Science.gov

Sample records for gravitational-wave standard sirens

  1. Beyond concordance cosmology with magnification of gravitational-wave standard sirens.

    PubMed

    Camera, Stefano; Nishizawa, Atsushi

    2013-04-12

    We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer. PMID:25167243

  2. Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-03-01

    Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z ˜5 . To extract cosmological information, previously proposed cosmological studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time consuming and rather challenging. Here, we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that, once GW observations will be well established in the future, (i) these anisotropies can be measured even at very high redshifts (z ≥2 ), where the identification of the electromagnetic counterpart is difficult, (ii) the expected constraints on the primordial non-Gaussianity with the Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, and (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance, providing additional cosmological information at very high redshifts.

  3. Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information.

    PubMed

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-03-25

    Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z∼5. To extract cosmological information, previously proposed cosmological studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time consuming and rather challenging. Here, we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that, once GW observations will be well established in the future, (i) these anisotropies can be measured even at very high redshifts (z≥2), where the identification of the electromagnetic counterpart is difficult, (ii) the expected constraints on the primordial non-Gaussianity with the Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, and (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance, providing additional cosmological information at very high redshifts. PMID:27058068

  4. Anisotropies of gravitational-wave standard sirens as a new cosmological probe without redshift information

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Namikawa, Toshiya; Taruya, Atsushi

    2016-03-01

    Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z 5. To extract cosmological information, previous studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time-consuming and rather challenging. Here we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that (i) this anisotropies can be measured even at very high-redshifts (z = 2), (ii) the expected constraints on the primordial non-Gaussianity with Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance. A.N. was supported by JSPS Postdoctoral Fellowships for Research Abroad No. 25-180.

  5. EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS

    SciTech Connect

    Nissanke, Samaya; Dalal, Neal; Sievers, Jonathan L.; Holz, Daniel E.; Hughes, Scott A.

    2010-12-10

    Recent observations support the hypothesis that a large fraction of 'short-hard' gamma-ray bursts (SHBs) are associated with the inspiral and merger of compact binaries. Since gravitational-wave (GW) measurements of well-localized inspiraling binaries can measure absolute source distances, simultaneous observation of a binary's GWs and SHB would allow us to directly and independently determine both the binary's luminosity distance and its redshift. Such a 'standard siren' (the GW analog of a standard candle) would provide an excellent probe of the nearby (z {approx}< 0.3) universe's expansion, independent of the cosmological distance ladder, thereby complementing other standard candles. Previous work explored this idea using a simplified formalism to study measurement by advanced GW detector networks, incorporating a high signal-to-noise ratio limit to describe the probability distribution for measured parameters. In this paper, we eliminate this simplification, constructing distributions with a Markov Chain Monte Carlo technique. We assume that each SHB observation gives source sky position and time of coalescence, and we take non-spinning binary neutron star and black hole-neutron star coalescences as plausible SHB progenitors. We examine how well parameters (particularly distance) can be measured from GW observations of SHBs by a range of ground-based detector networks. We find that earlier estimates overstate how well distances can be measured, even at fairly large signal-to-noise ratio. The fundamental limitation to determining distance proves to be a degeneracy between distance and source inclination. Overcoming this limitation requires that we either break this degeneracy, or measure enough sources to broadly sample the inclination distribution.

  6. Tracing the redshift evolution of Hubble parameter with gravitational-wave standard sirens

    SciTech Connect

    Nishizawa, Atsushi; Taruya, Atsushi; Saito, Shun

    2011-04-15

    Proposed space-based gravitational-wave detectors such as BBO and DECIGO can detect {approx}10{sup 6} neutron star (NS) binaries and determine the luminosity distance to the binaries with high precision. Combining the luminosity distance and electromagnetically derived redshift, one would be able to probe cosmological expansion out to high redshift. In this paper, we show that the Hubble parameter as a function of redshift can be directly measured with monopole and dipole components of the luminosity distance on the sky. As a result, the measurement accuracies of the Hubble parameter in each redshift bin up to z=1 are 3-14%, 1.5-8%, and 0.8-4% for the observation time 1 yr, 3 yr, and 10 yr, respectively.

  7. Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens

    NASA Astrophysics Data System (ADS)

    Tamanini, Nicola; Caprini, Chiara; Barausse, Enrico; Sesana, Alberto; Klein, Antoine; Petiteau, Antoine

    2016-04-01

    We investigate the capability of various configurations of the space interferometer eLISA to probe the late-time background expansion of the universe using gravitational wave standard sirens. We simulate catalogues of standard sirens composed by massive black hole binaries whose gravitational radiation is detectable by eLISA, and which are likely to produce an electromagnetic counterpart observable by future surveys. The main issue for the identification of a counterpart resides in the capability of obtaining an accurate enough sky localisation with eLISA. This seriously challenges the capability of four-link (2 arm) configurations to successfully constrain the cosmological parameters. Conversely, six-link (3 arm) configurations have the potential to provide a test of the expansion of the universe up to z ~ 8 which is complementary to other cosmological probes based on electromagnetic observations only. In particular, in the most favourable scenarios, they can provide a significant constraint on H0 at the level of 0.5%. Furthermore, (ΩM, ΩΛ) can be constrained to a level competitive with present SNIa results. On the other hand, the lack of massive black hole binary standard sirens at low redshift allows to constrain dark energy only at the level of few percent.

  8. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune

    2016-04-01

    Gravitational waves from inspiraling compact binaries are known to be an excellent absolute distance indicator, yet it is unclear whether electromagnetic counterparts of these events are securely identified for measuring their redshifts, especially in the case of black hole-black hole mergers such as the one recently observed with the Advanced LIGO. We propose to use the cross-correlation between spatial distributions of gravitational wave sources and galaxies with known redshifts as an alternative means of constraining the distance-redshift relation from gravitational waves. In our analysis, we explicitly include the modulation of the distribution of gravitational wave sources due to weak gravitational lensing. We show that the cross-correlation analysis in next-generation observations will be able to tightly constrain the relation between the absolute distance and the redshift and therefore constrain the Hubble constant as well as dark energy parameters.

  9. Optical frequency standards for gravitational wave detection using satellite velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-04-01

    Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.

  10. Gravitational wave background from Standard Model physics: qualitative features

    SciTech Connect

    Ghiglieri, J.; Laine, M.

    2015-07-16

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T>160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.

  11. Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model

    SciTech Connect

    Kadota, Kenji; Kawasaki, Masahiro; Saikawa, Ken’ichi

    2015-10-16

    The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.

  12. Optical frequency standards for gravitational wave detection using satellite Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-06-01

    Gravitational waves (GWs) imprint apparent Doppler shifts on the frequency of photons propagating between an emitter and detector of light. This forms the basis of a method to detect GWs using Doppler velocimetry between pairs of satellites. Operating in the micro-hertz to milli-hertz gravitational frequency band, this method could lead to the direct detection of GWs. The crucial component in such detectors is the frequency standard on board the emitting and receiving satellites. Recent developments in atomic frequency standards have led to devices that are approaching the sensitivity required to detect GWs from astrophysically interesting sources. The sensitivity of satellites equipped with optical frequency standards for Doppler velocimetry is examined, and a design for a robust, space-capable optical frequency standard is presented.

  13. Astrophysical calibration of gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Messenger, C.; Wright, L.

    2016-03-01

    We investigate a method to assess the validity of gravitational-wave detector calibration through the use of gamma-ray bursts as standard sirens. Such signals, as measured via gravitational-wave observations, provide an estimated luminosity distance that is subject to uncertainties in the calibration of the data. If a host galaxy is identified for a given source then its redshift can be combined with current knowledge of the cosmological parameters yielding the true luminosity distance. This will then allow a direct comparison with the estimated value and can validate the accuracy of the original calibration. We use simulations of individual detectable gravitational-wave signals from binary neutron star (BNS) or neutron star-black hole systems, which we assume to be found in coincidence with short gamma-ray bursts, to estimate any discrepancy in the overall scaling of the calibration for detectors in the Advanced LIGO and Advanced Virgo network. We find that the amplitude scaling of the calibration for the LIGO instruments could on average be confirmed to within ˜10 % for a BNS source within 100 Mpc. This result is largely independent of the current detector calibration method and gives an uncertainty that is competitive with that expected in the current calibration procedure. Confirmation of the calibration accuracy to within ˜20 % can be found with BNS sources out to ˜500 Mpc .

  14. Gravitational wave production from the decay of the standard model Higgs field after inflation

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; García-Bellido, Juan; Torrentí, Francisco

    2016-05-01

    During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying nonperturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GWs). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons W± and Z . We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and postinflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents, however, only a tiny fraction of the inflationary energy. Consequently, the resulting background is highly suppressed, with an amplitude h2ΩGW(o )≲1 0-29 today. The amplitude can be boosted to h2ΩGW(o )≲1 0-16 , if following inflation the universe undergoes a kination-domination stage; however, the background is shifted in this case to high frequencies fp≲1011 Hz . In all cases the signal is out of the range of current or planned GW detectors. This background will therefore remain, most likely, as a curiosity of the SM.

  15. Detectors of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    Gravitational waves Motion of test bodies in a g.w. field Energy carried by gravitational waves Gravitational-wave sources Spinning star Double-star systems Fall into a Schwarzschild black hole Radiation from gravitational collapse Gravitational-wave detectors The nonresonant detectors The resonant detectors Electromechnical transducers Piezoelectric ceramic The capacitor The inductor Data analysis The Brownian noise The back-action The wide-band noise, data analysis and optimization The resonant transducer The Wiener-Kolmogoroff filter The cross-section and the effective temperature The antenna bandwidth The gravitational-wave experiments in the world The laser interferometers The resonant detectors

  16. Gravitational Wave Propulsion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio

    2005-02-01

    There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated

  17. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  18. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  19. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  20. Progress in gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Cheng, Jing-Quan; Yang, De-Hua

    2005-09-01

    General theory of Einstein's relativity predicts the existence of gravitational wave when mass is accelerated. However, no material has direct effect when the gravitational wave passes. Therefore, gravitational wave can only be detected indirectly. The effort in gravitational wave detection was started in the 60s of last century by using a huge cylinder of aluminum. This paper introduced all the relevant projects in the gravitational wave detection. These projects include Weber's bar, Laser interferometer Gravitational wave Detector (LGD), Laser Interferometer Gravitational wave Observatory (LIGO), GEO600, VIRGO, TAMA300, Advanced LIGO, Large scale Cryogenic Gravitational wave Telescope (LCGO), and Laser Interferometer Space Antenna (LISA).

  1. Gravitational-wave joy

    NASA Astrophysics Data System (ADS)

    seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi

    2016-03-01

    In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).

  2. Observation of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2016-06-01

    On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.

  3. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  4. Conformal Gravity and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; Paranjape, M. B.

    We consider monochromatic, plane gravitational waves in a conformally invariant theory of general relativity. We show that the simple, standard ansatz for the metric, usually that which is taken for the linearized theory of these waves, is reducible to the metric of Minkowski spacetime via a sequence of conformal and coordinate transformations. This implies that we have in fact, exact plane wave solutions. However they are simply coordinate/conformal artifacts. As a consequence, they carry no energy.

  5. Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel

    2012-03-01

    If two black holes collide in a vacuum, can they be observed? Until recently, the answer would have to be "no." After all, how would we observe them? Black holes are "naked" mass: pure mass, simple mass, mass devoid of any matter whose interactions might lead to the emission of photons or neutrinos, or any electromagnetic fields that might accelerate cosmic rays or leave some other signature that we could observe in our most sensitive astronomical instruments. Still, black holes do have mass. As such, they interact—like all mass—gravitationally. And the influence of gravity, like all influences, propagates no faster than that universal speed we first came to know as the speed of light. The effort to detect that propagating influence, which we term as gravitational radiation or gravitational waves, was initiated just over 50 years ago with the pioneering work of Joe Weber [1] and has been the object of increasingly intense experimental effort ever since. Have we, as yet, detected gravitational waves? The answer is still "no." Nevertheless, the accumulation of the experimental efforts begun fifty years ago has brought us to the point where we can confidently say that gravitational waves will soon be detected and, with that first detection, the era of gravitational wave astronomy—the observational use of gravitational waves, emitted by heavenly bodies—will begin. Data analysis for gravitational wave astronomy is, today, in its infancy and its practitioners have much to learn from allied fields, including machine learning. Machine learning tools and techniques have not yet been applied in any extensive or substantial way to the study or analysis of gravitational wave data. It is fair to say that this owes principally to the fields relative youth and not to any intrinsic unsuitability of machine learning tools to the analysis problems the field faces. Indeed, the nature of many of the analysis problems faced by the field today cry-out for the application of

  6. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  7. Gravitational wave astronomy and cosmology

    NASA Astrophysics Data System (ADS)

    Hughes, Scott A.

    2014-09-01

    The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.

  8. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  9. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  10. Sources of gravitational waves

    NASA Technical Reports Server (NTRS)

    Schutz, Bernard F.

    1989-01-01

    Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.

  11. Scalar Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  12. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  13. Quantum Emulation of Gravitational Waves

    PubMed Central

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  14. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  15. Gravitational-wave sensitivity curves

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Cole, R. H.; Berry, C. P. L.

    2015-01-01

    There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.

  16. Quantum Opportunities in Gravitational Wave Detectors

    SciTech Connect

    Mavalvala, Negris

    2012-03-14

    Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.

  17. Multibaseline gravitational wave radiometry

    SciTech Connect

    Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit

    2011-03-15

    We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.

  18. Gravitational wave astronomy using spaceborne detectors

    NASA Astrophysics Data System (ADS)

    Rubbo, Louis Joseph, IV

    . The final original work reported here is a Monte Carlo simulation of the galactic gravitational wave background as it will be observed by LISA. Using this simulation a number of characteristics of the background are calculated, including estimates the number and type of sources LISA will be able to identify, and the average distance in frequency space between bright sources. Also given is a demonstration of how a standard Gaussian test can be used to distinguish the galactic background from the intrinsic detector noise.

  19. Gravitational waves in fourth order gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; Stabile, A.

    2015-08-01

    In the post-Minkowskian limit approximation, we study gravitational wave solutions for general fourth-order theories of gravity. Specifically, we consider a Lagrangian with a generic function of curvature invariants . It is well known that when dealing with General Relativity such an approach provides massless spin-two waves as propagating degree of freedom of the gravitational field while this theory implies other additional propagating modes in the gravity spectra. We show that, in general, fourth order gravity, besides the standard massless graviton is characterized by two further massive modes with a finite-distance interaction. We find out the most general gravitational wave solutions in terms of Green functions in vacuum and in presence of matter sources. If an electromagnetic source is chosen, only the modes induced by are present, otherwise, for any gravity model, we have the complete analogy with tensor modes of General Relativity. Polarizations and helicity states are classified in the hypothesis of plane wave.

  20. The Siren

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2004-10-01

    One evening in the fall of 1964, early in my first semester of teaching physics at Kenyon College, I decided to try out the siren in Fig. 1. In those days we had a compressed air line in the lecture hall, and I connected the siren to it. It gave out a satisfyingly loud scream like a legion of cats having their tails stepped on, and within seconds the entire campus security force (two men) arrived in the lecture hall asking about the emergency. I have not done the demonstration since. The siren is a blessing and a curse of modern life. It is used to warn us of approaching storms, and also of overtaking police cars. However, it began as a scientific instrument in the first part of the 19th century.

  1. Separating Gravitational Wave Signals from Instrument Artifacts

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Cornish, Neil J.

    2010-01-01

    Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or "glitches" complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic "glitch fitting" using wavelets as "glitch templates", the number of which is determined by a trans-dimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black hole systems, and simulated non-stationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.

  2. Separating gravitational wave signals from instrument artifacts

    SciTech Connect

    Littenberg, Tyson B.; Cornish, Neil J.

    2010-11-15

    Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or ''glitches'' complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic glitch fitting using wavelets as glitch templates, the number of which is determined by a transdimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black-hole systems, and simulated nonstationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.

  3. Testing gravity with gravitational wave source counts

    NASA Astrophysics Data System (ADS)

    Calabrese, Erminia; Battaglia, Nicholas; Spergel, David N.

    2016-08-01

    We show that the gravitational wave source counts distribution can test how gravitational radiation propagates on cosmological scales. This test does not require obtaining redshifts for the sources. If the signal-to-noise ratio (ρ) from a gravitational wave source is proportional to the strain then it falls as {R}-1, thus we expect the source counts to follow {{d}}{N}/{{d}}ρ \\propto {ρ }-4. However, if gravitational waves decay as they propagate or propagate into other dimensions, then there can be deviations from this generic prediction. We consider the possibility that the strain falls as {R}-γ , where γ =1 recovers the expected predictions in a Euclidean uniformly-filled Universe, and forecast the sensitivity of future observations to deviations from standard General Relativity. We first consider the case of few objects, seven sources, with a signal-to-noise from 8 to 24, and impose a lower limit on γ, finding γ \\gt 0.33 at 95% confidence level. The distribution of our simulated sample is very consistent with the distribution of the trigger events reported by Advanced LIGO. Future measurements will improve these constraints: with 100 events, we estimate that γ can be measured with an uncertainty of 15%. We generalize the formalism to account for a range of chirp masses and the possibility that the signal falls as {exp}(-R/{R}0)/{R}γ .

  4. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  5. Merging Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  6. Hunting gravitational waves using pulsars

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2014-10-01

    With the first direct detection of gravitational waves at the top of many physicists' wish list, Louise Mayor describes how radio astronomers are hoping to reveal these ripples in space-time by pointing their telescopes at an array of distant pulsars.

  7. Testing local Lorentz invariance with gravitational waves

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Mewes, Matthew

    2016-06-01

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.

  8. Gravitational Wave Search with the Clock Mission

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Doppler tracking of distant spacecraft is the only method currently available to search for gravitational waves in the low-frequency (approx. 0.0001-0.1 Hz) band. In this technique the Doppler system measures the relative dimensionless velocity 2(delta)v/c = (delta)f/f(sub o) between the earth and the spacecraft as a function of time, where (delta)f is the frequency perturbation and f(sub o) is the nominal frequency of the radio link. A gravitational wave of amplitude h incident on this system causes small frequency perturbations, of order h in (delta)f/f(sub o), replicated three times in the observed record (Estabrook and Wahlquist 1975). All experiments to date and those planned for the near future involve only 'two-way' Doppler-i.e., uplink signal coherently transponded by the spacecraft with Doppler measured using a frequency standard common to the transmit and receive chains of the ground station. If, as on the proposed Clock Mission, there is an additional frequency standard on the spacecraft and a suitable earth-spacecraft radio system, some noise sources can be isolated and removed from the data (Vessot and Levine 1978). Supposing that the Clock Mission spacecraft is transferred into a suitable interplanetary orbit, I discuss here how the on-board frequency standard could be employed with an all-Ka-band radio system using the very high stability Deep Space Network station DSS 25 being instrumented for Cassini. With this configuration, the Clock Mission could search for gravitational waves at a sensitivity limited by the frequency standards, rather than plasma or tropospheric scintillation effects, whenever the sun-earth-spacecraft angle is greater than 90 degrees.

  9. The Japanese space gravitational wave antenna - DECIGO

    NASA Astrophysics Data System (ADS)

    Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, Koh-Suke; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M.-K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F.-L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K.-i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S.-i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K.-i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C.-M.; Yoshida, S.; Yoshino, T.

    2008-07-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies.

  10. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  11. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  12. Theory and detection of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    The role of gravitational waves in general relativity is examined. It is found that the gravitational waves are a particular solution of the Einstein equations. The computation of the energy flux emitted by moving bodies as gravitational waves is very similar to that for electromagnetic waves. A description of gravitational wave sources is presented, taking into account a spinning star, double star systems, the fall into a Schwarzschild black hole, and radiation from gravitational collapse. Questions regarding the interaction of gravitational waves with matter are explored, and the interaction of a gravitational wave with oscillators and an elastic cylinder is considered. Electromechanical transducers are discussed, giving attention to the piezoelectric ceramic, the capacitor, the inductor, the Brownian noise of the bar, the backreaction, the wide band noise, and data analysis. The design of a gravitational wave antenna is also described.

  13. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  14. Gravitational waves from perturbed stars

    NASA Astrophysics Data System (ADS)

    Ferrari, V.

    2011-12-01

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance, in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  15. Gravitational waves from perturbed stars

    NASA Astrophysics Data System (ADS)

    Ferrari, V.

    2011-03-01

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  16. Gravitational wave science from space

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    2016-05-01

    The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.

  17. Gravitational waves and multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  18. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Braccini, Stefano; Fidecaro, Francesco

    The detection of gravitational waves is challenging researchers since half a century. The relative precision required, 10^{-21}, is difficult to imagine, this is 10^{-5} the diameter of a proton over several kilometres, using masses of tens of kilograms, or picometres over millions of kilometres. A theoretical description of gravitational radiation and its effects on matter, all consequence of the general theory of relativity, is given. Then the astrophysical phenomena that are candidates of gravitational wave emission are discussed, considering also amplitudes and rates. The binary neutron star system PSR1913+16, which provided the first evidence for energy loss by gravitational radiation in 1975, is briefly discussed. Then comes a description of the experimental developments, starting with ground-based interferometers, their working principles and their most important sources of noise. The earth-wide network that is being built describes how these instruments will be used in the observation era. Several other detection techniques, such as space interferometry, pulsar timing arrays and resonant detectors, covering different bands of the gravitational wave frequency spectrum complete these lectures.

  19. LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES

    SciTech Connect

    Demorest, P. B.; Ransom, S.; Ferdman, R. D.; Kaspi, V. M.; Gonzalez, M. E.; Stairs, I. H.; Nice, D.; Arzoumanian, Z.; Brazier, A.; Cordes, J. M.; Burke-Spolaor, S.; Lazio, J.; Chamberlin, S. J.; Ellis, J.; Giampanis, S.; Finn, L. S.; Freire, P.; Jenet, F.; Lommen, A. N.; McLaughlin, M.; and others

    2013-01-10

    We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are {approx}30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h{sub c} (1 yr{sup -1}) < 7 Multiplication-Sign 10{sup -15} (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.

  20. Gravitational waves from the electroweak phase transition

    SciTech Connect

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.

  1. Gravitational waves from the electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ~ 10-4 Hz, and give intensities as high as h2ΩGW ~ 10-8.

  2. Primordial gravitational waves and cosmology.

    PubMed

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale. PMID:20489015

  3. Suppression of the Primordial Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Tumurtushaa, Gansukh; Koh, Seoktae; Lee, Bum-Hoon

    2016-07-01

    We study the primordial gravitational waves induced by space-space condensate inflation model. For modes that cross the comoving horizon during matter dominated era, we calculate the energy spectrum of gravitational waves. The energy spectrum of gravitational waves for our model has significantly suppressed in the low frequency range. The suppression occurs due to the phase transition during the early evolution of the Universe and depends on model parameter.

  4. Gravitational Waves from Neutron Stars: A Review

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.

    2015-09-01

    Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

  5. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in time-domain astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multimessenger astronomy across the gravitational wave spectrum.

  6. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  7. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years) as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves) these signals carry direct information about their sources - such as masses) spins) luminosity distances) and orbital parameters - through dense) obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers) highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  8. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  9. BOOK REVIEW Analysis of Gravitational-Wave Data Analysis of Gravitational-Wave Data

    NASA Astrophysics Data System (ADS)

    Fairhurst, Stephen

    2010-12-01

    detectors. The derivation is kept general at the outset, so that a detailed discussion of the response of the LISA detector is possible, before restricting to the long wavelength approximation for discussion of ground based detectors. Chapter six provides a detailed exposition of the maximum likelihood method for searching for signals in Gaussian noise. Jaranowski and Królak developed the F-statistic search method, which has become standard in searches for continuous waves and is also used in LISA data analysis. Perhaps then, it is unsurprising that the discussion of matched filtering is couched in terms of a generalized F-statistic method. This chapter also covers parameter estimation via the Fisher matrix and applications to networks of detectors. As in other chapters, the initial formalism is rather general but, in later sections, specific examples are given, such as the application to continuous wave, compact binary coalescence and stochastic signals. The seventh, and final, chapter provides examples of concrete methods for analyzing data. The focus is on methods which the authors are most familiar with and consequently these are mostly relevant for the analysis of resonant bar data and searches for continuous wave signals. The discussion of complexities arising in creating banks of template waveforms is likely to be of more general interest. The last two chapters of the book, which contain the meat of the subject of gravitational-wave data analysis, are regrettably short. Several large research areas are not discussed at all, including: time-frequency excess power search methods; Bayesian parameter estimation techniques (e.g. Markov Chain Monte Carlo) to go past the Fisher matrix approximation; signal consistency tests and other methods of dealing with non-Gaussian data. On the back cover, it states that `this book introduces researchers entering the field ... to gravitational-wave data analysis'. While this book certainly does contain much of the necessary

  10. Beyond Advanced Gravitational Wave Detectors: Beating the Quantum Limit with Squeezed States of Light

    NASA Astrophysics Data System (ADS)

    Barsotti, Lisa

    2013-04-01

    After two decades of technology development, the first direct observation of gravitational waves appears to be imminent. Ground-based interferometric gravitational wave detectors world-wide are about to come back on-line after a major upgrade aimed to significantly improve their sensitivity. As these advanced detectors become a reality, the gravitational wave community is looking at new ways of further expanding their astrophysical reach. The quantum nature of light imposes a fundamental limit to the sensitivity that gravitational wave detectors can achieve, due to statistical fluctuations in the arrival time of photons at the interferometer output (shot noise) and the recoil of the mirrors due to radiation pressure noise. In this talk I will show how mature technology can be used to push interferometric precision measurement beyond the standard quantum limit by means of squeezed states of light, and current ideas on how to integrate this technology into the Advanced detectors of the Laser Interferometer Gravitational wave Observatory (LIGO).

  11. Inflationary gravitational waves in collapse scheme models

    NASA Astrophysics Data System (ADS)

    Mariani, Mauro; Bengochea, Gabriel R.; León, Gabriel

    2016-01-01

    The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.

  12. Gravitational waves from a very strong electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  13. Towards robust gravitational wave detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  14. Transient multimessenger astronomy with gravitational waves

    NASA Astrophysics Data System (ADS)

    Márka, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2011-06-01

    Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.

  15. Astrophysically Triggered Searches for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa

    2010-02-01

    Many expected sources of gravitational waves are observable in more traditional channels, via gamma rays, X-rays, optical, radio, or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new or planned searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The observation of electromagnetic or neutrino emission simultaneously with gravitational waves could be crucial for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitude close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. We will discuss the status for astrophysically triggered searches with the LIGO-GEO600-Virgo network and the science goals and outlook for the second and third generation gravitational wave detector era. )

  16. The Japanese space gravitational wave antenna; DECIGO

    NASA Astrophysics Data System (ADS)

    Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, K.-s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M.-K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F.-L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K.-i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S.-i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K.-i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C.-M.; Yoshida, S.; Yoshino, T.

    2008-07-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.

  17. Relic Gravitational Waves and Their Detection

    NASA Astrophysics Data System (ADS)

    Grishchuk, Leonid P.

    The range of expected amplitudes and spectral slopes of relic (squeezed) gravitational waves, predicted by theory and partially supported by observations, is within the reach of sensitive gravity-wave detectors. In the most favorable case, the detection of relic gravitational waves can be achieved by the cross-correlation of outputs of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advanced ground-based and space-based laser interferometers will be needed. The specific statistical signature of relic gravitational waves, associated with the phenomenon of squeezing, is a potential reserve for further improvement of the signal to noise ratio.

  18. Gravitational Waves in Effective Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Kuntz, Iberê; Mohapatra, Sonali

    2016-08-01

    In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration.

  19. The Loudest Gravitational Wave Events

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Holz, Daniel

    2014-03-01

    Compact binary coalescences are likely to be the source of the first gravitational wave (GW) detections. While most Advanced LIGO-Virgo detections are expected to have signal-to-noise ratios (SNR) near the detection threshold, there will be a distribution of events to higher SNR. Assuming the space density of the sources is uniform in the nearby Universe, we derive the universal distribution of SNR in an arbitrary GW network, as well as the SNR distribution of the loudest event. These distributions only depend on the detection threshold and the number of detections; they are independent of the detector network, sensitivity, and the distribution of source variables such as the binary masses and spins. We also derive the SNR distribution for each individual detector within a network as a function of the detector orientation. We find that, in 90% of cases, the loudest event out of the first four Advanced LIGO-Virgo detections should be louder than SNR of 15.8 (for a threshold of 12), increasing to an SNR of 31 for 40 detections. We expect these loudest events to provide the best constraints on their source parameters, and therefore play an important role in extracting astrophysics from GW sources.

  20. Gravitational waves in bimetric MOND

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2014-01-01

    I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian dynamics (BIMOND)—the lowest order in the small departures hμν=gμν-ημν, h stretchy="false">^μν=g stretchy="false">^μν-ημν from double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of BIMOND. The WFL splits into two sectors for two linear combinations, hμν±, of hμν and h stretchy="false">^μν. The hμν+ sector is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum gravitational waves. The hμν- sector is fully nonlinear even for the weakest hμν-, and inherits none of the coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave packets of hμν and h stretchy="false">^μν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.

  1. Gravitational-wave Mission Study

    NASA Technical Reports Server (NTRS)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  2. Building a Galactic Scale Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    McLaughlin, Maura

    2016-03-01

    Pulsars are rapidly rotating neutron stars with phenomenal rotational stability that can be used as celestial clocks in a variety of fundamental physics experiences. One of these experiments involves using a pulsar timing array of precisely timed millisecond pulsars to detect perturbations due to gravitational waves. The low frequency gravitational waves detectable through pulsar timing will most likely result from an ensemble of supermassive black hole binaries. I will introduce the efforts of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), a collaboration that monitors over 50 millisecond pulsars with the Green Bank Telescope and the Arecibo Observatory, with a focus on our observation and data analysis methods. I will also describe how NANOGrav has joined international partners through the International Pulsar Timing Array to form a low-frequency gravitational wave detector of unprecedented sensitivity.

  3. Gravitational Wave Physics with Binary Love Relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2016-03-01

    Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.

  4. Polarized gravitational waves from cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard; Kahniashvili, Tina

    2015-08-01

    We estimate the degree of circular polarization for the gravitational waves generated during the electroweak and QCD phase transitions from the kinetic and magnetic helicity generated by bubble collisions during those cosmological phase transitions.

  5. LISA: Detecting Gravitational Waves from Space

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The laser interferometer space antenna (LISA), a joint NASA/ESA mission, will be the first dedicated gravitational wave detector in space. This presentation will provide a tutorial of the LISA measurement concept.

  6. Gravitational Waves: A New Observational Window

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  7. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  8. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  9. Gravitational Wave Detection with Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-01-23

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.

  10. Gravitational waves carrying orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2016-02-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  11. Gravitational waves from collapsing domain walls

    SciTech Connect

    Hiramatsu, Takashi; Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2010-05-01

    We study the production of gravitational waves from cosmic domain walls created during phase transition in the early universe. We investigate the process of formation and evolution of domain walls by running three dimensional lattice simulations. If we introduce an approximate discrete symmetry, walls become metastable and finally disappear. This process might occur by a pressure difference between two vacua if a quantum tunneling is neglected. We calculate the spectrum of gravitational waves produced by collapsing metastable domain walls. Extrapolating the numerical results, we find that the signal of gravitational waves produced by domain walls whose energy scale is around 10{sup 10}-10{sup 12}GeV will be observable in the next generation gravitational wave interferometers.

  12. The pregalactic cosmic gravitational wave background

    NASA Technical Reports Server (NTRS)

    Matzner, Richard A.

    1989-01-01

    An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).

  13. Gravitational wave astronomy: the current status

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Chu, Qi; Fang, Qi; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Reitze, David H.; Arai, Koji; Zhang, Fan; Flaminio, Raffaele; Zhu, XingJiang; Hobbs, George; Manchester, Richard N.; Shannon, Ryan M.; Baccigalupi, Carlo; Gao, Wei; Xu, Peng; Bian, Xing; Cao, ZhouJian; Chang, ZiJing; Dong, Peng; Gong, XueFei; Huang, ShuangLin; Ju, Peng; Luo, ZiRen; Qiang, Li'E.; Tang, WenLin; Wan, XiaoYun; Wang, Yue; Xu, ShengNian; Zang, YunLong; Zhang, HaiPeng; Lau, Yun-Kau; Ni, Wei-Tou

    2015-12-01

    In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.

  14. Gravitational wave detection in the laboratory.

    NASA Astrophysics Data System (ADS)

    Chen, Y. T.; Kawashima, N.; Othman, M.; Chia, S. P.; Karim, M.; Sanugi, B.; Lim, B. H.; Chong, K. K.

    1998-09-01

    After reviewing the research work of gravitational wave detection in the laboratory, particularly long base laser interferometer detectors, the authors report on the recent progress of gravitational wave detection using laser interferometer (Tianyin-100) in Malaysia. The authors also outline the brief plan for Tianyin-500 in the future as a full-scale observatory competitive to other projects such as Ligo, Geo600, etc.

  15. Gravitational waves from individual supermassive black hole binaries in circular orbits: limits from the North American nanohertz observatory for gravitational waves

    SciTech Connect

    Arzoumanian, Z.; Brazier, A.; Chatterjee, S.; Cordes, J. M.; Dolch, T.; Lam, M. T.; Burke-Spolaor, S.; Chamberlin, S. J.; Ellis, J. A.; Demorest, P. B.; Deng, X.; Koop, M.; Ferdman, R. D.; Kaspi, V. M.; Garver-Daniels, N.; Lorimer, D. R.; Jenet, F.; Jones, G.; Lazio, T. J. W.; Lommen, A. N.; Collaboration: NANOGrav Collaboration; and others

    2014-10-20

    We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h {sub 0} ≲ 3.0 × 10{sup –14} at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that d{sub L} ≳ 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10{sup 10} M {sub ☉}. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of ∼four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.

  16. Nearby Stars as Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2015-07-01

    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main-sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from {10}-7 to {10}-2 Hz. In particular, these stars can probe the {10}-6-{10}-4 Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as the Square Kilometre Array and Evolved Laser Interferometer Space Antenna. The Planetary Transits and Oscillations of State (PLATO) stellar seismic mission will achieve photospheric velocity amplitude accuracy of {cm} {{{s}}}-1. For a gravitational wave search, we will need to achieve accuracies of the order of {10}-2 {cm} {{{s}}}-1, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.

  17. Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity

    SciTech Connect

    Bellucci, Stefano; Capozziello, Salvatore; De Laurentis, Mariafelicia; Faraoni, Valerio

    2009-05-15

    Alternative theories of gravity predict the presence of massive scalar, vector, and tensor gravitational wave modes in addition to the standard massless spin 2 graviton of general relativity. The deflection and frequency shift effects on light from distant sources propagating through a stochastic background of gravitational waves, containing such modes, differ from their counterparts in general relativity. Such effects are considered as a possible signature for alternative gravity in attempts to detect deviations from Einstein's gravity by astrophysical means.

  18. Impact of cosmic neutrinos on the gravitational-wave background

    SciTech Connect

    Mangilli, Anna; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2008-10-15

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultrarelativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  19. Quantum Measurement Theory in Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Danilishin, Stefan L.; Khalili, Farid Ya.

    2012-04-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  20. Parametric resonance and cosmological gravitational waves

    SciTech Connect

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-03-15

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  1. Gravitational wave experiments and early universe cosmology

    NASA Astrophysics Data System (ADS)

    Maggiore, M.

    2000-07-01

    Gravitational-wave experiments with interferometers and with resonant masses can search for stochastic backgrounds of gravitational waves of cosmological origin. We review both experimental and theoretical aspects of the search for these backgrounds. We give a pedagogical derivation of the various relations that characterize the response of a detector to a stochastic background. We discuss the sensitivities of the large interferometers under constructions (LIGO, VIRGO, GEO600, TAMA300, AIGO) or planned (Avdanced LIGO, LISA) and of the presently operating resonant bars, and we give the sensitivities for various two-detectors correlations. We examine the existing limits on the energy density in gravitational waves from nucleosynthesis, COBE and pulsars, and their effects on theoretical predictions. We discuss general theoretical principles for order-of-magnitude estimates of cosmological production mechanisms, and then we turn to specific theoretical predictions from inflation, string cosmology, phase transitions, cosmic strings and other mechanisms. We finally compare with the stochastic backgrounds of astrophysical origin.

  2. Exploring Gravitational Waves in the Classroom

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, Kevin M.; Peruta, Carolyn; Simonnet, Aurore

    2016-04-01

    On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first confirmed gravitational wave signals. Now known as GW150914 (for the date on which the signals were received), the event represents the coalescence of two black holes that were previously in mutual orbit. LIGO’s exciting discovery provides direct evidence of what is arguably the last major unconfirmed prediction of Einstein’s General Theory of Relativity. The Education and Public Outreach group at Sonoma State University has created an educator's guide that provides a brief introduction to LIGO and to gravitational waves, along with two simple demonstration activities that can be done in the classroom to engage students in understanding LIGO’s discovery. Additional resources have also been provided to extend student explorations of Einstein’s Universe.

  3. Orientational atom interferometers sensitive to gravitational waves

    SciTech Connect

    Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas

    2010-02-15

    We present an atom interferometer that differs from common atom interferometers as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom interferometer based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom interferometer based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom interferometers in 1 s.

  4. Gravitational Waves from a Dark Phase Transition.

    PubMed

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios. PMID:26565451

  5. BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Poisson, Eric

    2008-10-01

    discussion is helpful, as it clarifies some of the puzzling aspects of general covariance. Next the treatment becomes more sophisticated: the waves are allowed to propagate in an arbitrary background spacetime, and the energy momentum carried by the wave is identified by the second-order perturbation of the Einstein tensor. In chapter 2 the waves are given a field-theoretic foundation that is less familiar (but refreshing) to a relativist, but would appeal to a practitioner of effective field theories. In an interesting section of chapter 2, the author gives a mass to the (classical) graviton and explores the physical consequences of this proposal. In chapter 3 the author returns to the standard linearized theory and develops the multipolar expansion of the gravitational-wave field in the context of slowly-moving sources; at leading order he obtains the famous quadrupole formula. His treatment is very detailed, and it includes a complete account of symmetric-tracefree tensors and tensorial spherical harmonics. It is, however, necessarily limited to sources with negligible internal gravity. Unfortunately (and this is a familiar complaint of relativists) the author omits to warn the reader of this important limitation. In fact, the chapter opens with a statement of the virial theorem of Newtonian gravity, which may well mislead the reader to believe that the linearized theory can be applied to a system bound by gravitational forces. This misconception is confirmed when, in chapter 4, the author applies the quadrupole formula to gravitationally-bound systems such as an inspiraling compact binary, a rigidly rotating body, and a mass falling toward a black hole. This said, the presentation of these main sources of gravitational waves is otherwise irreproachable, and a wealth of useful information is presented in a clear and lucid manner. For example, the discussion of inspiraling compact binaries includes a derivation of the orbital evolution of circular and eccentric orbits

  6. LISA in the gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John; Cornish, Neil

    2015-04-01

    With the expected direct detection of gravitational waves in the second half of this decade by Advanced LIGO and pulsar timing arrays, and with the launch of LISA Pathfinder in the summer of this year, this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. Recently, NASA has decided to join with ESA on the L3 mission as a junior partner. Both agencies formed a committee to advise them on the scientific and technological approaches for a space based gravitational wave observatory. The leading mission design, Evolved LISA or eLISA, is a slightly de-scoped version of the earlier LISA design. This talk will describe activities of the Gravitational Wave Science Interest Group (GWSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG), focusing on LISA technology development in both the U.S. and Europe, including the LISA Pathfinder mission.

  7. Gravitational waves induced by spinor fields

    NASA Astrophysics Data System (ADS)

    Feng, Kaixi; Piao, Yun-Song

    2015-07-01

    In realistic model building, spinor fields with various masses are present. During inflation, a spinor field may induce gravitational waves as a second order effect. In this paper, we calculate the contribution of a single massive spinor field to the power spectrum of primordial gravitational wave by using a retarded Green propagator. We find that the correction is scale invariant and of order H4/MP4 for arbitrary spinor mass mψ. Additionally, we also observe that when mψ≳H , the dependence of correction on mψ/H is nontrivial.

  8. Hough transform search for continuous gravitational waves

    SciTech Connect

    Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano

    2004-10-15

    This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities.

  9. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  10. Gravitational lens time delays and gravitational waves

    SciTech Connect

    Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )

    1994-10-15

    Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.

  11. Gravitational waves in a de Sitter universe

    NASA Astrophysics Data System (ADS)

    Bishop, Nigel T.

    2016-02-01

    The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, leading to a determination of the energy measured by such observers. It is found that gravitational wave energy conservation does not normally apply to inertial observers but that it can be formulated for a class of accelerated observers, i.e., with worldlines that are timelike but not geodesic.

  12. Gravitational Waves and Multi-Messenger Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  13. Gravitational Wave Detection: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Saulson, Peter

    2015-04-01

    The search for gravitational waves began at the Chapel Hill Conference in January 1957, and will reach a successful conclusion at a set of observatories around the globe about sixty years later. This talk will review the history of the early thought experiments, the program of resonant mass detectors (``Weber bars''), and the development of the large interferometric detectors like Advanced LIGO and Advanced Virgo that are, it is hoped, about to make the first detections of gravitational wave signals. I am pleased to acknowledge the support of the National Science Foundation for my research, most recently under NSF Grant PHY-1205835.

  14. Gravitational wave bursts from cosmic strings

    PubMed

    Damour; Vilenkin

    2000-10-30

    Cusps of cosmic strings emit strong beams of high-frequency gravitational waves (GW). As a consequence of these beams, the stochastic ensemble of gravitational waves generated by a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that stand above the rms GW background. These bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for string tensions as small as G&mgr; approximately 10(-13). The GW bursts discussed here might be accompanied by gamma ray bursts. PMID:11041921

  15. Outlook for Detecting Gravitational Waves with Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  16. Search for Gravitational Wave Trains with the Spacecraft Ulysses

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Armstrong, J.; Asmar, S.; Comoretto, G.; Giampieri, G.; Iess, L.; Koyama, Y.; Messeri, A.; Vecchio, A.; Wahlquist, H.

    1994-01-01

    We report on the search for periodic gravitational wave in the mHz band conducted with the spacecraft ULYSSES. Gravitational wave signals generally provide information about the distance of the source; ULYSSES' data have a.

  17. Time Evolution of Pure Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Miyama, S. M.

    1981-03-01

    Numerical solutions to the Einstein equations in the case of pure gravitational waves are given. The system is assumed to be axially symmetric and non-rotating. The time symmetric initial data and the conformally flat initial data are obtained by solving the constraint equations at t=0. The time evolution of these initial data depends strongly on the initial amplitude of the gravitational waves. In the case of the low initial amplitude, waves only disperse to null infinity. By comparing the initial gravitational energy with the total energy loss through an r=constant surface, it is concluded that the Newman-Penrose method and the Gibbon-Hawking method are the most desirable for measuring the energy flux of gravitational radiation numerically. In the case that the initial ratio of the spatial extent of the gravitational waves to the Schwarzschild radius (M/2) is smaller than about 300, the waves collapse by themselves, leading to formation of a black hole. The analytic solutions of the linearized Einstein equations for the pure gravitational waves are also shown.

  18. Quantum nondemolition measurements. [by gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Braginskii, V. B.; Vorontsov, Iu. I.; Thorne, K. S.

    1980-01-01

    The article describes new electronic techniques required for quantum nondemolition measurements and the theory underlying them. Consideration is given to resonant-bar gravitational-wave antennas. Position measurements are discussed along with energy measurements and back-action-evading measurements. Thermal noise in oscillators and amplifiers is outlined. Prospects for stroboscopic measurements are emphasized.

  19. Bayesian analysis on gravitational waves and exoplanets

    NASA Astrophysics Data System (ADS)

    Deng, Xihao

    Attempts to detect gravitational waves using a pulsar timing array (PTA), i.e., a collection of pulsars in our Galaxy, have become more organized over the last several years. PTAs act to detect gravitational waves generated from very distant sources by observing the small and correlated effect the waves have on pulse arrival times at the Earth. In this thesis, I present advanced Bayesian analysis methods that can be used to search for gravitational waves in pulsar timing data. These methods were also applied to analyze a set of radial velocity (RV) data collected by the Hobby- Eberly Telescope on observing a K0 giant star. They confirmed the presence of two Jupiter mass planets around a K0 giant star and also characterized the stellar p-mode oscillation. The first part of the thesis investigates the effect of wavefront curvature on a pulsar's response to a gravitational wave. In it we show that we can assume the gravitational wave phasefront is planar across the array only if the source luminosity distance " 2piL2/lambda, where L is the pulsar distance to the Earth (˜ kpc) and lambda is the radiation wavelength (˜ pc) in the PTA waveband. Correspondingly, for a point gravitational wave source closer than ˜ 100 Mpc, we should take into account the effect of wavefront curvature across the pulsar-Earth line of sight, which depends on the luminosity distance to the source, when evaluating the pulsar timing response. As a consequence, if a PTA can detect a gravitational wave from a source closer than ˜ 100 Mpc, the effects of wavefront curvature on the response allows us to determine the source luminosity distance. The second and third parts of the thesis propose a new analysis method based on Bayesian nonparametric regression to search for gravitational wave bursts and a gravitational wave background in PTA data. Unlike the conventional Bayesian analysis that introduces a signal model with a fixed number of parameters, Bayesian nonparametric regression sets

  20. Gravitational wave detection using atom interferometry

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2016-05-01

    The advent of gravitational wave astronomy promises to provide a new window into the universe. Low frequency gravitational waves below 10 Hz are expected to offer rich science opportunities both in astrophysics and cosmology, complementary to signals in LIGO's band. Detector designs based on atom interferometry have a number of advantages over traditional approaches in this band, including the possibility of substantially reduced antenna baseline length in space and high isolation from seismic noise for a terrestrial detector. In particular, atom interferometry based on the clock transition in group II atoms offers tantalizing new possibilities. Such a design is expected to be highly immune to laser frequency noise because the signal arises strictly from the light propagation time between two ensembles of atoms. This would allow for a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry in a 10-meter drop tower has enabled observation of matter wave interference with atomic wavepacket separations exceeding 50 cm and interferometer durations of more than 2 seconds. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  1. The Dawn of Gravitational-Wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki; LIGO - Virgo Collaborations

    2016-06-01

    With the detection of GW150914 and its identification as the binary merger of two heavy black holes LIGO has launched the era of gravitational-wave astrophysics. I will review what this implies for our understanding of binary compact object formation and how we can use it to constrain current models.

  2. General-relativistic astrophysics. [gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.

  3. Ground-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuaki

    2015-01-01

    Gravitational wave is predicted by Einstein’s general relativity, which conveys the information of source objects in the universe. The detection of the gravitational wave is the direct test of the theory and will be used as new tool to investigate dynamical nature of the universe. However, the effect of the gravitational wave is too tiny to be easily detected. From the first attempt utilizing resonant antenna in the 1960s, efforts of improving antenna sensitivity were continued by applying cryogenic techniques until approaching the quantum limit of sensitivity. However, by the year 2000, resonant antenna had given the way to interferometers. Large projects involving interferometers started in the 1990s, and achieved successful operations by 2010 with an accumulated extensive number of technical inventions and improvements. In this memorial year 2015, we enter the new phase of gravitational-wave detection by the forthcoming operation of the second-generation interferometers. The main focus in this paper is on how advanced techniques have been developed step by step according to scaling the arm length of the interferometer up and the history of fighting against technical noise, thermal noise, and quantum noise is presented along with the current projects, LIGO, Virgo, GEO-HF and KAGRA.

  4. Gravitational wave detector with cosmological reach

    NASA Astrophysics Data System (ADS)

    Dwyer, Sheila; Sigg, Daniel; Ballmer, Stefan W.; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2015-04-01

    Twenty years ago, construction began on the Laser Interferometer Gravitational-wave Observatory (LIGO). Advanced LIGO, with a factor of 10 better design sensitivity than Initial LIGO, will begin taking data this year, and should soon make detections a monthly occurrence. While Advanced LIGO promises to make first detections of gravitational waves from the nearby universe, an additional factor of 10 increase in sensitivity would put exciting science targets within reach by providing observations of binary black hole inspirals throughout most of the history of star formation, and high signal to noise observations of nearby events. Design studies for future detectors to date rely on significant technological advances that are futuristic and risky. In this paper we propose a different direction. We resurrect the idea of using longer arm lengths coupled with largely proven technologies. Since the major noise sources that limit gravitational wave detectors do not scale trivially with the length of the detector, we study their impact and find that 40 km arm lengths are nearly optimal, and can incorporate currently available technologies to detect gravitational wave sources at cosmological distances (z ≳7 ) .

  5. CCSNMultivar: Core-Collapse Supernova Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Engels, Bill; Gossan, Sarah

    2016-04-01

    CCSNMultivar aids the analysis of core-collapse supernova gravitational waves. It includes multivariate regression of Fourier transformed or time domain waveforms, hypothesis testing for measuring the influence of physical parameters, and the Abdikamalov et. al. catalog for example use. CCSNMultivar can optionally incorporate additional uncertainty due to detector noise and approximate waveforms from anywhere within the parameter space.

  6. Geometrical versus wave optics under gravitational waves

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Saha, Prasenjit

    2015-06-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell's equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics—rather than solving Maxwell's equations directly for the fields, as in most previous approaches—we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  7. Chiral primordial gravitational waves from a Lifshitz point.

    PubMed

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves. PMID:19658921

  8. Fast gravitational wave radiometry using data folding

    NASA Astrophysics Data System (ADS)

    Ain, Anirban; Dalvi, Prathamesh; Mitra, Sanjit

    2015-07-01

    Gravitational waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground-based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole data set for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and nonstationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.

  9. Environmental Effects for Gravitational-wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-05-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.

  10. Sirens and Telephone Alerts

    MedlinePlus

    ... by the Cass (ND) and Clay (MN) Emergency Planning Partnerships. Adapted with funding provided by Fargo Cass Public Health through the Cities Readiness Initiative (CRI) English – Sirens and Telephone Alerts - ...

  11. VEGA, An Environment for Gravitational Waves Data Analysis

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Derome, L.; Flaminio, R.; Marion, F.; Massonet, L.; Mours, B.; Morand, R.; Verkindt, D.; Yvert, M.

    A new generation of large scale and complex Gravitational Wave detectors is building up. They will produce big amount of data and will require intensive and specific interactive/batch data analysis. We will present VEGA, a framework for such data analysis, based on ROOT. VEGA uses the Frame format defined as standard by GW groups around the world. Furthermore, new tools are developed in order to facilitate data access and manipulation, as well as interface with existing algorithms. VEGA is currently evaluated by the VIRGO experiment.

  12. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Mingarelli, C. M. F.; Gair, J. R.; Sesana, A.; Theureau, G.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Lentati, L.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S. A.; Smits, R.; Stappers, B.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.; EPTA Collaboration

    2015-07-01

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ˜2 - 90 nHz band shows consistency with isotropy, with the strain amplitude in l >0 spherical harmonic multipoles ≲40 % of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.

  13. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.

    PubMed

    Taylor, S R; Mingarelli, C M F; Gair, J R; Sesana, A; Theureau, G; Babak, S; Bassa, C G; Brem, P; Burgay, M; Caballero, R N; Champion, D J; Cognard, I; Desvignes, G; Guillemot, L; Hessels, J W T; Janssen, G H; Karuppusamy, R; Kramer, M; Lassus, A; Lazarus, P; Lentati, L; Liu, K; Osłowski, S; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S A; Smits, R; Stappers, B; Tiburzi, C; van Haasteren, R; Vecchio, A; Verbiest, J P W

    2015-07-24

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations. PMID:26252674

  14. Gravitational wave searches using the DSN (Deep Space Network)

    NASA Technical Reports Server (NTRS)

    Nelson, S. J.; Armstrong, J. W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.

  15. Gravitational Waves from Core Collapse Supernovae

    SciTech Connect

    Yakunin, Konstantin; Marronetti, Pedro; Mezzacappa, Anthony; Bruenn, S. W.; Lee, Ching-Tsai; Chertkow, Merek A; Hix, William Raphael; Blondin, J. M.; Lentz, Eric J; Messer, Bronson; Yoshida, S.

    2010-01-01

    We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitor masses between 12 and 25 M{sub odot}. These models are distinguished by the fact that they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete waveforms (i.e. through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models.

  16. Listening to the Universe with gravitational waves

    NASA Astrophysics Data System (ADS)

    Sathyaprakash, B. S.

    2016-07-01

    The discovery of gravitational waves by the twin LIGO detectors in September 2015 has opened a new window for observational astronomy. The coming years will witness the emergence of other detectors such as Advanced Virgo, KAGRA and LIGO-India. The worldwide network of these detectors will not only observe binary black holes, which we now know will be the dominant sources, but other sources such as binary neutron stars, neutron star-black hole binaries, supernovae, stochastic backgrounds and unknown sources that we do not know yet. In my talk I will describe how gravitational wave observations will help us gain deeper insights into fundamental physics, astrophysics and cosmology in the coming years and decades.

  17. CMB μ distortion from primordial gravitational waves

    SciTech Connect

    Ota, Atsuhisa; Yamaguchi, Masahide; Takahashi, Tomo; Tashiro, Hiroyuki E-mail: tomot@cc.saga-u.ac.jp E-mail: gucci@phys.titech.ac.jp

    2014-10-01

    We propose a new mechanism of generating the μ distortion in cosmic microwave background (CMB) originated from primordial gravitational waves. Such μ distortion is generated by the damping of the temperature anisotropies through the Thomson scattering, even on scales larger than that of Silk damping. This mechanism is in sharp contrast with that from the primordial curvature (scalar) perturbations, in which the temperature anisotropies mainly decay by Silk damping effects. We estimate the size of the μ distortion from the new mechanism, which can be used to constrain the amplitude of primordial gravitational waves on smaller scales independently from the CMB anisotropies, giving more wide-range constraint on their spectral index by combining the amplitude from the CMB anisotropies.

  18. Gravitational waves in ghost free bimetric gravity

    SciTech Connect

    Mohseni, Morteza

    2012-11-01

    We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extension of the theory admits similar solutions but in general is plagued with ghost instabilities.

  19. Spherical resonant-mass gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Carl Z.; Michelson, Peter F.

    1995-03-01

    A spherical gravitational wave antenna is a very promising detector for gravitational wave astronomy because it has a large cross section, isotropic sky coverage, and can provide the capability of determining the wave direction. In this paper we discuss several aspects of spherical detectors, including the eigenfunctions and eigenfrequencies of the normal modes of an elastic sphere, the energy cross section, and the response functions that are used to obtain the noise-free solution to the inverse problem. Using the maximum likelihood estimation method the inverse problem in the presence of noise is solved. We also determine the false-alarm probability and the detection probability for a network of spherical detectors and estimate the detectable event rates for supernova collapses and binary coalescences.

  20. Gravitational waves from the first stars

    SciTech Connect

    Sandick, Pearl; Olive, Keith A.; Daigne, Frederic; Vangioni, Elisabeth

    2006-05-15

    We consider the stochastic background of gravitational waves produced by an early generation of Population III stars coupled with a normal mode of star formation at lower redshift. The computation is performed in the framework of hierarchical structure formation and is based on cosmic star formation histories constrained to reproduce the observed star formation rate at redshift z < or approx. 6, the observed chemical abundances in damped Lyman alpha absorbers and in the intergalactic medium, and to allow for an early reionization of the Universe at z{approx}11 as indicated by the third year results released by WMAP. We find that the normal mode of star formation produces a gravitational wave background which peaks at 300-500 Hz and is within LIGO III sensitivity. The Population III component peaks at lower frequencies (30-100 Hz depending on the model), and could be detected by LIGO III as well as the planned BBO and DECIGO interferometers.

  1. Space Based Gravitational Wave Observatories (SGOs)

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2014-01-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  2. "Spaghetti" design for gravitational wave superconducting antenna

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.

    2014-05-01

    A new concept for detectors of gravitational wave radiation is discussed. Estimates suggest that strain sensitivity essentially better than that of the existing devices can be achieved in the wide frequency range. Such sensitivity could be obtained with devices about one meter long. Suggested device consists of multi-billion bimetallic superconducting wires ("spaghettis") and requires cryogenic operational temperatures (~0.3K in the case considered).

  3. Superconducting Antenna Concept for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.

    The most advanced contemporary efforts and concepts for registering gravitational waves are focused on measuring tiny deviations in large arm (kilometers in case of LIGO and thousands of kilometers in case of LISA) interferometers via photons. In this report we discuss a concept for the detection of gravitational waves using an antenna comprised of superconducting electrons (Cooper pairs) moving in an ionic lattice. The major challenge in this approach is that the tidal action of the gravitational waves is extremely weak compared with electromagnetic forces. Any motion caused by gravitational waves, which violates charge neutrality, will be impeded by Coulomb forces acting on the charge carriers (Coulomb blockade) in metals, as well as in superconductors. We discuss a design, which avoids the effects of Coulomb blockade. It exploits two different superconducting materials used in a form of thin wires -"spaghetti." The spaghetti will have a diameter comparable to the London penetration depth, and length of about 1-10 meters. To achieve competitive sensitivity, the antenna would require billions of spaghettis, which calls for a challenging manufacturing technology. If successfully materialized, the response of the antenna to the known highly periodic sources of gravitational radiation, such as the Pulsar in Crab Nebula will result in an output current, detectable by superconducting electronics. The antenna will require deep (0.3K) cryogenic cooling and magnetic shielding. This design may be a viable successor to LISA and LIGO concepts, having the prospect of higher sensitivity, much smaller size and directional selectivity. This concept of compact antenna may benefit also terrestrial gradiometry.

  4. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated universe is accomplished by bubble nucleation, bubble collisions supply a potent - and potentially detectable - source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 0.00005 of closure density. Their characteristic wavelength depends on the reheating temperature. If black holes are produced by bubble collisions, they will evaporate, producing shorter-wavelength gravitons.

  5. Phase transition dynamics and gravitational waves

    SciTech Connect

    Megevand, Ariel

    2009-04-20

    During a first-order phase transition, gravitational radiation is generated either by bubble collisions or by turbulence. For phase transitions which took place at the electroweak scale and beyond, the signal is expected to be within the sensitivity range of planned interferometers such as LISA or BBO. We review the generation of gravitational waves in a first-order phase transition and discuss the dependence of the spectrum on the dynamics of the phase transition.

  6. The GEO 600 gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Willke, B.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Barr, B. W.; Berukoff, S.; Bose, S.; Cagnoli, G.; Casey, M. M.; Churches, D.; Clubley, D.; Colacino, C. N.; Crooks, D. R. M.; Cutler, C.; Danzmann, K.; Davies, R.; Dupuis, R.; Elliffe, E.; Fallnich, C.; Freise, A.; Goßler, S.; Grant, A.; Grote, H.; Heinzel, G.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hough, J.; Jennrich, O.; Kawabe, K.; Kötter, K.; Leonhardt, V.; Lück, H.; Malec, M.; McNamara, P. W.; McIntosh, S. A.; Mossavi, K.; Mohanty, S.; Mukherjee, S.; Nagano, S.; Newton, G. P.; Owen, B. J.; Palmer, D.; Papa, M. A.; Plissi, M. V.; Quetschke, V.; Robertson, D. I.; Robertson, N. A.; Rowan, S.; Rüdiger, A.; Sathyaprakash, B. S.; Schilling, R.; Schutz, B. F.; Senior, R.; Sintes, A. M.; Skeldon, K. D.; Sneddon, P.; Stief, F.; Strain, K. A.; Taylor, I.; Torrie, C. I.; Vecchio, A.; Ward, H.; Weiland, U.; Welling, H.; Williams, P.; Winkler, W.; Woan, G.; Zawischa, I.

    2002-04-01

    The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.

  7. Kinks, extra dimensions, and gravitational waves

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth

    2011-03-01

    We investigate in detail the gravitational wave signal from kinks on cosmic (super)strings, including the kinematical effects from the internal extra dimensions. We find that the signal is suppressed, however, the effect is less significant that that for cusps. Combined with the greater incidence of kinks on (super)strings, it is likely that the kink signal offers the better chance for detection of cosmic (super)strings.

  8. Breaking a dark degeneracy with gravitational waves

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Taylor, Andy

    2016-03-01

    We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self-acceleration of the model implies a present cosmological tensor mode propagation at lesssim95 % of the speed of light with a damping of the wave amplitude that is gtrsim5 % less efficient than in general relativity. We show that these discrepancies are endemic to self-accelerated Horndeski theories with degenerate large-scale structure and are tested with measurements of gravitational waves emitted by events at cosmological distances. Hence, gravitational-wave cosmology breaks the dark degeneracy in observations of the large-scale structure between two fundamentally different explanations of cosmic acceleration—a cosmological constant and a scalar-tensor modification of gravity. The gravitational wave event GW150914 recently detected with the aLIGO instruments and its potential association with a weak short gamma-ray burst observed with the Fermi GBM experiment may have provided this crucial measurement.

  9. Gravitational Waves from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  10. Simulating Responses of Gravitational-Wave Instrumentation

    NASA Technical Reports Server (NTRS)

    Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele

    2006-01-01

    Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

  11. Gravitational waves from an early matter era

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2009-04-15

    We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as laser interferometer gravitational wave observatory (LIGO) and laser interferometer space antenna (LISA). We use relativistic perturbation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational-wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for advanced LIGO or 0.005 for LISA; otherwise numerical calculations of the nonlinear evolution on sub-Hubble scales are required.

  12. Gravitational waves from the big bounce

    SciTech Connect

    Mielczarek, Jakub

    2008-11-15

    In this paper we investigate gravitational wave production during the big bounce phase, inspired by loop quantum cosmology. We consider the influence of the holonomy corrections to the equation for tensor modes. We show that they act like additional effective graviton mass, suppressing gravitational wave creation. However, such effects can be treated perturbatively. We investigate a simplified model without holonomy corrections to the equation for modes and find its exact analytical solution. Assuming the form for matter {rho}{proportional_to}a{sup -2} we calculate the full spectrum of the gravitational waves from the big bounce phase. The spectrum obtained decreases to zero for the low energy modes. On the basis of this observation we infer that this effect can lead to low cosmic microwave background (CMB) multipole suppression and gives a potential way for testing loop quantum cosmology models. We also consider a scenario with a post-bounce inflationary phase. The power spectrum obtained gives a qualitative explanation of the CMB spectra, including low multipole suppression.

  13. New window into stochastic gravitational wave background.

    PubMed

    Rotti, Aditya; Souradeep, Tarun

    2012-11-30

    A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We correct the results provided in existing literature for modifications to the CMB polarization power spectra due to lensing by gravitational waves. Weak lensing by gravitational waves distorts all four CMB power spectra; however, its effect is most striking in the mixing of power between the E mode and B mode of CMB polarization. This suggests the possibility of using measurements of the CMB angular power spectra to constrain the energy density (Ω(GW)) of the SGWB. Using current data sets (QUAD, WMAP, and ACT), we find that the most stringent constraints on the present Ω(GW) come from measurements of the angular power spectra of CMB temperature anisotropies. In the near future, more stringent bounds on Ω(GW) can be expected with improved upper limits on the B modes of CMB polarization. Any detection of B modes of CMB polarization above the expected signal from large scale structure lensing could be a signal for a SGWB. PMID:23368112

  14. LIGO and the Search for Gravitational Waves

    SciTech Connect

    Robertson, Norna A.

    2006-10-16

    Gravitational waves, predicted to exist by Einstein's General Theory of Relativity but as yet undetected, are expected to be emitted during violent astrophysical events such as supernovae, black hole interactions and the coalescence of compact binary systems. Their detection and study should lead to a new branch of astronomy. However the experimental challenge is formidable: ground-based detection relies on sensing displacements of order 10{sup -18} m over a frequency range of tens of hertz to a few kHz. There is currently a large international effort to commission and operate long baseline interferometric detectors including those that comprise LIGO - the Laser Interferometer Gravitational-Wave Observatory - in the USA. In this talk I will give an introduction to the topic of gravitational wave detection and in particular review the status of the LIGO project which is currently taking data at its design sensitivity. I will also look to the future to consider planned improvements in sensitivity for such detectors, focusing on Advanced LIGO, the proposed upgrade to the LIGO project.

  15. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  16. Pseudospectral method for gravitational wave collapse

    NASA Astrophysics Data System (ADS)

    Hilditch, David; Weyhausen, Andreas; Brügmann, Bernd

    2016-03-01

    We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first-order generalized harmonic gauge formulation. The relevant theory is reviewed, and the numerical method is critically examined and specialized for the task at hand. In particular, we investigate formulation parameters—gauge- and constraint-preserving boundary conditions well suited to nonvanishing gauge source functions. Different types of axisymmetric twist-free moment-of-time-symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong-field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We employ the Cartoon method to efficiently evolve axisymmetric data in our 3 +1 -dimensional code. We perform test evolutions of the Schwarzschild spacetime perturbed by gravitational waves and by gauge pulses, both to demonstrate the use of our black-hole excision scheme and for comparison with earlier results. Finally, numerical evolutions of supercritical Brill waves are presented to demonstrate durability of the excision scheme for the dynamical formation of a black hole.

  17. Detection methods for non-Gaussian gravitational wave stochastic backgrounds

    NASA Astrophysics Data System (ADS)

    Drasco, Steve; Flanagan, Éanna É.

    2003-04-01

    A gravitational wave stochastic background can be produced by a collection of independent gravitational wave events. There are two classes of such backgrounds, one for which the ratio of the average time between events to the average duration of an event is small (i.e., many events are on at once), and one for which the ratio is large. In the first case the signal is continuous, sounds something like a constant hiss, and has a Gaussian probability distribution. In the second case, the discontinuous or intermittent signal sounds something like popcorn popping, and is described by a non-Gaussian probability distribution. In this paper we address the issue of finding an optimal detection method for such a non-Gaussian background. As a first step, we examine the idealized situation in which the event durations are short compared to the detector sampling time, so that the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated, aligned detectors. For this situation we derive an appropriate version of the maximum likelihood detection statistic. We compare the performance of this statistic to that of the standard cross-correlation statistic both analytically and with Monte Carlo simulations. In general the maximum likelihood statistic performs better than the cross-correlation statistic when the stochastic background is sufficiently non-Gaussian, resulting in a gain factor in the minimum gravitational-wave energy density necessary for detection. This gain factor ranges roughly between 1 and 3, depending on the duty cycle of the background, for realistic observing times and signal strengths for both ground and space based detectors. The computational cost of the statistic, although significantly greater than that of the cross-correlation statistic, is not unreasonable. Before the statistic can be used in practice with real detector data, further work is required to generalize our analysis to accommodate separated, misaligned

  18. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    PubMed

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz. PMID:19693079

  19. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Huber, Stephan J.; Rummukainen, Kari; Weir, David J.

    2015-12-01

    We present details of numerical simulations of the gravitational radiation produced by a first order thermal phase transition in the early Universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with a power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow Lf) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to Lf and the square of the fluid kinetic energy density. We identify a dimensionless parameter Ω˜GW characterizing the efficiency of this "acoustic" gravitational wave production whose value is 8 π Ω˜GW≃0.8 ±0.1 across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope approximation. Not only is the power spectrum steeper (apart from an initial transient) but the gravitational wave energy density is generically larger by the ratio of the Hubble time to the phase transition duration, which can be 2 orders of magnitude or more in a typical first order electroweak phase transition.

  20. Demagnified gravitational waves from cosmological double neutron stars and gravitational wave foreground cleaning around 1 Hz

    SciTech Connect

    Seto, Naoki

    2009-11-15

    Gravitational waves (GWs) from cosmological double neutron star binaries (NS+NS) can be significantly demagnified by the strong gravitational lensing effect, and the proposed future missions such as the Big Bang Observer or Deci-hertz Interferometer Gravitational Wave Observatory might miss some of the demagnified GW signals below a detection threshold. The undetectable binaries would form a GW foreground, which might hamper detection of a very weak primordial GW signal. We discuss the outlook of this potential problem, using a simple model based on the singular isothermal sphere lens profile. Fortunately, it is expected that, for a presumable merger rate of NS+NSs, the residual foreground would be below the detection limit {omega}{sub GW,lim}{approx}10{sup -16} realized with the Big Bang Observer/Deci-hertz Interferometer Gravitational Wave Observatory by correlation analysis.

  1. Emergency Vehicle Siren Noise Effectiveness

    NASA Astrophysics Data System (ADS)

    D'Angela, Peter

    Navigating safely through traffic, while responding to an emergency, is often a challenge for emergency responders. To help alert other motorists, these responders use emergency lights and/or sirens. However, the former is useful only if within clear visual range of the other drivers. This shortcoming puts a greater emphasis on the importance of the audible emergency siren, which has its own shortcomings. This study considered several emergency siren systems with the goal to determine the most effective siren system(s) based on several criteria. Multiple experimental measurements and subjective analysis using jury testing using an NVH driving simulator were performed. It was found that the traditional mechanical siren was the most effective audible warning device; however, with significantly reduced electrical power requirements, the low frequency Rumbler siren, in conjunction with a more conventional electronic Yelp siren, was the preferred option. Recommendations for future work are also given.

  2. Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors

    SciTech Connect

    Khalili, Farid; Danilishin, Stefan; Mueller-Ebhardt, Helge; Miao Haixing; Zhao Chunnong; Chen Yanbei

    2011-03-15

    We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a 'negative inertia', which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass standard quantum limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancellation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise-cancellation schemes. We show that it is feasible to demonstrate such an effect with the Gingin High Optical Power Test Facility, and it can eventually be implemented in future advanced GW detectors.

  3. Constraint likelihood analysis for a network of gravitational wave detectors

    SciTech Connect

    Klimenko, S.; Rakhmanov, M.; Mitselmakher, G.; Mohanty, S.

    2005-12-15

    We propose a coherent method for detection and reconstruction of gravitational wave signals with a network of interferometric detectors. The method is derived by using the likelihood ratio functional for unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics. The resulting method can be applied to data from a network consisting of any number of detectors with arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the waveforms of two polarization components of a gravitational wave. We study the performance of the method with numerical simulations and find the reconstruction of the source coordinates to be more accurate than in the standard likelihood method.

  4. Strong gravitational lensing of gravitational waves in Einstein Telescope

    SciTech Connect

    Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2013-10-01

    Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.

  5. Quantum Mechanical Model Of Pulsar Glitches And Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Berloff, N. G.; Melatos, A.

    2009-12-01

    We present a quantum mechanical model of the timing irregularities (glitches) in pulsars. The model relies on the build up of differential rotation between the stellar crust and the interior superfluid due to the presence of pinned superfluid vortices. We employ the Gross-Pitaevskii equation to model computationally the dynamics of the superfluid condensate. By invoking conservation of angular momentum between the interior superfluid and the stellar crust, we provide proof of principle that stick-slip vortex motion, due to vortex pinning, can result in discrete changes in the spin frequency of the crust, analogous to glitches in pulsars. Using the time-varying superfluid velocity field (and hence time-varying current quadrupole moment), we calculate the amplitude, polarization, and frequency content of the burst gravitational wave signal from a single glitch, and cross-correlate the waveform with standard templates in burst pipelines. We also set out the conditions for the signal to be detectable by Advanced LIGO. Radio timing data show that glitch sizes follow a power law with an index that varies between pulsars, and the waiting times between successive glitches have a Poissonian distribution. Based on these statistical distributions, we estimate the combined stochastic gravitational wave signal emanating from a realistically distributed pulsar population in a Milky-Way-type galaxy.

  6. Gravitational waves from a curvaton model with blue spectrum

    SciTech Connect

    Kawasaki, Masahiro; Kitajima, Naoya; Yokoyama, Shuichiro E-mail: nk610@icrr.u-tokyo.ac.jp

    2013-08-01

    We investigate the gravitational wave background induced by the first order scalar perturbations in the curvaton models. We consider the quadratic and axion-like curvaton potential which can generate the blue-tilted power spectrum of curvature perturbations on small scales and derive the maximal amount of gravitational wave background today. We find the power spectrum of the induced gravitational wave background has a characteristic peak at the frequency corresponding to the scale reentering the horizon at the curvaton decay, in the case where the curvaton does not dominate the energy density of the Universe. We also find the enhancement of the amount of the gravitational waves in the case where the curvaton dominates the energy density of the Universe. Such induced gravitational waves would be detectable by the future space-based gravitational wave detectors or pulsar timing observations.

  7. Identifying the inflaton with primordial gravitational waves.

    PubMed

    Easson, Damien A; Powell, Brian A

    2011-05-13

    We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves. PMID:21668140

  8. Building an International Gravitational Wave Network

    NASA Astrophysics Data System (ADS)

    Ballmer, Stefan; LSC; Virgo Collaboration

    2007-12-01

    The international network of ground-based gravitational wave detectors has reached an astrophysically interesting sensitivity and has recently completed its first extended Science run. The network consists of the three LIGO interferometers in the United States, the VIRGO interferometer in Italy, as well as the GEO600 instrument in Germany. I will review the performance of the detectors during the latest run and describe the currently limiting sources of noise, showing that it is possible to further improve the sensitivity with the ongoing upgrades.

  9. Standing gravitational waves from domain walls

    SciTech Connect

    Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas

    2009-07-15

    We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

  10. An heuristic introduction to gravitational waves

    NASA Astrophysics Data System (ADS)

    Sandberg, Vernon D.

    1983-03-01

    We describe in physical terms the phenomenon of gravitational waves. The philosophy of William Gilbert is used.1 ``Since in the discovery of secret things and in the investigation of hidden causes, stronger reasons are obtained from sure experiments and demonstrated arguments than from probable conjectures and the opinions of philosophical speculators of the common sort; therefore to the end that the noble substance of that great loadstone, our common mother (the earth), still quite unknown, and also the forces extraordinary and exalted of this globe may the better be understood...''

  11. Detecting gravitational wave bursts with Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Cornish, Neil; Ellis, Justin

    2016-03-01

    The history of astronomy has shown that the Universe is full of suprises. One of the great hopes for gravitational wave astronomy is the discovery of unanticipated phenomena. To accomplish this we need to develop flexible analysis techniques that are able to detect signals with arbitrary waveform morphology. Here I will describe a multi-wavelet approach for the analysis of timing residuals from a pulsar timing array. Please schedule my talk immediately after the related talk by my co-author Justin Ellis.

  12. Detecting Gravitational Waves using Pade Approximants

    NASA Astrophysics Data System (ADS)

    Porter, E. K.; Sathyaprakash, B. S.

    1998-12-01

    We look at the use of Pade Approximants in defining a metric tensor for the inspiral waveform template manifold. By using this method we investigate the curvature of the template manifold and the number of templates needed to carry out a realistic search for a Gravitational Wave signal. By comparing this method with the normal use of Taylor Approximant waveforms we hope to show that (a) Pade Approximants are a superior method for calculating the inspiral waveform, and (b) the number of search templates needed, and hence computing power, is reduced.

  13. Studying cosmological sources of gravitational waves

    NASA Astrophysics Data System (ADS)

    Corbin, Vincent Dominique Andre

    This dissertation presents two aspects of the study of cosmology through gravitational waves. The first aspect involves direct observation of past eras of the Universe's formation. The detection of the Cosmic Microwave Background Radiation was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect its gravitational equivalent in this century. The Cosmic Gravitational Background is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the gravitational background can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. We apply our results to the detector design described in the Big Bang Observer mission concept study and find that it could detect a background with Ogw > 2.2 x 10 --17. The second aspect consists in studying astrophysical sources that detain crucial information on the Universe's evolution. We focus our attention on black holes binary sytems. These systems contain information on the rate of merger between galaxies, which in turn is key to unlock the mystery of inflation. Pulsar timing is a promising technique for detecting low frequency sources of gravitational waves, such as massive and supermassive black hole binaries. Here we show that the timing data from an array of pulsars can be used to recover the physical parameters describing an individual black hole binary to good accuracy, even for moderately strong signals. A novel aspect of our analysis is that we include the distance to each pulsar as a search parameter, which allows us to utilize the full

  14. Primordial gravitational waves from the space-condensate inflation model

    NASA Astrophysics Data System (ADS)

    Koh, Seoktae; Lee, Bum-Hoon; Tumurtushaa, Gansukh

    2016-04-01

    We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for the full frequency range with the assumption that the phase transition between two consecutive regimes is abrupt during the evolution of the Universe. The suppression of the energy spectrum is found in our model for the decreasing frequency of gravitational waves depending on the model parameter. To realize the suppression of the energy spectrum of the primordial gravitational waves, we study the existence of the early phase transition during inflation for the space-condensate inflation model.

  15. Gravitational waves from self-ordering scalar fields

    SciTech Connect

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan E-mail: daniel.figueroa@uam.es E-mail: juan.garciabellido@uam.es

    2009-10-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω{sub GW}(f) ∝ f{sup 3} with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη{sub *} << 1), enters the horizon, for kη ∼> 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information.

  16. Gravitational-wave stochastic background from cosmic strings.

    PubMed

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space. PMID:17501038

  17. Gravitational waves: Some less discussed intriguing issues

    NASA Astrophysics Data System (ADS)

    Sivaram, C.

    2015-11-01

    Attempts to detect gravitational waves is actively in progress with sophisticated devices like LIGO setup across continents. Despite being predicted almost 100 years ago, there has so far been no direct detection of these waves. In this work, we draw attention to some of the less discussed but subtle aspects arising, for example, from high orbital eccentricities, where emission near periastron could be millions of times more than that in the distant parts of the orbit. The strong field nonlinear effects close to the compact objects can substantially slow down and deflect the waves in the last (few) orbit(s) where much of the intensity is expected. Spin-orbit and other forces could be significant. There would also be plasma like resonant absorption (of kilohertz radiation) during the collapse. Recent observation of supermassive black holes at high redshift implies cluster collapse, where the gravitational wave intensity depends on very high powers of the mass. Any unambiguous claim of detection should perhaps consider several of these effects.

  18. Gravitational waves and the scale of inflation

    NASA Astrophysics Data System (ADS)

    Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias

    2015-03-01

    We revisit alternative mechanisms of gravitational wave production during inflation and argue that they generically emit a non-negligible amount of scalar fluctuations. We find the scalar power is larger than the tensor power by a factor of order 1 /ɛ2. For an appreciable tensor contribution, the associated scalar emission completely dominates the zero-point fluctuations of the inflaton, resulting in a tensor-to-scalar ratio r ˜ɛ2. A more quantitative result can be obtained if one further assumes that gravitational waves are emitted by localized subhorizon processes, giving rmax≃0.3 ɛ2 . However, ɛ is generally time dependent, and this result for r depends on its instantaneous value during the production of the sources, rather than just its average value, somewhat relaxing constraints from the tilt ns. We calculate the scalar 3-point correlation function in the same class of models and show that non-Gaussianity cannot be made arbitrarily small, i.e. fN L≳1 , independently of the value of r . Possible exceptions in multifield scenarios are discussed.

  19. Transformations of asymptotic gravitational-wave data

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2016-04-01

    Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data may be expressed, there will still be an infinite-dimensional group of transformations allowed while remaining in this class, and almost as many different—though physically equivalent—waveforms as there are transformations. This paper presents a method for calculating the effects of the most important transformation group, the Bondi-Metzner-Sachs (BMS) group, consisting of rotations, boosts, and supertranslations (which include time and space translations as special cases). To a reasonable approximation, these transformations result in simple coupling between the modes in a spin-weighted spherical-harmonic decomposition of the waveform. It is shown that waveforms from simulated compact binaries in the publicly available SXS waveform catalog contain unmodeled effects due to displacement and drift of the center of mass, accounting for mode mixing at typical levels of 1%. However, these effects can be mitigated by measuring the average motion of the system's center of mass for a portion of the inspiral, and applying the opposite transformation to the waveform data. More generally, controlling the BMS transformations will be necessary to eliminate the gauge ambiguity inherent in gravitational-wave data for both numerical and analytical waveforms. Open-source code implementing BMS transformations of waveforms is supplied along with this paper in the supplemental materials.

  20. Astrophysical Model Selection in Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  1. Gravitational wave astronomy: needle in a haystack.

    PubMed

    Cornish, Neil J

    2013-02-13

    A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain. PMID:23277598

  2. Relic gravitational waves produced after preheating

    SciTech Connect

    Khlebnikov, S.; Tkachev, I. |

    1997-07-01

    We show that gravitational radiation is produced quite efficiently in interactions of classical waves created by resonant decay of a coherently oscillating field. As an important example we consider simple models of chaotic inflation, where we find that today{close_quote}s ratio of energy density in gravitational waves per octave to the critical density of the Universe can be as large as 10{sup {minus}12} at the maximal wavelength of order 10{sup 5} cm. In the pure {lambda}{phi}{sup 4}/4 model with inflaton self-coupling {lambda}=10{sup {minus}13}, the maximal today{close_quote}s wavelength of gravitational waves produced by this mechanism is of order 10{sup 6} cm, close to the upper bound of operational LIGO and TIGA frequencies. The energy density of waves in this model, though, is likely to be well below the sensitivity of LIGO or TIGA at such frequencies. We discuss the possibility that in other models the interaction of classical waves can lead to an even stronger gravitational radiation background. {copyright} {ital 1997} {ital The American Physical Society}

  3. An Atomic Gravitational Wave Interferometric Sensor (AGIS)

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-08-01

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

  4. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production

  5. Pulsar timing sensitivity to very-low-frequency gravitational waves

    NASA Astrophysics Data System (ADS)

    Jenet, Fredrick A.; Armstrong, J. W.; Tinto, Massimo

    2011-04-01

    We compute the sensitivity, constrained by instrumental, propagation, and other fundamental noises, of pulsar timing to very-low-frequency gravitational waves (GWs). Reaching predicted GW signal strengths will require suppression of time-of-arrival fluctuations caused by interstellar plasma turbulence and a reduction of white rms timing noise to ≲100ns. Assuming negligible intrinsic pulsar rotational noise, perfect time transfer from time standard to observatory, and stable pulse profiles, the resulting single-pulsar signal-to-noiseratio=1 sensitivity is limited by terrestrial time standards at hrms˜2×10-16[f/(1cycle/year)]-1/2 for f<3×10-8Hz, where f is the Fourier frequency and a bandwidth of 1 cycle/(10 years) is assumed. Since this sensitivity is comparable to predicted GW signal levels, a reliable detection will require substantial signal-to-noise ratio improvement via pulsar timing array.

  6. Pulsar timing sensitivity to very-low-frequency gravitational waves

    SciTech Connect

    Jenet, Fredrick A.; Armstrong, J. W.; Tinto, Massimo

    2011-04-15

    We compute the sensitivity, constrained by instrumental, propagation, and other fundamental noises, of pulsar timing to very-low-frequency gravitational waves (GWs). Reaching predicted GW signal strengths will require suppression of time-of-arrival fluctuations caused by interstellar plasma turbulence and a reduction of white rms timing noise to < or approx. 100 ns. Assuming negligible intrinsic pulsar rotational noise, perfect time transfer from time standard to observatory, and stable pulse profiles, the resulting single-pulsar signal-to-noise ratio=1 sensitivity is limited by terrestrial time standards at h{sub rms}{approx}2x10{sup -16} [f/ (1 cycle/year)]-1/2 for f<3x10{sup -8} Hz, where f is the Fourier frequency and a bandwidth of 1 cycle/(10 years) is assumed. Since this sensitivity is comparable to predicted GW signal levels, a reliable detection will require substantial signal-to-noise ratio improvement via pulsar timing array.

  7. Gravitational waves and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Predoi, Valeriu

    2012-07-01

    Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched{filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW{GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis

  8. Optimizing vetoes for gravitational-wave transient searches

    NASA Astrophysics Data System (ADS)

    Essick, R.; Blackburn, L.; Katsavounidis, E.

    2013-08-01

    Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo record a surplus of information above and beyond possible gravitational-wave events. These auxiliary channels capture information about the state of the detector and its surroundings which can be used to infer potential terrestrial noise sources of some gravitational-wave-like events. We present an algorithm addressing the ordering (or equivalently optimizing) of such information from auxiliary systems in gravitational-wave detectors to establish veto conditions in searches for gravitational-wave transients. The procedure was used to identify vetoes for searches for unmodeled transients by the LIGO and Virgo collaborations during their science runs from 2005 through 2007. In this work we present the details of the algorithm; we also use a limited amount of data from LIGO's past runs in order to examine the method, compare it with other methods, and identify its potential to characterize the instruments themselves. We examine the dependence of receiver operating characteristic curves on the various parameters of the veto method and the implementation on real data. We find that the method robustly determines important auxiliary channels, ordering them by the apparent strength of their correlations to the gravitational-wave channel. This list can substantially reduce the background of noise events in the gravitational-wave data. In this way it can identify the source of glitches in the detector as well as assist in establishing confidence in the detection of gravitational-wave transients.

  9. Searches for continuous gravitational waves with LIGO and GEO600

    NASA Astrophysics Data System (ADS)

    Landry, M.

    2008-02-01

    Current searches for astrophysically generated gravitational waves include the ground-based interferometers GEO600 and LIGO. The sensitive band of the detectors is at audio frequencies, from a few tens of Hz to several kHz. We report on efforts to search the data from these detectors for gravitational waves from spinning compact objects such as neutron or quark stars.

  10. Gravitational wave astronomy - astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.

    2011-03-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front - the IndIGO project -, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.

  11. Gravitational wave astronomy-- astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.

    2011-12-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or are being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front-- the IndIGO project --, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.

  12. Optimizing Vetoes for Gravitational-wave Transient Searches

    NASA Technical Reports Server (NTRS)

    Essick, R.; Blackburn, Lindy L.; Katsavounidis, E.

    2014-01-01

    Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo record a surplus of information above and beyond possible gravitational-wave events. These auxiliary channels capture information about the state of the detector and its surroundings which can be used to infer potential terrestrial noise sources of some gravitational-wave-like events. We present an algorithm addressing the ordering (or equivalently optimizing) of such information from auxiliary systems in gravitational-wave detectors to establish veto conditions in searches for gravitational-wave transients. The procedure was used to identify vetoes for searches for unmodelled transients by the LIGO and Virgo collaborations during their science runs from 2005 through 2007. In this work we present the details of the algorithm; we also use a limited amount of data from LIGO's past runs in order to examine the method, compare it with other methods, and identify its potential to characterize the instruments themselves. We examine the dependence of Receiver Operating Characteristic curves on the various parameters of the veto method and the implementation on real data. We find that the method robustly determines important auxiliary channels, ordering them by the apparent strength of their correlations to the gravitational-wave channel. This list can substantially reduce the background of noise events in the gravitational-wave data. In this way it can identify the source of glitches in the detector as well as assist in establishing confidence in the detection of gravitational-wave transients.

  13. Gravitational-wave detection using redshifted 21-cm observations

    SciTech Connect

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-06-15

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  14. Doppler-cancelled response to VLF gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  15. Directed search for continuous gravitational waves from the Galactic center

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.

    2013-11-01

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  16. Gravitational wave: gamma-ray burst connections.

    PubMed

    Hough, Jim

    2007-05-15

    After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation.A promising source of GWs is the coalescence of compact binary systems, events which are now believed to be the origin of short gamma-ray bursts (GRBs). In this paper, a brief review of the state of the art in detector development and exploitation will be given, with particular relevance to a search for signals associated with GRBs, and plans for the future will be discussed. PMID:17293333

  17. Beyond LISA: Exploring future gravitational wave missions

    NASA Astrophysics Data System (ADS)

    Crowder, Jeff; Cornish, Neil J.

    2005-10-01

    The Advanced Laser Interferometer Antenna (ALIA) and the Big Bang Observer (BBO) have been proposed as follow on missions to the Laser Interferometer Space Antenna (LISA). Here we study the capabilities of these observatories, and how they relate to the science goals of the missions. We find that the Advanced Laser Interferometer Antenna in Stereo (ALIAS), our proposed extension to the ALIA mission, will go considerably further toward meeting ALIA’s main scientific goal of studying intermediate mass black holes. We also compare the capabilities of LISA to a related extension of the LISA mission, the Laser Interferometer Space Antenna in Stereo (LISAS). Additionally, we find that the initial deployment phase of the BBO would be sufficient to address the BBO’s key scientific goal of detecting the Gravitational Wave Background, while still providing detailed information about foreground sources.

  18. Gravitational wave triggered searches for failed supernovae

    NASA Astrophysics Data System (ADS)

    Annis, James; Dark Energy Survey Collaboration

    2016-03-01

    Stellar core collapses occur to all stars of sufficiently high mass and often result in supernovae. A small fraction of supergiant stars, however, are thought to collapse directly into black holes without producing supernovae. A survey of such ``failed'' supernovae would require monitoring millions of supergiants for several years. That is very challenging even for current surveys. With the start of the Advanced LIGO science run, we investigate the possibility of detecting failed supernovae by looking for missing supergiants associated with gravitational wave triggers. We use the Dark Energy Camera (DECam). Our project is a joint effort between the community and the Dark Energy Survey (DES) collaboration. In this talk we report on our ongoing efforts and discuss prospects for future searches.

  19. Broadband Resonant Mass Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Aguiar, Odylio D.; Barroso, Joaquim J.; Marinho, Rubens M.; Pimentel, Guilherme L.; Tobar, Michael E.

    By changing from a resonant multimode paradigm to a free mass paradigm for transducers in resonant mass gravitational wave detection, an array of six spheres can achieve a sensitivity response curve competitive with interferometers, being as sensitive as GEO600 and TAMA300 in the 3-6 kHz band and more sensitive than LIGO for 50% of the 6-10 kHz band. This approach has additional benefits. First, due to the relatively inexpensive nature of this technology (~US$1 million), it is accessible to a broader part of the world's scientific community. Additionally, spherical resonant mass detectors have the ability to discern both the direction and polarization resolutions.

  20. Gravitational wave memory in an expanding universe

    NASA Astrophysics Data System (ADS)

    Tolish, Alexander; Wald, Robert

    2016-03-01

    We investigate the gravitational wave memory effect in an expanding FLRW spacetime. We find that if the gravitational field is decomposed into gauge-invariant scalar, vector, and tensor modes after the fashion of Bardeen, only the tensor mode gives rise to memory, and this memory can be calculated using the retarded Green's function associated with the tensor wave equation. If locally similar radiation source events occur on flat and FLRW backgrounds, we find that the resulting memories will differ only by a redshift factor, and we explore whether or not this factor depends on the expansion history of the FLRW universe. We compare our results to related work by Bieri, Garfinkle, and Yau.

  1. Plane gravitational waves in real connection variables

    SciTech Connect

    Hinterleitner, Franz; Major, Seth

    2011-02-15

    We investigate using plane-fronted gravitational wave space-times as model systems to study loop quantization techniques and dispersion relations. In this classical analysis we start with planar symmetric space-times in the real connection formulation. We reduce via Dirac constraint analysis to a final form with one canonical pair and one constraint, equivalent to the metric and Einstein equations of plane-fronted-with-parallel-rays waves. Because of the symmetries and use of special coordinates, general covariance is broken. However, this allows us to simply express the constraints of the consistent system. A recursive construction of Dirac brackets results in nonlocal brackets, analogous to those of self-dual fields, for the triad variables. Not surprisingly, this classical analysis produces no evidence for dispersion, i.e. a variable propagation speed of gravitational plane-fronted-with-parallel-rays waves.

  2. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm. PMID:20481929

  3. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV).

  4. Searching for gravitational waves from binary coalescence

    NASA Astrophysics Data System (ADS)

    Babak, S.; Biswas, R.; Brady, P. R.; Brown, D. A.; Cannon, K.; Capano, C. D.; Clayton, J. H.; Cokelaer, T.; Creighton, J. D. E.; Dent, T.; Dietz, A.; Fairhurst, S.; Fotopoulos, N.; González, G.; Hanna, C.; Harry, I. W.; Jones, G.; Keppel, D.; McKechan, D. J. A.; Pekowsky, L.; Privitera, S.; Robinson, C.; Rodriguez, A. C.; Sathyaprakash, B. S.; Sengupta, A. S.; Vallisneri, M.; Vaulin, R.; Weinstein, A. J.

    2013-01-01

    We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.

  5. Gravitational waves in open de Sitter space

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, Thomas; Turok, Neil

    2000-09-01

    We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The background spacetime is taken to be the continuation of an O(5) symmetric instanton saddle point of the Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclidean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work, the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the spectrum.

  6. Black Holes, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  7. Optimal directed searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Ming, Jing; Krishnan, Badri; Papa, Maria Alessandra; Aulbert, Carsten; Fehrmann, Henning

    2016-03-01

    Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.

  8. The next detectors for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  9. Searching for gravitational waves from neutron stars

    NASA Astrophysics Data System (ADS)

    Idrisy, Ashikuzzaman

    In this dissertation we discuss gravitational waves (GWs) and their neutron star (NS) sources. We begin with a general discussion of the motivation for searching for GWs and the indirect experimental evidence of their existence. Then we discuss the various mechanisms through which NS can emit GWs, paying special attention the r-mode oscillations. Finally we end with discussion of GW detection. In Chapter 2 we describe research into the frequencies of r-mode oscillations. Knowing these frequencies can be useful for guiding and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various corrections. After making simple estimates of the relative strengths of these corrections we conclude that relativistic corrections are the most important. For this reason we extend the formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)], who consider relativistic polytropes, to the case of realistic equations of state. This formulation results in perturbation equations which are solved using a spectral method. We find that for realistic equations of state the r-mode frequency ranges from 1.39--1.57 times the spin frequency of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically motivated interval 0.110--0.310. Following a successful r-mode detection our results can help constrain the high density equation of state. In Chapter 3 we present a technical introduction to the data analysis tools used in GW searches. Starting from the plane-wave solutions derived in Chapter 1 we develop the F-statistic used in the matched filtering technique. This technique relies on coherently integrating the GW detector's data stream with a theoretically modeled wave signal. The statistic is used to test the null hypothesis that the data contains no signal. In this chapter we also discuss how to

  10. Interferometric Gravitational-Wave Detectors: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Ando, Masaki

    2008-08-01

    Constructions of the first-generation interferometric gravitational-wave detectors, such as LIGO, VIRGO, GEO600, and TAMA300, have been finished, and long-term observation runs have been carried out as a global network. These data are analyzed in searches for gravitational-wave signals, and are starting to produce scientific results. In addition, next-generation detectors, which will have sufficient sensitivity to directly detect gravitational waves, are being proposed. In this article, the status of the current detectors, scientific results obtained form observation data, and future interferometric detector plans are reviewed.

  11. Gravitational wave detection with the solar probe: I. Motivation

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    Questions are posed and answered through discussion of gravitational wave detection with the Solar Probe. Discussed are: (1) what a gravitational wave is; (2) why wave detection is important; (3) what astrophysical information might be learned from these waves; (4) status of attempts to detect these waves; (5) why the Solar Probe is a special mission for detecting these waves; (6) how the Solar Probe's expected sensitivity compares with the strength of predicted gravitational waves; and (7) what gravity wave searchers will do after the Solar Probe.

  12. Observable induced gravitational waves from an early matter phase

    SciTech Connect

    Alabidi, Laila; Sasaki, Misao; Kohri, Kazunori; Sendouda, Yuuiti E-mail: kohri@post.kek.jp E-mail: sendouda@cc.hirosaki-u.ac.jp

    2013-05-01

    Assuming that inflation is succeeded by a phase of matter domination, which corresponds to a low temperature of reheating T{sub r} < 10{sup 9}GeV, we evaluate the spectra of gravitational waves induced in the post-inflationary universe. We work with models of hilltop-inflation with an enhanced primordial scalar spectrum on small scales, which can potentially lead to the formation of primordial black holes. We find that a lower reheat temperature leads to the production of gravitational waves with energy densities within the ranges of both space and earth based gravitational wave detectors.

  13. Composite gravitational-wave detection of compact binary coalescence

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.

    2011-04-15

    The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.

  14. Gravitational waves from kinks on infinite cosmic strings

    SciTech Connect

    Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori

    2010-05-15

    Gravitational waves emitted by kinks on infinite strings are investigated using detailed estimations of the kink distribution on infinite strings. We find that gravitational waves from kinks can be detected by future pulsar timing experiments such as SKA for an appropriate value of the string tension, if the typical size of string loops is much smaller than the horizon at their formation. Moreover, the gravitational wave spectrum depends on the thermal history of the Universe and hence it can be used as a probe into the early evolution of the Universe.

  15. Topics in gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, R.

    2004-09-01

    Both the Laser Interferometer Gravitational Wave Observatory (LIGO) the Laser Interferometer Space Antenna (LISA) will over the next decade detect gravitational waves emitted by the motion of compact objects (e.g. black hole and neutron star binaries). This thesis presents methods to improve (i)LIGO detector quality, (ii)our knowledge of waveforms for certain LIGO and LISA sources, and (iii)models for the rate of detectability of a particular LISA source. (1)Plunge of compact object into a supermassive black hole: LISA should detect many inspirals of compact objects into supermassive black holes (˜105 107 M⊙ ). Since the inspiral of each compact object terminates shortly after the inspiralling object reaches its last stable orbit, the late-stage inspiral waveform provides insight into the location of the last stable orbit and strong-field relativity. I discovered that while LISA will easily see the overall inspiral (consisting of many cycles before plunge), the present LISA design will just miss detecting the waves emitted from the transition from inspiral to plunge. (2)Scheme to reduce thermoelastic noise in advanced LIGO: After its first upgrade, LIGO will have its sensitivity limited by thermoelastic noise. [Thermoelastic noise occurs because milimeter-scale thermal fluctuations in the mirror bulk expand and contract, causing the mirror surface to shimmer.] The interferometer's sensitivity could be enhanced substantially by reducing thermoelastic noise. In collaboration with Kip Thorne, Erika d'Ambrosio, Sergey Vyatchanin, and Sergey Strigin, I developed a proposal to reduce thermoelastic noise in advanced-LIGO by switching the LIGO cavity optics from simple spherical mirrors to a new, Mexican-hat shape. (3)Geometric-optics-based analysis of stability of symmetric-hyperbolic formulations of Einstein's equations : Einstein's equations must be evolved numerically to predict accurate waveforms for the late stages of binary black hole inspiral and merger. But no

  16. Surfing effect in the interaction of electromagnetic and gravitational waves: Limits on the speed of gravitational waves

    SciTech Connect

    Polnarev, A. G.; Baskaran, D.

    2008-06-15

    In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with the simple case of an electromagnetic wave traveling in the field of a plane monochromatic gravitational wave, we introduce the concept of the surfing effect and analyze its physical consequences. We then generalize these results to an arbitrary gravitational wave field. We show that, due to the transverse nature of gravitational waves, the surfing effect leads to significant observable consequences only if the velocity of gravitational waves deviates from the speed of light. This fact can help to place an upper limit on the deviation of gravitational wave velocity from the speed of light. The microarcsecond resolution promised by the upcoming precision interferometry experiments allow one to place stringent upper limits on {epsilon}=(v{sub gw}-c)/c as a function of the energy density parameter for gravitational waves {omega}{sub gw}. For {omega}{sub gw}{approx_equal}10{sup -10} this limit amounts to {epsilon} < or approx. 2{center_dot}10{sup -2}.

  17. Theoretical implications of detecting gravitational waves

    NASA Astrophysics Data System (ADS)

    Geshnizjani, Ghazal; Kinney, William H.

    2015-08-01

    This paper is the third in a series of theorems which state how cosmological observations can provide evidence for an early phase of acceleration in the universe. It was demonstrated in [1,2], that the observed power spectrum for scalar perturbations forces all possible alternative theories of inflation to theories other than General Relativity. It was shown that generically, without a phase of accelerated expansion, these alternatives have to break at least one of the following tenets of classical general relativity: the Null Energy Condition (NEC), subluminal signal propagation, or sub-Planckian energy densities. In this paper we prove how detection of primordial gravitational waves at large scales can provide independent evidence to support a phase of accelerated expansion. This proof does not rely on the spectral index for tensor modes but relies on validity of quantum field theory in curved space time and tensor modes being sourced from adiabatic vacuum fluctuations. Our approach, like in the case of scalars, is proof by contradiction: we investigate the possibility of a detectable tensor signal sourced by vacuum fluctuations in a non-accelerating, sub-Planckian universe using cosmological perturbation theory and derive contradictory limits on cosmological dynamics. The contradiction implies that one or more of our axioms for early universe must have been broken. The bound from tensor perturbations is not only independent of, but also stronger than the one obtained from scalar power spectrum.

  18. Red density perturbations and inflationary gravitational waves

    SciTech Connect

    Pagano, Luca; Melchiorri, Alessandro; Cooray, Asantha; Kamionkowski, Marc E-mail: acooray@uci.edu E-mail: kamion@tapir.caltech.edu

    2008-04-15

    We study the implications of recent indications from the Wilkinson Microwave Anisotropy Probe (WMAP) and other cosmological data for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We consider a variety of single-field power-law, chaotic, spontaneous symmetry-breaking and Coleman-Weinberg inflationary potentials which are expected to provide a sizable tensor component and quantify the expected tensor-to-scalar ratio given existing constraints from WMAP on the tensor-to-scalar ratio and the power spectrum tilt. We discuss the ability of the near-future Planck satellite to detect the IGW background in the framework of those models. We find that the proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5{sigma} confidence level. We also provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.

  19. Gravitational waves from the cosmological QCD transition

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.

    2014-09-01

    We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.

  20. NASA's Gravitational-Wave Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-07-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.

  1. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  2. Measuring the speed of cosmological gravitational waves

    NASA Astrophysics Data System (ADS)

    Raveri, Marco; Baccigalupi, Carlo; Silvestri, Alessandra; Zhou, Shuang-Yong

    2015-03-01

    In general relativity gravitational waves propagate at the speed of light; however, in alternative theories of gravity that might not be the case. We investigate the effects of a modified speed of gravity, cT2, on the B modes of the cosmic microwave background (CMB) anisotropy in polarization. We find that a departure from the light speed value would leave a characteristic imprint on the BB spectrum part induced by tensors, manifesting as a shift in the angular scale of its peaks which allows us to constrain cT without any significant degeneracy with other cosmological parameters. We derive constraints from current data and forecast the accuracy with which cT will be measured by the next generation CMB satellites. In the former case, using the available Planck and BICEP2 data sets, we obtain cT2=1.30 ±0.79 and cT2<2.85 at 95% C.L. by assuming a power law primordial tensor power spectrum and cT2<2.33 at 95% C.L. if the running of the spectral index is allowed. More interestingly, in the latter case we find future CMB satellites capable of constraining cT2 at percent level, comparable with bounds from binary pulsar measurements, largely due to the absence of degeneracy with other cosmological parameters.

  3. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    SciTech Connect

    Cordes, J. M.; Jenet, F. A. E-mail: merlyn@phys.utb.edu

    2012-06-10

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T Almost-Equal-To 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  4. Gravitational wave damping of neutron star wobble

    NASA Astrophysics Data System (ADS)

    Cutler, Curt; Jones, David Ian

    2001-01-01

    We calculate the effect of gravitational wave (GW) back reaction on realistic neutron stars (NS's) undergoing torque-free precession. By ``realistic'' we mean that the NS is treated as a mostly fluid body with an elastic crust, as opposed to a rigid body. We find that GW's damp NS wobble on a time scale τθ~2×105 yr [10- 7/(ΔId/I0)]2(kHz/ νs)4, where νs is the spin frequency and ΔId is the piece of the NS's inertia tensor that ``follows'' the crust's principal axis (as opposed to its spin axis). We give two different derivations of this result: one based solely on energy and angular momentum balance, and another obtained by adding the Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long ago by Bertotti and Anile, but their claimed result is wrong. When we convert from their notation to ours, we find that their τθ is too short by a factor of ~105 for the typical cases of interest and even has the wrong sign for ΔId negative. We show where their calculation went astray.

  5. The gravitational wave signal from isolated objects

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhong; Zhang, Yu

    2013-02-01

    According to the theoretical study, a deformation object (e.g., a spinning non-axisymmetric pulsar star) will radiate a gravitational wave (GW) signal during an accelaration motion process by LIGO science project. These types of disturbance sources with a large bump or dimple on the equator would survive and be identifiable as GW sources. In this work, we aim to provide a method for exploring GW radiation from isolated neutron stars (NSs) with deformation state using some observational results, which can be confirmed by the next LIGO project. Combination with the properties in observation results (e.g., PSR J1748-2446, PSR 1828-11 and Cygnus X-1), based on a binary population synthesis (BPS) approach we give a numerical GW radiation under the assumption that NS should have non-axisymmetric and give the results of energy spectrum. We find that the GW luminosity of LGW can be changed from about 1040 erg/s - 1055 erg/s.

  6. Thermal Noise in Laser Interferometer Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Flaminio, Raffaele

    Thermal noise is one of the major limitations to the sensitivity of present and future laser interferometers devoted to gravitational wave detection. According to the fluctuation-dissipation theorem any mechanical oscillator is affected by a motion of thermal origin directly related to its thermodynamic temperature. The mirrors and their suspensions that are used in gravitational wave detectors such as Virgo or LIGO are examples of such mechanical oscillators. As a consequence their position is affected by this thermal vibration and the sensitivity of the gravitational wave detector is thermal noise limited over a wide range of frequencies. After recalling briefly the fluctuation-dissipation theorem and its origins, this chapter describes the main types of thermal noise affecting gravitational wave detectors. In the last part of the chapter a special emphasis is given to the thermal noise due to dissipation in the mirrors optical coatings.

  7. PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    (The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such

  8. Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role

    NASA Astrophysics Data System (ADS)

    Howell, E. J.; Rowlinson, A.; Coward, D. M.; Lasky, P. D.; Kaplan, D. L.; Thrane, E.; Rowell, G.; Galloway, D. K.; Yuan, Fang; Dodson, R.; Murphy, T.; Hill, G. C.; Andreoni, I.; Spitler, L.; Horton, A.

    2015-12-01

    The first observations by a worldwide network of advanced interferometric gravitational wave detectors offer a unique opportunity for the astronomical community. At design sensitivity, these facilities will be able to detect coalescing binary neutron stars to distances approaching 400 Mpc, and neutron star-black hole systems to 1 Gpc. Both of these sources are associated with gamma-ray bursts which are known to emit across the entire electromagnetic spectrum. Gravitational wave detections provide the opportunity for `multi-messenger' observations, combining gravitational wave with electromagnetic, cosmic ray, or neutrino observations. This review provides an overview of how Australian astronomical facilities and collaborations with the gravitational wave community can contribute to this new era of discovery, via contemporaneous follow-up observations from the radio to the optical and high energy. We discuss some of the frontier discoveries that will be made possible when this new window to the Universe is opened.

  9. Searches for Gravitational Waves Associated with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hoak, Daniel; LIGO Scientific Collaboration, Virgo Collaboration

    2015-01-01

    The central engines of gamma-ray bursts (GRBs) are expected to be bright sources of gravitational waves. Over the past decade, coherent analysis techniques have been applied to search for gravitational-wave signals associated with GRBs, using data from the first generation of the LIGO and Virgo detectors. In these searches, no detection candidates were found, but upper limits were placed on the emission of gravitational waves from the GRB progenitors. The advanced LIGO and Virgo instruments are expected to begin operation in the next few years, and an extrapolation of upper limits from the first generation indicates that joint observations between gamma-ray satellites and gravitational-wave detectors is possible for certain progenitor models and event rates.

  10. Magnetar asteroseismology with long-term gravitational waves

    SciTech Connect

    Kashiyama, Kazumi; Ioka, Kunihito

    2011-04-15

    Magnetic flares and induced oscillations of magnetars (supermagnetized neutron stars) are promising sources of gravitational waves (GWs). We suggest that the GW emission, if any, would last longer than the observed x-ray quasiperiodic oscillations (X-QPOs), calling for longer-term GW analyses lasting a day to months, compared to current searches' durations. Like the pulsar timing, the oscillation frequency would also evolve with time because of the decay or reconfiguration of the magnetic field, which is crucial for the GW detection. With the observed GW frequency and its time-derivatives, we can probe the interior magnetic field strength of {approx}10{sup 16} G and its evolution to open a new GW asteroseismology with the next generation interferometers like the advanced laser interferometer gravitational wave observatory, the advanced Virgo gravitational wave detector at the European Gravitational Observatory, the Large-scale cryogenic gravitational wave telescope, and the Einstein telescope.

  11. Black Hole Kicks as New Gravitational Wave Observables

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Moore, Christopher J.

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ˜500 km s-1 , which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  12. Gravitational-Wave Detectors: First, Second, and Third Generation

    SciTech Connect

    Mandic, Vuk

    2011-11-02

    Gravitational waves are predicted by the general theory of relativity to be produced by accelerating mass systems with quadrupole (or higher) moment. The amplitude of gravitational waves is expected to be very small, so the best chance of their direct detection lies with some of the most energetic events in the universe, such as mergers of two neutron stars or black holes, supernova explosions, or the Big Bang itself. Over the past decade several detectors have been built to search for such gravitational-wave sources. This talk will review the current status of these detectors, as well as some of their most recent results, and will cover plans and expectations for the future generations of gravitational wave detectors.

  13. The Science of Gravitational Waves with Space Observatories

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2013-01-01

    After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.

  14. Reduced time delay for gravitational waves with dark matter emulators

    NASA Astrophysics Data System (ADS)

    Desai, S.; Kahya, E. O.; Woodard, R. P.

    2008-06-01

    We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles.

  15. Black Hole Kicks as New Gravitational Wave Observables.

    PubMed

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy. PMID:27419556

  16. Gravitational Wave Search with the Clock Mission (abstract)

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1996-01-01

    Doppler tracking of distant spacecraft is the only method currently available for search for gravitational waves in the low-frequency band. Experiments to date and those planned for the near future all involve.

  17. Earth-orbiting resonant-mass gravitational wave detectors

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1989-01-01

    Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).

  18. The Gravitational Wave Emission of White Dwarf Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Aznar-Siguán, Gabriela; García-Berro, Enrique; Lorén-Aguilar, Pablo

    We compute the emission of gravitational waves of white dwarf dynamical interactions and close encounters in dense stellar environments and we compare it with the sensitivity curves of planned space-borne gravitational wave detectors, like eLISA and ALIA. We find that for the three possible outcomes of these interactions—which are the formation of an eccentric binary system, a lateral collision in which several mass transfer episodes occur, and a direct one in which just a single mass transfer episode takes place—only those in which an eccentric binary are formed are likely to be detected by the planned gravitational wave mission eLISA, while ALIA would be able to detect the gravitational wave signal emitted in lateral collisions.

  19. Visualization of Merging Black Holes and Gravitational Waves

    NASA Video Gallery

    This visualization shows gravitational waves emitted by two black holes of nearly equal mass as they spiral together and merge. Orange ripples represent distortions of space-time caused by the rapi...

  20. A Crash Course in using Pulsars to Detect Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Lommen, Andrea N.; NANOGrav

    2014-01-01

    A collection of well-timed millisecond pulsars makes a “pulsar timing array”, an “observatory” capable of detecting and characterizing small perturbations in spacetime called gravitational waves. In this 12-minute crash course you will learn how pulsars are timed, how you can use them to detect gravitational waves, who and what telescopes are engaged in this international enterprise, and how you can get involved.

  1. Effect of Extra Dimensions on Gravitational Waves from Cosmic Strings

    SciTech Connect

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.

  2. Alternative derivation of the response of interferometric gravitational wave detectors

    SciTech Connect

    Cornish, Neil J.

    2009-10-15

    It has recently been pointed out by Finn that the long-standing derivation of the response of an interferometric gravitational wave detector contains several errors. Here I point out that a contemporaneous derivation of the gravitational wave response for spacecraft doppler tracking and pulsar timing avoids these pitfalls, and when adapted to describe interferometers, recovers a simplified version of Finn's derivation. This simplified derivation may be useful for pedagogical purposes.

  3. Inflationary gravitational waves and the evolution of the early universe

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.

  4. Gravitational waves from global second order phase transitions

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  5. Anisotropies in the gravitational-wave stochastic background

    SciTech Connect

    Ölmez, S.; Mandic, V.; Siemens, X. E-mail: mandic@physics.umn.edu

    2012-07-01

    We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency.

  6. Nanomechanical sensing of gravitational wave-induced Casimir force perturbations

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2014-06-01

    It is shown by means of the optical medium analogy that the static Casimir force between two conducting plates is modulated by gravitational waves. The magnitude of the resulting force changes within the range of already existing small force metrology. It is suggested to enhance the effects on a Casimir force oscillator by mechanical parametric amplification driven by periodic illumination of interacting semiconducting boundaries. This represents a novel opportunity for the ground-based laboratory detection of gravitational waves on the nanoscale.

  7. Gravitational Wave Science: Challenges for Numerical Relativistic Astrophysics

    NASA Technical Reports Server (NTRS)

    Cenrella, Joan

    2005-01-01

    Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.

  8. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  9. The GEO 600 Gravitational Wave Detector: Pulsar Prospects

    NASA Astrophysics Data System (ADS)

    Woan, G.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Barr, B. W.; Berukoff, S.; Bose, S.; Cagnoli, G.; Casey, M. M.; Churches, D.; Colacino, C. N.; Crooks, D. R. M.; Cutler, C.; Danzmann, K.; Davies, R.; Dupuis, R. J.; Elliffe, E.; Fallnich, C.; Freise, A.; Goßler, S.; Grant, A.; Grote, H.; Heinzel, G.; Hepstonstall, A.; Heurs, M.; Hewitson, M.; Hough, J.; Jennrich, O.; Kawabe, K.; Kötter, K.; Leonhardt, V.; Lück, H.; Malec, M.; McNamara, P. W.; Mossavi, K.; Mohanty, S.; Mukherjee, S.; Nagano, S.; Newton, G. P.; Owen, B. J.; Papa, M. A.; Plissi, M. V.; Quetschke, V.; Robertson, D. I.; Robertson, N. A.; Rowan, S.; Rüdiger, A.; Sathyaprakash, B. S.; Schilling, R.; Schutz, B. F.; Senior, R.; Sintes, A. M.; Skeldon, K. D.; Sneddon, P.; Stief, F.; Strain, K. A.; Taylor, I.; Torrie, C. I.; Vecchio, A.; Ward, H.; Weiland, U.; Welling, H.; Williams, P.; Winkler, W.; Willke, B.; Zawischa, I.

    The GEO600 laser-interferometric gravitational wave detector near Hannover, Germany, is one of six such interferometers now close to operation worldwide. The UK/German GEO collaboration uses advanced technologies, including monolithic silica suspensions and signal recycling, to deliver a sensitivity comparable with much larger detectors in their initial configurations. Here we review the design and performance of GEO600 and consider the prospects for a direct detection of continuous gravitational waves from spinning neutron stars.

  10. The LIGO Gravitational Wave Observatories:. Recent Results and Future Plans

    NASA Astrophysics Data System (ADS)

    Harry, G. M.; Adhikari, R.; Ballmer, S.; Bayer, K.; Betzwieser, J.; Bochner, B.; Burgess, R.; Cadonati, L.; Chatterji, S.; Corbitt, T.; Csatorday, P.; Fritschel, P.; Goda, K.; Hefetz, Y.; Katsavounidis, E.; Lawrence, R.; Macinnis, M.; Marin, A.; Mason, K.; Mavalvala, N.; Mittleman, R.; Ottaway, D. J.; Pratt, M.; Regimbau, T.; Richman, S.; Rollins, J.; Shoemaker, D. H.; Smith, M.; van Putten, M.; Weiss, R.; Aulbert, C.; Berukoff, S. J.; Cutler, C.; Grunewald, S.; Itoh, Y.; Krishnan, B.; Machenschalk, B.; Mohanty, S.; Mukherjee, S.; Naundorf, H.; Papa, M. A.; Schutz, B. F.; Sintes, A. M.; Williams, P. R.; Colacino, C.; Danzmann, K.; Freise, A.; Grote, H.; Heinzel, G.; Kawabe, K.; Kloevekorn, P.; Lück, H.; Mossavi, K.; Nagano, S.; Rüdiger, A.; Schilling, R.; Smith, J. R.; Weidner, A.; Willke, B.; Winkler, W.; Cusack, B. J.; McClelland, D. E.; Scott, S. M.; Searle, A. C.; Drever, R. W. P.; Tinto, M.; Williams, R.; Buonanno, A.; Chen, Y.; Thorne, K. S.; Vallisneri, M.; Abbott, B.; Anderson, S. B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B. C.; Barnes, M.; Barton, M. A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.; Coyne, D.; Creighton, T. D.; D'Ambrosio, E.; Desalvo, R.; Ding, H.; Edlund, J.; Ehrens, P.; Etzel, T.; Evans, M.; Farnham, D.; Fine, M.; Gillespie, A.; Grimmett, D.; Hartunian, A.; Heefner, J.; Hoang, P.; Hrynevych, M.; Ivanov, A.; Jones, L.; Jungwirth, D.; Kells, W.; King, C.; King, P.; Kozak, D.; Lazzarini, A.; Lei, M.; Libbrecht, K.; Lindquist, P.; Liu, S.; Logan, J.; Lyons, T. T.; Mageswaran, M.; Mailand, K.; Majid, W.; Mann, F.; Márka, S.; Maros, E.; Mason, J.; Meshkov, S.; Miyakawa, O.; Miyoki, S.; Mours, B.; Nocera, F.; Ouimette, D.; Pedraza, M.; Rao, S. R.; Redding, D.; Regehr, M. W.; Reilly, K. T.; Reithmaier, K.; Robison, L.; Romie, J.; Rose, D.; Russell, P.; Salzman, I.; Sanders, G. H.; Sannibale, V.; Schmidt, V.; Sears, B.; Seel, S.; Shawhan, P.; Sievers, L.; Smith, M. R.; Spero, R.; Sumner, M. C.; Sylvestre, J.; Takamori, A.; Tariq, H.; Taylor, R.; Tilav, S.; Torrie, C.; Tyler, W.; Vass, S.; Wallace, L.; Ware, B.; Webber, D.; Weinstein, A.; Wen, L.; Whitcomb, S. E.; Willems, P. A.; Wilson, A.; Yamamoto, H.; Zhang, L.; Zweizig, J.; Ganezer, K. S.; Babak, S.; Balasubramanian, R.; Churches, D.; Davies, R.; Sathyaprakash, B.; Taylor, I.; Christensen, N.; Ebeling, C.; Flanagan, É.; Nash, T.; Penn, S.; Dhurandar, S.; Nayak, R.; Sengupta, A. S.; Barker, D.; Barker-Patton, C.; Bland-Weaver, B.; Cook, D.; Gray, C.; Guenther, M.; Hindman, N.; Landry, M.; Lubiński, M.; Matherny, O.; Matone, L.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, J.; Parameswariah, V.; Raab, F.; Radkins, H.; Ryan, K.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Worden, J.; Abbott, R.; Carter, K.; Coles, M.; Evans, T.; Frolov, V.; Fyffe, M.; Gretarsson, A. M.; Hammond, M.; Hanson, J.; Kern, J.; Khan, A.; Kovalik, J.; Langdale, J.; Lormand, M.; O'Reilly, B.; Overmier, H.; Parameswariah, C.; Riesen, R.; Rizzi, A.; Roddy, S.; Sibley, A.; Stapfer, G.; Traylor, G.; Watts, K.; Wooley, R.; Yakushin, I.; Zucker, M.; Chickarmane, V.; Daw, E.; Giaime, J. A.; González, G.; Hamilton, W. O.; Johnson, W. W.; Wen, S.; Zotov, N.; McHugh, M.; Whelan, J. T.; Walther, H.; Ageev, A.; Bilenko, I. A.; Braginsky, V. B.; Mitrofanov, V. P.; Tokmakov, K. V.; Vyachanin, S. P.; Camp, J. B.; Kawamura, S.; Belczynski, K.; Grandclément, P.; Kalogera, V.; Kim, C.; Nutzman, P.; Olson, T.; Yoshida, S.; Beausoleil, R.; Bullington, A.; Byer, R. L.; Debra, D.; Fejer, M. M.; Gustafson, E.; Hardham, C.; Hennessy, M.; Hua, W.; Lantz, B.; Robertson, N. A.; Saulson, P. R.; Finn, L. S.; Hepler, N.; Owen, B. J.; Rotthoff, E.; Schlaufman, K.; Shapiro, C. A.; Stuver, A.; Summerscales, T.; Sutton, P. J.; Tibbits, M.; Winjum, B. J.; Anderson, W. G.; Díaz, M.; Johnston, W.; Romano, J. D.; Torres, C.; Ugolini, D.; Aufmuth, P.; Brozek, S.; Fallnich, C.; Goßler, S.; Heng, I. S.; Heurs, M.; Kötter, K.; Leonhardt, V.; Malec, M.; Quetschke, V.; Schrempel, M.; Traeger, S.; Weiland, U.; Welling, H.; Zawischa, I.; Ingley, R.; Messenger, C.; Vecchio, A.; Amin, R.; Castiglione, J.; Coldwell, R.; Delker, T.; Klimenko, S.; Mitselmakher, G.; Mueller, G.; Rakhmanov, M.; Reitze, D. H.; Rong, H.; Sazonov, A.; Shu, Q. Z.; Tanner, D. B.; Whiting, B. F.; Wise, S.; Barr, B.; Bennett, R.; Cagnoli, G.; Cantley, C. A.; Casey, M. M.; Crooks, D. R. M.; Dupuis, R. J.; Elliffe, E. J.; Grant, A.; Heptonstall, A.; Hewitson, M.; Hough, J.; Jennrich, O.; Killbourn, S.; Killow, C. J.; McNamara, P.; Newton, G.; Pitkin, M.; Plissi, M.; Robertson, D. I.; Rowan, S.; Skeldon, K.; Sneddon, P.; Strain, K. A.; Ward, H.; Woan, G.; Chin, D.; Gustafson, R.; Riles, K.; Brau, J. E.; Frey, R.; Ito, M.; Leonor, I.

    2006-02-01

    The LIGO interferometers are operating as gravitational wave observatories, with a noise level near an order of magnitude of the goal and the first scientific data recently taken. This data has been analyzed for four different categories of gravitational wave sources; millisecond bursts, inspiralling binary neutron stars, periodic waves from a known pulsar, and stochastic background. Research and development is also underway for the next generation LIGO detector, Advanced LIGO.