but different context-dependent responses to spider presence and food quality were observed among the three temperature treatments under high-density conditions. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how key biotic and abiotic factors combine to influence species interactions. PMID:26313957

  12. Grasshopper (Orthoptera: Acrididae) Community Composition in the Rangeland of the Northern Slopes of the Qilian Mountains in Northwestern China

    PubMed Central

    Sun, T.; Liu, Z. Y.; Qin, L. P.; Long, R. J.

    2015-01-01

    In order to describe grasshopper (Orthoptera: Acrididae) species composition, diversity, abundance, and density of four rangelands types, we compared the grasshopper community composition and dynamics in the rangeland of the northern slopes of the Qilian Mountains. In total, 55 grasshopper species were collected from 2007 to 2009, representing three families and six subfamilies. The subfamily Oedipodinae was dominant, followed by Gomphocerinae and Catantopinae. Species abundance varied among rangeland types (RTs). The greatest abundance of grasshoppers was found in mountain rangeland, while the lowest abundance of grasshoppers was caught in alpine shrublands. Three species (Chorthippus cf. brunneus (Thunberg) (Acrididae), Chorthippus Dubius (Zubovski), and Gomphocerus licenti (Chang) were broadly distributed in the four RTs and constituted 7.5% of all grasshoppers collected. Ch. dubius was very abundant in desert rangeland and alpine shrubland. Bryodema dolichoptera Yin et Feng Eremippus qilianshanensis Lian and Zheng, and Filchnerella qilianshanensis Xi and Zheng (Pamphagidae) were endemic to the region of the Qilian Mountains. Species similarity between RTs ranged from 17.8 to 51.6 based on the Renkonen index. Similarly, the Sörensen index indicated a wide separation in species composition among RTs. The abundance of the eight most common species showed obvious differences among RTs and years. On average, mountain rangeland had the highest density values in 2007 and 2008, and alpine shrubland supported the smallest density. The densities in desert and mountain rangeland in 2007 were significantly higher than in 2008, while alpine rangeland and shrublands did not present obvious differences among years. PMID:25688084

  13. Grasshopper (Orthoptera: Acrididae) community composition in the rangeland of the northern slopes of The Qilian Mountains in northwestern China.

    PubMed

    Sun, T; Liu, Z Y; Qin, L P; Long, R J

    2015-01-01

    In order to describe grasshopper (Orthoptera: Acrididae) species composition, diversity, abundance, and density of four rangelands types, we compared the grasshopper community composition and dynamics in the rangeland of the northern slopes of the Qilian Mountains. In total, 55 grasshopper species were collected from 2007 to 2009, representing three families and six subfamilies. The subfamily Oedipodinae was dominant, followed by Gomphocerinae and Catantopinae. Species abundance varied among rangeland types (RTs). The greatest abundance of grasshoppers was found in mountain rangeland, while the lowest abundance of grasshoppers was caught in alpine shrublands. Three species (Chorthippus cf. brunneus (Thunberg) (Acrididae), Chorthippus Dubius (Zubovski), and Gomphocerus licenti (Chang) were broadly distributed in the four RTs and constituted 7.5% of all grasshoppers collected. Ch. dubius was very abundant in desert rangeland and alpine shrubland. Bryodema dolichoptera Yin et Feng Eremippus qilianshanensis Lian and Zheng, and Filchnerella qilianshanensis Xi and Zheng (Pamphagidae) were endemic to the region of the Qilian Mountains. Species similarity between RTs ranged from 17.8 to 51.6 based on the Renkonen index. Similarly, the Sörensen index indicated a wide separation in species composition among RTs. The abundance of the eight most common species showed obvious differences among RTs and years. On average, mountain rangeland had the highest density values in 2007 and 2008, and alpine shrubland supported the smallest density. The densities in desert and mountain rangeland in 2007 were significantly higher than in 2008, while alpine rangeland and shrublands did not present obvious differences among years. PMID:25688084

  14. Construction of a GeogDetector-based model system to indicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats.

    PubMed

    Shen, J; Zhang, N; Gexigeduren; He, B; Liu, C-Y; Li, Y; Zhang, H-Y; Chen, X-Y; Lin, H

    2015-06-01

    Grasshopper plagues have seriously disturbed grassland ecosystems in Inner Mongolia, China. The accurate prediction of grasshopper infestations and control of grasshopper plagues have become urgent needs. We sampled 234, 342, 335, and 369 plots in Xianghuangqi County of Xilingol League in 2010, 2011, 2012, and 2013, respectively, and measured the density of the most dominant grasshopper species, Oedaleus decorus asiaticus, and the latitude, longitude, and associated relatively stable habitat factors at each plot. We used Excel-GeogDetector software to explore the effects of individual habitat factors and the two-factor interactions on grasshopper density. We estimated the membership of each grasshopper density rank and determined the weights of each habitat category. These results were used to construct a model system evaluating grasshopper habitat suitability. The results showed that our evaluation system was reliable and the fuzzy evaluation scores of grasshopper habitat suitability were good indicators of potential occurrence of grasshoppers. The effects of the two-factor interactions on grasshopper density were greater than the effects of any individual factors. O. d. asiaticus was most likely to be found at elevations of 1300-1400 m, flat terrain or slopes of 4-6°, typical chestnut soil with 70-80% sand content in the top 5 cm of soil, and medium-coverage grassland. The species preferred temperate bunchgrass steppe dominated by Stipa krylovii and Cleistogenes squarrosa. These findings may be used to improve models to predict grasshopper occurrence and to develop management guidelines to control grasshopper plagues by changing habitats. PMID:25779652

  15. Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription profiles of Glycine tomentella genotypes having different responses to soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, were compared using suppression subtractive hybridization (SSH). Four cDNA libraries were constructed from infected and non-infected leaves of resis...

  16. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  17. The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease that presents global concerns to the pork industry, which have been exacerbated by the emergence of a highly pathogenic PRRSV strain (HP-PRRSV) in China and Southeast Asia....

  18. Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL

    NASA Astrophysics Data System (ADS)

    Waldhauer, A. P.

    1989-07-01

    A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (λ=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 μm with a spherical mirror, and 25 μm with an elliptical one. Elliptical mirrors have been acquired and are now being installed in the two grasshoppers at SSRL.

  19. Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL

    SciTech Connect

    Waldhauer, A. P.

    1989-07-01

    A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (/lambda/=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 /mu/m with a spherical mirror, and 25 /mu/m with an elliptical one. Elliptical mirrors have been acquired and are now being installed in the two grasshoppers at SSRL.

  20. High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth

    NASA Astrophysics Data System (ADS)

    Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

    2008-09-01

    We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

  1. The importance of the ontogenetic niche in resource-associated divergence: evidence from a generalist grasshopper.

    PubMed

    Dopman, Erik B; Sword, Gregory A; Hillis, David M

    2002-04-01

    Geographic variation in resource use can produce locally adapted populations that exhibit genetic and phenotypic divergence. In the bird-winged grasshopper (Schistocerca emarginata = [lineata]), we investigate whether genetic data exist in accordance with geographic variation in resource (host) use and coloration. In Texas, juvenile grasshoppers feed almost exclusively on one of two host plants, Rubus trivialis (Rosaceae) or Ptelea trifoliata (Rutaceae), whereas adults of both forms are dietary generalists and consume many plants from unrelated families. Along with differences in juvenile feeding, differences in a density-dependent color polyphenism are concordant with genetic (mitochondrial DNA) variation among eight populations of the bird-winged grasshopper. Forms feeding on R. trivialis and those feeding on P. trifoliata represent monophyletic lineages according to phylogenetic analysis and maximum-likelihood tests of two alternative phylogeographic hypotheses for geographic variation in host use. Character-state optimization of host-plant acceptability on a phylogeny containing S. emarginata and outgroup taxa indicates that populations consuming R. trivialis gave rise to populations consuming P. trifoliata. Juvenile grasshoppers that consume P. trifoliata acquire deterrence against predation, suggesting that enemy-free space facilitated this host shift. In extant populations, adaptations stemming from alternative resource use during ontogeny present possible barriers to gene exchange. This study represents the first demonstration of resource-associated divergence in an otherwise generalist insect that exhibits temporal variation in resource use, characterized as developmental changes in host specialization. Our findings suggest that exploitation of different resources may have unexplored significance for generalist species that compartmentalize specialization to particular life stages. PMID:12038531

  2. Reproduction-Related Sound Production of Grasshoppers Regulated by Internal State and Actual Sensory Environment

    PubMed Central

    Heinrich, Ralf; Kunst, Michael; Wirmer, Andrea

    2012-01-01

    The interplay of neural and hormonal mechanisms activated by entero- and extero-receptors biases the selection of actions by decision making neuronal circuits. The reproductive behavior of acoustically communicating grasshoppers, which is regulated by short-term neural and longer-term hormonal mechanisms, has frequently been used to study the cellular and physiological processes that select particular actions from the species-specific repertoire of behaviors. Various grasshoppers communicate with species- and situation-specific songs in order to attract and court mating partners, to signal reproductive readiness, or to fend off competitors. Selection and coordination of type, intensity, and timing of sound signals is mediated by the central complex, a highly structured brain neuropil known to integrate multimodal pre-processed sensory information by a large number of chemical messengers. In addition, reproductive activity including sound production critically depends on maturation, previous mating experience, and oviposition cycles. In this regard, juvenile hormone released from the corpora allata has been identified as a decisive hormonal signal necessary to establish reproductive motivation in grasshopper females. Both regulatory systems, the central complex mediating short-term regulation and the corpora allata mediating longer-term regulation of reproduction-related sound production mutually influence each other’s activity in order to generate a coherent state of excitation that promotes or suppresses reproductive behavior in respective appropriate or inappropriate situations. This review summarizes our current knowledge about extrinsic and intrinsic factors that influence grasshopper reproductive motivation, their representation in the nervous system and their integrative processing that mediates the initiation or suppression of reproductive behaviors. PMID:22737107

  3. Horizontal Chromosome Transfer, a Mechanism for the Evolution and Differentiation of a Plant-Pathogenic Fungus▿ †

    PubMed Central

    Akagi, Yasunori; Akamatsu, Hajime; Otani, Hiroshi; Kodama, Motoichiro

    2009-01-01

    The tomato pathotype of Alternaria alternata produces host-specific AAL toxin and causes Alternaria stem canker on tomato. A polyketide synthetase (PKS) gene, ALT1, which is involved in AAL toxin biosynthesis, resides on a 1.0-Mb conditionally dispensable chromosome (CDC) found only in the pathogenic and AAL toxin-producing strains. Genomic sequences of ALT1 and another PKS gene, both of which reside on the CDC in the tomato pathotype strains, were compared to those of tomato pathotype strains collected worldwide. This revealed that the sequences of both CDC genes were identical among five A. alternata tomato pathotype strains having different geographical origins. On the other hand, the sequences of other genes located on chromosomes other than the CDC are not identical in each strain, indicating that the origin of the CDC might be different from that of other chromosomes in the tomato pathotype. Telomere fingerprinting and restriction fragment length polymorphism analyses of the A. alternata strains also indicated that the CDCs in the tomato pathotype strains were identical, although the genetic backgrounds of the strains differed. A hybrid strain between two different pathotypes was shown to harbor the CDCs derived from both parental strains with an expanded range of pathogenicity, indicating that CDCs can be transmitted from one strain to another and stably maintained in the new genome. We propose a hypothesis whereby the ability to produce AAL toxin and to infect a plant could potentially be distributed among A. alternata strains by horizontal transfer of an entire pathogenicity chromosome. This could provide a possible mechanism by which new pathogens arise in nature. PMID:19749175

  4. The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens

    PubMed Central

    Chacón-Díaz, Carlos; Quesada-Lobo, Lucía; Martirosyan, Anna; Guzmán-Verri, Caterina; Iriarte, Maite; Mancek-Keber, Mateja; Jerala, Roman; Gorvel, Jean Pierre; Moriyón, Ignacio; Moreno, Edgardo; Chaves-Olarte, Esteban

    2009-01-01

    Background During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some α-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria. Methodology/Principal Findings In contrast to Brucella abortus, Ochrobactrum anthropi did not replicate within professional and non-professional phagocytes and, whereas neutrophils had a limited action on B. abortus, they were essential to control O. anthropi infections. O. anthropi triggered proinflammatory responses markedly lower than Salmonella enterica but higher than B. abortus. In macrophages and dendritic cells, the corresponding lipopolysaccharides reproduced these grades of activation, and binding of O. anthropi lipopolysaccharide to the TLR4 co-receptor MD-2 and NF-κB induction laid between those of B. abortus and enteric bacteria lipopolysaccharides. These differences correlate with reported variations in lipopolysaccharide core sugars, sensitivity to bactericidal peptides and outer membrane permeability. Conclusions/Significance The results suggest that Brucellaceae ancestors carried molecules not readily recognized by innate immunity, so that non-drastic variations led to the emergence of stealthy intracellular parasites. They also suggest that some critical envelope properties, like selective permeability, are profoundly altered upon modification of pathogen-associated molecular patterns, and that this represents a further adaptation to the host. It is proposed that this adaptive trend is relevant in other intracellular α-Proteobacteria like Bartonella, Rickettsia, Anaplasma, Ehrlichia and Wolbachia. PMID:19529776

  5. Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling.

    PubMed

    Xu, Xi-Hui; Wang, Chen; Li, Shu-Xian; Su, Zhen-Zhu; Zhou, Hui-Na; Mao, Li-Juan; Feng, Xiao-Xiao; Liu, Ping-Ping; Chen, Xia; Hugh Snyder, John; Kubicek, Christian P; Zhang, Chu-Long; Lin, Fu-Cheng

    2015-01-01

    The rice endophyte Harpophora oryzae shares a common pathogenic ancestor with the rice blast fungus Magnaporthe oryzae. Direct comparison of the interactions between a single plant species and two closely-related (1) pathogenic and (2) mutualistic fungi species can improve our understanding of the evolution of the interactions between plants and fungi that lead to either mutualistic or pathogenic interactions. Differences in the metabolome and transcriptome of rice in response to challenge by H. or M. oryzae were investigated with GC-MS, RNA-seq, and qRT-PCR. Levels of metabolites of the shikimate and lignin biosynthesis pathways increased continuously in the M. oryzae-challenged rice roots (Mo-roots); these pathways were initially induced, but then suppressed, in the H. oryzae-challenged rice roots (Ho-roots). Compared to control samples, concentrations of sucrose and maltose were reduced in the Ho-roots and Mo-roots. The expression of most genes encoding enzymes involved in glycolysis and the TCA cycle were suppressed in the Ho-roots, but enhanced in the Mo-roots. The suppressed glycolysis in Ho-roots would result in the accumulation of glucose and fructose which was not detected in the Mo-roots. A novel co-evolution pattern of fungi-host interaction is proposed which highlights the importance of plant host in the evolution of fungal symbioses. PMID:26346313

  6. Reduced predation risk for melanistic pygmy grasshoppers in post-fire environments

    PubMed Central

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2012-01-01

    The existence of melanistic (black) color forms in many species represents interesting model systems that have played important roles for our understanding of selective processes, evolution of adaptations, and the maintenance of variation. A recent study reported on rapid evolutionary shifts in frequencies of the melanistic forms in replicated populations of Tetrix subulata pygmy grasshoppers; the incidence of the melanistic form was higher in recently burned areas with backgrounds blackened by fire than in nonburned areas, and it declined over time in postfire environments. Here, we tested the hypothesis that the frequency shifts of the black color variant were driven, at least in part, by changes in the selective regime imposed by visual predators. To study detectability of the melanistic form, we presented human “predators” with images of black grasshoppers and samples of the natural habitat on computer screens. We demonstrate that the protective value of black coloration differs between burnt and nonburnt environments and gradually increases in habitats that have been more blackened by fire. These findings support the notion that a black color pattern provides improved protection from visually oriented predators against blackened backgrounds and implicate camouflage and predation as important drivers of fire melanism in pygmy grasshoppers. PMID:23139879

  7. Voltage-Gated Sodium Channel in Grasshopper Mice Defends Against Bark Scorpion Toxin

    PubMed Central

    Rowe, Matthew P.; Cummins, Theodore R.; Zakon, Harold H.

    2014-01-01

    Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na+ channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na+ currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating. PMID:24159039

  8. The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    PubMed

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-08-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44°C±0.4°C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change. PMID:26267501

  9. Reprint of: The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    PubMed

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-12-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44 °C ± 0.4 °C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change. PMID:26615722

  10. Grasshopper sparrow reproductive success and habitat use on reclaimed surface mines varies by age of reclamation

    USGS Publications Warehouse

    Wood, Petra; Ammer, Frank K.

    2015-01-01

    We studied 3 mountaintop mining–valley fill (MTMVF) complexes in southern West Virginia, USA to examine grasshopper sparrow (Ammodramus savannarum pratensis) demographic response to different age classes of mine land reclamation. For 71 nests monitored during the 2001–2002 breeding seasons, overall nest success (36%) was within the range of nest success rates previously reported for this species, but it was highest on more recently reclaimed sites (56%). Nest density and clutch size did not differ (P > 0.30) among reclamation age classes, whereas number of fledglings was greater (P = 0.01) on more recently reclaimed sites. We measured vegetation variables at 70 nest subplots and at 96 systematic subplots to compare nest vegetation with vegetation available on the plots. We found that nests occurred in areas with more bare ground near the nest, greater vegetation height–density surrounding the nest site, lower grass height, and fewer woody stems, similar to previous studies. As postreclamation age increased, vegetation height–density and maximum grass height increased, and sericea (Lespedeza cuneata) became more dominant. Nest success declined with increasing vegetation height–density at the nest. The grasslands available on these reclaimed mine complexes are of sufficient quality to support breeding populations of grasshopper sparrows, but nest success decreased on the older reclaimed areas. Without active management, grasslands on reclaimed MTMVF mines become less suitable for nesting grasshopper sparrows about 10 years after reclamation.

  11. Reduced predation risk for melanistic pygmy grasshoppers in post-fire environments.

    PubMed

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2012-09-01

    The existence of melanistic (black) color forms in many species represents interesting model systems that have played important roles for our understanding of selective processes, evolution of adaptations, and the maintenance of variation. A recent study reported on rapid evolutionary shifts in frequencies of the melanistic forms in replicated populations of Tetrix subulata pygmy grasshoppers; the incidence of the melanistic form was higher in recently burned areas with backgrounds blackened by fire than in nonburned areas, and it declined over time in postfire environments. Here, we tested the hypothesis that the frequency shifts of the black color variant were driven, at least in part, by changes in the selective regime imposed by visual predators. To study detectability of the melanistic form, we presented human "predators" with images of black grasshoppers and samples of the natural habitat on computer screens. We demonstrate that the protective value of black coloration differs between burnt and nonburnt environments and gradually increases in habitats that have been more blackened by fire. These findings support the notion that a black color pattern provides improved protection from visually oriented predators against blackened backgrounds and implicate camouflage and predation as important drivers of fire melanism in pygmy grasshoppers. PMID:23139879

  12. Genome size variation affects song attractiveness in grasshoppers: evidence for sexual selection against large genomes.

    PubMed

    Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus

    2014-12-01

    Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. PMID:25200798

  13. Rapid Detection and Statistical Differentiation of KPC Gene Variants in Gram-Negative Pathogens by Use of High-Resolution Melting and ScreenClust Analyses

    PubMed Central

    Roth, Amanda L.

    2013-01-01

    In the United States, the production of the Klebsiella pneumoniae carbapenemase (KPC) is an important mechanism of carbapenem resistance in Gram-negative pathogens. Infections with KPC-producing organisms are associated with increased morbidity and mortality; therefore, the rapid detection of KPC-producing pathogens is critical in patient care and infection control. We developed a real-time PCR assay complemented with traditional high-resolution melting (HRM) analysis, as well as statistically based genotyping, using the Rotor-Gene ScreenClust HRM software to both detect the presence of blaKPC and differentiate between KPC-2-like and KPC-3-like alleles. A total of 166 clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii with various β-lactamase susceptibility patterns were tested in the validation of this assay; 66 of these organisms were known to produce the KPC β-lactamase. The real-time PCR assay was able to detect the presence of blaKPC in all 66 of these clinical isolates (100% sensitivity and specificity). HRM analysis demonstrated that 26 had KPC-2-like melting peak temperatures, while 40 had KPC-3-like melting peak temperatures. Sequencing of 21 amplified products confirmed the melting peak results, with 9 isolates carrying blaKPC-2 and 12 isolates carrying blaKPC-3. This PCR/HRM assay can identify KPC-producing Gram-negative pathogens in as little as 3 h after isolation of pure colonies and does not require post-PCR sample manipulation for HRM analysis, and ScreenClust analysis easily distinguishes blaKPC-2-like and blaKPC-3-like alleles. Therefore, this assay is a rapid method to identify the presence of blaKPC enzymes in Gram-negative pathogens that can be easily integrated into busy clinical microbiology laboratories. PMID:23077125

  14. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble.

    PubMed

    Fournier, E; Giraud, T

    2008-01-01

    Prime candidates for sympatric ecological divergence include parasites that differentiate via host shifts, because different host species exert strong disruptive selection and because both hosts and parasites are continually co-evolving. Sympatric divergence may be fostered even more strongly in phytopathogenic fungi, in particular those where sex must occur on the host, which allows adaptation alone to restrict gene flow between populations developing on different hosts. We sampled populations of Botrytis cinerea, a generalist ascomycete fungus, on sympatric grapes and brambles in six regions in France. Microsatellite data were analyzed using standard population genetics, a population graph analysis and a Bayesian approach. In addition to confirming that B. cinerea reproduces sexually, our results showed that the fungal populations on the two hosts were significantly differentiated, indicating restricted gene flow, even in sympatry. In contrast, only weak geographical differentiation could be detected. These results support the possibility of sympatric divergence associated with host use in generalist parasites. PMID:18028352

  15. Development of a toxic bait for control of eastern lubber grasshopper (Orthoptera: Acrididae).

    PubMed

    Barbara, Kathryn A; Capinera, John L

    2003-06-01

    This study assessed baits for eastern lubber grasshopper, Romalea guttata (Houttuyn). When offered a choice among several grain-based baits (rolled oats, wheat bran, oat bran, yeast, corn meal, cornflakes) and vegetable oils (canola, corn, peanut, soybean), eastern lubber grasshopper adults preferred bait consisting of wheat bran carrier with corn oil as an added phagostimulant. Other carriers were accepted but consumed less frequently. Discrimination by eastern lubber grasshoppers among oils was poor. Similarly, addition of flavorings (peppermint, anise, lemon, banana) resulted in few significant effects. The carbaryl, wheat bran, and oil bait developed in this study was effective at causing eastern lubber grasshopper mortality in field-cage studies. Significant mortality occurred even though grasshoppers had to locate dishes of bait in a large cage, and could feed on daylilies, or grass growing through the bottom of the cage, rather than on the bran flakes. Consumption of as little as a single carbaryl-treated bran flake could induce mortality, although individuals varied greatly in their susceptibility. The bait matrix developed in this study was readily consumed when in the presence of some plant species. We expect that wheat bran and corn oil bait would be most effective as protection for less preferred plants (tomato, pepper, eggplant, leek, parsley, fennel, daylily, lily of the Nile, and canna lily) because baits were readily consumed in the presence of these plants. Plants that are readily consumed in the presence of bait (preferred plants) included butter crunch lettuce, carrot, yellow squash, cauliflower, collards, green onion, chive, cucumber, cabbage, cantalope, endive, red leaf lettuce, society garlic, caladium, and amaryllis. Baits are likely to be less effective in the presence of such plants. On average, vegetables in Solanaceae (i.e., tomato, pepper, and eggplant) and Apiaceae (i.e., fennel and parsley) elicited high levels of bait-feeding activity

  16. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  17. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species.

    PubMed

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  18. Development of FPV140 antigen-specific ELISA differentiating fowlpox virus isolates from all other viral pathogens of avian origin.

    PubMed

    Li, G; Hong, Q; Ren, Y; Lillehoj, H S; He, C; Ren, X

    2012-10-01

    The FPV140 gene encodes an envelope protein of fowlpox virus (FPV). In this study, the FPV140 gene of FPV Chinese isolate HH2008 was cloned and the comparison of its sequence with other FPV isolates showed it to be highly conserved across all FPV isolates. A recombinant plasmid pET-FPV140 carrying FPV140 gene was constructed and transformed into Escherichia coli. The optimal expression condition for the FPV140 gene was developed and purified FPV140 recombinant protein was used to produce rabbit polyclonal antibody. An indirect ELISA using this anti-FPV140 polyclonal antibody was capable of distinguishing avian FPV isolates from other common avian pathogens such as mycoplasma gallisepticum, infectious laryngotracheitis virus, avian influenza virus, infectious bursal disease virus, and avian infectious bronchitis virus. This ELISA will serve as a useful diagnostic tool for the detection of FPV in clinical samples. PMID:22991535

  19. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae.

    PubMed

    Manulis, S; Haviv-Chesner, A; Brandl, M T; Lindow, S E; Barash, I

    1998-07-01

    Erwinia herbicola pv. gypsophilae (Ehg), which induces galls on Gypsophila paniculata, harbors two major pathways for indole-3-acetic acid (IAA) synthesis, the indole-3-acetamide (IAM) and indole-3-pyruvate (IPyA) routes, as well as cytokinin biosynthetic genes. Mutants were generated in which the various biosynthetic routes were disrupted separately or jointly in order to assess the contribution of IAA of various origins and cytokinins to pathogenicity and epiphytic fitness. Inactivation of the IAM pathway or cytokinin biosynthesis caused the largest reduction in gall size. Inactivation of the IPyA pathway caused a minor, nonsignificant decrease in pathogenicity. No further reduction in gall size was observed by the simultaneous inactivation of both IAA pathways only or in combination with that of cytokinin production. However, inactivation of the IPyA pathway caused a 14-fold reduction in the population of Ehg on bean plants. Inactivation of the IAM pathway or cytokinin production did not affect epiphytic fitness. While the apparent transcriptional activity of iaaM-inaZ fusion increased slightly in cells of Ehg on bean and gypsophila leaves, compared with that in culture, very high levels of induction were observed in cells injected into gypsophila stems. In contrast, moderate levels of induction of ipdC-inaZ in Ehg were observed on leaves of these plants and in gypsophila stems, when compared with that in culture. These results suggest that the IAM pathway is involved primarily in gall formation and support the main contribution of the IpyA pathway to the epiphytic fitness of this bacterial species. PMID:9650296

  20. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Ameur, Adam; Provost, Patrick

    2015-01-01

    Platelet concentrates (PCs) are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR) systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets’ nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE) RNA sequencing (RNA-Seq), we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05) compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC) ≥2. At the p-value < 0.001, as many as 147 genes were deregulated by ≥ 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA) and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products. PMID:26172280

  1. Grazing damage to plants and gastropod and grasshopper densities in a CO 2-enrichment experiment on calcareous grassland

    NASA Astrophysics Data System (ADS)

    Ledergerber, Stephan; Thommen, G. Heinrich; Baur, Bruno

    Plant-herbivore interactions may change as atmospheric CO 2 concentrations continue to rise. We examined the effects of elevated atmospheric CO 2 and CO 2-exposure chambers on the grazing damage to plants, and on the abundances of potential herbivores (terrestrial gastropods and grasshoppers) in a calcareous grassland in the Jura mountains of Switzerland (village of Nenzlingen). Individuals of most plant species examined showed slight grazing damage. However, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in the extent of grazing damage. Similarly, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in either gastropod or grasshopper density. Experimental plots with and without chambers did not differ in the number of gastropods. However, the densities of gastropods and grasshoppers and extent of grazing damage to plants were generally lower in the experimental area than in the grassland outside the experimental field.

  2. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    PubMed

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction. PMID:26298568

  3. Change in the Chemical Profile of Mangifera indica Leaves after their Metabolism in the Tropidacris collaris Grasshopper.

    PubMed

    da Silva, Rodolfo R; Moraes, Marcilio M; Camara, Claudio A G; Ramos, Clécio S

    2015-11-01

    This present work addresses research on the discovery of new compounds from natural sources. It is based on a study of Mangifera indica leaf metabolism by the Tropidacris collaris grasshopper. We found that the grasshopper hydrolyzed the flavonoid isoquercitrin to quercetin when the O-glycosidic bond was broken and sugar released as a probable energy source for the insect. There was not, however, hydrolysis of the major compound in the leaves, mangiferin, which contains the C-glycosidic bond. All compounds were isolated and their chemical structure determined by UV, IR, MS, 1H and 13C NMR. PMID:26749802

  4. Effect of controlled low levels of SO/sub 2/ on grasshopper densities on a northern mixed-grass prairie

    SciTech Connect

    McNary, T.J.; Milchunas, D.G.; Leetham, J.W.; Lauenroth, W.K.; Dodd, J.L.

    1981-02-01

    A northern mixed-grass prairie was exposed to monthly median SO/sub 2/ concentrations of 73, 134, and 228 ..mu..g/m/sup 3/. Total grasshopper density and the density of Melanoplus sanguinipes (F.) were significantly (P < 0.01) reduced by SO/sub 2/ treatment on late-growing-season dates within each year of SO/sub 2/ exposure. Grasshopper density tended to decrease with increasing SO/sub 2/ concentration. Sulfur dioxide did not alter the relative proportions of M. sanguinipes in the total population. 14 references, 1 figure.

  5. Differential Gene Expression in Sugarcane in Response to Challenge by Fungal Pathogen Ustilago scitaminea Revealed by cDNA-AFLP

    PubMed Central

    You-Xiong, Que; Jian-Wei, Lin; Xian-Xian, Song; Li-Ping, Xu; Ru-Kai, Chen

    2011-01-01

    Differential gene expression in sugarcane during sugarcane-Ustilago scitaminea interaction was conducted in a smut-resistant genotype. Using cDNA-AFLP along with silver staining, a total of 136 transcript-derived fragments (TDFs) were found to be differentially expressed in response to challenge by U. scitaminea. Forty TDFs, 34 newly induced plus six with obvious upregulated expression after infection, were sequenced and validated by RT-PCR analysis. These results demonstrated that the expression of 37 out of these TDFs in RT-PCR analysis was consistent with that in cDNA-AFLP analysis. Based on BlastX in NCBI, 28 TDFs were assumed to function in sugarcane under U. scitaminea stress. Analysis of expression profile of three TDFs revealed that they responded differently after infection with U. scitaminea, and the transcription was significantly enhanced. The response of two TDFs, SUC06 and SUC09, occurred before that of SUC10. This study enriches our knowledge of the molecular basis for sugarcane response to U. scitaminea infection. PMID:21792273

  6. Two specific amino acid variations in colonization factor CS6 subtypes of enterotoxigenic Escherichia coli results in differential binding and pathogenicity.

    PubMed

    Debnath, Anusuya; Wajima, Takeaki; Sabui, Subrata; Hamabata, Takashi; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar

    2015-04-01

    CS6 is the predominant colonization factor of enterotoxigenic Escherichia coli (ETEC). We report the existence of multiple CS6 subtypes caused by natural point mutations in cssA and cssB, the structural genes for CS6. The subtype AIBI was mostly associated with ETEC isolated from diarrhoeal cases, whereas AIIBII was mostly found in asymptomatic controls. Here we explore the rationale behind this association. ETEC isolates expressing AIIBII showed weaker adherence to intestinal epithelial cells compared with ETEC expressing AIBI. AIIBII expression on the ETEC cell surface was threefold less than AIBI. We found that alanine at position 37 in CssAII, in conjunction with asparagine at position 97 in CssBII, was responsible for the decreased levels of AIIBII on the bacterial surface. In addition, purified AIIBII showed fourfold less mucin binding compared with AIBI. The asparagine at position 97 in CssBII was also accountable for the decreased mucin binding by AIIBII. Reduced fluid accumulation and colonization occurred during infection with ETEC expressing AIIBII in animal models. Together these results indicate that the differential adherence between AIBI and AIIBII was a cumulative effect of decreased surface-level expression and mucin binding of AIIBII due to two specific amino acid variations. As a consequence, ETEC expressing these two subtypes displayed differential pathogenicity. We speculate that this might explain the subjective association of AIBI with ETEC from diarrhoeal cases and AIIBII with asymptomatic controls. PMID:25635273

  7. Evaluation of a reproductive index to estimate grasshopper sparrow and eastern meadowlark reproductive success

    USGS Publications Warehouse

    Althoff, D.P.; Gipson, P.S.; Pontius, J.S.; Japuntich, R.D.

    2009-01-01

    We compared an index of reproductive success based on breeding behavior to actual nest fates of grasshopper sparrows (Ammodramus savannarum) and eastern meadowlarks (Sturnella magna) on 12 plots (4-ha). Concordance of results between the two methods was 58% for grasshopper sparrows and 42% for eastern meadowlarks on a plot-by-plot basis. The indirect method yielded higher estimates of reproductive activity than nest monitoring for the balance of the plots,. There was little evidence that brown-headed cowbird (Molothrus ater) parasitism influenced the estimates of reproductive success using the indirect method. We concluded that nests and about-to-fledge nestlings were missed during searches on some plots. It may be appropriate to use an indirect method to more efficiently survey territories and/or plots for species with hard-to-find nests or when monitoring large areas. Use of a reproductive index may be appropriate and more time-efficient than nest searching and monitoring for comparing management effects such as burning, grazing, haying, military training, and other localized disturbances that are likely to affect reproductive success of grasshopper sparrows and eastern meadowlarks. However, nest monitoring may be necessary for more precise estimates of productivity necessary for long-term monitoring. Nest monitoring results are also likely to allow for direct comparisons to results from other studies because the index method requires intimate knowledge of the species being evaluated - a factor that could lead to reduced precision because the experience level of technicians relying only on behavioral cues from study-to-study is likely to vary considerably.

  8. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae).

    PubMed

    Groenewald, Berlizé; Chown, Steven L; Terblanche, John S

    2014-10-01

    The evolutionary origin and maintenance of discontinuous gas exchange (DGE) in tracheate arthropods are poorly understood and highly controversial. We investigated prioritization of abiotic factors in the gas exchange control cascade by examining oxygen, water and haemolymph pH regulation in the grasshopper Paracinema tricolor. Using a full-factorial design, grasshoppers were acclimated to hypoxic or hyperoxic (5% O2, 40% O2) gas conditions, or dehydrated or hydrated, whereafter their CO2 release was measured under a range of O2 and relative humidity (RH) conditions (5%, 21%, 40% O2 and 5%, 60%, 90% RH). DGE was significantly less common in grasshoppers acclimated to dehydrating conditions compared with the other acclimations (hypoxia, 98%; hyperoxia, 100%; hydrated, 100%; dehydrated, 67%). Acclimation to dehydrating conditions resulted in a significant decrease in haemolymph pH from 7.0±0.3 to 6.6±0.1 (mean ± s.d., P=0.018) and also significantly increased the open (O)-phase duration under 5% O2 treatment conditions (5% O2, 44.1±29.3 min; 40% O2, 15.8±8.0 min; 5% RH, 17.8±1.3 min; 60% RH, 24.0±9.7 min; 90% RH, 20.6±8.9 min). The observed acidosis could potentially explain the extension of the O-phase under low RH conditions, when it would perhaps seem more useful to reduce the O-phase to lower respiratory water loss. The results confirm that DGE occurrence and modulation are affected by multiple abiotic factors. A hierarchical framework for abiotic factors influencing DGE is proposed in which the following stressors are prioritized in decreasing order of importance: oxygen supply, CO2 excretion and pH modulation, oxidative damage protection and water savings. PMID:25063854

  9. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli.

    PubMed

    Tan, Lendl; Moriel, Danilo G; Totsika, Makrina; Beatson, Scott A; Schembri, Mark A

    2016-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen. PMID:27598999

  10. New and little-known pygmy grasshoppers (Orthoptera: Tetrigidae) from Thailand.

    PubMed

    Storozhenko, Sergey Yu; Dawwrueng, Pattarawich

    2015-01-01

    An annotated list of 39 species in 25 genera and seven subfamilies of the pygmy grasshoppers (Orthoptera: Tetrididae) from Thailand is given; from these 18 species are recorded from this country for the first time. Five new species are described: Cotysoides gaponi sp. nov. (subfamily Metrodorinae), Eucriotettix anisyutkini sp. nov., Gavialidium bufocrocodil sp. nov., Scelimena bellula sp. nov. (subfamily Scelimeninae) and Phaesticus uvarovi sp. nov. (subfamily Discotettiginae). One species is transferred from Scelimena to Amphibotettix and a new combination is proposed: Scelimena hafizhaii Mahmmod, Idris et Salman, 2007 = Amphibotettix hafizhaii (Mahmmod, Idris et Salman, 2007), comb. nov. The previously unknown male of Falconius tschernovi Storozhenko, 2014 is described. PMID:26701451

  11. Using the Alexander Collection to measure the effects of climate change on the grasshoppers of the southern Rocky Mountains of Colorado

    NASA Astrophysics Data System (ADS)

    Nufio, C. R.; Bowers, D. M.; Guralnick, R. P.

    2007-12-01

    The current study utilizes the recently curated and databased Alexander Grasshopper Collection coupled with a new resurvey program to measure the effects of climate change on grasshoppers found along an elevational gradient in the southern Rocky Mountains of Colorado. The Alexander Collection is composed of approximately 19,000 pinned grasshoppers and a series of field data notebooks from a three year 1958-1960 survey project. During these survey years, Alexander processed over 65,000 grasshoppers from repeatedly sampled sites along an elevational gradient from Boulder (1530 m elev.) to Mt Evans (3900m elev.) in the Colorado Front Range. Data from 2006 shows that at mid-elevation sites grasshoppers are becoming adults 15-28 days earlier than they did nearly a half century ago. We found no changes in the time to reach adulthood at the high elevation sites. Preliminary data from 2007 (a year with milder spring temperatures) suggests that unlike the dramatic patterns documented in 2006, that the time to reach adulthood for grasshoppers at low and high elevation sites was not much different than it was 50 years ago. In 2007, several grasshopper species at mid-elevation did become adults earlier than they had a half century ago.

  12. Does insecticide drift adversely affect grasshoppers (Orthoptera: Saltatoria) in field margins? A case study combining laboratory acute toxicity testing with field monitoring data.

    PubMed

    Bundschuh, Rebecca; Schmitz, Juliane; Bundschuh, Mirco; Brühl, Carsten Albrecht

    2012-08-01

    The current terrestrial risk assessment of insecticides regarding nontarget arthropods considers exclusively beneficial organisms, whereas herbivorous insects, such as grasshoppers, are ignored. However, grasshoppers living in field margins or meadows adjacent to crops may potentially be exposed to insecticides due to contact with or ingestion of contaminated food. Therefore, the present study assessed effects of five active ingredients of insecticides (dimethoate, pirimicarb, imidacloprid, lambda-cyhalothrin, and deltamethrin) on the survival of Chorthippus sp. grasshopper nymphs by considering two routes of exposure (contact and oral). The experiments were accompanied by monitoring field margins that neighbored cereals, vineyards, and orchards. Grasslands were used as reference sites. The laboratory toxicity tests revealed a sensitivity of grasshoppers with regard to the insecticides tested in the present study similar to that of the standard test species used in arthropod risk assessments. In the field monitoring program, increasing grasshopper densities were detected with increasing field margin width next to cereals and vineyards, but densities remained low over the whole range of field margins from 0.5 to 20 m next to orchards. Grasshopper densities equivalent to those of grassland sites were only observed in field margins exceeding 9 m in width, except for field margins next to orchards. These results may indicate that current insecticide risk assessments are insufficiently protective for grasshoppers in field margins. PMID:22619160

  13. Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery.

    PubMed

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J; Anderson, John G; Grant, M Helen

    2014-01-01

    Healthcare associated infections pose a major threat to patients admitted to hospitals and infection rates following orthopedic arthroplasty surgery are as high as 4%. A 405-nm high-intensity narrow spectrum light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in arthroplasty surgery. Cultured rat osteoblasts were exposed to varying light intensities and it was found that exposures of up to a dose of 36 J/cm2 had no significant effect on cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], function (alkaline phosphatase activity), and proliferation rate (BrdU cell proliferation assay). High irradiance exposures (54 J/cm2) significantly affected the cell viability indicating that the effects of 405-nm light on osteoblasts are dose dependent. Additionally, exposure of a variety of clinically related bacteria to a dose of 36 J/cm2 resulted in up to 100% kill. These results demonstrating the differential sensitivity of osteoblasts and bacteria to 405-nm light are an essential step toward developing the technique for decontamination in orthopedic surgery. PMID:25277146

  14. Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J.; Anderson, John G.; Grant, M. Helen

    2014-10-01

    Healthcare associated infections pose a major threat to patients admitted to hospitals and infection rates following orthopedic arthroplasty surgery are as high as 4%. A 405-nm high-intensity narrow spectrum light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in arthroplasty surgery. Cultured rat osteoblasts were exposed to varying light intensities and it was found that exposures of up to a dose of 36 J/cm2 had no significant effect on cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], function (alkaline phosphatase activity), and proliferation rate (BrdU cell proliferation assay). High irradiance exposures (54 J/cm2) significantly affected the cell viability indicating that the effects of 405-nm light on osteoblasts are dose dependent. Additionally, exposure of a variety of clinically related bacteria to a dose of 36 J/cm2 resulted in up to 100% kill. These results demonstrating the differential sensitivity of osteoblasts and bacteria to 405-nm light are an essential step toward developing the technique for decontamination in orthopedic surgery.

  15. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium.

    PubMed

    Previte, D; Olds, B P; Yoon, K; Sun, W; Muir, W; Paige, K N; Lee, S H; Clark, J; Koehler, J E; Pittendrigh, B R

    2014-04-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961

  16. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium

    PubMed Central

    Previte, D.; Olds, B. P.; Yoon, K.; Sun, W.; Muir, W.; Paige, K. N.; Lee, S. H.; Clark, J.; Koehler, J. E.; Pittendrigh, B. R.

    2014-01-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days postinfection, but plateaued in head lice at 4 days postinfection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961

  17. Differentiation of Crohn’s Disease-Associated Isolates from Other Pathogenic Escherichia coli by Fimbrial Adhesion under Shear Force

    PubMed Central

    Szunerits, Sabine; Zagorodko, Oleksandr; Cogez, Virginie; Dumych, Tetiana; Chalopin, Thibaut; Alvarez Dorta, Dimitri; Sivignon, Adeline; Barnich, Nicolas; Harduin-Lepers, Anne; Larroulet, Iban; Yanguas Serrano, Aritz; Siriwardena, Aloysius; Pesquera, Amaia; Zurutuza, Amaia; Gouin, Sébastien G.; Boukherroub, Rabah; Bouckaert, Julie

    2016-01-01

    Shear force exerted on uropathogenic Escherichia coli adhering to surfaces makes type-1 fimbriae stretch out like springs to catch on to mannosidic receptors. This mechanism is initiated by a disruption of the quaternary interactions between the lectin and the pilin of the two-domain FimH adhesin and transduces allosterically to the mannose-binding pocket of FimH to increase its affinity. Mannose-specific adhesion of 14 E. coli pathovars was measured under flow, using surface plasmon resonance detection on functionalized graphene-coated gold interfaces. Increasing the shear had important differential consequences on bacterial adhesion. Adherent-invasive E. coli, isolated from the feces and biopsies of Crohn’s disease patients, consistently changed their adhesion behavior less under shear and displayed lower SPR signals, compared to E. coli opportunistically infecting the urinary tract, intestines or loci of knee and hip prostheses. We exemplified this further with the extreme behaviors of the reference strains UTI89 and LF82. Whereas their FimA major pilins have identical sequences, FimH of LF82 E. coli is marked by the Thr158Pro mutation. Positioned in the inter-domain region known to carry hot spots of mutations in E. coli pathotypes, residue 158 is indicated to play a structural role in the allosteric regulation of type-1 fimbriae-mediated bacterial adhesion. PMID:27043645

  18. INTRASPECIFIC COMPETITION AND SPATIAL HETEROGENEITY ALTER LIFE HISTORY TRAITS IN AN INDIVIDUAL-BASED MODEL OF GRASSHOPPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To aid in our understanding of the evolution of grasshopper life histories and their influence on population dynamics, an individual-based simulation model was developed that incorporates methods of evolutionary computation. Life history attributes, such as size of eggs, and timing of diapause, wer...

  19. DAMAGE POTENTIAL OF GRASSHOPPERS (ORTHOPTERA: ACRIDIDAE) ON EARLY GROWTH STAGES OF SMALL-GRAINS AND CANOLA UNDER SUBARCTIC CONDITIONS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-grains, such as barley and oats, have been successfully grown under subarctic conditions but little is known about their response to herbivory by grasshoppers, especially during seedling stages. A growth chamber study quantified and characterized damage to above- and below-ground plant parts ...

  20. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form.

    PubMed

    Li, R; Jiang, G F; Ren, Q P; Wang, Y T; Zhou, X M; Zhou, C F; Qin, D Z

    2016-04-01

    MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms. PMID:26693589

  1. Rapid evolution of fire melanism in replicated populations of pygmy grasshoppers.

    PubMed

    Forsman, Anders; Karlsson, Magnus; Wennersten, Lena; Johansson, Jenny; Karpestam, Einat

    2011-09-01

    Evolutionary theory predicts an interactive process whereby spatiotemporal environmental heterogeneity will maintain genetic variation, while genetic and phenotypic diversity will buffer populations against stress and allow for fast adaptive evolution in rapidly changing environments. Here, we study color polymorphism patterns in pygmy grasshoppers (Tetrix subulata) and show that the frequency of the melanistic (black) color variant was higher in areas that had been ravaged by fires the previous year than in nonburned habitats, that, in burned areas, the frequency of melanistic grasshoppers dropped from ca. 50% one year after a fire to 30% after four years, and that the variation in frequencies of melanistic individuals among and within populations was genetically based on and represented evolutionary modifications. Dark coloration may confer a selective benefit mediated by enhanced camouflage in recently fire-ravaged areas characterized by blackened visual backgrounds before vegetation has recovered. These findings provide rare evidence for unusually large, extremely rapid adaptive contemporary evolution in replicated natural populations in response to divergent and fluctuating selection associated with spatiotemporal environmental changes. PMID:21884054

  2. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species.

    PubMed

    Cabrero, Josefa; Bakkali, Mohammed; Navarro-Domínguez, Beatriz; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores; Camacho, Juan Pedro M

    2013-06-25

    The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans. PMID:23797468

  3. Postfledging survival of Grasshopper Sparrows in grasslands managed with fire and grazing

    USGS Publications Warehouse

    Hovick, Torre J.; Miller, James R.; Koford, Rolf R.; Engle, David M.; Debinski, Diane M.

    2011-01-01

    More accurate estimates of survival after nestlings fledge are needed for population models to be parameterized and population dynamics to be understood during this vulnerable life stage. The period after fledging is the time when chicks learn to fly, forage, and hide from predators. We monitored postfledging survival, causespecific mortality, and movements of Grasshopper Sparrows (Ammodramus savannarum) in grassland managed with fire and grazing. In 2009, we attached radio transmitters to 50 nestlings from 50 different broods and modeled their survival in response to climatic, biological, and ecological variables. There was no effect of treatment on survival. The factor most influencing postfledging survival was age; no other variable was significant. The majority of chicks (74%) died within 3 days of radio-transmitter attachment. We attributed most mortality to mesopredators (48%) and exposure (28%). Fledglings' movements increased rapidly for the first 4 days after they left the nest and were relatively stable for the remaining 10 days we tracked them. On average, fledglings took flight for the first time 4 days after fledging and flew ≥10 m 9 days after fledging. Our data show that the Grasshopper Sparrow's survival rates may be less than most models relying on nest-success estimates predict, and we emphasize the importance of incorporating estimates of survival during the postfledging period in demographic models.

  4. Pioneer neurons of the antennal nervous system project to protocerebral pioneers in the grasshopper Schistocerca gregaria.

    PubMed

    Boyan, George; Ehrhardt, Erica

    2015-11-01

    The twin nerve tracts of the antenna of the grasshopper Schistocerca gregaria are established early in embryogenesis by sibling pairs of pioneers which delaminate from the epithelium into the lumen at the antennal tip. These cells can be uniquely identified via their co-expression of the neuronal labels horseradish peroxidase and the lipocalin Lazarillo. The apical pioneers direct axons toward the antennal base where they encounter guidepost-like cells called base pioneers which transiently express the same molecular labels as the apical pioneers. To what extent the pioneer growth cones then progress into the brain neuropil proper, and what their targets there might be, has remained unclear. In this study, we show that the apical antennal pioneers project centrally beyond the antennal base first into the deutocerebral, and then into the protocerebral brain neuropils. In the protocerebrum, we identify their target circuitry as being identified Lazarillo-positive cells which themselves pioneer the primary axon scaffold of the brain. The apical and base antennal pioneers therefore form part of a molecularly contiguous pathway from the periphery to an identified central circuit of the embryonic grasshopper brain. PMID:26553379

  5. DNA barcoding reveals polymorphism in the pygmy grasshopper Tetrix bolivari (Orthoptera, Tetrigidae)

    PubMed Central

    Zhao, Ling; Lin, Li-Liang; Zheng, Zhe-Min

    2016-01-01

    Abstract Many pygmy grasshopper species exhibit colour-marking polymorphism. However, this polymorphism in some species, such as Tetrix bolivari, is almost unknown. The aim of this work is to identify using DNA barcoding the colour-marking polymorphic morphs of this pygmy grasshopper species collected from both grass and sand microhabitats. Analysis by NJ clustering and pairwise distances indicated that all specimens collected showing colour-marking polymorphism are species of Tetrix bolivari. Haplotype network construction showed ten different haplotypes from a total of 57 Tetrix bolivari individuals with H1(82.5%) being the most common type and it also displayed low divergence within Tetrix bolivari population. The haplotype analyses were consistent with the NJ clustering. Our field census showed the frequency of Tetrix bolivari morphs differed significantly, with the rank order of morphs (from high to low) typeA1, type B1, type A2, type A3, type A4, type A5, type A6, type A7, type B2, type B3, and type B4. The most common type A morphs were without contrasting markings, while the rarer type B morphs have contrasting white markings. We suggest that type B morphs have greater camouflage effects against natural backgrounds such as grass or sand than type A morphs. Both our field census and haplotype analysis revealed that type A has higher frequency and more haplotypes than type B. PMID:27199587

  6. High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper.

    PubMed

    Erdogan, Sevil; Kaya, Murat

    2016-08-01

    This is the first study to explain the differences in the physicochemical properties of chitin and chitosan obtained from the nymphs and adults of Dociostaurus maroccanus using the same method. Fourier transform infrared spectroscopy, thermogravimetric analysis and x-ray diffraction analysis results demonstrated that the chitins from both the adults and nymphs were in the α-form. The chitin contents of the adults (14%) and nymphs (12%) were of the same order of magnitude. The crystalline index values of chitins from the adult and nymph grasshoppers were 71% and 74%, respectively. Thermal stabilities of the chitins and chitosans from adult and nymph grasshoppers were close to each other. Both the adult (7.2kDa) and nymph (5.6kDa) chitosans had low molar masses. Environmental scanning electron microscopy revealed that the surface morphologies of both chitins consisted of nanofibers and nanopores together, and they were very similar to each other. Consequently, it was determined that the physicochemical properties of the chitins and chitosans from adults and nymphs of D. maroccanus were not very different, so it can be hypothesized that the development of the chitin structure in the nymph has almost been completed and the nymph chitin has the same characteristics as the adult. PMID:27112982

  7. Limited condition dependence of male acoustic signals in the grasshopper Chorthippus biguttulus

    PubMed Central

    Franzke, Alexandra; Reinhold, Klaus

    2012-01-01

    In many animal species, male acoustic signals serve to attract a mate and therefore often play a major role for male mating success. Male body condition is likely to be correlated with male acoustic signal traits, which signal male quality and provide choosy females indirect benefits. Environmental factors such as food quantity or quality can influence male body condition and therefore possibly lead to condition-dependent changes in the attractiveness of acoustic signals. Here, we test whether stressing food plants influences acoustic signal traits of males via condition-dependent expression of these traits. We examined four male song characteristics, which are vital for mate choice in females of the grasshopper Chorthippus biguttulus. Only one of the examined acoustic traits, loudness, was significantly altered by changing body condition because of drought- and moisture-related stress of food plants. No condition dependence could be observed for syllable to pause ratio, gap duration within syllables, and onset accentuation. We suggest that food plant stress and therefore food plant quality led to shifts in loudness of male grasshopper songs via body condition changes. The other three examined acoustic traits of males do not reflect male body condition induced by food plant quality. PMID:22957192

  8. Microtubules continuously dictate distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes.

    PubMed

    Alsop, G Bradley; Zhang, Dahong

    2004-03-15

    We systematically examined the impact of microtubules on distribution of actin filaments and positioning of cell cleavage using micromanipulation to progressively alter the symmetric distribution of spindle microtubules in grasshopper spermatocytes. The initial microtubule asymmetry was induced by placing a single chromosome at one spindle pole using a microneedle, which facilitates regional assembly of spindle microtubules. We augmented chromosome-induced microtubule asymmetry by further removing the aster from the achromosomal pole, producing unichromosome-bearing monopolar spindles. We created the highest spindle asymmetry by cutting early anaphase cells in two, each containing a full set of segregating chromosomes in a half-spindle. We demonstrate that the location of the spindle midzone, distribution of actin filaments, and position of cell cleavage depend on the amount of microtubule asymmetry generated, shifting up to 48.6+/-3.8% away from the spindle equator in cut cells. The positional shift is dynamic, changing incessantly as spindle microtubules reorganize during cytokinesis. These results suggest that microtubules continuously dictate the distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes. PMID:15020685

  9. Habitat-dependent transmission of male advertisement calls in bladder grasshoppers (Orthoptera; Pneumoridae).

    PubMed

    Couldridge, Vanessa C K; van Staaden, Moira J

    2004-07-01

    It has been hypothesized that the physical properties of the environment exert selection pressure on long-range acoustic communication signals to match the local habitat by promoting signal characteristics that minimize excess attenuation and distortion. We tested this in a unique family of bladder grasshoppers notable for producing a signal with a 2 km maximum transmission distance. In direct performance comparisons, male advertisement calls of seven species were broadcast through four vegetation biomes--forest, fynbos, savanna and succulent karoo. The calls of species native to forest and fynbos biomes propagated with lower levels of distortion over distance in their respective habitats relative to those of non-native species, while fynbos species also performed best in the remaining two habitats. In addition, both forest and fynbos species had low levels of signal attenuation over distance in all environments. The fynbos biome was characterized by high inconsistency in signal degradation, while the forest biome had the highest levels of environmental noise. Innate habitat characteristics, leading to comparatively limited acoustic communication distances in the forest and fynbos relative to the savanna and succulent karoo, may therefore explain the need for a higher quality of signal transmission in grasshoppers inhabiting the former two environments. PMID:15235006

  10. DNA barcoding reveals polymorphism in the pygmy grasshopper Tetrix bolivari (Orthoptera, Tetrigidae).

    PubMed

    Zhao, Ling; Lin, Li-Liang; Zheng, Zhe-Min

    2016-01-01

    Many pygmy grasshopper species exhibit colour-marking polymorphism. However, this polymorphism in some species, such as Tetrix bolivari, is almost unknown. The aim of this work is to identify using DNA barcoding the colour-marking polymorphic morphs of this pygmy grasshopper species collected from both grass and sand microhabitats. Analysis by NJ clustering and pairwise distances indicated that all specimens collected showing colour-marking polymorphism are species of Tetrix bolivari. Haplotype network construction showed ten different haplotypes from a total of 57 Tetrix bolivari individuals with H1(82.5%) being the most common type and it also displayed low divergence within Tetrix bolivari population. The haplotype analyses were consistent with the NJ clustering. Our field census showed the frequency of Tetrix bolivari morphs differed significantly, with the rank order of morphs (from high to low) typeA1, type B1, type A2, type A3, type A4, type A5, type A6, type A7, type B2, type B3, and type B4. The most common type A morphs were without contrasting markings, while the rarer type B morphs have contrasting white markings. We suggest that type B morphs have greater camouflage effects against natural backgrounds such as grass or sand than type A morphs. Both our field census and haplotype analysis revealed that type A has higher frequency and more haplotypes than type B. PMID:27199587

  11. The improved PCR of the fstA (ferric siderophore receptor) gene differentiates the fish pathogen Aeromonas salmonicida from other Aeromonas species.

    PubMed

    Beaz-Hidalgo, Roxana; Latif-Eugenín, Fadua; Figueras, María José

    2013-10-25

    The members of the genus Aeromonas are autochthonous of aquatic ecosystems and several species have been associated to septicaemia, ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed, freshwater and marine fish species. The species Aeromonas salmonicida is generally recognized as the most important fish pathogen responsible for epidemic outbreaks of furunculosis in salmonids, also being able to produce infections in other cultured fish such as turbot, halibut, sea bream or goldfish. New species, i.e. Aeromonas aquariorum, Aeromonas tecta and Aeromonas piscicola, have recently been discovered and isolated from diseased fish. The species A. piscicola and Aeromonas bestiarum are practically impossible to differentiate phenotypically and genetically (when using the 16S rRNA gene) from each other and from A. salmonicida. In the present study, two previously described PCR protocols, based on the fstA and gyrB genes, for the specific detection of A. salmonicida were re-evaluated with the type strains of all Aeromonas species and with a set of A. piscicola and A. bestiarum strains. Contrary to what had been published previously it was demonstrated that the gyrB-PCR is not specific for A. salmonicida because of cross-reactions with other Aeromonas species. However, in agreement with previous results, A. salmonicida was detected on the basis of the fstA-PCR, for which an improved protocol was proposed. PMID:23890674

  12. Supercooling capacity and cold hardiness of band-winged grasshopper eggs (Orthoptera: Acrididae).

    PubMed

    Pang, Bao-Ping; Li, Na; Zhou, Xiao-Rong

    2014-01-01

    The band-winged grasshopper, Oedaleus asiaticus Bei-Bienko, is one of the most dominant and economically important grasshopper species in the steppe grasslands and farming-pastoral ecotone in northern China. It is a univoltine species and overwinters as eggs in soil. The cold hardiness of its eggs was examined in the laboratory. Water content in soil significantly affected the supercooling points (SCPs), water content and fat content of prediapause eggs. With the increase of water content in soil, the SCP, and water content of prediapause eggs rose whereas the fat content declined. There was a significant relationship between the SCP and water content or fat content of prediapause eggs. The SCPs of prediapause and diapause eggs varied from -7.6 to -28.4°C and the SCPs of eggs 30 d after oviposition could be divided into two groups. The means of high SCP group (-11.0 to -11.9°C) were much higher than those of low SCP group (-21.8 to -21.9°C), and the majority belonged to the latter (90.48-93.33%). The SCPs of prediapause eggs and early-diapause eggs 30 d after oviposition were significantly higher than those of deep-diapause eggs 60 d after oviposition. The survival rates of diapause eggs were significantly different among different temperature treatments. The survival rate was higher than 88% at greater than -20°C and declined significantly to 57% at -25°C, and suddenly dropped to zero at -30°C. The lower lethal temperature (Ltemp50) for 12 h exposure was -25.3°C and the lower lethal time (Ltime50) at -20°C was 32.8 d. As the mean SCPs of diapause eggs were similar to their Ltemp50, the SCP of eggs can be considered as a good indicator of cold hardiness for O. asiaticus and that this grasshopper is a freeze-intolerant insect. PMID:25527594

  13. Tasty on the outside, but toxic in the middle: grasshopper regurgitation and host plant-mediated toxicity to a vertebrate predator.

    PubMed

    Sword, G A

    2001-08-01

    Regurgitation by arthropods is often considered to be a rudimentary form of defense against predators. In phytophagous insects, regurgitate composition will vary with diet, and plant secondary compounds from host plants can contribute to the effectiveness of regurgitate deterrence. Regurgitation in response to predator attack is particularly common in grasshoppers. However, there is little empirical evidence in favor of grasshopper regurgitation as an effective antipredator mechanism in natural predator-prey systems. In particular, studies of the effect of grasshopper diet on regurgitate deterrence to vertebrate predators are lacking. This study investigated the relationship between diet and predator defense in the grasshopper, Schistocerca emarginata (=lineata) (Orthoptera: Acrididae). Using the insectivorous lizard, Anolis carolinensis (Iguanidae), as a predator, I demonstrate that consumption of Ptelea trifoliata (Rutaceae) by S. emarginata can confer distastefulness as well as toxicity. Regurgitate deterrence is mediated strictly by host plant material in the gut and does not require an enteric contribution from the grasshopper. Regurgitation by Ptelea-fed S. emarginata can result in rejection prior to ingestion by A. carolinensis and can enable grasshoppers to survive predator attacks. PMID:24549911

  14. Detection experiments with humans implicate visual predation as a driver of colour polymorphism dynamics in pygmy grasshoppers

    PubMed Central

    2013-01-01

    Background Animal colour patterns offer good model systems for studies of biodiversity and evolution of local adaptations. An increasingly popular approach to study the role of selection for camouflage for evolutionary trajectories of animal colour patterns is to present images of prey on paper or computer screens to human ‘predators’. Yet, few attempts have been made to confirm that rates of detection by humans can predict patterns of selection and evolutionary modifications of prey colour patterns in nature. In this study, we first analyzed encounters between human ‘predators’ and images of natural black, grey and striped colour morphs of the polymorphic Tetrix subulata pygmy grasshoppers presented on background images of unburnt, intermediate or completely burnt natural habitats. Next, we compared detection rates with estimates of capture probabilities and survival of free-ranging grasshoppers, and with estimates of relative morph frequencies in natural populations. Results The proportion of grasshoppers that were detected and time to detection depended on both the colour pattern of the prey and on the type of visual background. Grasshoppers were detected more often and faster on unburnt backgrounds than on 50% and 100% burnt backgrounds. Striped prey were detected less often than grey or black prey on unburnt backgrounds; grey prey were detected more often than black or striped prey on 50% burnt backgrounds; and black prey were detected less often than grey prey on 100% burnt backgrounds. Rates of detection mirrored previously reported rates of capture by humans of free-ranging grasshoppers, as well as morph specific survival in the wild. Rates of detection were also correlated with frequencies of striped, black and grey morphs in samples of T. subulata from natural populations that occupied the three habitat types used for the detection experiment. Conclusions Our findings demonstrate that crypsis is background-dependent, and implicate visual predation

  15. Cross-fostering alters advertisement vocalizations of grasshopper mice (Onychomys): Evidence for the developmental stress hypothesis.

    PubMed

    Pasch, Bret; Abbasi, Mustafa Z; Wilson, Macey; Zhao, Daniel; Searle, Jeremy B; Webster, Michael S; Rice, Aaron N

    2016-04-01

    Nutritional stress can have lasting impacts on the development of traits involved in vocal production. Cross-fostering experiments are often used to examine the propensity for vocal learning in a variety of taxa, but few studies assess the influence of malnourishment that can occur as a byproduct of this technique. In this study, we reciprocally cross-fostered sister taxa of voluble grasshopper mice (genus Onychomys) to explore their propensity for vocal learning. Vocalizations of Onychomys leucogaster did not differ between control and cross-fostered animals, but cross-fostered Onychomys arenicola produced vocalizations that were higher in frequency in a direction away from tutors. These same animals exhibited a transient reduction in body mass early in development, indicative of malnutrition. Our findings simultaneously refute vocal learning and support the developmental stress hypothesis to highlight the importance of early ontogeny on the production of vocalizations later in life. PMID:26873411

  16. Exposure to Exogenous Enkephalins Disrupts Reproductive Development in the Eastern Lubber Grasshopper, Romalea microptera (Insecta: Orthoptera)

    PubMed Central

    Kumar, Sandeep; Ganji, Purnachandra Nagaraju; Song, Hojun; von Kalm, Laurence; Borst, David W.

    2012-01-01

    Enkephalins play a major role in reproductive physiology in crustaceans; however their role in reproductive development in insects is largely unknown. We investigated the effect of exposure to exogenous leucine-enkephalin (Leu-Enk), methionine-enkephalin (Met-Enk), and the opioid antagonist naloxone on gonad development in the Eastern lubber grasshopper, Romalea microptera. Injection of either Leu-Enk or naloxone alone significantly increased the testicular index and testicular follicular diameter in males, and the ovarian index, oocyte length, and oocyte diameter in females. In contrast, injection of Met-Enk inhibited all measures of reproductive development in both sexes. Surprisingly, co-injection of naloxone with either enkephalin enhanced the effect associated with administration of the enkephalin alone. This study clearly demonstrates the ability of enkephalins to disrupt insect sexual development and also suggests the existence of conserved enkephaline-dependent regulatory mechanisms in insects and crustaceans. PMID:23226477

  17. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    USGS Publications Warehouse

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  18. Complete mitochondrial genome of the geophilous grasshopper Trilophidia annulata (Acrididae: Oedipodinae: Trilophidia).

    PubMed

    Guan, De-Long; Xu, Sheng-Quan

    2016-09-01

    The complete mitogenome of the geophilous grasshopper Trilophidia annulata was reconstructed from whole-genome Illumina sequencing data. After annotation, the circular genome was obtained with 16,501 bp in length, and typically consisted of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and 1 D-loop region. All PCGs were initiated with ATN codons, except ND2 with the start codon GTG. Most of the PCGs used TAA as their stop codons, while the others used TAG as stop codons (COX1, COX3&ND1). The nucleotide composition was asymmetric (42.3% A, 15.0% C, 11.0% G, 31.8% T) with an overall GC content of 25.9%. These data would contribute to the design of novel molecular markers for population and evolutionary research of T. annulata. PMID:25690056

  19. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor.

    PubMed

    Gudowska, Agnieszka; Boardman, Leigh; Terblanche, John S

    2016-08-15

    The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely, diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which, in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and the exploitation of underwater resources. PMID:27296045

  20. Fasciclin I and II have distinct roles in the development of grasshopper pioneer neurons.

    PubMed

    Diamond, P; Mallavarapu, A; Schnipper, J; Booth, J; Park, L; O'Connor, T P; Jay, D G

    1993-09-01

    We have used a new technique, micro-CALI (chromophore-assisted laser inactivation), to investigate the function of the neural cell adhesion molecules fasciclin I and II in the development of the grasshopper Ti1 neurons. Micro-CALI of fasciclin I results in defasciculation of the Ti1 axons similar to that achieved using large scale CALI (Jay and Keshishian, 1990). The initial point of axon separation corresponds to the site of laser irradiation, and defasciculation always continues distal to this point. Micro-CALI of fasciclin II prevents the initiation of Ti1 axon outgrowth but has no effect on fasciculation. This effect is restricted to a 3 hr interval between cytokinesis and growth cone emergence. PMID:8398136

  1. Colour in insect thermoregulation: empirical and theoretical tests in the colour-changing grasshopper, Kosciuscola tristis.

    PubMed

    Umbers, K D L; Herberstein, M E; Madin, J S

    2013-01-01

    Body colours can result in different internal body temperatures, but evidence for the biological significance of colour-induced temperature differences is inconsistent. We investigated the relationship between body colour and temperature in a model insect species that rapidly changes colour. We used an empirical approach and constructed a heat budget model to quantify whether a colour change from black to turquoise has a role in thermoregulation for the chameleon grasshopper (Kosciuscola tristis). Our study shows that colour change in K. tristis provides relatively small temperature differences that vary greatly with wind speed (0.55 °C at ms(-1) to 0.05 °C at 10 ms(-1)). The biological significance of this difference is unclear and we discuss the requirement for more studies that directly test hypotheses regarding the fitness effects of colour in manipulating body temperature. PMID:23108152

  2. Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kirk, Evan M; Kingsolver, Joel G

    2015-06-22

    Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change. PMID:26041342

  3. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania

    PubMed Central

    Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.

    2015-01-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714

  4. Vitellogenin RNAi halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers.

    PubMed

    Tokar, Derek R; Veleta, Katherine A; Canzano, Joseph; Hahn, Daniel A; Hatle, John D

    2014-11-01

    Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph

  5. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization

    PubMed Central

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-01-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465

  6. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization.

    PubMed

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-02-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465

  7. Redistribution of actin during assembly and reassembly of the contractile ring in grasshopper spermatocytes.

    PubMed

    Alsop, G Bradley; Chen, Wei; Foss, Margit; Tseng, Kuo-Fu; Zhang, Dahong

    2009-01-01

    Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end-directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules. PMID:19287500

  8. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    NASA Astrophysics Data System (ADS)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  9. A test of Allen's rule in ectotherms: the case of two south American Melanopline Grasshoppers (Orthoptera: Acrididae) with partially overlapping geographic ranges.

    PubMed

    Bidau, Claudio J; Martí, Dardo A

    2008-01-01

    We studied the geographic variation of three morphometric characters in relation to body size in two South American grasshoppers (Acrididae), Dichroplus vittatus Bruner and D. pratensis Bruner to test Allen's rule in these ectotherms. Since both species follow the converse to Bergmann's rule owing to latitudinal and/or altitudinal variation in time available for growth and reproduction, geographic variation in body size proportions of protruding parts may obey to differential allometric growth in different geographic areas. Alternatively, it could reflect true Allenian variation related to thermoregulation. Body proportions were studied by correlation/regression analyses with geographic and climatic variables. In D. pratensis, body proportions increased with latitude and decreased with altitude. These results probably obey to the effects of water balance and seasonality on final body size, and on the allometric growth of the three studied characters not being related to thermoregulation. In D. vittatus, a generally non-significant trend towards the decrease of the mean proportions of all three characters with increasing latitude was observed. Nevertheless, also in this species, it is probable that the environmental gradient responds to seasonality factors (although not to water balance) that affect the length of growing season and, in consequence, body size and its allometric relationships. We conclude that the regularities in the geographic distribution of body proportions of D. pratensis and D. vittatus do not follow Allen's rule in the sense of thermoregulation, and result from variables that determine growing season length and the allometric growth of different body parts. PMID:18813738

  10. Effects of weather and plague-induced die-offs of prairie dogs on the fleas of northern grasshopper mice.

    PubMed

    Salkeld, Daniel J; Stapp, Paul

    2009-05-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on black-tailed prairie dogs (Cynomys ludovicianus Ord). Other mammal hosts living on prairie dog colonies may be important in the transmission and maintenance of plague. We examined the flea populations of northern grasshopper mice (Onychomys leucogaster Wied) before, during, and after plague epizootics in northern Colorado and studied the influence of host and environmental factors on flea abundance patterns. Grasshopper mice were frequently infested with high numbers of fleas, most commonly Pleochaetis exilis Jordan and Thrassis fotus Jordan. Flea loads changed in response to both environmental temperature and rainfall. After plague-induced prairie dog die-offs, flea loads and likelihood of infestation were unchanged for P. exilis, but T. fotus loads declined. PMID:19496431

  11. Factors associated with arrival densities of grasshopper sparrow (Ammodramus Savannarum) and baird's sparrow (A. Bairdii) in the upper great plains

    USGS Publications Warehouse

    Ahlering, M.A.; Johnson, D.H.; Faaborg, J.

    2009-01-01

    Although critical to habitat and population management, the proximate cues that birds use to establish territories are largely unknown. Understanding these cues is important for birds, such as many grassland birds, that exhibit high annual variability in population density and make new habitat-selection decisions annually. Identifying the actual cues used is difficult in the field, but the factors associated with the arrival densities of birds can help uncover variables that are involved in or correlated with cues used for selection. During the summers of 2002-2004, we investigated how weather and local vegetation factors were related to arrival densities of Grasshopper Sparrows (Ammodramus savannarum) and Baird's Sparrows (A. bairdii) at three locations across North Dakota and Saskatchewan. Spring densities of Grasshopper Sparrows were positively correlated with concurrent May precipitation, whereas densities of Baird's Sparrows were negatively correlated with the previous winter's snowfall. We used a model-selection approach to evaluate the vegetation characteristics associated with arrival densities of birds. Grasshopper Sparrow densities showed a strong negative relationship to woody cover, and Baird's Sparrow densities showed a negative relationship to vegetation height and vegetation density near the ground. Our results provide a first detailed look at habitat and weather associations immediately after arrival in spring and an important first step in uncovering factors that may be involved in habitat selection in two grassland species. Received 13 August 2008, accepted 20 April 2009. ?? The American Ornithologists' Union, 2009.

  12. Bloodborne pathogens

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000453.htm Bloodborne pathogens To use the sharing features on this page, please enable JavaScript. A pathogen is something that causes disease. Germs that can ...

  13. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity.

    PubMed

    Shnaiderman, Chen; Miyara, Itay; Kobiler, Ilana; Sherman, Amir; Prusky, Dov

    2013-03-01

    Ammonium secreted by the post-harvest pathogen Colletotrichum gloeosporioides during host colonization accumulates in the host environment due to enhanced fungal nitrogen metabolism. Two types of ammonium transporter-encoding genes, AMET and MEP, are expressed during pathogenicity. Gene disruption of AMET, a gene modulating ammonia secretion, showed twofold reduced ammonia secretion and 45% less colonization on avocado fruit, suggesting a contribution to pathogenicity. MEPB, a gene modulating ammonium transport, is expressed by C. gloeosporioides during pathogenicity and starvation conditions in culture. Gene disruption of MEPB, the most highly expressed gene of the MEP family, resulted in twofold overexpression of MEPA and MEPC but reduced colonization, suggesting MEPB expression's contribution to pathogenicity. Analysis of internal and external ammonia accumulation by ΔmepB strains in mycelia and germinated spores showed rapid uptake and accumulation, and reduced secretion of ammonia in the mutant versus wild-type (WT) strains. Ammonia uptake by the WT germinating spores but not by the ΔmepB strain with compromised ammonium transport activated cAMP and transcription of PKA subunits PKAR and PKA2. ΔmepB mutants showed 75% less appressorium formation and colonization than the WT, which was partially restored by 10 mM exogenous ammonia. Thus, whereas both AMET and MEPB genes modulate ammonia secretion, only MEPB contributes to ammonia accumulation by mycelia and germinating spores that activate the cAMP pathways, inducing the morphogenetic processes contributing to C. gloeosporioides pathogenicity. PMID:23387470

  14. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron.

    PubMed

    Roemschied, Frederic A; Eberhard, Monika Jb; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne

    2014-01-01

    Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.DOI: http://dx.doi.org/10.7554/eLife.02078.001. PMID:24843016

  15. Complete mitochondrial genome of the Chinese endemic grasshopper Fruhstorferiola kulinga (Orthoptera: Acrididae: Podismini).

    PubMed

    Yang, Rui; Guan, De-Long; Xu, Sheng-Quan

    2016-09-01

    The whole-genome Illumina sequence of the Chinese endemic grasshopper Fruhstorferiola kulinga mitogenome was constructed and reported in this study. In all, the circular genome was obtained with 15,655 bp in length and contains 75.4% A + T. It typically consists of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and 1 D-loop region. All PCGs are initiated with ATN codons. Most of the PCGs use TAA as their stop codons, while the others use TAG as stop codons (COX1 and ND1). The size of the large and small ribosomal RNA genes are 1314 bp and 851 bp. The A + T-rich region (777 bp) showed strong resemblance to the other known Orthoptera insects. Our data would contribute to confirm the close relationship and other evolutionary researches of the F. kulinga. PMID:25630726

  16. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper

    PubMed Central

    Ronacher, Bernhard

    2015-01-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons (“local neurons”) encode the signal envelope, while second-order interneurons (“ascending neurons”) tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. PMID:25609104

  17. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.

    PubMed

    Wirtssohn, Sarah; Ronacher, Bernhard

    2015-04-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. PMID:25609104

  18. A population genomic scan in Chorthippus grasshoppers unveils previously unknown phenotypic divergence.

    PubMed

    Berdan, Emma L; Mazzoni, Camila J; Waurick, Isabelle; Roehr, Johannes T; Mayer, Frieder

    2015-08-01

    Understanding the genetics of speciation and the processes that drive it is a central goal of evolutionary biology. Grasshoppers of the Chorthippus species group differ strongly in calling song (and corresponding female preferences) but are exceedingly similar in other characteristics such as morphology. Here, we performed a population genomic scan on three Chorthippus species (Chorthippus biguttulus, C. mollis and C. brunneus) to gain insight into the genes and processes involved in divergence and speciation in this group. Using an RNA-seq approach, we examined functional variation between the species by calling SNPs for each of the three species pairs and using FST -based approaches to identify outliers. We found approximately 1% of SNPs in each comparison to be outliers. Between 37% and 40% of these outliers were nonsynonymous SNPs (as opposed to a global level of 17%) indicating that we recovered loci under selection. Among the outliers were several genes that may be involved in song production and hearing as well as genes involved in other traits such as food preferences and metabolism. Differences in food preferences between species were confirmed with a behavioural experiment. This indicates that multiple phenotypic differences implicating multiple evolutionary processes (sexual selection and natural selection) are present between the species. PMID:26081018

  19. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit. PMID:27106499

  20. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron

    PubMed Central

    Roemschied, Frederic A; Eberhard, Monika JB; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne

    2014-01-01

    Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel. DOI: http://dx.doi.org/10.7554/eLife.02078.001 PMID:24843016

  1. Females of the grasshopper Chorthippus parallelus (Zett.) do not remate for fresh sperm

    PubMed Central

    Reinhardt, K.; hler, G. K; Schumacher, J.

    1999-01-01

    The evolution of female multiple mating is still a largely debated field. Among the benefits that have been proposed to explain this risky behaviour is the replenishment of sperm reserves. Apart from an increase in total sperm number, it can be an expression of post-copulatory mate choice or can be directed towards the uptake of fresh sperm. Using fresh sperm for fertilization instead of sperm aged by storage in the female genital tract may avoid a lowered fertilization capacity, an increase in deleterious effects or a skewed offspring sex ratio. We investigated the influence of sperm age on female fitness in the grasshopper Chorthippus parallelus, a species where females mate multiply. After copulation, females store sperm over the course of weeks until fertilization. An average ejaculate of 250 000 spermatozoa exponentially declined with time within the female's spermatheca. The number of days since copulation better explained the variation in actual sperm number than the number of pods or eggs laid. We investigated differences in female fitness parameters in two treatments. In the first, females were mated only once, while in the second, females always had freshly ejaculated sperm available. Although in our experiment, multiply mated females had heavier offspring than singly mated females, egg number per pod, hatching and fertilization success, their composite effects and offspring sex ratio did not vary with respect to season or sperm age. We therefore reject the hypothesis that the reason for remating in females of this species is the uptake of fresh sperm.

  2. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis)

    PubMed Central

    Umbers, Kate D. L.; Byatt, Lachlan J.; Hill, Nichola J.; Bartolini, Remo J.; Hose, Grant C.; Herberstein, Marie E.; Power, Michelle L

    2015-01-01

    In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations. PMID:25919745

  3. Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker.

    PubMed

    Chang, Chun-che; Dearden, Peter; Akam, Michael

    2002-12-01

    Vasa is a widely conserved germline marker, both in vertebrates and invertebrates. We identify a vasa orthologue, Sgvasa, and use it to study germline development in the grasshopper Schistocerca gregaria, a species in which no germ plasm has been identified. In adults, Sgvasa is specifically expressed in the ovary and testis. It is expressed at high levels during early oogenesis, but no detectable vasa RNA and little Vasa protein are present in mature unlaid eggs. None appears to be localized to any defined region of the egg cortex, suggesting that germline specification may not depend on maternal germ plasm expressing vasa. Vasa protein is expressed in most cleavage energids as they reach the egg surface and persists at high levels in most cells aggregating to form the embryonic primordium. However, after gastrulation, Vasa protein persists only in extraembryonic membranes and in cells at the outer margin of the late heart-stage embryo. In the embryo, it then become restricted to cells at the dorsal margin of the forming abdomen. In older embryos, these Vasa-positive cells move toward the midline; Vasa protein accumulates asymmetrically in their cytoplasm, a pattern closely resembling that of germ cells in late embryonic gonads. Thus, we suggest that the Vasa-stained cells in the abdominal margin are germ cells, as proposed by Nelson (1934), and not cardioblasts, as has been proposed by others. PMID:12453463

  4. Novel odorant-binding proteins and their expression patterns in grasshopper, Oedaleus asiaticus.

    PubMed

    Zhang, Shuo; Pang, Baoping; Zhang, Long

    2015-05-01

    Insects use olfaction to detect exogenous odors and adapt to environments. In their olfaction systems, odorant-binding proteins (OBPs) are believed to be a key component. The unique OBP system of each species reflects the evolution of chemosensation of insects with habits. Here, we for the first time identified 15 OBPs, OasiOBP1-15, of a grasshopper, Oedaleus asiaticus, that lives in the grasslands of Northern China and is closely related to the locust, Locusta migratoria. OasiOBP9 and OasiOBP10 are specifically expressed in the antennae. Other OBPs are expressed in the antennae as well as other chemosensory organs, such as the mouthparts and wings. Significantly more OasiOBP7 was detected in male than female antennae, but there are 9 OBPs that were more expressed in female than male antennae by quantitative real-time PCR. Phylogenetic analysis indicated that most of the O. asiaticus OBPs are similar to those of L. migratoria, but some are substantially different. This indicates that the OBPs originally evolved in a common ancestor, but their unique chemosensory systems are adapted to different ecosystems. PMID:25778868

  5. Neural representation of calling songs and their behavioral relevance in the grasshopper auditory system.

    PubMed

    Meckenhäuser, Gundula; Krämer, Stefanie; Farkhooi, Farzad; Ronacher, Bernhard; Nawrot, Martin P

    2014-01-01

    Acoustic communication plays a key role for mate attraction in grasshoppers. Males use songs to advertise themselves to females. Females evaluate the song pattern, a repetitive structure of sound syllables separated by short pauses, to recognize a conspecific male and as proxy to its fitness. In their natural habitat females often receive songs with degraded temporal structure. Perturbations may, for example, result from the overlap with other songs. We studied the response behavior of females to songs that show different signal degradations. A perturbation of an otherwise attractive song at later positions in the syllable diminished the behavioral response, whereas the same perturbation at the onset of a syllable did not affect song attractiveness. We applied naïve Bayes classifiers to the spike trains of identified neurons in the auditory pathway to explore how sensory evidence about the acoustic stimulus and its attractiveness is represented in the neuronal responses. We find that populations of three or more neurons were sufficient to reliably decode the acoustic stimulus and to predict its behavioral relevance from the single-trial integrated firing rate. A simple model of decision making simulates the female response behavior. It computes for each syllable the likelihood for the presence of an attractive song pattern as evidenced by the population firing rate. Integration across syllables allows the likelihood to reach a decision threshold and to elicit the behavioral response. The close match between model performance and animal behavior shows that a spike rate code is sufficient to enable song pattern recognition. PMID:25565983

  6. Variation in complex mating signals in an "island" hybrid zone between Stenobothrus grasshopper species.

    PubMed

    Sradnick, Jan; Klöpfel, Anja; Elsner, Norbert; Vedenina, Varvara

    2016-07-01

    Two grasshopper species Stenobothrus rubicundus and S. clavatus were previously shown to meet in a narrow hybrid zone on Mount Tomaros in northern Greece. The species are remarkable for their complex courtship songs accompanied by conspicuous movements of antennae and wings. We analyzed variations in forewing morphology, antenna shape, and courtship song across the hybrid zone using a geographic information system, and we documented three contact zones on Mount Tomaros. All male traits and female wings show abrupt transitions across the contact zones, suggesting that these traits are driven by selection rather than by drift. Male clines in antennae are displaced toward S. clavatus, whereas all clines in wings are displaced toward S. rubicundus. We explain cline discordance as depending on sexual selection via female choice. The high covariance between wings and antennae found in the centers of all contact zones results from high levels of linkage disequilibria among the underlying loci, which in turn more likely results from assortative mating than from selection against hybrids. The covariance is found to be higher in clavatus-like than rubicundus-like populations, which implies asymmetric assortative mating in parental-like sites of the hybrid zone and a movement of the hybrid zone in favor of S. clavatus. PMID:27547333

  7. Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).

    PubMed

    Pedraza-Lara, Carlos; Barrientos-Lozano, Ludivina; Rocha-Sánchez, Aurora Y; Zaldívar-Riverón, Alejandro

    2015-03-01

    The genus Sphenarium (Pyrgomorphidae) is a small group of grasshoppers endemic to México and Guatemala that are economically and culturally important both as a food source and as agricultural pests. However, its taxonomy has been largely neglected mainly due to its conserved interspecific external morphology and the considerable intraspecific variation in colour pattern of some taxa. Here we examined morphological as well as mitochondrial and nuclear DNA sequence data to assess the species boundaries and evolutionary history in Sphenarium. Our morphological identification and DNA sequence-based species delimitation, carried out with three different approaches (DNA barcoding, general mixed Yule-coalescent model, Bayesian species delimitation), all recovered a higher number of putative species of Sphenarium than previously recognised. We unambiguously delimit seven species, and between five and ten additional species depending on the data/method analysed. Phylogenetic relationships within the genus strongly support two main clades, one exclusively montane, the other coastal. Divergence time estimates suggest late Miocene to Pliocene ages for the origin and most of the early diversification events in the genus, which were probably influenced by the formation of the Trans-Mexican Volcanic Belt. A series of Pleistocene events could have led to the current species diversification in both montane and coastal regions. This study not only reveals an overlooked species richness for the most popular edible insect in Mexico, but also highlights the influence of the dynamic geological and climatic history of the region in shaping its current diversity. PMID:25593084

  8. A Single, Recent Origin of the Accessory B Chromosome of the Grasshopper Eyprepocnemis plorans

    PubMed Central

    Muñoz-Pajares, A. Jesús; Martínez-Rodríguez, Laura; Teruel, María; Cabrero, Josefa; Camacho, Juan Pedro M.; Perfectti, Francisco

    2011-01-01

    B chromosomes are dispensable chromosomes found in >2000 eukaryotic species, usually behaving as genomic parasites. Most B chromosomes seem to be made up of the same kind of DNA sequences present in the A chromosomes. This sequence similarity makes it difficult to obtain specific molecular probes that may permit B-presence diagnosis without cytogenetic analysis. We have developed a sequence-characterized amplified region (SCAR) marker for B chromosomes in the grasshopper Eyprepocnemis plorans, which specifically amplifies a 1510-bp DNA fragment exclusively in B-carrying individuals. Fluorescent in situ hybridization and fiber FISH analyses showed that this marker is a tandemly repeated DNA sequence closely intermingled with 45S rDNA. PCR reactions showed the presence of SCAR-like sequences in the A chromosomes, but in two separate fragments, supporting the intraspecific origin of B chromosomes in this species. SCAR marker DNA sequence showed to be identical in B chromosome variants from several localities from Spain and Morocco, and it was very similar to those found in B chromosome variants from Greece and Armenia. This strongly suggests that this sequence was already present in the ancestral B chromosome of this species. In addition, the scarce sequence variation observed among several B variants from very distant populations suggests either a functional constraint or, more likely, a recent and unique origin for B chromosomes in this species. PMID:21411624

  9. Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes.

    PubMed

    Ruiz-Ruano, Francisco J; Cuadrado, Ángeles; Montiel, Eugenia E; Camacho, Juan Pedro M; López-León, María Dolores

    2015-06-01

    Simple sequence repeats (SSRs), also known as microsatellites, are one of the prominent DNA sequences shaping the repeated fraction of eukaryotic genomes. In spite of their profuse use as molecular markers for a variety of genetic and evolutionary studies, their genomic location, distribution, and function are not yet well understood. Here we report the first thorough joint analysis of microsatellite motifs at both genomic and chromosomal levels in animal species, by a combination of 454 sequencing and fluorescent in situ hybridization (FISH) techniques performed on two grasshopper species. The in silico analysis of the 454 reads suggested that microsatellite expansion is not driving size increase of these genomes, as SSR abundance was higher in the species showing the smallest genome. However, the two species showed the same uneven and nonrandom location of SSRs, with clear predominance of dinucleotide motifs and association with several types of repetitive elements, mostly histone gene spacers, ribosomal DNA intergenic spacers (IGS), and transposable elements (TEs). The FISH analysis showed a dispersed chromosome distribution of microsatellite motifs in euchromatic regions, in coincidence with chromosome location patterns previously observed for many mobile elements in these species. However, some SSR motifs were clustered, especially those located in the histone gene cluster. PMID:25387401

  10. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    PubMed

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system. PMID:22254549

  11. Transcriptome and Metabolite Profiling of the Infection Cycle of Zymoseptoria tritici on Wheat Reveals a Biphasic Interaction with Plant Immunity Involving Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifestyle Definition1[OPEN

    PubMed Central

    Rudd, Jason J.; Kanyuka, Kostya; Hassani-Pak, Keywan; Derbyshire, Mark; Andongabo, Ambrose; Devonshire, Jean; Lysenko, Artem; Saqi, Mansoor; Desai, Nalini M.; Powers, Stephen J.; Hooper, Juliet; Ambroso, Linda; Bharti, Arvind; Farmer, Andrew; Hammond-Kosack, Kim E.; Dietrich, Robert A.; Courbot, Mikael

    2015-01-01

    The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection. PMID:25596183

  12. Identification of differentially expressed genes associated with changes in the morphology and pathogenicity of Pichia fermentans on apple and peach fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia fermentans (strain DISAABA 726) is an effective biocontrol agent against Monilinia fructicola or Botrytis cinerea when inoculated in artificially wounded apple fruit but is an aggressive pathogen when inoculated on wounded peach fruit, causing severe fruit decay. P. fermentans grows as a bud...

  13. Two strains of Pseudomonas fluorscens bacteria differentially affect survivorship of waxworm (Galleria mellonella) larvae exposed to an arthropod fungal pathogen, Beauveria bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two strains of Pseudomonas fluorescens were found contaminating a biopesticide used in a previous study against Varroa destructor infestations in honey bee hives. In the aforementioned study the biopesticide, a formulation of the arthropod pathogen Beauveria bassiana, failed to have any impact on t...

  14. Active role of lagging chromosomes in spindle collapse as revealed by live phase contrast and tubulin immunostaining in grasshopper spermatocytes.

    PubMed

    Rebollo, E; Arana, P

    2001-08-01

    Univalents, that is, chromosomes lacking an attached partner at the first meiotic division, show extremely faulty transmission. Most segregational errors stem from amphitelic (mitotic-like) orientation at metaphase I followed by anaphase I lagging. Our studies in living grasshopper spermatocytes show that amphitelic orientation may provoke spindle collapse: spindle elongation and cytokinesis are impaired and an unreduced restitution nucleus is formed. This does not prevent meiotic progression and eventually leads to the production of diploid gametes. The morphology and characteristics of spindle collapse in our material, as revealed by in vivo observation and tubulin immunostaining, indicate an active role of the chromosomes in the whole process. PMID:11534821

  15. Differential response of tomato genotypes to Xanthomonas-specific pathogen-associated molecular patterns and correlation with bacterial spot (Xanthomonas perforans) resistance.

    PubMed

    Bhattarai, Krishna; Louws, Frank J; Williamson, John D; Panthee, Dilip R

    2016-01-01

    Plants depend on innate immune responses to retard the initial spread of pathogens entering through stomata, hydathodes or injuries. These responses are triggered by conserved patterns in pathogen-encoded molecules known as pathogen-associated molecular patterns (PAMPs). Production of reactive oxygen species (ROS) is one of the first responses, and the resulting 'oxidative burst' is considered to be a first line of defense. In this study, we conducted association analyses between ROS production and bacterial spot (BS; Xanthomonas spp.) resistance in 63 genotypes of tomato (Solanum lycopersicum L.). A luminol-based assay was performed on leaf tissues that had been treated with a flagellin 22 (flg22), flagellin 28 and a Xanthomonas-specific flg22 (flg22-Xac) peptide, to measure PAMP-induced ROS production in each genotype. These genotypes were also assessed for BS disease response by inoculation with Xanthomonas perforans, race T4. Although there was no consistent relationship between peptides used and host response to the BS, there was a significant negative correlation (r=-0.25, P<0.05) between foliar disease severity and ROS production, when flg22-Xac was used. This response could potentially be used to identify the Xanthomonas-specific PRR allele in tomato, and eventually PAMP-triggered immunity loci could be mapped in a segregating population. This has potential significance in tomato improvement. PMID:27555919

  16. Differential response of tomato genotypes to Xanthomonas-specific pathogen-associated molecular patterns and correlation with bacterial spot (Xanthomonas perforans) resistance

    PubMed Central

    Bhattarai, Krishna; Louws, Frank J; Williamson, John D; Panthee, Dilip R

    2016-01-01

    Plants depend on innate immune responses to retard the initial spread of pathogens entering through stomata, hydathodes or injuries. These responses are triggered by conserved patterns in pathogen-encoded molecules known as pathogen-associated molecular patterns (PAMPs). Production of reactive oxygen species (ROS) is one of the first responses, and the resulting ‘oxidative burst’ is considered to be a first line of defense. In this study, we conducted association analyses between ROS production and bacterial spot (BS; Xanthomonas spp.) resistance in 63 genotypes of tomato (Solanum lycopersicum L.). A luminol-based assay was performed on leaf tissues that had been treated with a flagellin 22 (flg22), flagellin 28 and a Xanthomonas-specific flg22 (flg22-Xac) peptide, to measure PAMP-induced ROS production in each genotype. These genotypes were also assessed for BS disease response by inoculation with Xanthomonas perforans, race T4. Although there was no consistent relationship between peptides used and host response to the BS, there was a significant negative correlation (r=−0.25, P<0.05) between foliar disease severity and ROS production, when flg22-Xac was used. This response could potentially be used to identify the Xanthomonas-specific PRR allele in tomato, and eventually PAMP-triggered immunity loci could be mapped in a segregating population. This has potential significance in tomato improvement. PMID:27555919

  17. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth.

    PubMed

    Raubenheimer, D; Simpson, S J

    2003-05-01

    We examined correlates of nutrient balancing with dietary range by comparing diet selection and ingestive, post-ingestive and performance-related responses to macronutrient imbalance in two species of grasshopper. One of the two species, Locusta migratoria (the African migratory locust), is a specialist grass-feeder, while the other, Schistocerca gregaria (the desert locust), is a generalist herbivore that includes both grasses and forbs in its diet. In ad libitum conditions, both species composed a balanced intake of the two macronutrients protein and carbohydrate from nutritionally complementary synthetic foods, but the composition of the selected diet differed, with the generalist selecting more protein, but not carbohydrate, than the grass-specialist. The grass-specialist, by contrast, retained ingested nitrogen more efficiently on the ad libitum diets. When confined to nutritionally imbalanced foods, both species regulated ingestion in such a way as to mitigate excesses as well as deficits of the two nutrients. The responses were, however, distinct in the two species, with the generalist feeder ingesting greater excesses of protein than the specialist. The species also differed in their post-ingestive responses to ingested excesses of nutrient, with the generalist but not the specialist using protein-derived carbon as an energy source when fed carbohydrate-deficient foods. The generalist also retained a higher level of body protein when confined to protein-deficient diets. The data suggested one functional reason why the generalist species selected a diet with higher protein content in the ad libitum treatment because, when confined to the nutritionally imbalanced foods, development rate peaked on higher protein foods for the generalist compared with the specialist. Many aspects of these data agree with the prediction that generalist-feeding animals should show greater behavioural and physiological flexibility in their responses to nutrient imbalance than do

  18. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae).

    PubMed

    Sanabria-Urbán, Salomón; Song, Hojun; Oyama, Ken; González-Rodríguez, Antonio; Serrano-Meneses, Martin A; Cueva Del Castillo, Raúl

    2015-01-01

    Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616

  19. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae)

    PubMed Central

    2015-01-01

    Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616

  20. The Biology and some Population Parameters of the Grasshopper, Ronderosia bergi, Under Laboratory Conditions

    PubMed Central

    Mariottini, Yanina; de Wysiecki, Maria Laura; Lange, Carlos

    2010-01-01

    Some biological and population parameters of Ronderosia bergi (Stål) (Orthoptera: Acrididae: Melanoplinae) were estimated by monitoring five cohorts of the first generation (F1) of individuals born in captivity from grasshoppers collected in the South of Misiones province, northeastern Argentina, and held under controlled conditions (30° C, 14:10 L:D, 40% RH). The mean embryonic development time was 40.6 ± 1.7 days. Five nymphal instars were recorded. Total duration of nymphal development was 30.8 ± 0.54 days. The mean lifespan of cohorts was 22.6 ± 0.7 weeks. The number of egg-pods per female was 7.6 ± 1.44, and the amount of eggs per egg-pod was 16.45 ± 0.85. Mean fecundity was 125 ± 5.83 eggs per female with an oviposition rate of 1.55 ± 0.57 eggs/female/day. Survivorship curves showed that mortality was concentrated in the final weeks of adulthood, and the life expectancy curve decreased accordingly. The population parameters estimated gave the following values: the net rate of reproduction (R0) was 46.75 ± 11.2, generation time (T) was 18.87 ± 1.67 weeks, duplication time (D) was 3.31 ± 0.34, the intrinsic rate of population growth (rm) was 0.21 ± 0.021 and the finite rate of population increase (λ) was 1.24 ± 0.026. The reproductive values (Vx) indicated that the largest contribution of females to the subsequent generation was between weeks 15 and 25. PMID:20673116

  1. The Grasshopper and the Taxonomer. Use of Song and Structure in Orthoptera Saltatoria for Teaching the Principles of Taxonomy. Part 1. Field and Laboratory Exercises

    ERIC Educational Resources Information Center

    Broughton, W. B.

    1972-01-01

    Describes the coordinated study of European grasshoppers as living specimens in the field and as permanent laboratory preparations for introducing taxonomic principles. Provides details for the preparation of specimens and sample instructions provided to students. Part I of a three-part series. (AL)

  2. Plant DNA detection from grasshopper guts: A step-by-step protocol, from tissue preparation to obtaining plant DNA sequences1

    PubMed Central

    Avanesyan, Alina

    2014-01-01

    • Premise of the study: A PCR-based method of identifying ingested plant DNA in gut contents of Melanoplus grasshoppers was developed. Although previous investigations have focused on a variety of insects, there are no protocols available for plant DNA detection developed for grasshoppers, agricultural pests that significantly influence plant community composition. • Methods and Results: The developed protocol successfully used the noncoding region of the chloroplast trnL (UAA) gene and was tested in several feeding experiments. Plant DNA was obtained at seven time points post-ingestion from whole guts and separate gut sections, and was detectable up to 12 h post-ingestion in nymphs and 22 h post-ingestion in adult grasshoppers. • Conclusions: The proposed protocol is an effective, relatively quick, and low-cost method of detecting plant DNA from the grasshopper gut and its different sections. This has important applications, from exploring plant “movement” during food consumption, to detecting plant–insect interactions. PMID:25202604

  3. Primary structure of an analog of crustacean pigment-dispersing hormone from the lubber grasshopper Romalea microptera.

    PubMed

    Rao, K R; Mohrherr, C J; Riehm, J P; Zahnow, C A; Norton, S; Johnson, L; Tarr, G E

    1987-02-25

    An octadecapeptide capable of inducing pigment dispersion in the chromatophores of the fiddler crab Uca pugilator has been isolated from lyophilized heads of the lubber grasshopper Romalea microptera. This pigment-dispersing factor (PDF) was purified by gel filtration, ion-exchange chromatography, partition chromatography, and reversed-phase high performance liquid chromatography. Automated gas-phase sequencing, followed by the identification of the carboxyl-terminal amide, established the primary structure of this PDF as Asn-Ser-Glu-Ile-Ile-Asn-Ser-Leu-Leu-Gly-Leu-Pro-Lys-Leu-Leu-Asn-Asp-Ala- NH2. This structure was confirmed by chemical synthesis and by demonstrating that the synthetic and native PDF displayed identical chromatographic behavior and biological activity. The Romalea PDF is structurally related to the crustacean pigment-dispersing hormones (PDHs), which are also octadecapeptides. The sequence of grasshopper PDF shows 78% homology with beta-PDH (from the crabs U. pugilator and Cancer magister) and 50% homology with alpha-PDH (from the prawn Pandalus borealis). This study provides the first direct chemical evidence for the structural relatedness of insect PDF to the crustacean PDHs, thus identifying them as an authentic family of arthropod peptides. PMID:3818616

  4. Turn the temperature to turquoise: cues for colour change in the male chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae).

    PubMed

    Umbers, Kate D L

    2011-09-01

    Rapid, reversible colour change is unusual in animals, but is a feature of male chameleon grasshoppers (Kosciuscola tristis). Understanding what triggers this colour change is paramount to developing hypotheses explaining its evolutionary significance. In a series of manipulative experiments the author quantified the effects of temperature, and time of day, as well as internal body temperature, on the colour of male K. tristis. The results suggest that male chameleon grasshoppers change colour primarily in response to temperature and that the rate of colour change varies considerably, with the change from black to turquoise occurring up to 10 times faster than the reverse. Body temperature changed quickly (within 10min) in response to changes in ambient temperature, but colour change did not match this speed and thus colour is decoupled from internal temperature. This indicates that male colour change is driven primarily by ambient temperature but that their colour does not necessarily reflect current internal temperature. I propose several functional hypotheses for male colour change in K. tristis. PMID:21708162

  5. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex.

    PubMed

    Dryahina, Kseniya; Sovová, Kristýna; Nemec, Alexandr; Španěl, Patrik

    2016-01-01

    As a contribution to the continuing search for breath biomarkers of lung and airways infection in patients with cystic fibrosis, CF, we have analysed the volatile metabolites released in vitro by Pseudomonas aeruginosa and other bacteria involved in respiratory infections in these patients, i.e. those belonging to the Burkholderia cepacia complex, Staphylococcus aureus or Stenotrophomonas maltophilia. These opportunistic pathogens are generally harmless to healthy people but they may cause serious infections in patients with severe underlying disease or impaired immunity such as CF patients. Volatile organic compounds emitted from the cultures of strains belonging to the above-mentioned four taxa were analysed by selected ion flow tube mass spectrometry. In order to minimize the effect of differences in media composition all strains were cultured in three different liquid media. Multivariate statistical analysis reveals that the four taxa can be well discriminated by the differences in the headspace VOC concentration profiles. The compounds that should be targeted in breath as potential biomarkers of airway infection were identified for each of these taxa of CF pathogens. PMID:27506232

  6. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-κB activation and pro-inflammatory gene expression in intestinal epithelial cells

    PubMed Central

    Haller, D; Holt, L; Parlesak, A; Zanga, J; Bäuerlein, A; Sartor, R B; Jobin, C

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-κB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-κB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression of the Toll-like receptor-4 accessory protein MD-2 as well as endogenous IκBα phosphorylation, demonstrating similar capabilities of these bacteria to induce proximal NF-κB signalling. However, B. vulgatus failed to trigger IκBα degradation and NF-κB transcriptional activity in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation, PBMC from patients with active ulcerative colitis and Crohn's disease differentially trigger epithelial cell activation in response to E. coli and E. coli-derived LPS. In conclusion, this study provides evidence for a differential regulation of non-pathogenic Gram-negative bacteria-induced NF-κB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally

  7. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum.

    PubMed

    Salas-Marina, Miguel A; Isordia-Jasso, María I; Islas-Osuna, María A; Delgado-Sánchez, Pablo; Jiménez-Bremont, Juan F; Rodríguez-Kessler, Margarita; Rosales-Saavedra, María T; Herrera-Estrella, Alfredo; Casas-Flores, Sergio

    2015-01-01

    Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum) plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000). Deletion (KO) of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, overexpression (OE) of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought. PMID:25755658

  8. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    PubMed Central

    Salas-Marina, Miguel A.; Isordia-Jasso, María I.; Islas-Osuna, María A.; Delgado-Sánchez, Pablo; Jiménez-Bremont, Juan F.; Rodríguez-Kessler, Margarita; Rosales-Saavedra, María T.; Herrera-Estrella, Alfredo; Casas-Flores, Sergio

    2015-01-01

    Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum) plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000). Deletion (KO) of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, overexpression (OE) of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought. PMID:25755658

  9. Pathogen intelligence

    PubMed Central

    Steinert, Michael

    2014-01-01

    Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies. PMID:24551600

  10. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts.

    PubMed

    Gotham, Steven; Song, Hojun

    2013-11-01

    Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with

  11. A SYBR Green-based real-time RT-PCR assay for simple and rapid detection and differentiation of highly pathogenic and classical type 2 porcine reproductive and respiratory syndrome virus circulating in China.

    PubMed

    Chai, Zheng; Ma, Wenjun; Fu, Fang; Lang, Yuekun; Wang, Wei; Tong, Guangzhi; Liu, Qinfang; Cai, Xuehui; Li, Xi

    2013-02-01

    SYBR Green coupled to melting curve analysis has been suggested to detect RNA viruses showing high genomic variability. Here, a SYBR Green-based real-time RT-PCR assay was developed for simultaneous detection and differentiation of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and classical type 2 PRRSV (C-PRRSV). The different strains were identified by their distinctive melting temperatures: 82.98 ± 0.25 °C and 85.95 ± 0.24 °C for HP-PRRSVs or 82.74 ± 0.26 °C for C-PRRSVs. Specificity was tested using nine other viral and bacterial pathogens of swine. The detection limit was 1 TCID(50) for HP- or C-PRRSV. Furthermore, the detection results for samples from an animal trial with HP- or C-PRRSV infections showed that the SYBR Green-based real-time RT-PCR was more sensitive than the conventional RT-PCR. Additionally, an analysis of 319 field samples from North China, Central China and Northeast China showed that HP- and C-PRRSVs co-circulated in pig herds. Thus, the SYBR Green-based real-time RT-PCR, which can be performed within one hour, is a rapid, sensitive and low-cost diagnostic tool for rapid differential detection and routine surveillance of HP- and classical type 2 PRRSVs in China. PMID:23070137

  12. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    PubMed Central

    2009-01-01

    Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP). Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact. PMID:20025764

  13. Differential Effects of NS1 Proteins of Human Pandemic H1N1/2009, Avian Highly Pathogenic H5N1, and Low Pathogenic H5N2 Influenza A Viruses on Cellular Pre-mRNA Polyadenylation and mRNA Translation*

    PubMed Central

    Kainov, Denis E.; Müller, Konstantin H.; Theisen, Linda L.; Anastasina, Maria; Kaloinen, Minttu; Muller, Claude P.

    2011-01-01

    The nonstructural protein NS1 of influenza A virus blocks the development of host antiviral responses by inhibiting polyadenylation of cellular pre-mRNA. NS1 also promotes the synthesis of viral proteins by stimulating mRNA translation. Here, we show that recombinant NS1 proteins of human pandemic H1N1/2009, avian highly pathogenic H5N1, and low pathogenic H5N2 influenza strains differentially affected these two cellular processes: NS1 of the two avian strains, in contrast to NS1 of H1N1/2009, stimulated translation of reporter mRNA in cell-free translation system; NS1 of H5N1 was an effective inhibitor of cellular pre-mRNA polyadenylation in A549 cells, unlike NS1 of H5N2 and H1N1/2009. We identified key amino acids in NS1 that contribute to its activity in these two basic cellular processes. Thus, we identified strain-specific differences between influenza virus NS1 proteins in pre-mRNA polyadenylation and mRNA translation. PMID:21163951

  14. A novel adipokinetic peptide from the corpus cardiacum of the primitive caeliferan pygmy grasshopper Tetrix subulata (Caelifera, Tetrigidae).

    PubMed

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2015-06-01

    The basal caeliferan family Tetrigidae is investigated to identify neuropeptides belonging to the adipokinetic hormone (AKH) family. The pygmy grasshopper Tetrix subulata contains in its corpus cardiacum two octapeptides as revealed by liquid chromatography coupled to electrospray ionization mass spectrometry. The less abundant peptide is the well-known Schgr-AKH-II (pELNFSTGW amide) which is suggested to be the ancestral AKH of Caelifera and Ensifera. The second peptide, Tetsu-AKH (pEFNFTPGW amide), is novel and quite unusual with its third aromatic residue at position 2. It is thought to be autapomorphic for Caelifera. Tetsu-AKH has hyperlipemic activity in T. subulata and in Schistocerca gregaria. PMID:25661310

  15. The attractiveness fragment—AFLP analysis of local adaptation and sexual selection in a caeliferan grasshopper, Chorthippus biguttulus

    NASA Astrophysics Data System (ADS)

    Klappert, Kirsten; Butlin, Roger K.; Reinhold, Klaus

    2007-08-01

    Genetic variability among males is a necessary precondition for the evolution of female choice based on indirect genetic benefits. In addition to mutations and host parasite cycles, migration of locally adapted individuals offers an explanation for the maintenance of genetic variability. In a previous study, conducting a reciprocal transplant experiment on a grasshopper, Chorthippus biguttulus, we found that environmental conditions significantly influenced not only body condition but also an important trait of male calling song, the amplitude of song. Although not significant, all other analysed physical and courtship song traits and attractiveness were superior in native than in transferred males. Thus, we concluded that local adaptation has a slight but consistent influence on a range of traits in our study populations, including male acoustic attractiveness. In our present study, we scanned male grasshoppers from the same two populations for amplification fragment length polymorphism (AFLP) loci connected with acoustic attractiveness to conspecific females. We found greater differences in allele frequencies between the two populations, for some loci, than are expected from a balance between drift and gene flow. These loci are potentially connected with locally adapted traits. We examined whether these alleles show the proposed genotype environment interaction by having different associations with attractiveness in the two populations. One locus was significantly related to sexual attractiveness; however, this was independent of the males’ population affiliation. Future research on the evolution of female choice will benefit from knowledge of the underlying genetic architecture of male traits under intraspecific sexual selection, and the ‘population genomics’ approach can be a powerful tool for revealing this structure.

  16. Molecular Evidence for an Old World Origin of Galapagos and Caribbean Band-Winged Grasshoppers (Acrididae: Oedipodinae: Sphingonotus)

    PubMed Central

    Husemann, Martin; Habel, Jan Christian; Namkung, Suk; Hochkirch, Axel; Otte, Daniel; Danley, Patrick D.

    2015-01-01

    Patterns of colonization and diversification on islands provide valuable insights into evolutionary processes. Due to their unique geographic position and well known history, the Galapagos Islands are an important model system for evolutionary studies. Here we investigate the evolutionary history of a winged grasshopper genus to infer its origin and pattern of colonization in the Galapagos archipelago. The grasshopper genus Sphingonotus has radiated extensively in the Palaearctic and many species are endemic to islands. In the New World, the genus is largely replaced by the genus Trimerotropis. Oddly, in the Caribbean and on the Galapagos archipelago, two species of Sphingonotus are found, which has led to the suggestion that these might be the result of anthropogenic translocations from Europe. Here, we test this hypothesis using mitochondrial and nuclear DNA sequences from a broad sample of Sphingonotini and Trimerotropini species from the Old World and New World. The genetic data show two distinct genetic clusters representing the New World Trimerotropini and the Old World Sphingonotini. However, the Sphingonotus species from Galapagos and the Caribbean split basally within the Old World Sphingonotini lineage. The Galapagos and Caribbean species appear to be related to Old World taxa, but are not the result of recent anthropogenic translocations as revealed by divergence time estimates. Distinct genetic lineages occur on the four investigated Galapagos Islands, with deep splits among them compared to their relatives from the Palaearctic. A scenario of a past wider distribution of Sphingonotus in the New World with subsequent extinction on the mainland and replacement by Trimerotropis might explain the disjunct distribution. PMID:25692768

  17. Molecular evidence for an old world origin of Galapagos and Caribbean band-winged grasshoppers (Acrididae: Oedipodinae: Sphingonotus).

    PubMed

    Husemann, Martin; Habel, Jan Christian; Namkung, Suk; Hochkirch, Axel; Otte, Daniel; Danley, Patrick D

    2015-01-01

    Patterns of colonization and diversification on islands provide valuable insights into evolutionary processes. Due to their unique geographic position and well known history, the Galapagos Islands are an important model system for evolutionary studies. Here we investigate the evolutionary history of a winged grasshopper genus to infer its origin and pattern of colonization in the Galapagos archipelago. The grasshopper genus Sphingonotus has radiated extensively in the Palaearctic and many species are endemic to islands. In the New World, the genus is largely replaced by the genus Trimerotropis. Oddly, in the Caribbean and on the Galapagos archipelago, two species of Sphingonotus are found, which has led to the suggestion that these might be the result of anthropogenic translocations from Europe. Here, we test this hypothesis using mitochondrial and nuclear DNA sequences from a broad sample of Sphingonotini and Trimerotropini species from the Old World and New World. The genetic data show two distinct genetic clusters representing the New World Trimerotropini and the Old World Sphingonotini. However, the Sphingonotus species from Galapagos and the Caribbean split basally within the Old World Sphingonotini lineage. The Galapagos and Caribbean species appear to be related to Old World taxa, but are not the result of recent anthropogenic translocations as revealed by divergence time estimates. Distinct genetic lineages occur on the four investigated Galapagos Islands, with deep splits among them compared to their relatives from the Palaearctic. A scenario of a past wider distribution of Sphingonotus in the New World with subsequent extinction on the mainland and replacement by Trimerotropis might explain the disjunct distribution. PMID:25692768

  18. The development of electrical properties of identified neurones in grasshopper embryos.

    PubMed Central

    Goodman, C S; Spitzer, N C

    1981-01-01

    1. We have examined the development of the electrical properties of five identified neurones in grasshopper embryos between days 10 and 13 of embryogenesis (hatching occurs on day 20). DUM 3,4,5; DUM 4,5; DUM 5; the H cell; and the H cell sibling are the progeny of two different precursor cells. Electrical coupling and electrical excitability were assayed by intracellular recordings. 2. Midway through embryogenesis, on day 10, the five cells are highly electrically coupled to each other and are electrically inexcitable. The temporal sequence of the development of electrical excitability and electrical coupling is described for DUM 3,4,5; 4,5; and 5. The H cell and H cell sib undergo the same sequence one day later. 3. The first non-linear membrane property to appear is delayed rectification which appears on day 11 and can be blocked by tetraethylammonium (TEA). In some cells at about day 11, the addition of TEA to normal saline unmasks a Na+-dependent action potential in the axon. 4. The first action potential in normal saline is a Na+-dependent response that appears in the axon at day 11-11.5. 5. The next stage of excitability in normal saline is the appearance about day 11.5 of a Na+-dependent action potential in the median neurite between the soma and the two axons. In some cells at about day 11.5, the addition of TEA unmasks an excitable response in the soma. 6. Overshooting action potentials appear in the soma about day 12; the inward current is carried by both Na+ and Ca2+; TEA causes a prolonged shoulder on the falling phase of the action potential. A short time later, TEA causes a long-duration CA2+ plateau. 7. A progressive decrease in the degree of electrical coupling among the cells occurs between days 10 and 12.5. Complete uncoupling is never observed before day 11, but has always occurred by day 12.5. 8. Two methods were used to demonstrate that electrical coupling does not mask the presence of excitable inward current channels and thus make the cells

  19. Genome-wide analysis and differential expression of chitinases in banana against root lesion nematode (Pratylenchus coffeae) and eumusa leaf spot (Mycosphaerella eumusae) pathogens.

    PubMed

    Backiyarani, S; Uma, S; Nithya, S; Chandrasekar, A; Saraswathi, M S; Thangavelu, R; Mayilvaganan, M; Sundararaju, P; Singh, N K

    2015-04-01

    Knowledge on structure and conserved domain of Musa chitinase isoforms and their responses to various biotic stresses will give a lead to select the suitable chitinase isoform for developing biotic stress-resistant genotypes. Hence, in this study, chitinase sequences available in the Musa genome hub were analyzed for their gene structure, conserved domain, as well as intron and exon regions. To identify the Musa chitinase isoforms involved in Pratylenchus coffeae (root lesion nematode) and Mycosphaerella eumusae (eumusa leaf spot) resistant mechanisms, differential gene expression analysis was carried out in P. coffeae- and M. eumusae-challenged resistant and susceptible banana genotypes. This study revealed that more number of chitinase isoforms (CIs) were responses upon eumusa leaf spot stress than nematode stress. The nematode challenge studies revealed that class II chitinase (GSMUA_Achr9G16770_001) was significantly overexpressed with 6.75-fold (with high fragments per kilobase of exon per million fragments mapped (FPKM)) in resistant genotype (Karthobiumtham-ABB) than susceptible (Nendran-AAB) genotype, whereas when M. eumusae was challenge inoculated, two class III CIs (GSMUA_Achr9G25580_001 and GSMUA_Achr8G27880_001) were overexpressed in resistant genotype (Manoranjitham-AAA) than the susceptible genotype (Grand Naine-AAA). However, none of the CIs were found to be commonly overexpressed under both stress conditions. This study reiterated that the chitinase genes are responding differently to different biotic stresses in their respective resistant genotypes. PMID:25820355

  20. Comment on Schielzeth et al. (2014): "Genome size variation affects song attractiveness in grasshoppers: Evidence for sexual selection against large genomes".

    PubMed

    Camacho, Juan Pedro M

    2016-06-01

    Schielzeth et al. (2014) concluded that attractive grasshopper singers have significantly smaller genomes thus suggesting a possible role for sexual selection on genome size. Whereas this conclusion could still be conceivably valid, it is not supported by the data presented due to some technical flaws. In addition, the interpretation of the results, speculating on the possible presence of B chromosomes, is not justified. PMID:27327141

  1. Gas-liquid chromatographic and gas-liquid-mass spectometric determination of fenvalerate and permethrin residues in grasshoppers and duck tissue samples

    USGS Publications Warehouse

    Reichel, W.L.; Kolbe, E.J.; Stafford, C.J.

    1981-01-01

    A procedure is described for determining fenvalerate and permethrin residues in grasshoppers and duck tissues. Samples are Soxhlet-extracted with hexane and cleaned up by gel permeation chromatography with an in-line alumina column. Samples are analyzed by gas-liquid chromatography with electron capture detection, and confirmed by gas-liquid chromatography-mass spectrometry. The average recovery from fortified tissues was 97%.

  2. Activation‐Induced Killer Cell Immunoglobulin‐like Receptor 3DL2 Binding to HLA–B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis

    PubMed Central

    Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul

    2016-01-01

    Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353

  3. Development of a PCR-restriction fragment length polymorphism protocol for rapid detection and differentiation of four cockroach vectors (group I "Dirty 22" species) responsible for food contamination and spreading of foodborne pathogens: public health importance.

    PubMed

    Sulaiman, Irshad M; Anderson, Mickey; Khristova, Marina; Tang, Kevin; Sulaiman, Nikhat; Phifer, Edwin; Simpson, Steven; Kerdahi, Khalil

    2011-11-01

    Assessing the adulteration of food products and the presence of filth and extraneous materials is one of the measures that the U.S. Food and Drug Administration (FDA) utilizes in implementing regulatory actions of public health importance. To date, 22 common pest species (also known as the "Dirty 22" species) have been regarded by this agency as the spreaders of foodborne diseases. We have further categorized the Dirty 22 species into four groups: I has four cockroach species, II has two ant species, III has 12 fly species, and IV has four rodent species. The presence of any Dirty 22 species is also considered an indicator of unsanitary conditions in food processing and storage facilities. In this study, we describe the development of a two-step nested PCR protocol to amplify the small subunit ribosomal gene of group I Dirty 22 species that include four cockroach species: Blattella germanica, Blatta orientalis, Periplaneta americana, and Supella longipalpa, along with the development of a PCR-restriction fragment length polymorphism method for rapid detection and differentiation of these violative species. This method will be utilized when the specimen cannot be identified with conventional microscopic taxonomic methods, especially when only small body parts are separated and recovered from food samples for analysis or when these body parts are in a decomposed state. This new PCR-restriction fragment length polymorphism will provide correct identification of group I Dirty 22 species; this information can then be used in regulation and prevention of foodborne pathogens. PMID:22054189

  4. Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars

    PubMed Central

    Wang, Sibao; Fang, Weiguo; Wang, Chengshu; St. Leger, Raymond J.

    2011-01-01

    An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene. PMID:21731492

  5. Enteric pathogens and gut function: role of cytokines and STATs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut harbors the largest immune system in the body. The mucosa is considered to be the initial site of interaction with commensal and pathogenic organisms; therefore, it is the first line of defense against pathogens. In response to the invasion of various pathogens, naïve CD4+ cells differenti...

  6. Discrimination of grasshopper (Orthoptera: Acrididae) diet and niche overlap using next-generation sequencing of gut contents

    PubMed Central

    McClenaghan, Beverly; Gibson, Joel F; Shokralla, Shadi; Hajibabaei, Mehrdad

    2015-01-01

    Species of grasshopper have been divided into three diet classifications based on mandible morphology: forbivorous (specialist on forbs), graminivorous (specialist on grasses), and mixed feeding (broad-scale generalists). For example, Melanoplus bivittatus and Dissosteira carolina are presumed to be broad-scale generalists, Chortophaga viridifasciata is a specialist on grasses, and Melanoplus femurrubrum is a specialist on forbs. These classifications, however, have not been verified in the wild. Multiple specimens of these four species were collected, and diet analysis was performed using DNA metabarcoding of the gut contents. The rbcLa gene region was amplified and sequenced using Illumina MiSeq sequencing. Levins’ measure and the Shannon–Wiener measure of niche breadth were calculated using family-level identifications and Morisita’s measure of niche overlap was calculated using operational taxonomic units (OTUs). Gut contents confirm both D. carolina and M. bivittatus as generalists and C. viridifasciata as a specialist on grasses. For M. femurrubrum, a high niche breadth was observed and species of grasses were identified in the gut as well as forbs. Niche overlap values did not follow predicted patterns, however, the low values suggest low competition between these species. PMID:26356479

  7. B-chromosome effects on Hsp70 gene expression does not occur at transcriptional level in the grasshopper Eyprepocnemis plorans.

    PubMed

    Navarro-Domínguez, Beatriz; Cabrero, Josefa; Camacho, Juan Pedro M; López-León, María Dolores

    2016-10-01

    As intragenomic parasites, B chromosomes can elicit stress in the host genome, thus inducing a response for host adaptation to this kind of continuous parasitism. In the grasshopper Eyprepocnemis plorans, B-chromosome presence has been previously associated with a decrease in the amount of the heat-shock protein 70 (HSP70). To investigate whether this effect is already apparent at transcriptional level, we analyze the expression levels of the Hsp70 gene in gonads and somatic tissues of males and females with and without B chromosomes from two populations, where the predominant B chromosome variants (B2 and B24) exhibit different levels of parasitism, by means of quantitative real-time PCR (qPCR) on complementary DNA (cDNA). The results revealed the absence of significant differences for Hsp70 transcripts associated with B-chromosome presence in virtually all samples. This indicates that the decrease in HSP70 protein levels, formerly reported in this species, may not be a consequence of transcriptional down-regulation of Hsp70 genes, but the result of post-transcriptional regulation. These results will help to design future studies oriented to identifying factors modulating Hsp70 expression, and will also contribute to uncover the biological role of B chromosomes in eukaryotic genomes. PMID:27334602

  8. Sequence analyses of two neuropeptides of the AKH/RPCH-family from the lubber grasshopper, Romalea microptera.

    PubMed

    Gäde, G; Hilbich, C; Beyreuther, K; Rinehart, K L

    1988-01-01

    Two neuropeptides with adipokinetic activity in Locusta migratoria and hypertrehalosaemic activity in Periplaneta americana were purified by high-performance liquid chromatography from the corpus cardiacum of the lubber grasshopper, Romalea microptera. The sequences of both peptides, designated Ro I and Ro II, were determined by gas-phase sequencing employing Edman degradation after the N-terminal pyroglutamate residue was enzymatically deblocked, as well as by fast atom bombardment mass spectrometry. Ro I was found to be a decapeptide with the primary structure: pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2, whereas Ro II is an octapeptide with the structure: pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp-NH2. Ro II is identical with AKH-G isolated from the cricket Gryllus bimaculatus. Synthetic materials having the assigned structures were found to be chromatographically, mass spectrometrically, and biologically indistinguishable from the natural peptides, confirming the sequences and establishing the Romalea peptides as members of the AKH/RPCH-family of peptides. PMID:3226948

  9. The effect of discontinuous gas exchange on respiratory water loss in grasshoppers (Orthoptera: Acrididae) varies across an aridity gradient.

    PubMed

    Huang, Shu-Ping; Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-08-01

    The significance of discontinuous gas-exchange cycles (DGC) in reducing respiratory water loss (RWL) in insects is contentious. Results from single-species studies are equivocal in their support of the classic 'hygric hypothesis' for the evolution of DGC, whereas comparative analyses generally support a link between DGC and water balance. In this study, we investigated DGC prevalence and characteristics and RWL in three grasshopper species (Acrididae, subfamily Pamphaginae) across an aridity gradient in Israel. In order to determine whether DGC contributes to a reduction in RWL, we compared the DGC characteristics and RWL associated with CO2 release (transpiration ratio, i.e. the molar ratio of RWL to CO2 emission rates) among these species. Transpiration ratios of DGC and continuous breathers were also compared intraspecifically. Our data show that DGC characteristics, DGC prevalence and the transpiration ratios correlate well with habitat aridity. The xeric-adapted Tmethis pulchripennis exhibited a significantly shorter burst period and lower transpiration ratio compared with the other two mesic species, Ocneropsis bethlemita and Ocneropsis lividipes. However, DGC resulted in significant water savings compared with continuous exchange in T. pulchripennis only. These unique DGC characteristics for T. pulchripennis were correlated with its significantly higher mass-specific tracheal volume. Our data suggest that the origin of DGC may not be adaptive, but rather that evolved modulation of cycle characteristics confers a fitness advantage under stressful conditions. This modulation may result from morphological and/or physiological modifications. PMID:26290590

  10. Organization of some repetitive DNAs and B chromosomes in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) (Orthoptera, Acrididae, Leptysminae)

    PubMed Central

    Anjos, Allison; Loreto, Vilma; Cabral-de-Mello, Diogo C.

    2016-01-01

    Abstract B chromosomes occur in approximately 15% of eukaryotes and are usually heterochromatic and rich in repetitive DNAs. Here we describe characteristics of a B chromosome in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) through classical cytogenetic methods and mapping of some repetitive DNAs, including multigene families, telomeric repeats and a DNA fraction enriched with repetitive DNAs obtained from DOP-PCR. Eumastusia koebelei koebelei presented 2n=23, X0 and, in one individual, two copies of the same variant of a B chromosome were noticed, which are associated during meiosis. The C-positive blocks were located in the pericentromeric regions of the standard complement and along the entire length of the B chromosomes. Some G+C-rich heterochromatic blocks were noticed, including conspicuous blocks in the B chromosomes. The mapping of 18S rDNA and U2 snDNA revealed only autosomal clusters, and the telomeric probe hybridized in terminal regions. Finally, the DOP-PCR probe obtained from an individual without a B chromosome revealed signals in the heterochromatic regions, including the entire length of the B chromosome. The possible intraspecific origin of the B chromosomes, due to the shared pool of repetitive DNAs between the A and B chromosomes and the possible consequences of their association are discussed. PMID:27551344

  11. Abnormal spermatid formation in the presence of the parasitic B(24) chromosome in the grasshopper Eyprepocnemis plorans.

    PubMed

    Teruel, M; Cabrero, J; Perfectti, F; Alché, J D; Camacho, J P M

    2009-01-01

    Morphology and size of spermatids were analysed in the grasshopper Eyprepocnemis plorans by means of light and electron microscopy. At light microscopy, normal and abnormal (macro- and micro-) spermatids differed in size and number of centriolar adjuncts (CAs): 1 CA in normal spermatids and 2 or more CAs, depending on ploidy level, in macrospermatids. Males carrying the additional B(24) chromosome showed significantly more macro- and microspermatids than 0B males. The frequency of macro- and microspermatids showed an odd-even pattern in respect to the number of B chromosomes, with a higher frequency of abnormal spermatids associated with odd B numbers. Transmission electron microscopy showed that macrospermatids carried more than one axoneme, depending on ploidy level: 2 for diploid, 3 for triploid, and 4 for tetraploid spermatids. In 0B males, the most frequent abnormal spermatids were diploid, whereas in 1B males they were the tetraploid spermatids and, to a lesser extent, triploid ones. This suggests that most macrospermatids derived from cytokinesis failure and nucleus restitution. The implications of aberrant spermatids on B chromosome transmission and male fertility are discussed. PMID:19864877

  12. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans

    PubMed Central

    Teruel, M; Ruíz-Ruano, F J; Marchal, J A; Sánchez, A; Cabrero, J; Camacho, J PM; Perfectti, F

    2014-01-01

    Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones. PMID:24346496

  13. Spatial heterogeneity in landscape structure influences dispersal and genetic structure: empirical evidence from a grasshopper in an agricultural landscape.

    PubMed

    Gauffre, Bertrand; Mallez, Sophie; Chapuis, Marie-Pierre; Leblois, Raphael; Litrico, Isabelle; Delaunay, Sabrina; Badenhausser, Isabelle

    2015-04-01

    Dispersal may be strongly influenced by landscape and habitat characteristics that could either enhance or restrict movements of organisms. Therefore, spatial heterogeneity in landscape structure could influence gene flow and the spatial structure of populations. In the past decades, agricultural intensification has led to the reduction in grassland surfaces, their fragmentation and intensification. As these changes are not homogeneously distributed in landscapes, they have resulted in spatial heterogeneity with generally less intensified hedged farmland areas remaining alongside streams and rivers. In this study, we assessed spatial pattern of abundance and population genetic structure of a flightless grasshopper species, Pezotettix giornae, based on the surveys of 363 grasslands in a 430-km² agricultural landscape of western France. Data were analysed using geostatistics and landscape genetics based on microsatellites markers and computer simulations. Results suggested that small-scale intense dispersal allows this species to survive in intensive agricultural landscapes. A complex spatial genetic structure related to landscape and habitat characteristics was also detected. Two P. giornae genetic clusters bisected by a linear hedged farmland were inferred from clustering analyses. This linear hedged farmland was characterized by high hedgerow and grassland density as well as higher grassland temporal stability that were suspected to slow down dispersal. Computer simulations demonstrated that a linear-shaped landscape feature limiting dispersal could be detected as a barrier to gene flow and generate the observed genetic pattern. This study illustrates the relevance of using computer simulations to test hypotheses in landscape genetics studies. PMID:25773398

  14. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans.

    PubMed

    Teruel, M; Ruíz-Ruano, F J; Marchal, J A; Sánchez, A; Cabrero, J; Camacho, J Pm; Perfectti, F

    2014-05-01

    Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones. PMID:24346496

  15. Organization of some repetitive DNAs and B chromosomes in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) (Orthoptera, Acrididae, Leptysminae).

    PubMed

    Anjos, Allison; Loreto, Vilma; Cabral-de-Mello, Diogo C

    2016-01-01

    B chromosomes occur in approximately 15% of eukaryotes and are usually heterochromatic and rich in repetitive DNAs. Here we describe characteristics of a B chromosome in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) through classical cytogenetic methods and mapping of some repetitive DNAs, including multigene families, telomeric repeats and a DNA fraction enriched with repetitive DNAs obtained from DOP-PCR. Eumastusia koebelei koebelei presented 2n=23, X0 and, in one individual, two copies of the same variant of a B chromosome were noticed, which are associated during meiosis. The C-positive blocks were located in the pericentromeric regions of the standard complement and along the entire length of the B chromosomes. Some G+C-rich heterochromatic blocks were noticed, including conspicuous blocks in the B chromosomes. The mapping of 18S rDNA and U2 snDNA revealed only autosomal clusters, and the telomeric probe hybridized in terminal regions. Finally, the DOP-PCR probe obtained from an individual without a B chromosome revealed signals in the heterochromatic regions, including the entire length of the B chromosome. The possible intraspecific origin of the B chromosomes, due to the shared pool of repetitive DNAs between the A and B chromosomes and the possible consequences of their association are discussed. PMID:27551344

  16. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper

    PubMed Central

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-01-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826

  17. Pathogene Mikroorganismen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin

    Infektionen, die vom Tier auf den Menschen übertragen werden, werden als Zoonosen bezeichnet. Pathogene Mikroorganismen können entweder durch Mensch-Mensch, Mensch-Tier-Kontakt oder durch Kontakt mit kontaminierten Vektoren übertragen werden [39]. Vektoren können einerseits belebt (z. B. blutsaugende Insekten), andererseits unbelebt sein. Kontaminierte Lebensmittel und Wasser gehören zu den wichtigsten unbelebten Vektoren. Neben Lebensmitteln können aber auch kontaminierte Gegenstände oder der Kontakt mit Kontaminationsquellen in der Umwelt Auslöser von Krankheitsfällen sein. Weltweit sind mehr als 1400 krankheitsverursachende biologische Agentien bekannt, von denen über 60 % ein zoonotisches Potenzial aufweisen. Als Ergebnis von Expertengesprächen wurde kürzlich berichtet, dass etwa 3 bis 4, meist virale, neu auftretende Infektionskrankheiten ("emerging diseases“) pro Jahr erwartet werden können [15]. Es handelt sich bei diesen Vorgängen aber nicht nur um das Auftauchen vollkommen neuer oder unbeschriebener Spezies, sondern auch um evolutionsbedingte Anpassungen von mikrobiellen Populationen an neue Bedingungen in ihrem Ökosystem [7]. Molekulare Analysen an Umweltchlamydien erbrachten Hinweise, dass die Evolution erste genetische Pathogenitätsmerkmale in dieser Spezies schon vor 700 Mio. Jahren entstehen ließ [14]. Viele Faktoren befeuern den Prozess der Anpassung, unter anderem auch alle Strategien, mit denen der Mensch seit Jahrtausenden versucht, Lebensmittel sicher und haltbar zu machen. Als die treibenden Kräfte des Auftretens neuer Krankheitserreger werden in der Gegenwart vor allem das sich ändernde Weltklima, die globalen Warenströme und die sich verändernden Konsumgewohnheiten genannt. Es steht auch außer Zweifel, dass viele dieser Erreger Tiere als ihr natürliches Reservoir haben werden, d. h. Zoonosen im klassischen Sinne sind [15].

  18. Development of an EvaGreen-based multiplex real-time PCR assay with melting curve analysis for simultaneous detection and differentiation of six viral pathogens of porcine reproductive and respiratory disorder.

    PubMed

    Rao, Pinbin; Wu, Haigang; Jiang, Yonghou; Opriessnig, Tanja; Zheng, Xiaowen; Mo, Yecheng; Yang, Zongqi

    2014-11-01

    Concurrent infection of pigs with two or more pathogens is common in pigs under intensive rearing conditions. Porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), Japanese encephalitis virus (JEV) and pseudorabies virus (PRV) are all associated with reproductive or respiratory disorders or both and can cause significant economic losses in pig production worldwide. An EvaGreen-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed in this study for simultaneous detection and differentiation of these six viruses in pigs. This method is able to detect and distinguish PCV2, PPV, PRRSV, CSFV, JEV and PRV with the limits of detection ranging from 100 to 500 copies/μL, high reproducibility, and intra-assay and inter-assay variation ranging from 0.11 to 3.20%. After validation, a total of 118 field samples were tested by the newly developed EG-mPCR. PCV2 was identified in 23%, PPV in 15%, PRRSV in 17% and PRV in 5% of the samples. Concurrent PCV2 and PRRSV infection was detected in 6.7%, PCV2 and PPV in 5% and PPV2 and PRRSV infection was detected in 5% of the cases. The agreement of the EG-mPCR and conventional PCR tests was 99.2%. This EG-mPCR will be a useful, rapid, reliable and cost-effective alternative for routine surveillance testing of viral infections in pigs. PMID:25102430

  19. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  20. Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers.

    PubMed

    Palacios-Gimenez, O M; Marti, D A; Cabral-de-Mello, D C

    2015-09-01

    Sex chromosomes have evolved many times from morphologically identical autosome pairs, most often presenting several recombination suppression events, followed by accumulation of repetitive DNA sequences. In Orthoptera, most species have an X0♂ sex chromosome system. However, in the subfamily Melanoplinae, derived variants of neo-sex chromosomes (neo-XY♂ or neo-X1X2Y♂) emerged several times. Here, we examined the differentiation of neo-sex chromosomes in a Melanoplinae species with a neo-XY♂/XX♀ system, Ronderosia bergi, using several approaches: (i) classical cytogenetic analysis, (ii) mapping via fluorescent in situ hybridization of some selected repetitive DNA sequences and microdissected sex chromosomes, and (iii) immunolocalization of distinct histone modifications. The microdissected sex chromosomes were also used as sources for Polymerase chain reaction (PCR) amplification of RNA-coding multigene families, to study variants related to the sex chromosomes. Our data suggest that the R. bergi neo-Y has become differentiated after its formation by a Robertsonian translocation and inversions, and has accumulated repetitive DNA sequences. Interestingly, the ex autosomes incorporated into the neo-sex chromosomes retain some autosomal post-translational histone modifications, at least in metaphase I, suggesting that the establishment of functional modifications in neo-sex chromosomes is slower than their sequence differentiation. PMID:25605041

  1. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change.

    PubMed

    Beckmann, Björn C; Purse, Bethan V; Roy, David B; Roy, Helen E; Sutton, Peter G; Thomas, Chris D

    2015-01-01

    There are large variations in the responses of species to the environmental changes of recent decades, heightening interest in whether their traits may explain inter-specific differences in range expansions and contractions. Using a long-term distributional dataset, we calculated range changes of grasshoppers and crickets in Britain between the 1980s and the 2000s and assessed whether their traits (resource use, life history, dispersal ability, geographic location) explain relative performance of different species. Our analysis showed large changes in the distributions of some species, and we found a positive relationship between three traits and range change: ranges tended to increase for habitat generalists, species that oviposit in the vegetation above ground, and for those with a southerly distribution. These findings accord well with the nature of environmental changes over this period (climatic warming; reductions in the diversity and increases in the height of vegetation). However, the trait effects applied mainly to just two species, Conocephalus discolor and Metrioptera roeselii, which had shown the greatest range increases. Once they were omitted from the analysis, trait effects were no longer statistically significant. Previous studies on these two species emphasised wing-length dimorphism as the key to their success, resulting in a high phenotypic plasticity of dispersal and evolutionary-ecological feedback at their expanding range margins. This, combined with our results, suggests that an unusual combination of traits have enabled these two species to undertake extremely rapid responses to recent environmental changes. The fact that our results are dominated by two species only became apparent through cautious testing of the results' robustness, not through standard statistical checks. We conclude that trait-based analyses may contribute to the assessment of species responses to environmental change and provide insights into underlying mechanisms, but

  2. B chromosomes showing active ribosomal RNA genes contribute insignificant amounts of rRNA in the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruiz-Estévez, Mercedes; Badisco, Liesbeth; Broeck, Jozef Vanden; Perfectti, Francisco; López-León, María Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2014-12-01

    The genetic inertness of supernumerary (B) chromosomes has recently been called into question after finding several cases of gene activity on them. The grasshopper Eyprepocnemis plorans harbors B chromosomes containing large amounts of ribosomal DNA (rDNA) units, some of which are eventually active, but the amount of rRNA transcripts contributed by B chromosomes, compared to those of the standard (A) chromosomes, is unknown. Here, we address this question by means of quantitative PCR (qPCR) for two different ITS2 amplicons, one coming from rDNA units located in both A and B chromosomes (ITS2(A+B)) and the other being specific to B chromosomes (ITS2(B)). We analyzed six body parts in nine males showing rDNA expression in their B chromosomes in the testis. Amplification of the ITS2(B) amplicon was successful in RNA extracted from all six body parts analyzed, but showed relative quantification (RQ) values four orders of magnitude lower than those obtained for the ITS(A+B) amplicon. RQ values differed significantly between body parts for the two amplicons, with testis, accessory gland and wing muscle showing threefold higher values than head, gastric cecum and hind leg. We conclude that the level of B-specific rDNA expression is extremely low even in individuals where B chromosome rDNA is not completely silenced. Bearing in mind that B chromosomes carry the largest rDNA cluster in the E. plorans genome, we also infer that the relative contribution of B chromosome rRNA genes to ribosome biogenesis is insignificant, at least in the body parts analyzed. PMID:24997085

  3. Non-random expression of ribosomal DNA units in a grasshopper showing high intragenomic variation for the ITS2 region.

    PubMed

    Ruiz-Estévez, M; Ruiz-Ruano, F J; Cabrero, J; Bakkali, M; Perfectti, F; López-León, M D; Camacho, J P M

    2015-06-01

    We analyse intragenomic variation of the ITS2 internal transcribed spacer of ribosomal DNA (rDNA) in the grasshopper Eyprepocnemis plorans, by means of tagged PCR 454 amplicon sequencing performed on both genomic DNA (gDNA) and RNA-derived complementary DNA (cDNA), using part of the ITS2 flanking coding regions (5.8S and 28S rDNA) as an internal control for sequencing errors. Six different ITS2 haplotypes (i.e. variants for at least one nucleotide in the complete ITS2 sequence) were found in a single population, one of them (Hap4) being specific to a supernumerary (B) chromosome. The analysis of both gDNA and cDNA from the same individuals provided an estimate of the expression efficiency of the different haplotypes. We found random expression (i.e. about similar recovery in gDNA and cDNA) for three haplotypes (Hap1, Hap2 and Hap5), but significant underexpression for three others (Hap3, Hap4 and Hap6). Hap4 was the most extremely underexpressed and, remarkably, it showed the lowest sequence conservation for the flanking 5.8-28S coding regions in the gDNA reads but the highest conservation (100%) in the cDNA ones, suggesting the preferential expression of mutation-free rDNA units carrying this ITS2 haplotype. These results indicate that the ITS2 region of rDNA is far from complete homogenization in this species, and that the different rDNA units are not expressed at random, with some of them being severely downregulated. PMID:25565136

  4. High similarity of U2 snDNA sequence between A and B chromosomes in the grasshopper Abracris flavolineata.

    PubMed

    Menezes-de-Carvalho, Nahanna Zimmermann; Palacios-Gimenez, Octavio Manuel; Milani, Diogo; Cabral-de-Mello, Diogo Cavalcanti

    2015-10-01

    B chromosomes are frequently enriched for a wide variety of repetitive DNAs. Among grasshoppers in the species Abracris flavolineata (Ommatolampidinae) the B chromosomes are submetacentric, C-negative and harbor repetitive DNAs such as, U2 snDNA, C 0 t-1 DNA, two Mariner-like elements and some microsatellites. Here, we provide evidence showing the intragenome similarity between the B chromosome and the A complement in A. flavolineata, combining analysis of microdissection and chromosome painting and B chromosome-specific amplification through polymerase chain reaction (PCR) of U2 snDNA. Chromosome painting revealed signals spread through the C-negative regions, including the A and B chromosomes. Moreover, significant clustered signals forming bands were observed in some A chromosomes, and for the B chromosome, significant signals were located on both arms, which could be caused by accumulation of repetitive DNA sequences. The C-positive regions did not reveal any signals. Sequence comparison of U2 snDNA between that obtained from a genome without the B chromosome and that from µB-DNA revealed high similarity with the occurrence of four shared haplotypes, one of them (i.e., Hap1) being highly prevalent and putatively ancestral. The highest divergence from Hap1 was observed for Hap3, which was caused by only six mutational steps. These data support an intraspecific origin of the B chromosome in A. flavolineata that is highly similar with the A complement, and the low U2 snDNA sequence diversity observed in the B chromosome could be related to its recent origin, besides intrachromosomal concerted evolution for U2 snDNA repeats in the B chromosome. PMID:25846962

  5. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change

    PubMed Central

    Beckmann, Björn C.; Purse, Bethan V.; Roy, David B.; Roy, Helen E.; Sutton, Peter G.; Thomas, Chris D.

    2015-01-01

    There are large variations in the responses of species to the environmental changes of recent decades, heightening interest in whether their traits may explain inter-specific differences in range expansions and contractions. Using a long-term distributional dataset, we calculated range changes of grasshoppers and crickets in Britain between the 1980s and the 2000s and assessed whether their traits (resource use, life history, dispersal ability, geographic location) explain relative performance of different species. Our analysis showed large changes in the distributions of some species, and we found a positive relationship between three traits and range change: ranges tended to increase for habitat generalists, species that oviposit in the vegetation above ground, and for those with a southerly distribution. These findings accord well with the nature of environmental changes over this period (climatic warming; reductions in the diversity and increases in the height of vegetation). However, the trait effects applied mainly to just two species, Conocephalus discolor and Metrioptera roeselii, which had shown the greatest range increases. Once they were omitted from the analysis, trait effects were no longer statistically significant. Previous studies on these two species emphasised wing-length dimorphism as the key to their success, resulting in a high phenotypic plasticity of dispersal and evolutionary-ecological feedback at their expanding range margins. This, combined with our results, suggests that an unusual combination of traits have enabled these two species to undertake extremely rapid responses to recent environmental changes. The fact that our results are dominated by two species only became apparent through cautious testing of the results’ robustness, not through standard statistical checks. We conclude that trait-based analyses may contribute to the assessment of species responses to environmental change and provide insights into underlying mechanisms

  6. Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer ribosomal DNA sequences in Hesperotettix viridis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hesperotettix viridis grasshoppers (Orthoptera: Acrididae:Melanoplinae) exhibit intra-individual variation in both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer (ITS) ribosomal DNA sequences. These findings violate core assumptions underlying DNA sequence data obtained via pol...

  7. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule

    PubMed Central

    Bai, Yi; Dong, Jia-Jia; Guan, De-Long; Xie, Juan-Ying; Xu, Sheng-Quan

    2016-01-01

    A quantitative analysis of wing variation in grasshoppers can help us to understand how environmental heterogeneity affects the phenotypic patterns of insects. In this study, geometric morphometric methods were used to measure the differences in wing shape and size of Trilophidia annulata among 39 geographical populations in China, and a regression analysis was applied to identify the major environmental factors contributing to the observed morphological variations. The results showed that the size of the forewing and hindwing were significantly different among populations; the shape of the forewing among populations can be divided into geographical groups, however hindwing shape are geographical overlapped, and populations cannot be divided into geographical groups. Environmental PCA and thin-plate spline analysis suggested that smaller individuals with shorter and blunter-tip forewings were mainly distributed in the lower latitudes and mountainous areas, where they have higher temperatures and more precipitation. Correspondingly, the larger-bodied grasshoppers, those that have longer forewings with a longer radial sector, are distributed in contrary circumstances. We conclude that the size variations in body, forewing and hindwing of T. annulata apparently follow the Bergmann clines. The importance of climatic variables in influencing morphological variation among populations, forewing shape of T. annulata varies along an environmental gradient. PMID:27597437

  8. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule.

    PubMed

    Bai, Yi; Dong, Jia-Jia; Guan, De-Long; Xie, Juan-Ying; Xu, Sheng-Quan

    2016-01-01

    A quantitative analysis of wing variation in grasshoppers can help us to understand how environmental heterogeneity affects the phenotypic patterns of insects. In this study, geometric morphometric methods were used to measure the differences in wing shape and size of Trilophidia annulata among 39 geographical populations in China, and a regression analysis was applied to identify the major environmental factors contributing to the observed morphological variations. The results showed that the size of the forewing and hindwing were significantly different among populations; the shape of the forewing among populations can be divided into geographical groups, however hindwing shape are geographical overlapped, and populations cannot be divided into geographical groups. Environmental PCA and thin-plate spline analysis suggested that smaller individuals with shorter and blunter-tip forewings were mainly distributed in the lower latitudes and mountainous areas, where they have higher temperatures and more precipitation. Correspondingly, the larger-bodied grasshoppers, those that have longer forewings with a longer radial sector, are distributed in contrary circumstances. We conclude that the size variations in body, forewing and hindwing of T. annulata apparently follow the Bergmann clines. The importance of climatic variables in influencing morphological variation among populations, forewing shape of T. annulata varies along an environmental gradient. PMID:27597437

  9. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen).

    PubMed

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca(2+) disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  10. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen)

    PubMed Central

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca2+ disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  11. Lagenidium giganteum Pathogenicity in Mammals

    PubMed Central

    Vilela, Raquel; Taylor, John W.; Walker, Edward D.

    2015-01-01

    Infections of mammals by species in the phylum Oomycota taxonomically and molecularly similar to known Lagenidium giganteum strains have increased. During 2013–2014, we conducted a phylogenetic study of 21 mammalian Lagenidium isolates; we found that 11 cannot be differentiated from L. giganteum strains that the US Environmental Protection Agency approved for biological control of mosquitoes; these strains were later unregistered and are no longer available. L. giganteum strains pathogenic to mammals formed a strongly supported clade with the biological control isolates, and both types experimentally infected mosquito larvae. However, the strains from mammals grew well at 25°C and 37°C, whereas the biological control strains developed normally at 25°C but poorly at higher temperatures. The emergence of heat-tolerant strains of L. giganteum pathogenic to lower animals and humans is of environmental and public health concern. PMID:25625190

  12. Microbial Ecology of the Gut in Laboratory Stocks of the Migratory Grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae)

    PubMed Central

    Mead, Lorna J.; Khachatourians, G. G.; Jones, G. A.

    1988-01-01

    Mean pH values in pooled samples of foregut, midgut, and hindgut from adult Melanoplus sanguinipes, which had been raised in the laboratory on barley shoots and wheat bran, were 5.15, 6.39, and 5.98, respectively. Homogenates of midgut/hindgut sections and frass (feces) yielded colony counts of bacteria by the spread plate method of 5.7 to 5.9 and 5.3 to 5.5 log10 colonies per mg, respectively; there were no significant differences (P > 0.05) between counts obtained on several media or on media incubated aerobically or anaerobically. There was no evidence of significant populations of protozoa, fungi, or obligately anaerobic bacteria associated with the gut. A total of 168 pure strains of bacteria isolated from the gut sections were characterized and assigned to 11 taxonomic groups, including Enterococcus spp., Serratia liquefaciens, Pseudomonas spp., and Enterobacter spp. Numbers of Enterococcus spp. in the gut were 2 to 3 orders of magnitude higher than those of the other genera. Strains representing only four of the groups were recovered from bran fed to the grasshoppers; the barley shoots, which were raised in sterile soil, appeared virtually sterile. Examination of the gut wall by scanning electron microscopy revealed the presence of epimural bacteria in the foregut and hindgut but not in the midgut. The distribution of epimural cocci and bacilli differed with the gut section examined. Numerous spherical to ovoid structures up to 10 μm in diameter, which were not identified, were associated with the microvillous surface of the midgut epithelium. Acetate was present in gut, hemolymph, and frass, and it was shown that representative isolates of Enterococcus spp. and Enterobacter agglomerans produced acetate when incubated in an aqueous suspension of bran. The egestion time of solid digesta, as measured with methylene blue-stained barley shoots, was 3.0 to 5.7 h. The results show that M. sanguinipes supported extensive indigenous populations of luminal and

  13. Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria.

    PubMed

    Dearden, P; Grbic, M; Falciani, F; Akam, M

    2000-01-01

    In insects, a key step in the early patterning of the egg is to distinguish the primordium of the embryo proper from those regions that will form extra-embryonic membranes. In Drosophila, where these processes are well understood, the structure of the extra-embryonic membranes is highly derived. The distinct amnion and serosa typical of lower insects is replaced by a single, fused, and much reduced membrane, the amnioserosa, which never secretes an embryonic cuticle. We have used the Zen gene as a marker to study the formation of the extra-embryonic membranes, and other aspects of early embryonic patterning, in the grasshopper Schistocerca gregaria (African Plague Locust). Zen genes are derived from Hox genes, but in Drosophila they appear to have lost any role in patterning the A/P axis of the embryo; instead, they are involved in D/V patterning and the specification of the extra-embryonic membranes. We show that the Schistocerca zen gene is expressed during embryogenesis in three distinct phases. The first of these is during cleavage, when Sgzen is transiently expressed in all energids that reach the cell surface. The second phase of expression initiates in a ring of "necklace cells" that surround the forming embryo, and demarcate the boundary between the amnion and serosa. This leads to expression throughout the serosa. The final phase of expression is in the amnion, after this has separated from the serosa. This complex pattern implies that the role of Sgzen in Schistocerca is not limited solely to the specification of cell identity in the extra-embryonic membranes. We also report that the Schistocerca zen gene is expressed maternally, unlike its Drosophila and Tribolium counterparts. A distinct maternal transcript, and maternal Zen protein, accumulate in the developing oocyte from early post-meiotic stages. They remain uniformly distributed in the oocyte cytoplasm until late vitellogenic stages, when the protein and RNA become somewhat concentrated at the egg

  14. Object-based classification as an alternative approach to the traditional pixel-based classification to identify potential habitat of the grasshopper sparrow.

    PubMed

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided. PMID:17985180

  15. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow

    NASA Astrophysics Data System (ADS)

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  16. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects' habitat.

    PubMed

    Karpeta-Kaczmarek, Julia; Kubok, Magdalena; Dziewięcka, Marta; Sawczyn, Tomasz; Augustyniak, Maria

    2016-08-01

    The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables 'sex' and 'treatment'. Similarly, the variable 'sex', when analyzed alongside 'treatment' and 'site' (the area from which the insects were collected), or 'treatment' and 'time' had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured. PMID:27213568

  17. Farmers' perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest zone of Southern Cameroon

    PubMed Central

    Kekeunou, Sévilor; Weise, Stephan; Messi, Jean; Tamò, Manuel

    2006-01-01

    Background Zonocerus variegatus (Linnaeus, 1758) (Orthoptera: Pyrgomorphidae) is known as an agricultural pest in West and Central Africa. However, its importance in the agricultural production system in Cameroon has not been investigated. The study assesses farmers' perception on the importance of Z. variegatus in the agricultural production systems of the humid forest zone of Southern Cameroon. Methods Research was carried out in 5 villages of each of three Agro-Ecological, Cultural and Demographic Blocks (AECD-Blocks) of the Forest Margin Benchmark Area (FMBA). In each village, a semi-structured survey was used; male and female groups of farmers were interviewed separately. Results Z. variegatus is present throughout the humid forest zone of Southern Cameroon, where it is ranked as the third most economically important insect pest of agriculture. In the farmers' opinion, Z. variegatus is a polyphagous insect with little impact on young perennial crops. The length of the pre-farming fallow does not affect Z. variegatus pest pressure in the following crops. The increased impact of the grasshopper observed today in the fields, compared to what existed 10 years ago is as a result of deforestation and increase in surface of herbaceous fallow. The damage caused by Z. variegatus is higher in fields adjacent to C. odorata and herbaceous fallows than in those adjacent to forests and shrubby fallows. The fight against this grasshopper is often done through physical methods carried out by hand, for human consumption. The farmers highlight low usage of the chemical methods and a total absence of biological and ecological methods. Conclusion Farmers' perception have contributed to understanding the status of Z. variegatus in the humid forest zone of Southern Cameroon. The results are in general similar to those obtained in other countries. PMID:16573815

  18. Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Muramoto, Yukiko; Shoemaker, Jason E.; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki

    2014-01-01

    ABSTRACT Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus

  19. Emerging Escherichia Pathogen

    PubMed Central

    Permpalung, Nitipong; Sentochnik, Deborah E.

    2013-01-01

    Escherichia hermannii was first identified as a new species in 1982. It has rarely been reported as a human pathogen. We report the first case of E. hermannii as the sole pathogen in a catheter-related bloodstream infection. PMID:23740732

  20. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  1. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  2. Plant pathogen resistance

    SciTech Connect

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  3. Emerging foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of new foodborne pathogens is due to a number of factors. An important factor is the globalization of the food supply with the possibility of the introduction of foodborne pathogens from other countries. Animal husbandry, food production, food processing, and food distribution system...

  4. Monograph of the Afrotropical species of Scelio Latreille (Hymenoptera, Platygastridae), egg parasitoids of acridid grasshoppers (Orthoptera, Acrididae)

    PubMed Central

    Yoder, Matthew J.; Valerio, Alejandro A.; Polaszek, Andrew; van Noort, Simon; Masner, Lubomír; Johnson, Norman F.

    2014-01-01

    Abstract The genus Scelio is a cosmopolitan and speciose group of solitary parasitoids of the eggs of short-horned grasshoppers (Orthoptera: Acrididae). A number of these hosts are important pests, including plague locusts of the genus Schistocerca. Species of Scelio are recognized as potentially important biological control agents, but this possibility has yet to be fully realized, in part because the species-level taxonomy is still incompletely developed. The species of the pulchripennis group have been recently revised. As a continuation of this effort, here we revise the Afrotropical species of Scelio, excluding the pulchripennis species group. Sixty two (62) species are treated, 48 of which are new. Species are classified into the following species groups: ernstii (12 species, 9 new), howardi (23 species, 19 new), ipomeae (6 species, 5 new), irwini (4 species, 3 new), simoni (3 new species) and walkeri (12 species, 9 new). Keys to species groups and to the species within each group are provided. New species described are: S. albatus Yoder, sp. n., S. aphares Yoder, sp. n., S. apospastos Yoder, sp. n., S. ardelio Yoder, sp. n., S. aurantium Yoder, sp. n., S. balo Valerio & Yoder, sp. n., S. bayanga Yoder, sp. n., S. bubulo Yoder, sp. n., S. cano Yoder, sp. n., S. clypeatus Yoder, sp. n., S. concavus Yoder, sp. n., S. copelandi Yoder, sp. n., S. crepo Yoder, sp. n., S. destico Yoder, sp. n., S. dupondi Yoder, sp. n., S. effervesco Yoder, sp. n., S. erugatus Yoder, sp. n., S. exophthalmus Yoder, sp. n., S. fremo Valerio & Yoder, sp. n., S. gemo Yoder, sp. n., S. grunnio Yoder, sp. n., S. harinhalai Yoder, sp. n., S. igland Yoder, sp. n., S. impostor Yoder, sp. n., S. irwini Yoder, sp. n., S. janseni Yoder, sp. n., S. latro Yoder, sp. n., S. memorabilis Yoder, sp. n., S. modulus Yoder, sp. n., S. mutio Yoder, sp. n., S. ntchisii Yoder, sp. n., S. parkeri Yoder, sp. n., S. phaeoprora Yoder, sp. n., S. pilosilatus Yoder, sp. n., S. pipilo Yoder, sp. n., S

  5. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    PubMed

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination. PMID:26135744

  6. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis

    PubMed Central

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination. PMID:26135744

  7. Pathogenicity of entamoeba histolytica.

    PubMed

    Kagan, I G

    1975-01-01

    The pathogenicity of Entamoeba histolytica is discussed from an immunologic point of view. The evidence that there is some "trigger" mechanism which converts a commensal dwelling organism into a tissue invasive pathogen is rejected as inadequate. The number of liver abscess cases in comparison with the number of intestinal amebic infections in a population is so low that this in itself suggests that tissue invasion is a rare event in the life history of the ameba. A review is made of the experimental evidence that some type of sensitization is necessary before ameba can invade tissue. In postulating an immunologic basis for the pathogenicity of ameba, a parallel between the behavior of malignant cells in the body and an amebic infection in the gut is made. An appealing hypothesis which deserves further research effort is that an altered immune response is the basis for the pathogenic mechanism in the host. PMID:171223

  8. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-01-01

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition. PMID:26634462

  9. Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro.

    PubMed

    Koc, Kubra; Incekara, Umit; Turkez, Hasan

    2014-09-01

    In this investigation, the genotoxic and oxidative effects of water soluble extracts of dung beetles, flying grasshopper and mole crickets have been assessed on cultured human blood cells. The extracts were added to the culture tubes at 12 different concentrations (0-2000 ppm). Micronucleus test was used to monitor the DNA and the chromosomal damage produced by aqueous extracts in vitro. In addition, to assess the oxidative effects, total antioxidant capacity (TAC) and total oxidant status (TOS) levels were also measured. Our results indicated that these extracts did not show genotoxic effects at the tested concentrations. However, the extracts caused dose-dependent alterations in both TAC and TOS levels. Based on the findings, it was concluded that the studied insects can be consumed safely, but it is necessary to consider the cellular damages which are likely to appear depending on oxidative stress at higher concentrations. It has also been suggested that this in vitro approach for oxidative and genotoxicity assessments may be useful to evaluate the potential health risks of edible insects. PMID:24700298

  10. A comprehensive Prunus pathogen array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive pathogen array was developed for the detection of pathogens of many major crops in the Prunus genus. The APS disease lists for peach, plum, apricot and cherry were combined into a single Prunus pathogen list, containing 102 pathogens (75 fungi, 18 viruses, 6 bacteria and 3 phytoplasm...

  11. Stomata and pathogens

    PubMed Central

    Gudesblat, Gustavo E; Torres, Pablo S

    2009-01-01

    Bacteria and fungi are capable of triggering stomatal closure through pathogen-associated molecular patterns (PAMPs), which prevents penetration through these pores. Therefore, the stomata can be considered part of the plant innate immune response. Some pathogens have evolved mechanisms to evade stomatal defense. The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc), which infects plants of the Brassicaceae family mainly through hydathodes, has also been reported to infect plants through stomata. A recent report shows that penetration of Xcc in Arabidopsis leaves through stomata depends on a secreted small molecule whose synthesis is under control of the rpf/diffusible signal factor (DSF) cell-to-cell signaling system, which also controls genes involved in biofilm formation and pathogenesis. The same reports shows that Arabidopsis ROS- and PAMP-activated MAP kinase 3 (MPK3) is essential for stomatal innate response. Other recent and past findings about modulation of stomatal behaviour by pathogens are also discussed. In all, these findings support the idea that PAMP-triggered stomatal closure might be a more effective and widespread barrier against phytopathogens than previously thought, which has in turn led to the evolution in pathogens of several mechanisms to evade stomatal defense. PMID:20514224

  12. Bioterrorism: pathogens as weapons.

    PubMed

    Anderson, Peter D; Bokor, Gyula

    2012-10-01

    Biowarfare has been used for centuries. The use of biological weapons in terrorism remains a threat. Biological weapons include infectious agents (pathogens) and toxins. The most devastating bioterrorism scenario would be the airborne dispersal of pathogens over a concentrated population area. Characteristics that make a specific pathogen a high-risk for bioterrorism include a low infective dose, ability to be aerosolized, high contagiousness, and survival in a variety of environmental conditions. The most dangerous potential bioterrorism agents include the microorganisms that produce anthrax, plague, tularemia, and smallpox. Other diseases of interest to bioterrorism include brucellosis, glanders, melioidosis, Q fever, and viral encephalitis. Food safety and water safety threats are another area of concern. PMID:23011963

  13. Bloodborne Pathogens Program

    NASA Technical Reports Server (NTRS)

    Blasdell, Sharon

    1993-01-01

    The final rule on the Occupational Exposure to Bloodborne Pathogens was published in the Federal Register on Dec. 6, 1991. This Standard, 29 CFR Part 1910.130, is expected to prevent 8,900 hepatitis B infections and nearly 200 deaths a year in healthcare workers in the U.S. The Occupational Medicine and Environmental Health Services at KSC has been planning to implement this standard for several years. Various aspects of this standard and its Bloodborne Pathogens Program at KSC are discussed.

  14. Waterborne Pathogens: The Protozoans.

    PubMed

    Moss, Joseph Anthony

    2016-09-01

    Waterborne diseases associated with polluted recreational and potable waters have been documented for more than a century. Key microbial protozoan parasites, such as Cryptosporidium and Giardia, are causative agents for gastrointestinal disease worldwide. Although not a first-line diagnostic approach for these diseases, medical imaging, such as radiography, computed tomography, magnetic resonance imaging, ultrasonography, and nuclear medicine technologies, can be used to evaluate patients with long-term effects. This article describes protozoan pathogens that affect human health, treatment of common waterborne pathogen-related diseases, and associated medical imaging. PMID:27601690

  15. Particle size and pathogenicity in the respiratory tract

    PubMed Central

    Thomas, Richard James

    2013-01-01

    Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans. PMID:24225380

  16. PATHOGEN EQUIVALENCY COMMITTEE (PEC)

    EPA Science Inventory

    The U.S. Environmental Protection Agency created the PEC in 1985 to make recommendations to EPA and State managers on the equivalency of unproven sewage sludge disinfection technologies/processes to either a Process to Significantly Reduce Pathogens (PSRP) or a Process to Further...

  17. Pathogenicity and virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pathogenic microorganisms are host-specific in that they parasitize only one or a few animal species. For example, the cause of equine strangles, Streptococcus equi subspecies equi, is essentially limited to infection of horses. Others—certain Salmonella serotypes, for example—have a broad host...

  18. DISINFECTION OF EMERGING PATHOGENS

    EPA Science Inventory

    There is a growing awareness of the need to control waterborne microbial pathogens. This presentation will concentate on the role of chemical inactivation, using chlorine, chloramines and ozone as a means of controlling bacterial and protozoan species. Information will be present...

  19. Leafhopper viral pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four newly discovered viral pathogens in leafhopper vectors of Pierce’s disease of grapes, have been shown to replicate in sharpshooter leafhoppers; the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, and Oncometopia nigricans (Hemiptera: Cicadellidae). The viruses were classified as memb...

  20. Autophagy in plant pathogenic fungi.

    PubMed

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. PMID:27072489

  1. WATERBORNE PATHOGENS IN URBAN WATERSHEDS

    EPA Science Inventory

    Pathogens are microorganisms that can cause sickness or even death. A serious concern for managers of water resources, pathogens in the urban environment easily enter waters through a number of pathways, including discharge of inadequately treated sewage, stormwater runoff, combi...

  2. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  3. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  4. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  5. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  6. Pathogenicity Islands in Bacterial Pathogenesis

    PubMed Central

    Schmidt, Herbert; Hensel, Michael

    2004-01-01

    In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections. PMID:14726454

  7. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity.

    PubMed

    Gaublomme, Jellert T; Yosef, Nir; Lee, Youjin; Gertner, Rona S; Yang, Li V; Wu, Chuan; Pandolfi, Pier Paolo; Mak, Tak; Satija, Rahul; Shalek, Alex K; Kuchroo, Vijay K; Park, Hongkun; Regev, Aviv

    2015-12-01

    Extensive cellular heterogeneity exists within specific immune-cell subtypes classified as a single lineage, but its molecular underpinnings are rarely characterized at a genomic scale. Here, we use single-cell RNA-seq to investigate the molecular mechanisms governing heterogeneity and pathogenicity of Th17 cells isolated from the central nervous system (CNS) and lymph nodes (LN) at the peak of autoimmune encephalomyelitis (EAE) or differentiated in vitro under either pathogenic or non-pathogenic polarization conditions. Computational analysis relates a spectrum of cellular states in vivo to in-vitro-differentiated Th17 cells and unveils genes governing pathogenicity and disease susceptibility. Using knockout mice, we validate four new genes: Gpr65, Plzp, Toso, and Cd5l (in a companion paper). Cellular heterogeneity thus informs Th17 function in autoimmunity and can identify targets for selective suppression of pathogenic Th17 cells while potentially sparing non-pathogenic tissue-protective ones. PMID:26607794

  8. Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...

  9. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  10. Pathogenic Escherichia coli.

    PubMed

    Kaper, James B; Nataro, James P; Mobley, Harry L

    2004-02-01

    Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes. PMID:15040260

  11. The Keystone Pathogen Hypothesis

    PubMed Central

    Hajishengallis, George; Darveau, Richard P.; Curtis, Michael A.

    2012-01-01

    Recent studies have highlighted the importance of the human microbiome in host health and disease. However, for the most part the mechanisms by which the microbiome mediates disease, or protection from it, remain poorly understood. The “keystone pathogen” hypothesis holds that certain low-abundance microbial pathogens can orchestrate inflammatory disease by remodelling a normally benign microbiota into a dysbiotic one. In this Opinion, we critically assess the available literature in support of this hypothesis, which may provide a novel conceptual basis for the development of targeted diagnostic and treatment modalities for complex dysbiotic diseases. PMID:22941505

  12. Host-Pathogen Interactions

    PubMed Central

    Anderson-Prouty, Anne J.; Albersheim, Peter

    1975-01-01

    A polysaccharide from the fungal pathogen Colletotrichum lindemuthianum causes browning and phytoalexin production when applied to the cut surfaces of bean (Phaseolus vulgaris) cotyledons and hypocotyls. The application of an amount of polysaccharide equivalent to less than 100 ng of glucose will elicit this response in the bean tissues. The polysaccharide has been isolated both from culture filtrates and from the mycelial walls of the fungus. Purification of the polysaccharide involved anion and cation exchange chromatography and gel filtration. The polysaccharide has an apparent molecular weight between 1,000,000 and 5,000,000 daltons, and consists predominantly of 3- and 4-linked glucosyl residues. PMID:16659289

  13. BK polyomavirus: emerging pathogen.

    PubMed

    Bennett, Shauna M; Broekema, Nicole M; Imperiale, Michael J

    2012-08-01

    BK polyomavirus (BKPyV) is a small double-stranded DNA virus that is an emerging pathogen in immunocompromised individuals. BKPyV is widespread in the general population, but primarily causes disease when immune suppression leads to reactivation of latent virus. Polyomavirus-associated nephropathy and hemorrhagic cystitis in renal and bone marrow transplant patients, respectively, are the most common diseases associated with BKPyV reactivation and lytic infection. In this review, we discuss the clinical relevance, effects on the host, virus life cycle, and current treatment protocols. PMID:22402031

  14. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer

    PubMed Central

    Zhang, Yun-Xia

    2016-01-01

    Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC) using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes) and differentially expressed genes (DEGs) between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application. PMID:27034707

  15. Development of methodology to prioritise wildlife pathogens for surveillance.

    PubMed

    McKenzie, Joanna; Simpson, Helen; Langstaff, Ian

    2007-09-14

    We developed and evaluated a methodology to prioritise pathogens for a wildlife disease surveillance strategy in New Zealand. The methodology, termed 'rapid risk analysis' was based on the import risk analysis framework recommended by the Office Internationale des Epizooties (OIE), and involved: hazard identification, risk estimation, and ranking of 48 exotic and 34 endemic wildlife pathogens. The risk assessment was more rapid than a full quantitative assessment through the use of a semi-quantitative approach to score pathogens for probability of entry to NZ (release assessment), likelihood of spread (exposure assessment) and consequences in free-living wildlife, captive wildlife, humans, livestock and companion animals. Risk was estimated by multiplying the scores for the probability of entry to New Zealand by the likelihood of spread by the consequences for free-living wildlife, humans and livestock. The rapid risk analysis methodology produced scores that were sufficiently differentiated between pathogens to be useful for ranking them on the basis of risk. Ranking pathogens on the basis of the risk estimate for each population sector provided an opportunity to identify the priorities within each sector alone thus avoiding value-laden comparisons between sectors. Ranking pathogens across all three population sectors by summing the risk estimate for each sector provided a comparison of total risk which may be useful for resource allocation decisions at national level. Ranking pathogens within each wildlife taxonomic group using the total risk estimate was most useful for developing specific surveillance strategies for each group. PMID:17482697

  16. Tick vaccines and the control of tick-borne pathogens

    PubMed Central

    Merino, Octavio; Alberdi, Pilar; Pérez de la Lastra, José M.; de la Fuente, José

    2013-01-01

    Ticks are obligate hematophagous ectoparasites that transmit a wide variety of pathogens to humans and animals. The incidence of tick-borne diseases has increased worldwide in both humans and domestic animals over the past years resulting in greater interest in the study of tick-host-pathogen interactions. Advances in vector and pathogen genomics and proteomics have moved forward our knowledge of the vector-pathogen interactions that take place during the colonization and transmission of arthropod-borne microbes. Tick-borne pathogens adapt from the vector to the mammalian host by differential gene expression thus modulating host processes. In recent years, studies have shown that targeting tick proteins by vaccination can not only reduce tick feeding and reproduction, but also the infection and transmission of pathogens from the tick to the vertebrate host. In this article, we review the tick-protective antigens that have been identified for the formulation of tick vaccines and the effect of these vaccines on the control of tick-borne pathogens. PMID:23847771

  17. Cryptosporidium Pathogenicity and Virulence

    PubMed Central

    Bouzid, Maha; Chalmers, Rachel M.; Tyler, Kevin M.

    2013-01-01

    Cryptosporidium is a protozoan parasite of medical and veterinary importance that causes gastroenteritis in a variety of vertebrate hosts. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The identification and validation of Cryptosporidium virulence factors have been hindered by the renowned difficulties pertaining to the in vitro culture and genetic manipulation of this parasite. Nevertheless, substantial progress has been made in identifying putative virulence factors for Cryptosporidium. This progress has been accelerated since the publication of the Cryptosporidium parvum and C. hominis genomes, with the characterization of over 25 putative virulence factors identified by using a variety of immunological and molecular techniques and which are proposed to be involved in aspects of host-pathogen interactions from adhesion and locomotion to invasion and proliferation. Progress has also been made in the contribution of host factors that are associated with variations in both the severity and risk of infection. Here we provide a review comprised of the current state of knowledge on Cryptosporidium infectivity, pathogenesis, and transmissibility in light of our contemporary understanding of microbial virulence. PMID:23297262

  18. Clostridium difficile Is an Autotrophic Bacterial Pathogen

    PubMed Central

    Köpke, Michael; Straub, Melanie; Dürre, Peter

    2013-01-01

    During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile. PMID:23626782

  19. Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct.

    PubMed

    van Esse, H Peter; Fradin, Emilie F; de Groot, Philip J; de Wit, Pierre J G M; Thomma, Bart P H J

    2009-03-01

    Plant activation of host defense against pathogenic microbes requires significant host transcriptional reprogramming. In this study, we compared transcriptional changes in tomato during compatible and incompatible interactions with the foliar fungal pathogen Cladosporium fulvum and the vascular fungal pathogen Verticillium dahliae. Although both pathogens colonize different host tissues, they display distinct commonalities in their infection strategy; both pathogens penetrate natural openings and grow strictly extracellular. Furthermore, resistance against both pathogens is conveyed by the same class of resistance proteins, the receptor-like proteins. For each individual pathogen, the expression profile of the compatible and incompatible interaction largely overlaps. However, when comparing between the two pathogens, the C. fulvum-induced transcriptional changes show little overlap with those induced by V. dahliae. Moreover, within the subset of genes that are regulated by both pathogens, many genes show inverse regulation. With pathway reconstruction, networks of tomato genes implicated in photorespiration, hypoxia, and glycoxylate metabolism were identified that are repressed upon infection with C. fulvum and induced by V. dahliae. Similarly, auxin signaling is differentially affected by the two pathogens. Thus, differentially regulated pathways were identified with novel strategies that allowed the use of state-of-the-art tools, even though tomato is not a genetic model organism. PMID:19245319

  20. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary; Slezak, Thomas; Birch, James M.

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  1. Host Specificity of Bacterial Pathogens

    PubMed Central

    Bäumler, Andreas; Fang, Ferric C.

    2013-01-01

    Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica. PMID:24296346

  2. Lipoproteins of bacterial pathogens.

    PubMed

    Kovacs-Simon, A; Titball, R W; Michell, S L

    2011-02-01

    Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases. PMID:20974828

  3. [Streptococcus pyogenes pathogenic factors].

    PubMed

    Bidet, Ph; Bonacorsi, S

    2014-11-01

    The pathogenicity of ß-hemolytic group A streptococcus (GAS) is particularly diverse, ranging from mild infections, such as pharyngitis or impetigo, to potentially debilitating poststreptococcal diseases, and up to severe invasive infections such as necrotizing fasciitis or the dreaded streptococcal toxic shock syndrome. This variety of clinical expressions, often radically different in individuals infected with the same strain, results from a complex interaction between the bacterial virulence factors, the mode of infection and the immune system of the host. Advances in comparative genomics have led to a better understanding of how, following this confrontation, GAS adapts to the immune system's pressure, either peacefully by reducing the expression of certain virulence factors to achieve an asymptomatic carriage, or on the contrary, by overexpressing them disproportionately, resulting in the most severe forms of invasive infection. PMID:25456681

  4. Respiratory Pathogens in Monkeys

    PubMed Central

    Good, Robert C.; May, Bessie D.

    1971-01-01

    Respiratory disease in a dynamic colony of nonhuman primates during a 4-year period was due primarily to infections caused by Klebsiella pneumoniae, Diplococcus pneumoniae, Bordetella bronchiseptica, Pasteurella multocida, and Haemophilus influenzae. The principal secondary invaders were Escherichia coli, Staphylococcus aureus, and streptococci. A high fatality rate was associated with infections caused by each of the primary pathogens, and females appeared to be more susceptible than males. Incidence of respiratory disease was greatest in the fall and early winter; however, at all times newly colonized monkeys had a higher infection rate than conditioned monkeys. Infections were occasionally confined only to the lungs and were sometimes present without grossly observable lung lesions. The information given on susceptibility of 10 species of nonhuman primates to respiratory infections provides a basis for developing disease models. PMID:16557951

  5. Rapid Detection of Pathogens

    SciTech Connect

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  6. Differentiated Staffing.

    ERIC Educational Resources Information Center

    Scobey, Mary-Margaret, Ed.; Fiorino, A. John, Ed.

    This book is a collection of six articles that deal with the concept and the practice of differentiated staffing in education. Included in the collection are articles on the concept itself; on problems, prospects, and the practical implementation of the concept; staff differentiation in a multiunit school; and polemical aspects of differentiated…

  7. Differential games.

    NASA Technical Reports Server (NTRS)

    Varaiya, P. P.

    1972-01-01

    General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.

  8. Richness and Composition of Niche-Assembled Viral Pathogen Communities

    PubMed Central

    Seabloom, Eric W.; Borer, Elizabeth T.; Lacroix, Christelle; Mitchell, Charles E.; Power, Alison G.

    2013-01-01

    The pathogen and parasite community that inhabits every free-living organism can control host vital rates including lifespan and reproductive output. To date, however, there have been few experiments examining pathogen community assembly replicated at large-enough spatial scales to inform our understanding of pathogen dynamics in natural systems. Pathogen community assembly may be driven by neutral stochastic colonization and extinction events or by niche differentiation that constrains pathogen distributions to particular environmental conditions, hosts, or vectors. Here, we present results from a regionally-replicated experiment investigating the community of barley and cereal yellow dwarf viruses (B/CYDV's) in over 5000 experimentally planted individuals of six grass species along a 700 km latitudinal gradient along the Pacific coast of North America (USA) in response to experimentally manipulated nitrogen and phosphorus supplies. The composition of the virus community varied predictably among hosts and across nutrient-addition treatments, indicating niche differentiation among virus species. There were some concordant responses among the viral species. For example, the prevalence of most viral species increased consistently with perennial grass cover, leading to a 60% increase in the richness of the viral community within individual hosts (i.e., coinfection) in perennial-dominated plots. Furthermore, infection rates of the six host species in the field were highly correlated with vector preferences assessed in laboratory trials. Our results reveal the importance of niche differentiation in structuring virus assemblages. Virus species distributions reflected a combination of local host community composition, host species-specific vector preferences, and virus responses to host nutrition. In addition, our results suggest that heterogeneity among host species in their capacity to attract vectors or support pathogens between growing seasons can lead to positive

  9. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  10. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.

    PubMed

    Zhang, Yucheng; Bignell, Dawn R D; Zuo, Ran; Fan, Qiurong; Huguet-Tapia, Jose C; Ding, Yousong; Loria, Rosemary

    2016-08-01

    Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species. PMID:27502745

  11. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi.

    PubMed

    Pérez-Martín, José; Bardetti, Paola; Castanheira, Sónia; de la Torre, Antonio; Tenorio-Gómez, María

    2016-09-01

    To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections. PMID:27032479

  12. Pathogens of Whiteflies (Hemiptera: Aleyrodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies belong to the order Homoptera, and the family Aleyrodidae. They are tropical and subtropical in origin, and can be serious pests in field crops of the southern areas of the world and in glasshouses. Whiteflies have many pathogens, but nearly all known pathogens are fungi, which can infect...

  13. Microbiological pathogens: Live poultry considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry products continue to be implicated as the predominate source of food-borne pathogens worldwide. Most food-borne pathogen contamination from poultry originates from ante mortem poultry infections. This book section will address several potential areas of concern regarding the microbial ecolog...

  14. USEPA PATHOGEN EQUIVALENCY COMMITTEE RETREAT

    EPA Science Inventory

    The Pathogen Equivalency Committee held its retreat from September 20-21, 2005 at Hueston Woods State Park in College Corner, Ohio. This presentation will update the PEC’s membership on emerging pathogens, analytical methods, disinfection techniques, risk analysis, preparat...

  15. Proteomics of Foodborne Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.

    This chapter is intended to be a relatively brief overview of proteomic techniques currently in use for the identification and analysis of microorganisms with a special emphasis on foodborne pathogens. The chapter is organized as follows. First, proteomic techniques are introduced and discussed. Second, proteomic applications are presented specifically as they relate to the identification and qualitative/quantitative analysis of foodborne pathogens.

  16. Common themes in microbial pathogenicity.

    PubMed Central

    Finlay, B B; Falkow, S

    1989-01-01

    A bacterial pathogen is a highly adapted microorganism which has the capacity to cause disease. The mechanisms used by pathogenic bacteria to cause infection and disease usually include an interactive group of virulence determinants, sometimes coregulated, which are suited for the interaction of a particular microorganism with a specific host. Because pathogens must overcome similar host barriers, common themes in microbial pathogenesis have evolved. However, these mechanisms are diverse between species and not necessarily conserved; instead, convergent evolution has developed several different mechanisms to overcome host barriers. The success of a bacterial pathogen can be measured by the degree with which it replicates after entering the host and reaching its specific niche. Successful microbial infection reflects persistence within a host and avoidance or neutralization of the specific and nonspecific defense mechanisms of the host. The degree of success of a pathogen is dependent upon the status of the host. As pathogens pass through a host, they are exposed to new environments. Highly adapted pathogenic organisms have developed biochemical sensors exquisitely designed to measure and respond to such environmental stimuli and accordingly to regulate a cascade of virulence determinants essential for life within the host. The pathogenic state is the product of dynamic selective pressures on microbial populations. PMID:2569162

  17. Review of the genus Endoreticulatus (Microsporidia, Encephalitozoonidae) with description of a new species isolated from the grasshopper Poecilimon thoracicus (Orthoptera: Tettigoniidae) and transfer of Microsporidium itiiti Malone to the genus.

    PubMed

    Pilarska, Daniela K; Radek, Renate; Huang, Wei-Fong; Takov, Danail I; Linde, Andreas; Solter, Leellen F

    2015-01-01

    The historic genus Pleistophora (Plistophora) is a highly polyphyletic clade with invertebrate Microsporidia reassigned to several new genera since the 1980s. Two genera, Endoreticulatus and Cystosporogenes, clearly separate into distinct but closely related clades based on small subunit ribosomal RNA analysis but are included in different families that are each polyphyletic. A microsporidium with morphology resembling the Endoreticulatus/Cystosporogenes clade was isolated from the grasshopper Poecilimon thoracicus from a site in Northwest Bulgaria. It produced intense infections in the digestive tract of the host but no behavioral changes were noted in infected individuals. Prevalence of the microsporidium increased over the active feeding season yearly. Mature spores were oval and measured 2.58±0.21 μm×1.34±0.24 μm, with 16 to approximately 32 spores in a parasitophorous vacuole. The spores were uninucleate and polar filament coils numbered 8-9 situated in a single row. The spore polaroplast consisted of an anterior lamellar section and a posterior vesicular section, and the posterior vacuole was reduced. Analyses of a 1221 bp partial SSU-rRNA sequence indicated that the isolate is more closely related to the Endoreticulatus clade than to Cystosporogenes, but shows earlier phylogenetic separation from species infecting Lepidoptera and represents a new species, Endoreticulatus poecilimonae. To compare sequences of Endoreticulatus spp. from Lepidoptera to those infecting other insect orders, an isolate, Microsporidium itiitiMalone (1985), described from the Argentine stem weevil, Listronotus bonariensis, was sequenced. Like the grasshopper isolate, the weevil isolate is closely related but basal to the lepidopteran Endoreticulatus clade. The original description combined with the new sequence data confirms species status and permits transfer of the isolate from Microsporidium, a genus erected for microsporidian species of uncertain taxonomic status, to

  18. Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes

    PubMed Central

    Noverr, Mairi C.; Erb-Downward, John R.; Huffnagle, Gary B.

    2003-01-01

    Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen “cross-talk” that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens. PMID:12857780

  19. Caenorhabditis elegans as a model for intracellular pathogen infection

    PubMed Central

    Balla, Keir M.; Troemel, Emily R.

    2014-01-01

    Summary The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole-animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal-related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection. PMID:23617769

  20. Physical constraints for pathogen movement.

    PubMed

    Schwarz, Ulrich S

    2015-10-01

    In this pedagogical review, we discuss the physical constraints that pathogens experience when they move in their host environment. Due to their small size, pathogens are living in a low Reynolds number world dominated by viscosity. For swimming pathogens, the so-called scallop theorem determines which kinds of shape changes can lead to productive motility. For crawling or gliding cells, the main resistance to movement comes from protein friction at the cell-environment interface. Viruses and pathogenic bacteria can also exploit intracellular host processes such as actin polymerization and motor-based transport, if they present the appropriate factors on their surfaces. Similar to cancer cells that also tend to cross various barriers, pathogens often combine several of these strategies in order to increase their motility and therefore their chances to replicate and spread. PMID:26456297

  1. Host-Pathogen Interactions

    PubMed Central

    Cline, Kenneth; Wade, Mark; Albersheim, Peter

    1978-01-01

    A β-glucan isolated from the mycelial walls of Phytophthora megasperma var. sojae and a glucan purified from yeast extract stimulate the accumulation of phytoalexins in red kidney bean, Phaseolus vulgaris, and stimulate the accumulation of the phytoalexin, rishitin, in potato tubers, Solanum tuberosum. These glucans have previously been shown to be potent elicitors of glyceollin accumulation in soybean, Glycine max. Treatment of kidney bean cotyledons with the glucan elicitors resulted in the accumulation of at least five fungistatic compounds. These compounds migrate during thin layer chromatography identically to the fungistatic compounds which accumulate in kidney beans which have been inoculated with Colletotrichum lindemuthianum, a fungal pathogen of kidney beans. Potatoes accumulate as much as 29 micrograms of rishitin per gram fresh weight following exposure to the glucan from Phytophthora megasperma var. sojae and as much as 19.5 micrograms of rishitin per gram fresh weight following exposure to yeast glucan. Potatoes accumulated 28 micrograms of rishitin per gram fresh weight following inoculation with live Phytophthora megasperma var. sojae. ImagesFig. 1 PMID:16660638

  2. 40 CFR 503.32 - Pathogens.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Pathogens. 503.32 Section 503.32... DISPOSAL OF SEWAGE SLUDGE Pathogens and Vector Attraction Reduction § 503.32 Pathogens. (a) Sewage sludge... to pathogens. (2) The Class A pathogen requirements in § 503.32 (a)(3) through (a)(8) shall be...

  3. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  4. Comparative Transcriptional Analysis of Homologous Pathogenic and Non-Pathogenic Lawsonia intracellularis Isolates in Infected Porcine Cells

    PubMed Central

    Vannucci, Fabio A.; Foster, Douglas N.; Gebhart, Connie J.

    2012-01-01

    Lawsonia intracellularis is the causative agent of proliferative enteropathy. This disease affects various animal species, including nonhuman primates, has been endemic in pigs, and is an emerging concern in horses. Non-pathogenic variants obtained through multiple passages in vitro do not induce disease, but bacterial isolates at low passage induce clinical and pathological changes. We hypothesize that genes differentially expressed between pathogenic (passage 10) and non-pathogenic (passage 60) L. intracellularis isolates encode potential bacterial virulence factors. The present study used high-throughput sequencing technology to characterize the transcriptional profiling of a pathogenic and a non-pathogenic homologous L. intracellularis variant during in vitro infection. A total of 401 genes were exclusively expressed by the pathogenic variant. Plasmid-encoded genes and those involved in membrane transporter (e.g. ATP-binding cassette), adaptation and stress response (e.g. transcriptional regulators) were the categories mostly responsible for this wider transcriptional landscape. The entire gene repertoire of plasmid A was repressed in the non-pathogenic variant suggesting its relevant role in the virulence phenotype of the pathogenic variant. Of the 319 genes which were commonly expressed in both pathogenic and non-pathogenic variants, no significant difference was observed by comparing their normalized transcription levels (fold change±2; p<0.05). Unexpectedly, these genes demonstrated a positive correlation (r2 = 0.81; p<0.05), indicating the involvement of gene silencing (switching off) mechanisms to attenuate virulence properties of the pathogenic variant during multiple cell passages. Following the validation of these results by reverse transcriptase-quantitative PCR using ten selected genes, the present study represents the first report characterizing the transcriptional profile of L. intracellularis. The complexity of the virulence phenotype was

  5. Comparative transcriptional analysis of homologous pathogenic and non-pathogenic Lawsonia intracellularis isolates in infected porcine cells.

    PubMed

    Vannucci, Fabio A; Foster, Douglas N; Gebhart, Connie J

    2012-01-01

    Lawsonia intracellularis is the causative agent of proliferative enteropathy. This disease affects various animal species, including nonhuman primates, has been endemic in pigs, and is an emerging concern in horses. Non-pathogenic variants obtained through multiple passages in vitro do not induce disease, but bacterial isolates at low passage induce clinical and pathological changes. We hypothesize that genes differentially expressed between pathogenic (passage 10) and non-pathogenic (passage 60) L. intracellularis isolates encode potential bacterial virulence factors. The present study used high-throughput sequencing technology to characterize the transcriptional profiling of a pathogenic and a non-pathogenic homologous L. intracellularis variant during in vitro infection. A total of 401 genes were exclusively expressed by the pathogenic variant. Plasmid-encoded genes and those involved in membrane transporter (e.g. ATP-binding cassette), adaptation and stress response (e.g. transcriptional regulators) were the categories mostly responsible for this wider transcriptional landscape. The entire gene repertoire of plasmid A was repressed in the non-pathogenic variant suggesting its relevant role in the virulence phenotype of the pathogenic variant. Of the 319 genes which were commonly expressed in both pathogenic and non-pathogenic variants, no significant difference was observed by comparing their normalized transcription levels (fold change±2; p<0.05). Unexpectedly, these genes demonstrated a positive correlation (r(2) = 0.81; p<0.05), indicating the involvement of gene silencing (switching off) mechanisms to attenuate virulence properties of the pathogenic variant during multiple cell passages. Following the validation of these results by reverse transcriptase-quantitative PCR using ten selected genes, the present study represents the first report characterizing the transcriptional profile of L. intracellularis. The complexity of the virulence phenotype was

  6. Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression.

    PubMed

    Garcia-Vedrenne, Ana Elisa; Groner, Maya; Page-Karjian, Annie; Siegmund, Gregor-Fausto; Singhal, Sonia; Sziklay, Jamie; Roberts, Steven

    2013-01-01

    Understanding how environmental changes influence the pathogenicity and virulence of infectious agents is critical for predicting epidemiological patterns of disease. Thraustochytrids, part of the larger taxonomic class Labyrinthulomycetes, contain several highly pathogenic species, including the hard clam pathogen quahog parasite unknown (QPX). QPX has been associated with large-scale mortality events along the northeastern coast of North America. Growth and physiology of QPX is temperature-dependent, and changes in local temperature profiles influence pathogenicity. In this study we characterize the partial genome of QPX and examine the influence of temperature on gene expression. Genes involved in several biological processes are differentially expressed upon temperature change, including those associated with altered growth and metabolism and virulence. The genomic and transcriptomic resources developed in this study provide a foundation for better understanding virulence, pathogenicity and life history of thraustochytrid pathogens. PMID:24069279

  7. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    PubMed Central

    Pechanova, Olga; Pechan, Tibor

    2015-01-01

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus. PMID:26633370

  8. Dual metabolomics: a novel approach to understanding plant-pathogen interactions.

    PubMed

    Allwood, J William; Clarke, Andrew; Goodacre, Royston; Mur, Luis A J

    2010-04-01

    One of the most well-characterised plant pathogenic interactions involves Arabidopsis thaliana and the bacteria Pseudomonas syringae pathovar tomato (Pst). The standard Pst inoculation procedure involves infiltration of large populations of bacteria into plant leaves which means that metabolite changes cannot be readily assigned to the host or pathogen. A plant cell-pathogen co-culture based approach has been developed where the plant and pathogen cells are separated after 12h of co-culture via differential filtering and centrifugation. Fourier transform infrared (FT-IR) spectroscopy was employed to assess the intracellular metabolomes (metabolic fingerprints) of both host and pathogen and their extruded (extracellular) metabolites (metabolic footprints) under conditions relevant to disease and resistance. We propose that this system will enable the metabolomic profiling of the separated host and pathogen (i.e. 'dual metabolomics') and will facilitate the modelling of reciprocal responses. PMID:20138320

  9. Development of Genomic Resources for a thraustochytrid Pathogen and Investigation of Temperature Influences on Gene Expression

    PubMed Central

    Garcia-Vedrenne, Ana Elisa; Groner, Maya; Page-Karjian, Annie; Siegmund, Gregor-Fausto; Singhal, Sonia; Sziklay, Jamie; Roberts, Steven

    2013-01-01

    Understanding how environmental changes influence the pathogenicity and virulence of infectious agents is critical for predicting epidemiological patterns of disease. Thraustochytrids, part of the larger taxonomic class Labyrinthulomycetes, contain several highly pathogenic species, including the hard clam pathogen quahog parasite unknown (QPX). QPX has been associated with large-scale mortality events along the northeastern coast of North America. Growth and physiology of QPX is temperature-dependent, and changes in local temperature profiles influence pathogenicity. In this study we characterize the partial genome of QPX and examine the influence of temperature on gene expression. Genes involved in several biological processes are differentially expressed upon temperature change, including those associated with altered growth and metabolism and virulence. The genomic and transcriptomic resources developed in this study provide a foundation for better understanding virulence, pathogenicity and life history of thraustochytrid pathogens. PMID:24069279

  10. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-01

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution. PMID:19864267

  11. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water.

    PubMed

    Falkinham, Joseph O; Pruden, Amy; Edwards, Marc

    2015-01-01

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. PMID:26066311

  12. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water

    PubMed Central

    Falkinham, Joseph O.; Pruden, Amy; Edwards, Marc

    2015-01-01

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. PMID:26066311

  13. Pathogenicity of nonpigmented cultures of Chromobacterium violaceum.

    PubMed Central

    Sivendra, R; Tan, S H

    1977-01-01

    Nonpigmented cultures of Chromobacterium violaceum have been found to be similar to pigmented cultures in their virulence for mice and the pathology of their infections. Clinicians and microbiologists should be prepared to consider nonpigmented C. violaceum in their differential diagnoses of infections caused by gram-negative bacteria. The laboratorian who is not aware of this possibility is likely to erroneously identify nonpigmented strains of C. violaceum as members of closely associated genera, particularly Aeromonas. It is known that violet pigmentation is not an essential feature or an exclusive character of the genus Chromobacterium. This study has also shown that pigmentation of C. violaceum is not related to its pathogenicity or to the pathology of its infections. PMID:874071

  14. Protective and pathogenic functions of macrophage subsets.

    PubMed

    Murray, Peter J; Wynn, Thomas A

    2011-11-01

    Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals. They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals. In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis. We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing. Finally, we briefly discuss the characterization of macrophage heterogeneity in humans. PMID:21997792

  15. Regulation of appressorium development in pathogenic fungi

    PubMed Central

    Ryder, Lauren S; Talbot, Nicholas J

    2015-01-01

    Many plant pathogenic fungi have the capacity to breach the intact cuticles of their plant hosts using specialised infection cells called appressoria. These cells exert physical force to rupture the plant surface, or deploy enzymes in a focused way to digest the cuticle and plant cell wall. They also provide the means by which focal secretion of effectors occurs at the point of plant infection. Development of appressoria is linked to re-modelling of the actin cytoskeleton, mediated by septin GTPases, and rapid cell wall differentiation. These processes are regulated by perception of plant cell surface components, and starvation stress, but also linked to cell cycle checkpoints that control the overall progression of infection-related development. PMID:26043436

  16. DNA methylation profiling to assess pathogenicity of BRCA1 unclassified variants in breast cancer

    PubMed Central

    Flower, Kirsty J; Shenker, Natalie S; El-Bahrawy, Mona; Goldgar, David E; Parsons, Michael T; Spurdle, Amanda B; Morris, Joanna R; Brown, Robert; Flanagan, James M

    2015-01-01

    Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set).  Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity. PMID:26727311

  17. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24270074

  18. [Non-pathogenic intestinal amoebae: a clinical-analytical overview].

    PubMed

    Sard, Bárbara Gomila; Navarro, Rafael Toledo; Esteban Sanchis, J Guillermo

    2011-03-01

    Human beings can be parasitized by various species of intestinal amoebae. Entamoeba histolytica is the only intestinal amoeba recognized to be pathogenic, while other amoeba species, E. dispar, E. moshkovskii, E. hartmanni, E. coli, E. polecki, Endolimax nana and Iodamoeba buetschlii are considered to be non-pathogenic. The aim of this review is to synthesize the main morphological characteristics of the trophozoite and cyst stages of each amoeba as the basis for precise microscopical diagnosis. The difficulty of morphological differentiation among species included in the so-called "Entamoeba complex" entails the use of immunological and molecular diagnoses. In addition, a summary of basic epidemiological, therapeutic and prophylactic aspects of these non-pathogenic amoebae is provided. All of these aspects are crucial since these amoebae are usually found to be present in human coproparasitological analyses and must be differentiated from the pathogenic species E. histolytica. Furthermore, they can be used as suitable biological tags of the hygienic state of the environment and the health and hygiene measures of the population. PMID:21458707

  19. Bacterial differentiation.

    PubMed

    Shapiro, L; Agabian-Keshishian, N; Bendis, I

    1971-09-01

    The foregoing studies are intended to define a differentiation process and to permit genetic access to the mechanisms that control this process. In order to elucidate the basic mechanisms whereby a cell dictates its own defined morphogenic changes, we have found it helpful to study an organism that can be manipulated both biochemically and genetically. We have attempted to develop the studies initiated by Poindexter,Stove and Stanier, and Schmidt and Stanier (16, 17, 20) with the Caulobacter genus so that these bacteria can serve as a model system for prokaryotic differentiation. The Caulobacter life cycle, defined in synchronously growing cultures, includes a sequential series of morphological changes that occur at specific times in the cycle and at specific locations in the cell. Six distinct cellular characteristics, which are peculiar to these bacteria, have been defined and include (i) the synthesis of a polar organelle which may be membranous (21-23), (ii) a satellite DNA in the stalked cell (26), (iii) pili to which RNA bacteriophage specifically adsorb (16, 33), (iv) a single polar flagellum(17), (v) a lipopolysaccharide phage receptor site (27), and (vi) new cell wall material at the flagellated pole of the cell giving rise to a stalk (19, 20). Cell division, essential for the viability of the organism, is dependent on the irreversible differentiation of a flagellated swarmer cell to a mature stalked cell. The specific features of the Caulobacter system which make it a system of choice for studies of the control of sequential events resulting in cellular differentiation can be summarized as follows. 1) Cell populations can be synchronized, and homogeneous populations at each stage in the differentiation cycle can thus be obtained. 2) A specific technique has been developed whereby the progress of the differentiation cycle can be accurately measured by adsorption of labeled RNA phage or penetration of labeled phage DNA into specific cell forms. This

  20. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

    PubMed Central

    2010-01-01

    Background Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. Results The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. Conclusions Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae. PMID:20626842

  1. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics

    PubMed Central

    Corwin, Jason A.; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J.

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes. PMID:26866607

  2. Pathogens in Dairy Farming: Source Characterization and Groundwater Impacts

    NASA Astrophysics Data System (ADS)

    Atwill, E. R.; Watanabe, N.; Li, X.; Hou, L.; Harter, T.; Bergamaschi, B.

    2007-12-01

    Intense animal husbandry is of growing concern as a potential contamination source of enteric pathogens as well as antibiotics. To assess the public health risk from pathogens and their hydrologic pathways, we hypothesize that the animal farm is not a homogeneous diffuse source, but that pathogen loading to the soil and, therefore, to groundwater varies significantly between the various management units of a farm. A dairy farm, for example, may include an area with calf hutches, corrals for heifers of various ages, freestalls and exercise yards for milking cows, separate freestalls for dry cows, a hospital barn, a yard for collection of solid manure, a liquid manure storage lagoon, and fields receiving various amounts of liquid and solid manure. Pathogen shedding and, hence, therapeutic and preventive pharmaceutical treatments vary between these management units. We are implementing a field reconnaissance program to determine the occurrence of three different pathogens ( E. coli, Salmonella, Campylobacter) and one indicator organism ( Enterococcus) at the ground-surface and in shallow groundwater of seven different management units on each of two farms, and in each of four seasons (spring/dry season, summer/irrigation season, fall/dry season, winter/rainy season). Initial results indicate that significant differences exist in the occurrence of these pathogens between management units and between organisms. These differences are weakly reflected in their occurrence in groundwater, despite the similarity of the shallow geologic environment across these sites. Our results indicate the importance of differentiating sources within a dairy farm and the importance of understanding subsurface transport processes for these pathogens.

  3. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    PubMed Central

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  4. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli.

    PubMed

    Blum, Shlomo E; Heller, Elimelech D; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  5. Characterization of Pathogenicity, Virulence and Host-Pathogen Interractions

    SciTech Connect

    Krishnan, A; Folta, P

    2006-07-27

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  6. Compositions and methods for pathogen transport

    DOEpatents

    El-Etr, Sahar; Farquar, George R.

    2016-01-26

    This disclosure provides a method for transporting a pathogen under ambient conditions, by culturing the pathogen with an amoeba under conditions that favor the incorporation of the pathogen into a trophozoite, starving the amoeba until it encysts, then culturing under conditions that favor conversion of the amoeba back to a trophozoite. In one aspect, the conditions that favor incorporation of the pathogen into the cyst of the amoeba comprises contacting the pathogen with the amoeba in an iron rich environment. Virus and/or bacteria are pathogens that can be transported by the disclosed method. Amoeba that are useful in the disclosed methods include, without limitation Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria gruberi. The disclosed methods have utility in: transporting pathogens from military field hospitals and clinics to the laboratory; transporting pathogens from global satellite laboratories to clinical laboratories; long term storage of pathogens; enriching contaminated patient samples for pathogens of interest; biosurveillance and detection efforts.

  7. Pathogen evolution and the immunological niche

    PubMed Central

    Cobey, Sarah

    2014-01-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible–infected–recovered (SIR) model. However, there is growing evidence that the complexity of many host–pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. PMID:25040161

  8. Pathogen evolution and the immunological niche.

    PubMed

    Cobey, Sarah

    2014-07-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. PMID:25040161

  9. [Population genetics of plant pathogens].

    PubMed

    Zhu, Wen; Zhan, Jia-Sui

    2012-02-01

    Comparing to natural ecosystems, the evolution of plant pathogens in agricultural ecosystems is generally faster due to high-density monocultures, large-scale application of agrochemicals, and international trade in agricultural products. Knowledge of the population genetics and evolutionary biology of plant pathogens is necessary to understand disease epidemiology, effectively breed and use resistant cultivars, and control plant diseases. In this article, we outlined the aims of population genetic studies in plant pathogens, discuss contributions of five evolutionary forces (i.e., mutation, gene flow, recombination, random genetic drift, and natural selection) to origin, maintenance, and distribution of genetic variation in time and space, and gave an overview of current research status in this field. PMID:22382057

  10. The main Aeromonas pathogenic factors.

    PubMed

    Tomás, J M

    2012-01-01

    The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella. PMID:23724321

  11. From multiple pathogenicity islands to a unique organized pathogenicity archipelago

    PubMed Central

    Bouyioukos, Costas; Reverchon, Sylvie; Képès, François

    2016-01-01

    Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall. Here we show that their multiple pathogenicity islands form together a coherently organized, single “archipelago” at the genome scale. Furthermore, in half of the species, most genes encoding secreted pectinases are expressed from the same DNA strand (transcriptional co-orientation). This genome architecture favors DNA conformations that are conducive to genes spatial co-localization, sometimes complemented by co-orientation. As proteins tend to be synthetized close to their encoding genes in bacteria, we propose that this architecture would favor the efficient funneling of pectinases at convergent points within the cell. The underlying functional hypothesis is that this convergent funneling of the full blend of pectinases constitutes a crucial strategy for successful degradation of the plant cell wall. Altogether, our work provides a new approach to describe and predict, at the genome scale, the full virulence complement. PMID:27302835

  12. From multiple pathogenicity islands to a unique organized pathogenicity archipelago.

    PubMed

    Bouyioukos, Costas; Reverchon, Sylvie; Képès, François

    2016-01-01

    Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall. Here we show that their multiple pathogenicity islands form together a coherently organized, single "archipelago" at the genome scale. Furthermore, in half of the species, most genes encoding secreted pectinases are expressed from the same DNA strand (transcriptional co-orientation). This genome architecture favors DNA conformations that are conducive to genes spatial co-localization, sometimes complemented by co-orientation. As proteins tend to be synthetized close to their encoding genes in bacteria, we propose that this architecture would favor the efficient funneling of pectinases at convergent points within the cell. The underlying functional hypothesis is that this convergent funneling of the full blend of pectinases constitutes a crucial strategy for successful degradation of the plant cell wall. Altogether, our work provides a new approach to describe and predict, at the genome scale, the full virulence complement. PMID:27302835

  13. New trends in emerging pathogens.

    PubMed

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  14. Immune response to a variable pathogen: a stochastic model with two interlocked Darwinian entities.

    PubMed

    Kuhn, Christoph

    2012-01-01

    This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction. PMID:23424603

  15. The extinction differential induced virulence macroevolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Liufang; Wang, Jin

    2014-04-01

    We apply the potential-flux landscape theory to deal with the large fluctuation induced extinction phenomena. We quantify the most probable extinction pathway on the landscape and measure the extinction risk by the landscape topography. In this Letter, we investigate the disease extinction through an epidemic model described by a set of chemical reaction. We found the virulence-differential-dependent symbioses between mother and daughter pathogen species: mutualism and parasitism. The symbioses, whether mutualism or parasitism, benefit the higher virulence species. This implies that speciation towards lower virulence is an effective strategy for a pathogen species to reduce its extinction risk.

  16. Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits

    PubMed Central

    Goudenège, David; Labreuche, Yannick; Krin, Evelyne; Ansquer, Dominique; Mangenot, Sophie; Calteau, Alexandra; Médigue, Claudine; Mazel, Didier; Polz, Martin F; Le Roux, Frédérique

    2013-01-01

    Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo. PMID:23739050

  17. PATHOGENIC 'NAEGLERIA': DISTRIBUTION IN NATURE

    EPA Science Inventory

    Infection in man with pathogenic Naegleria, a free-living soil amoeba, results in a usually fatal disease entity known as primary amoebic meningoencephalitis. Epidemiological data usually included exposure to freshwater lakes or streams within the week prior to onset. However, no...

  18. Pathogenic Pseudorabies Virus, China, 2012

    PubMed Central

    Yu, Xiuling; Zhou, Zhi; Hu, Dongmei; Zhang, Qian; Han, Tao; Li, Xiaoxia; Gu, Xiaoxue; Yuan, Lin; Zhang, Shuo; Wang, Baoyue; Qu, Ping; Liu, Jinhua; Zhai, Xinyan

    2014-01-01

    In 2012, an unprecedented large-scale outbreak of disease in pigs in China caused great economic losses to the swine industry. Isolates from pseudorabies virus epidemics in swine herds were characterized. Evidence confirmed that the pathogenic pseudorabies virus was the etiologic agent of this epidemic. PMID:24377462

  19. Microbial Forensics and Plant Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New awareness of the vulnerability of a nation's agricultural infrastructure to the intentional introduction of pathogens or pests has led to the enhancement of programs for prevention and preparedness. A necessary component of a balanced bio-security plan is the capability to determine whether an ...

  20. Bacterial itaconate degradation promotes pathogenicity.

    PubMed

    Sasikaran, Jahminy; Ziemski, Michał; Zadora, Piotr K; Fleig, Angela; Berg, Ivan A

    2014-05-01

    Itaconate (methylenesuccinate) was recently identified as a mammalian metabolite whose production is substantially induced during macrophage activation. This compound is a potent inhibitor of isocitrate lyase, a key enzyme of the glyoxylate cycle, which is a pathway required for the survival of many pathogens inside the eukaryotic host. Here we show that numerous bacteria, notably many pathogens such as Yersinia pestis and Pseudomonas aeruginosa, have three genes for itaconate degradation. They encode itaconate coenzyme A (CoA) transferase, itaconyl-CoA hydratase and (S)-citramalyl-CoA lyase, formerly referred to as CitE-like protein. These genes are known to be crucial for survival of some pathogens in macrophages. The corresponding enzymes convert itaconate into the cellular building blocks pyruvate and acetyl-CoA, thus enabling the bacteria to metabolize itaconate and survive in macrophages. The itaconate degradation and detoxification pathways of Yersinia and Pseudomonas are the result of convergent evolution. This work revealed a common persistence factor operating in many pathogenic bacteria. PMID:24657929

  1. Asian citrus psyllid viral pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly discovered viral pathogen of Asian citrus psyllid, AsCP, Diaphorina citri, Kuwayama (Psyllidae: Hemiptera) was classified as a Reoviridae. This virus may serve as a biological control agent for AsCP. The AsCP is an efficient vector of the plant-infecting bacterium (Candidatus Liberibacter as...

  2. The Evolution of Foodborne Pathogens

    NASA Astrophysics Data System (ADS)

    Abu-Ali, Galeb S.; Manning, Shannon D.

    Despite continuous advances in food safety and disease surveillance, control, and prevention, foodborne bacterial infections remain a major public health concern. Because foodborne pathogens are commonly exposed to multiple environmental stressors, such as low pH and antibiotics, most have evolved specific mechanisms to facilitate survival in adverse environments.

  3. Microbiological pathogens: Live poultry considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food-borne illness is a significant worldwide public health problem. Salmonella is the predominate food-borne pathogen worldwide, and poultry and poultry products are, reportedly, a prevailing vehicle for salmonellosis. More recently, population-based active surveillance by investigators of the Fo...

  4. Bloodborne Pathogens Exposure Control Plan.

    ERIC Educational Resources Information Center

    National Child Care Association, Atlanta, GA.

    This sample exposure control plan is a guide to assist child care providers in complying with the blood-borne pathogens standard issued by the Occupational Safety and Health Administration (OSHA). The standard requires employers to establish a written exposure control plan by May 5, 1992 (for exposure to microorganisms in human blood that cause…

  5. USEPA PERSPECTIVE ON CONTROLLING PATHOGENS

    EPA Science Inventory

    EPA minimizes the risk of infectious diseases from the beneficial use of sludge by requiring its treatment to reduce pathogen levels below the detection limit. How new treatment processes can be shown equivalent to ones specified in 40CFR503 will be discussed together with ways t...

  6. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This document is written as a resource for state and local watershed managers who have the responsibility of managing pathogen contamination in urban watersheds. In addition it can be an information source for members of the public interested in watershed mitigation efforts aime...

  7. Proteomics of foodborne bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on recent research on foodborne bacterial pathogens that use mass spectrometry-based proteomic techniques as well as protein microarrays. Mass spectrometry ionization techniques (e.g. electrospray ionization and matrix-assisted laser desorption/ionization), analyzers (e.g. ion ...

  8. Overview of Pathogen Groups: Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fungi comprise a diverse array of taxa that exhibit a great diversity of properties and requirements. These microorganisms collectively occupy virtually every niche in which arthropods are also found, and, consequently, there has been great interest in the use of these pathogens as microbial bi...

  9. Microbial Genomics of Aquaculture Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious diseases cause substantial economic loss in aquaculture and are a factor limiting production of many species. Given increasing seafood demand worldwide, there is an escalating need for research to identify solutions to fish health problems. With the advent of pathogen and host-genome sequ...

  10. Biosignatures of Pathogen and Host

    SciTech Connect

    Fitch, J P; Chromy, B A; Forde, C E; Garcia, E; Gardner, S N; Gu, P P; Kuczmarksi, T A; Melius, C F; McCutchen-Maloney, S L; Milanovich, F P; Motin, V L; Ott, L L; Quong, A A; Quong, J N; Rocco, J M; Slezak, T R; Sokhansanj, B A; Vitalis, E A; Zemla, A T; McCready, P M

    2002-08-27

    In information theory, a signature is characterized by the information content as well as noise statistics of the communication channel. Biosignatures have analogous properties. A biosignature can be associated with a particular attribute of a pathogen or a host. However, the signature may be lost in backgrounds of similar or even identical signals from other sources. In this paper, we highlight statistical and signal processing challenges associated with identifying good biosignatures for pathogens in host and other environments. In some cases it may be possible to identify useful signatures of pathogens through indirect but amplified signals from the host. Discovery of these signatures requires new approaches to modeling and data interpretation. For environmental biosignal collections, it is possible to use signal processing techniques from other applications (e.g., synthetic aperture radar) to track the natural progression of microbes over large areas. We also present a computer-assisted approach to identify unique nucleic-acid based microbial signatures. Finally, an understanding of host-pathogen interactions will result in better detectors as well as opportunities in vaccines and therapeutics.

  11. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This presentation is a summary of the EPA National Risk Management Research Laboratory (NRMRL) publication entitled Managing Urban Watershed Pathogen Contamination, EPA/600/R-03/111 (September 2003). It is available on the internet at http://www.epa.gov/ednnrmrl/repository/water...

  12. EXTRAINTESTINAL PATHOGENIC ESCHERICHIA COLI (EXPEC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extraintestinal pathogenic Escherichia coli (ExPEC) possess virulence traits that allow them to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgic...

  13. Pathogen pollution and the emergence of a deadly amphibian pathogen.

    PubMed

    McKenzie, Valerie J; Peterson, Anna C

    2012-11-01

    Imagine a single pathogen that is responsible for mass mortality of over a third of an entire vertebrate class. For example, if a single pathogen were causing the death, decline and extinction of 30% of mammal species (including humans), the entire world would be paying attention. This is what has been happening to the world's amphibians - the frogs, toads and salamanders that are affected by the chytrid fungal pathogen, Batrachochytrium dendrobatidis (referred to as Bd), which are consequently declining at an alarming rate. It has aptly been described as the worst pathogen in history in terms of its effects on biodiversity (Kilpatrick et al. 2010). The pathogen was only formally described about 13 years ago (Longcore et al. 1999), and scientists are still in the process of determining where it came from and investigating the question: why now? Healthy debate has ensued as to whether Bd is a globally endemic organism that only recently started causing high mortality due to shifting host responses and/or environmental change (e.g. Pounds et al. 2006) or whether a virulent strain of the pathogen has rapidly disseminated around the world in recent decades, affecting new regions with a vengeance (e.g. Morehouse et al. 2003; Weldon et al. 2004; Lips et al. 2008). We are finally beginning to shed more light on this question, due to significant discoveries that have emerged as a result of intensive DNA-sequencing methods comparing Bd isolates from different amphibian species across the globe. Evidence is mounting that there is indeed a global panzootic lineage of Bd (BdGPL) in addition to what appear to be more localized endemic strains (Fisher et al. 2009; James et al. 2009; Farrer et al. 2011). Additionally, BdGPL appears to be a hypervirulent strain that has resulted from the hybridization of different Bd strains that came into contact in recent decades, and is now potentially replacing the less-virulent endemic strains of the pathogen (Farrer et al. 2011

  14. Differential gearing

    SciTech Connect

    Tamiya, S.

    1986-07-29

    A differential for motor vehicles is described and the like comprising, an input drive shaft, a pair of coaxially spaced drive gears simultaneously driven by the input shaft in a same direction at a same speed of rotation about a common axis of rotation, a driven gear driven peripherally by the pair of drive gears for transmission of power from the input drive shaft, two coaxial opposed bevel sun gears having an axis of rotation concentric with an axis of rotation of the driven gear, two planetary gears disposed between the sun gears for differential driving thereof during turns of the vehicle to the right and to the left of each meshing with the sun gears for driving the suns gears. Each planetary gear has a separate axis of rotation carried by the driven gear disposed therein radially and symmetrically relative to the axis of rotation of the sun gears, and each sun gear having a respective power output shaft connected thereto for rotation therewith.

  15. Surface sensing and signaling networks in plant pathogenic fungi.

    PubMed

    Kou, Yanjun; Naqvi, Naweed I

    2016-09-01

    Pathogenic fungi have evolved highly varied and remarkable strategies to invade and infect their plant hosts. Typically, such fungal pathogens utilize highly specialized infection structures, morphologies or cell types produced from conidia or ascospores on the cognate host surfaces to gain entry therein. Such diverse infection strategies require intricate coordination in cell signaling and differentiation in phytopathogenic fungi. Here, we present an overview of our current understanding of cell signaling and infection-associated development that primes host penetration in the top ten plant pathogenic fungi, which utilize specific receptors to sense and respond to different surface cues, such as topographic features, hydrophobicity, hardness, plant lipids, phytohormones, and/or secreted enzymes. Subsequently, diverse signaling components such as G proteins, cyclic AMP/Protein Kinase A and MAP kinases are activated to enable the differentiation of infection structures. Recent studies have also provided fascinating insights into the spatio-temporal dynamics and specialized sequestration and trafficking of signaling moieties required for proper development of infection structures in phytopathogenic fungi. Molecular insight in such infection-related morphogenesis and cell signaling holds promise for identifying novel strategies for intervention of fungal diseases in plants. PMID:27133541

  16. O34-pathogen sensing by human odontoblasts.

    PubMed

    Fargues, J-C; Keller, J-F; Carrouel, F; Kufer, T A; Baudouin, C; Msika, P; Bleicher, F; Staquet, M-J

    2010-01-01

    Human odontoblasts are neural crest-derived, dentin-producing mesenchymal cells aligned at the periphery of the dental pulp. They become exposed to cariogenic oral bacteria as these progressively demineralise enamel then dentin to gain access to the pulp. Due to their situation at the dentin-pulp interface, odontoblasts are the first cells encountered by invading pathogens and/or their released components, and represent, in the tooth, the first line of defence for the host. Previous studies have shown that odontoblasts are able to sense pathogens and elicit innate immunity. In particular, they express several pathogen recognition receptors of the Toll-like receptor (TLR) and nucleotide-binding oligomerisation domain (NOD) families, which allow them to recognize specific bacterial and viral components. So far, most studies aiming at elucidating the role of odontoblasts in the dental pulp innate response have focused on Gram-positive bacteria, as these largely dominate the carious microflora in initial and moderate dentin caries lesions. In vitro, odontoblasts were found to be sensitive to Gram-positive bacteria-derived components, mainly lipoteichoic acid which is recognized through cell membrane TLR2. Our studies have shown that engagement of odontoblast TLR2 by LTA triggers TLR2 and NOD2 up-regulation, NF-B nuclear translocation, production of various chemokines including CCL2, CXCL1, CXCL2, CXCL8 and CXCL10, while promoting immature dendritic cell recruitment. Conversely, LTA down-regulates major dentin matrix components, including collagen type I and dentin sialophosphoprotein, as well as TGF-b1, a known inducer of dentin formation. We provide here additional data showing the fine localization of NOD2 in healthy dental pulps, as well as differential regulation of TLR2, TLR4, NOD2, CCL2 and CXCL8 genes by LTA and the synthetic TLR2 agonists Pam2CSK4 and Pam3CSK4. It appears from the aforementioned data that odontoblast-triggered immune events constitute

  17. Simultaneous typing of nine avian respiratory pathogens using a novel GeXP analyzer-based multiplex PCR assay.

    PubMed

    Xie, Zhixun; Luo, Sisi; Xie, Liji; Liu, Jiabo; Pang, Yaoshan; Deng, Xianwen; Xie, Zhiqin; Fan, Qing; Khan, Mazhar I

    2014-10-01

    A new, rapid, and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR method was developed for simultaneous detection and differentiation of nine avian respiratory pathogens. The respiratory pathogens included in this study were avian influenza subtypes H5, H7, and H9, infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS) and Haemophilus paragallinarum (HPG). Ten pairs of primers were designed using conserved and specific sequence genes of AIV subtypes and respiratory pathogens from GenBank. Single and mixed pathogen cDNA/DNA templates were used to evaluate the specificity of the GeXP-multiplex assay. The corresponding specific DNA products were amplified for each pathogen. The specific DNA product amplification peaks of nine respiratory pathogens were observed on the GeXP analyzer. Non-respiratory avian pathogens, including chicken infectious anemia virus, fowl adenovirus, avian reovirus and infectious bursal disease virus, did not produce DNA products. The detection limit for the GeXP-multiplex assay was determined to be 100 copies/μl using various pre-mixed plasmids/ssRNAs containing known target genes of the respiratory pathogens. Further, GeXP-multiplex PCR assay was 100% specific when 24 clinical samples with respiratory infections were tested in comparison with conventional PCR method. The GeXP-multiplex PCR assay provides a novel tool for simultaneous detection and differentiation of nine avian respiratory pathogens. PMID:25025815

  18. CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity.

    PubMed

    Wang, Chao; Yosef, Nir; Gaublomme, Jellert; Wu, Chuan; Lee, Youjin; Clish, Clary B; Kaminski, Jim; Xiao, Sheng; Meyer Zu Horste, Gerd; Pawlak, Mathias; Kishi, Yasuhiro; Joller, Nicole; Karwacz, Katarzyna; Zhu, Chen; Ordovas-Montanes, Maria; Madi, Asaf; Wortman, Ivo; Miyazaki, Toru; Sobel, Raymond A; Park, Hongkun; Regev, Aviv; Kuchroo, Vijay K

    2015-12-01

    Th17 cells play a critical role in host defense against extracellular pathogens and tissue homeostasis but can induce autoimmunity. The mechanisms implicated in balancing "pathogenic" and "non-pathogenic" Th17 cell states remain largely unknown. We used single-cell RNA-seq to identify CD5L/AIM as a regulator expressed in non-pathogenic, but not in pathogenic Th17 cells. Although CD5L does not affect Th17 differentiation, it is a functional switch that regulates the pathogenicity of Th17 cells. Loss of CD5L converts non-pathogenic Th17 cells into pathogenic cells that induce autoimmunity. CD5L mediates this effect by modulating the intracellular lipidome, altering fatty acid composition and restricting cholesterol biosynthesis and, thus, ligand availability for Rorγt, the master transcription factor of Th17 cells. Our study identifies CD5L as a critical regulator of the Th17 cell functional state and highlights the importance of lipid metabolism in balancing immune protection and disease induced by T cells. PMID:26607793

  19. Stress Signaling Pathways for the Pathogenicity of Cryptococcus

    PubMed Central

    Jung, Kwang-Woo

    2013-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas. PMID:24078305

  20. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens

    PubMed Central

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A.

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  1. [PCR-based detection of pathogens in clinical rheumatology].

    PubMed

    Ehrenstein, B; Reischl, U

    2016-05-01

    In the differential diagnostics of autoimmune-mediated rheumatic diseases, rheumatologists often have to consider infections (e. g. Lyme arthritis) or reactive diseases (e. g. reactive arthritis after urogenital bacterial infections). Furthermore, infections with an atypical presentation or caused by atypical pathogens (opportunistic infections) can complicate the immunosuppressive therapy of autoimmune diseases. For this purpose not only conventional microbiological culture methods but also PCR-based methods are increasingly being applied for the direct detection of pathogens in clinical specimens. The aim of this overview is to present commonly used PCR methods in the clinical practice of rheumatology and to describe their benefits and limitations compared to culture-based detection methods. PMID:26892924

  2. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens.

    PubMed

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  3. [Arcobacter - an underestimated zoonotic pathogen?].

    PubMed

    Hänel, Ingrid; Tomaso, Herbert; Neubauer, Heinrich

    2016-06-01

    The relevance for public health of the agent Arcobacter is mostly unclear despite of an increasing number of studies. Recent evidence shows that especially Arcobacter (A.) butzleri but also A. cryaerophilus and A. skirrowii may be involved in human enteric diseases. However, little is currently known about pathogenicity or potential virulence factors. Livestock animals, particularly poultry and pigs, might be a significant reservoir of Arcobacter spp. Furthermore, Arcobacter spp. could be isolated from retail raw meat products of these animals as well as from drinking water. There are currently no standardized isolation and detection methods to collect comparable data. Further studies and efforts of both human and veterinary medicine are needed to elucidate prevalence, epidemiology, the pathogenic role and potential virulence factors of Arcobacter spp. These data are the necessary basis for further risk assessment. PMID:27177896

  4. APDS: Autonomous Pathogen Detection System

    SciTech Connect

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  5. Toll receptors and pathogen resistance.

    PubMed

    Takeda, Kiyoshi; Akira, Shizuo

    2003-03-01

    Toll receptors in insects, mammals and plants are key players that sense the invasion of pathogens. Toll-like receptors (TLRs) in mammals have been established to detect specific components of bacterial and fungal pathogens. Furthermore, recent evidence indicates that TLRs are involved in the recognition of viral invasion. Signalling pathways via TLRs originate from the conserved Toll/IL-1 receptor (TIR) domain. The TIR domain-containing MyD88 acts as a common adaptor that induces inflammatory cytokines; however, there exists a MyD88-independent pathway that induces type I IFNs in TLR4 and TLR3 signalling. Another TIR domain-containing adaptor, TIRAP/Mal has recently been shown to mediate the MyD88-dependent activation in the TLR4 and TLR2 signalling pathway. Thus, individual TLRs may have their own signalling systems that characterize their specific activities. PMID:12614458

  6. Bacteriophage biocontrol of foodborne pathogens.

    PubMed

    Kazi, Mustafa; Annapure, Uday S

    2016-03-01

    Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about 'edible viruses'. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as "biocontrol". PMID:27570260

  7. Diarrheagenic Pathogens in Polymicrobial Infections

    PubMed Central

    Lindsay, Brianna; Ramamurthy, T.; Sen Gupta, Sourav; Takeda, Yoshifumi; Rajendran, Krishnan; Nair, G. Balakrish

    2011-01-01

    During systematic active surveillance of the causes of diarrhea in patients admitted to the Infectious Diseases and Beliaghata General Hospital in Kolkata, India, we looked for 26 known gastrointestinal pathogens in fecal samples from 2,748 patients. Samples from about one-third (29%) of the patients contained multiple pathogens. Polymicrobial infections frequently contained Vibrio cholerae O1 and rotavirus. When these agents were present, some co-infecting agents were found significantly less often (p = 10–5 to 10–33), some were detected significantly more often (p = 10–5 to 10–26), and others were detected equally as often as when V. cholerae O1 or rotavirus was absent. When data were stratified by patient age and season, many nonrandom associations remained statistically significant. The causes and effects of these nonrandom associations remain unknown. PMID:21470448

  8. Plant innate immunity against human bacterial pathogens

    PubMed Central

    Melotto, Maeli; Panchal, Shweta; Roy, Debanjana

    2014-01-01

    Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens. PMID:25157245

  9. Taxonomy of bacterial fish pathogens

    PubMed Central

    2011-01-01

    Bacterial taxonomy has progressed from reliance on highly artificial culture-dependent techniques involving the study of phenotype (including morphological, biochemical and physiological data) to the modern applications of molecular biology, most recently 16S rRNA gene sequencing, which gives an insight into evolutionary pathways (= phylogenetics). The latter is applicable to culture-independent approaches, and has led directly to the recognition of new uncultured bacterial groups, i.e. "Candidatus", which have been associated as the cause of some fish diseases, including rainbow trout summer enteritic syndrome. One immediate benefit is that 16S rRNA gene sequencing has led to increased confidence in the accuracy of names allocated to bacterial pathogens. This is in marked contrast to the previous dominance of phenotyping, and identifications, which have been subsequently challenged in the light of 16S rRNA gene sequencing. To date, there has been some fluidity over the names of bacterial fish pathogens, with some, for example Vibrio anguillarum, being divided into two separate entities (V. anguillarum and V. ordalii). Others have been combined, for example V. carchariae, V. harveyi and V. trachuri as V. harveyi. Confusion may result with some organisms recognized by more than one name; V. anguillarum was reclassified as Beneckea and Listonella, with Vibrio and Listonella persisting in the scientific literature. Notwithstanding, modern methods have permitted real progress in the understanding of the taxonomic relationships of many bacterial fish pathogens. PMID:21314902

  10. Mapping population and pathogen movements

    PubMed Central

    Tatem, Andrew J.

    2014-01-01

    For most of human history, populations have been relatively isolated from each other, and only recently has there been extensive contact between peoples, flora and fauna from both old and new worlds. The reach, volume and speed of modern travel are unprecedented, with human mobility increasing in high income countries by over 1000-fold since 1800. This growth is putting people at risk from the emergence of new strains of familiar diseases, and from completely new diseases, while ever more cases of the movement of both disease vectors and the diseases they carry are being seen. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Equally however, we now have access to the most detailed and comprehensive datasets on human mobility and pathogen distributions ever assembled, in order to combat these threats. This short review paper provides an overview of these datasets, with a particular focus on low income regions, and covers briefly approaches used to combine them to help us understand and control some of the negative effects of population and pathogen movements. PMID:24480992

  11. Mapping population and pathogen movements.

    PubMed

    Tatem, Andrew J

    2014-03-01

    For most of human history, populations have been relatively isolated from each other, and only recently has there been extensive contact between peoples, flora and fauna from both old and new worlds. The reach, volume and speed of modern travel are unprecedented, with human mobility increasing in high income countries by over 1000-fold since 1800. This growth is putting people at risk from the emergence of new strains of familiar diseases, and from completely new diseases, while ever more cases of the movement of both disease vectors and the diseases they carry are being seen. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Equally however, we now have access to the most detailed and comprehensive datasets on human mobility and pathogen distributions ever assembled, in order to combat these threats. This short review paper provides an overview of these datasets, with a particular focus on low income regions, and covers briefly approaches used to combine them to help us understand and control some of the negative effects of population and pathogen movements. PMID:24480992

  12. Pathogenic properties of Edwardsiella species.

    PubMed Central

    Janda, J M; Abbott, S L; Kroske-Bystrom, S; Cheung, W K; Powers, C; Kokka, R P; Tamura, K

    1991-01-01

    The pathogenic characteristics of 35 Edwardsiella strains from clinical and environmental sources were investigated. Overall, most Edwardsiella tarda strains were invasive in HEp-2 cell monolayers, produced a cell-associated hemolysin and siderophores, and bound Congo red; many strains also expressed mannose-resistant hemagglutination against guinea pig erythrocytes. Edwardsiella hoshinae strains bound Congo red and were variable in their invasive and hemolytic capabilities while Edwardsiella ictaluri strains did not produce either factor; neither E. hoshinae nor E. ictaluri expressed mannose-resistant hemagglutination nor elaborated siderophores under the tested conditions. Selected strains of each species tested for mouse lethality indicated strain variability in pathogenic potential, with E. tarda strains being the most virulent; 50% lethal doses in individual strains did not correlate with plasmid content, chemotactic motility, serum resistance, or expression of selected enzyme activities. The results suggest some potential important differences in pathogenic properties that may help explain their environmental distribution and ability to cause disease in humans. Images PMID:1774326

  13. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  14. Foodborne pathogen detection using hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...

  15. Response of soybean pathogens to glyceollin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to recognize pathogens and respond biochemically to prevent or inhibit pathogen invasion and colonization in plant cells is an active disease resistance response in plants. The involvement of soybean phytoalexin glyceollin in defense responses to the soybean pathogens Diaporthe phaseolor...

  16. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism?

    PubMed

    Muraille, Eric; Leo, Oberdan; Moser, Muriel

    2014-01-01

    The classical view of the Th1/Th2 paradigm posits that the pathogen nature, infectious cycle, and persistence represent key parameters controlling the choice of effector mechanisms operating during an immune response. Thus, efficient Th1 responses are triggered by replicating intracellular pathogens, while Th2 responses would control helminth infection and promote tissue repair during the resolution phase of an infectious event. However, this vision does not account for a growing body of data describing how pathogens exploit the polarization of the host immune response to their own benefit. Recently, the study of macrophages has illustrated a novel aspect of this arm race between pathogens and the immune system, and the central role of macrophages in homeostasis, repair and defense of all tissues is now fully appreciated. Like T lymphocytes, macrophages differentiate into distinct effectors including classically (M1) and alternatively (M2) activated macrophages. Interestingly, in addition to represent immune effectors, M1/M2 cells have been shown to represent potential reservoir cells to a wide range of intracellular pathogens. Subversion of macrophage cell metabolism by microbes appears as a recently uncovered immune escape strategy. Upon infection, several microbial agents have been shown to activate host metabolic pathways leading to the production of nutrients necessary to their long-term persistence in host. The purpose of this review is to summarize and discuss the strategies employed by pathogens to manipulate macrophage differentiation, and in particular their basic cell metabolism, to favor their own growth while avoiding immune control. PMID:25505468

  17. Pathogen evolution under host avoidance plasticity.

    PubMed

    McLeod, David V; Day, Troy

    2015-09-01

    Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate. PMID:26336170

  18. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  19. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  20. Computational models in plant-pathogen interactions: the case of Phytophthora infestans

    PubMed Central

    2009-01-01

    Background Phytophthora infestans is a devastating oomycete pathogen of potato production worldwide. This review explores the use of computational models for studying the molecular interactions between P. infestans and one of its hosts, Solanum tuberosum. Modeling and conclusion Deterministic logistics models have been widely used to study pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological resolution levels. In recent years, owing to the availability of high throughput biological data and computational resources, interest in stochastic modeling of plant-pathogen interactions has grown. Stochastic models better reflect the behavior of biological systems. Most modern approaches to plant pathology modeling require molecular kinetics information. Unfortunately, this information is not available for many plant pathogens, including P. infestans. Boolean formalism has compensated for the lack of kinetics; this is especially the case where comparative genomics, protein-protein interactions and differential gene expression are the most common data resources. PMID:19909526

  1. Isolation and Characterization of Trichoderma spp. for Antagonistic Activity Against Root Rot and Foliar Pathogens.

    PubMed

    Kumar, Krishna; Amaresan, N; Bhagat, S; Madhuri, K; Srivastava, R C

    2012-06-01

    Trichoderma, soil-borne filamentous fungi, are capable of parasitising several plant pathogenic fungi. Twelve isolates of Trichoderma spp. isolated from different locations of South Andaman were characterized for their cultural, morphological and antagonistic activity against soil borne and foliar borne pathogens. The sequencing of these isolates showed seven different species. The isolates revealed differential reaction patterns against the test pathogens viz., Sclerotium rolfsii, Colletotrichum gloeosporioides and C. capsici. However, the isolates, TND1, TWN1, TWC1, TGD1 and TSD1 were most effective in percentage inhibition of mycelial growth of test pathogens. Significant chitinase and β-1,3-glucanase activities of all Trichoderma isolates has been recorded in growth medium. T. viride was found with highest chitinase whereas T. harzianum was recorded with highest β-1,3-glucanase activities. PMID:23729873

  2. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens

    PubMed Central

    Keating, Rachael; McGargill, Maureen Ann

    2016-01-01

    Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases. PMID:27242787

  3. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens.

    PubMed

    Keating, Rachael; McGargill, Maureen Ann

    2016-01-01

    Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases. PMID:27242787

  4. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    PubMed

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  5. Hyphal chemotropism in fungal pathogenicity.

    PubMed

    Turrà, David; Nordzieke, Daniela; Vitale, Stefania; El Ghalid, Mennat; Di Pietro, Antonio

    2016-09-01

    The ability to grow as filamentous hyphae defines the lifestyle of fungi. Hyphae are exposed to a variety of chemical stimuli such as nutrients or signal molecules from mating partners and host organisms. How fungi sense and process this chemical information to steer hyphal growth is poorly understood. Saccharomyces cerevisiae and Neurospora crassa have served as genetic models for the identification of cellular components functioning in chemotropism. A recent study in the pathogen Fusarium oxysporum revealed distinct MAPK pathways governing hyphal growth towards nutrient sources and sex pheromones or plant signals, suggesting an unanticipated complexity of chemosensing during fungus-host interactions. PMID:27150623

  6. The Autonomous Pathogen Detection System

    SciTech Connect

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  7. Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea.

    PubMed

    Wai, Khin Pa Pa; Siddique, Muhammad Irfan; Mo, Hwang-Sung; Yoo, Hee Ju; Byeon, Si-Eun; Jegal, Yoonhyuk; Mekuriaw, Alebel A; Kim, Byung-Soo

    2015-12-01

    Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying Bs1 , Bs2 and Bs3 , and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047. PMID:26674555

  8. Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

    PubMed Central

    Wai, Khin Pa Pa; Siddique, Muhammad Irfan; Mo, Hwang-Sung; Yoo, Hee Ju; Byeon, Si-Eun; Jegal, Yoonhyuk; Mekuriaw, Alebel A.; Kim, Byung-Soo

    2015-01-01

    Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying Bs1, Bs2 and Bs3, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047. PMID:26674555

  9. How old are bacterial pathogens?

    PubMed Central

    2016-01-01

    Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis. Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases. PMID:27534956

  10. [Major pathogenic links of atherosclerosis].

    PubMed

    Antelava, N A; Pachkoriia, K Z; Kezeli, T D; Nikuradze, N S; Shamkulashvili, G G

    2005-11-01

    The experimental and clinical data concerning pathogenesis of the atherosclerosis are summarized and analyzed in this article. Major concepts that explain initiation and progressive growth of atherosclerosis such as lipid infiltrations, response to disturbing factors, "response on the keeping of particles" and inflammatory processes are discussed. These concepts are considered as base for integral theory of atherosclerosis according which the inflammatory process in atherosclerosis are the result of the universal response reaction of endothelium to the various disturbing risk factors. Chronic inflammation leads to complex cellular and molecular interactions among cells derived from the endothelium, smooth muscle and several blood cell components and causes oxidative stress, proliferation of smooth muscle cells, oxidative modification of LDL, uptake and macrophage foam cell formation, endothelium dysfunction. Major pathogenic links of atherosclerosis, such as inflammation, oxidative stress, oxidative modification of LDL, lipid infiltration, endothelial dysfunction closely interact, forming close vicious circles which leads to metabolic and morphological disturbances, re-modulation of blood vessels, cardiovascular diseases and such complication as cardiac infarction and stroke. Pathogenic peculiarities of atherosclerosis are the theoretic base to the elaboration of therapeutic strategy. Endothelium may be discussed as a new therapeutic target in atherosclerosis. So far as the leukotrienes play an important role in inflammatory processes, it is suggested that the leukotrienes may be as a potential therapeutic target in cardiovascular diseases. PMID:16369071

  11. How old are bacterial pathogens?

    PubMed

    Achtman, Mark

    2016-08-17

    Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases. PMID:27534956

  12. Lantibiotic production by pathogenic microorganisms.

    PubMed

    Daly, Karen M; Cotter, Paul D; Hill, Colin; Ross, R Paul

    2012-09-01

    Lantibiotics are ribosomally synthesised, post-translationally modified antimicrobial peptides produced by Gram positive bacteria, many which have broad-ranging antimicrobial activities. Lantibiotics have long been the subject of investigation with a view to their application as food preservatives or chemotherapeutic agents for clinical and veterinary medicine, while the associated biosynthetic machinery has been employed for peptide engineering purposes. However, although many lantibiotics are produced by generally regarded as safe or food-grade bacteria, it is increasingly apparent that a number of Gram positive pathogens, including strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans, Streptococcus uberis and Enterococcus faecalis, also produce these compounds. It is proposed that production of these antimicrobials may provide the associated microorganisms with a competitive advantage when colonizing/infecting a host, thereby enhancing the virulence of the producing strain. Here we review the production of lantibiotics by these pathogens and discuss how their production may contribute to their disease-causing potential. PMID:22708496

  13. Enteric pathogens through life stages

    PubMed Central

    Kolling, Glynis; Wu, Martin; Guerrant, Richard L.

    2012-01-01

    Enteric infections and diarrheal diseases constitute pervasive health burdens throughout the world, with rates being highest at the two ends of life. During the first 2–3 years of life, much of the disease burden may be attributed to infection with enteric pathogens including Salmonella, rotavirus, and many other bacterial, viral, and protozoan organisms; however, infections due to Clostridium difficile exhibit steady increases with age. Still others, like Campylobacter infections in industrialized settings are high in early life (<2 years old) and increase again in early adulthood (called the “second weaning” by some). The reasons for these differences undoubtedly reside in part in pathogen differences; however, host factors including the commensal intestinal microbial communities, immune responses (innate and acquired), and age-dependant shifts likely play important roles. Interplay of these factors is illustrated by studies examining changes in human gut microbiota with inflammatory bowel disease and irritable bowel syndrome. Recent gut microbial surveys have indicated dramatic shifts in gut microbial population structure from infants to young adults to the elders. An understanding of the evolution of these factors and their interactions (e.g., how does gut microbiota modulate the “inflamm-aging” process or vice versa) through the human life “cycle” will be important in better addressing and controlling these enteric infections and their consequences for both quality and quantity of life (often assessed as disability adjusted life-years or “DALYs”). PMID:22937528

  14. Pathogenic Th cell subsets in chronic inflammatory diseases.

    PubMed

    Kumagai, Jin; Hirahara, Kiyoshi; Nakayama, Toshinori

    2016-01-01

      CD4(+) T cells play central roles to appropriate protection against pathogens. While, they can also be pathogenic driving inflammatory diseases. Besides the classical model of differentiation of T helper 1 (Th1) and Th2 cells, various CD4(+) T cell subsets, including Th17, Th9, T follicular helper (Tfh) and T regulatory (Treg) cells, have been recognized recently. In this review, we will focus on how these various CD4(+) T cell subsets contribute to the pathogenesis of immune-mediated inflammatory diseases. We will also discuss various unique subpopulations of T helper cells that have been identified. Recent advancement of the basic immunological research revealed that T helper cells are plastic than we imagined. So, we will focus on the molecular mechanisms underlying the generation of the plasticity and heterogeneity of T helper cell subsets. These latest finding regarding T helper cell subsets has pushed us to reconsider the etiology of immune-mediated inflammatory diseases beyond the model based on the conventional Th1/Th2 balance. Toward this end, we put forward another model, "the pathogenic Th population disease induction model", as a possible mechanism for the induction and/or persistence of immune-mediated inflammatory diseases. PMID:27212597

  15. General and specialized media routinely employed for primary isolation of bacterial pathogens of fishes

    USGS Publications Warehouse

    Starliper, C.E.

    2008-01-01

    There are a number of significant diseases among cultured and free-ranging freshwater fishes that have a bacterial etiology; these represent a variety of gram-negative and gram-positive genera. Confirmatory diagnosis of these diseases involves primary isolation of the causative bacterium on bacteriologic media. Frequently used "general" bacteriologic media simply provide the essential nutrients for growth. For most of the major pathogens, however, there are differential and/or selective media that facilitate primary recovery. Some specialized media are available as "ready-to-use" from suppliers, while others must be prepared. Differential media employ various types of indicator systems, such as pH indicators, that allow diagnosticians to observe assimilation of selected substrates. An advantage to the use of differential media for primary isolation is that they hasten bacterial characterization by yielding the appropriate positive or negative result for a particular substrate, often leading to a presumptive identification. Selective media also incorporate agent(s) that inhibit the growth of contaminants typically encountered with samples from aquatic environments. Media that incorporate differential and/or selective components are ideally based on characters that are unique to the targeted bacterium, and their use can reduce the time associated with diagnosis and facilitate early intervention in affected fish populations. In this review, the concepts of general and differential/selective bacteriologic media and their use and development for fish pathogens are discussed. The media routinely employed for primary isolation of the significant bacterial pathogens of fishes are presented. ?? Wildlife Disease Association 2008.

  16. Plants versus pathogens: an evolutionary arms race

    PubMed Central

    Anderson, Jonathan P.; Gleason, Cynthia A.; Foley, Rhonda C.; Thrall, Peter H.; Burdon, Jeremy B.; Singh, Karam B.

    2011-01-01

    The analysis of plant–pathogen interactions is a rapidly moving research field and one that is very important for productive agricultural systems. The focus of this review is on the evolution of plant defence responses and the coevolution of their pathogens, primarily from a molecular-genetic perspective. It explores the evolution of the major types of plant defence responses including pathogen associated molecular patterns and effector triggered immunity as well as the forces driving pathogen evolution, such as the mechanisms by which pathogen lineages and species evolve. Advances in our understanding of plant defence signalling, stomatal regulation, R gene–effector interactions and host specific toxins are used to highlight recent insights into the coevolutionary arms race between pathogens and plants. Finally, the review considers the intriguing question of how plants have evolved the ability to distinguish friends such as rhizobia and mycorrhiza from their many foes. PMID:21743794

  17. Space: A Final Frontier for Vacuolar Pathogens.

    PubMed

    Case, Elizabeth Di Russo; Smith, Judith A; Ficht, Thomas A; Samuel, James E; de Figueiredo, Paul

    2016-05-01

    There is a fundamental gap in our understanding of how a eukaryotic cell apportions the limited space within its cell membrane. Upon infection, a cell competes with intracellular pathogens for control of this same precious resource. The struggle between pathogen and host provides us with an opportunity to uncover the mechanisms regulating subcellular space by understanding how pathogens modulate vesicular traffic and membrane fusion events to create a specialized compartment for replication. By comparing several important intracellular pathogens, we review the molecular mechanisms and trafficking pathways that drive two space allocation strategies, the formation of tight and spacious pathogen-containing vacuoles. Additionally, we discuss the potential advantages of each pathogenic lifestyle, the broader implications these lifestyles might have for cellular biology and outline exciting opportunities for future investigation. PMID:26842840

  18. Hard tick factors implicated in pathogen transmission.

    PubMed

    Liu, Xiang Ye; Bonnet, Sarah I

    2014-01-01

    Ticks are the most common arthropod vector, after mosquitoes, and are capable of transmitting the greatest variety of pathogens. For both humans and animals, the worldwide emergence or re-emergence of tick-borne disease is becoming increasingly problematic. Despite being such an important issue, our knowledge of pathogen transmission by ticks is incomplete. Several recent studies, reviewed here, have reported that the expression of some tick factors can be modulated in response to pathogen infection, and that some of these factors can impact on the pathogenic life cycle. Delineating the specific tick factors required for tick-borne pathogen transmission should lead to new strategies in the disruption of pathogen life cycles to combat emerging tick-borne disease. PMID:24498444

  19. Hyperspectral imaging for detecting pathogens grown on agar plates

    NASA Astrophysics Data System (ADS)

    Yoon, Seung Chul; Lawrence, Kurt C.; Siragusa, Gregory R.; Line, John E.; Park, Bosoon; Windham, William R.

    2007-09-01

    This paper is concerned with the development of a hyperspectral imaging technique for detecting and identifying one of the most common foodborne pathogens, Campylobacter. Direct plating using agars is an effective tool for laboratory tests and analyses of microorganisms. The morphology (size, growth pattern, color, etc.) of colonies grown on agar plates has been widely used to tentatively differentiate organisms. However, it is sometimes difficult to differentiate target organisms like Campylobacters from other contaminants grown together on the same agar plates. A hyperspectral imaging system operating at the visible and near infrared (VNIR) spectral region from 400 nm to 900 nm was set up to measure spectral signatures of 17 different Campylobacter and non-Campylobacter subspecies. Protocols for culturing, imaging samples and for calibrating measured data were developed. The VNIR spectral library of all 17 organisms commonly encountered in poultry was established from calibrated hyperspectral images. A classification algorithm was developed to locate and identify Campylobacters, non-Campylobacter contaminants, and background agars with 99.29% accuracy. This research has a potential to be expanded to detect other pathogens grown on agar media.

  20. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila

    PubMed Central

    Fonseca, Maris V.; Swanson, Michele S.

    2014-01-01

    The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication. PMID:24575391

  1. PAK in pathogen-host interactions

    PubMed Central

    Semblat, Jean-Philippe; Doerig, Christian

    2012-01-01

    Eukaryotic, prokaryotic and viral pathogens are known to interfere with signaling pathways of their host to promote their own survival and proliferation. Here, we present selected examples of modulation of PAK activity in human cells by both intracellular and extracellular pathogens, focusing on one eukaryotic pathogen, the human malaria parasite Plasmodium falciparum, two Gram-negative bacteria (Helicobacter pylori and Pseudomonas aeruginosa), and two viruses belonging to distinct groups, the lentivirus HIV and the orthomyxovirus Influenza virus A. PMID:23125952

  2. First airborne pathogen direct analysis system.

    PubMed

    Liu, Qi; Zhang, Yuxiao; Jing, Wenwen; Liu, Sixiu; Zhang, Dawei; Sui, Guodong

    2016-03-01

    We report a portable "sample to answer" system for the rapid detection of airborne pathogens for the first time. The system contains a key microfluidic chip which fulfills both pathogen enrichment and biological identification functions. The system realizes simple operation and less human intervention as well as minimum reagent contamination. The operation is user-friendly and suitable for field and point-of-care applications. The system is capable of handling detection of different pathogens by changing the primers. PMID:26854120

  3. Divergent and Convergent Evolution of Fungal Pathogenicity.

    PubMed

    Shang, Yanfang; Xiao, Guohua; Zheng, Peng; Cen, Kai; Zhan, Shuai; Wang, Chengshu

    2016-01-01

    Fungal pathogens of plants and animals have multifarious effects; they cause devastating damages to agricultures, lead to life-threatening diseases in humans, or induce beneficial effects by reducing insect pest populations. Many virulence factors have been determined in different fungal pathogens; however, the molecular determinants contributing to fungal host selection and adaptation are largely unknown. In this study, we sequenced the genomes of seven ascomycete insect pathogens and performed the genome-wide analyses of 33 species of filamentous ascomycete pathogenic fungi that infect insects (12 species), plants (12), and humans (9). Our results revealed that the genomes of plant pathogens encode more proteins and protein families than the insect and human pathogens. Unexpectedly, more common orthologous protein groups are shared between the insect and plant pathogens than between the two animal group pathogens. We also found that the pathogenicity of host-adapted fungi evolved multiple times, and that both divergent and convergent evolutions occurred during pathogen-host cospeciation thus resulting in protein families with similar features in each fungal group. However, the role of phylogenetic relatedness on the evolution of protein families and therefore pathotype formation could not be ruled out due to the effect of common ancestry. The evolutionary correlation analyses led to the identification of different protein families that correlated with alternate pathotypes. Particularly, the effector-like proteins identified in plant and animal pathogens were strongly linked to fungal host adaptation, suggesting the existence of similar gene-for-gene relationships in fungus-animal interactions that has not been established before. These results well advance our understanding of the evolution of fungal pathogenicity and the factors that contribute to fungal pathotype formation. PMID:27071652

  4. Chronic Bacterial Pathogens: Mechanisms of Persistence

    PubMed Central

    Byndloss, Mariana X.; Tsolis, Renee M

    2015-01-01

    Summary Many bacterial pathogens can cause acute infections that are cleared with onset of adaptive immunity, however a subset of these pathogens can establish persistent, and sometimes lifelong infections. While bacteria causing chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This chapter will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus, and Salmonella enterica serovar Typhi (S. Typhi) to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system. PMID:27227304

  5. Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia

    PubMed Central

    Caragata, Eric P.; Rancès, Edwige; Hedges, Lauren M.; Gofton, Alexander W.; Johnson, Karyn N.; O'Neill, Scott L.; McGraw, Elizabeth A.

    2013-01-01

    The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This “pathogen blocking” could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV), a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2–5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking. PMID:23825950

  6. Pathogen Inhibition by Multivalent Ligand Architectures.

    PubMed

    Bhatia, Sumati; Camacho, Luis Cuellar; Haag, Rainer

    2016-07-20

    Interfacial multivalent interactions at pathogen-cell interfaces can be competitively inhibited by multivalent scaffolds that prevent pathogen adhesion to the cells during the initial stages of infection. The lack of understanding of complex biological systems makes the design of an efficient multivalent inhibitor a toilsome task. Therefore, we have highlighted the main issues and concerns associated with blocking pathogen at interfaces, which are dependent on the nature and properties of both multivalent inhibitors and pathogens, such as viruses and bacteria. The challenges associated with different cores or carrier scaffolds of multivalent inhibitors are concisely discussed with selected examples. PMID:27341003

  7. A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders

    PubMed Central

    Karbassi, Izabela; Maston, Glenn A.; Love, Angela; DiVincenzo, Christina; Braastad, Corey D.; Elzinga, Christopher D.; Bright, Alison R.; Previte, Domenic; Zhang, Ke; Rowland, Charles M.; McCarthy, Michele; Lapierre, Jennifer L.; Dubois, Felicita; Medeiros, Katelyn A.; Batish, Sat Dev; Jones, Jeffrey; Liaquat, Khalida; Hoffman, Carol A.; Jaremko, Malgorzata; Wang, Zhenyuan; Sun, Weimin; Buller‐Burckle, Arlene; Strom, Charles M.; Keiles, Steven B.

    2015-01-01

    ABSTRACT We developed a rules‐based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co‐occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re‐evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting. PMID:26467025

  8. Innate Defense against Fungal Pathogens

    PubMed Central

    Drummond, Rebecca A.; Gaffen, Sarah L.; Hise, Amy G.; Brown, Gordon D.

    2014-01-01

    Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modem medical interventions, disease induced immunosuppression, and naturally occurring human mutations. The innate im mune system is weII equipped to recognize and destroy pathogeni cf ungi through speciaIized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes. PMID:25384766

  9. The Candida Pathogenic Species Complex

    PubMed Central

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  10. A streptomycete pathogenic to fish

    USGS Publications Warehouse

    Rucker, R.R.

    1949-01-01

    A streptomycete and pseutdomonad were isolated from blueback salmon, Oncorhynchuis nerka (WValbaum), and shown to be pathogenic to fish. Trhese organisms were isolated from young blueback salmon taken from a gr'oup that developed an increasing mortality after feeding about a month at the United States Fishery Station, Leavenworth, Washington. A superficial examination revealed only the presence of fungus (probably Sap0olcynia parasitica), which wvas on the gills and was eliminated by treatment with a quaternary ammonium salt. Although the fungus infection was eliminated, the mortality continued. It was observed by the station biologist at the time that the majority of the fish in the hatchery troughs were healthy, but that there w-as alwzays present an apathetic group that hud(dled on the bottom, refused food, ancl eventually weakene(l and died. The bulk of the daily mortality was composedI of fish from this group. The apathetic group received constant recruitment from the more vigorous stock, and their number showed a gradual increase rather than clepletion. A more critical examination of the larger affected fish revealedl that thc kICidneys and spleens weIe disintegrating; mycelial masses w-ere sporadically observed in the body cavity; congestion wN-as present in the gastrointestinal tract; some hemorrhagic areas were present in the body musculature; an(l a few fish had a perforating ulceration of the body wall. Furi'unculosis was immediately suspected, and attempts were made to isolate from the diseaseti fish Bacteriim .salininicida Lehmann and Netumann, the etiological agent of furunculosis. B. salmornicida Awas not recovered, however, even after repeated attempts at isolation. Subsequently it was discovered that two other organisms, a streptomycete and a pseudomonad, were characteristically present in the diseased fish. Both organisms were found experimentally to be pathogenic to fish.

  11. Pathogenic roles for fungal melanins.

    PubMed

    Jacobson, E S

    2000-10-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H(2)O(2). Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  12. Pathogenic Roles for Fungal Melanins

    PubMed Central

    Jacobson, Eric S.

    2000-01-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  13. Mapping epigenetic changes to the host cell genome induced by Burkholderia pseudomallei reveals pathogen-specific and pathogen-generic signatures of infection.

    PubMed

    Cizmeci, Deniz; Dempster, Emma L; Champion, Olivia L; Wagley, Sariqa; Akman, Ozgur E; Prior, Joann L; Soyer, Orkun S; Mill, Jonathan; Titball, Richard W

    2016-01-01

    The potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection. Infection induced differentially methylated probes (iDMPs) showing the greatest changes in DNA methylation were found to be in the vicinity of genes involved in inflammatory responses, intracellular signalling, apoptosis and pathogen-induced signalling. A comparison of our data with reported methylome changes in cells infected with M. tuberculosis revealed commonality of differentially methylated genes, including genes involved in T cell responses (BCL11B, FOXO1, KIF13B, PAWR, SOX4, SYK), actin cytoskeleton organisation (ACTR3, CDC42BPA, DTNBP1, FERMT2, PRKCZ, RAC1), and cytokine production (FOXP1, IRF8, MR1). Overall our findings show that pathogenic-specific and pathogen-common changes in the methylome occur following infection. PMID:27484700

  14. Mapping epigenetic changes to the host cell genome induced by Burkholderia pseudomallei reveals pathogen-specific and pathogen-generic signatures of infection

    PubMed Central

    Cizmeci, Deniz; Dempster, Emma L.; Champion, Olivia L.; Wagley, Sariqa; Akman, Ozgur E.; Prior, Joann L.; Soyer, Orkun S.; Mill, Jonathan; Titball, Richard W.

    2016-01-01

    The potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection. Infection induced differentially methylated probes (iDMPs) showing the greatest changes in DNA methylation were found to be in the vicinity of genes involved in inflammatory responses, intracellular signalling, apoptosis and pathogen-induced signalling. A comparison of our data with reported methylome changes in cells infected with M. tuberculosis revealed commonality of differentially methylated genes, including genes involved in T cell responses (BCL11B, FOXO1, KIF13B, PAWR, SOX4, SYK), actin cytoskeleton organisation (ACTR3, CDC42BPA, DTNBP1, FERMT2, PRKCZ, RAC1), and cytokine production (FOXP1, IRF8, MR1). Overall our findings show that pathogenic-specific and pathogen-common changes in the methylome occur following infection. PMID:27484700

  15. Differential regional immune response in Chagas disease.

    PubMed

    de Meis, Juliana; Morrot, Alexandre; Farias-de-Oliveira, Désio Aurélio; Villa-Verde, Déa Maria Serra; Savino, Wilson

    2009-01-01

    Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection. PMID:19582140

  16. Divergent and Convergent Evolution of Fungal Pathogenicity

    PubMed Central

    Shang, Yanfang; Xiao, Guohua; Zheng, Peng; Cen, Kai; Zhan, Shuai; Wang, Chengshu

    2016-01-01

    Fungal pathogens of plants and animals have multifarious effects; they cause devastating damages to agricultures, lead to life-threatening diseases in humans, or induce beneficial effects by reducing insect pest populations. Many virulence factors have been determined in different fungal pathogens; however, the molecular determinants contributing to fungal host selection and adaptation are largely unknown. In this study, we sequenced the genomes of seven ascomycete insect pathogens and performed the genome-wide analyses of 33 species of filamentous ascomycete pathogenic fungi that infect insects (12 species), plants (12), and humans (9). Our results revealed that the genomes of plant pathogens encode more proteins and protein families than the insect and human pathogens. Unexpectedly, more common orthologous protein groups are shared between the insect and plant pathogens than between the two animal group pathogens. We also found that the pathogenicity of host-adapted fungi evolved multiple times, and that both divergent and convergent evolutions occurred during pathogen–host cospeciation thus resulting in protein families with similar features in each fungal group. However, the role of phylogenetic relatedness on the evolution of protein families and therefore pathotype formation could not be ruled out due to the effect of common ancestry. The evolutionary correlation analyses led to the identification of different protein families that correlated with alternate pathotypes. Particularly, the effector-like proteins identified in plant and animal pathogens were strongly linked to fungal host adaptation, suggesting the existence of similar gene-for-gene relationships in fungus–animal interactions that has not been established before. These results well advance our understanding of the evolution of fungal pathogenicity and the factors that contribute to fungal pathotype formation. PMID:27071652

  17. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  18. Application of complementation tests in identifying pathogenicity determinants of the chickpea pathogen Ascochyta rabiei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The necrotrophic pathogen Ascochyta rabiei causes chickpea Ascochyta blight. Very little is known about its pathogenicity mechanisms. The objective of this research was to identify pathogenicity determinants of A. rabiei using complementation tests. The hygromycin-resistant mutant ArW519 was non-pa...

  19. Impact of seasonality upon the dynamics of a novel pathogen in a seabird colony

    NASA Astrophysics Data System (ADS)

    O'Regan, S. M.

    2008-11-01

    A seasonally perturbed variant of the basic Susceptible-Infected-Recovered (SIR) model in epidemiology is considered in this paper. The effect of seasonality on an IR system of ordinary differential equations describing the dynamics of a novel pathogen, e.g., highly pathogenic avian influenza, in a seabird colony is investigated. The method of Lyapunov functions is used to determine the long-term behaviour of this system. Numerical simulations of the seasonally perturbed IR system indicate that the system exhibits complex dynamics as the amplitude of the seasonal perturbation term is increased. These findings suggest that seasonality may exert a considerable effect on the dynamics of epidemics in a seabird colony.

  20. Immunity to plant pathogens and iron homeostasis.

    PubMed

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. PMID:26475190