Science.gov

Sample records for grazing incidence small-angle

  1. Three dimensional reconstruction of nanoislands from grazing-incidence small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Yefanov, O. M.; Vartanyants, I. A.

    2009-02-01

    The combination of grazing-incidence small-angle x-ray scattering (GISAXS) with tomographic methods and phase retrieval is proposed for the reconstruction of the three-dimensional (3D) electron density of nanometer sized objects. In this approach GISAXS data from a small object are collected successively at different azimuthal angular positions. This 3D intensity distribution in reciprocal space is used for the phase retrieval and reconstruction of the 3D electron density. The power of our approach is demonstrated in a series of calculations performed in the frame of kinematical and distorted-wave Born approximation (DWBA) theories for the case of GISAXS scattering on a 200 nm island in the form of truncated pyramid.

  2. Depth profiling of polymer films with grazing-incidence small-angle X-ray scattering

    PubMed Central

    Singh, Marsha A.; Groves, Michael N.

    2009-01-01

    A model-free method of reconstructing depth-specific lateral scattering from incident-angle-resolved grazing-incidence small-angle X-ray scattering (GISAXS) data is proposed. The information on the material which is available through variation of the X-ray penetration depth with incident angle is accessed through reference to the reflected branch of the GISAXS process. Reconstruction of the scattering from lateral density fluctuations is achieved by solving the resulting Fredholm integral equation with minimal a priori information about the experimental system. Results from simulated data generated for hypothetical multilayer polymer systems with constant absorption coefficient are used to verify that the method can be applied to cases with large X-ray penetration depths, as typically seen with polymer materials. Experimental tests on a spin-coated thick film of a blend of diblock copolymers demonstrate that the approach is capable of reconstruction of the scattering from a multilayer structure with the identification of lateral scattering profiles as a function of sample depth. PMID:19349663

  3. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices

    SciTech Connect

    Buljan, Maja Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav

    2012-01-01

    The modelling of grazing-incidence small-angle X-ray scattering (GISAXS) from three-dimensional quantum dot lattices is described. The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process.

  4. Anomalous grazing incidence small-angle x-ray scattering studies of platinum nanoparticles formed by cluster deposition.

    PubMed

    Lee, Byeongdu; Seifert, Sönke; Riley, Stephen J; Tikhonov, George; Tomczyk, Nancy A; Vajda, Stefan; Winans, Randall E

    2005-08-15

    The size evolution of platinum nanoparticles formed on a SiO2/Si(111) substrate as a function of the level of surface coverage with deposited clusters has been investigated. The anisotropic shapes of sub-nanometer-size nanoparticles are changed to isotropic on the amorphous substrate as their sizes increased. Using anomalous grazing incidence small-angle x-ray scattering (AGISAXS), the scattering from nanoparticles on the surface of a substrate is well separated from that of surface roughness and fluorescence. We show that AGISAXS is a very effective method to subtract the background and can provide unbiased information about particle sizes of less than 1 nm. PMID:16229604

  5. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  6. Probing helium nano-bubble formation in tungsten with grazing incidence small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Corr, C.

    2015-04-01

    Helium nano-bubble formation in plasma facing materials has emerged as a major concern for the next-step fusion experiment ITER, where helium plasmas will be used during the tokamak's start-up phase. Here, we demonstrate that grazing incidence small-angle x-ray scattering is a powerful technique for the analysis of helium nano-bubble formation in tungsten. We measured helium bubbles with sizes between 1.5-2.5 nm in tungsten exposed to helium plasma at 700 °C, where a smaller number of larger bubbles were also observed. Depth distributions can be estimated by taking successive measurements across a range of x-ray incidence angles. Compared with traditional approaches in the field, such as transmission electron microscopy, this technique provides information across a much larger volume with high statistical precision, whilst also being non-destructive.

  7. Grazing-incidence small-angle X-ray scattering from alkaline phosphatase immobilized in atmospheric plasmapolymer coatings

    NASA Astrophysics Data System (ADS)

    Ortore, M. G.; Sinibaldi, R.; Heyse, P.; Paulussen, S.; Bernstorff, S.; Sels, B.; Mariani, P.; Rustichelli, F.; Spinozzi, F.

    2008-06-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) has been used to study proteins embedded in thin polymer films obtained by a new cold, atmospheric-pressure plasma technique. In order to test the efficiency of the technology, four samples of alkaline phosphatase incorporated in organic polymer coatings in different plasma conditions have been investigated. Data have been analysed in the framework of the distorted-wave Born approximation (DWBA), by using a new method for the simultaneous fitting of the two-dimensional diffuse scattering from each sample. As a result, protein film concentration and aggregation state as well as a set of parameters describing the polymer coatings have been obtained.

  8. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices

    PubMed Central

    Buljan, Maja; Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav

    2012-01-01

    The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process. PMID:22186289

  9. Quantitative analysis of nanoripple and nanoparticle patterns by grazing incidence small-angle x-ray scattering 3D mapping

    NASA Astrophysics Data System (ADS)

    Babonneau, D.; Camelio, S.; Vandenhecke, E.; Rousselet, S.; Garel, M.; Pailloux, F.; Boesecke, P.

    2012-06-01

    3D reciprocal space mapping in the grazing incidence small-angle x-ray scattering geometry was used to obtain accurate morphological characteristics of nanoripple patterns prepared by broad beam-ion sputtering of Al2O3 and Si3N4 amorphous thin films as well as 2D arrays of Ag nanoparticles obtained by glancing angle deposition on Al2O3 nanorippled buffer layers. Experiments and theoretical simulations based on the distorted-wave Born approximation make it possible to determine the average 3D shape of the ripples and nanoparticles together with crucial information on their in-plane organization. In the case of nanoparticle arrays, the approach was also used to quantify the growth conformity of an additional capping layer, which proceeds by replication of the buried ripple pattern.

  10. Grazing incidence small angle X-ray scattering study of silver nanoparticles in ion-exchanged glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Weidong; Wu, Zhaojun; Gu, Xiaohua; Xing, Xueqing; Mo, Guang; Wu, Zhonghua

    2015-05-01

    The size and distribution of silver nanoparticles in ion-exchanged silicate glass induced by thermal treatments in air at different temperatures were investigated by means of grazing incidence small angle X-ray scattering technique, X-ray diffraction and optical absorption spectra. Silver-sodium ion exchange of soda-lime silicate glasses was done at 350 °C for 240 min, then the samples were treated by thermal annealing in air at different temperatures 400, 500 and 550 °C, respectively, for 1 h. After the annealing treatment above 400 °C for 1 h, smaller Ag nanoparticles occurred, together with bigger ones. Both dissolution of smaller Ag nanoparticles and diffusion of larger ones are discussed in these stages of annealing in this contribution.

  11. Time of flight grazing incidence small angle neutron scattering. A novel scattering technique for the investigation of nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Müller-Buschbaum, P.; Metwalli, E.; Moulin, J.-F.; Kudryashov, V.; Haese-Seiller, M.; Kampmann, R.

    2009-02-01

    Grazing incidence small angle neutron scattering (GISANS) overcomes the limitations of conventional small angle scattering with respect to extremely small sample volumes in the thin film geometry. In time of flight (TOF) mode neutrons with a broad range of wavelengths are used simultaneously and recorded as a function of their respective times of flight. The combination of both, TOF-GISANS, enables the simultaneous performance of several GISANS measurements, which differ in wavelength. As a consequence, within one measurement a full set of GISANS pattern related to different scattering vectors, different scattering depths and resolutions result. This allows the detection of nanostructures with a chemical sensitivity. The possibilities of TOF-GISANS are demonstrated by the simple example of polymer nano-dots located on top of a silicon surface. As probed with atomic force microscopy (AFM) the nano-dots exhibit a large characteristic nearest neighbour distance of 545 nm and a surface coverage of 28%. From the analysis of the wavelength dependent data in combination with AFM the mass density of the polymer nano-dots is determined to be equal to the bulk value. A comparison to common single wavelength GISANS experiments is shown.

  12. Thermal quenching sample chamber for grazing incidence small angle x-ray scattering studies of polymer films.

    PubMed

    Singh, M A; Groves, M N; Müller, M S; Stahlbrand, I J; Smilgies, D-M

    2007-11-01

    The second generation of a sample chamber designed for in situ measurement of temperature- and time-dependent polymer film nanostructure using the method of grazing incidence small angle x-ray scattering is presented. An increased operating temperature limit (from 260 to 400 degrees C) with precise control (+/-0.1 degrees C) at fixed temperatures as well as a fourfold increase in maximum instantaneous cooling rate (up to 73 degrees C/s) relative to the first generation chamber [M. N. Groves et al, J. Appl. Crystallogr. 39, 120 (2006)] are reported. Thermal quenches from 220 to 90 degrees C are shown to be reproducible to within +/-1 degrees C of the final temperature. Experimental tests on spin-coated films of symmetric diblock styrene-butadiene copolymer demonstrate the ability to resolve the kinetics of orientation of lamellar domains parallel to the silicon substrate, distinct from the initial formation of randomly oriented lamellar domains immediately following the thermal quench. PMID:18052491

  13. Thermal quenching sample chamber for grazing incidence small angle x-ray scattering studies of polymer films

    NASA Astrophysics Data System (ADS)

    Singh, M. A.; Groves, M. N.; Müller, M. S.; Stahlbrand, I. J.; Smilgies, D.-M.

    2007-11-01

    The second generation of a sample chamber designed for in situ measurement of temperature- and time-dependent polymer film nanostructure using the method of grazing incidence small angle x-ray scattering is presented. An increased operating temperature limit (from 260to400°C) with precise control (±0.1°C) at fixed temperatures as well as a fourfold increase in maximum instantaneous cooling rate (up to 73°C/s) relative to the first generation chamber [M. N. Groves et al, J. Appl. Crystallogr. 39, 120 (2006)] are reported. Thermal quenches from 220to90°C are shown to be reproducible to within ±1°C of the final temperature. Experimental tests on spin-coated films of symmetric diblock styrene-butadiene copolymer demonstrate the ability to resolve the kinetics of orientation of lamellar domains parallel to the silicon substrate, distinct from the initial formation of randomly oriented lamellar domains immediately following the thermal quench.

  14. Aluminum Nitride Grown by Atomic Layer Epitaxy Characterized with Real-Time Grazing Incidence Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Anderson, Virginia; Nepal, Neeraj; Johnson, Scooter; Robinson, Zachary; Demasi, Alexander; Hite, Jennifer; Ludwig, Karl; Eddy, Charles

    Aluminum nitride, gallium nitride, and indium nitride are being considered for many applications, and are currently being used commercially for LEDs. These III-nitride films are conventionally deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Research into depositing III-nitrides with atomic layer epitaxy (ALE) is underway as it is a fabrication friendly technique for thin films at lower temperatures. AlN deposited with ALE at 500°C have been shown to have good crystallinity, but relatively high carbon and oxygen impurities, and understanding the film deposition mechanism is an ongoing project. Grazing incidence small angle x-ray scattering (GISAXS) is sensitive to surface features, making it useful for real time monitoring of deposition processes. AlN was monitored by GISAXS while being deposited with ALE using trimethylaluminum and hydrogen/nitrogen plasma at the Brookhaven National Synchrotron Light Source and the Cornell High Energy Synchrotron Source. The GISAXS of AlN ALE at nominally 400°C, 450°C, and 500°C was compared to ex situ characterization with XPS and AFM.

  15. Asymmetric grazing incidence small angle x-ray scattering and anisotropic domain wall motion in obliquely grown nanocrystalline Co films.

    PubMed

    Quirós, C; Peverini, L; Díaz, J; Alija, A; Blanco, C; Vélez, M; Robach, O; Ziegler, E; Alameda, J M

    2014-08-22

    Strong asymmetries have been observed in grazing incidence small angle x-ray scattering (GISAXS) in situ patterns obtained from 30 nm-thick nanocrystalline Co films prepared by oblique sputtering (15°-75° off-sample normal). These asymmetries have been qualitatively simulated by a simple model consisting of an ensemble of 8 nm-wide inclined Co nanocolumns. It is found that narrow inclined features appear in the diffuse background resembling those characteristic of faceted systems, which can be used to obtain straightforward non-destructive estimations of buried nanocolumnar grains inclination, even for oblique angles below 45°, when the stronger and broader asymmetric features of the pattern are not yet fully formed. Furthermore, using magneto-optical microscopy, a marked change in the magnetic domain's nucleation and growth process has been observed in the sample prepared at 75°, with the stronger GISAXS asymmetries. Easy axis magnetization reversal starts by a random and homogeneous nucleation of small (∼μm) elongated domains aligned with the nanocolumn's long axis and proceeds through the preferred propagation of head-to-head domain walls (DWs) along the applied field direction. This peculiar magnetic behavior indicates that the strongly anisotropic nanostructuring created by the oblique growth process is equivalent, from a magnetic point of view, to an array of self-assembled buried nanowires. These results show how GISAXS and magneto-optical microscopy can be combined as a powerful tool for correlating the morphology and magnetism of thin nanostructured systems. PMID:25074483

  16. Detection of short range order in SiO2 thin-films by grazing-incidence wide and small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Nagata, Kohki; Ogura, Atsushi; Hirosawa, Ichiro; Suwa, Tomoyuki; Teramoto, Akinobu; Ohmi, Tadahiro

    2016-04-01

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO2 thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure in an amorphous thin film was not revealed owing to detection difficulties.

  17. Structural evolution of perpendicular lamellae in diblock copolymer thin films during solvent vapor treatment investigated by grazing-incidence small-angle X-ray scattering.

    PubMed

    Zhang, Jianqi; Posselt, Dorthe; Sepe, Alessandro; Shen, Xuhu; Perlich, Jan; Smilgies, Detlef-M; Papadakis, Christine M

    2013-08-01

    The structural evolution in poly(styrene-b-butadiene) (P(S-b-B)) diblock copolymer thin films during solvent vapor treatment is investigated in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Using incident angles above and below the polymer critical angle, structural changes near the film surface and in the entire film are distinguished. The swelling of the film is one-dimensional along the normal of the substrate. During swelling, the initially perpendicular lamellae tilt within the film to be able to shrink. In contrast, at the film surface, the lamellae stay perpendicular, and eventually vanish at the expense of a thin PB wetting layer. During the subsequent drying, the perpendicular lamellae reappear at the surface, and finally, PS blocks protrude. By modeling, the time-dependent height of the protrusions can be quantitatively extracted. PMID:23843127

  18. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    SciTech Connect

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.; Metwalli, E.; Guo, S.; Mueller-Buschbaum, P.; Herzog, G.; Benecke, G.; Schwartzkopf, M.; Buffet, A.; Perlich, J.; Roth, S. V.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scattered intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.

  19. Characterization of Lipid-Templated Silica and Hybrid Thin Film Mesophases by Grazing Incidence Small-Angle X-ray Scattering

    PubMed Central

    Dunphy, Darren R.; Alam, Todd M.; Tate, Michael P.; Hillhouse, Hugh W.; Smarsly, Bernd; Collord, Andrew D.; Carnes, Eric; Baca, Helen K.; Köhn, Ralf; Sprung, Michael; Wang, Jin; Brinker, C. Jeffrey

    2009-01-01

    The nanostructure of silica and hybrid thin film mesophases templated by phospholipids via an evaporation-induced self-assembly (EISA) process was investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Diacyl phosphatidylcholines with two tails of 6 or 8 carbons were found to template 2D hexagonal mesophases, with the removal of lipid from these lipid/silica films by thermal or UV/O3 processing resulting in a complete collapse of the pore volume. Monoacyl phosphatidylcholines with single tails of 10–14 carbons formed 3D micellular mesophases; the lipid was found to be extractable from these 3D materials, yielding a porous material. In contrast to pure lipid/silica thin film mesophases, films formed from the hybrid bridged silsesquioxane precursor bis(triethoxysilyl)ethane exhibited greater stability toward (both diacyl and monoacyl) lipid removal. Ellipsometric, FTIR, and NMR studies show that the presence of phospholipid suppresses siloxane network formation, while actually promoting condensation reactions in the hybrid material. 1D X-ray scattering and FTIR data were found to be consistent with strong interactions between lipid headgroups and the silica framework. PMID:19496546

  20. Convective assembly of 2D lattices of virus-like particles visualized by in-situ grazing-incidence small-angle X-ray scattering.

    PubMed

    Ashley, Carlee E; Dunphy, Darren R; Jiang, Zhang; Carnes, Eric C; Yuan, Zhen; Petsev, Dimiter N; Atanassov, Plamen B; Velev, Orlin D; Sprung, Michael; Wang, Jin; Peabody, David S; Brinker, C Jeffrey

    2011-04-18

    The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Qβ show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone. PMID:21425464

  1. Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis

    SciTech Connect

    Rijn, R. van; Ackermann, M. D.; Balmes, O.; Dufrane, T.; Gonzalez, H.; Isern, H.; Petit, L.; Sole, V. A.; Wermeille, D.; Felici, R.; Geluk, A.; Kuyper, E. de; Frenken, J. W. M.

    2010-01-15

    A versatile instrument for the in situ study of catalyst surfaces by surface x-ray diffraction and grazing incidence small angle x-ray scattering in a 13 ml flow reactor combined with reaction product analysis by mass spectrometry has been developed. The instrument bridges the so-called ''pressure gap'' and ''materials gap'' at the same time, within one experimental setup. It allows for the preparation and study of catalytically active single crystal surfaces and is also equipped with an evaporator for the deposition of thin, pure metal films, necessary for the formation of small metal particles on oxide supports. Reactions can be studied in flow mode and batch mode in a pressure range of 100-1200 mbar and temperatures up to 950 K. The setup provides a unique combination of sample preparation, characterization, and in situ experiments where the structure and reactivity of both single crystals and supported nanoparticles can be simultaneously determined.

  2. Probing the surface microstructure of layer-by-layer self-assembly chitosan/poly(l-glutamic acid) multilayers: A grazing-incidence small-angle X-ray scattering study.

    PubMed

    Zhao, Nie; Yang, Chunming; Wang, Yuzhu; Zhao, Binyu; Bian, Fenggang; Li, Xiuhong; Wang, Jie

    2016-01-01

    This study characterized the surface structure of layer-by-layer self-assembly chitosan/poly(L-glutamic acid) multilayers through grazing-incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), and atomic force microscopy (AFM). A weakly long-period ordered structure along the in-plane direction was firstly observed in the polyelectrolyte multilayer by the GISAXS technique. This structure can be attributed to the specific domains on the film surface. In the domain, nanodroplets that were formed by polyelectrolyte molecules were orderly arranged along the free surface of the films. This ordered structure gradually disappeared with the increasing bilayer number because of the complex merging behavior of nanodroplets into large islands. Furthermore, resonant diffuse scattering became evident in the GISAXS patterns as the number of bilayers in the polyelectrolyte multilayer was increased. Notably, the lateral cutoff length of resonant diffuse scattering for these polyelectrolyte films was comparable with the long-period value of the ordered nanodroplets in the polyelectrolyte multilayer. Therefore, the nanodroplets could be considered as a basic transmission unit for structure propagation from the inner interface to the film surface. It suggests that the surface structure with length scale larger than the size of nanodroplets was partially complicated from the interface structure near the substrate, but surface structure smaller than the cutoff length was mainly depended on the conformation of nanodroplets. PMID:26478320

  3. A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering

    PubMed Central

    Benecke, Gunthard; Wagermaier, Wolfgang; Li, Chenghao; Schwartzkopf, Matthias; Flucke, Gero; Hoerth, Rebecca; Zizak, Ivo; Burghammer, Manfred; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Trebbin, Martin; Förster, Stephan; Paris, Oskar; Roth, Stephan V.; Fratzl, Peter

    2014-01-01

    X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing. Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to interactively optimize experimental design. This article presents an open-source software package developed to process large amounts of data from synchrotron scattering experiments. These data reduction processes involve calibration and correction of raw data, one- or two-dimensional integration, as well as fitting and further analysis of the data, including the extraction of certain parameters. The software, DPDAK (directly programmable data analysis kit), is based on a plug-in structure and allows individual extension in accordance with the requirements of the user. The article demonstrates the use of DPDAK for on- and offline analysis of scanning small-angle X-ray scattering (SAXS) data on biological samples and microfluidic systems, as well as for a comprehensive analysis of grazing-incidence SAXS data. In addition to a comparison with existing software packages, the structure of DPDAK and the possibilities and limitations are discussed. PMID:25294982

  4. Grazing incidence beam expander

    SciTech Connect

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  5. Near anastigmatic grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1984-01-01

    A performance capability assessment is presently conducted for short versus long grazing incidence telescope designs, in view of the observation that the field curvature and astigmatism that are the primary residual aberrations of a Wolter-type incidence telescope can be substantially reduced through mirror length reduction. A major advantage of the short element telescope is that, if sufficiently short, both the paraboloid and hyperboloid surfaces may be fabricated as a single piece; this significantly facilitates the task of alignment.

  6. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  7. Hypersonic phononic stopbands at small angles of wave incidence in porous silicon multilayers

    NASA Astrophysics Data System (ADS)

    Aliev, Gazi N.; Goller, Bernhard

    2015-08-01

    We report theoretical simulation and experimental observation of the mode conversion effect in a hypersonic distributed Bragg reflector of porous silicon. Acoustic transmission of longitudinal waves through the multilayered structure has been measured in the frequency range 0-3 GHz. It is found that the measured transmittance at the gap frequencies is always higher than that theoretically predicted for normal incidence. We attribute this to non-perpendicular wave propagation that was not deliberately sought, which subsequently increases the center gap transmittance due to the mode conversion effect. Oblique incidence with angles of about 1° results in truncated gap depth in acoustic transmission spectra from about  -80 dB, and deeper, to about  -40 dB and shallower. The spectra were simulated by employing the stiffness matrix method. Porosity-dependent acoustic viscous damping was included in the calculations. A way to optimize reflectors in the frequency range, where the forbidden gaps for longitudinal and shear waves overlap, is discussed.

  8. SLOPE PROFILOMETRY OF GRAZING INCIDENCE OPTICS.

    SciTech Connect

    TAKACS,P.Z.

    2003-01-14

    Profiling instruments are well-suited to the measurement of grazing incidence optics, such as those found in synchrotron radiation beam lines. Slope measuring profilers, based upon the principle of the pencil beam interferometer, have proven to be especially useful in measuring the figure and slope errors on cylindrical aspheres. The Long Trace Profiler, in various configurations, is the most widely used of this class of profiler. Current performance provides slope measurement accuracy at the microradian level and height measurements accurate to 25 nm over 1 meter trace lengths.

  9. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    SciTech Connect

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P.; Perlich, J.; Roth, S. V.; Gehrke, R.

    2012-07-15

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  10. Aplanatic grazing incidence diffraction grating: a new optical element

    SciTech Connect

    Hettrick, M.C.

    1986-09-15

    We present the theory of a grazing incidence reflection grating capable of imaging at submicron resolution. The optic is mechanically ruled on a spherical or cylindrical surface with varied groove spacings, delivering diffraction-limited response and a wide field of view at a selected wavelength. Geometrical aberrations are calculated on the basis of Fermat's principle, revealing significant improvements over a grazing incidence mirror. Aplanatic and quasi-aplanatic versions of the grating have applications in both imaging and scanning microscopes, microprobes, collimators, and telescopes. A 2-D crossed system of such gratings, similar to the grazing incidence mirror geometry of Kirkpatrick and Baez, could potentially provide spatial resolutions of --200 A.

  11. Advantages of a Grazing Incidence Monochromator in the Extreme Ultraviolet

    NASA Astrophysics Data System (ADS)

    Barton, Sarah; Turley, R. Steven

    2006-10-01

    One of the main goals of the BYU Thin Films group is to find optical constants for materials in the Extreme Ultraviolet. This is accomplished by taking reflection and transmission measurements. The addition of a Grazing Incidence Monochromator to our current system allows us to take reflectance measurements at wavelengths currently unavailable on the Normal Incidence Monochromator (Monarch).

  12. Analysis of FEL optical systems with grazing incidence mirrors

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Bender, S.C.; Appert, Q.D.; Lawrence, G.; Barnard, C.

    1986-01-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock-up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  13. Small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice

    2015-10-01

    Small Angle Neutron Scattering (SANS) is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ˜ 1 nm up to ˜ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ˜ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area…) through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer), form factor analysis (I(q→0), Guinier regime, intermediate regime, Porod regime, polydisperse system), structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates), and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast). It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of spectrometer

  14. Low CoO grazing incidence collectors for EUVL HVM

    NASA Astrophysics Data System (ADS)

    Bianucci, G.; Cassol, G. L.; Ceglio, N. M.; Valsecchi, G.; Zocchi, F.

    2012-03-01

    Media Lario Technologies (MLT) uses its proprietary replication by electroforming technology to manufacture grazing incidence collectors in support of the EUVL technology roadmap. With the experience of more than 20 alpha and preproduction collectors installed to date, and with the development results of the Advanced Cooling Architecture (ACA) for High Volume Manufacturing (HVM) collector generation, we present optical, lifetime, and thermo-optical performance of the grazing incidence collectors, meeting the requirements of HVM scanners for a throughput target of more than 100 wafers per hour. The ruthenium reflective layer of the grazing incidence collector is very forgiving to the hostile environment of the plasma sources, as proven by the installed base with 1-year lifetime expectancy. On the contrary, the multilayer-based collector is vulnerable to Sn deposition and ion bombardment, and the need to mitigate this issue has led to a steady increase of the complexity of the LPP source architecture. With the awareness that the source and collector module is the major risk against the timely adoption of EUVL in HVM, we propose a new paradigm that, by using the field-proven design simplicity and robustness of the grazing incidence collector in both LDP and LPP sources, effectively reduces the risk of both source architectures and improves their reliability.

  15. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering.

    PubMed

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole; Chorkendorff, Ib

    2016-03-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  16. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  17. Astronomical applications of grazing incidence telescopes with polynomial surfaces

    NASA Technical Reports Server (NTRS)

    Cash, W.; Shealy, D. L.; Underwood, J. H.

    1979-01-01

    The report has examined the claim that grazing incidence telescopes having surfaces described by generalized equations have image characteristics superior to those of the paraboloid-hyperboloid and Wolter-Schwarzschild configurations. With emphasis on specific applications in solar and cosmic X-ray/EUV astronomy, raytracing has shown that in many cases there is no advantage in the polynomial design, and in those cases where advantages are theoretically to be expected, the advantages are outweighed by practical considerations.

  18. Backscatter from a periodic rough surface at near grazing incidence

    NASA Technical Reports Server (NTRS)

    Dominek, A. K.; Shamansky, H. T.

    1987-01-01

    The effect of periodic surface roughness on the radar cross section (RCS) was studied. The surface roughness was formed by a small sinusoidal variation in a planar surface. RCS measurements were obtained for two different sinusoidal variations near grazing incidence for both principle polarizations. Significant grating lobes were observed in the measurements which directly correspond to the roughness characteristics. A physical optics solution was generated and compared to the measurements with reasonable agreement.

  19. Grazing incidence off Rowland spectrometer with shifted slit

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Krainov, P. V.

    2016-05-01

    The article presents the analysis of the scheme of grazing incidence spectrometer with the normal to the line of site registration of the spectrum. The scheme is intended for the usage of the micro channel plate assembly as a spectrum detector. The main feature is the displacement of the entrance slit from the Rowland circle. The results of the experimental test of the spectral resolution (λ/δλ around 200) are presented and compared with the theoretical estimations.

  20. Grazing incidence off Rowland spectrometer with shifted slit.

    PubMed

    Antsiferov, P S; Dorokhin, L A; Krainov, P V

    2016-05-01

    The article presents the analysis of the scheme of grazing incidence spectrometer with the normal to the line of site registration of the spectrum. The scheme is intended for the usage of the micro channel plate assembly as a spectrum detector. The main feature is the displacement of the entrance slit from the Rowland circle. The results of the experimental test of the spectral resolution (λ/δλ around 200) are presented and compared with the theoretical estimations. PMID:27250391

  1. Grazing incidence telescopes for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2012-01-01

    With grazing incidence telescopes, x-ray astronomy became a major branch of astrophysics. They are an indispensable tool in the study of >106 K thermal and non-thermal high energy phenomena occurring in objects from the solar system to the most distant sites in the universe. They have shed light upon dark matter and dark energy. Four cosmic missions with focusing grazing incidence x-ray telescopes based upon the Wolter 1 geometry are currently in space. They include two observatory class facilities launched in 1999, NASA's high resolution x-ray and ESA's high throughput XMM-Newton. Two others are Japan's Suzaku, performing a variety of studies, and the Swift XRT, which finds precise positions for the x-ray afterglows of gamma-ray bursts. Four new cosmic missions with Wolter-like focusing telescopes are scheduled for launch. They will provide much broader bandwidth (NuSTAR and Astro-H), perform a new sky survey with more exposure time and a broader energy range than previous surveys (eROSITA), have an imaging detector with much better energy resolution (Astro-H), and measure polarization (GEMS). The Kirkpatrick-Baez and the lobster-eye are two types of potentially useful grazing incidence telescopes that have not yet been in orbit. It may not be possible to improve upon Chandra's 0.5 arcsec resolution without new technology.

  2. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  3. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.

    2007-01-01

    The refractive index for most materials is slightly less than unity, which opens an opportunity to develop the grazing incidence neutron imaging optics. The ideal material for the optics would be natural nickel and its isotopes. Marshall Space Flight Center (MSFC) has active development program on the nickel replicated optics for use in x-ray astronomy. Brief status report on the program is presented. The results of the neutron focusing optic test carried by the MSFC team at National Institute of Standards and Technology (NIST) are also presented. Possible applications of the optics are briefly discussed.

  4. Design of Grazing-incidence X-Ray Telescopes. 1.

    PubMed

    Weisskopf, M C

    1973-07-01

    The theoretical and practical constraints on designs of grazing-incidence x-ray telescopes are discussed. It is shown that there is a maximum useful diameter for an x-ray telescope. It is further shown that when practical constraints are considered, the maximum reflecting area is not necessarily achieved by utilizing the largest available area within this diameter. Equations are derived that allow rapid calculation of the effective area of an x-ray telescope before one proceeds to detailed studies utilizing Monte Carlo techniques. PMID:20125544

  5. Primary aberrations for grazing incidence. [in X-ray telescopes

    NASA Technical Reports Server (NTRS)

    Winkler, C. E.; Korsch, D.

    1977-01-01

    Beginning with exact relations between object and image coordinates for a single reflective surface, a systematic analysis of general grazing incidence systems is presented. A complete set of primary aberrations for single-element and two-element systems is developed. The importance of a judicious choice for a coordinate system in showing field curvature to be clearly the predominant aberration for a two-element system is discussed. The validity of the theory is verified through comparisons with the exact ray-trace results for the case of a telescope.

  6. Design of grazing-incidence X-ray telescopes. I.

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    1973-01-01

    The theoretical and practical constraints on designs of grazing-incidence X-ray telescopes are discussed. It is shown that there is a maximum useful diameter for an X-ray telescope. It is further shown that when practical constraints are considered, the maximum reflecting area is not necessarily achieved by utilizing the largest available area within this diameter. Equations are derived that allow rapid calculation of the effective area of an X-ray telescope before one proceeds to detailed studies utilizing Monte Carlo techniques.

  7. Design of high-resolution grazing-incidence echelle monochromators

    SciTech Connect

    Poletto, Luca; Frassetto, Fabio

    2009-10-01

    A grazing-incidence configuration to achieve high spectral resolution in the extreme ultraviolet and soft x-ray regions is presented. It adopts a grating in the off-plane mount operated at high diffracted orders. Resolutions in the 10{sup 5} range can be achieved in a relatively compact size. The monochromator can be tuned in a complete octave by using different diffracted orders without changing the geometrical parameters of the configuration. The optical design of the configuration and the application to a beamline for free-electron-laser radiation centered at 120 eV are discussed.

  8. Sputtering at grazing ion incidence: Influence of adatom islands

    SciTech Connect

    Rosandi, Yudi; Redinger, Alex; Michely, Thomas; Urbassek, Herbert M.

    2010-09-15

    When energetic ions impinge at grazing incidence onto an atomically flat terrace, they will not sputter. However, when adatom islands (containing N atoms) are deposited on the surface, they induce sputtering. We investigate this effect for the specific case of 83 deg. -incident 5 keV Ar ions on a Pt (111) surface by means of molecular-dynamics simulation and experiment. We find that - for constant coverage {Theta} - the sputter yield has a maximum at island sizes of N congruent with 10-20. A detailed picture explaining the decline of the sputter yield toward larger and smaller island sizes is worked out. Our simulation results are compared with dedicated sputtering experiments, in which a coverage of {Theta}=0.09 of Pt adatoms are deposited onto the Pt (111) surface and form islands with a broad distribution around a most probable size of N congruent with 20.

  9. Design and development of grazing incidence x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Mei, Zhiwu; Ma, Tao; Deng, Loulou; Shi, Yongqiang; Li, Liansheng

    2016-01-01

    X-ray pulsar navigation has attracted extensive attentions from academy and engineering domains. The navigation accuracy is can be enhanced through design of X-ray mirrors to focus X-rays to a small detector. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. The simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the grazing incidence X-ray mirror was designed further based on our previous work, with focus on the reflectivity, effective area, angular resolution and baffles. To evaluate the performance of the manufactured mirror, the surface roughness and reflectivity were tested. The test results show that the grazing incidence mirror meets the design specifications. On the basis of this, the reflectivity of the mirror in the working bandwidth was extrapolated to evaluate the focusing ability of the mirror when it works together with the detector. The purpose of our current work to design and develop a prototype mirror was realized. It can lay a foundation and provide guidance for the development of multilayer nested X-ray mirror with larger effective area.

  10. Fluence thresholds for grazing incidence hard x-ray mirrors

    SciTech Connect

    Aquila, A.; Ozkan, C.; Sinn, H.; Tschentscher, T.; Mancuso, A. P.; Gaudin, J.; Sobierajski, R.; Klepka, M. T.; Dłużewski, P.; Morawiec, K.; Störmer, M.; Bajt, S.; Ohashi, H.; Koyama, T.; Tono, K.; Inubushi, Y. [RIKEN and others

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.

  11. Wavefront Sensing Analysis of Grazing Incidence Optical Systems

    NASA Technical Reports Server (NTRS)

    Rohrbach, Scott; Saha, Timo

    2012-01-01

    Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined

  12. Ground effects on aircraft noise. [near grazing incidence

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.; Hilton, D. A.

    1979-01-01

    A flight experiment was conducted to investigate air-to-ground propagation of sound near grazing incidence. A turbojet-powered aircraft was flown at low altitudes over the ends of two microphone arrays. An eight-microphone array was positioned along a 1850 m concrete runway. The second array consisted of 12 microphones positioned parallel to the runway over grass. Twenty-eight flights were flown at altitudes ranging from 10 m to 160 m. The acoustic data recorded in the field reduced to one-third-octave band spectra and time correlated with the flight and weather information. A small portion of the data was further reduced to values of ground attenuation as a function of frequency and incidence angle by two different methods. In both methods, the acoustic signals compared originated from identical sources. Attenuation results obtained by using the two methods were in general agreement. The measured ground attenuation was largest in the frequency range of 200 to 400 Hz. A strong dependence was found between ground attenuation and incidence angle with little attenuation measured for angles of incidence greater than 10 to 15 degrees.

  13. Study of the in-plane magnetic structure of a layered system using polarized neutron scattering under grazing incidence geometry

    NASA Astrophysics Data System (ADS)

    Maruyama, R.; Bigault, T.; Wildes, A. R.; Dewhurst, C. D.; Soyama, K.; Courtois, P.

    2016-05-01

    The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.

  14. Grazing Incidence Pumping for High Efficiency X-ray Lasers

    SciTech Connect

    Dunn, J; Keenan, R; Shlyaptsev, V N

    2005-10-03

    Over the last decade, most laser-driven collisional excitation x-ray lasers have relied on the absorption of the pump energy incident at normal incidence to a pre-formed plasma. The main advantage is that the inversion can be created at various plasma regions in space and time where the amplification and ray propagation processes are best served. The main disadvantage is that different plasma regions regardless of the contribution to the inversion have to be pumped simultaneously in order to make the laser work. This leads to a loss of efficiency. The new scheme of grazing incidence pumping (GRIP) addresses this issue. In essence, a chosen electron density region of a pre-formed plasma column, produced by a longer pulse at normal incidence onto a slab target, is selectively pumped by focusing a short pulse of 100 fs-10 ps duration laser at a determined grazing incidence angle to the target surface. The exact angle is dependent on the pump wavelength and relates to refraction of the drive beam in the plasma. The controlled use of refraction of the pumping laser in the plasma results in several benefits: The pump laser path length is longer and there is an increase in the laser absorption in the gain region for creating a collisional Ni-like ion x-ray laser. There is also an inherent traveling wave, close to c, that increases the overall pumping efficiency. This can lead to a 3-30 times reduction in the pump energy for mid-Z, sub-20 nm lasers. We report several examples of this new x-ray laser on two different laser systems. The first demonstrates a 10 Hz x-ray laser operating at 18.9 nm pumped with a total of 150 mJ of 800 nm wavelength from a Ti:Sapphire laser. The second case is shown where the COMET laser is used both at 527 nm and 1054 nm wavelength to pump higher Z materials with the goal of extending the wavelength regime of tabletop x-ray lasers below 10 nm.

  15. Grazing-Incidence Neutron Optics based on Wolter Geometries

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Ramsey, B. D.; Mildner, D. F. R.

    2008-01-01

    The feasibility of grazing-incidence neutron imaging optics based on the Wolter geometries have been successfully demonstrated. Biological microscopy, neutron radiography, medical imaging, neutron crystallography and boron neutron capture therapy would benefit from high resolution focusing neutron optics. Two bounce optics can also be used to focus neutrons in SANS experiments. Here, the use of the optics would result in lower values of obtainable scattering angles. The high efficiency of the optics permits a decrease in the minimum scattering vector without lowering the neutron intensity on sample. In this application, a significant advantage of the reflective optics over refractive optics is that the focus is independent of wavelength, so that the technique can be applied to polychromatic beams at pulsed neutron sources.

  16. Grazing-incidence spectrometer on the SSPX spheromak

    SciTech Connect

    Clementson, J; Beiersdorfer, P; Magee, E W

    2008-05-02

    The Silver Flat Field Spectrometer (SFFS) is a high-resolution grazing-incidence diagnostic for magnetically confined plasmas. It covers the wavelength range of 25-450 {angstrom} with a resolution of {Delta}{lambda} = 0.3 {angstrom} FWHM. The SFFS employs a spherical 1200 lines/mm grating for flat-field focusing. The imaging is done using a back-illuminated Photometrics CCD camera allowing a bandwidth of around 200 {angstrom} per spectrum. The spectrometer has been used for atomic spectroscopy on electron beam ion traps and for plasma spectroscopy on magnetic confinement devices. The design of the SFFS and the spectrometer setup at the Sustained Spheromak Physics Experiment (SSPX) in Livermore will be presented.

  17. An EUV beamsplitter based on conical grazing incidence diffraction.

    PubMed

    Braig, C; Fritzsch, L; Käsebier, T; Kley, E-B; Laubis, C; Liu, Y; Scholze, F; Tünnermann, A

    2012-01-16

    We present an innovative grating design based on conical diffraction which acts as an almost perfect and low-loss beamsplitter for extreme ultraviolet radiation. The scheme is based on a binary profile operated in grazing incidence along the grating bars under total external reflection. It is shown that periods of a few 10(2) nm may permit an exclusive (±1)(st) order diffraction with efficiencies up to ~ 35% in each of them, whereas higher evanescent orders vanish. In contrast, destructive interference eliminates the 0(th) order. For a sample made of SiO(2) on silicon, measured data and simulated results from rigorous coupled wave analysis procedures are given. PMID:22274527

  18. The design and evaluation of grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.

    1989-01-01

    X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.

  19. Grazing incidence neutron diffraction from large scale 2D structures

    SciTech Connect

    Toperverg, B. P.; Felcher, G. P.; Metlushko, V. V.; Leiner, V.; Siebrecht, R.; Nikonov, O.

    2000-01-13

    The distorted wave Born approximation (DWBA) is applied to evaluate the diffraction pattern of neutrons (or X-rays) from a 2D array of dots deposited onto a dissimilar substrate. With the radiation impinging on the surface at a grazing incidence angle {alpha}, the intensities diffracted both in and out the plane of specular reflection are calculated as a function of the periodicity of the array, height and diameter of the dots. The results are presented in the form of diffracted intensity contours in a plane with coordinates {alpha} and {alpha}{prime}, the latter being the glancing angle of scattering. The optimization of the experimental conditions for polarized neutron experiments on submicron dots is discussed. The feasibility of such measurements is confirmed by a test experiment.

  20. Meteoroid and space debris impacts in grazing-incidence telescopes

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Wells, A.; Abbey, A. F.; Ambrosi, R. M.

    2008-06-01

    Context: Micrometeoroid or space debris impacts have been observed in the focal planes of the XMM-Newton and Swift-XRT (X-ray Telescope) X-ray observatories. These impacts have resulted in damage to, and in one case the failure of, focal-plane Charge-Coupled Device (CCDs) detectors. Aims: We aim to quantify the future risks of focal-plane impacts in present and future X-ray observatories. Methods: We present a simple model for the propagation of micrometeoroids and space debris particles into telescopes with grazing-incidence X-ray optics, which is based on the results of previous investigations into grazing-incidence hypervelocity impacts by microscopic particles. We then calculate micrometeoroid and space debris fluxes using the Micrometeoroid and Space Debris Terrestrial Environment Reference model (MASTER2005). The risks of future focal-plane impact events in three present (Swift-XRT, XMM-Newton, and Chandra) and two future (SIMBOL-X and XEUS) X-ray observatories are then estimated on the basis of the calculated fluxes and the model for particle propagation. Results: The probabilities of at least one impact occurring in the Swift-XRT, XMM-Newton, and Chandra focal planes, in a one year period from the time of writing in November 2007 are calculated to be ~5% and ~50% and ~3%. First-order predictions of the impact rates expected for the future SIMBOL-X and XEUS X-ray observatories yield probabilities for at least one focal-plane impact, during nominal 5-year missions, of more than 94% and 99%, respectively. Conclusions: The propagation of micrometeoroids and space debris particles into the focal planes of X-ray telescopes is highest for Wolter optics with the largest collecting areas and the lowest grazing angles. Telescopes in low-Earth orbits encounter enhanced particle fluxes compared with those in higher orbits and a pointing avoidance strategy for certain directions can reduce the risk of impacts. Future X-ray observatories, with large collecting areas and

  1. Contamination of grazing incidence EUV mirrors - An assessment

    NASA Technical Reports Server (NTRS)

    Osantowski, John F.; Fleetwood, C. F.

    1988-01-01

    Contamination assessment for space optical systems requires an understanding of the sensitivity of component performance, e.g. mirror reflectance, to materials deposited on the mirror surface. In a previous study, the sensitivity of typical normal incidence mirror coatings to surface deposits of generic hydrocarbons was reported. Recent activity in the development of grazing incidence telescopes for extreme ultraviolet space astronomy has stimulated the need for a similar assessment in the spectral region extending from approximately 100 A to 1000 A. The model used for analysis treats the contamination layer as a continuous thin film deposited on the mirror surface. The mirror surfaces selected for this study are opaque vacuum deposited gold and the uncoated and polished Zerodur. Scatter caused by film irregularities or particulates are not included in this assessment. Parametric evaluations at 100, 500, and 1000 A determine the sensitivity of mirror reflectance to a range of optical constants selected for the generic contaminants. This sensitivity analysis combined with the limited amount of optical data in the EUV for hydrocarbons, is used to select representative optical constants for the three wavelength regions. Reflectance versus contamination layer thickness curves are then calculated and used to determine critical thickness limits based on allowable reflectance change. Initial observations indicate that thickness limits will be highly dependent on the real part of the complex index of refraction of the contaminant film being less than 1.0. Preliminary laboratory measurements of samples contaminated with some commonly encountered hydrocarbons confirm trends indicated in the analytical studies.

  2. Design Of Grazing Incidence Monochromators Involving Unconventional Gratings

    NASA Astrophysics Data System (ADS)

    McKinney, Wayne R.; Palmer, Christopher A.

    1989-07-01

    The manufacture of varied line space (VLS) gratings was pioneered by Harada and co-workers of Japan, and Gerasimov and co-workers in the Soviet Union. Ruling engines were modified to allow the groove spacing to vary in a continuous manner, the grooves often remaining straight and parallel. This type of grating can also be obtained in the United States from Perkin Elmer Co. of Irvine, CA. Other VLS gratings involving fan shaped or concentric grooves have been developed by these groups and Hyperfine, Inc. of Boulder, CO. Monochromators using VLS for the UV and higher energy regions have been developed by Hettrick. We review the basic aspects of second order focusing of straight and parallel grooved varied line space gratings in both converging and collimated light in a more explicit and detailed manner that we have found in the literature. The effects of the VLS correction to the location of the focal curve for grazing incidence geometries are found to be very significant.

  3. Interferometric results from Boeing grazing incidence ring resonator FEL

    NASA Astrophysics Data System (ADS)

    Byrd, D. A.; Bender, S. C.; Miller, E. L.; Dowell, D. H.

    1991-08-01

    The Boeing HAP (High Average Power) experiment had been reconfigured throughout 1989 to 1990 to incorporate a grazing incidence, 133 m round trip ring resonator. Initial spectral, mode stability, coherence length, and interferometric wavefront quality measurements have been taken. This paper reports on the optical measurement techniques and data used to characterize the resonator optical output as 2.0 to 2.5 lambda OPD. Raw data-reduction methodology and analysis supporting the subtraction of effects caused by the 7x beam reducer, fold mirrors, and the radial shear interferometer itself are included. Noteworthy observations such as the ability to overlay interferometric fringe data over the length of a macropulse (approx. 180 micropulses) without destroying the fringe visibility and the occurrence of centrally localized (approx. 30 pct. of the diameter) disturbances of the fringe pattern are also discussed. Coherence length measurements, made using the interferometer, showed the spectral bandwidth to be between 74 and 120 microns. Attempts to measure the micropulse-to-micropulse mode stability were made and are discussed as well.

  4. Interferometric results from the Boeing grazing incidence FEL ring resonator

    NASA Astrophysics Data System (ADS)

    Byrd, D. A.; Bender, S. C.; Miller, E. L.; Dowell, D. H.

    1992-07-01

    The Boeing HAP (High Average Power) experiment was reconfigured throughout 1989-1990 to incorporate a grazing incidence, 133 m round-trip ring resonator. Initial spectra, mode stability, coherence length, and interferometric wavefront quality measurements have been taken. This paper reports on the optical measurement techniques and data used to characterize the resonator optical output as having an optical path difference (OPD) of 2.0 to 2.5 optical wavelengths. A basic data-reduction methodology and analysis supporting the subtraction of effects caused by the 7 × beam reducer, fold mirrors, and the radial shear interferometer itself Noteworthy observations, such as the ability to overlay interferometric fringe data over the length of a macropulse (≈ 180 micropulses) without destroying the fringe visibility, and the occurrence of centrally localized (≈ 30% of the diameter) disturbances of the fringe pattern are also discussed. Coherence length measurements, made using the interferometer, showed the coherence length to be between 64 and 120 μm. Attempts to measure the micropulse-to-micropulse mode stability were made and are discussed as well.

  5. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  6. Development of Grazing Incidence Optics for Neutron Imaging and Scattering

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.

    2012-01-01

    Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be

  7. Measurement of the interior structure of thin polymer films using grazing incidence diffuse x-ray scattering.

    PubMed

    Mukhopadhyay, M K; Lurio, L B; Jiang, Z; Jiao, X; Sprung, Michael; DeCaro, Curt; Sinha, S K

    2010-07-01

    A method is developed for calculating the small-angle x-ray scattering originating from within the interior of a thin film under grazing incidence illumination. This offers the possibility of using x-ray scattering to probe how the structure of polymers is modified by confinement. When the diffuse scattering from a thin film is measured over a range of incident angles, it is possible to separate the contributions to scattering from the interfaces and the contribution from the film interior. Using the distorted-wave Born approximation the structure factor, S(q), of the film interior can then be obtained. We apply this method to analyze density fluctuations from within the interior of a silicon supported molten polystyrene (PS) film. Measurements were made as a function of film thickness ranging from one to ten times the polymer radius of gyration (Rg). The compressibility, calculated by extrapolating the measured S(q) to q=0, agrees well with that of bulk PS for thick films, but thinner films exhibit a peak in S(q) near q=0. This peak, which grows with decreasing thickness, is attributed to a decreased interpenetration of chains and a consequent enhanced compressibility. PMID:20866641

  8. Grazing-incidence X-ray diffraction from a crystal with subsurface defects

    SciTech Connect

    Gaevskii, A. Yu. Golentus, I. E.

    2015-03-15

    The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaks are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.

  9. A grazing incidence x-ray streak camera for ultrafast, single-shot measurements

    SciTech Connect

    Feng, Jun; Engelhorn, K.; Cho, B.I.; Lee, H.J.; Greaves, M.; Weber, C.P.; Falcone, R.W.; Padmore, H. A.; Heimann, P.A.

    2010-02-18

    An ultrafast x-ray streak camera has been realized using a grazing incidence reflection photocathode. X-rays are incident on a gold photocathode at a grazing angle of 20 degree and photoemitted electrons are focused by a large aperture magnetic solenoid lens. The streak camera has high quantum efficiency, 600fs temporal resolution, and 6mm imaging length in the spectral direction. Its single shot capability eliminates temporal smearing due to sweep jitter, and allows recording of the ultrafast dynamics of samples that undergo non-reversible changes.

  10. Grazing incidence metal optics for the Berkeley Extreme Ultraviolet Explorer satellite - A progress report

    NASA Technical Reports Server (NTRS)

    Finley, D.; Malina, R. F.; Bowyer, S.

    1985-01-01

    The four flight Wolter-Schwarzschild mirrors currently under fabrication for the Extreme Ultraviolet Explorer (EUVE) satellite are described. The principal figuring operation of these grazing incidence metal mirrors (gold over nickel on an aluminum substrate) is carried out by diamond turning at the Lawrence Livermore National Laboratories. Turning has been accomplished and optical testing results analyzed for three of the mirrors. As-turned values of 1.7 arc sec full width at half maximum (FWHM) and half energy width (HEW) of 5 arc seconds in the visible have been achieved. These results illustrate the great potential of precision fabrication technology for the production of large grazing incidence optics.

  11. Design, fabrication and performance of two grazing incidence telescopes for celestial extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Cash, W.; Malina, R. F.; Bowyer, S.

    1977-01-01

    The design and performance of grazing incidence telescopes for celestial extreme ultraviolet (EUV) astronomy are described. The telescopes basically consist of a star tracker, collimator, grazing incidence mirror, vacuum box lid, vacuum housing, filters, a ranicon detector, an electronics box, and an aspect camera. For the survey mirror a Wolter-Schwarzschild type II configuration was selected. Diamond-turning was used for mirror fabrication, a technique which machines surfaces to the order of 10 microns over the required dimensions. The design of the EUV spectrometer is discussed with particular reference to the optics for a primarily spectroscopic application and the fabrication of the f/10 optics.

  12. Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Underwood, J. H.; Brown, C. M.; Feldman, U.; Seely, John F.

    1988-01-01

    An experimental method is described in which a grazing incidence spectrograph is used to obtain spatially resolved spectra of laser heated plasmas in the 6-370-A region. In the experiment, small target spheres were irradiated by tightly focused laser beams. A tilted grazing incidence elliptical mirror placed 1.3 m from the target focuses the plasma radiation on the spectrograph slit at a distance of 0.7 m producing a useful degree of spatial resolution in the recorded spectral lines. The spectrum from a copper target is presented together with an X-ray pinhole camera image of the plasma.

  13. Grazing incidence telescopes - A new class for soft X-ray and EUV spectroscopy

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Bowyer, S.

    1984-01-01

    A new class of grazing incidence telescopes is identified, and its advantages for stellar spectroscopy are discussed. In particular, three types of telescope geometry consisting of a primary and a secondary, both at grazing incidence, are proposed. Type I delivers a converging beam having a real focus; type II delivers a diverging beam from a virtual focus, and type III delivers a collimated beam concentrated relative to the primary aperture. The three telescope types are shown to possess unique properties which improve the efficiency and shorten the length of soft X-ray/EUV spectrographs.

  14. Varied-space grazing incidence gratings in high resolution scanning spectrometers

    SciTech Connect

    Hettrick, M.C.; Underwood, J.H.

    1986-10-01

    We discuss the dominant geometrical aberrations of a grazing incidence reflection grating and new techniques which can be used to reduce or eliminate them. Convergent beam geometries and the aberration correction possible with varied groove spacings are each found to improve the spectral resolution and speed of grazing incidence gratings. In combination, these two techniques can result in a high resolution (lambda/..delta..lambda > 10/sup 4/) monochromator or scanning spectrometer with a simple rotational motion for scanning wavelength or selecting the spectral band. 21 refs., 4 figs.

  15. Biomedical nuclear and X-ray imager using high-energy grazing incidence mirrors

    DOEpatents

    Ziock, Klaus-Peter; Craig, William W.; Hasegawa, Bruce; Pivovaroff, Michael J.

    2005-09-27

    Imaging of radiation sources located in a subject is explored for medical applications. The approach involves using grazing-incidence optics to form images of the location of radiopharmaceuticals administered to a subject. The optics are "true focusing" optics, meaning that they project a real and inverted image of the radiation source onto a detector possessing spatial and energy resolution.

  16. Soller collimators for small angle neutron scattering

    SciTech Connect

    Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.

    1988-09-30

    Small angle diffractometers at pulsed sources need to have fairly short flight paths if they are to make use of the long-wavelength portion of the spectrum without encountering problems from frame overlap or sacrificing intensity with band-limiting or pulse-removing choppers. With such short flight paths, achieving the necessary angular collimation in the incident beam while utilizing the full source size (/approximately/10 cm diameter) and a reasonable sample size (/approximately/1 cm diameter) requires the use of converging multiple-aperture collimation. If the collimation channels are all focused to the same point on the detector then the large sample size will not affect Q/sub min/ or the Q-resolution, even if the sample-to-detector distance is short. The Small Angle Diffractometer (SAD) at IPNS uses crossed converging soller collimators to provide focusing multiple-aperture collimation having /approximately/400 converging beam channels with essentially no ''dead'' space between them. This entire collimator system occupies a distance of only /approximately/60 cm along the incident flight path, while providing angular collimation of 0.003 radians FWHM. The dimensions for the SAD upstream collimator are L/sub c/ = 32.8 cm, d/sub 1/ = 0.974 mm, d/sub 2/ = 0.851 mm, while for the SAD downstream collimator L/sub c/ = 25.0 cm, d/sub 1/ - 0.844 mm, d/sub 2/ = 0.750 mm. Each of these collimators has 20 blades defining 21 horizontal or vertical channels. 4 refs., 6 figs.

  17. LPI studies with grazing incidence irradiation at the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Schmitt, A.; Obenschain, S.; Serlin, V.; Oh, J.; Lehmberg, R.; Seely, J.

    2013-10-01

    Studies of laser plasma instabilities (LPI) at the Nike laser facility at NRL have previously concentrated on planar targets irradiated with their surface normal aligned to the central axis of the laser. Shots with planar targets rotated up 60° to the laser have shown changes in thresholds for the two-plasmon decay instability and stimulated Raman scattering near the quarter critical region. In the case of rotated low-Z targets, spectra were observed to shift to lower wavelength and were substantially stronger in the visible and ultraviolet spectral ranges. The low-Z target data show growth at an incident intensity slightly below (~30%) the threshold values observed at normal incidence. A rapid rise in signal level over the same laser intensities was also observed in the hard x-ray data which serve as an overall indicator of LPI activity. Shots with rotated planar high-Z targets showed that the visible and ultraviolet emissions dropped significantly when compared to low-Z targets in the same geometry. This presentation will include results from upcoming experiments to determine the LPI signal for low-Z, high-Z, and high-Z coated targets at lower laser intensities for several angles of target rotation. Shots with widely separated laser beams are also planned to explore cross beam energy transport at Nike. Work supported by DoE/NNSA.

  18. Grazing-incidence efficiencies in the 28{endash}42-{Angstrom} wavelength region of replicas of the Skylab 3600-line/mm concave grating with multilayer and gold coatings

    SciTech Connect

    Hunter, W.R.,; Barbee, T.W. Jr.; Seely, J.F.; Kowalski, M.P.; Rife, J.C.,

    1997-09-01

    The efficiencies of replicas of the Skylab 3600-line/mm concave grating with multilayer and gold coatings were measured by using synchrotron radiation at an angle of incidence of 79{degree} and in the 28{endash}42-{Angstrom} wavelength range. The blaze angle of the grating facets that faced the incident radiation was 3.1{degree}, and the average angle of the opposite facets was 6{degree}. For the gold grating, the {minus}1 outside order had the highest efficiency of any diffracted order (excluding the zero order) over the entire wavelength range. Calculations of the grating efficiency indicated that the high efficiency in the {minus}1 order resulted from the rather small angle (6{degree}) of the facets opposite the incident radiation. For the multilayer grating, the efficiency in the on-blaze +2 inside order was enhanced in the 30{endash}34-{Angstrom} wavelength region as a result of the high reflectance of the multilayer coating. The maximum efficiency in the +2 order occurred at the wavelength (32 {Angstrom}) corresponding to the peak of the reflectance of the multilayer coating on the facets facing the incident radiation. These results further demonstrate that a multilayer coating can be used to enhance the efficiency, in a selected wavelength range and in the on-blaze order, of a grating operating at a small grazing angle (11{degree}). {copyright} 1997 Optical Society of America

  19. Reactive scattering of H{sub 2} from metal surfaces under fast-grazing-incidence conditions

    SciTech Connect

    Diaz, C.; Martin, F.

    2010-07-15

    We have studied the interaction of molecular hydrogen with metal surfaces under fast-grazing-incidence conditions, by means of classical dynamics calculations based on density functional theory six-dimensional potential energy surfaces. We have performed calculations on two activated systems, H{sub 2}/NiAl(110) and H{sub 2}/Cu(111), and on two nonactivated systems, H{sub 2}/Pd(111) and H{sub 2}/Pd(110). We show that for rather open surfaces the computed 1-R probabilities (where R represents the reflectivity) as a function of the normal collision energy at grazing incidence (along low-Miller-index directions) mimic reasonably well the dissociative adsorption probabilities obtained at normal incidence and thermal energies from the dissociation threshold up to the saturation limit. Our results indicate that fast grazing incidence experiments could be used as complement to traditional sticking experiments at thermal energies to determine dissociative adsorption saturation limits, which are usually unreachable due to limitations in traditional molecular beam experiments

  20. Differential Deposition to Correct Surface Figure Deviations in Astronomical Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2011-01-01

    A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.

  1. Grazing incidence reflection coefficients of rhodium, osmium, platinum, and gold from 50 to 300 A

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Edelstein, J.; Flint, S. A.

    1985-01-01

    Reflectance measurements were made of several metals illuminated from various angles with light at 14 wavelengths in the interval 46.5-283 A. The metals, Rh, Os, Pt and Au were deposited as 125 A films on a binding substrate through electron beam epitaxy. Measurements were made with a grazing incidence monochromator and a reflectometer. The data generally showed lowered reflectance with increasing angles of illumination and shorter wavelengths. The reflectance peak, however, was located at wavelengths of 100-160 A, particularly at large grazing incidences. The wavelengths correspond with the 5p to epsilon-d transition in all of the elements. Rh displayed the highest overall reflectance, and both Rh and Os were more efficient than Au or Pt.

  2. Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111)

    SciTech Connect

    Hansen, Henri; Redinger, Alex; Messlinger, Sebastian; Stoian, Georgiana; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M.; Linke, Udo

    2006-06-15

    Ripple patterns forming on Pt(111) due to 5 keV Ar{sup +} grazing-incidence ion bombardment were investigated by scanning tunneling microscopy in a broad temperature range from 100 to 720 K and for ion fluences up to 3x10{sup 20} ions/m{sup 2}. A detailed morphological analysis together with molecular dynamics simulations of single ion impacts allow us to develop atomic scale models for the formation of these patterns. The large difference in step edge versus terrace damage is shown to be crucial for ripple formation under grazing incidence. The importance of distinct diffusion processes--step adatom generation at kinks and adatom lattice gas formation--for temperature dependent transitions in the surface morphology is highlighted. Surprisingly, ion bombardment effects like thermal spike induced adatom production and planar subsurface channeling are important for pattern ordering.

  3. Opto-mechanical Analyses for Performance Optimization of Lightweight Grazing-incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Kolodziejczak, Jeffery J.; Odell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C.; Ramsey, Brian; Gubarev, Mikhail V.

    2013-01-01

    New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve subarcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Lightweight mirrors are typically flimsy and are, therefore, susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Here we report initial results of this study.

  4. Grazing incidence neutron spin echo spectroscopy: instrumentation aspects and scientific opportunities

    NASA Astrophysics Data System (ADS)

    Holderer, O.; Frielinghaus, H.; Wellert, S.; Lipfert, F.; Monkenbusch, M.; von Klitzing, R.; Richter, D.

    2014-07-01

    Grazing Incidence Neutron Spin Echo Spectroscopy (GINSES) opens new possibilities for observing the thermally driven dynamics of macromolecules close to a rigid interface. The information about the dynamics can be retrieved as a function of scattering depth of the evanescent neutron wave, on the length scale in the range of some 10-100 nm. Using a classical neutron spin echo spectrometer with a laterally collimated beam, dynamics can be measured in grazing incidence geometry. We show examples of how the interface modifies the dynamics of microemulsions, membranes and microgels. Instrumental details and possible improvements for this technique will be presented. The key issue is the low intensity for dynamics measurements with an evanescent neutron wave. Conceptual questions how a specialised instrument could improve the experimental technique will be discussed.

  5. Final Report for "Accurate Numerical Models of the Secondary Electron Yield from Grazing-incidence Collisions".

    SciTech Connect

    Seth A Veitzer

    2008-10-21

    Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.

  6. Opto-mechanical Analyses for Performance Optimization of Lightweight Grazing-incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline; Kolodsiejczak, Jeffrey; Odell, Stephen; Elsner, Ronald; Weisskopf, Martin; Ramsey, Brian; Gubarev, Mikhail

    2013-01-01

    New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve sub-arcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Because the lightweight mirrors are typically flimsy, they are susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its thickness and dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Initial results will be reported.

  7. Opto-Mechanical Analyses for Performance Optimization of Lightweight Grazing-Incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline; Kolodziejczak, Jeff; Odell, Steve; Eisner, Ronald; Ramsey, Brian; Gubarev, Mikhail

    2013-01-01

    New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve sub-arcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Because the lightweight mirrors are typically flimsy, they are susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its thickness and dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Initial results will be reported.

  8. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-01

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  9. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  10. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    SciTech Connect

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  11. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGESBeta

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  12. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  13. Effect of forage supplements on the incidence of bloat in dairy cows grazing high clover pastures.

    PubMed

    Phillips, C J; James, N L; Murray-Evans, J P

    1996-08-17

    The effect of offering forage supplements of different compositions was examined in two experiments with cows grazing high clover swards. In the first experiment strawmix supplements of high or low energy content (11 and 9 MJ metabolisable energy/kg dry matter [DM]) and high or low crude protein content (17 and 4 g/kg DM) were offered for periods of three weeks. The energy and protein contents were varied by the content of molasses and soyabean meal, respectively. The high energy, high protein supplement increased the incidence of bloat, and the low energy, high protein supplement reduced it, compared with grazing alone. Bloat was most evident in the first two weeks of each feeding period, suggesting that the cows partially adapted to the diets within three weeks. In the second experiment silage supplements reduced the incidence of bloat among cows grazing both tall and short swards. The most suitable forages to feed when there is a risk of bloat are those that are slowly fermented in the rumen but are eaten in sufficient quantity to reduce periods of rapid herbage intake. PMID:8870201

  14. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  15. Growth of nano-dots on the grazing-incidence mirror surface under FEL irradiation.

    PubMed

    Kozhevnikov, I V; Buzmakov, A V; Siewert, F; Tiedtke, K; Störmer, M; Samoylova, L; Sinn, H

    2016-01-01

    A new phenomenon on X-ray optics surfaces has been observed: the growth of nano-dots (40-55 nm diameter, 8-13 nm height, 9.4 dots µm(-2) surface density) on the grazing-incidence mirror surface under irradiation by the free-electron laser (FEL) FLASH (5-45 nm wavelength, 3° grazing-incidence angle). With a model calculation it is shown that these nano-dots may occur during the growth of a contamination layer due to polymerization of incoming hydrocarbon molecules. The crucial factors responsible for the growth of nano-dots in the model are the incident peak intensity and the reflection angle of the beam. A reduction of the peak intensity (e.g. replacement of the FEL beam by synchrotron radiation) as well as a decrease of the incident angle by just 1° (from 3° to 2°) may result in the total disappearance of the nano-dots. The model calculations are compared with surface analysis of two FLASH mirrors. PMID:26698048

  16. Application of grazing incidence x-ray diffraction to polymer blends

    SciTech Connect

    Goehner, R.P.; Garbauskas, M.F.; LeGrand, D.G. . Research and Development Center)

    1992-01-01

    The physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution. This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low razing incidence to centimeters for transmission diffraction patterns. Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam to depth profile low atomic number materials. The specific application of this optics technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.

  17. Application of grazing incidence x-ray diffraction to polymer blends

    SciTech Connect

    Goehner, R.P.; Garbauskas, M.F.; LeGrand, D.G.

    1992-10-01

    The physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution. This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low razing incidence to centimeters for transmission diffraction patterns. Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam to depth profile low atomic number materials. The specific application of this optics technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.

  18. Analysis and design of grazing incidence x-ray optics for pulsar navigation

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Chen, Jianwu; Li, Liansheng; Mei, Zhiwu

    2013-10-01

    As a promising new technology for deep space exploration due to autonomous capability, pulsar navigation has attracted extensive attentions from academy and engineering domains. The pulsar navigation accuracy is determined by the measurement accuracy of Time of Arrival (TOA) of X-ray photon, which can be enhanced through design of appropriate optics. The energy band of X-ray suitable for pulsar navigation is 0.1-10keV, the effective focusing of which can be primely and effectively realized by the grazing incidence reflective optics. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. X-ray concentrator, the simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the requirements on aperture, effective area and focal length of the grazing incidence reflective optics were firstly analyzed based on the characteristics, such as high time resolution, large effective area and low angular resolution, of the pulsar navigation. Furthermore, the preliminary design of optical system and overall structure, as well as the diaphragm, was implemented for the X-ray concentrator. Through optical and FEA simulation, system engineering analysis on the X-ray concentrator was finally performed to analyze the effects of environmental factors on the performance, providing basis and guidance for fabrication of the X-ray concentrator grazing incidence optics.

  19. Neutralization Of Multiply Charged Rydberg Ions Interacting With Solid Surfaces Under The Grazing Incidence Geometry

    NASA Astrophysics Data System (ADS)

    Majkic, M. D.; Nedeljkovic, N. N.; Galijas, S. M. D.

    2010-07-01

    We elaborated the time-symmetric, two-state vector model to investigate the intermediate stages of the electron capture into the Rydberg states of multiply charged ions interacting with solid surface under the grazing incidence geometry. The neutralization distances for the ions XeZ+ interacting with Al-surface are calculated, for core charges Z ?[5,30]. The corresponding mean neutralization distances are in agreement with the data deduced from the measured kinetic energy gain due to the image acceleration of the ions.

  20. Mounting for Fabrication, Metrology, and Assembly of Full Shell Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.

  1. Mounting for fabrication, metrology, and assembly of full-shell grazing-incidence optics

    NASA Astrophysics Data System (ADS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; Smith, W. S.; O'Dell, Stephen L.; Kolodziejczak, Jeffery J.; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-07-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on thin, full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.

  2. Non-convoy electron emission in ion metal surface collisions at grazing incidence

    NASA Astrophysics Data System (ADS)

    Martiarena, M. L.

    2005-05-01

    In this work we calculate the electron emission due to the process of electron loss to the continuum by the projectile in fast grazing incidence ion-metal collisions. The combined effect of the projectile nucleus, its induced image charge and the surface potential on the emitted electron, is included starting from the calculated continuum wave function via the enhancement factor. We will call this model the Surface Continuum Distorted Wave (SCDW) Model. The electron emission predicted by the SCDW model, even when in this first calculation we only include the electron loss effect, describes the position of the peak and the relative intensities for higher observation angles.

  3. Grazing incidence collisions of fast protons with insulators: electron emission around the convoy peak

    NASA Astrophysics Data System (ADS)

    Aldazábal, I.; Ponce, V. H.; Arnau, A.

    2004-08-01

    A general model to calculate electron spectra in grazing incidence ion-surface collisions is presented. It is based on the use of atomic form factors for projectile ionization and incoherent scattering functions for the target. The model is applicable for arbitrary systems whose electrons can be described by localized atomic orbitals, like ionic crystals. For 100 keV protons on LiF surfaces we find that the projectile electron contribution to the convoy peak is larger than the contribution from target ionization.

  4. Grazing-incidence XRF analysis of layered samples: Detailed study of amplitude calculation

    NASA Astrophysics Data System (ADS)

    Miqueles, Eduardo X.; Pérez, Carlos A.; Suárez, Vanessa I.; Vescovi, Rafael F. C.

    2015-09-01

    In this article, we propose a new mathematical approach for the computation of electromagnetic wave amplitudes in grazing incidence X-ray fluorescence (GIXRF)-an analytical method for surface and near-surface layer analysis. The new contribution comes from an applied point of view, in order to have stable and fast algorithms to simulate the fluorescence intensity from a stacking of thin layer films. The calculation of transmitted/reflected amplitudes is an important part of the direct and/or inverse problem. An analysis of the amplitude versus layer thickness is also given.

  5. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    SciTech Connect

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

  6. AXAF optical technology analysis. [effects of alignment figure errors on the performance of grazing incidence telescopes

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1979-01-01

    A grazing incidence telescope with six nested subsystems is investigated through the effects of misalignment and surface deformations on it's image quality. The axial rms-spot size serves as measure for the image quality. The surface deformations are simulated by ellipsoidal and sinusoidal deviation elements. Each type of defect is analyzed in the single two-element system. The full nested system is then analyzed in the presence of all possible defects on all twelve elements, whereby the magnitude of the defects is randomized within a given upper limit.

  7. XAFS data acquisition with 2D-detectors: Transmission mode XAFS and grazing incidence EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Lützenkirchen-Hecht, D.; Gasse, J.-C.; Bögel, R.; Wagner, R.; Frahm, R.

    2016-05-01

    XAFS-experiments in transmission and reflection modes have been performed using a Pilatus 100K pixel detector. Transmission mode XAFS spectra from a Co metal foil and Co3O4 were recorded to evaluate the data quality offered by this 2D-detector. Furthermore, the pixel detector was also used to measure reflection mode grazing incidence EXAFS data. Using different regions of interest in the collected scattering patterns, we will show that the diffuse scattering can be separated for the different contributing surfaces and interfaces, allowing simultaneous investigations of surfaces and buried interfaces within multi-layered samples.

  8. Design and analysis of x-ray microscope of four mirrors working at grazing incidence

    NASA Astrophysics Data System (ADS)

    Hu, Jiasheng; Zhao, Lingling; Li, Xiang

    2006-01-01

    In the latest 20 years, x-ray imaging technology has developed fast in order to meet the need of x-ray photo-etching, spatial exploration technology, high-energy physics, procedure diagnosis of inertial confinement fusion (ICF) etc. But, Since refractive index of materials in the x-ray region is lower than 1, and x-ray is strongly absorbed by the materials, it is very difficult to image objects in the x ray region. Conventional imaging methods are hardly suitable to x-ray range. Generally, grazing reflective imaging and coding aperture imaging methods have been adopted more and more. In this paper, non-coaxial grazing reflective imaging KB and KBA microscope systems are discussed in detail, and an x-ray microscope consisting of four mirrors working at grazing incidence is designed. It is an anastigmatic system, and the oblique angle of the image is evidently decreased. The resolution of 5-7 can be obtained within 2 field of view. And finally we also make analysis of the key problems that are met in the processing of manufacturing this system are analyzed.

  9. Plane waves at or near grazing incidence in the parabolic approximation. [acoustic equations of motion for sound fields

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Myers, M. K.

    1980-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.

  10. Performance analysis of grazing incidence imaging systems. [X ray telescope aberrations

    NASA Technical Reports Server (NTRS)

    Winkler, C. E.; Korsch, D.

    1977-01-01

    An exact expression relating the coordinates of a point on the incident ray, a point of reflection from an arbitrary surface, and a point on the reflected ray is derived. The exact relation is then specialized for the case of grazing incidence, and first order and third order systematic analyses are carried out for a single reflective surface and then for a combination of two surfaces. The third order treatment yields a complete set of primary aberrations for single element and two element systems. The importance of a judicious choice for a coordinate system in showing field curvature to clearly be the predominant aberration for a two element system is discussed. The validity of the theory is verified through comparisons with the exact ray trace results for the case of the telescope.

  11. Grazing-incidence hyperboloid-hyperboloid designs for wide-field x-ray imaging applications.

    PubMed

    Harvey, J E; Krywonos, A; Thompson, P L; Saha, T T

    2001-01-01

    The classical Wolter type I grazing-incidence x-ray telescope consists of a paraboloidal primary mirror and a confocal hyperboloidal secondary mirror. This design exhibits stigmatic imaging on-axis but suffers from coma, astigmatism, field curvature, and higher-order aberrations such as oblique spherical aberration. Wolter-Schwarzschild designs have been developed that strictly satisfy the Abbe sine condition and thus exhibit no spherical aberration or coma. However, for wide-field applications such as the solar x-ray imager (SXI), there is little merit in a design with stigmatic imaging on-axis. Instead, one needs to optimize some area-weighted-average measure of resolution over the desired operational field of view. This has traditionally been accomplished by mere despacing of the focal plane of the classical Wolter type I telescope. Here we present and evaluate in detail a family of hyperboloid-hyperboloid grazing-incidence x-ray telescope designs whose wide-field performance is much improved over that of an optimally despaced Wolter type I and even somewhat improved over that of an optimally despaced Wolter-Schwarzschild design. PMID:18356984

  12. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    NASA Technical Reports Server (NTRS)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  13. Image defects from surface and alignment errors in grazing incidence telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    1989-01-01

    The rigid body motions and low frequency surface errors of grazing incidence Wolter telescopes are studied. The analysis is based on surface error descriptors proposed by Paul Glenn. In his analysis, the alignment and surface errors are expressed in terms of Legendre-Fourier polynomials. Individual terms in the expression correspond to rigid body motions (decenter and tilt) and low spatial frequency surface errors of mirrors. With the help of the Legendre-Fourier polynomials and the geometry of grazing incidence telescopes, exact and approximated first order equations are derived in this paper for the components of the ray intercepts at the image plane. These equations are then used to calculate the sensitivities of Wolter type I and II telescopes for the rigid body motions and surface deformations. The rms spot diameters calculated from this theory and OSAC ray tracing code agree very well. This theory also provides a tool to predict how rigid body motions and surface errors of the mirrors compensate each other.

  14. Grazing-incidence spectrometer for soft X-ray solar imaging spectroscopy.

    PubMed

    Frassetto, Fabio; Coraggia, Stefano; Miotti, Paolo; Poletto, Luca

    2013-07-29

    The design and realization of a stigmatic grazing-incidence instrument for space applications to solar imaging spectroscopy is presented. We propose an optical layout in which imaging and spectral capabilities are decoupled by the use of crossed cylindrical mirrors. The design consists of a double telescope and a spectrograph: telescope I consists of a single cylindrical mirror with parabolic section, focusing the radiation on the entrance slit of the spectrograph in the spectral dispersion plane; telescope II consists of two cylindrical mirrors with aspherical section in Wolter configuration focusing the radiation on the spectrograph focal plane in the direction perpendicular to the spectral dispersion plane; the spectrograph consists of a grazing-incidence spherical variable-line-spaced grating with flat-field properties. Telescope II is crossed with respect to the grating and telescope I, i.e., is mounted with its tangential planes coincident with the grating equatorial plane, to decouple spectral and spatial focusing properties. The spectral resolution is preserved also for off-axis angles. The instrument that has been realized operates in the 4-26 nm spectral range and has a field of view of 0.5 deg to image the full Sun disk. PMID:23938700

  15. Kinetic simulations of the Chodura and Debye sheaths for magnetic fields with grazing incidence

    NASA Astrophysics Data System (ADS)

    Coulette, David; Manfredi, Giovanni

    2016-02-01

    When an unmagnetized plasma comes in contact with a material surface, the difference in mobility between the electrons and the ions creates a non-neutral layer known as the Debye sheath (DS). However, in magnetic fusion devices, the open magnetic field lines intersect the structural elements of the device with near grazing incidence angles. The magnetic field tends to align the particle flow along its own field lines, thus counteracting the mechanism that leads to the formation of the DS. Recent work using a fluid model (Stangeby 2012 Nucl. Fusion 52 083012) showed that the DS disappears when the incidence angle is smaller than a critical value (around {{5}{^\\circ}} for ITER-like parameters). Here, we study this transition by means of numerical simulations of a kinetic model both in the collisionless and weakly collisional regimes. We show that the main features observed in the fluid model are preserved: for grazing incidence, the space charge density near the wall is reduced or suppressed, the ion flow velocity is subsonic, and the electric field and plasma density profiles are spread out over several ion Larmor radii instead of a few Debye lengths as in the unmagnetized case. As there is no singularity at the DS entrance in the kinetic model, this phenomenon depends smoothly on the magnetic field incidence angle and no particular critical angle arises. The simulation results and the predictions of the fluid model are in good agreement, although some discrepancies subsist, mainly due to the assumptions of isothermal closure and diagonality of the pressure tensor in the fluid model.

  16. Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail

    2009-01-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.

  17. Development of differential deposition technique for figure corrections in grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2009-08-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter-type grazing-incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of optics by limiting the achievable angular resolution. In the differential deposition technique, material is selectively deposited in varying thickness along the length of the optic to minimize these deviations, thereby improving the overall figure. The process is being tested on focusing X-ray optics being developed at MSFC for small-animal radionuclide imaging. The required spatial resolution for these optics is 100 μm (30 arc secs), which can be achieved with the electroformnickel- replication fabrication technique regularly employed at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim to significantly improve the resolution beyond this value.

  18. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    SciTech Connect

    Hulbert, S.L.; Sharma, S.

    1987-10-21

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beam lines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the NSLS) and the effects of these figure errors on a class of soft x-ray beam lines are presented. 17 refs., 5 figs., 2 tabs.

  19. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    SciTech Connect

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  20. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  1. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  2. Aberrations of varied line-space grazing incidence gratings in converging light beams

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.

    1984-01-01

    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  3. Sputtering of SiC with low energy He and Ar ions under grazing incidence

    NASA Astrophysics Data System (ADS)

    Kosiba, R.; Ecke, G.; Ambacher, O.; Menyhard, M.

    2003-10-01

    The effect of low energy sputtering under grazing incidence upon the surface composition of SiC was investigated by Auger electron spectroscopy. The energy of the sputtering projectiles (He, Ar) varied from 200 to 1500 eV. Peak shifts to the higher energies with increasing argon ion energy were observed for all silicon and carbon Auger transitions. These shifts were explained by enhanced damage of the surface region within the sampling depth of the Auger electrons. The insensitivity of the Auger peak position to the energy of helium ions indicates that the damage state in the surface region does not change with the increasing energy of helium ions. An increase of the carbon concentration with the decrease of the argon energy was observed. The experiments were accompanied by dynamic Monte Carlo simulations by the TRIDYN code.

  4. Fabrication of a grazing incidence telescope by grinding and polishing techniques on aluminum

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Green, James

    1991-01-01

    The paper describes the fabrication processes, by grinding and polishing, used in making the mirrors for a f/2.8 Wolter type-I grazing incidence telescope at Boulder (Colorado), together with testing procedure used to determine the quality of the images. All grinding and polishing is done on specially designed machine that consists of a horizontal spindle to hold and rotate the mirror and a stroke arm machine to push the various tools back and forth along the mirrors length. The progress is checked by means of the ronchi test during all grinding and polishing stages. Current measurements of the telescope's image quality give a FWHM measurement of 44 arcsec, with the goal set at 5-10 arcsec quality.

  5. High resolution imaging of superficial mosaicity in single crystals using grazing incidence fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lalmi, B.; Khemliche, H.; Momeni, A.; Soulisse, P.; Roncin, P.

    2012-11-01

    A new table top technique is used to simultaneously analyze the local morphology of crystalline surfaces as well as the misalignment of large scale domains at the topmost surface layer. The approach is based on fast atom diffraction at grazing incidence (GIFAD); the diffraction pattern yields the structural characteristics and the topology of the surface electronic density with atomic resolution. If superficial mosaicity is present, diffraction patterns arising from each mosaic domain can be distinguished, providing high sensitivity to the properties of each of the domains. Taking NaCl(001) as an example, we observe a discrete tilt angle distribution of the mosaic domains following an arithmetic progression with a 0.025° ± 0.005° difference; a twist mosaic angle of 0.09° ± 0.01° is also observed.

  6. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    NASA Astrophysics Data System (ADS)

    Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.; Cirtain, J. W.; Cheimets, P.; Hertz, E.; Golub, L.; Ramsey, B.; McCracken, J.; Heilmann, R.; Schattenburg, M.; Bruccoleri, A.

    2015-12-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA soundingrocket instrument designed to observe soft X-ray emissions at 0.5 - 2.0 keV energies in thesolar atmosphere. The primary science goal is to differentiate steady, low-frequency heatingevents from sporadic, high-frequency heating events in the active region core For the first time, high-temperature, low-emission plasma will be observed directly with 5 arcsec spatialand 22 mÅ spectral resolution. The novel optical design consists of a Wolter I telescope anda 3-optic grazing-incidence spectrograph. The X-ray spectrograph utilizes a finite conjugatemirror pair and a planar, nanoprinted-silicon varied line space grating, which is being devel-oped by the Massachusetts Institute of Technology (MIT). The telescope and spectrographmirrors will be nickel replicated and coated with iridium. Mandrel fabrication and nickelreplication will be done at MSFC as part of its replicated X-ray optics program. Mounting,alignment, and integration of the ight optics will be performed at the Harvard-SmithsonianCenter for Astrophysics (SAO). The MaGIXS science camera is being developed at MSFCand is based on CLASP heritage, which obtained read noise performance of 5.5 e?- RMS. Thecamera will include a e2v Technologies 2kx2k frame transfer CCD with 4-channel readout(500 kpixel/s/channel). We will present an overview of the MaGIXS optical system andfabrication of the telescope and spectrograph mirrors.

  7. Hyperboloid-hyperboloid grazing incidence x-ray telescope designs for wide-field imaging applications

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Thompson, Patrick L.; Krywonos, Andrey

    2000-07-01

    The classical Wolter Type 1 X-ray telescope consists of two grazing incidence mirrors, a confocal paraboloid and hyperboloid. This design exhibits perfect geometric imaging on-axis (i.e., no spherical aberration) but suffers from severe field curvature, coma, astigmatism, and higher-order aberrations such as oblique spherical aberration. The Wolter-Schwarzschild design, consisting of two general aspheric grazing incidence surfaces, is corrected for both spherical aberration and coma, thus yielding very good geometrical performance at small field angles that becomes severely degraded at large field angles. The image quality criterion for stellar (small-field) X-ray telescopes is frequently expressed in terms of an on-axis fractional encircled energy, with the off-axis performance being dictated by the field-dependent aberrations characteristic of the design. A more appropriate image quality criterion for wide-angle applications is some area-weighted-average measure of resolution that maximizes the number of spatial resolution elements over a given operational field-of-view (OFOV). In practice, scattering effects from residual optical fabrication errors and detector effects (finite pixel size and charge spreading) dominate geometrical aberrations for small field angles whereas the geometrical aberrations dominate the image degradation at large field angles. Under these conditions, there is little merit in a telescope design corrected for coma (or even spherical aberration). Our new image quality criterion has led us to a whole new class of generalized Wolter Type I (hyperboloid- hyperboloid) designs that can be optimized for a given OFOV. A specific design and its predicted systems performance for the Solar X-ray Imager mission are described in detail.

  8. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  9. The DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-08-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region for the DELPHI experiment at the CERN LEP collider. A veto system composed of two scintillator layers allows to trigger on single photon events and provides e{minus}{gamma} separation. The authors present here some results of extensive measurements performed on part of the calorimeter and the veto system in the CERN test beams prior to installation and report on the performance achieved during the 1994 LEP run.

  10. Grazing-incidence monochromator for the 15--800 A wavelength range at the storage ring VEPP-2M

    SciTech Connect

    Gluskin, E. S.; Kuzminykh, V. S.; Trakhtenberg, E. M.; Koscheev, S. V.; Devyatov, V. G.; Cherkashin, A. E.; Blau, W.; Meisel, A.; Ehrhardt, H.

    1989-07-01

    A new Rowland monochromator with a fixed output slit, which operates according to the grazing-incidence scheme, is described. The device is notable for the capability to change the Rowland radius within 1--3 m. The monochromator was tested using synchrotron radiation from the storage ring VEPP-2M.

  11. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    SciTech Connect

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  12. Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs

    SciTech Connect

    Atkinson, P. Eddrief, M.; Etgens, V. H.; Khemliche, H. Debiossac, M.; Mulier, M.; Lalmi, B.; Roncin, P.; Momeni, A.

    2014-07-14

    A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

  13. Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner

    NASA Astrophysics Data System (ADS)

    Beck, Benjamin S.

    2014-03-01

    To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.

  14. Anomalous and resonance small angle scattering: Revision

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

  15. Anomalous and resonance small angle scattering

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

  16. Technology development of adjustable grazing incidence x-ray optics for sub-arc second imaging

    NASA Astrophysics Data System (ADS)

    Reid, P. B.; Aldcroft, T. L.; Cotroneo, V.; Davis, W.; Johnson-Wilke, R. L.; McMuldroch, S.; Ramsey, B. D.; Schwartz, D. A.; Trolier-McKinstry, S.; Vikhlinin, A.; Wilke, R. H. T.

    2012-09-01

    We report on technical progress made over the past year developing thin film piezoelectric adjustable grazing incidence optics. We believe such mirror technology represents a solution to the problem of developing lightweight, sub-arc second imaging resolution X-ray optics. Such optics will be critical to the development next decade of astronomical X-ray observatories such as SMART-X, the Square Meter Arc Second Resolution X-ray Telescope. SMART-X is the logical heir to Chandra, with 30 times the collecting area and Chandra-like imaging resolution, and will greatly expand the discovery space opened by Chandra’s exquisite imaging resolution. In this paper we discuss deposition of thin film piezoelectric material on flat glass mirrors. For the first time, we measured the local figure change produced by energizing a piezo cell - the influence function, and showed it is in good agreement with finite element modeled predictions. We determined that at least one mirror substrate material is suitably resistant to piezoelectric deposition processing temperatures, meaning the amplitude of the deformations introduced is significantly smaller than the adjuster correction dynamic range. Also, using modeled influence functions and IXO-based mirror figure errors, the residual figure error was predicted post-correction. The impact of the residual figure error on imaging performance, including any mid-frequency ripple introduced by the corrections, was modeled. These, and other, results are discussed, as well as future technology development plans.

  17. One-dimensional ion-beam figuring for grazing-incidence reflective optics.

    PubMed

    Zhou, Lin; Idir, Mourad; Bouet, Nathalie; Kaznatcheev, Konstantine; Huang, Lei; Vescovi, Matthew; Dai, Yifan; Li, Shengyi

    2016-01-01

    One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick-Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experiments of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. The surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics. PMID:26698062

  18. Differential deposition technique for figure corrections in grazing-incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.; Gregory, Don A.

    2011-10-01

    A differential deposition technique was investigated as a way to minimize axial figure errors in full-shell, grazing-incidence, reflective x-ray optics. These types of optics use a combination of off-axis conic segments--hyperbolic, parabolic, and/or elliptical, to reflect and image x-rays. Several such mirrors or ``shells'' of decreasing diameter are typically concentrically nested to form a single focusing unit. Individual mirrors are currently produced at Marshall Space Flight Center using an electroforming technique, in which the shells are replicated off figured and superpolished mandrels. Several factors in this fabrication process lead to low- and mid-spatial frequency deviations in the surface profile of the shell that degrade the imaging quality of the optics. A differential deposition technique, discussed in this paper, seeks to improve the achievable resolution of the optics by correcting the surface profile deviations of the shells after fabrication. As a proof of concept, the technique was implemented on small-animal radionuclide-imaging x-ray optics being considered for medical applications. This paper discusses the deposition technique, its implementation, and the experimental results obtained to date.

  19. Development Status of Adjustable Grazing Incidence Optics for 0.5 Arcsecond X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Aldcroft, Thomas L.; Allured, Ryan; Cotroneo, Vincenzo; Johnson-Wilke, Raegan L.; Marquez, Vanessa; McMuldroch, Stuart; O'Dell, Stephen L.; Ramsey, Brian D.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Vikhlinin, Alexey; Wilke, Rudeger H. T.; Zhao, Rui

    2014-01-01

    We describe progress in the development of adjustable grazing incidence X-ray optics for 0.5 arcsec resolution cosmic X-ray imaging. To date, no optics technology is available to blend high resolution imaging like the Chandra X-ray Observatory, with square meter collecting area. Our approach to achieve these goals simultaneously is to directly deposit thin film piezoelectric actuators on the back surface of thin, lightweight Wolter-I or Wolter- Schwarschild mirror segments. The actuators are used to correct mirror figure errors due to fabrication, mounting and alignment, using calibration and a one-time figure adjustment on the ground. If necessary, it will also be possible to correct for residual gravity release and thermal effects on-orbit. In this paper we discuss our most recent results measuring influence functions of the piezoelectric actuators using a Shack-Hartmann wavefront sensor. We describe accelerated and real-time lifetime testing of the piezoelectric material, and we also discuss changes to, and recent results of, our simulations of mirror correction.

  20. Finite element analyses of thin film active grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  1. New figuring model based on surface slope profile for grazing-incidence reflective optics.

    PubMed

    Zhou, Lin; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Dai, Yifan; Li, Shengyi; Idir, Mourad

    2016-09-01

    Surface slope profile is widely used in the metrology of grazing-incidence reflective optics instead of surface height profile. Nevertheless, the theoretical and experimental model currently used in deterministic optical figuring processes is based on surface height, not on surface slope. This means that the raw slope profile data from metrology need to be converted to height profile to perform the current height-based figuring processes. The inevitable measurement noise in the raw slope data will introduce significant cumulative error in the resultant height profiles. As a consequence, this conversion will degrade the determinism of the figuring processes, and will have an impact on the ultimate surface figuring results. To overcome this problem, an innovative figuring model is proposed, which directly uses the raw slope profile data instead of the usual height data as input for the deterministic process. In this paper, first the influence of the measurement noise on the resultant height profile is analyzed, and then a new model is presented; finally a demonstration experiment is carried out using a one-dimensional ion beam figuring process to demonstrate the validity of our approach. PMID:27577760

  2. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  3. Simultaneous measurements of X-ray reflectivity and grazing incidence fluorescence at BL-16 beamline of Indus-2

    SciTech Connect

    Das, Gangadhar; Kane, S. R.; Khooha, Ajay; Singh, A. K.; Tiwari, M. K.

    2015-05-15

    A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazing incidence fluorescence on a single reflectometer.

  4. Simultaneous measurements of X-ray reflectivity and grazing incidence fluorescence at BL-16 beamline of Indus-2.

    PubMed

    Das, Gangadhar; Kane, S R; Khooha, Ajay; Singh, A K; Tiwari, M K

    2015-05-01

    A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazing incidence fluorescence on a single reflectometer. PMID:26026553

  5. Development of grazing incidence devices for space-borne time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cadu, A.; Devoto, P.; Louarn, P.; Sauvaud, J.-A.

    2012-04-01

    Time of flight mass spectrometer is widely used to study space plasmas in planetary and solar missions. This space-borne instrument selects ions in function of their energy through an electrostatic analyzer. Particles are then post-accelerated to energies in the range of 20 keV to cross a carbon foil. At the foil exit, electrons are emitted and separated from ion beam in the time of flight section. A first detector (a Micro-Channel Plate or MCP) emits a start signal at electron arrival and a second one emits a stop signal at incident ion end of path. The time difference gives the speed of the particle and its mass can be calculated, knowing its initial energy. However, current instruments suffer from strong limitations. The post acceleration needs very high voltage power supplies which are heavy, have a high power consumption and imply technical constraints for the development. A typical instrument weighs from 5 to 6 kg, includes a 20 kV power supply, consumes a least 5 W and encounters corona effect and electrical breakdown problems. Moreover, despite the particle high energy range, scattering and straggling phenomena in the carbon foil significantly reduce the instrument overall resolution. Some methods, such as electrostatic focus lenses or reflectrons, really improve mass separation but global system efficiency remains very low because of the charge state dependence of such devices. The main purpose of our work is to replace carbon foil by grazing incidence MCP's - also known as MPO's, for Micro Pore Optics - for electron emission. Thus, incident particles would back-scatter onto the channel inner surface with an angle of a few degrees. With this solution, we can decrease dispersion sources and lower the power supplies to post accelerate ions. The result would be a lighter and simpler instrument with a substantial resolution improvement. We have first simulated MPO's behavior with TRIM and MARLOWE Monte-Carlo codes. Energy scattering and output angle computed

  6. X-Ray Small Angle Scattering

    PubMed Central

    Pape, E. H.

    1974-01-01

    The direct determination of the electron density distributions of multilayered specimens with a small number of unit cells from X-ray small angle scattering experiments via the Q-function method of Hosemann and Bagchi includes the deconvolution of the so-called Qo-function, the generalized Patterson function of one unit cell. In this paper a new and direct deconvolution method on the basis of Fourier series is presented which is suitable for one-dimensional centrosymmetrical (or antisymmetrical) density distributions. A FORTRAN-program has been written which has an execution time of ca. 20 s on an UNIVAC 1106-computer. The procedure has been successfully tested on some convolution functions generated by membrane-type electron density distributions. PMID:4830467

  7. Detection of an underwater target through modulated lidar experiments at grazing incidence in a deep wave basin.

    PubMed

    Pellen, Fabrice; Jezequel, Vincent; Zion, Guy; Jeune, Bernard Le

    2012-11-01

    The effectiveness of a pulsed radiofrequency modulated lidar and associated processing for underwater target detection at grazing incidence was experimentally assessed in a wave basin 50 m long and 20 m deep, under different conditions of swell produced within this facility to benefit from a controlled interface. This paper reports our experiments and offline data processing results, and describes significant improvements in the probability of detection that demonstrate the interest of using such a technique in this context. PMID:23128721

  8. Results from single shot grazing incidence hard x-ray damage measurements conducted at the SACLA FEL

    NASA Astrophysics Data System (ADS)

    Aquila, Andrew; Ozkan, Cigdem; Sobierajski, Ryszard; Hájková, Vera; Burian, Tomás.; Chalupsky, Jakub; Juha, Libor; Störmer, Michael; Ohashi, Haruhiko; Koyama, Takahisa; Tono, Kensuke; Inubushi, Yuichi; Yabashi, Makina; Sinn, Harald; Tschentscher, Thomas; Mancuso, Adrian P.; Gaudin, Jérôme

    2013-05-01

    With the development of hard X-ray free electron lasers, there is a pressing need to experimentally determine the single shot damage limits of presently used and potential future optical coating materials. To this end we present damage results, and analysis of fluence threshold limits, from grazing incidence geometry experiments conducted at the Spring-8 Angstrom Compact free electron LAser (SACLA) on Carbon coatings at 7 and 12 keV photon energies.

  9. Measurement of small angle based on a (1 0 0) silicon wafer and heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Hsieh, Meng-Chang; Lin, Jiun-You; Chen, Yu-Fong; Chang, Chia-Ou

    2016-06-01

    In this paper, a new optical material application and a heterodyne interferometer are proposed for measuring small angles. In the proposed interferometer, the optical material is a (1 0 0) silicon wafer applied to compose a new architecture of small angle sensor. The small angle measurement used the phase difference which is dependent on the incident angle at the silicon wafer surface to deduce the angular variation. The proposed architecture is simple and uses the common path method to compare test and reference signals; thus, small angles can be easily and accurately measured by estimating the phase difference. The experimental results demonstrate the feasibility of this method. The angular resolution and sensitivity levels superior to 7 × 10-5° (1.3 × 10-6 rad) and 150 (deg/deg), respectively, were attainable in a dynamic range of 0.45°.

  10. Enabling the 22nm node via grazing incidence collectors integrated into the DPP source for EUVL HVM

    NASA Astrophysics Data System (ADS)

    Bianucci, G.; Bragheri, A.; Cassol, G. L.; Ghislanzoni, R.; Mazzoleni, R.; Zocchi, F. E.

    2011-04-01

    Media Lario Technologies (MLT) has enabled the Extreme Ultraviolet Lithography (EUVL) roadmap with its grazing incidence collectors installed in all DPP sources since 2006. Furthermore, with several 100 WIF capable production grazing incidence collectors shipped in 2010, MLT is ready to support the start of High Volume Manufacturing (HVM). With a point-source collection efficiency of 25% and 6 kW power loading capability, the 9-shell collector design is capable of delivering 100 W in-band EUV power through the intermediate focus aperture. The customized reflective layer and the debris mitigation technology enable the 1-year lifetime objective under full production operating conditions. Integration of the grazing incidence collector in XTREME technologies' (XT) DPP source attached to ASML's NXE:3100 scanner has provided initial validation of the optical, thermal, and lifetime design objectives. In full HVM regime, we anticipate that the collector power loading will progressively reach 20 kW to enable 500 W inband EUV peak power at intermediate focus. We have started the development of a thermal management design maintaining the current optical stability with a collector power loading of 30 kW, thus meeting the aggressive HVM requirements.

  11. Adjustable Grazing Incidence X-ray Optics with 0.5 Arc Second Resolution

    NASA Astrophysics Data System (ADS)

    Reid, Paul

    We seek to develop adjustable grazing incidence optics for x-ray astronomy. The goal of this development is thin, lightweight mirrors with angular resolution of 0.5 arc seconds, comparable to the Chandra X-ray Observatory. The new mirror design consists of thin segments of a Wolter-I grazing incidence mirror, with piezo-electric material deposited directly on the back surface of the mirror. Depositing a pattern of independently addressable electrodes on top of the piezoelectric material produces an array of independent piezo cells. Energizing a particular cell introduces a localized deformation in the mirror without the need for a reaction structure. By applying the appropriate voltage to the piezo cells, it is possible to correct mirror figure errors that result from mirror fabrication, gravity release, mounting, and thermal effects. Because the thin mirrors segments are lightweight, they can be densely nested to produce collecting area thirty times that of Chandra, on an affordably priced mission. This Supporting Technology program is a follow-on to an existing APRA program. In the existing program we demonstrated the first successful deposition of piezoelectric material on thermally formed glass substrates. We showed that the localized deformations produced by the piezo cells match finite element predictions, and the piezo cell adjustment range meets requirements necessary to achieve the desired figure correction. We have also shown through simulation that representative mirror figure errors can be corrected via modeled influence functions to achieve 0.5 arc sec imaging performance. This provides a firm foundation on which to develop further the technology. We will continue to optimize the deposition of thin piezoelectric films onto thermally formed glass and electroplated metal mirror segments to improve yield and manufacturability. We will deposit piezoelectric material onto conical mirror segments and demonstrate figure correction in agreement with prediction

  12. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile Z-pinch environment

    NASA Astrophysics Data System (ADS)

    Williamson, K. M.; Kantsyrev, V. L.; Safronova, A. S.; Wilcox, P. G.; Cline, W.; Batie, S.; LeGalloudec, B.; Nalajala, V.; Astanovitsky, A.

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.

  13. Test results for an AOA-Xinetics grazing incidence x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Lillie, Charles; Egan, Richard; Landers, Franklin; Cavaco, Jeffrey; Ezzo, Kevin; Khounsary, Ali

    2014-09-01

    X-ray telescopes use grazing incidence mirrors to focus X-ray photons from celestial objects. To achieve the large collecting areas required to image faint sources, thousands of thin, doubly curved mirrors are arranged in nested cylindrical shells to approximate a filled aperture. These mirrors require extremely smooth surfaces with precise figures to provide well-focused beams and small image spot sizes. The Generation-X telescope proposed by SAO would have a 12-meter aperture, a 50 m2 collecting area and 0.1 arc-second spatial resolution. This resolution would be obtained by actively controlling the mirror figure with piezoelectric actuators deposited on the back of each 0.4 mm thick mirror segment. To support SAO's Generation-X study, Northrop Grumman used internal funds to look at the feasibility of using Xinetics deformable mirror technologies to meet the Generation-X requirements. We designed and fabricated two 10 x 30 cm Platinum-coated silicon mirrors with 108 surface-parallel electrostrictive Lead Magnesium Niobate (PMN) actuators bonded to the mirror substrates. These mirrors were tested at optical wavelengths by Xinetics to assess the actuator's performance, but no funds were available for X-ray tests. In 2013, after receiving an invitation to evaluate the mirror's performance at Argonne National Laboratory, the mirrors were taken out of storage, refurbished, retested at Xinetics and transported to ANL for metrology measurements with a Long Trace Profilometer, a Fizeau laser interferometer, and X-ray tests. This paper describes the development and testing of the adaptive x-ray mirrors at AOAXinetics. Marathe, et al, will present the results of the tests at Argonne.

  14. Optical performance of grazing incidence X-ray/EUV telescopes for space science applications

    NASA Astrophysics Data System (ADS)

    Thompson, Patrick Louis

    In order to improve and expand the field of X-ray astronomy, and imaging in general, we find that these days a comprehensive systems engineering approach to X-ray image formation must be undertaken. While some industrial interests have taken steps in this direction, any academic approach is lacking from within the archival literature to date, and there are virtually no established university courses. Indeed, it would seem that top level, optical-systems-engineering is exclusively reserved for those seasoned professionals who have accumulated (though somewhat artistically) the ``know-how'' to efficiently conceive and implement excellent optical designs. Such expert knowledge is not and should not be mysterious. To this end, we attempt to formulate a highly comprehensive approach to X-ray optical systems engineering and implement it within the context of the Wolter Type-I and Type-II (grazing incidence) telescopes currently utilized for practical X-ray/EUV astronomy. In addition, we will transform the classical paraboloid- hyperboloid designs into `aplanatic' and `isoplanatic', hyperboloid-hyperboloid systems, where certain coma conditions are minimized. As will be shown, one gains little improvement in performance when choosing a quasi-aplanatic mirror design over a classical one, owing to scatter and other image degradation effects. Next we will show that a generalized hyperboloid-hyperboloid design can be comprehensively optimized for any imaging requirement, where the operational field-of-view is weighted according to spatial information content. Our H-H design has been optimized for the GOES Solar X-ray Imager mission and adopted by NASA and NOAA. It is currently undergoing fabrication by Raytheon Optical Systems Inc. who is under subcontract to the Lockheed-Martin Solar and Astrophysics Laboratory. Our design is expected to result in an 80% increase in optical system performance over the original SXI baseline design.

  15. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile Z-pinch environment

    SciTech Connect

    Williamson, K. M.; Kantsyrev, V. L.; Safronova, A. S.; Wilcox, P. G.; Cline, W.; Batie, S.; LeGalloudec, B.; Nalajala, V.; Astanovitsky, A.

    2011-09-15

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < {lambda} < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 {mu}m slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.

  16. Application of a finite element method for computing grazing incidence wave structure in an impedance tube - Comparison with experiment. [for duct liner aeroacoustic design

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Parrott, T. L.

    1979-01-01

    The acoustic performance of a liner specimen, in a grazing incidence impedance tube, is analyzed using a finite element method. The liner specimen was designed to be a locally reacting, two-degree-of-freedom type with the resistance and reactance provided by perforated facesheets and compartmented cavities. Measured and calculated wave structures are compared for both normal and grazing incidence from 0.3 to 1.2 kHz. A finite element algorithm was incorporated into an optimization loop in order to predict liner grazing incidence impedance from measured SWR and null position data. Results suggest that extended reaction effects may have been responsible for differences between normal and grazing incidence impedance estimates.

  17. Small-angle scattering from fat fractals

    NASA Astrophysics Data System (ADS)

    Anitas, Eugen M.

    2014-06-01

    A number of experimental small-angle scattering (SAS) data are characterized by a succession of power-law decays with arbitrarily decreasing values of scattering exponents. To describe such data, here we develop a new theoretical model based on 3D fat fractals (sets with fractal structure, but nonzero volume) and show how one can extract structural information about the underlying fractal structure. We calculate analytically the monodisperse and polydisperse SAS intensity (fractal form factor and structure factor) of a newly introduced model of fat fractals and study its properties in momentum space. The system is a 3D deterministic mass fractal built on an extension of the well-known Cantor fractal. The model allows us to explain a succession of power-law decays and respectively, of generalized power-law decays (GPLD; superposition of maxima and minima on a power-law decay) with arbitrarily decreasing scattering exponents in the range from zero to three. We show that within the model, the present analysis allows us to obtain the edges of all the fractal regions in the momentum space, the number of fractal iteration and the fractal dimensions and scaling factors at each structural level in the fractal. We applied our model to calculate an analytical expression for the radius of gyration of the fractal. The obtained quantities characterizing the fat fractal are correlated to variation of scaling factor with the iteration number.

  18. Phase sensitive small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Brok, Erik; Majkrzak, Charles F.; Krycka, Kathryn

    It is a well-known problem that information about the scattered wave is lost in scattering experiments because the measured quantity is the modulus squared of the complex wave function. This ''phase problem'' leads to ambiguity in determining the physical properties of the scattering sample. Small angle neutron scattering (SANS) is a useful technique for determining the structure of biomolecules, in particular proteins that cannot be crystallized and studied with x-ray crystallography. However, because the biomolecules are usually suspended in a liquid the observed scattering is an average of all possible orientations, making it difficult to obtain three dimensional structural information. In a proposed method polarized SANS and magnetic nanoparticle references attached to the sample molecules is used to obtain phase sensitive structural information and simultaneously circumvent the problem of orientational averaging (Majkrzak et al. J. Appl. Cryst. 47, 2014) If realized and perfected the technique is very promising for unambiguous determination of the three dimensional structure of biomolecules. We demonstrate the principles of our method and show the first experimental data obtained on a simple test system consisting of core shell magnetic nanoparticles.

  19. Electromagnetic wave scattering at near-grazing incidence from a gently undulating, rough surface

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Sperley, E. J.; Zebker, H. A.

    1988-01-01

    Models to estimate the reflection coefficient of a statistically rough surface, for example the works of Beckmann, Smith, and Vesecky are discussed. Bistatic radar experiments carried out during the Apollo 16 mission provide a data set with which to compare theoretical models and experimental data. These bistatic S-band radar experiments provide experimental estimates of the Moon's bistatic, forward scatter, reflection coefficient for grazing angles of 2.5 to 78 deg. Theoretical expressions for the reflection coefficient are developed for comparison with these experimental data. At grazing angles below 10 deg the models of Smith and Vesecky compare favorably with the data. Beckmann's model falls significantly more rapidly with decreasing grazing angle than does the data.

  20. Marangoni Convection Induced Ripple on Grazing Incidence Liquid Metal Mirror (GILMM) Used for Laser Inertial Fusion Energy

    SciTech Connect

    Moir, R

    2001-08-27

    A spatial variation of temperature in the sodium film on the surface of the grazing incidence liquid metal mirror (GILMM) will give rise to convection due to the temperature dependent variation in surface tension. This is called thermal capillary convection or the Marangoni effect and causes the surface to have ripples or waves. This note estimates the magnitude of this effect and finds, with care, design parameters can be chosen to make the resulting ripples sufficiently small so that a laser beam can be focused on a target of 1/4 mm spot size at 30 m distance, for example. Smaller spot sizes are discussed.

  1. Efficiency of a grazing-incidence off-plane grating in the soft-x-ray region.

    PubMed

    Seely, J F; Goray, L I; Kjornrattanawanich, Benjawan; Laming, J M; Holland, G E; Flanagan, K A; Heilmann, R K; Chang, C H; Schattenburg, M L; Rasmussen, A P

    2006-03-10

    Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 degrees, and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.0 nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating. PMID:16572682

  2. Module-type flat-field grazing-incidence spectrographs for large Tokamak (JT-60) plasma diagnosis

    NASA Astrophysics Data System (ADS)

    Nagata, Hiroshi; Kihara, Naoto; Yamashita, Takaji; Sugie, Tatsuo; Kubo, Hirotaka; Shiho, Makoto

    1990-09-01

    Module-type flat-field grazing-incidence spectrographs with holographic gratings and multichannel detectors for large TOKAMAK (JT-60) plasma diagnosis are developed. The spectrographs cover the different wavelength regions from 0.5-122 nm, and are set to measure impurity lines in the plasma every 20 ms with space resolution of 7 cm. The flat-field imaging properties with designed wavelength resolution were confirmed, and results of tokamak plasma measurements proved the value of these spectrographs for plasma diagnosis.

  3. Morphology of open films of discotic hexagonal columnar liquid crystals as probed by grazing incidence X-ray diffraction.

    PubMed

    Grelet, Eric; Dardel, Sébastien; Bock, Harald; Goldmann, Michel; Lacaze, Emmanuelle; Nallet, Frédéric

    2010-04-01

    The structure and the orientation of thermotropic hexagonal columnar liquid crystals are studied by grazing incidence X-ray diffraction (GIXD) for different discotic compounds in the geometry of open supported thin films. Whatever the film deposition mode (either spin-coating or vacuum evaporation) and the film thickness, a degenerate planar alignment with the liquid crystalline columns parallel to the substrate is found. However, if a specific thermal process is applied to the liquid crystal film, homeotropic anchoring (columns normal to the interface) can be stabilized in a metastable state. PMID:20411293

  4. Convoy electrons emitted by 2-MeV He + ions at grazing incidence on KCl(0 0 1)

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Nakamoto, A.; Suzuki, M.; Kimura, K.

    2006-07-01

    Convoy electrons produced during grazing angle scattering of 2-MeV He + ions at a clean (0 0 1) surface of KCl are measured to see the effect of the surface track potential. The measurement is performed at 230 °C with a beam current far below 1 pA to avoid macroscopic charging. The observed convoy electron energy coincides with the energy of the electron isotachic to the incident ion. This suggests that the effect of the surface track potential is accidentally cancelled out by the surface wake potential.

  5. Efficiency of a Grazing-incidence Off-plane Grating in the Soft-x-ray Region

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Laming, J. M.; Goray, L. I.; Kjornrattanawanich, B.; Holland, G. E.; Flanagan, K. A.; Heilmann, R. K.; Chang, C.-H.; Schattenburg, M. L.; Rasmussen, A. P.

    2006-01-01

    Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 deg., and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.O nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating.

  6. Proposed design class of grazing incidence echelle spectrometers - Critical analysis and reevaluation

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Jelinsky, P.; Bowyer, S.; Malina, R. F.

    1984-01-01

    The class of miltibounce grazing spectrometers proposed by Cash (1982) and by McClintock and Cash (1982) is analyzed, and performance values significantly lower than asserted by these authors are found. Ray tracing calculations used to examine the design parameters given in the above papers are reported, as is the efficiency which results from use of accepted reflectance data. Several schemes which can improve some of the performance parameters are indicated.

  7. Determination of the geometric corrugation of graphene on SiC(0001) by grazing incidence fast atom diffraction

    SciTech Connect

    Zugarramurdi, A.; Debiossac, M.; Lunca-Popa, P.; Mayne, A. J.; Borisov, A. G.; Mu, Z.; Roncin, P.; Khemliche, H.; Momeni, A.

    2015-03-09

    We present a grazing incidence fast atom diffraction (GIFAD) study of monolayer graphene on 6H-SiC(0001). This system shows a Moiré-like 13 × 13 superlattice above the reconstructed carbon buffer layer. The averaging property of GIFAD results in electronic and geometric corrugations that are well decoupled; the graphene honeycomb corrugation is only observed with the incident beam parallel to the zigzag direction while the geometric corrugation arising from the superlattice is revealed along the armchair direction. Full-quantum calculations of the diffraction patterns show the very high GIFAD sensitivity to the amplitude of the surface corrugation. The best agreement between the calculated and measured diffraction intensities yields a corrugation height of 0.27 ± 0.03 Å.

  8. Convolution and non convolution Perfectly Matched Layer techniques optimized at grazing incidence for high-order wave propagation modelling

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Komatitsch, Dimitri; Bruthiaux, Emilien; Gedney, Stephen D.

    2010-05-01

    We present and discuss here two different unsplit formulations of the frequency shift PML based on convolution or non convolution integrations of auxiliary memory variables. Indeed, the Perfectly Matched Layer absorbing boundary condition has proven to be very efficient from a numerical point of view for the elastic wave equation to absorb both body waves with non-grazing incidence and surface waves. However, at grazing incidence the classical discrete Perfectly Matched Layer method suffers from large spurious reflections that make it less efficient for instance in the case of very thin mesh slices, in the case of sources located very close to the edge of the mesh, and/or in the case of receivers located at very large offset. In [1] we improve the Perfectly Matched Layer at grazing incidence for the seismic wave equation based on an unsplit convolution technique. This improved PML has a cost that is similar in terms of memory storage to that of the classical PML. We illustrate the efficiency of this improved Convolutional Perfectly Matched Layer based on numerical benchmarks using a staggered finite-difference method on a very thin mesh slice for an isotropic material and show that results are significantly improved compared with the classical Perfectly Matched Layer technique. We also show that, as the classical model, the technique is intrinsically unstable in the case of some anisotropic materials. In this case, retaining an idea of [2], this has been stabilized by adding correction terms adequately along any coordinate axis [3]. More specifically this has been applied to the spectral-element method based on a hybrid first/second order time integration scheme in which the Newmark time marching scheme allows us to match perfectly at the base of the absorbing layer a velocity-stress formulation in the PML and a second order displacement formulation in the inner computational domain.Our CPML unsplit formulation has the advantage to reduce the memory storage of CPML

  9. Small angle elastic scattering of protons off of spinless nuclei

    SciTech Connect

    Ling, A.G.

    1988-07-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on /sup 12/C, /sup 40/Ca, and /sup 208/Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay-line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude ..cap alpha../sub n/(0) = Ref/sub n/(0)/Imf/sub n/(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed. 130 refs., 60 figs., 12 tabs.

  10. Ultra-small-angle neutron scattering with azimuthal asymmetry

    PubMed Central

    Gu, X.; Mildner, D. F. R.

    2016-01-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry. PMID:27275140

  11. An analysis of two classes of grazing incidence mirrors for use with Rowland circle spectrometers

    NASA Astrophysics Data System (ADS)

    Green, James; Bowyer, Stuart

    1986-01-01

    Results are presented of a comparative analysis of Hettrick Bowyer Type II (HBII) and Wolter-Schwarzschild Type II (WSII) optics for use with Rowland circle spectrometers. The HBII can substitute, with few exceptions, for a WSII in any Rowland circle with little change in spectrometer performance or design. However, the HBII telescope offers several clear advantages over the WSII in these configurations. Because the HBII employs a virtual focus, it requires a much shorter instrument length than a WSII. For example, a 3-m Rowland circle spectrometer, fed by an optimized, f/10, 1-m diameter WSII, has a total instrument length of 6 m. If a HBII is used to feed the identical spectrometer, the entire instrument length can be as little as 3 m. In addition, the improved imaging gained with the larger graze angles of the HBII design results in better resolution in slitless operation modes.

  12. Small angle X-ray scattering coupled with in situ electromechanical probing of nanoparticle-based resistive strain gauges.

    PubMed

    Decorde, Nicolas; Sangeetha, Neralagatta M; Viallet, Benoit; Viau, Guillaume; Grisolia, Jérémie; Coati, Alessandro; Vlad, Alina; Garreau, Yves; Ressier, Laurence

    2014-12-21

    A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean interparticle distance variations) within these NP wires under uniaxial stretching estimated by SAXS/GISAXS are correlated to their macroscopic electrical resistance variations. SAXS measurements suggest a linear longitudinal extension and transversal contraction of the NP wires with applied strain (0 to ∼ 13%). The slope of this longitudinal variation is less than unity, implying a partial strain transfer from the substrate to the NP wires. The simultaneously measured electrical resistance of the strain gauges shows an exponential variation within the elastic domain of the substrate deformation, consistent with electron tunnelling through the interparticle gaps. A slower variation observed within the plastic domain suggests the formation of new electronic conduction pathways. Implications of transversal contraction of the NP wires on the directional sensitivities of strain gauges are evaluated by simulating electronic conduction in models mimicking a realistic NP arrangement. A loss of directionality of the NP-based strain gauges due to transversal current flow within the NP wires is deduced. PMID:25371292

  13. Measurement of the thermal lens of grazing-incidence diode-pumped Nd:YVO 4 laser amplifier

    NASA Astrophysics Data System (ADS)

    Amarande, Ştefan A.; Damzen, Michael J.

    2006-09-01

    The thermally induced lensing effects of a diode-pumped Nd:YVO 4 laser amplifier in a grazing incidence bounce geometry are carefully measured experimentally. Measurements of the thermal effects are interpreted by considering the diode-pumped amplifier region as a thick lens. A more detailed modeling was made of a quadratic refractive index lens duct for the normal to the bounce plane distribution. Due to the asymmetric pumping the thermal lens shows significant astigmatism. The ratio between dioptric powers in the plane normal to bounce and in the bounce plane is measured to be approximately 20. A nonlinear component of the power dependence of the lens is observed and related to the nonlinear heating induced by energy transfer upconversion. Measurements made under non-lasing conditions are used to infer thermal lensing behavior under lasing conditions and this allows optimization of optical resonator design.

  14. Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate on hematite (0001) and (10-12)

    USGS Publications Warehouse

    Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.

    2005-01-01

    X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.

  15. Effectiveness of Near-Grazing Incidence Reflection in Creating the Rotationally Modulated Lanes in the Jovian Hectometric Radio Emission Spectrum

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.

    1999-01-01

    The Galileo plasma wave instrument has identified a narrow (in frequency) attenuation band in the hectometric emission that varies in frequency with system 3 longitude. It is possible to model this emission band assuming a high-latitude cyclotron source region with emission that is efficiently attenuated when the ray path is nearly tangent to an L shell that is close to the Io flux tube. The data suggest that the mechanism for attenuating the emission is very efficient, with the ratio of attenuated to unattenuated emission I/I(sub o) < 0.02, and not a strong function of frequency. In this paper we demonstrate that incoherent scattering alone cannot explain the attenuation lane, which does not preclude coherent scattering by uncertain processes. We find rather that the source of attenuation is consistent with near-grazing incidence reflection of emission from an L shell that is near the Io flux tube (a caustic surface).

  16. Computer-Controlled Cylindrical Polishing Process for Development of Grazing Incidence Optics for Hard X-Ray Region

    NASA Technical Reports Server (NTRS)

    Khan, Gufran Sayeed; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The presentation includes grazing incidence X-ray optics, motivation and challenges, mid spatial frequency generation in cylindrical polishing, design considerations for polishing lap, simulation studies and experimental results, future scope, and summary. Topics include current status of replication optics technology, cylindrical polishing process using large size polishing lap, non-conformance of polishin lap to the optics, development of software and polishing machine, deterministic prediction of polishing, polishing experiment under optimum conditions, and polishing experiment based on known error profile. Future plans include determination of non-uniformity in the polishing lap compliance, development of a polishing sequence based on a known error profile of the specimen, software for generating a mandrel polishing sequence, design an development of a flexible polishing lap, and computer controlled localized polishing process.

  17. Spontaneous lateral modulation in short-period superlattices investigated by grazing-incidence x-ray diffraction

    SciTech Connect

    Caha, O.; Mikulik, P.; Novak, J.; Holy, V.; Moss, S.C.; Norman, A.; Mascarenhas, A.; Reno, J.L.; Krause, B.

    2005-07-15

    The process of spontaneous lateral composition modulation in short-period InAs/AlAs superlattices has been investigated by grazing-incidence x-ray diffraction. We have developed a theoretical description of x-ray scattering from laterally modulated structures that makes it possible to determine the lateral composition modulation directly without assuming any structure model. From experimental intensity distributions in reciprocal space we have determined the amplitudes of the modulation and its degree of periodicity and their dependence on the number of superlattice periods. From the data it follows that the modulation process cannot be explained by bunching of monolayer steps and most likely, it is caused by stress-driven morphological instabilities of the growing surface.

  18. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  19. Grazing-incidence X-ray diffraction of single GaAs nanowires at locations defined by focused ion beams

    PubMed Central

    Bussone, Genziana; Schott, Rüdiger; Biermanns, Andreas; Davydok, Anton; Reuter, Dirk; Carbone, Gerardina; Schülli, Tobias U.; Wieck, Andreas D.; Pietsch, Ullrich

    2013-01-01

    Grazing-incidence X-ray diffraction measurements on single GaAs nanowires (NWs) grown on a (111)-oriented GaAs substrate by molecular beam epitaxy are reported. The positions of the NWs are intentionally determined by a direct implantation of Au with focused ion beams. This controlled arrangement in combination with a nanofocused X-ray beam allows the in-plane lattice parameter of single NWs to be probed, which is not possible for randomly grown NWs. Reciprocal space maps were collected at different heights along the NW to investigate the crystal structure. Simultaneously, substrate areas with different distances from the Au-implantation spots below the NWs were probed. Around the NWs, the data revealed a 0.4% decrease in the lattice spacing in the substrate compared with the expected unstrained value. This suggests the presence of a compressed region due to Au implantation. PMID:24046493

  20. On the Alignment and Focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff

    2016-01-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 A (0.5 - 2.0 keV energies) in the solar atmosphere. For the rst time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mA spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a nite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being nalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) { a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.

  1. On the optimisation of the spectral resolution in spectrographs for cold neutrons based on refraction at grazing incidence

    NASA Astrophysics Data System (ADS)

    Jark, Werner

    2014-01-01

    Recently the wavelength dispersion of cold neutrons in the refraction process at inclined interfaces was identified as an efficient tool for neutron spectrographs, in which a larger wavelength band can be registered simultaneously. This registration mode reduces the data acquisition time significantly as no need to monochromatise the incident neutron beam by use of inefficient choppers exists. In the related studies the spectrograph performance is treated with rather complex equations. This study instead provides a theoretical treatment of the dispersion properties with simpler analytical equations, which were previously used in connection with X-rays. It can be shown, that the spectral resolution in the original spectrographs is mostly limited by the finite size of the refracted beam, which is inconveniently increasing upon refraction at grazing internal incidence onto an inclined refracting interface. The blurring of the beam size of a monochromatic beam at the detector due to the angular spread of the incident beam is mostly negligible. It is thus proposed that a significant improvement in the spectral resolution of such a spectrograph can be achieved, when the beam size at the detector is reduced by introducing focusing in the refraction process. It is shown, that the spectral resolution can then ultimately be limited by the smaller size of the blurred image caused by the angular spread of the beam. Then the improvement in this beam divergence limit can be by an order of magnitude and it is achieved by refraction upon internal incidence onto a concave interface. It is found that such a configuration will focus appropriately in a larger wavelength interval. By this means for wavelengths between 5 Å and 12 Å spectral resolutions of below 1% are feasible, which are not yet reported for such prism spectrographs.

  2. Impedance Scaling for Small-angle Tapers and Collimators

    SciTech Connect

    Stupakov, G.; /SLAC

    2010-02-11

    In this note I will prove that the impedance calculated for a small-angle collimator or taper, of arbitrary 3D profile, has a scaling property that can greatly simplify numerical calculations. This proof is based on the parabolic equation approach to solving Maxwell's equation developed in Refs. [1, 2]. We start from the parabolic equation formulated in [3]. As discussed in [1], in general case this equation is valid for frequencies {omega} >> c/a where a is a characteristic dimension of the obstacle. However, for small-angle tapers and collimators, the region of validity of this equation extends toward smaller frequencies and includes {omega} {approx} c/a.

  3. Development and prospects of Very Small Angle Neutron Scattering (VSANS) techniques

    NASA Astrophysics Data System (ADS)

    Xuo, Tai-Sen; Cheng, He; Chen, Yuan-Bo; Wang, Fang-Wei

    2016-07-01

    Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, D11 in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented. Supported by National Natural Science Foundation of China (21474119, 11305191)

  4. An Investigation of Differential Deposition for Figure Corrections in Full-Shell Grazing-Incidents X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.

    2009-01-01

    We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.

  5. Surface structure of sterically stabilized ferrofluids in a normal magnetic field: Grazing-incidence x-ray study

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Gordeev, G.; Konovalov, O.; Orlova, D.

    2009-03-01

    We studied the internal structure of sterically stabilized water- and oil-based ferrofluids in the vicinity of the free interface with a gas by means of x-ray reflectometry and grazing-incidence x-ray diffraction. It was found that in-depth distribution of the magnetic nanoparticles in the layer close to the interface is essentially inhomogeneous. In the case of water-based ferrofluids an enhanced concentration of surfactant and subsequent reduced concentration of the particles were detected in the 100-200-Å -thick interface-adjacent layer. Scattering patterns possessing characteristic features of powder diffraction revealed partial ordering of the surfactant in a multilamellar structure. External magnetic fields applied perpendicular to the interface effectively reduced thickness of the depleted layer bringing the particles from the bulk to the surface. However no field-induced correlations between the particles were detected. In the top 500-Å -thick layer of an oil-based ferrofluid depletion of the particles density was also present; however, no special arrangement of the surfactant molecules was manifested by the experimental data. Interestingly, for all samples we observed wavy surface deformation appearing in the normal magnetic field of a strength H much smaller than the critical values Hc calculated according to the conventional theory of ferrofluid surface instability. This deformation with lateral periodicity of a few millimeters has an amplitude smoothly increasing up to a few microns at H=0.5Hc .

  6. Time-resolved grazing-incidence diffraction studies of thin films using an imaging-plate camera and focusing monochromator.

    PubMed

    Foran, G J; Gentle, I R; Garrett, R F; Creagh, D C; Peng, J B; Barnes, G T

    1998-03-01

    A multiple imaging-plate (IP) detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett (LB) films by grazing-incidence X-ray diffraction (GIXD). The first reported application of imaging plates to a GIXD study was carried out by our group and proved to be very successful in the determination of thin-film structure [Foran, Peng, Steitz, Barnes & Gentle (1996). Langmuir, 12, 774-777]. To extend the capabilities of this system, an IP camera was designed and built which can accommodate up to 13 IPs (40 x 20 cm) inside the vacuum chamber of the main diffractometer at the Australian Beamline at the Photon Factory. The camera allows the enclosed IPs to be successively exposed and stored inside the diffractometer for later scanning. The focusing monochromator employed in this technique combines fixed exit-beam height with sagittal focusing of the second crystal and delivers a gain in flux of >/=20 times when measured through a 0.1 x 0.1 mm aperture. The utility of the system incorporating the IP camera and the focusing monochromator has been demonstrated through the study of temperature-dependent phase transitions in LB films of metal fatty acids. PMID:16687811

  7. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sanyal, Milan K.; Farrer, Ian; Ritchie, David A.; Dey, Arka B.; Bhattacharyya, Arpan; Seeck, Oliver H.; Skiba-Szymanska, Joanna; Felle, Martin; Bennett, Anthony J.; Shields, Andrew J.

    2015-10-01

    Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission.

  8. Surface structure of sterically stabilized ferrofluids in a normal magnetic field: grazing-incidence x-ray study.

    PubMed

    Vorobiev, A; Gordeev, G; Konovalov, O; Orlova, D

    2009-03-01

    We studied the internal structure of sterically stabilized water- and oil-based ferrofluids in the vicinity of the free interface with a gas by means of x-ray reflectometry and grazing-incidence x-ray diffraction. It was found that in-depth distribution of the magnetic nanoparticles in the layer close to the interface is essentially inhomogeneous. In the case of water-based ferrofluids an enhanced concentration of surfactant and subsequent reduced concentration of the particles were detected in the 100-200-A -thick interface-adjacent layer. Scattering patterns possessing characteristic features of powder diffraction revealed partial ordering of the surfactant in a multilamellar structure. External magnetic fields applied perpendicular to the interface effectively reduced thickness of the depleted layer bringing the particles from the bulk to the surface. However no field-induced correlations between the particles were detected. In the top 500-A -thick layer of an oil-based ferrofluid depletion of the particles density was also present; however, no special arrangement of the surfactant molecules was manifested by the experimental data. Interestingly, for all samples we observed wavy surface deformation appearing in the normal magnetic field of a strength H much smaller than the critical values H_{c} calculated according to the conventional theory of ferrofluid surface instability. This deformation with lateral periodicity of a few millimeters has an amplitude smoothly increasing up to a few microns at H=0.5H_{c} . PMID:19391940

  9. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements.

    PubMed

    Sharma, Manjula; Sanyal, Milan K; Farrer, Ian; Ritchie, David A; Dey, Arka B; Bhattacharyya, Arpan; Seeck, Oliver H; Skiba-Szymanska, Joanna; Felle, Martin; Bennett, Anthony J; Shields, Andrew J

    2015-01-01

    Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission. PMID:26506865

  10. Observing the Sun in hard X-rays using grazing incidence optics: the FOXSI and HEROES projects

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, Lindsay; Krucker, Sam; Shih, Albert Y.; Gaskin, Jessica; Wilson, Colleen

    2014-06-01

    Solar flares accelerate particles up to high energies through various acceleration mechanisms which are not currently understood. Hard X-rays are the most direct diagnostic of flare-accelerated electrons. However past and current hard x-ray observation lack the sensitivity and dynamic range necessary to observe the faint signature of accelerated electrons in the acceleration region, the solar corona. These limitations can be easily overcome through the use of HXR focusing optics coupled with solid state pixelated detectors. We present results from the recent flights of two sub-orbital payloads that have applied grazing incidence HXR optics to solar observations. FOXSI, short for Focusing Optics X-Ray Solar Imager, was launched on a sounding rocket in November 2012 from White Sanda and observed a solar flare. HEROES, short for High Energy Replicated Optics to Explore the Sun, observed the sun for 7 hours from a high altitude balloon on September 21, 2013. We present recent results as well as the capabilities of a possible future satellite mission

  11. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements

    PubMed Central

    Sharma, Manjula; Sanyal, Milan K.; Farrer, Ian; Ritchie, David A.; Dey, Arka B.; Bhattacharyya, Arpan; Seeck, Oliver H.; Skiba-Szymanska, Joanna; Felle, Martin; Bennett, Anthony J.; Shields, Andrew J.

    2015-01-01

    Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission. PMID:26506865

  12. Thin-shell replication of grazing incidence (Wolter type I) SiC mirrors

    NASA Astrophysics Data System (ADS)

    Geril, Norman; Grigely, Lawrence J.; Wilson, Scott R.; Goela, Jitendra S.

    1995-06-01

    Near-net-shape replication and ion beam figuring technologies were investigated for chemical vapor deposited (CVD) SiC to fabricate high performance, glancing incidence Wolter Type I x-ray mirrors. Small scale CVD experiments were performed on graphite mandrels to demonstrate replication of SiC shells that closely matched the design of the XMM 40th shell at 1/16th scale. The SiC shells were successfully separated from the graphite mandrels and then machined to the required dimensions. Ion beam figuring as a final fabrication step was investigated on Wolter Type I replicated SiC surfaces. Angular sputtering yields and surface roughness evolution with material removal were found to be sufficiently well behaved to favor ion beam figuring as a means of performing the final figuring step. The CVD-SiC fabrication technology for the x-ray telescopes as developed above appears scaleable. Finally, analysis of a single element CVD-SiC telescope, modeled after the AXAF-S 26th shell showed telescope deflections and weight to be 2.23 and 2.77 times less, respectively, than for a nickel replicated shell of the same dimensions.

  13. Ultra Small-Angle Neutron Scattering Study of Porous Glass

    SciTech Connect

    Desai, Reshma R.; Desa, J. A. Erwin; Sen, D.; Mazumder, S.

    2011-07-15

    Compacts of silica micro-spheres prepared for different times at sintering temperatures of 640 deg. C and 740 deg. C have been studied by Ultra Small-Angle Neutron Scattering (USANS) and Scanning Electron Microscopy (SEM). Stress versus strain measurements display several breakage points related to a range of nearest neighbour coordination around each microsphere.

  14. Small angle neutron scattering from nanometer grain sized materials

    SciTech Connect

    Epperson, J.E.; Siegel, R.W.

    1991-11-01

    Small angie neutron scattering has been utilized, along with a number of complementary characterization methods suitable to the nanometer size scale, to investigate the structures of cluster-assembled nanophase materials. Results of these investigations are described and problems and opportunities in using small angle scattering for elucidating nanostructures are discussed.

  15. Gluon transport equations with condensate in the small angle approximation

    NASA Astrophysics Data System (ADS)

    Blaizot, Jean-Paul; Liao, Jinfeng

    2016-05-01

    We derive the set of kinetic equations that control the evolution of gluons in the presence of a condensate. We show that the dominant singularities remain logarithmic when the scattering involves particles in the condensate. This allows us to define a consistent small angle approximation.

  16. Small angle X-ray scattering coupled with in situ electromechanical probing of nanoparticle-based resistive strain gauges

    NASA Astrophysics Data System (ADS)

    Decorde, Nicolas; Sangeetha, Neralagatta M.; Viallet, Benoit; Viau, Guillaume; Grisolia, Jérémie; Coati, Alessandro; Vlad, Alina; Garreau, Yves; Ressier, Laurence

    2014-11-01

    A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean interparticle distance variations) within these NP wires under uniaxial stretching estimated by SAXS/GISAXS are correlated to their macroscopic electrical resistance variations. SAXS measurements suggest a linear longitudinal extension and transversal contraction of the NP wires with applied strain (0 to ~13%). The slope of this longitudinal variation is less than unity, implying a partial strain transfer from the substrate to the NP wires. The simultaneously measured electrical resistance of the strain gauges shows an exponential variation within the elastic domain of the substrate deformation, consistent with electron tunnelling through the interparticle gaps. A slower variation observed within the plastic domain suggests the formation of new electronic conduction pathways. Implications of transversal contraction of the NP wires on the directional sensitivities of strain gauges are evaluated by simulating electronic conduction in models mimicking a realistic NP arrangement. A loss of directionality of the NP-based strain gauges due to transversal current flow within the NP wires is deduced.A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean

  17. Multilayer and grazing incidence X-ray/EUV optics for astronomy and projection lithography; Proceedings of the Meeting, San Diego, CA, July 19-22, 1992

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1993-01-01

    The present volume on multilayer and grazing incidence X-ray/EUV optics for astronomy and projection lithography discusses AXAF grazing incidence mirrors, the theory and high throughput optics of grazing incidence optics, multilayer mirror fabrication and characterization, and multilayer optics for X-ray projection lithography. Attention is given to the VETA-I X-ray detection system, a motion detection system for AXAF X-ray ground testing, image analysis of the AXAF VETA-I X-ray mirror, and optical constants from mirror reflectivities measured at synchrotrons. Topics discussed include the application of aberration theory to calculate encircled energy of Wolter I-II telescopes, W/C multilayers deposited on plastic films, nonspecular X-ray scattering from Si/Mo multilayers, and multilayer thin-film design as FUV polarizers. Also discussed are thin-film filter lifetesting results in the EUV, chromospheric and coronal observations with multilayer optics, present and future requirements of soft X-ray projection lithography, and the imaging Schwarzschild multilayer X-ray microscope.

  18. Slumping technique for the manufacturing of a representative x-ray grazing incidence mirror module for future space missions

    NASA Astrophysics Data System (ADS)

    Ghigo, Mauro; Proserpio, Laura; Basso, Stefano; Citterio, Oberto; Civitani, Marta M.; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Giampiero; Vecchi, Gabriele; Zambra, Alberto; Parodi, Giancarlo; Martelli, Francesco; Gallieni, Daniele; Tintori, Matteo; Bavdaz, Marcos; Wille, Eric; Ferrario, Ivan; Burwitz, Vadim

    2013-09-01

    The Astronomical Observatory of Brera (INAF-OAB, Italy), with the financing support of the European Space Agency (ESA), has concluded a study regarding a glass shaping technology for the production of grazing incidence segmented x-ray optics. This technique uses a hot slumping phase, in which pressure is actively applied on thin glass foils being shaped, to form a cylindrical approximation of Wolter I x-ray segments, and a subsequent cold slumping phase, in which the final Wolter I profile is then freeze into the glass segments during their integration in elemental X-ray Optical Units. The final goal of this study was the manufacturing of a prototype containing a number of slumped pair plates (meaning parabola and hyperbola couples) having representative dimensions to be tested both in UV light and in x-rays at the Panter facility (Germany). In this paper, the INAF-OAB slumping technique, comprising a shaping step and an integration step is described, together with the results obtained on the manufactured prototype modules: the first prototype was aimed to test the ad-hoc designed and built semi-automatic Integration MAchine (IMA) and debug its control software. The most complete module comprises 40 slumped segments of Schott D263 glass type of dimension 200 mm x 200 mm and thickness of 0.4 mm, slumped on Zerodur K20 mould and stacked together through glued BK7 glass structural ribs to form the first entire x-ray optical module ever built totally composed by glass. A last prototype was aimed at demonstrate the use of Schott glass AF32 type instead of D263. In particular, a new hot slumping experimental set-up is described whose advantage is to permit a better contact between mould and glass during the shaping process. The integration procedure of the slumped segments into the elemental module is also reviewed.

  19. Grazing incidence diffraction studies of the interactions between ursane-type antimicrobial triterpenes and bacterial anionic phospholipids.

    PubMed

    Broniatowski, Marcin; Flasiński, Michał; Wydro, Paweł; Fontaine, Philippe

    2015-04-01

    α-Amyrin (AMalf) and ursolic acid (Urs) are ursane-type pentacyclic triterpenes which exhibit wide spectrum of antibacterial activity. These surface active compounds can be incorporated into bacterial membranes and alter their structure and function; however, the exact mechanism of their action still needs to be elucidated. Thus, we decided to study the interactions of these terpenes with specific anionic phospholipids:cardiolipins and phosphatidylglycerols extracted from Escherichia coli in the model environment of Langmuir monolayers. To characterize the ordering of the terpene molecules in one-component films as well as to study their interactions with the bacterial phospholipids in binary monolayers we applied grazing incidence X-ray diffraction (GIXD). It turned out that amyrins and ursolic acid molecules form crystalline hexagonal phases in Langmuir monolayers, in which the molecules are oriented uprightly. Regarding the mixtures, it was found that in the monolayers with Urs crystalline domains are present till moderate or even low Urs proportion. In contrast, in the mixtures with AMalf crystalline domains were observed only at the highest terpene concentration. In the interpretation of our results we underlined the significance of the interactions between the cyclopropane ring present in the hydrophobic part of the bacterial phospholipids and the terminal ring of the terpene structure. We proposed that the significant differences between the systems with AMalf and Urs are connected with the formation of hydrogen bonds between the Urs hydrophobic moieties. It can be inferred from the results that Urs is a more membrane-active agent than AMalf. PMID:25805152

  20. Quantum ricochets: surface capture, release and energy loss of fast ions hitting a polar surface at grazing incidence

    NASA Astrophysics Data System (ADS)

    Lucas, A. A.; Sunjic, M.; Benedek, G.; Echenique, P. M.

    2014-06-01

    A diffraction mechanism is proposed for the capture, multiple bouncing and final escape of a fast ion (keV) impinging on the surface of a polarizable material at grazing incidence. Capture and escape are effected by elastic quantum diffraction consisting of the exchange of a parallel surface wave vector G = 2π/a between the ion parallel momentum and the surface periodic potential of period a. Diffraction-assisted capture becomes possible for glancing angles Φ smaller than a critical value given by Φ c2 ≈ 2λ/a-|V im|/E, where E is the kinetic energy of the ion, λ = h/Mv its de Broglie wavelength and V im its average electronic image potential at the distance from the surface where diffraction takes place. For Φ < Φ c, the ion can fall into a selected capture state in the quasi-continuous spectrum of its image potential and execute one or several ricochets before being released by the time reversed diffraction process. The capture, ricochet and escape are accompanied by a large, periodic energy loss of several tens of eV in the forward motion caused by the coherent emission of a giant number of quanta ħω of Fuchs-Kliewer surface phonons characteristic of the polar material. An analytical calculation of the energy loss spectrum, based on the proposed diffraction process and using a model ion-phonon coupling developed earlier (Lucas et al 2013 J. Phys.: Condens. Matter 25 355009), is presented, which fully explains the experimental spectrum of Villette et al (2000 Phys. Rev. Lett. 85 3137) for Ne+ ions ricocheting on a LiF(001) surface.

  1. Precision Small Angle Bending of Sheet Metals Using Shear Deformation

    NASA Astrophysics Data System (ADS)

    Hirota, Kenji; Mori, Yorifumi

    This paper deals with a new method to bend sheet metals at a small angle precisely, in which a sheet metal is slightly bent by shear deformation at negative punch-die clearance. Deformation behavior and key factors affecting on the bend angle were studied in detail with pure aluminum sheets. It was proved that the bend angle was changed in proportion to both punch penetration and negative punch-die clearance within a certain range. The same was true for high-strength steel and phosphor bronze, which are difficult to bend precisely by conventional methods due to large springback after unloading. By using this relationship as a control law, four kinds of sheet metals were precisely bent within a few degrees. This method was applied to correct the angular errors in U-bend products of high-strength steel and to bend leaf springs of phosphor bronze at an arbitrary small angle.

  2. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOEpatents

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  3. SANS (small-angle neutron scattering) from polymers and colloids

    SciTech Connect

    Hayter, J.B.

    1987-01-01

    Small-angle neutron scattering (SANS) has been remarkably successful in providing detailed quantitative structural information on complex everyday materials, such as polymers and colloids, which are often of considerable industrial as well as academic interest. This paper reviews some recent SANS experiments on polymers and colloids, including ferrofluids, and discusses the use of these apparently complex systems as general physical models of the liquid or solid state.

  4. Small-angle neutron scattering from micellar solutions

    NASA Astrophysics Data System (ADS)

    Aswal, V. K.; Goyal, P. S.

    2004-07-01

    Micellar solutions are the suspension of the colloidal aggregates of the sur- factant molecules in aqueous solutions. The structure (shape and size) and the interaction of these aggregates, referred to as micelles, depend on the molecular architecture of the surfactant molecule, presence of additives and the solution conditions such as tempera- ture, concentration etc. This paper gives the usefulness of small-angle neutron scattering to the study of micellar solutions with some of our recent results.

  5. Structure of a two-dimensional crystal in a Langmuir monolayer: grazing incidence X-ray diffraction and macroscopic properties

    NASA Astrophysics Data System (ADS)

    Flament, C.; Gallet, F.; Graner, F.; Goldmann, M.; Peterson, I.; Renault, A.

    1994-06-01

    Grazing incidence X-ray diffraction is performed on a Langmuir monolayer made of pure fluorescent NBD-stearic acid, spread at the free surface of water. It shows several intense narrow peaks in the solid phase, at the same wavevectors as the brightest peaks observed earlier by electron diffraction, for a monolayer transferred onto an amorphous polymer substrate. Thus the solid phase has the same crystalline structure on water and on solid substrate. The relative peak intensities are comparable in both experiments, and in the proposed model for the molecular structure. This model also accounts for the very large anisotropy of the crystalline phase and its optical properties. This phase could be ferroelectric, as previously assumed in order to explain the elongated shape of the crystals. Une monocouche de Langmuir, composée d'acide NBD-stéarique fluorescent pur, déposée à la surface libre de l'eau, est analysée par diffraction de rayons X sous incidence rasante. On détecte plusieurs pics étroits et intenses dans la phase solide, aux mêmes vecteurs d'onde que les pics les plus brillants précédemment observés par diffraction électronique, pour une monocouche transférée sur un substrat de polymère amorphe. La phase solide a donc la même structure cristalline sur l'eau et sur substrat solide. Les intensités relatives des pics sont comparables dans les deux expériences, ainsi que dans le modèle proposé pour la structure moléculaire. Ce modèle rend également compte de l'anisotropie très importante de la phase cristalline et de ses propriétés optiques. Il pourrait s'agir d'une phase ferroélectrique, comme cela avait été précédemment supposé pour expliquer la forme allongée des cristaux.

  6. SASBDB, a repository for biological small-angle scattering data

    PubMed Central

    Valentini, Erica; Kikhney, Alexey G.; Previtali, Gianpietro; Jeffries, Cy M.; Svergun, Dmitri I.

    2015-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands. PMID:25352555

  7. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  8. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  9. Small angle neutron scattering from high impact polystyrene

    SciTech Connect

    Pringle, O.A.

    1981-01-01

    High impact polystyrene (HIPS) is a toughened plastic composed of a polystyrene matrix containing a few percent rubber in the form of dispersed 0.1 to 10 micron diameter rubber particles. Some commercial formulations of HIPS include the addition of a few percent mineral oil, which improves the toughness of the plastic. Little is known about the mechanism by which the mineral oil helps toughen the plastic. It is hypothesized that the oil is distributed only in the rubber particles, but whether this hypothesis is correct was not known prior to this work. The size of the rubber particles in HIPS and their neutron scattering length density contrast with the polystyrene matrix cause HIPS samples to scatter neutrons at small angles. The variation of this small angle neutron scattering (SANS) signal with mineral oil content has been used to determine the location of the oil in HIPS. The SANS spectrometer at the University of Missouri Research Reactor Facility (MURR) was used to study plastic samples similar in composition to commercial HIPS. The MURR SANS spectrometer is used to study the small angle scattering of a vertical beam of 4.75 A neutrons from solid and liquid samples. The scattered neutrons are detected in a 54 x 60 cm/sup 2/ position sensitive detector designed and built at MURR. A series of plastic samples of varying rubber and oil content and different rubber domain sizes and shapes were examined on the MURR SANS spectrometer. Analysis of the scattering patterns showed that the mineral oil is about eight to ten times more likely to be found in the rubber particles than in the polystyrene matrix. This result confirmed the hypothesis that the mineral oil is distributed primarily in the rubber particles.

  10. Modified small angle magnetization rotation method in multilayer magnetic microwires

    NASA Astrophysics Data System (ADS)

    Torrejón, J.; Badini, G.; Pirota, K.; Vázquez, M.

    2007-09-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications.

  11. Contrast variation in spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Li, Xin; Liu, Emily; Liu, Yun; Pynn, Roger; Robertson, J. L.; Shew, Chwen-Yang; Smith, Gregory Scott; Wu, Bin

    2012-01-01

    The principle of using contrast variation spin-echo small angle neutron scattering (SESANS) technique for colloidal structural investigation is discussed. Based on the calculations of several model systems, we find that the contrast variation SESANS technique is not sensitive in detecting the structural characteristics of colloidal suspensions consisting of particles with uniform scattering length density profiles. However, its capability of resolving the structural heterogeneity, at both intra- and inter-colloidal length scales, is clearly demonstrated. The prospect of using this new technique to investigate the structural information that is difficult to be probed by other ways is also explored.

  12. Small angle scattering signals for (neutron) computerized tomography

    SciTech Connect

    Strobl, M.; Treimer, W.; Hilger, A.

    2004-07-19

    Small angle neutron scattering is a well-established tool for the determination of microscopic structures in various materials. With the ultrasmall angle neutron scattering technique (USANS), structures with sizes of approximately 50 nm to 50 {mu}m can be resolved by a double crystal diffractometer (DCD). USANS signals recorded with a special DCD were used for tomographic purposes investigating the macroscopic structure of a sample with a maximum resolution of 200 {mu}m. Thereby, macroscopic regions within the sample with different ultrasmall angle scattering properties, i.e., with different microscopic structures, could be imaged by the means of tomographic reconstruction from projections (on a macroscopic scale)

  13. Analysis of PKR Structure by Small-Angle Scattering

    SciTech Connect

    VanOudenhove, Jennifer; Anderson, Eric; Krueger, Susan; Cole, James L.

    2009-04-27

    Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 {angstrom}. The p(r) distance distribution function exhibits a peak near 30 {angstrom}, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.

  14. Emerging applications of small angle solution scattering in structural biology

    PubMed Central

    Chaudhuri, Barnali N

    2015-01-01

    Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu. PMID:25516491

  15. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  16. SMALL ANGLE CRAB COMPENSATION FOR LHC IR UPGRADE

    SciTech Connect

    CALAGA,R.; DORDA, U.; OHMI, D.; OIDE, K.; TOMAS, R.; ZIMMERMANN, F.

    2007-06-25

    A small angle (< 1 mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle [I]. The luminosity loss increases steeply to unacceptable levels as the IP beta function is reduced below its nominal value (see Fig. 1 in Ref. [2]). The crab compensation in the LHC can be accomplished using only two sets of deflecting RF cavities, placed in collision-free straight sections of the LHC to nullify the effective crossing angles at IPI & IP5. We also explore a 400 MHz superconducting cavity design and discuss the pertinent RF challenges. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, and crab RF noise sources.

  17. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    NASA Astrophysics Data System (ADS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  18. Small angle scattering from protein/sugar conjugates

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  19. Radiation damage study using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  20. Structural investigations of fat fractals using small-angle scattering

    NASA Astrophysics Data System (ADS)

    Anitas, Eugen M.

    2015-01-01

    Experimental small-angle scattering (SAS) data characterized, on a double logarithmic scale, by a succession of power-law decays with decreasing values of scattering exponents, can be described in terms of fractal structures with positive Lebesgue measure (fat fractals). Here we present a theoretical model for fat fractals and show how one can extract structural information about the underlying fractal using SAS method, for the well known fractals existing in the literature: Vicsek and Menger sponge. We calculate analytically the fractal structure factor and study its properties in momentum space. The models allow us to obtain the fractal dimension at each structural level inside the fractal, the number of particles inside the fractal and about the most common distances between the center of mass of the particles.

  1. Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Watanabe, Norio; Asami, Hiroshi; Shimada, Akihiro

    2016-04-01

    An axisymmetric multi-mirror system for neutron and X-ray microscopes is proposed to increase their numerical aperture and collection efficiency. A Wolter type-I mirror is used as the basis of the multi-mirror system at grazing incidence. The addition of an even number of hyperboloid mirrors to the Wolter type-I mirror can satisfy both an equal optical path length and Abbe's sine condition. The numerical aperture increases in proportion to the number of mirrors. The optical parameters of the system with four tandem mirrors are calculated for neutrons and X-rays with a wavelength of 0.4 nm by assuming that the average grazing angle of incidence is 5.4 mrad and the magnification is 10. The inner diameters of the mirrors are limited to <10 mm considering the total length of the optical system. Tolerance of off-axis distance was calculated using a ray-tracing computer simulation. Ray tracing shows that a blur size <14 nm will be possible at an off-axis displacement of 10 μm.

  2. Monte-Carlo simulation of an ultra small-angle neutron scattering instrument based on Soller slits

    SciTech Connect

    Rieker, T.; Hubbard, P.

    1997-09-01

    Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that for a q{sub min} of {approximately}le-4 {angstrom}{sup -1} (15 {angstrom} neutrons) a few tenths of a percent of the incident flux is transmitted through both collimators at q=0.

  3. Multiple scattering in grazing-incidence X-ray diffraction: impact on lattice-constant determination in thin films

    PubMed Central

    Resel, Roland; Bainschab, Markus; Pichler, Alexander; Dingemans, Theo; Simbrunner, Clemens; Stangl, Julian; Salzmann, Ingo

    2016-01-01

    Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films. PMID:27140152

  4. Multiple scattering in grazing-incidence X-ray diffraction: impact on lattice-constant determination in thin films.

    PubMed

    Resel, Roland; Bainschab, Markus; Pichler, Alexander; Dingemans, Theo; Simbrunner, Clemens; Stangl, Julian; Salzmann, Ingo

    2016-05-01

    Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2':6',2''-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films. PMID:27140152

  5. X-ray small angle scattering. A new deconvolution method for evaluating electron density distributions from small angle scattering diagrams.

    PubMed

    Pape, E H

    1974-04-01

    The direct determination of the electron density distributions of multilayered specimens with a small number of unit cells from X-ray small angle scattering experiments via the Q-function method of Hosemann and Bagchi includes the deconvolution of the so-called Q(o)-function, the generalized Patterson function of one unit cell. In this paper a new and direct deconvolution method on the basis of Fourier series is presented which is suitable for one-dimensional centrosymmetrical (or antisymmetrical) density distributions. A FORTRAN-program has been written which has an execution time of ca. 20 s on an UNIVAC 1106-computer. The procedure has been successfully tested on some convolution functions generated by membrane-type electron density distributions. PMID:4830467

  6. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions.

    PubMed

    Ingerle, D; Meirer, F; Pepponi, G; Demenev, E; Giubertoni, D; Wobrauschek, P; Streli, C

    2014-09-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  7. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-09-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  8. Nucleon-nucleon scattering at small angles, measured at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Bagdasarian, Z.

    2016-03-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.

  9. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Cheng, He; Yuan, Guangcui; Han, Charles C.; Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng

    2014-01-01

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional 3He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å-1 to 0.5 Å-1 in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript.

  10. Small Angle Neutron Scattering of Solutions of Arborescent Graft Polymers

    NASA Astrophysics Data System (ADS)

    Choi, Sangwook; Briber, R. M.; Bauer, B. J.; Topp, Andreas; Gauthier, Mario

    1998-03-01

    Arborescent graft polymers are branched macromolecules resulting from successive cycles of chloromethylation and anionic grafting reactions. Small angle neutron scattering (SANS) was used to measure the size and shape of arborescent graft polymers in solution. Guinier plots were used to analyze the data at small q. The radius of gyration of arborescent graft polymers was found to be almost independent of temperature as the solution was cooled towards the phase separation temperature. The optical cloud point temperature was found to be 15 ^0C. At the phase separation temperature two peaks were observed in the I versus q SANS data. The first peak is due to the interference between molecules while the second peak comes from the single particle form factor. The value of q at the peak from the form factor was almost constant as temperature was changed from 40 ^0C to 20 ^0C. The peak position shifted to higher q at the phase separation temperature. This indicates that the size of molecules decreased as the molecules began to aggregate below the phase separation temperature. The value of A2 for arborescent graft polymers was found to be independent of temperature and close to zero.

  11. Small angle x-ray scattering with edge-illumination.

    PubMed

    Modregger, Peter; Cremona, Tiziana P; Benarafa, Charaf; Schittny, Johannes C; Olivo, Alessandro; Endrizzi, Marco

    2016-01-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond. PMID:27491917

  12. Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering

    SciTech Connect

    Tiede, D.M.; Marone, P.; Wagner, A.M.; Thiyagarajan, P.

    1995-12-31

    We are using small angle neutron scattering (SANS) to resolve structural features of supramolecular assemblies of photosynthetic proteins in liquid and frozen solutions. SANS resolves the size, shape, and structural homogeneity of macromolecular assemblies in samples identical to those used for spectroscopic assays of photosynthetic function. Likely molecular structures of the supramolecular assemblies can be identified by comparing experimental scattering data with scattering profiles calculated for model supramolecular assemblies built from crystal structures of the individual proteins. SANS studies of the Rhodobacter sphaeroides reaction center, RC, presented here, show that the detergent solubilized RC exists in a variety of monomeric and aggregation states. The distribution between monomer and aggregate was found to depend strongly upon detergent, temperature and nature of additives, such as ethylene glycol used for low temperature spectroscopy and polyethylene glycol used for crystallization. Likely aggregate structures are being identified by fitting the experimental scattering profiles with those calculated for model aggregates built-up using the RC crystal structure. This work establishes the foundation for using SANS to identify intermediates in the RC crystallization pathways, and for determining likely structures of complexes formed between the RC and its physiological reaction partners, cytochrome c, and the LHI antenna complex.

  13. Physical characteristics of human transferrin from small angle neutron scattering.

    PubMed Central

    Martel, P; Kim, S M; Powell, B M

    1980-01-01

    The technique of small angle neutron scattering has been used to determine the molecular shape, the volume, and the molecular weight of pooled human transferrin in an aqueous solution isotonic with blood. Analysis of the measurements assuming a spheroidal molecular shape indicates that an oblate spheroid with semi-axes of length 46.6 +/- 1.4, 46.6 +/- 1.4 and 15.8 +/- 3.8 A, and a molecular volume of (144 +/- 45) X 10(3) A3 is the best simple approximation to the shape of the transferrin molecule. The radius of gyration, Rg, determined from a Guinier plot is 30.25 +/- 0.49 A, in agreement with Rg calculated for the oblate spheroidal shape. The molecular weight is determined to be (75 +/- 5) X 10(3). The shape-independent molecular volume is found to be (98 +/- 10) X 10(3) A3. The difference in the two volumes suggests that transferrin is not a uniform spheroid but may have a more complex shape. PMID:7260293

  14. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  15. Small angle x-ray scattering with edge-illumination

    PubMed Central

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-01-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond. PMID:27491917

  16. Branch Content in Hybrid Materials using Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Beaucage, Greg

    2005-03-01

    Inorganic/organic hybrid materials often display ramified mass- fractal structures characterized by primary particle size, aggregate size, and mass-fractal dimension. Physical properties, such as mechanical and dynamic mechanical properties and electrical conductivity (in carbon composites for instance), can not be predicted using only these structural features since such properties are intimately tied to the degree and type of branching as shown by Witten [1]. Witten suggested the use of the minimum dimension, or the related connectivity dimension, to calculate mechanical response in these hybrid systems. A viable technique to quantify the minimum dimension and connectivity dimension in hybrid materials has, until recently, been absent from the literature. This presentation will discuss the use of small-angle x-ray and neutron scattering to describe branch content in hybrid materials [2] and will outline an approach to use the minimum dimension and connectivity dimension to predict static and dynamic mechanical properties for hybrid materials based on structure [1, 3]. 1. Witten TA, Rubinstein M, Colby RH Reinforcement of Rubber by Fractal Aggregates J Phys II 3 (3): 367-383 (1993). 2. Beaucage G Determination of branch fraction and minimum dimension of mass-fractal aggregates Phys Rev E 70 (3): art. no. 031401 Part 1 (2004). 3. Kohls DJ, Beaucage G Rational design of reinforced rubber Curr Opin Solid St M 6 (3): 183-194 (2002).

  17. Design of a small angle spectrometer: Application to food systems

    NASA Astrophysics Data System (ADS)

    Alexander, Marcela

    This thesis describes the design of a new class of spectrometer developed for the study of light scattering phenomena at very low angles. Its detection system is a state of the art Charged Couple Device (CCD) camera of short data gathering time and very high sensitivity and dynamic range. The Small Angle Light Scattering technique in this work is shown to be a useful tool for determining size distributions of particles whose diameter is larger than approximately 300 nm. For particles smaller than this size, the technique is a sensitive probe of Rayleigh scattering. The advantages presented by the use of a solid state camera enables the study of relatively fast dynamic phenomena such as aggregation. In this particular work, we followed the aggregation of casein micelles caused by the addition of rennet, and the aggregation of β- Lactoglobulin stabilized oil in water emulsions caused by the addition of CaCl2. For this last case, a discrete inversion technique, incorporating the Mie scattering theory, was applied to obtain size distribution histograms of the emulsion droplets as a function of aggregation time.

  18. Practical applications of small-angle neutron scattering.

    PubMed

    Hollamby, Martin J

    2013-07-14

    Recent improvements in beam-line accessibility and technology have led to small-angle neutron scattering (SANS) becoming more frequently applied to materials problems. SANS has been used to study the assembly, dispersion, alignment and mixing of nanoscale condensed matter, as well as to characterise the internal structure of organic thin films, porous structures and inclusions within steel. Using time-resolved SANS, growth mechanisms in materials systems and soft matter phase transitions can also be explored. This review is intended for newcomers to SANS as well as experts. Therefore, the basic knowledge required for its use is first summarised. After this introduction, various examples are given of the types of soft and hard matter that have been studied by SANS. The information that can be extracted from the data is highlighted, alongside the methods used to obtain it. In addition to presenting the findings, explanations are provided on how the SANS measurements were optimised, such as the use of contrast variation to highlight specific parts of a structure. Emphasis is placed on the use of complementary techniques to improve data quality (e.g. using other scattering methods) and the accuracy of data analysis (e.g. using microscopy to separately determine shape and size). This is done with a view to providing guidance on how best to design and analyse future SANS measurements on materials not listed below. PMID:23552189

  19. Diffraction by a strip at almost grazing angle

    NASA Astrophysics Data System (ADS)

    Andronov, Ivan V.; Bouche, Daniel P.

    2016-07-01

    The problem of high-frequency diffraction by a soft strip at almost grazing incidence is considered. By using the parabolic equation method, and variable separation in elliptical coordinates, we derive the two terms asymptotic approximation of the solution. First we consider the boundary layer near the surface of the strip and derive an asymptotic representation for the velocities on the surface. Then we apply Green's formula to derive the asymptotic representation for the far field. Both asymptotic representations in the boundary layer and for the far field are expressed in the form of rapidly converging integrals containing Whittaker or Coulomb wave functions. The approximation for the total scattering cross-section is checked to match to known asymptotic results: the physical optics approximation for the not too small angles of incidence on one side and the asymptotic expression for the limiting case of grazing incidence on the other side. Simple approximations for the total scattering cross-section in powers of the scaled angle are derived.

  20. Structural Characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence x-ray diffraction

    SciTech Connect

    Fritz, S

    2004-02-18

    Grazing incidence X-ray diffraction reveals that a pentacene monolayer, grown on an amorphous SiO{sub 2} substrate that is commonly used as a dielectric layer in organic thin film transistors (OTFTs), is crystalline. A preliminary energy-minimized model of the monolayer, based on the GIXD data, reveals that the pentacene molecules adopt a herringbone arrangement with their long axes tilted slightly from the substrate normal. Although this arrangement resembles the general packing features of the (001) layer in single crystals of bulk pentacene, the monolayer lattice parameters and crystal structure differ from those of the bulk. Because carrier transport in pentacene OTFTs is presumed to occur in the semiconductor layers near the dielectric interface, the discovery of a crystalline monolayer structure on amorphous SiO{sub 2} has important implications for transport in OTFTs.

  1. Determination of particle-induced structural disorder depth profile in crystals using the grazing-angle incidence hard x-ray backscattering diffraction technique

    NASA Astrophysics Data System (ADS)

    Bezirganyan, Hakob (Jacob P.; Bezirganyan, Siranush E.; Bezirganyan, Petros H., Jr.; Bezirganyan, Hayk H., Jr.

    2011-12-01

    In this theoretical paper, we propose an x-ray imaging method for determination of particle-induced structural disorder depth profile in the crystalline materials based on the extremely sensitive, high-resolution, and non-destructive grazing-angle incidence hard x-ray backscattering diffraction technique. A peculiar value of the Bragg angle is discovered within the specular beam suppression angular region for which the curve of x-ray reflectivity is very close to the profile of the corresponding structural disorder. The coincidence presents a unique opportunity for the direct registration of the structural disorder depth profile in particle-irradiated crystals. This paper is dedicated to Professor Dr Petros H Bezirganyan on the occasion of his 95th birthday on 15th December 2011.

  2. Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY

    SciTech Connect

    Santoro, G.; Buffet, A.; Döhrmann, R.; Yu, S.; Roth, S. V.; Körstgens, V.; Müller-Buschbaum, P.; Gedde, U.; Hedenqvist, M.

    2014-04-15

    We describe the new experimental possibilities of the micro- and nanofocus X-ray scattering beamline P03 of the synchrotron source PETRA III at DESY, Hamburg (Germany), which arise from experiments with smaller beam sizes in the micrometer range. This beamline has been upgraded recently to perform new kinds of experiments. The use of an intermediate focus allows for reducing the beam size of microfocused hard X-rays while preserving a large working distance between the focusing elements and the focus position. For the first time, this well-known methodology has been employed to grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS). As examples, we highlight the applications to in situ studies using microfluidic devices in GISAXS geometry as well as the investigation of the crystallinity of thin films in GIWAXS geometry.

  3. Internal structure of copper(II)-phthalocyanine thin films on SiO{sub 2}/Si substrates investigated by grazing incidence x-ray reflectometry

    SciTech Connect

    Brieva, A. C.; Jenkins, T. E.; Jones, D. G.; Stroessner, F.; Evans, D. A.; Clark, G. F.

    2006-04-01

    The internal structure of copper(II)-phthalocyanine (CuPc) thin films grown on SiO{sub 2}/Si by organic molecular beam deposition has been studied by grazing incidence x-ray reflectometry (GIXR) and atomic force microscopy. The electronic density profile is consistent with a structure formed by successive monolayers of molecules in the {alpha} form with the b axis lying in the substrate surface plane. The authors present an electronic density profile model of CuPc films grown on SiO{sub 2}/Si. The excellent agreement between the model and experimental data allows postdeposition monitoring of the internal structure of the CuPc films with the nondestructive GIXR technique, providing a tool for accurate control of CuPc growth on silicon-based substrates. In addition, since the experiments have been carried out ex situ, they show that these structures can endure ambient conditions.

  4. Modern approaches to investigation of thin films and monolayers: X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.; Ponomarenko, S. A.; Kovalchuk, M. V.

    2014-12-01

    The review concerns modern experimental methods of structure determination of thin films of different nature. The methods are based on total reflection of X-rays from the surface and include X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves. Their potential is exemplified by the investigations of various organic macromolecular systems that exhibit the properties of semiconductors and are thought to be promising as thin-film transistors, light-emitting diodes and photovoltaic cells. It is shown that combination of the title methods enable high-precision investigations of the structure of thin-film materials and structure formation in them, i.e., it is possible to obtain information necessary for improvement of the operating efficiency of elements of organic electronic devices. The bibliography includes 92 references.

  5. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Dhawan, Rajnish; Rai, Sanjay

    2016-05-01

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]x4. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases on increasing the W thicknesses in W/Si multilayers.

  6. An ultrahigh-density digital data read-out method based on grazing-angle incidence x-ray backscattering diffraction

    NASA Astrophysics Data System (ADS)

    Bezirganyan, Hakob Akop P.; Bezirganyan, Hayk H., Jr.; Bezirganyan, Siranush E.; Bezirganyan, Petros H., Jr.; Mossikyan, Youri G.

    2005-10-01

    An ultrahigh-density x-ray optical data storage medium useful for terabyte-scale memory applications and named X-ROM is proposed. The X-ROM is a nanocrystalline semiconductor layer, in which non-diffracting nanosized reflectors of x-radiation are embedded. The procedure of digital data read-out from the X-ROM can be performed e.g. by the application of a grazing-angle incidence x-ray backscattering diffraction technique under conditions of specular vacuum wave suppression. The surface storage digital data density of the proposed device, with 20 nm/bit linear size of the single-bit domain, is higher by two orders of magnitude than the volumetric data density actually achieved for a three-dimensional optical data storage medium.

  7. Interaction of keV ions with insulator films at grazing incidence: growth characterization and electron emission

    NASA Astrophysics Data System (ADS)

    Sánchez, E. A.; Otero, G.; Tognalli, N.; Grizzi, O.; Ponce, V. H.

    2003-04-01

    We present a study of the growth of AlF 3 thin films on Al(1 1 1) surface, together with the electron emission produced in the scattering of 60 keV protons from these films. The growth of the AlF 3 films at room temperature, from submonolayer coverage up to several layers, was characterised by means of Auger electron spectroscopy and electron energy loss spectroscopy. We found that from the beginning of the evaporation the AlF 3 molecules adsorb stoichiometrically, and layer-by-layer. The electron emission induced by grazing proton bombardment was measured as a function of the film thickness. In the forward direction, the most prominent structure can be related with convoy electron emission. For the case of the metallic surface, the maximum of this peak is located at energies above the corresponding one to electron transfer to projectile continuum states in gas-phase collisions, and shifts to lower values for sufficiently thick films. This result is discussed in terms of the competition between track and polarisation potentials generated in the insulator film, and image potentials induced in the metallic substrate.

  8. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  9. In situ small-angle x-ray and nuclear resonant scattering study of the evolution of structural and magnetic properties of an Fe thin film on MgO (001)

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ajay; Gupta, Mukul; Schlage, Kai; Wille, H.-C.

    2015-12-01

    Growth of magnetron sputtered Fe films on clean single crystalline MgO (001) substrate has been studied using in situ grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence nuclear resonant scattering (GINRS) measurements. While GISAXS provides information about morphological changes, GINRS provides information about structural and magnetic properties, thus making it possible to correlate the evolution of magnetic properties with that of morphology and structure of the film. The film exhibits a Volmer-Weber type growth, with percolation transition occurring around 2 nm film thickness. Presence of a finite quadrupole splitting, as seen in GINRS measurements, suggests a significant distortion from cubic symmetry up to a film thickness of 3.5 nm, which can be attributed to hybridization between Fe 3 d and O 2 p orbitals at the interface as well as in-plane tensile strain induced as a result of coalescence of islands. Initially Fe islands exhibit superparamagnetic relaxation, while finite magnetic moment appears upon formation of macroscopic percolation islands. The film exhibits a weak perpendicular magnetic anisotropy (PMA), which vanishes concurrently with disappearance of structural distortion, suggesting that the observed PMA at least partly originates from inherent strain in the film. No presence of any known oxide of Fe was detected at the interface. More precise information about topological and magnetic structure of the interfaces between Fe and MgO layers is obtained using combined x-ray reflectivity and nuclear resonance reflectivity measurements on a 57Fe/MgO multilayer. Measurements show that about two monolayers of Fe at the interface have a reduced hyperfine field, providing evidence for hybridization with O atoms, as predicted by theory.

  10. EDITORIAL Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    Ungar, Goran; Heenan, Richard

    2010-10-01

    There are 52 papers in these Proceedings. The papers are divided into 10 thematic sections and a section for invited papers and reviews. The sections and the respective section editors are given below. Section Editor(s) Invited Papers and Reviews Peter Griffiths, Wim Bras, Rudolf Winter Beamlines and Instrumentation Elliot Gilbert, Wim Bras, Nigel Rhodes Theory, Data processing and Modelling Jan Skov Pedersen, Carlo Knupp Biological Systems and Membranes Richard Heenan, Cameron Neylon Ceramics, Glasses and Porous Materials Rudolf Winter Colloids and Solutions Peter Griffiths Hierarchical Structures and Fibres Steve Eichhorn, Karen Edler Metallic and Magnetic Systems Armin Hoell Polymers Patrick Fairclough Time resolved Diffraction, Kinetic and Dynamical Studies João Cabral, Christoph Rau We are grateful to all section editors and the many anonymous referees for their invaluable effort which made the publication of the Proceedings possible. The refereeing process was strict and thorough, some papers were rejected and most were improved. The resulting compendium gives a good overview of recent developments in small-angle X-ray and neutron scattering theory, application, methods of analysis and instrumentation. Thus it should be a useful source of reference for a number of years to come. The papers are a good reflection of the material presented at the meeting. Because of the general high quality of the articles, it was difficult to decide which to highlight and be fair to all contributors. The following in particular have caught the attention of the editors. Highlighted papers A statistical survey of publications reporting the application of SAXS and SANS by Aldo Craievich (paper 012003) is recommended reading for anyone needing convincing about the vibrancy of this scientific field and the ever expanding use of these techniques. Two aspects of coherent X-ray scattering, made available by the advent of the 3rd generation synchrotron sources, are discussed in the

  11. X-ray diffraction from polycrystalline multilayers in grazing-incidence geometry: Measurement of crystallite size depth distribution

    SciTech Connect

    Fewster, P.F.; Andrew, N.L.; Holy, V.; Barmak, K.

    2005-11-01

    A method to measure the crystallite size and its distribution as a function of depth in multilayer thin films is described. The principle relies on the idea that when x-rays are scattered at an interface the incident and scattered waves create a standing wave whose periodicity can be varied and thereby enhance the scattering at certain depths. Practical examples of this method are given for Nb/Al periodic multilayers, one of which indicates considerable macrostrain for the surface layer and a variation in microstrain as a function of depth. The theoretical modeling of the scattering process is presented, which includes the influence of the general density modulation and interfacial roughness. Both these contributions are shown to be necessary to account for the experimental scattering profiles.

  12. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  13. The thickness measurement of ultrathin films from new high-k material HfO2 by grazing incidence x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Jia, Yabin; Gao, Huifang; Li, Xu; Yao, Yaxuan; Wang, Meiling; Tao, Xingfu; Tian, Rongrong; Ren, Lingling; Qin, Lin

    2016-06-01

    The thickness of HfO2 ultrathin films was determined by grazing incidence x-ray reflectivity (GIXRR) with simulation. Two samples were prepared by atomic layer deposition, and the Si substrate of one sample was treated by HF acid (1:20) to erase the native oxide layer, while the other was not. According to the GIXRR, the films consisted of two contamination layers, an interface layer, a HfO2 layer and a native oxide layer (except for the acid-treated sample) from top to bottom. As a result, the HfO2 thickness of the two samples was 1.23 nm and 1.25 nm respectively, and the thicknesses of the interface layers between the HfO2 and the Si substrate were 0.1 nm and 0.95 nm respectively. The chemical states of the film were investigated by ultrasonification and x-ray photoemission spectroscopy (XPS), and the thickness was verified by transmission electron microscopy (TEM). All these phenomena proved that GIXRR is a powerful and effective piece of technology for characterizing HfO2 ultrathin film.

  14. First measurements of highly ionized impurity emission distribution by grazing-incidence flat-field extreme ultraviolet spectrometer in HL-2A.

    PubMed

    Cui, Zhengying; Dong, Chunfeng; Zhou, Hangyu; Morita, Shigeru; Sun, Ping; Fu, Bingzhong; Lu, Ping; Ding, Xuantong; Yang, Qingwei; Duan, Xuru

    2014-11-01

    A space-resolved grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been developed in the HL-2A tokamak to measure vertical impurity emission profiles with simultaneous spectral, temporal, and spatial resolution. The spectrometer working in the wavelength range of 30-500 Å has been equipped with a gold-coated varied-line-spacing holographic grating with curvature of 5606 mm and a back illuminated charge-coupled device with size of 6.6 × 26.6 mm(2) (255 × 1024 pixels). A lower half of the HL-2A plasma with averaged minor radius of 40 cm is observed when the spectrometer with horizontal dispersion is placed at a distance of 7.5 m away from the plasma center. An excellent spatial resolution of 12 mm is achieved when a space-resolved slit with vertical width of 0.5 mm is adopted. The radial profiles of intrinsic impurities in several ionization stages have been measured with high throughput and extremely low stray light. PMID:25430333

  15. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1(0) ordering in (57)Fe/Pt multilayers.

    PubMed

    Raghavendra Reddy, V; Gupta, Ajay; Gome, Anil; Leitenberger, Wolfram; Pietsch, U

    2009-05-01

    In situ high temperature x-ray reflectivity and grazing incidence x-ray diffraction measurements in the energy dispersive mode are used to study the ordered face-centered tetragonal (fct) L 1(0) phase formation in [Fe(19 Å)/Pt(25 Å)]( × 10) multilayers prepared by ion beam sputtering. With the in situ x-ray measurements it is observed that (i) the multilayer structure first transforms to a disordered FePt and subsequently to an ordered fct L 1(0) phase, (ii) the ordered fct L 1(0) FePt peaks start to appear at 320 °C annealing, (iii) the activation energy of the interdiffusion is 0.8 eV and (iv) ordered fct FePt grains have preferential out-of-plane texture. The magneto-optical Kerr effect and conversion electron Mössbauer spectroscopies are used to study the magnetic properties of the as-deposited and 400 °C annealed multilayers. The magnetic data for the 400 °C annealed sample indicate that the magnetization is at an angle of ∼50° from the plane of the film. PMID:21825468

  16. A comparative study of Langmuir surfactant films: Grazing incidence x-ray off-specular scattering vs. x-ray specular reflectivity

    NASA Astrophysics Data System (ADS)

    Dai, Yeling; Lin, Binhua; Meron, Mati; Kim, Kyungil; Leahy, Brian; Shpyrko, Oleg G.

    2011-11-01

    Surface monolayers assembled on a liquid sub-phase represent a class of systems that is of great interest for studies of phase transitions in quasi-2D systems, chemical self-assembly, surfactant behavior, and biologically relevant monolayers and membranes. X-ray scattering is ideal for studying structural, dynamic, and mechanical properties of these surface monolayers at nanoscale due to the penetrating ability and short wavelength of x-rays. We show here that grazing incidence x-ray off-specular scattering (GIXOS) provides rapid access to in-plane and out-of-plane nanoscale structure, surface fluctuating modes, and potentially bending stiffness. We show that analysis of GIXOS data is highly sensitive to resolution effects. We further present detailed analysis of GIXOS from phospholipid 1,2-dipalmitoyl-phosphatidyl-choline C40H80NO8P (DPPC) and obtain quantitative, angstrom-resolution details of electron density profile normal to the surface that is comparable to those that are obtained from specular x-ray reflectivity measurements. We compare these GIXOS results to x-ray reflectivity measurements performed on the same samples. While electron density and main structural characteristics (such as monolayer thickness) obtained by GIXOS agree with x-ray reflectivity results, the interfaces of GIXOS-derived density profiles are found to be systematically sharper than those obtained with x-ray reflectivity. The possible reasons for these differences are discussed.

  17. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    SciTech Connect

    Widmann, K. Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  18. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations

    SciTech Connect

    Nabok, Dmitrii; Puschnig, Peter; Ambrosch-Draxl, Claudia; Werzer, Oliver; Resel, Roland; Smilgies, Detlef-M.

    2007-12-15

    Combined experimental and theoretical investigations on thin films of pentacene are performed in order to determine the structure of the pentacene thin film phase. Grazing incidence x-ray diffraction is used for studying a pentacene thin film with a nominal thickness of 180 nm. The crystal structure is found to exhibit the lattice parameters a=0.592 nm, b=0.754 nm, c=1.563 nm, {alpha}=81.5 deg. , {beta}=87.2 deg. , and {gamma}=89.9 deg. . These crystallographic unit cell dimensions are used as the only input parameters for ab initio total-energy calculations within the framework of density functional theory revealing the molecular packing within the crystal structure. Moreover, we calculate the electronic band structure of the thin film phase and compare it to that of the bulk phase. We find the intermolecular bandwidths of the thin film phase to be significantly larger compared to the bulk structure, e.g., the valence bandwidth is twice as large. This remarkable effect is traced back to an enhanced intermolecular {pi}-{pi} overlap due to the upright standing molecules in the thin film phase.

  19. Polarized Resonant Critical Dimension Small Angle X-Ray Scattering for the Characterization of Polymer Patterns

    NASA Astrophysics Data System (ADS)

    Liman, Christopher; Sunday, Daniel; Ro, Hyun Wook; Richter, Lee; Hannon, Adam; Kline, R. Joseph

    Critical dimension small angle X-ray scattering (CDSAXS) is a recently developed technique that enables the characterization of the three-dimensional shape of periodic patterns, such as directed self-assembled (DSA) block copolymer (BCP) lamellae thin films. Information about the polymer patterns is extracted by fitting simulated scattering patterns to the experimental ones using an inverse iterative algorithm. Conducting CDSAXS at resonant energies near the carbon or nitrogen edge can enhance the strength of the scattering, but also causes the scattering to be influenced by any anisotropic orientation of the polymer chains. In this work, to assess the degree to which the scattering may be influenced by orientation, we simulate polarized resonant CDSAXS patterns for BCP lamellae with varying degrees of orientation, as well as orientation as a function of location within the lamellae, for different polarizations of the incident X-rays. Also, to assess the influence of a higher degree of orientation, we use capillary force lithography to pattern nanogratings of two semiconducting homopolymers which are known to orient strongly. We characterize these nanogratings, which have similar length scales to DSA BCP lamellae, with polarized resonant CDSAXS and spectroscopic ellipsometry. Finally, we fit simulated CDSAXS and ellipsometric data to the experimental data to obtain information about the shape and the orientation of the nanogratings.

  20. Shear stabilization of critical fluctuations in bulk polymer blends studied by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan I.; Kim, Hongdoo; Takahashi, Yoshiaki; Matsushita, Yushu; Takano, Atsushi; Bauer, Barry J.; Han, Charles C.

    1990-07-01

    The small angle neutron scattering (SANS) technique has been used to study the concentration fluctuations of binary polymer mixtures under shear. Two different polymer systems, deuterated polystyrene/poly(vinylmethylether) and deuterated polystyrene/polybutadiene, have been studied as a function of temperature and shear rate. Due to the small wavelength of the incident neutron radiation compared with light, the shear dependence of concentration fluctuations in the one-phase region and in the strong shear limit has been obtained from the q dependence of the scattering structure factor for the first time. From a detailed analysis of the scattering structure factor S(q) a crossover value of the wave number qs has been obtained as a function of temperature and shear rate. This crossover wave number represents the inverse of the lowest fluctuation mode which is not affected by shear. The temperature, viscosity, and shear rate dependence of this experimentally determined qs agree well with a simple rotatory diffusion model and also the dynamic mode-mode coupling analysis of Kawasaki and Ferrell. The apparent spinodal temperature as a function of shear rate is shown to be consistent with the prediction of Onuki.

  1. Small-angle optical deflection from collinear configuration for sensitive detection in microfluidic systems.

    PubMed

    Yang, Li; Li, Xiangtang; Li, Jing; Yuan, Hongyan; Zhao, Shulin; Xiao, Dan

    2012-07-01

    This paper describes a novel detection system based on small-angle optical deflection from the collinear configuration of a microfluidic chip. In this system, the incident light beam was focused on the microchannel through the edge of a lens, resulting in a small deflection angle that deviated 20° from the collinear configuration. The emitted fluorescence was collected through the center of the same lens and delivered to a photomultiplier tube in the vertical direction; the reflection light of the chip plate was kept away from the detector. In contrast to traditional confocal and nonconfocal laser-induced fluorescence detection systems, background levels resulting from scattered excitation light, reflection and refraction from the microchip was significantly eliminated. Significant enhancement of the signal-to-noise ratio was obtained by shaping a laser beam that combined an attenuator with a spectral filter to optimize laser power and the dimensions of the laser beam. FITC and FITC-labeled amino acid were used as model analytes to demonstrate the performance sensitivity, separation efficiency, and reproducibility of this detection system by using a hybrid polydimethylsiloxane/glass microfluidic device. The limit of detection of FITC was estimated to be 2 pM (0.55 zmol) (S/N = 3). Furthermore, the single cell analysis for the determination of intracellular glutathione in a single 3T3 mouse fibroblast cell was demonstrated. The results suggest that the proposed optical arrangements will be promising for development of sensitive, low-cost microfluidic systems. PMID:22806465

  2. Propagation of Gaussian beams through inhomogeneous cylinders with shock-like profiles of refractive index: Grazing incidence case

    NASA Astrophysics Data System (ADS)

    Adamovsky, Grigory

    1997-08-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in the atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in the wave propagation through shocks generated in supersonic flows. Historically these shocks have been treated as discontinuities in refractive index profiles. However, a profile of the refractive index across the shock possesses a finite thickness and gradient. Geometry of the inhomogeneity also had an impact. This dissertation reports on modeling and numerical analysis of wave propagation through inhomogeneous media with shock-like profiles of refractive indexes. In particular, effects of geometry of inhomogeneities and the refractive index profile are addressed. The subject of study is a dielectric penetrable circular cylinder with a cylindrically symmetric profile of the refractive index illuminated by a two dimensional Gaussian beam. The propagation vector of the beam is normal to the long axis of the cylinder. The beam is a sheet of light with Gaussian profile along a direction normal to both, the propagation vector and the long axis of the cylinder. The incident electromagnetic field is a TM wave with the electric field vector being parallel to the long axis of the cylinder. The refractive index of the cylinder has a shock-like profile. In the dissertation, the refractive index profile of such a medium is described and the wave propagation phenomena through a such medium is formulated. The wavefront that emerges after passing through the inhomogeneous cylinder described above is propagated to a remotely located screen using the Fresnel diffraction equation. The resultant pattern is evaluated. Thus the method is a hybrid one. The first part of the method is to propagate the incident Gaussian beam through an inhomogeneous medium of a given profile. The second part is

  3. Mapping the local nanostructure inside a specimen by tomographic small-angle x-ray scattering

    SciTech Connect

    Schroer, C.G.; Kuhlmann, M.; Roth, S.V.; Gehrke, R.; Stribeck, N.; Almendarez-Camarillo, A.; Lengeler, B.

    2006-04-17

    Small-angle x-ray scattering is combined with scanning microtomography to reconstruct the small-angle diffraction pattern in the direction of the tomographic rotation axis at each location on a virtual section through a specimen. These data yield information about the local nanoscale structure of the sample. With rotational symmetry present in the diffraction patterns, e.g., for isotropic or fiber-textured scatterers, the full reciprocal space information in the small-angle scattering regime can be reconstructed at each location inside the specimen. The method is illustrated investigating a polymer rod made by injection molding.

  4. Role of the precursor in a triple-pulse pumping scheme of a nickel-like silver soft-x-ray laser in the grazing-incidence-pumping geometry

    SciTech Connect

    Janulewicz, K. A.; Kim, C. M.

    2010-11-15

    Soft x-ray lasers pumped in the grazing incidence geometry show strongly reduced energetic needs but hardly changed conversion efficiency between the pump energy and the output short-wavelength radiation. Numerical analysis presented in the paper concerns with performance of a Ni-like Ag soft-x-ray laser pumped by a triple-pulse structure in the grazing incidence geometry as a function of the puming conditions. It was found that a weak precursor preceding the main preforming and heating pulses by a few nanoseconds is crucial for the energy deposition. Its presence enables in different arrangements a reasonable reduction in the pump energy and relaxation of the steep density gradients as well as a control over partition of the deposited energy. As a consequence, it was concluded that a well energetically balanced three- or multipulse composition seems to be a reasonable way to achieve performance improvement.

  5. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    SciTech Connect

    Biswas, A. Bhattacharyya, D.; Sahoo, N. K.; Maidul Haque, S.; Tripathi, S.; De, Rajnarayan; Rai, S.

    2015-10-28

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayer W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.

  6. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

    SciTech Connect

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

    2011-04-01

    A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

  7. Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering

    SciTech Connect

    Kirian, Richard A.; Schmidt, Kevin E.; Wang Xiaoyu; Doak, R. Bruce; Spence, John C. H.

    2011-07-15

    It has been suggested that the three-dimensional structure of one particle may be reconstructed using the scattering from many identical, randomly oriented copies ab initio, without modeling or a priori information. This may be possible if these particles are frozen in either space or time, so that the conventional two-dimensional small-angle x-ray scattering (SAXS) distribution contains fluctuations and is no longer isotropic. We consider the magnitude of the correlated fluctuation SAXS (CFSAXS) signal for typical x-ray free-electron laser (XFEL) beam conditions and compare this against the errors derived with the inclusion of Poisson photon counting statistics. The resulting signal-to-noise ratio (SNR) is found to rapidly approach a limit independent of the number of particles contributing to each diffraction pattern, so that the addition of more particles to a ''single-particle-per-shot'' experiment may be of little value, apart from reducing solvent background. When the scattering power is significantly less than one photon per particle per Shannon pixel, the SNR grows in proportion to incident flux. We provide simulations for protein molecules in support of these analytical results, and discuss the effects of solvent background scatter. We consider the SNR dependence on resolution and particle size, and discuss the application of the method to glasses and liquids, and the implications of more powerful XFELs, smaller focused beams, and higher pulse repetition rates for this approach. We find that an accurate CFSAXS measurement may be acquired to subnanometer resolution for protein molecules if a 9-keV beam containing 10{sup 13} photons is focused to a {approx}100-nm spot diameter, provided that the effects of solvent background can be reduced sufficiently.

  8. Study of focused-ion-beam-induced structural and compositional modifications in nanoscale bilayer systems by combined grazing incidence x ray reflectivity and fluorescence

    SciTech Connect

    Arac, Erhan; Burn, David M.; Eastwood, David S.; Atkinson, Del; Hase, Thomas P. A.

    2012-02-15

    A detailed analysis of the structural and compositional changes in NiFe/Au bilayers induced by a focused ion beam (FIB) is presented. NiFe/Au bilayers with different thickness were irradiated with a focused 30 keV Ga{sup +} ion beam, and the evaluation of the individual layers and interfaces were investigated systematically as a function of a broad range of irradiation fluence using grazing incidence x ray reflectivity (GIXRR) and angular dependent x ray fluorescence (ADXRF) techniques carried out at synchrotron radiation sources. Experimental data were collected from 1.3 mm x 4.5 mm structures, and irradiation of such a broad areas with a 100-nm-wide focused ion beam is a challenging task. Two irradiation regimes were identified: For Ga{sup +} fluences < 15.6 x 10{sup 14} ion/cm{sup 2} (low dose regime), the main influence of the focused ion beam is on the interface and, beyond this dose (high dose regime), sputtering effects and ion implantation becomes significant, eventually causing amorphization of the bilayer system. The broadening of the NiFe/Au interface occurs even at the lowest dose, and above a critical fluence ({Phi} = 1.56 x 10{sup 14} ion/cm{sup 2}) can be represented by an interfacial-intermixed layer (Ni{sub x}Fe{sub y}Au{sub (1-x-y)}; x = 0.5-0.6, y 0.1-0.15) formed between the NiFe and Au layers. The thickness of this layer increases with irradiation fluence in the low dose regime. A linear relationship is found between the squared intermixing length and irradiation fluence, indicating that FIB-induced mixing is diffusion controlled. The ballistic model fails to describe FIB-induced intermixing, indicating that thermodynamical factors, which might be originated from FIB specific features, should be taken into account. Despite the complexity of the chemical and structural formation, good agreement between the experiment and theory highlights the functionality of the combined GIXRR and ADXRF techniques for studying intermixing in high resolution.

  9. Study of focused-ion-beam-induced structural and compositional modifications in nanoscale bilayer systems by combined grazing incidence x ray reflectivity and fluorescence

    NASA Astrophysics Data System (ADS)

    Arac, Erhan; Burn, David M.; Eastwood, David S.; Hase, Thomas P. A.; Atkinson, Del

    2012-02-01

    A detailed analysis of the structural and compositional changes in NiFe/Au bilayers induced by a focused ion beam (FIB) is presented. NiFe/Au bilayers with different thickness were irradiated with a focused 30 keV Ga+ ion beam, and the evaluation of the individual layers and interfaces were investigated systematically as a function of a broad range of irradiation fluence using grazing incidence x ray reflectivity (GIXRR) and angular dependent x ray fluorescence (ADXRF) techniques carried out at synchrotron radiation sources. Experimental data were collected from 1.3 mm × 4.5 mm structures, and irradiation of such a broad areas with a 100-nm-wide focused ion beam is a challenging task. Two irradiation regimes were identified: For Ga+ fluences < 15.6 × 1014 ion/cm2 (low dose regime), the main influence of the focused ion beam is on the interface and, beyond this dose (high dose regime), sputtering effects and ion implantation becomes significant, eventually causing amorphization of the bilayer system. The broadening of the NiFe/Au interface occurs even at the lowest dose, and above a critical fluence (Φ = 1.56 × 1014 ion/cm2) can be represented by an interfacial-intermixed layer (NixFeyAu(1-x-y); x = 0.5-0.6, y = 0.1-0.15) formed between the NiFe and Au layers. The thickness of this layer increases with irradiation fluence in the low dose regime. A linear relationship is found between the squared intermixing length and irradiation fluence, indicating that FIB-induced mixing is diffusion controlled. The ballistic model fails to describe FIB-induced intermixing, indicating that thermodynamical factors, which might be originated from FIB specific features, should be taken into account. Despite the complexity of the chemical and structural formation, good agreement between the experiment and theory highlights the functionality of the combined GIXRR and ADXRF techniques for studying intermixing in high resolution.

  10. Influence of grain and monensin supplementation on ruminal fermentation, intake, digesta kinetics and incidence and severity of frothy bloat in steers grazing winter wheat pastures.

    PubMed

    Branine, M E; Galyean, M L

    1990-04-01

    Three 10-d collection periods (April 4 to 14, early April, EApr; April 23 to May 3, late April, LApr; May 10 to 20, 1984, mid-May, MMay) were conducted to evaluate effects of no supplement (C), .5 kg-head-1.d-1 (as-fed basis) supplemental grain (steam-flaked milo, G) or G plus 170 mg monensin.head-1.d-1 (M) on forage intake and digestion by 12 ruminally cannulated beef steers (four/treatment; avg initially BW = 393 kg) grazing irrigated winter wheat pasture. Ruminal pH was greater (P less than .01) for M than for C or G during EApr but was not altered by treatments in LApr or MMay. Compared with C, ruminal NH3 was decreased (P less than .10) by G and M (5 h after supplementation) in EApr, decreased (P less than .05) by G (2h) and increased (P less than .05) by M (8 h) in LApr and decreased (P less than .10) by G (-1h) in MMay. Treatments had little influence on total VFA concentrations or on molar proportions of acetate and propionate. Butyrate molar proportion was decreased (P less than .10) by M during EApr and LApr, but not during MMay. Monensin increased (P less than .05) fluid passage rate compared with C and G in EApr but not in other periods, Particulate passage measurements did not differ (P greater than .10) among treatments within periods. Forage DM intake was not influenced (P greater than .10) by supplementation during any period. Extent of in situ forage DM disappearance was greater (P less than .10) for M than for C or G during EApr (12 and 30 h of incubation) but was not different (P greater than .10) in LApr or MMay. Incidence of frothy bloat was decreased (P less than .05) by M during EApr; this reduction may have been related to effects of M on ruminal pH, forage digestion and fluid passage. PMID:2332388

  11. Small-angle approximation to the transfer of narrow laser beams in anisotropic scattering media

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1981-01-01

    The broadening and the signal power detected of a laser beam traversing an anisotropic scattering medium were examined using the small-angle approximation to the radiative transfer equation in which photons suffering large-angle deflections are neglected. To obtain tractable answers, simple Gaussian and non-Gaussian functions for the scattering phase functions are assumed. Two other approximate approaches employed in the field to further simplify the small-angle approximation solutions are described, and the results obtained by one of them are compared with those obtained using small-angle approximation. An exact method for obtaining the contribution of each higher order scattering to the radiance field is examined but no results are presented.

  12. Small angle x-ray scattering with a beryllium compound refractive lens as focusing optic

    SciTech Connect

    Timmann, Andreas; Doehrmann, Ralph; Schubert, Tom; Schulte-Schrepping, Horst; Hahn, Ulrich; Kuhlmann, Marion; Gehrke, Rainer; Roth, Stephan Volkher; Schropp, Andreas; Schroer, Christian; Lengeler, Bruno

    2009-04-15

    At BW4 at HASYLAB a beryllium compound refractive lens (Be-CRL) is used for the focusing in small-angle x-ray scattering experiments. Using it provides the advantages of higher long-term stability and a much easier alignment compared to a setup with focusing mirrors. In our investigations presented here, we show the advantages of using a Be-CRL in small-angle and also ultra small-angle x-ray scattering. We investigated the beam characteristics at the sample position with respect to spot size and photon flux. The spot size is comparable to that of a setup with focusing mirrors but with a gain in flux and better long-term stability. It is also shown that plane mirrors are still necessary to suppress higher order energies passing the monochromator.

  13. Experimental methods in the study of neutron scattering at small angles

    SciTech Connect

    Dragolici, Cristian A.

    2014-11-24

    Small angle scattering (SAS) is the collective name given to the techniques of small angle neutron (SANS) and X-ray (SAXS) scattering. They offer the possibility to analyze particles without disturbing their natural environment. In each of these techniques radiation is elastically scattered by a sample and the resulting scattering pattern is analyzed to provide information about the size, shape and orientation of some component of the sample. Accordingly, a large number of methods and experimental patterns have been developed to ease the investigation of condensed matter by use of these techniques. Some of them are the discussed in this paper.

  14. Experimental methods in the study of neutron scattering at small angles

    NASA Astrophysics Data System (ADS)

    Dragolici, Cristian A.

    2014-11-01

    Small angle scattering (SAS) is the collective name given to the techniques of small angle neutron (SANS) and X-ray (SAXS) scattering. They offer the possibility to analyze particles without disturbing their natural environment. In each of these techniques radiation is elastically scattered by a sample and the resulting scattering pattern is analyzed to provide information about the size, shape and orientation of some component of the sample. Accordingly, a large number of methods and experimental patterns have been developed to ease the investigation of condensed matter by use of these techniques. Some of them are the discussed in this paper.

  15. Studying fractal geometry on submicron length scales by small-angle scattering

    SciTech Connect

    Wong, P.; Lin, J.

    1988-08-01

    Recent studies have shown that internal surfaces of porous geological materials, such as rocks and lignite coals, can be described by fractals down to atomic length scales. In this paper, the basic properties of self-similar and self-affine fractals are reviewed and how fractal dimensions can be measured by small-angle scattering experiments are discussed.

  16. Irena : tool suite for modeling and analysis of small-angle scattering.

    SciTech Connect

    Ilavsky, J.; Jemian, P.

    2009-04-01

    Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron) using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.

  17. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    NASA Astrophysics Data System (ADS)

    Kopitsa, G. P.; Runov, V. V.; Grigoriev, S. V.; Bliznuk, V. V.; Gavriljuk, V. G.; Glavatska, N. I.

    2003-07-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20Si 6, FeMn 20Cr 9N 0.2 and FeMn 17Cr 9Ni 4Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 Å. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20Cr 9N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20Si 6 and FeMn 17Cr 9Ni 4Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed.

  18. Grazing-incidence x-ray fluorescence analysis for non-destructive determination of In and Ga depth profiles in Cu(In,Ga)Se{sub 2} absorber films

    SciTech Connect

    Streeck, C.; Brunken, S.; Kaufmann, C. A.; Weber, A.; Schock, H.-W.; Mainz, R.; Gerlach, M.; Hönicke, P.; Lubeck, J.; Pollakowski, B.; Unterumsberger, R.; Beckhoff, B.; Herzog, C.; Kanngießer, B.

    2013-09-09

    Development of highly efficient thin film solar cells involves band gap engineering by tuning their elemental composition with depth. Here we show that grazing incidence X-ray fluorescence (GIXRF) analysis using monochromatic synchrotron radiation and well-characterized instrumentation is suitable for a non-destructive and reference-free analysis of compositional depth profiles in thin films. Variation of the incidence angle provides quantitative access to the in-depth distribution of the elements, which are retrieved from measured fluorescence intensities by modeling parameterized gradients and fitting calculated to measured fluorescence intensities. Our results show that double Ga gradients in Cu(In{sub 1−x},Ga{sub x})Se{sub 2} can be resolved by GIXRF.

  19. Amazing Grazing.

    ERIC Educational Resources Information Center

    Peterson, Cris

    Countless acres of grasslands stretch across the American West. Centuries ago, bison roamed the range freely and lived off the grass. By the 19th century, herds of cattle grazed the same land. Over time, much of the original grassland was either plowed and planted or trampled to dust, causing the topsoil to dry up and blow away. Today many…

  20. Small-angle neutron scattering studies from solutions of bovine nasal cartilage proteoglycan

    SciTech Connect

    Patel, A.; Stivala, S.S.; Damle, S.P.; Gregory, J.D.; Bunick, G.J.; Uberbacher, E.C.

    1985-08-01

    Small-angle neutron scattering, SANS, of the proteoglycan subunit of bovine nasal cartilage in 0.15N LiCl at 25/sup 0/C yielded the radius of gyration, R/sub g/, radius of gyration of the cross-section, R/sub q/, persistence length, a, and the molecular weight, M. The following values were obtained: M = 3.9 x 10/sup 6/, R/sub g/ = 745 A, R/sub q/ = 34.6 A and a = 35.2 A. These values compare favorably with those that were obtained from small angle x-ray scattering, SAXS, of a similar extract. The scattering curve of the proteoglycan subunit in D/sub 2/O showed a characteristic broad peak in the specified angular range similar to that observed from SAXS, thus confirming the polyelectrolyte nature of the proteoglycan. 15 refs., 3 figs., 1 tab. (DT)

  1. Effective phase function of light scattered at small angles by polydisperse particulate media

    NASA Astrophysics Data System (ADS)

    Turcu, I.

    2008-06-01

    Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.

  2. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer

    Tainer, John [Scripps Research Institute; Hura, Greg [LBNL; Rambo, Robert P. [LBNL

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an ôexperimentö and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  3. Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept.

    PubMed

    Allec, Nicholas; Choi, Mina; Yesupriya, Nikhil; Szychowski, Brian; White, Michael R; Kann, Maricel G; Garcin, Elsa D; Daniel, Marie-Christine; Badano, Aldo

    2015-01-01

    Characterizing biomolecular interactions is crucial to the understanding of biological processes. Existing characterization methods have low spatial resolution, poor specificity, and some lack the capability for deep tissue imaging. We describe a novel technique that relies on small-angle X-ray scattering signatures from high-contrast molecular probes that correlate with the presence of biomolecular interactions. We describe a proof-of-concept study that uses a model system consisting of mixtures of monomer solutions of gold nanoparticles (GNPs) as the non-interacting species and solutions of GNP dimers linked with an organic molecule (dimethyl suberimidate) as the interacting species. We report estimates of the interaction fraction obtained with the proposed small-angle X-ray scattering characterization method exhibiting strong correlation with the known relative concentration of interacting and non-interacting species. PMID:26160052

  4. Ay Measurement in p→p-Elastic Scattering at Small Angles

    NASA Astrophysics Data System (ADS)

    Macharashvili, G.

    2016-02-01

    The proton analysing power in p→p elastic scattering has been measured at small angles at COSY-ANKE at 796MeV and five other beam energies between 1.6 and 2.4GeV using a polarized proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. The sources of the systematic uncertainties and the time stability issue were considered. The ANKE data at the higher energies lie well above the predictions of the most recent partial wave solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a better description of these new measurements.

  5. Solution properties of a CO{sub 2}-soluble fluoropolymer via small angle neutron scattering

    SciTech Connect

    McClain, J.B.; Combes, J.R.; Romack, T.J.; Canelas, D.A.; Betts, D.E.; Samulski, E.T.; DeSimone, J.M.; Londono, D.; Wignall, G.D.

    1996-01-31

    In this communication, we report the first characterization of solutions of a high molecular weight polymer in supercritical CO{sub 2} by small-angle neutron scattering (SANS). It is shown that small-angle neutron scattering gives key molecular parameters of an amorphous fluoropolymer in supercritical CO{sub 2}, i.e., the molecular weight, radius of gyration, and second virial coefficient, and thereby gives insights into a polymer chain`s behavior in this unique solvent. The positive sign of the second virial coefficients indicate that this medium is a good solvent - there is no evidence of a collapsed chain conformation. In fact, we conclude from the SANS data that, in CO{sub 2}, the poly(FOA) chain dimensions are expanded relative to those characteristic of its melt. 29 refs., 2 figs., 1 tab.

  6. Elastic properties of polymer-doped dilute lamellar phases: A small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Ficheux, M.-F.; Bellocq, A.-M.; Nallet, F.

    2001-03-01

    We investigate experimentally, using small-angle neutron scattering the elastic properties of polymer-doped dilute lamellar phases. In our system the polymer is water-soluble but nevertheless partially adsorbs onto the negatively charged surfactant bilayers. The effective polymer-mediated interaction between bilayers is less repulsive than the weakly screened electrostatic interaction that prevails at zero polymer content. It even becomes attractive in some regions of the phase diagram. Small-angle neutron scattering allows us to measure directly the Caillé exponent η characterizing the bilayer fluctuations in lamellar (smectic A) phases, and thus indirectly estimate the compression modulus bar{B} as a measure of the strength of the bilayer-bilayer interactions. The compression modulus appears to be vanishing at a point located on the lamellar-lamellar phase separation boundary, a candidate critical point.

  7. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    NASA Astrophysics Data System (ADS)

    Do, Changwoo; Heller, William T.; Stanley, Christopher; Gallmeier, Franz X.; Doucet, Mathieu; Smith, Gregory S.

    2014-02-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron's energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-dependent, necessitating careful processing of the raw data into the SANS cross-section.

  8. Small-angle scattering of laser radiation by stable micron particles in twice-distilled water

    SciTech Connect

    Bunkin, N F; Suyazov, N V; Tsipenyuk, D Yu

    2005-02-28

    Small-angle scattering of laser radiation in purified (twice-distilled) water is studied experimentally. The scattering indicatrix shows that such water contains scattering micron impurities. The parameters of the size distribution of these impurities are estimated from the experimental data. The results obtained in the paper confirm the earlier proposed hypothesis about the presence of stable microbubbles of gas, bubstons, dissolved in pure liquids. (scattering of laser radiation)

  9. Study of High-Frequency Impedance of Small-Angle Tapers and Collimators

    SciTech Connect

    Stupakov, Gennady; Podobedov, B.; /Brookhaven

    2010-06-04

    Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya's formula (for axisymmetric geometry), much less is known about the behavior of the impedance in the high frequency limit. In this paper we develop an analytical approach to the highfrequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  10. New analysis of the small-angle-magnetization-rotation method for magnetostriction measurements on amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Severino, A. M.; Missell, F. P.

    1987-09-01

    The small-angle-magnetization-rotation (SAMR) method for measuring the saturation magnetostrictin λ s has been reanalyzed, taking into account the underlying domain structure of the amorphous ribbon. Although the condition for determining λ s reamins unchenged, the modifications introduced allow one to understand many additional features of the experimental data. With the appropriate modifications, the SAMR method can be used to study stress relaxation in amorphous alloys. Examples are given Fe-based and Co-based alloys.

  11. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering.

    PubMed

    Nagy, Gergely; Posselt, Dorthe; Kovács, László; Holm, Jens K; Szabó, Milán; Ughy, Bettina; Rosta, László; Peters, Judith; Timmins, Peter; Garab, Gyozo

    2011-06-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique reveals light-induced reversible reorganizations in the seconds-to-minutes time scale, which appear to be associated with functional changes in vivo. PMID:21473741

  12. Small-angle neutron scattering of nanocrystalline terbium with random paramagnetic susceptibility.

    PubMed

    Balaji, G; Ghosh, S; Döbrich, F; Eckerlebe, H; Weissmüller, J

    2008-06-01

    We report magnetic small-angle neutron scattering (SANS) data for the nanocrystalline rare earth metal Terbium in its paramagnetic state. Whereas critical scattering dominates at large momentum transfer, q, the (magnetic-) field response of the scattering at small q arises from the spatial nonuniformity of the paramagnetic susceptibility tensor. The finding of an interrelation between SANS and the susceptibility suggests a way for characterizing the nonuniform magnetic interactions in hard magnets by neutron scattering. PMID:18643454

  13. Effect of the concentration of inhomogeneities on the multiple small-angle neutron scattering

    SciTech Connect

    Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V. Tyulyusov, A. N.

    2013-03-15

    The interference effects manifested during multiple small-angle neutron scattering (MSANS) on a chaotically arranged close-packed ensemble of scatterers have been studied. MSANS measurements have been performed for mixtures of Al and Ti-Zr alloy powders. It is shown that the results can be satisfactorily described based on a theory that takes into account spatial correlations in the arrangement of powder grains.

  14. Pore size distribution of shaley rock by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Hall, P. L.; Mildner, D. F. R.; Borst, R. L.

    1983-08-01

    Information concerning pore microstructure of shaly rocks is of considerable relevance to petroleum exploration and production. Pore sizes and distributions within shaly samples have been determined by small angle neutron scattering. The data are indicative of a considerable spread of pore dimension, showing inhomogeneities with a range from 20 Å and greater. The cumulative pore volumes are compared with those derived from mercury intrusion porosimetry and nitrogen adsorption and desorption isotherms.

  15. Pore size distribution of shaly rock by small angle neutron scattering

    SciTech Connect

    Hall, P.L.; Mildner, D.F.R.; Borst, R.L.

    1983-08-01

    Information concerning pore microstructure of shaly rocks is of considerable relevance to petroleum exploration and production. Pore sizes and distributions within shaly samples have been determined by small angle neutron scattering. The data are indicative of a considerable spread of pore dimension, showing inhomogeneities with a range from 20 A and greater. The cumulative pore volumes are compared with those derived from mercury intrusion porosimetry and nitrogen adsorption and desorption isotherms.

  16. X-ray small angle scattering of the human transferrin protein aggregates. A fractal study.

    PubMed Central

    Castellano, A C; Barteri, M; Bianconi, A; Borghi, E; Cassiano, L; Castagnola, M; Della Longa, S

    1993-01-01

    X-ray small angle scattering experiments, using a pin hole SAXS camera with Synchrotron radiation source, have been performed to study the conformational changes of lyophilized samples of Apo-, Mono-, and Diferric- human transferrin. We report the experimental evidence that the analysis of the scattered intensity through the fractal theory may give information on the particle size and its variation upon iron binding. PMID:8457675

  17. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    SciTech Connect

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs.

  18. Using a Hexagonal Mirror for Varying Light Intensity in the Measurement of Small-Angle Variation.

    PubMed

    Hsieh, Meng-Chang; Lin, Jiun-You; Chang, Chia-Ou

    2016-01-01

    Precision positioning and control are critical to industrial-use processing machines. In order to have components fabricated with excellent precision, the measurement of small-angle variations must be as accurate as possible. To achieve this goal, this study provides a new and simple optical mechanism by varying light intensity. A He-Ne laser beam was passed through an attenuator and into a beam splitter. The reflected light was used as an intensity reference for calibrating the measurement. The transmitted light as a test light entered the optical mechanism hexagonal mirror, the optical mechanism of which was created by us, and then it entered the power detector after four consecutive reflections inside the mirror. When the hexagonal mirror was rotated by a small angle, the laser beam was parallel shifted. Once the laser beam was shifted, the hitting area on the detector was changed; it might be partially outside the sensing zone and would cause the variation of detection intensity. This variation of light intensity can be employed to measure small-angle variations. The experimental results demonstrate the feasibility of this method. The resolution and sensitivity are 3 × 10(-40) and 4 mW/° in the angular range of 0.6°, respectively, and 9.3 × 10(-50) and 13 mW/° in the angular range of 0.25°. PMID:27537893

  19. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  20. Small-angle scatter tomography with a photon-counting detector array.

    PubMed

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-21

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging. PMID:27082147

  1. JGIXA - A software package for the calculation and fitting of grazing incidence X-ray fluorescence and X-ray reflectivity data for the characterization of nanometer-layers and ultra-shallow-implants

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.

    2016-04-01

    Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on

  2. Energy loss of keV fluorine ions scattered off a missing-row reconstructed Au(110) surface under grazing incidence

    SciTech Connect

    Chen, L.; Shen, J.; Esaulov, V. A.; Valdes, J. E.; Vargas, P.

    2011-03-15

    A joint experimental and theoretical study of energy loss is presented for 1-to-4-keV fluorine negative ions in grazing scattering on a missing-row reconstructed Au(110) surface. Measurements of energy losses for various azimuthal orientations of the crystal have been performed by means of a time-of-flight method with a pulsed beam. The dependence of the fraction of surviving negative ions on azimuthal angles, was determined. Our energy-loss data are discussed in light of trajectory and stopping-power calculations, where the explicit inclusion of the nonuniform electron density at the surface provides good agreement with the experimental data. The simulation allows us to delineate various trajectory classes that correspond to different contributions in the energy-loss spectra for various azimuthal orientations of the surface.

  3. Grazing Incidence Cross-Sectioning of Thin-Film Solar Cells via Cryogenic Focused Ion Beam: A Case Study on CIGSe.

    PubMed

    Sardashti, Kasra; Haight, Richard; Anderson, Ryan; Contreras, Miguel; Fruhberger, Bernd; Kummel, Andrew C

    2016-06-22

    Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the back interface of CIGS. PMID:27248803

  4. Effects of oxygen partial pressure and annealing temperature on the residual stress of hafnium oxide thin-films on silicon using synchrotron-based grazing incidence X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Biswas, Debaleen; Sinha, Anil Kumar; Chakraborty, Supratic

    2016-10-01

    Synchrotron radiation-based grazing incidence X-ray diffraction (GI-XRD) technique is employed here to estimate the residual stress of < 10 nm thin hafnium oxide film deposited on Si (100) substrate at different argon/oxygen ratios using reactive rf sputtering. A decrease in residual stress, tensile in nature, is observed at higher annealing temperature for the samples deposited with increasing argon ratio in the Ar/O2 plasma. The residual stress of the films deposited at higher pAr (Ar:O2 = 4:1) is also found to be decreased with increasing annealing temperature. But the stress is more or less constant with annealing temperature for the films deposited at lower Ar/O2 (1:4) ratio. All the above phenomena can be explained on the basis of swelling of the interfacial layer and enhanced structural relaxation in the presence of excess Hf in hafnium oxide film during deposition.

  5. Crucial roles of charged saccharide moieties in survival of gram negative bacteria against protamine revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael G.; Schneck, Emanuel; Quinn, Bonnie E.; Konovalov, Oleg V.; Brandenburg, Klaus; Gutsmann, Thomas; Gill, Tom; Hanna, Charles B.; Pink, David A.; Tanaka, Motomu

    2010-04-01

    Grazing incidence x-ray scattering techniques and Monte Carlo (MC) simulations are combined to reveal the influence of molecular structure (genetic mutation) and divalent cations on the survival of gram negative bacteria against cationic peptides such as protamine. The former yields detailed structures of bacterial lipopolysaccharide (LPS) membranes with minimized radiation damages, while the minimal computer model based on the linearized Poisson-Boltzmann theory allows for the simulation of conformational changes of macromolecules (LPSs and peptides) that occur in the time scale of ms. The complementary combination of the structural characterizations and MC simulation demonstrates that the condensations of divalent ions ( Ca2+ or Mg2+ ) in the negatively charged core saccharides are crucial for bacterial survival.

  6. Observation of Enhancement of the Morin Transition Temperature in Iridium-Doped α-Fe2O3 Thin Film by 57Fe-Grazing Incidence Synchrotron Radiation Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mitsui, Takaya; Mibu, Ko; Seto, Makoto; Kurokuzu, Masayuki; Pati, Satya Prakash; Nozaki, Tomohiro; Sahashi, Masashi

    2016-06-01

    The Morin transition of a (0001)-oriented iridium-doped α-Fe2O3 thin film deposited on an Al2O3(0001) substrate was studied by 57Fe-grazing incidence synchrotron radiation Mössbauer spectroscopy (GISRMS). Temperature-dependent spectra proved that the iridium doping markedly enhanced the Morin temperature of the α-Fe2O3 thin film; the iron spin directions were perpendicular to the film plane at temperatures below 100 °C, while they were in-plane at temperatures above 150 °C. The antiferromagnetic ordering was maintained far above 400 °C. The results demonstrated the availabilities of 57Fe-GISRMS, which enables a very quick evaluation of the magnetism in antiferromagnetic ultrathin films at high temperatures.

  7. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    NASA Astrophysics Data System (ADS)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  8. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    PubMed

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  9. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    SciTech Connect

    Worcester, D.L.; Katz, J.J.

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  10. Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering.

    PubMed

    Milner, Emily M; Skipper, Neal T; Howard, Christopher A; Shaffer, Milo S P; Buckley, David J; Rahnejat, K Adam; Cullen, Patrick L; Heenan, Richard K; Lindner, Peter; Schweins, Ralf

    2012-05-23

    Solutions of negatively charged graphene (graphenide) platelets were produced by intercalation of nanographite with liquid potassium-ammonia followed by dissolution in tetrahydrofuran. The structure and morphology of these solutions were then investigated by small-angle neutron scattering. We found that >95 vol % of the solute is present as single-layer graphene sheets. These charged sheets are flat over a length scale of >150 Å in solution and are strongly solvated by a shell of solvent molecules. Atomic force microscopy on drop-coated thin films corroborated the presence of monolayer graphene sheets. Our dissolution method thus offers a significant increase in the monodispersity achievable in graphene solutions. PMID:22574888

  11. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water

    PubMed Central

    Zhao, Yue; Yoshida, Miru; Oshima, Tatsuya; Koizumi, Satoshi; Rikukawa, Masahiro; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter

    2016-01-01

    In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus–Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. “Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells” [1]. PMID:27054164

  12. Conceptual Design of the Small Angle Scattering Beamline at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Kirby, N.; Boldeman, J. W.; Gentle, I.; Cookson, D.

    2007-01-01

    A high performance small angle and wide angle x-ray scattering (SAXS/WAXS) beamline is one of the initial suite of beamlines to be built at the 3 GeV Australian Synchrotron. This beamline will be ready for use in 2008, for structural analysis across a wide range of research applications over length scales of ˜ 1 to greater than 5000 Å. The instrument is intended for advanced analysis capabilities only possible using synchrotron radiation, such as time, space and energy resolved analysis, and for weak scattering systems. Photon energies will be readily variable between 5.2 and 20 keV.

  13. Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering

    NASA Astrophysics Data System (ADS)

    Badurek, G.; Jericha, E.; Grössinger, R.; Sato-Turtelli, R.

    2010-02-01

    When we investigated the magnetic structure of a variety of soft-magnetic amorphous ribbons by means of ultra-small-angle neutron scattering (USANSPOL) we were confronted with one particularly interesting Fe65.7Co18Si0.8B15.5 ribbon, provided by VAC Hanau. Due to a special thermal treatment during production a field- and stress-induced transverse domain texture was expected. Although the USANSPOL technique encountered its resolution limits during the investigation of this specific sample ribbon, such a texture could indeed be verified.

  14. Effective Long-Range Attraction between Protein Molecules in Solutions Studied by Small Angle Neutron Scattering

    SciTech Connect

    Liu Yun; Chen, W.-R.; Chen, S.-H.; Fratini, Emiliano; Baglioni, Piero

    2005-09-09

    Small angle neutron scattering intensity distributions taken from cytochrome C and lysozyme protein solutions show a rising intensity at a very small wave vector Q, which can be interpreted in terms of the presence of a weak long-range attraction between protein molecules. This interaction has a range several times that of the diameter of the protein molecule, much greater than the range of the screened electrostatic repulsion. We show evidence that this long-range attraction is closely related to the type of anion present and ion concentration in the solution.

  15. Study of chemically unfolded β-casein by means of small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Aschi, Adel; Gharbi, Abdelhafidh; Daoud, Mohamed; Douillard, Roger; Calmettes, Patrick

    2007-01-01

    β-casein is a flexible amphiphilic milk protein which forms an unfolded conformation in presence of very high denaturant concentrations. The structure of β-casein formed at the bulk was studied by small-angle neutron scattering (SANS). The value of the second virial coefficient of the protein solutions indicates that the interactions between the polypeptide chain and solvent are repulsive. The protein conformation is similar to an excluded volume chain. The corresponding values of the contour length, L, the statistical length, b and the apparent radius of the chain cross-section, Rc are given.

  16. An overview of resid characterization by mass spectrometry and small angle scattering techniques.

    SciTech Connect

    Hunt, J. E.; Winans, R. E.

    1999-07-14

    The purpose of this presentation is to discuss what is known about the molecular structures found in petroleum resid from mass spectrometry and small angle neutron and X-ray scattering methods. The question about molecular size distributions and the occurrence of aggregation in the asphaltene fraction will be examined. Our understanding of this problem has evolved with the application of new analytical methods. Also, correlations with results from other approaches will be discussed. In addition, the issue of the nature of the heteroatom-containing molecules will be examined and the challenges that remain in this area.

  17. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  18. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering

    PubMed Central

    Franke, Daniel; Svergun, Dmitri I.

    2009-01-01

    DAMMIF, a revised implementation of the ab-initio shape-determination program DAMMIN for small-angle scattering data, is presented. The program was fully rewritten, and its algorithm was optimized for speed of execution and modified to avoid limitations due to the finite search volume. Symmetry and anisometry constraints can be imposed on the particle shape, similar to DAMMIN. In equivalent conditions, DAMMIF is 25–40 times faster than DAMMIN on a single CPU. The possibility to utilize multiple CPUs is added to DAMMIF. The application is available in binary form for major platforms.

  19. Characterising density fluctuations in liquid yttria aluminates with small angle x-ray scattering

    SciTech Connect

    Greaves, G. Neville; Wilding, Martin C.; Vu Van, Quang; Majerus, Odile; Hennet, Louis

    2009-01-29

    Small angle x-ray scattering (SAXS) has been measured in the wavevector range 0.01

  20. Small-angle X-ray scattering probe of intermolecular interaction in red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui

    2015-03-01

    With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)

  1. Measurement of protein size in concentrated solutions by small angle X-ray scattering.

    PubMed

    Liu, Jun; Li, Zhihong; Wei, Yanru; Wang, Wenjia; Wang, Bing; Liang, Hongli; Gao, Yuxi

    2016-08-01

    By simulations on the distance distribution function (DDF) derived from small angle X-ray scattering (SAXS) theoretical data of a dense monodisperse system, we found a quantitative mathematical correlation between the apparent size of a spherically symmetric (or nearly spherically symmetric) homogenous particle and the concentration of the solution. SAXS experiments on protein solutions of human hemoglobin and horse myoglobin validated the correlation. This gives a new method to determine, from the SAXS DDF, the size of spherically symmetric (or nearly spherically symmetric) particles of a dense monodisperse system, specifically for protein solutions with interference effects. PMID:27241796

  2. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water.

    PubMed

    Zhao, Yue; Yoshida, Miru; Oshima, Tatsuya; Koizumi, Satoshi; Rikukawa, Masahiro; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter

    2016-06-01

    In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus-Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. "Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells" [1]. PMID:27054164

  3. Sample environments and techniques combined with small angle X-ray scattering.

    PubMed

    Bras, W; Ryan, A J

    1998-03-31

    The number of synchrotron radiation-based Small Angle X-ray Scattering beamlines has increased considerably over the last decade. With the high X-ray flux and collimation of these beamlines it not only has become possible to perform time-resolved experiments on time scales down to the millisecond/frame range, but also it allows experimenters to utilise new sample environments and use simultaneous several experimental techniques on one sample. An overview of recent developments in this field is given. PMID:9611762

  4. Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.

    2010-12-01

    Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.

  5. Small-angle X-ray scattering analysis of stearic acid modified lipase.

    PubMed

    Maruyama, T; Nakajima, M; Ichikawa, S; Sano, Y; Nabetani, H; Furusaki, S; Seki, M

    2001-04-01

    Stearic acid modified lipase (from Rhizopus japonicus) exhibited remarkable interesterification activity in n-hexane, but crude native lipase did not. The structure of the fatty acid modified lipase had not been analyzed until now. We analyzed the modified lipase by small-angle X-ray scattering (SAXS) measurements in order to clarify the structure. SAXS measurements showed that the modified lipase consisted of a lipid lamellar structure and implied that the lipase was incorporated into the lamellar structure of stearic acid. The long spacings in the lamellar structures of the modified lipase and stearic acid were measured. PMID:11388447

  6. Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation

    SciTech Connect

    Blanchard, A.; Heinrich, M.; Pyckhout-Hintzen, W.; Richter, D.; Graham, R.S.; Likhtman, A.E.; McLeish, T.C.B.; Read, D.J.; Straube, E.; Kohlbrecher, J.

    2005-10-14

    The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales below the tube diameter is accounted for.

  7. A small angle neutron scattering study of mica based glass-ceramics with applications in dentistry

    NASA Astrophysics Data System (ADS)

    Kilcoyne, S. H.; Bentley, P. M.; Al-Jawad, M.; Bubb, N. L.; Al-Shammary, H. A. O.; Wood, D. J.

    2004-07-01

    We are currently developing machinable and load-bearing mica-based glass-ceramics for use in restorative dental surgery. In this paper we present the results of an ambient temperature small angle neutron scattering (SANS) study of several such ceramics with chemical compositions chosen to optimise machinability and strength. The SANS spectra are all dominated by scattering from the crystalline-amorphous phase interface and exhibit Q-4 dependence (Porod scattering) indicating that, on a 100Å scale, the surface of the crystals is smooth.

  8. Ion track annealing in quartz investigated by small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Schauries, D.; Afra, B.; Rodriguez, M. D.; Trautmann, C.; Hawley, A.; Kluth, P.

    2015-12-01

    We report on the reduction of cross-section and length of amorphous ion tracks embedded within crystalline quartz during thermal annealing. The ion tracks were created via Au ion irradiation with an energy of 2.2 GeV. The use of synchrotron-based small angle X-ray scattering (SAXS) allowed characterization of the latent tracks, without the need for chemical etching. Temperatures between 900 and 1000 °C were required to see a notable change in track size. The shrinkage in cross-section and length was found to be comparable for tracks aligned perpendicular and parallel to the c-axis.

  9. Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets

    SciTech Connect

    Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.; Warr, G. G.; Hamilton, William A

    2014-01-01

    The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements in the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.

  10. Pressure Denaturation of Staphylococcal Nuclease Studied by Neutron Small-Angle Scattering and Molecular Simulation

    PubMed Central

    Paliwal, Amit; Asthagiri, Dilipkumar; Bossev, Dobrin P.; Paulaitis, Michael E.

    2004-01-01

    We studied the pressure-induced folding/unfolding transition of staphylococcal nuclease (SN) over a pressure range of ∼1–3 kilobars at 25°C by small-angle neutron scattering and molecular dynamics simulations. We find that applying pressure leads to a twofold increase in the radius of gyration derived from the small-angle neutron scattering spectra, and P(r), the pair distance distribution function, broadens and shows a transition from a unimodal to a bimodal distribution as the protein unfolds. The results indicate that the globular structure of SN is retained across the folding/unfolding transition although this structure is less compact and elongated relative to the native structure. Pressure-induced unfolding is initiated in the molecular dynamics simulations by inserting water molecules into the protein interior and applying pressure. The P(r) calculated from these simulations likewise broadens and shows a similar unimodal-to-bimodal transition with increasing pressure. The simulations also reveal that the bimodal P(r) for the pressure-unfolded state arises as the protein expands and forms two subdomains that effectively diffuse apart during initial stages of unfolding. Hydrophobic contact maps derived from the simulations show that water insertions into the protein interior and the application of pressure together destabilize hydrophobic contacts between these two subdomains. The findings support a mechanism for the pressure-induced unfolding of SN in which water penetration into the hydrophobic core plays a central role. PMID:15347583

  11. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions

    PubMed Central

    Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F.

    2015-01-01

    SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102). PMID:26500467

  12. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  13. Laser desorption mass spectrometry and small angle neutron scattering of heavy fossil materials

    SciTech Connect

    Hunt, J.E.; Winans, R.E.; Thiyagarajan, P.

    1997-09-01

    The determination of the structural building blocks and the molecular weight range of heavy hydrocarbon materials is of crucial importance in research on their reactivity and for their processing. The chemically and physically heterogenous nature of heavy hydrocarbon materials, such as coals, heavy petroleum fractions, and residues, dictates that their structure and reactivity patterns be complicated. The problem is further complicated by the fact that the molecular structure and molecular weight distribution of these materials is not dependent on a single molecule, but on a complex mixture of molecules which vary among coals and heavy petroleum samples. Laser Desorption mass spectrometry (LDMS) is emerging as a technique for molecular weight determination having found widespread use in biological polymer research, but is still a relatively new technique in the fossil fuel area. Small angle neutron scattering (SANS) provides information on the size and shape of heavy fossil materials. SANS offers the advantages of high penetration power even in thick cells at high temperatures and high contrast for hydrocarbon systems dispersed in deuterated solvents. LDMS coupled with time of flight has the advantages of high sensitivity and transmission and high mass range. We have used LDMS to examine various heavy fossil-derived materials including: long chain hydrocarbons, asphaltenes from petroleum vacuum resids, and coals. This paper describes the application of laser desorption and small angle neutron scattering techniques to the analysis of components in coals, petroleum resids and unsaturated polymers.

  14. Small angle scattering methods to study porous materials under high uniaxial strain.

    PubMed

    Le Floch, Sylvie; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-01

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells. PMID:25725857

  15. Small angle scattering methods to study porous materials under high uniaxial strain

    NASA Astrophysics Data System (ADS)

    Le Floch, Sylvie; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-01

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  16. Small angle scattering methods to study porous materials under high uniaxial strain

    SciTech Connect

    Le Floch, Sylvie Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  17. Small-angle Neutron Scattering Measurements of Liquid Helium Mixtures Confined in MCM-41

    NASA Astrophysics Data System (ADS)

    Kaiser, Helmut; Prisk, Timothy; Sokol, Paul; Steward, Ian; Pantalei, Claudia

    2011-03-01

    Small-angle neutron scattering (SANS) was used to study the isotopic distribution of liquid helium mixtures confined in MCM- 41, a silica glass with a 2D hexagonal net of monodisperse cylindrical pores, as a function of filling and He 3 concentration. The ordered pore array of MCM-41 gives rise to Bragg reflections with intensities determined by both how the liquid fills the pores and how the isotopes are distributed within the pores. The modulation in peak intensity can be modeled by writing down a form factors for cylindrical objects with varying scattering length density. Comparison will be made with small-angle X-ray (SAXS) scattering measurements performed with synchrotron light on liquid helium mixtures confined in aerogel. This work was supported by award 70NANB5H1163 from NIST, U.S. DOC. This Research at Oak Ridge National Laboratory's High Flux Isotope was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.

  18. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    SciTech Connect

    Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.

  19. A hierarchical algorithm for fast Debye summation with applications to small angle scattering.

    PubMed

    Gumerov, Nail A; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-09-30

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three-dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS), and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error-bound derived in this article is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  20. A small-angle x-ray scattering system with a vertical layout

    SciTech Connect

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-15

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  1. Small-Angle Scattering and Neutron Contrast Variation for Studying Bio-Molecular Complexes

    NASA Astrophysics Data System (ADS)

    Whitten, Andrew E.; Trewhella, Jill

    Structural molecular biology over the past several decades has progressed from studies of the individual proteins, subunits, and domains that accomplish specific biochemistry to seeking to understand the dynamic bio-molecular complexes and assemblies that are responsible for biological function. This progress has led to an expansion of the structural analysis “tool box” to include methods that complement the mainstay techniques of the field: X-ray crystallography, nuclear magnetic resonance (NMR), and cryo-electron microscopy. Small-angle scattering of X-rays or neutrons is one such complementary technique that provides information on the size and shape of scattering particles in solution. This low-resolution structural information can be a powerful complement to high-resolution structural data, especially for the study of bio-molecular interactions with ligands or each other. Further, exploitation of the different neutron-scattering properties of the stable isotopes of hydrogen (1H and 2H) can be used to enrich the information available from the small-angle scattering data, especially for bio-molecular complexes.

  2. Using Small-Angle Scattering Techniques to Understand Mechanical Properties of Biopolymer-Based Biomaterials

    PubMed Central

    Hyland, Laura L.; Taraban, Marc B.

    2013-01-01

    The design and engineering of innovative biopolymer-based biomaterials for a variety of biomedical applications should be based on the understanding of the relationship between their nanoscale structure and mechanical properties. Down the road, such understanding could be fundamental to tune the properties of engineered tissues, extracellular matrices for cell delivery and proliferation/differentiation, etc. In this tutorial review, we attempt to show in what way biomaterial structural data can help to understand the bulk material properties. We begin with some background on common types of biopolymers used in biomaterials research, discuss some typical mechanical testing techniques and then review how others in the field of biomaterials have utilized small-angle scattering for material characterization. Detailed examples are then used to show the full range of possible characterization techniques available for biopolymer-based biomaterials. Future developments in the area of material characterization by small-angle scattering will undoubtedly facilitate the use of structural data to control the kinetics of assembly and final properties of prospective biomaterials. PMID:24273590

  3. Wavelength-independent constant period spin-echo modulated small angle neutron scattering.

    PubMed

    Sales, Morten; Plomp, Jeroen; Habicht, Klaus; Tremsin, Anton; Bouwman, Wim; Strobl, Markus

    2016-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI. PMID:27370470

  4. Small-angle (e-, Na) scattering in the 6-25-eV range

    NASA Astrophysics Data System (ADS)

    Jaduszliwer, B.; Weiss, P.; Tino, A.; Bederson, B.

    1984-09-01

    We have investigated elastic and inelastic scattering of electrons by sodium atoms at intermediate energies (6-25 eV) by the atomic-recoil technique, using a new atomic-beams apparatus. The effects of the apparatus geometry, atomic velocity, and electron energy distributions on the analysis of the experimental results have been examined in detail, and their effects on small-angle scattering have been incorporated into the present work. We present absolute measurements of the elastic (e-, Na) differential cross section at 10 eV for electron polar angles ranging between 12° and 22°. These measurements are in good agreement with the normalized results of S. K. Srivastava and L. Vuskovic

    [J. Phys. B 13, 2633 (1980)]
    and in reasonable agreement with the two-state close-coupling calculation of
    M. R. Issa (Ph.D. theis, University of Durham, 1977)
    . We also present absolute measurements of an integral over small angles of the 32P impact-excitation differential cross section, together with a precise prescription for comparison with theory. We found that the distortedwave-polarized-orbital calculation of J. V. Kennedy, V. P. Myerscough, and M. R. C. McDowell
    [J. Phys. B 10 3759 (1977)]
    gives results which are too high in the forward direction, while those of Issa are somewhat low.

  5. Small-angle scattering for structural biology—Expanding the frontier while avoiding the pitfalls

    PubMed Central

    Jacques, David A; Trewhella, Jill

    2010-01-01

    The last decade has seen a dramatic increase in the use of small-angle scattering for the study of biological macromolecules in solution. The drive for more complete structural characterization of proteins and their interactions, coupled with the increasing availability of instrumentation and easy-to-use software for data analysis and interpretation, is expanding the utility of the technique beyond the domain of the biophysicist and into the realm of the protein scientist. However, the absence of publication standards and the ease with which 3D models can be calculated against the inherently 1D scattering data means that an understanding of sample quality, data quality, and modeling assumptions is essential to have confidence in the results. This review is intended to provide a road map through the small-angle scattering experiment, while also providing a set of guidelines for the critical evaluation of scattering data. Examples of current best practice are given that also demonstrate the power of the technique to advance our understanding of protein structure and function. PMID:20120026

  6. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Sales, Morten; Plomp, Jeroen; Habicht, Klaus; Tremsin, Anton; Bouwman, Wim; Strobl, Markus

    2016-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.

  7. Diffraction limit of the theory of multiple small-angle neutron scattering by a dense system of scatterers

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.; Lvov, D. V.

    2016-02-01

    Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.

  8. Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale.

    PubMed

    Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki

    2014-01-01

    A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm(-1) was thereby achieved at an X-ray energy of 8 keV. PMID:24365910

  9. Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale

    PubMed Central

    Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki

    2014-01-01

    A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910

  10. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  11. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  12. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars.

    PubMed

    Fernandez-Castanon, J; Bomboi, F; Rovigatti, L; Zanatta, M; Paciaroni, A; Comez, L; Porcar, L; Jafta, C J; Fadda, G C; Bellini, T; Sciortino, F

    2016-08-28

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation. PMID:27586949

  13. Time resolved small angle x-ray scattering reactivity studies on coals, asphaltenes, and polymers.

    SciTech Connect

    Seifert, S.; Thiyagarajan, P.; Winans, R. E.

    1999-07-02

    The objective of this study is to examine changes in the structures of coals, asphaltenes, and polymers in situ with small angle X-ray scattering (SAXS) during thermal treatments. We have built a SAXS instrument at the Basic Energy Sciences Synchrotrons Radiation Center at the Advanced Photon Source that allows us to obtain scattering data on very small samples and in the millisecond time domain. The Argonne Premium Coal samples, petroleum derived asphaltenes, and polymers with functionality to model fossil fuels were used in this study. The information that can be derived from these experiments includes: changes in fractal dimensionality, surface topology, and size and type of porosity. The information is correlated with other methods on the same samples.

  14. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering.

    PubMed

    Nagy, Gergely; Kovács, László; Ünnep, Renáta; Zsiros, Ottó; Almásy, László; Rosta, László; Timmins, Peter; Peters, Judith; Posselt, Dorthe; Garab, Győző

    2013-07-01

    We demonstrate the power of time-resolved small-angle neutron scattering experiments for the investigation of the structure and structural reorganizations of multilamellar photosynthetic membranes. In addition to briefly summarizing our results on thylakoid membranes isolated from higher plants and in unicellular organisms, we discuss the advantages and technical and methodological limitations of time-resolved SANS. We present a detailed and more systematical investigation of the kinetics of light-induced structural reorganizations in isolated spinach thylakoid membranes, which show how changes in the repeat distance and in the long-range order of the multilamellar membranes can be followed with a time resolution of seconds. We also present data from comparative measurements performed on thylakoid membranes isolated from tobacco. PMID:23839900

  15. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    SciTech Connect

    Lipfert, Jan; Doniach, Sebastian; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

    2007-09-18

    Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of algorithms for the reconstruction of 3-D electron density maps from 1-D scattering profiles have made possible the generation of useful low-resolution molecular models from SAXS data. Furthermore, SAXS is well suited for the study of unfolded or partially folded conformational ensembles as a function of time or solution conditions. Here, we review recently developed algorithms for 3-D structure modeling and applications to protein complexes. Furthermore, we discuss the emerging use of SAXS as a tool to study membrane protein-detergent complexes. SAXS is proving useful to study the folding of functional RNA molecules, and finally we discuss uses of SAXS to study ensembles of denatured proteins.

  16. Focusing of Gaussian beam passed under small angle to optical axis of uniaxial crystal

    NASA Astrophysics Data System (ADS)

    Ivanov, M. O.; Shostka, N. V.

    2016-07-01

    We showed both experimentally and analytically, the effect of focusing of a Gaussian beam propagated under small angle ϕ with respect to the optical axis of a uniaxial crystal, on the generation of a bottle beam. At ϕ = 0° two foci that correspond to ordinary and extraordinary parts of a beam form a closed 3D structure of a bottle beam. At this point, the beam, in the foci points, has radially and azimuthally aligned polarizations. Increasing the value of ϕ leads to dramatic changes in the intensity and polarization structure of a bottle beam. Starting from the value of ϕ = ±2° the closed 3D symmetric structure of a bottle beam breaks down. At ϕ = ±5° both beams are focused at the same transverse plane, while its polarization evolves to x- and y-linear. With a further increase in angle ϕ two foci ‘switch’ their spatial positions and move further away.

  17. Small-angle scattering studies of meso-scopic structures with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Dore, J. C.; North, A. N.; Rigden, J. S.

    1995-03-01

    The use of small-angle X-ray scattering techniques for the study of spatial inhomogeneities over the range 20 Å to 2 μm is reviewed. The basic formalism for scattering by an inhomogeneous medium is developed with particular reference to liquid suspensions, porous solids and solid aggregates. The instrumentation available on the Synchrotron Radiation Source at the Daresbury Laboratory is briefly presented and the use of the Bonse-Hart method for studies at ultra-low scattering angles described. The extraction of structural information for a range of natural and synthetic materials is presented with particular reference to microemulsions, porous silicas, clays and composites. The complementarity of X-ray and neutron techniques is critically reviewed and prospects for future developments, particularly for the study of anisotropic systems, are discussed.

  18. Toward a Taxonomy of the Denatured State: Small Angle Scattering Studies of Unfolded Proteins

    SciTech Connect

    Millett, I.S.; Doniach, S.; Plaxco, K.W.

    2005-02-15

    Despite the critical role the unfolded state plays in defining protein folding kinetics and thermodynamics (Berg et al., 2002; Dunker, 2002; Shortle, 2002; Wright and Dyson, 2002), our understanding of its detailed structure remains rather rudimentary; the heterogeneity of the unfolded ensemble renders difficult or impossible its study by traditional, atomic-level structural methods. Consequently, recent years have seen a significant expansion of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) techniques that provide direct, albeit rotationally and time-averaged, measures of the geometric properties of the unfolded ensemble. These studies have reached a critical mass, allowing us for the first time to define general observations regarding the nature of the geometry - and possibly the chemistry and physics - of unfolded proteins.

  19. A new 40 m small angle neutron scattering instrument at HANARO, Korea

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Choi, Sung-Min; Kim, Tae-Hwan; Lee, Chang-Hee; Cho, Sang-Jin; Seong, Baek-Seok

    2013-09-01

    A new 40 m Small Angle Neutron Scattering (SANS) instrument was constructed, and has been opened to outside users since November 2010 at HANARO, Korea. The instrument is equipped with state-of-the-art components, and the performance of the instrument is comparable to that of advanced SANS instruments. The flux at the sample position is measured as 2.9×107/cm2 s with a wavelength of 5 Å and a collimation length of 1.7 m. The Q-range of the instrument covers from 0.0007 to 1.1 Å-1 when the lens option is applied. In this paper, the design and characteristics of the 40 m SANS instrument are described, and data showing their performance are presented.

  20. Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering.

    SciTech Connect

    Tanaka, R.; Hunt, J. E.; Winans, R. E.; Thiyagarajan, P.; Sato, S.; Takanohashi, T.; Idemitsu Kosan Co.; National Institute of Advanced Industrial Science and Technology

    2003-01-01

    The objective of this study is to examine changes in the structures of petroleum asphaltene aggregates in situ with small-angle neutron scattering (SANS). Asphaltenes were isolated from three different crude oils: Maya, Khafji, and Iranian Light. An aliquot of the 5 wt % asphaltene solution in deuterated Decalin, 1-methylnaphthalene, or quinoline was loaded in a special stainless steel cell for SANS measurements. SANS data measured at various temperatures from 25 to 350 {sup o}C showed various topological features different with asphaltene or solvent species. A fractal network was formed only with asphaltene of Maya in Decalin, and it remained even at 350 {sup o}C. In all of the solvents, asphaltenes aggregate in the form of a prolate ellipsoid with a high aspect ratio at 25 {sup o}C and got smaller with increasing temperature. That became a compact sphere with the size of around 25 {angstrom} in radius at 350 {sup o}C.

  1. Tackiness of pressure-sensitive adhesives: An ultra-small-angle X-ray scattering investigation

    NASA Astrophysics Data System (ADS)

    Müller-Buschbaum, P.; Ittner, T.; Petry, W.

    2004-05-01

    The debonding of a model pressure-sensitive adhesive (PSA) poly-n-buthylacrylate is investigated by a combination of the mechanical tack test, optical microscopy and in situ ultra-small-angle X-ray scattering. From the mechanical test, macroscopic values such as force-distance curves are determined. The force-distance curve exhibits the typical non-linear behavior. With microscopy the macroscopic cavitation structure is observed. Scattering addresses the structure of the PSA on a microscopic level for the first time. As a new feature, a sub-structure of the usual optically resolvable macroscopic fibrils between the PSA surface and the probe punch is detected. The sub-structure exists over a large distance between the PSA and the probe surface and remains constant in diameter. This behavior of the sub-structure as well as the dependence of the force plateau on the film thickness are compared with theoretical predictions.

  2. Structure-property relationships in Waspaloy via small angle scattering and electrical resistivity measurements

    SciTech Connect

    Whelchel, R.; Gerhardt, Dr. Rosario; Littrell, Ken

    2010-01-01

    The mechanical properties in superalloys are controlled by the distribution of the {gamma}{prime} precipitate phase. Electrical measurements have been shown to be sensitive to certain aspects of the precipitation process and show promise for predicting the evolving microstructural state in superalloys. Aging experiments were conducted on Waspaloy samples for temperatures between 600 and 950 C for times ranging from 2min to 500h. Particle size distributions were obtained by modeling of small angle scattering (SAS) data, whereas, small precipitate size information, strain, and lattice mismatch data were obtained from X-ray diffraction. The microstructural information was then used to create a figure of merit of electron scattering intended to correlate electrical properties to the precipitate microstructure. The proposed figure of merit shows an empirical correlation with the electrical resistivity data, demonstrating the sensitivity of the resistivity measurements to the precipitation process and coarsening behavior.

  3. Drift-pots for small angle elastic scattering at the fermilab collider

    NASA Astrophysics Data System (ADS)

    Amos, N.; Baker, W.; Bertani, M.; Block, M.; DeSalvo, R.; Dimitryiannis, D.; Donati, A.; Eartly, D.; Ellsworth, R.; Giacomelli, G.; Goodman, J.; Lennox, A.; Maleyran, R.; Manarin, A.; Mondardini, M.; Orear, J.; Pruss, S.; Rubinstein, R.; Shukla, S.; Yodh, G.; York, T.; Zucchelli, S.

    1986-12-01

    In order to measure the small angle p- overlinep scattering at the Fermilab Tevatron collider we developed very small drift chambers integrated with thin-wall roman pots. We named them drift-pots. The drift-pots are active 100 μm from the vacuum of the beam with an expected resolution of 60 μm in the drift direction and 250 μm in charge division. They are radiation resistant detectors intrinsically insensitive to the beam pickup pulses and their multiple hit readout capability will allow us to push them into the beam halo where p- overlinep Coulomb elastic scattering dominates. For our application, we belive the drift-pots, are superior to state of the art silicon detectors.

  4. Small-angle neutron scattering of nanocrystalline gadolinium and holmium with random paramagnetic susceptibility.

    PubMed

    Döbrich, Frank; Bick, Jens-Peter; Birringer, Rainer; Wolff, Matthias; Kohlbrecher, Joachim; Michels, Andreas

    2015-02-01

    A neutron study of nanocrystalline terbium (Balaji G et al 2008 Phys. Rev. Lett. 100 227202) has shown that the randomly oriented anisotropy of the paramagnetic susceptibility tensor may lead to strongly correlated nanoscale spin disorder in the paramagnetic state which can be probed very effectively by magnetic small-angle neutron scattering (SANS). In principle, this scenario is also applicable to other rare-earth metals and the size of the effect is expected to scale with the strength of the anisotropy in the paramagnetic state. Here, we report SANS results (in the paramagnetic state) on nanocrystalline inert-gas condensed samples of Gd and Ho, which represent the cases of low and high anisotropy, respectively. PMID:25563439

  5. Small-angle neutron scattering of nanocrystalline gadolinium and holmium with random paramagnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Döbrich, Frank; Bick, Jens-Peter; Birringer, Rainer; Wolff, Matthias; Kohlbrecher, Joachim; Michels, Andreas

    2015-02-01

    A neutron study of nanocrystalline terbium (Balaji G et al 2008 Phys. Rev. Lett. 100 227202) has shown that the randomly oriented anisotropy of the paramagnetic susceptibility tensor may lead to strongly correlated nanoscale spin disorder in the paramagnetic state which can be probed very effectively by magnetic small-angle neutron scattering (SANS). In principle, this scenario is also applicable to other rare-earth metals and the size of the effect is expected to scale with the strength of the anisotropy in the paramagnetic state. Here, we report SANS results (in the paramagnetic state) on nanocrystalline inert-gas condensed samples of Gd and Ho, which represent the cases of low and high anisotropy, respectively.

  6. Small Angle X-ray and Neutron Scattering in the Study of Polymers and Supramolecular Systems

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Liu, F.; Xie, F.; Ungar, G.; Tschierske, C.; MacDonald, J. E.

    2008-03-01

    Some recent work carried out in our research group on complex structures found in polymers and supramolecular systems, using Small Angle X-ray and Neutron Scattering (SAXS and SANS) methods, are reviewed. These include, Combined SAXS and SANS study of superlattice structures in pure and mixed model polymers; Real-time SANS study of transient phases during polymer crystallization; Columnar phases with polygonal cross-sections in T-shaped polyphilic compounds;Complex 3-d phases formed by packing spherical objects (e.g. micelles self-assembled from tree-like molecules), including the recently discovered liquid quasi-crystals which possess 12-fold rotational symmetry. Examples of powder, fibre or surface oriented, and single-domain diffractions will be given. Reconstruction of electron density maps as well as computer modelling are also applied to help solving various complex structures.

  7. Quantification of Complex Topologies in Macromolecular and Nanoscale Structures using Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Pradhan, Siddharth; Ramachandran, Ramanth; Rai, Durgesh; Beaucage, Gregory

    2012-02-01

    Polymers are characterized by molecular weight distribution, tacticity, block copolymer content and branch content and chain topology. The branch structure and particularly the topology of branched chains has remained a difficult characterization problem. Recently we have developed a scaling model that can be coupled with small-angle scattering to measure the average branch length, number of branches and branch-on-branch structure in macromolecules of complex topology. This method has been extended to understand the structure of two dimensional structures and crumpling in these macromolecular systems. We have explored a wide range of materials in this regard. This poster will give an overview of the current uses for the scaling model for macromolecular topology. References pertaining to this poster can be found at http://www.eng.uc.edu/˜gbeaucag/BranchingPapers.html.

  8. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  9. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    SciTech Connect

    Kulvelis, Yu. V. Lebedev, V. T.; Trunov, V. A.; Pavlyuchenko, V. N.; Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya.

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  10. Small angle x ray scattering studies of aggregation in supercritical fluid solutions

    NASA Astrophysics Data System (ADS)

    Fulton, J. L.; Pfund, D. M.

    1994-10-01

    Small-angle x ray scattering (SAXS) can be used to derive structural information on molecular aggregates having sizes from 2 to 200 nm. Not only is the technique useful for probing fluid structure in pure and simple binary supercritical fluid systems, but the technique is also well suited to investigate a range of much more complex multi-molecular aggregates that form when surfactants are added to supercritical fluids. The authors describe the experimental apparatus that was constructed for these studies and the experimental approach used to collect the scattering data. They present scattering results for pure fluids and for fluids containing various types of microemulsion phases, including reverse micelle and normal micelle phases. These results demonstrate that SAXS is a powerful technique for probing various types of molecular aggregation in supercritical fluid solutions.

  11. Small angle neutron scattering study on the structural variation of lysozyme in bioprotectants

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Takayama, Haruki; Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji; Park, In-Sung; Shin, Tae-Gyu

    2015-05-01

    The thermal denaturation and subsequent structural variation of lysozyme in various bioprotectant candidate solutions such as trehalose and choline acetate have been investigated by using small angle neutron scattering and differential scanning calorimetry. The gyration radius shows little change with the addition of additives in a native state at room temperature. On heating the lysozyme solution, a remarkable increase in the gyration radius is observed at temperatures above the denaturation temperature without any bioprotectants. Such an increase is suppressed by the additives owing to the intermolecular interactions between the lysozyme molecules and the bioprotectants of trehalose and choline acetate. The fractal dimension of lysozyme varies slightly with the addition of the bioprotectant solutions, and shows a remarkable drop in the vicinity of the denaturation temperature for all the solutions.

  12. Small-angle neutron scattering studies on nonionic surfactant: Effect of sugars

    NASA Astrophysics Data System (ADS)

    Shivaji Sharma, K.; Joshi, J. V.; Aswal, V. K.; Goyal, P. S.; Rakshit, A. K.

    2004-08-01

    Micellar solution of nonionic surfactant n-dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2) 10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60oC) both in the presence and absence of sugars. The structural parameters like micelle shape and size, aggregation number and micellar density have been determined. It is found that the micellar structure significantly depends on the temperature and concentration of sugars. The micelles are found to be prolate ellipsoids at 30oC and the axial ratio of the micelle increases with the increase in temperature. The presence of lower concentration of sugar reduces the size of micelles and it grows at higher concentration of sugar. The structure of micelles is almost independent of the different types of sugars used.

  13. π-conjugation and conformation in a semiconducting polymer: small angle x-ray scattering study

    NASA Astrophysics Data System (ADS)

    Choudhury, Paramita Kar; Bagchi, Debjani; Menon, Reghu

    2009-05-01

    Small angle x-ray scattering (SAXS) in a poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution has shown the important role of π-electron conjugation in controlling the chain conformation and assembly. By increasing the extent of conjugation from 30 to 100%, the persistence length (lp) increases from 20 to 66 Å. Moreover, a pronounced second peak in the pair distribution function has been observed in a fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. Xylene enhances the rigidity of the PPV backbone to yield extended structures, while tetrahydrofuran solvates the side groups to form compact coils in which the lp is much shorter.

  14. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    SciTech Connect

    Chen, Wei-Ren; Do, Changwoo; Hong, Kunlun; Liu, Emily; Liu, Yun; Porcar, L.; Smith, Gregory Scott; Wu, Bin; Egami, T; Smith, Sean C

    2012-01-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 (G4) polyelectrolyte polyamidoamine (PAMAM) starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, (r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work which provides a link between the neutron scattering experiment and MD computation. The simulations enable scattering calculations of not only the hydrocarbons, but also the contribution to the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we question the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  15. Magnetic Field and Pressure Dependence of Small Angle Neutron Scattering in MnSi

    SciTech Connect

    Pfleiderer, C.; Reznik, D.; Pintschovius, L.; Haug, J.

    2007-10-12

    We report small angle neutron scattering of spontaneous and magnetic field aligned components of the helical spin polarization in MnSi for temperatures T down to 0.35 K, at pressures p up to 21 kbar, and magnetic field B up to 0.7 T. The parameter range of our study spans the first order transition between helical order and partial magnetic order at p{sub c}=14.6 kbar, which coincides with the onset of an extended regime of non-Fermi liquid resistivity. Our study suggests that MnSi above p{sub c} is not dominated by the remnants of the first order transition at p{sub c}, but that an unidentified mechanism favors stabilization of a new ground state other than helical order.

  16. Beyond the small-angle approximation for MBR anisotropy from seeds

    SciTech Connect

    Stebbins, A. ); Veeraraghavan, S. )

    1995-02-15

    In this paper we give a general expression for the energy shift of massless particles traveling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is [ital not] assumed that matter is nonrelativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the observer's velocity) depends only on the matter distribution on the observer's past light cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of an object such as a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.

  17. PREFACE Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    King, Stephen; Terrill, Nicholas

    2010-10-01

    The XIV International Conference on Small-Angle Scattering, SAS-2009, was held in Oxford UK, 13-18 September 2009, and was jointly organised under the auspices of the International Union of Crystallography Commission on SAS by a team from the Diamond Light Source and the ISIS Pulsed Neutron Source - their first such joint venture - with help from the UK Science and Technology Facilities Council. It was the first time that this long running and successful series of conferences on the application, science and technology of small-angle scattering techniques had been staged in the UK. The UK has a proud heritage in small-angle scattering: as home to one of the world's first SANS instruments (at AERE Harwell), as the site of the world's first 2nd generation X-ray Synchrotron (the SRS at Daresbury with its suite of SAXS beamlines), and latterly as the location of the world's most successful pulsed source SANS instrument. Indeed, 2009 also marked the 25th Anniversary of neutron operations at ISIS and the opening of a Second Target Station. Whilst the SRS ceased operations in 2008, its mantle has been inherited by the Diamond synchrotron. Many delegates took the opportunity to visit both Diamond and ISIS during a conference excursion. Despite the prevailing global economic downturn, we were delighted that 434 delegates from 32 different countries were able to attend SAS-2009; two-thirds were drawn from the UK, Germany, Japan, the USA and France, but there were also sizeable contingents from Australia, Korea, Taiwan and South America. In many ways this geographical spread reflects the present and emerging distribution, respectively, of 3rd generation X-ray synchrotrons and high-flux neutron sources, although the scope of the conference was not solely limited to these probes. Financial support from the IUCr enabled us to grant bursaries to attend SAS-2009 to 12 delegates from emerging countries (Algeria, Argentina, Brazil, India, Nepal, Romania, Russia and the Ukraine). The

  18. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  19. Brain tumor imaging using small-angle x-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Jensen, Torben H.; Bech, Martin; Bunk, Oliver; Thomsen, Maria; Menzel, Andreas; Bouchet, Audrey; Le Duc, Géraldine; Feidenhans'l, Robert; Pfeiffer, Franz

    2011-03-01

    We demonstrate high-resolution small-angle x-ray scattering computed tomography (SAXS-CT) of soft matter and soft tissue samples. Complete SAXS patterns over extended ranges of momentum transfer are reconstructed spatially resolved from volumes inside an extended sample. Several SAXS standard samples are used to quantitatively validate the method and demonstrate its performance. Further results on biomedical tissue samples (rat brains) are presented that demonstrate the advantages of the method compared to existing biomedical x-ray imaging approaches. Functional areas of the brains as well as tumor morphology are imaged. By providing insights into the structural organization at the nano-level, SAXS-CT complements and extends results obtainable with standard methods such as x-ray absorption tomography and histology.

  20. Structure of nanocrystalline palladium and copper studied by small angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Barker, J.G.

    1996-12-01

    The structure of nanocrystalline palladium and copper, made by inert gas condensation and compaction, was studied using small angle neutron scattering (SANS), optical microscopy, and scanning electron microscopy. The effects of annealing and warm compaction were also examined with these techniques. The SANS results were interpreted using a maximum entropy routine, combined with knowledge of the Archimedes density and hydrogen concentration determined by prompt gamma activation analysis (PGAA). Similar hydrogen concentrations were detected by SANS and PGAA. This hydrogen content, which was approximately 5 at.{percent} in samples compacted at room temperature, was reduced by both annealing and warm compaction. Defects in several size classes were observed, including missing grain pores ({approx_equal}1{endash}50 nm diameter) and defects of micrometer size. Warm compaction produced a lower number density of pores in nanocrystalline palladium, which led to increased density. The observed structure was correlated with Vickers microhardness and fracture surface morphology. {copyright} {ital 1996 Materials Research Society.}

  1. Riboswitch Conformations Revealed by Small-Angle X-Ray Scattering

    PubMed Central

    Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2015-01-01

    Summary Riboswitches are functional RNA molecules that control gene expression through conformational changes in response to small-molecule ligand binding. In addition, riboswitch 3D structure, like that of other RNA molecules, is dependent on cation–RNA interactions as the RNA backbone is highly negatively charged. Here, we show how small-angle X-ray scattering (SAXS) can be used to probe RNA conformations as a function of ligand and ion concentration. In a recent study of a glycine-binding tandem aptamer from Vibrio cholerae, we have used SAXS data and thermodynamic modeling to investigate how Mg2+-dependent folding and glycine binding are energetically coupled. In addition, we have employed ab initio shape reconstruction algorithms to obtain low-resolution models of the riboswitch structure from SAXS data under different solution conditions. PMID:19381558

  2. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    NASA Astrophysics Data System (ADS)

    Peng, Mei; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-01

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm-1 to 5.0 nm-1. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service.

  3. Small-angle scattering as a tool to study the thermal denaturation of DNA

    NASA Astrophysics Data System (ADS)

    Wood, Kathleen; Knott, Robert; Tonchev, Ognyan; Angelov, Dimitar; Theodorakopoulos, Nikos; Peyrard, Michel

    2014-10-01

    DNA thermal denaturation is the breaking of the base pairs, leading to a splitting of the two strands of the double helix. While it is easy to measure the fraction of open base pairs (f) vs. temperature, determining the fraction (p) of fully open molecules is much harder. Previously, the simultaneous recording of f and p could only be achieved for special sequences. We show that small-angle scattering of X-rays or neutrons allows the measurement of p for any sequence. We illustrate the method with a SAXS investigation of two sequences designed to exhibit different melting profiles and compare the SAXS data with nano-calorimetric measurements of the melting curve.

  4. Small angle neutron scattering as fingerprinting of ancient potteries from Sicily (Southern Italy)

    SciTech Connect

    Barone, G.; Mazzoleni, P.; Crupi, V.; Majolino, D.; Venuti, V.; Teixeira, J.

    2009-09-01

    Small angle neutron scattering measurements have been carried out in order to investigate, in microdestructive way, the mesoscopic structure of a variety of potteries of relevance to cultural heritage coming from different Sicilian (Southern Italy) archeological sites belonging to the 'Strait of Messina' area and dated back to 7th-3rd century B.C. Data have been compared with the mesoscopic parameters extracted for two series of clayey sediments typical of the Strait of Messina area and fired under controlled conditions. The observed agreement between the features of reference and archeological samples allowed us to estimate the maximum firing temperature of the latter. Information on the pore sizes was obtained by the use of the concept of fractal surface, and compared with porosimetry results.

  5. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  6. Characterization of hyperuniformity in colloidal suspensions through small angle static light scattering

    NASA Astrophysics Data System (ADS)

    Bretz, Coline; Still, Tim; Bartolo, Denis; Baudry, Jean; Yodh, Arjun; Dreyfus, Remi

    Hyperuniform materials have attracted increasing interest over the past decade due to their potential exciting photonic properties. Our work aims at exploring novel ways of assembling hyperuniform materials from colloidal suspensions. Three-dimensional systems of micrometer-sized colloids are considered and characterized by studying their structure factor using static small angle light scattering (SLS). A SLS set-up has been constructed for this purpose. Using an index-matched suspension of colloidal particles, we are able to record the structure factors of suspensions of micrometer-sized colloids in a three-dimensional cell. We will show how our apparatus allows us to follow the spatial organization of the colloids and characterize their hyperuniformity.

  7. Beyond the small-angle approximation for MBR anisotropy from seeds

    NASA Astrophysics Data System (ADS)

    Stebbins, Albert; Veeraraghavan, Shoba

    1995-02-01

    In this paper we give a general expression for the energy shift of massless particles traveling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is not assumed that matter is nonrelativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the observer's velocity) depends only on the matter distribution on the observer's past light cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of an object such as a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.

  8. Probing ballistic microdrop coalescence by stroboscopic small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Graceffa, R.; Burghammer, M.; Davies, R. J.; Riekel, C.

    2012-12-01

    The coalescence of ballistic microdrops has been explored by stroboscopic synchrotron radiation microbeam small-angle X-ray scattering (μSAXS). About 80 μm diameter microdrops generated by a drop-on-demand inkjet system travelled at ˜1.7 m/s through a ˜1 μm X-ray beam. Microdrops of cytochrome C and acetate buffer solutions were merged in order to study the pH driven conformational change. μSAXS patterns were accumulated on a pixel detector, which was activated for a few μsec during the transit time of each microdrop through the microbeam. Local probing of the merging microdrops reveals the internal protein solution flow.

  9. Small Angle X-ray Scattering in Structural Investigation of Selected Biological Systems

    SciTech Connect

    Kozak, Maciej

    2007-11-26

    Small angle X-ray scattering method (SAXS) is a technique complementary to the protein crystallography, allowing determination of the structural parameters such as the radius of gyration or the maximum size characterizing the macromolecules, and providing information on the conformational changes taking place in solution. The use of SAXS method enables a comparison of the protein crystal structure with the data collected in solution. Recent development of the measurement techniques (mainly those based on synchrotron radiation) and calculation methods has permitted introduction of advanced techniques also in the field of structural analysis of biomolecules (e.g. for determination of the shape of the protein molecule in solution). The paper presents a few selected methods of structural analysis of biological systems based on the SAXS data and illustrates their performance on the example of xylanase from Trichoderma longibrachiatum and a model phospholipid system.

  10. New developments in the ATSAS program package for small-angle scattering data analysis

    PubMed Central

    Petoukhov, Maxim V.; Franke, Daniel; Shkumatov, Alexander V.; Tria, Giancarlo; Kikhney, Alexey G.; Gajda, Michal; Gorba, Christian; Mertens, Haydyn D. T.; Konarev, Petr V.; Svergun, Dmitri I.

    2012-01-01

    New developments in the program package ATSAS (version 2.4) for the processing and analysis of isotropic small-angle X-ray and neutron scattering data are described. They include (i) multiplatform data manipulation and display tools, (ii) programs for automated data processing and calculation of overall parameters, (iii) improved usage of high- and low-resolution models from other structural methods, (iv) new algorithms to build three-dimensional models from weakly interacting oligomeric systems and complexes, and (v) enhanced tools to analyse data from mixtures and flexible systems. The new ATSAS release includes installers for current major platforms (Windows, Linux and Mac OSX) and provides improved indexed user documentation. The web-related developments, including a user discussion forum and a widened online access to run ATSAS programs, are also presented. PMID:25484842

  11. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  12. Study of the enzyme ascorbate oxidase by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Maritano, S.; Carsughi, F.; Fontana, M. P.; Marchesini, A.

    1996-09-01

    We report a study of the large scale structure of the "blue" copper enzyme ascorbate oxidase by small angle neutron scattering. The enzyme has been extracted from zucchini and studied in solutions of two different preparations. Contrast variation method was used by performing the measurements in water, heavy water and mixtures of H 2OD 2O. Our data show that, at least at the concentrations used here, the gyration radius of the enzyme is about 34 Å; with such a value our analysis is most consistent with a value of 70 KDa for the molecular weight of ascorbate oxidase in the conditions of our experiment. This is in contrast to the generally accepted value of 140 KDa, obtained by other techniques at high concentrations (e.g. greater than 2 mg ml -1). The possible origins of such a discrepancy are discussed.

  13. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering

    SciTech Connect

    Ujihara, T.; Osamura, K.

    2000-04-19

    The rate of spinodal decomposition depends on the spatial composition distribution. In order to estimate the time dependence of its rate experimentally, the structure change was investigated in Fe-30 at.% Cr and Fe-50 at.% Cr alloys aged at 748, 773, 798, and 823 K via small angle neutron scattering and a kinetic analysis of experimental data was carried out by using the Langer-Bar-on-Miller (LBM) theory. Their theory contains a rate term of a physical meaning similar to the diffusion coefficient. As a result, it becomes clear that the rate term corresponding to the diffusion coefficient decreases as decomposition advances and this fact can be explained by the modified LBM theory considering the composition-dependent mobility.

  14. Sample holder for small-angle x-ray scattering static and flow cell measurements

    SciTech Connect

    Lipfert, Jan; Millett, Ian S.; Seifert, Soenke; Doniach, Sebastian

    2006-04-15

    We present the design of a sample holder for small-angle x-ray scattering (SAXS) that can be used for both static and flow cell measurements, allowing to switch between these two types of measurement without having to realign the detector and camera geometry. The device makes possible high signal-to-noise experiments with sample volumes as small as 16 {mu}l and can be thermocontrolled using a standard circulating water bath. The setup has been used successfully for a range of biological SAXS measurements, including peptides, detergent micelles, membrane proteins, and nucleic acids. As a performance test, we present scattering data for horse heart cytochrome c, collected at the BESSRC CAT beam line 12-ID of the Advanced Photon Source. The design drawings are provided in the supplementary material.

  15. Small-angle polarized neutron studies of perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Lister, S. J.; Wismayer, M. P.; Venkataramana, V.; de Vries, M. A.; Ray, S. J.; Lee, S. L.; Thomson, T.; Kohlbrecher, J.; Do, H.; Ikeda, Y.; Takano, K.; Dewhurst, C.

    2009-09-01

    Polarized small-angle neutron scattering has been used to measure the local magnetic structure of writable thin-film perpendicular media with a granular CoCrPt-SiOx recording layer. By exploiting the cross terms between the nuclear and magnetic scattering, we are able to probe simultaneously both the grain structure and the subgranular magnetic structure of the recording layer, which has a thickness of only 15 nm and which is embedded within a full perpendicular media structure including soft underlayer. Two models are used to analyze the data, one analytical and the other a numerical approach based on transmission electron microscopy measurements of the grains. Both models show that the recording layer consists of ferromagnetically ordered core regions that are smaller in extent than the corresponding grains and allow a direct, quantitative comparison of these two length scales.

  16. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Seong, Baek Seok; Ikram, Abarrul

    2009-02-01

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  17. Small angle X-ray scattering studies of aggregation in supercritical fluid solutions

    SciTech Connect

    Fulton, J.L.; Pfund, D.M.

    1994-10-01

    Small-angle X-ray scattering (SAXS) can be used to derive structural information on molecular aggregates having sizes from 2 to 200 nm. Not only is the technique useful for probing fluid structure in pure and simple binary supercritical fluid systems, but the technique is also well suited to investigate a range of much more complex multi-molecular aggregates that form when surfactants are added to supercritical fluids. The authors describe the experimental apparatus that was constructed for these studies and the experimental approach used to collect the scattering data. They present scattering results for pure fluids and for fluids containing various types of microemulsion phases, including reverse micelle and normal micelle phases. These results demonstrate that SAXS is a powerful technique for probing various types of molecular aggregation in supercritical fluid solutions.

  18. Spin echo small angle neutron scattering using a continuously pumped {sup 3}He neutron polarisation analyser

    SciTech Connect

    Parnell, S. R.; Li, K.; Yan, H.; Stonaha, P.; Li, F.; Wang, T.; Baxter, D. V.; Snow, W. M.; Washington, A. L.; Walsh, A.; Chen, W. C.; Parnell, A. J.; Fairclough, J. P. A.; Pynn, R.

    2015-02-15

    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of {sup 3}He. We describe the performance of the analyser along with a study of the {sup 3}He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

  19. Micromagnetic modeling and small-angle neutron scattering characterization of magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Erokhin, Sergey; Berkov, Dmitry; Gorn, Nataliya; Michels, Andreas

    2012-01-01

    A new methodology for micromagnetic simulations of magnetic nanocomposites is presented. The methodology is especially suitable for simulations of two-phase composites consisting of magnetically hard inclusions in a soft magnetic matrix phase. The proposed technique allows us to avoid unnecessary discretization of the “hard” inclusions (these are normally in a single-domain state) but enables arbitrary fine discretization of the “soft” phase. The method is applied to the determination of the equilibrium magnetization state of an iron-based nanocomposite from the Nanoperm (FeZrBCu) family of alloys and to the calculation of the corresponding small-angle neutron scattering (SANS) cross-section. The results of our simulations exhibit a remarkable agreement with nontrivial “clover-leaf” SANS cross-sections observed experimentally.

  20. Time-resolved studies of dynamic biomolecules using small angle X-ray scattering.

    PubMed

    Kirby, Nigel M; Cowieson, Nathan P

    2014-10-01

    Small angle X-ray scattering (SAXS) of biomacromolecules in solution has become a prominent technique in structural biology. Whilst the majority of current use is for static measurements, the field is also advancing for measurements where the sample at the beam position changes with time, using high throughput systems, chromatography, high speed mixing and pump-probe techniques in particular. Time resolved work is greatly aided by increasingly sophisticated software for acquiring and analysing data, together with developments in X-ray sources, beamline optics and detectors. The exploitation of spatial coherence is under development, with X-ray free electron lasers aiming to provide major advances in single molecule structure reconstruction and time resolution. Here we provide an overview of current developments advancing time resolved solution SAXS. PMID:25108308

  1. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  2. Quantitative Analysis of Cementite Spheroidization in Pearlite by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Su, Yuhua; Morooka, Satoshi; Ohnuma, Masato; Suzuki, Junichi; Tomota, Yo

    2015-04-01

    Small-angle neutron scattering (SANS) was used to investigate the spheroidization of cementite in pearlite upon annealing. Globally averaged information on the shape and size of cementite particles was collected by using the SANS profile analysis of 0.8 mass pct C pearlitic steel (0.8C) samples annealed at 973 K (700 °C) for 3.6 to 86.4 ks. The change in the total area of the ferrite-cementite interface or aspect ratio determined by ex situ SANS exhibits excellent correspondence with scanning electron microscopy observations. Then, in situ SANS data were collected during isothermal annealing of the 0.8C steel and the commercially available 0.45C carbon steel (JIS-S45C). The shape change of the cementite plate was monitored, and the spheroidization rate of the 0.8C steel was found to be faster than that of the 0.45C steel.

  3. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water

    NASA Astrophysics Data System (ADS)

    Wikfeldt, K. T.; Huang, C.; Nilsson, A.; Pettersson, L. G. M.

    2011-06-01

    We present extensive simulations on the TIP4P/2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (TW) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)], 10.1063/1.3495974 are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing TW, consistent with a recent determination of the critical pressure of TIP4P/2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P/2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching TW. Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  4. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    PubMed

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments. PMID:24963740

  5. Probing the Conformation of FhaC with Small-Angle Neutron Scattering and Molecular Modeling

    PubMed Central

    Gabel, Frank; Lensink, Marc F.; Clantin, Bernard; Jacob-Dubuisson, Françoise; Villeret, Vincent; Ebel, Christine

    2014-01-01

    Probing the solution structure of membrane proteins represents a formidable challenge, particularly when using small-angle scattering. Detergent molecules often present residual scattering contributions even at their match point in small-angle neutron scattering (SANS) measurements. Here, we studied the conformation of FhaC, the outer-membrane, β-barrel transporter of the Bordetella pertussis filamentous hemagglutinin adhesin. SANS measurements were performed on homogeneous solutions of FhaC solubilized in n-octyl-d17-βD-glucoside and on a variant devoid of the α helix H1, which critically obstructs the FhaC pore, in two solvent conditions corresponding to the match points of the protein and the detergent, respectively. Protein-bound detergent amounted to 142 ± 10 mol/mol as determined by analytical ultracentrifugation. By using molecular modeling and starting from three distinct conformations of FhaC and its variant embedded in lipid bilayers, we generated ensembles of protein-detergent arrangement models with 120–160 detergent molecules. The scattered curves were back-calculated for each model and compared with experimental data. Good fits were obtained for relatively compact, connected detergent belts, which occasionally displayed small detergent-free patches on the outer surface of the β barrel. The combination of SANS and modeling clearly enabled us to infer the solution structure of FhaC, with H1 inside the pore as in the crystal structure. We believe that our strategy of combining explicit atomic detergent modeling with SANS measurements has significant potential for structural studies of other detergent-solubilized membrane proteins. PMID:24988353

  6. High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell

    PubMed Central

    Nielsen, S. S.; Møller, M.; Gillilan, R. E.

    2012-01-01

    With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code, RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods. PMID:22509071

  7. PREFACE Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    King, Stephen; Terrill, Nicholas

    2010-10-01

    The XIV International Conference on Small-Angle Scattering, SAS-2009, was held in Oxford UK, 13-18 September 2009, and was jointly organised under the auspices of the International Union of Crystallography Commission on SAS by a team from the Diamond Light Source and the ISIS Pulsed Neutron Source - their first such joint venture - with help from the UK Science and Technology Facilities Council. It was the first time that this long running and successful series of conferences on the application, science and technology of small-angle scattering techniques had been staged in the UK. The UK has a proud heritage in small-angle scattering: as home to one of the world's first SANS instruments (at AERE Harwell), as the site of the world's first 2nd generation X-ray Synchrotron (the SRS at Daresbury with its suite of SAXS beamlines), and latterly as the location of the world's most successful pulsed source SANS instrument. Indeed, 2009 also marked the 25th Anniversary of neutron operations at ISIS and the opening of a Second Target Station. Whilst the SRS ceased operations in 2008, its mantle has been inherited by the Diamond synchrotron. Many delegates took the opportunity to visit both Diamond and ISIS during a conference excursion. Despite the prevailing global economic downturn, we were delighted that 434 delegates from 32 different countries were able to attend SAS-2009; two-thirds were drawn from the UK, Germany, Japan, the USA and France, but there were also sizeable contingents from Australia, Korea, Taiwan and South America. In many ways this geographical spread reflects the present and emerging distribution, respectively, of 3rd generation X-ray synchrotrons and high-flux neutron sources, although the scope of the conference was not solely limited to these probes. Financial support from the IUCr enabled us to grant bursaries to attend SAS-2009 to 12 delegates from emerging countries (Algeria, Argentina, Brazil, India, Nepal, Romania, Russia and the Ukraine). The

  8. A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Anovitz, Lawrence M.; Lynn, Gary W.; Cole, David R.; Rother, Gernot; Allard, Lawrence F.; Hamilton, William A.; Porcar, Lionel; Kim, Man-Ho

    2009-12-01

    In this paper we report the results of a study using small angle and ultra-small angle neutron scattering techniques (SANS and USANS) to examine the evolution of carbonates during contact metamorphism. Data were obtained from samples collected along two transects in the metamorphosed Hueco limestone at the Marble Canyon, Texas, contact aureole. These samples were collected from the igneous contact out to ˜1700 m. Scattering curves obtained from these samples show mass fractal behavior at low scattering vectors, and surface fractal behavior at high scattering vectors. Significant changes are observed in the surface and mass fractal dimensions as well as the correlation lengths (pore and grain sizes), surface area to volume ratio and surface Gibbs Free energy as a function of distance, including regions of the aureole outside the range of classic metamorphic petrology. A change from mass-fractal to non-fractal behavior is observed at larger scales near the outer boundary of the aureole that implies significant reorganization of pore distributions early in the metamorphic history. Surface fractal results suggest significant smoothing of grain boundaries, coupled with changes in pore sizes. A section of the scattering curve with a slope less than -4 appears at low- Q in metamorphosed samples, which is not present in unmetamorphosed samples. A strong spike in the surface area to volume ratio is observed in rocks near the mapped metamorphic limit, which is associated with reaction of small amounts of organic material to graphite. It may also represent an increase in pore volume or permeability, suggesting that a high permeability zone forms at the boundary of the aureole and moves outwards as metamorphism progresses. Neutron scattering data also correlate well with transmission electron microscopic (TEM) observations, which show formation of micro- and nanopores and microfractures during metamorphism. The scattering data are, however, quantifiable for a bulk rock in a

  9. A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering.

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Lynn, Gary W; Cole, David R

    2009-12-01

    In this paper we report the results of a study using small angle and ultra-small angle neutron scattering techniques (SANS and USANS) to examine the evolution of carbonates during contact metamorphism. Data were obtained from samples collected along two transects in the metamorphosed Hueco limestone at the Marble Canyon, Texas, contact aureole. These samples were collected from the igneous contact out to {approx}1700 m. Scattering curves obtained from these samples show mass fractal behavior at low scattering vectors, and surface fractal behavior at high scattering vectors. Significant changes are observed in the surface and mass fractal dimensions as well as the correlation lengths (pore and grain sizes), surface area to volume ratio and surface Gibbs Free energy as a function of distance, including regions of the aureole outside the range of classic metamorphic petrology. A change from mass-fractal to non-fractal behavior is observed at larger scales near the outer boundary of the aureole that implies significant reorganization of pore distributions early in the metamorphic history. Surface fractal results suggest significant smoothing of grain boundaries, coupled with changes in pore sizes. A section of the scattering curve with a slope less than -4 appears at low-Q in metamorphosed samples, which is not present in unmetamorphosed samples. A strong spike in the surface area to volume ratio is observed in rocks near the mapped metamorphic limit, which is associated with reaction of small amounts of organic material to graphite. It may also represent an increase in pore volume or permeability, suggesting that a high permeability zone forms at the boundary of the aureole and moves outwards as metamorphism progresses. Neutron scattering data also correlate well with transmission electron microscopic (TEM) observations, which show formation of micro- and nanopores and microfractures during metamorphism. The scattering data are, however, quantifiable for a bulk rock

  10. Physical interactions of fish protamine and antisepsis peptide drugs with bacterial membranes revealed by combination of specular x-ray reflectivity and grazing-incidence x-ray fluorescence.

    PubMed

    Abuillan, Wasim; Schneck, Emanuel; Körner, Alexander; Brandenburg, Klaus; Gutsmann, Thomas; Gill, Tom; Vorobiev, Alexei; Konovalov, Oleg; Tanaka, Motomu

    2013-07-01

    As a defined model of outer membranes of gram negative bacteria, we investigated the interaction of monolayers of lipopolysacchrides from Salmonella enterica rough strains R90 (LPS Ra) with natural and synthetic peptides. The fine structures perpendicular to the membrane plane and the ion distribution near the interface were determined by specular x-ray reflectivity (XRR) and grazing-incidence x-ray fluorescence (GIXF) in the presence and absence of divalent cations. The unique combination of XRR and GIXF allows for the quantitative identification of different modes of interactions in a high spatial resolution, which cannot be assessed by other experimental methods. Natural fish protamine disrupts the stratified membrane structures in the absence of Ca(2+) ions, while staying away from the membrane surface in the presence of Ca(2+) ions. In contrast, synthetic antisepsis peptide Pep 19-2.5 weakly adsorbs to the membrane and stays near the uncharged sugar units even in the absence of Ca(2+). In the presence of Ca(2+), Pep 19-2.5 can reach the negatively charged inner core without destroying the barrier capability against ions. PMID:23944490

  11. The Diffraction Pattern Calculator (DPC) toolkit: a user-friendly approach to unit-cell lattice parameter identification of two-dimensional grazing-incidence wide-angle X-ray scattering data

    PubMed Central

    Hailey, Anna K.; Hiszpanski, Anna M.; Smilgies, Detlef-M.; Loo, Yueh-Lin

    2014-01-01

    The DPC toolkit is a simple-to-use computational tool that helps users identify the unit-cell lattice parameters of a crystal structure that are consistent with a set of two-dimensional grazing-incidence wide-angle X-ray scattering data. The input data requirements are minimal and easy to assemble from data sets collected with any position-sensitive detector, and the user is required to make as few initial assumptions about the crystal structure as possible. By selecting manual or automatic modes of operation, the user can either visually match the positions of the experimental and calculated reflections by individually tuning the unit-cell parameters or have the program perform this process for them. Examples that demonstrate the utility of this program include determining the lattice parameters of a polymorph of a fluorinated contorted hexabenzocoronene in a blind test and refining the lattice parameters of the thin-film phase of 5,11-bis(triethylsilylethynyl)anthradithiophene with the unit-cell dimensions of its bulk crystal structure being the initial inputs. PMID:25484845

  12. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface.

    PubMed

    Majewski, J; André, S; Jones, E; Chi, E; Gabius, H-J

    2015-07-01

    The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80 : 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3. PMID:26542007

  13. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    SciTech Connect

    Hassan, Moinuddin Ilev, Ilko

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  14. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    SciTech Connect

    Serov, A. V.; Mamonov, I. A.; Kol’tsov, A. V.

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the plane of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.

  15. On the small angle twist sub-grain boundaries in Ti3AlC2

    PubMed Central

    Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun

    2016-01-01

    Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al–Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations. PMID:27034075

  16. Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution

    PubMed Central

    Skou, Soren; Gillilan, Richard E

    2015-01-01

    Summary With recent advances in data analysis algorithms, X-ray detectors, and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community than ever before. Although limited to ~10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced usage of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors, and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the non-specialist. Here, we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch, and other common problems. The protein, human serum albumin (HSA), serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity, and solubility be extensively optimized prior to the experiment. PMID:24967622

  17. Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase.

    PubMed

    Filgueira de Azevedo, Walter; dos Santos, Giovanni César; dos Santos, Denis Marangoni; Olivieri, Johnny Rizzieri; Canduri, Fernanda; Silva, Rafael Guimarães; Basso, Luiz Augusto; Renard, Gaby; da Fonseca, Isabel Osório; Mendes, Maria Anita; Palma, Mário Sérgio; Santos, Diógenes Santiago

    2003-10-01

    Docking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP). This enzyme catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for PNP causes gradual decrease in T-cell immunity. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant rejection, rheumatoid arthritis, lupus, and T-cell lymphomas. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. The present analysis confirms the trimeric structure observed in the crystal. The potential application of the present procedure to other systems is discussed. PMID:13679062

  18. Heat-induced structural transitions of alpha-crystallin studied by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Krivandin, A. V.; Kuklin, A. I.; Muranov, K. O.; Murugova, T. N.; Kozlov, S. S.; Genkina, N. K.

    2012-03-01

    Alpha-crystallin from the bovine eye lens was studied by small-angle neutron scattering (SANS) in 90% D2O buffer solution at 20, 50, 60, 65, 75, 85 and 95°C. The temperature points for this study were specified on the basis of differential scanning calorimetric analysis of alpha-crystallin solutions which has shown two endothermic transitions with midpoints at 64.5 and 86°C. The SANS study revealed no significant alpha-crystallin quaternary structure alterations at 50°C as compared with 20°C. At 60-65°C the SANS data confirmed substantial alpha-crystallin quaternary structure rearrangements which resulted in the formation of alpha-crystallin oligomers with a similar shape but approximately twofold increased molecular weight as compared to the native state at 20°C. At higher temperatures (75, 85 and 95°C) the SANS patterns were very similar and were consistent with the scattering by rod-like particles with a cross-section radius of gyration ~55 This transformation of alpha-crystallin to the rod-like particles was evidently irreversible as these particles remained in solution after cooling to 20°C. Ab initio shape models of the native and high-temperature alpha-crystallin were retrieved with DAMMIN and DAMAVER software. Schematic model of alpha-crystallin heat-induced quaternary structure transitions was considered.

  19. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  20. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGESBeta

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Melnichenko, Yuri; He, Lilin; Wang, Yi

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Qmore » values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  1. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    SciTech Connect

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Melnichenko, Yuri; He, Lilin; Wang, Yi

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.

  2. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  3. Solution Properties of 1,3-Cyclohexadiene Polymers by Small Angle Neutron and Light Scattering

    SciTech Connect

    Yun, Seok I; Melnichenko, Yuri B; Wignall, George D; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Terao, Ken; Nakamura, Yo

    2006-01-01

    1,3-Cyclohexdiene polymers (PCHD) and their derivatives are of interest due to the six-member rings in the main chain, which are expected to impart higher mechanical strength and better thermal and chemical stability, as compared to common vinyl polymers. For example, hydrogenated PCHD has the highest glass transition temperature (T{sub g} {approx} 231 C) of all hydrocarbon polymers, and it also shows good heat, weather, impact, abrasion, and chemical resistance as well as low water absorption. In addition, PCHD has unique photochemical properties, such as excellent transparency, due to the isolated double bonds in the main chain. Also, block copolymers containing PCHD show unusual phase separation behavior. For example, a styrene/1,3-CHD block copolymer (PS-b-PCHD) with 50 vol % CHD (1,4/1,2 {approx} 95/5) exhibits a core-shell or hollow cylinder morphology, while a typical styrene/acyclic diene (isoprene or butadiene) block copolymer with similar composition exhibits a lamellar structure. Such phase behavior and many other properties strongly depend on the conformation of the polymer in solution or bulk. However, almost no data have been reported on the conformation of PCHD, probably because of the lack of well-defined and well-characterized samples. Here we report solution properties of PCHD in tetrahydrofuran (THF) and chloroform by multiangle laser light scattering, viscometry, and small-angle neutron scattering (SANS).

  4. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  5. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U.-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  6. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  7. The accurate assessment of small-angle X-ray scattering data

    DOE PAGESBeta

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  8. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  9. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  10. Application of small angle X-ray scattering synchrotron technology for measuring ovine meat quality.

    PubMed

    Hoban, J M; Hopkins, D L; Kirby, N; Collins, D; Dunshea, F R; Kerr, M G; Bailes, K; Cottrell, J J; Holman, B W B; Brown, W; Ponnampalam, E N

    2016-07-01

    A small angle X-ray scattering (SAXS) synchrotron was used to evaluate 100 ovine m. longissimus lumborum, representing lamb (n=50) and sheep (n=50). The diffraction of X-rays gives information on muscle myofibril structure and fat content. The linear relationships between SAXS measures with measures such as, shear force, intramuscular fat content (IMF) and collagen content/solubility, were investigated. A relationship was found between the d-spacing of the actin/myosin fibril spacing (SAX1 and SAX2) and the cross sectional area of the rhombohedral unit cell (Cell area) and shear force after 1 and 5day ageing. There was a positive relationship between IMF and a SAXS Fat area measure. There was a muscle site effect on SAX1, SAX2 and Cell area, with the cranial site having a larger distance between myofibrils. The potential of SAXS as a powerful research tool to determine not only the structural components of ovine tenderness, but also the fat content related to IMF is evident. PMID:26971308

  11. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    SciTech Connect

    Scott, Jamieson; Tong, Katie; William, Hamilton; He, Lilin; James, Michael; Thordarson, Pall; Boukhalfa, Sofiane

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.

  12. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE PAGESBeta

    Scott, Jamieson; Tong, Katie; William, Hamilton; He, Lilin; James, Michael; Thordarson, Pall; Boukhalfa, Sofiane

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  13. Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Ilavsky, Jan; Long, Gabrielle G.; Quintana, John P. G.; Allen, Andrew J.; Jemian, Pete R.

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  14. Small-Angle Neutron Scattering by the Magnetic Microstructure of Nanocrystalline Ferromagnets Near Saturation

    PubMed Central

    Weissmüller, J.; McMichael, R. D.; Michels, A.; Shull, R. D.

    1999-01-01

    The paper presents a theoretical analysis of elastic magnetic small-angle neutron scattering (SANS) due to the nonuniform magnetic microstructure in nanocrystalline ferromagnets. The reaction of the magnetization to the magnetocrystalline and magnetoelastic anisotropy fields is derived using the theory of micromagnetics. In the limit where the scattering volume is a single magnetic domain, and the magnetization is nearly aligned with the direction of the magnetic field, closed form solutions are given for the differential scattering cross-section as a function of the scattering vector and of the magnetic field. These expressions involve an anisotropy field scattering function, that depends only on the Fourier components of the anisotropy field microstructure, not on the applied field, and a micromagnetic response function for SANS, that can be computed from tabulated values of the materials parameters saturation magnetization and exchange stiffness constant or spin wave stiffness constant. Based on these results, it is suggested that the anisotropy field scattering function SH can be extracted from experimental SANS data. A sum rule for SH suggests measurement of the volumetric mean square anisotropy field. When magnetocrystalline anisotropy is dominant, then a mean grain size or the grain size distribution may be determined by analysis of SH.

  15. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    SciTech Connect

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.

  16. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering.

    PubMed

    Eyssautier, Joëlle; Levitz, Pierre; Espinat, Didier; Jestin, Jacques; Gummel, Jérémie; Grillo, Isabelle; Barré, Loïc

    2011-06-01

    Complementary neutron and X-ray small angle scattering results give prominent information on the asphaltene nanostructure. Precise SANS and SAXS measurements on a large q-scale were performed on the same dilute asphaltene-toluene solution, and absolute intensity scaling was carried out. Direct comparison of neutron and X-ray spectra enables description of a fractal organization made from the aggregation of small entities of 16 kDa, exhibiting an internal fine structure. Neutron contrast variation experiments enhance the description of this nanoaggregate in terms of core-shell disk organization, giving insight into core and shell dimensions and chemical compositions. The nanoaggregates are best described by a disk of total radius 32 Å with 30% polydispersity and a height of 6.7 Å. Composition and density calculations show that the core is a dense and aromatic structure, contrary to the shell, which is highly aliphatic. These results show a good agreement with the general view of the Yen model (Yen, T. F.; et al. Anal. Chem.1961, 33, 1587-1594) and as for the modified Yen model (Mullins, O. C. Energy Fuels2010, 24, 2179-2207), provide characteristic dimensions of the asphaltene nanoaggregate in good solvent. PMID:21553910

  17. Investigation of the tripoli porous structure by small-angle neutron scattering

    SciTech Connect

    Avdeev, M. V.; Blagoveshchenskii, N. M.; Garamus, V. M.; Novikov, A. G. Puchkov, A. V.

    2011-12-15

    The characteristics of the tripoli porous structure have been investigated by small-angle neutron scattering (SANS). Tripoli is a finely porous sedimentary rock formed by small spherical opal particles. Its main component is aqueous silica SiO{sub 2} {center_dot} nH{sub 2}O (80-90%). Tripoli is widely used in practice as a working medium for sorption filters and in some other commercial and construction technologies. The shape of the experimental SANS curves indicates the presence of small and large pores in tripoli. The small-pore size was estimated to be {approx}100 Angstrom-Sign . The size of large pores turned out to be beyond the range of neutron wave vector transfers Q that are available for the instrument used; however, their size was indirectly estimated to be {approx}(2000-2500) Angstrom-Sign . The pores of both groups behave as surfacetype fractal scatterers with the fractal dimension D {approx} 2.2-2.6. The densities of pores of these two groups differ by approximately three orders of magnitude ({approx}10{sup 16} and {approx}10{sup 13} cm{sup -3} for small and large pores, respectively); the fraction of large pores amounts to 70-80% of the total pore volume. The found pore characteristics (their densities, sizes, and relative volumes) are in satisfactory agreement (when a comparison is possible) with the absorption data.

  18. Charging and uncharging a neutral polymer in solution: a small-angle neutron scattering investigation.

    PubMed

    Fajalia, Ankitkumar I; Tsianou, Marina

    2014-09-11

    Aqueous formulations containing polymers and surfactants find several applications in pharmaceutics, coatings, inks, and home products. The association between polymers and surfactants contributes greatly to the function of these complex fluids, however, the effects of polar organic solvents, ubiquitous in formulations, remain mostly unexplored. We have analyzed small angle neutron scattering (SANS) data to determine the conformation of a "model" nonionic polymer, poly(ethylene oxide) (PEO), in aqueous solutions as affected by the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), and subsequent addition of short-chain alcohol (ethanol or 2-propanol). PEO chains (MW = 90,000) are Gaussian in dilute aqueous solutions, but become polyelectrolyte-like upon the addition of 30 mM SDS, with about 6 SDS micelles bound to each PEO chain. Micelles associated with polymer are similar in structure and interactions to micelles that form in aqueous solutions in the absence of polymer. Addition of alcohol alters both the polymer and micelle structure and interactions, leads to detachment of micelles from the polymer, and the PEO chains regain their Gaussian conformation. 2-Propanol is more effective than ethanol in influencing the polymer conformation and the properties of SDS micelles in aqueous solutions, either in the presence or in the absence of PEO. This study contributes fundamental insights on polymer and surfactant organization in solution, as well as new, quantitative information on systems that are widely used in practice. PMID:25014246

  19. Counterion Distribution Around Protein-SNAs probed by Small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kurinji; Bedzyk, Michael; Kewalramani, Sumit; Moreau, Liane; Mirkin, Chad

    Protein-DNA conjugates couple the advanced cell transfection capabilities of spherical DNA architecture and the biocompatible enzymatic activity of a protein core to potentially create therapeutic agents with dual functionality. An understanding of their stabilizing ionic environment is crucial to better understand and predict their properties. Here, we use Small-angle X-ray scattering techniques to decipher the structure of the counterion cloud surrounding these DNA coated nanoparticles. Through the use of anomalous scattering techniques we have mapped the local concentrations of Rb+ ions in the region around the Protein-DNA constructs. These results are further corroborated with simulations using a geometric model for the excess charge density as function of radial distance from the protein core. Further, we investigate the influence of solution ionic strength on the structure of the DNA corona and demonstrate a reduction in the extension of the DNA corona with increasing concentration of NaCl in solution for the case of both single and double stranded DNA shells. Our work reveals the distribution of counterions in the vicinity of Protein-DNA conjugates and decouples the effect of solution ionic strength on the thickness of the DNA layer.

  20. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-01

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  1. Study of nanoscale structures in hydrated biomaterials using small-angle neutron scattering

    PubMed Central

    Luk, Arnold; Murthy, N. Sanjeeva; Wang, Wenjie; Rojas, Ramiro; Kohn, Joachim

    2012-01-01

    Distribution of water in three classes of biomedically relevant and degradable polymers was investigated using small-angle neutron scattering. In semicrystalline polymers, such as poly(lactic acid) and poly(glycolic acid), water was found to diffuse preferentially into the noncrystalline regions. In amorphous polymers, such as poly(D,L-lactic acid) and poly(lactic-co-glycolic acid), the scattering after 7-days of incubation was attributed to water in microvoids that form following the hydrolytic degradation of the polymer. In amorphous copolymers containing hydrophobic segments (desaminotyrosyl-tyrosine ethyl ester) and hydrophilic blocks (poly(ethylene glycol) PEG), a sequence of distinct regimes of hydration were observed: homogeneous distribution (~ 10 Å length scales) at <13 wt% PEG (~ 1 water per EG), clusters of hydrated domains (~50 Å radius) separated at 24 wt% PEG (1 to 2 water per EG), uniformly distributed hydrated domains at 41 wt% PEG (~ 4 water per EG), and phase inversion at > 50 wt% PEG ( > 6 water per EG ). Increasing PEG content increased the number of these domains with only a small decrease in distance between the domains. These discrete domains appeared to coalesce to form submicron droplets at ~60 °C, above the melting temperature of crystalline PEG. Significance of such observations on the evolution of μm size channels that form during hydrolytic erosion is discussed. PMID:22227373

  2. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  3. The performance of the small-angle diffractometer, SAND at IPNS.

    SciTech Connect

    Thiyagarajan, P.

    1998-07-17

    The time-of-flight small-angle diffractometer SAND has been serving the scientific user community since 1996. One notable feature of SAND is its capability to measure the scattered intensity in a wide Q (4{pi}sin{theta}/{lambda}, where 2{theta} is the scattering angle and {lambda} is the wavelength of the neutrons) range of 0.0035 to 0.5 {angstrom}{sup {minus}1} in a single measurement. The optical alignment system makes it easy to set up the instrument and the sample. The cryogenically cooled MgO filter reduces the fast neutrons over two orders of magnitude, while still transmitting over 70% of the cold neutrons. A drum chopper running at 15 Hz suppresses the delayed neutron background. SAND has a variety of ancillary equipment to control the sample environment. In this paper we describe the features of the SAND instrument, compare its data on a few standard samples with those measured at well established centers in the world, and display two scientific examples which take advantage of measuring data in a wide Q-range in a single measurement. With a new set of tight collimators the Q{sub min} can be lowered to 0.002 {angstrom}{sup {minus}1} and the presently installed high-angle bank of detectors will extend the Q{sub max} to 2 {angstrom}{sup {minus}1}.

  4. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  5. Structure Parameters of Synaptic Vesicles Quantified by Small-Angle X-Ray Scattering

    PubMed Central

    Castorph, Simon; Riedel, Dietmar; Arleth, Lise; Sztucki, Michael; Jahn, Reinhard; Holt, Matthew; Salditt, Tim

    2010-01-01

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons, and which are crucial in neurotransmission. After a rise in internal [Ca2+] during neuronal stimulation, SVs fuse with the plasma membrane releasing their neurotransmitter content, which then signals neighboring neurons. SVs are subsequently recycled and refilled with neurotransmitter for further rounds of release. Recently, tremendous progress has been made in elucidating the molecular composition of SVs, as well as putative protein-protein interactions. However, what is lacking is an empirical description of SV structure at the supramolecular level—which is necessary to enable us to fully understand the processes of membrane fusion, retrieval, and recycling. Using small-angle x-ray scattering, we have directly investigated the size and structure of purified SVs. From this information, we deduced detailed size and density parameters for the protein layers responsible for SV function, as well as information about the lipid bilayer. To achieve a convincing model fit, a laterally anisotropic structure for the protein shell is needed, as a rotationally symmetric density profile does not explain the data. Not only does our model confirm many of the preexisting ideas concerning SV structure, but also for the first time, to our knowledge, it indicates structural refinements, such as the presence of protein microdomains. PMID:20371319

  6. Deciphering conformational transitions of proteins by small angle X-ray scattering and normal mode analysis.

    PubMed

    Panjkovich, Alejandro; Svergun, Dmitri I

    2016-02-17

    Structural flexibility and conformational rearrangements are often related to important functions of biological macromolecules, but the experimental characterization of such transitions with high-resolution techniques is challenging. At a lower resolution, small angle X-ray scattering (SAXS) can be used to obtain information on biomolecular shapes and transitions in solution. Here, we present SREFLEX, a hybrid modeling approach that uses normal mode analysis (NMA) to explore the conformational space of high-resolution models and refine the structure guided by the agreement with the experimental SAXS data. The method starts from a given conformation of the protein (which does not agree with the SAXS data). The structure is partitioned into pseudo-domains either using structural classification databases or automatically from the protein dynamics as predicted by the NMA. The algorithm proceeds hierarchically employing NMA to first probe large rearrangements and progresses into smaller and more localized movements. At the large rearrangements stage the pseudo-domains stay as rigid bodies allowing one to avoid structural disruptions inherent to the earlier NMA-based algorithms. To validate the approach, we compiled a representative benchmark set of 88 conformational states known experimentally at high resolution. The performance of the algorithm is demonstrated in the simulated data on the benchmark set and also in a number of experimental examples. SREFLEX is included into the ATSAS program package freely available to the academic users, both for download and in the on-line mode. PMID:26611321

  7. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels.

    PubMed

    Banc, A; Charbonneau, C; Dahesh, M; Appavou, M-S; Fu, Z; Morel, M-H; Ramos, L

    2016-06-28

    We propose a quantitative approach to probe the spatial heterogeneities of interactions in macromolecular gels, based on a combination of small angle X-ray (SAXS) and neutrons (SANS) scattering. We investigate the structure of model gluten protein gels and show that the gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds. PMID:27198847

  8. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering.

    PubMed

    Carli, Larissa N; Bianchi, Otávio; Machado, Giovanna; Crespo, Janaina S; Mauler, Raquel S

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite® 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor (β) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. PMID:25427508

  9. Magnetization processes in nanostructured metals and small-angle neutron scattering

    SciTech Connect

    Loeffler, J.F.; Braun, H.B.; Wagner, W.; Kostorz, G.; Wiedenmann, A.

    2005-04-01

    The magnetization process in nanostructured (n-) Fe and Co was investigated via small-angle neutron scattering (SANS). In a zero field, the magnetization exhibits correlations extending over several grains. In intermediate applied magnetic fields around 1 kOe, n-Fe and n-Co samples with small grain sizes exhibit an anisotropic scattering profile with an unusual intensity enhancement for scattering vectors parallel to the field direction. Comparing the experimental data with a modeled granular microstructure containing magnetic domains of arbitrary size and orientation, we conclude that magnetic domains extending over several grains are tilted considerably out of the external field direction in intermediate fields. Since the domain size does not change significantly with the magnitude of the external field, we conclude that the magnetization process does not proceed via domain-wall motion. Together with theoretical arguments showing the existence of marginally stable domains within the random-anisotropy model, our SANS data suggests that the magnetization process proceeds by simultaneous reversal of a few adjacent domains, presumably in the form of small avalanches. This resembles the magnetization process predicted for random-field Ising magnets. Our theoretical analysis of SANS data is general and applies to other systems consisting of magnetic nanoclusters embedded in a nonmagnetic matrix.

  10. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    The behavior of water near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. Moreover, by monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (alpha(p)) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. Additionally, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated ap peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  11. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    DOE PAGESBeta

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    The behavior of water near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. Moreover, by monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed thatmore » the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (alpha(p)) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. Additionally, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated ap peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.« less

  12. Using Small Angle Neutron Scattering on Glucose Oxidase immobilized on Single Layer Graphene

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh; Gurusaran, M.; Qian, S.; Weiss, K.; Urban, V.; Li, P.; Ma, L.; Ajayan, P.; Narayanan, T.; Sekar, K.; Viswanathan, S.; Renugopalakrishanan, V.

    2015-03-01

    Reliable blood glucose monitoring using biosensors is valuable for health evaluations and medication in wake of chronic diabetic issues accompanying deviations from evolutionary human lifestyle. Glucose oxidase (GOx) is an ideal enzyme because of its specificity and the ability to electrochemically transduce from the enzymatic reaction. We use graphene-based electrode with GOx sensor matrix so that the emitted electrons from sensor matrix can flow across graphene nearly without scattering; crucial for constructing ultrasensitive-sensors. Thereafter, establishing a structure-property based relationships to tune the sensor topology with electrochemically output forms the main focus of the device development process. We have developed a methodology to obtain low-resolution hierarchical models of the aggregate matrix using Small Angle Neutron Scattering (SANS) technique. A Unified Fit model is used in tandem with GNOM, DAMMIN and DAMAVER to construct low-resolution models for GOx matrices. A detailed explanation of a general methodology for obtaining quantitative details aggregate structures along with qualitative models will be presented.

  13. Structure of a Unimolecular Dendritic Reverse Micelle in Dense CO2 Via Small Angle Scattering

    NASA Astrophysics Data System (ADS)

    Lin, J. S.

    1997-03-01

    Dilute solutions in dense CO2 (5Kpsi and 25 degC) of a unimolecular reverse micelle were studied via small angle x ray scattering (SAXS). The unimolecular micelle was based on a fourth generation poly(propylene imine) dendrimer, functionalized with perfluoropolyether acid fluoride chains. A value of 26 added chains per dendrimer was obtained from other characterization techniques, and this number of chains was fixed in the fitting of the SAXS data to an f-arm star model. The molecular weight ( 33.5K g mol-1) agreed well with estimates from other techniques. The observed negative second virial coefficient, A2 = -1.2 x 10-4 cm^3 g-2 mol, correlates with prior observations, as does the observed radius of gyration, Rg = 32ÅSponsors: Div. of Mat. Sci., Basic Energy Sc., USDOE, contract DE-AC05-96OR22464, Oak Ridge Nat. Lab., managed by Lockheed Martin Energy Research Corp.; The Royal Commission for the Exhibition of 1851; National Science Foundation; Consortium for the Sythesis and Processing of Polymeric Materials in Carbon Dioxide.

  14. Small-angle x-ray scattering to discern microstructure of semicrystalline polyanhydrides for drug delivery.

    SciTech Connect

    Kipper, M. J.; Seifert, S.; Thiyagarajan, P.; Narasimhan, B.; Iowa State Univ.

    2005-01-01

    Polyanhydride copolymers based on 1,6-bis(p-carboxyphenoxy)hexane (CPH) and sebacic acid (SA) are bioerodible, semicrystalline polymers that have been used for drug delivery. In addition to their semicrystallinity, these materials also exhibit microphase separation in the amorphous phase. This complex phase behavior, combined with the disparity in the erosion rates of the two different chemical moieties, leads to a complex erosion kinetics that can be used to tailor drug release kinetics. Thus, accurate design of drug delivery devices requires a detailed description of the microphase separation. Here, we employ in situ synchrotron small-angle X-ray scattering (SAXS) to explore the microstructure of these materials. First, we examine the crystallization kinetics of the homopolymers and CPH-SA copolymers. Next, we perform experiments on poly(CPH)/poly(SA) homopolymer blends in the miscible melt in order to discern the segment-segment interaction parameter, {chi}{sub CPH-SA}. This parameter predicts the enthalpy of mixing poly(CPH) and poly(SA) at the monomer level and can be used to predict the phase behavior of the blend. It also offers insights into the thermodynamics that drive the microphase separation in the copolymers. The homopolymer phase diagram has an upper-critical solution temperature and compares well with cloud point data obtained from optical microscopy and predictions of the interaction parameter from molecular simulation.

  15. The small angle x-ray scattering of globular proteins in solution during heat denaturation

    NASA Astrophysics Data System (ADS)

    Banuelos, Jose; Urquidi, Jacob

    2008-10-01

    The ability of proteins to change their conformation in response to changes in their environment has consequences in biological processes like metabolism, chemical regulation in cells, and is believed to play a role in the onset of several neurodegenerative diseases. Factors such as a change in temperature, pressure, and the introduction of ions into the aqueous environment of a protein can give rise to the folding/unfolding of a protein. As a protein unfolds, the ratio of nonpolar to polar groups exposed to water changes, affecting a protein's thermodynamic properties. Using small angle x-ray scattering (SAXS), we are currently studying the intermediate protein conformations that arise during the folding/unfolding process as a function of temperature for five globular proteins. Trends in the observed intermediate structures of these globular proteins, along with correlations with data on protein thermodynamics may help elucidate shared characteristics between all proteins in the folding/unfolding process. Experimental design considerations will be discussed and preliminary results for some of these systems will be presented.

  16. How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective

    PubMed Central

    Receveur-Bréchot, Véronique; Durand, Dominique

    2012-01-01

    While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable technique for addressing many of the fundamental questions regarding the activities of IDPs. After introducing some experimental issues specific to IDPs and in relation to the latest technical developments, this article presents the interest of the theory of polymer physics to evaluate the flexibility of fully disordered proteins. The different strategies to obtain 3-dimensional models of IDPs, free in solution and associated in a complex, are then reviewed. Indeed, recent computational advances have made it possible to readily extract maximum information from the scattering curve with a special emphasis on highly flexible systems, such as multidomain proteins and IDPs. Furthermore, integrated computational approaches now enable the generation of ensembles of conformers to translate the unique flexible characteristics of IDPs by taking into consideration the constraints of more and more various complementary experiment. In particular, a combination of SAXS with high-resolution techniques, such as x-ray crystallography and NMR, allows us to provide reliable models and to gain unique structural insights about the protein over multiple structural scales. The latest neutron scattering experiments also promise new advances in the study of the conformational changes of macromolecules involving more complex systems. PMID:22044150

  17. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  18. Prospect for characterizing interacting soft colloidal structures using spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Li, Xin; Liu, Emily; Liu, Yun; Pynn, Roger; Robertson, J. L.; Shew, Chwen-Yang; Smith, Gregory Scott

    2011-01-01

    Spin-echo small angle neutron scattering (SESANS) presents a new experimental tool for structural investigation. Regarding the material study using neutron scattering it is of particular novel: Due to the action of spin echo encoding, SESANS registers the spatial correlations function in real space, which is distinct from the measurables of conventional elastic neutron scattering techniques. To make viable the use of SESANS in structural characterization, particularly for the interacting colloidal suspensions, we have conducted a theoretical study focusing on understanding the essential features of the SESANS correlation functions obtained from different model systems consisting of particles with uniform density profile (J. Chem. Phys. 132, 174509 (2010)). Within the same framework, we continue to explore the prospect of using SESANS to investigate the structural characteristics of colloid systems consisting of particle with non-uniform intra-particle mass distribution. As an example, a Gaussian model of interacting soft colloids is put forward in our mean-field calculations to investigate the manifestation of structural softness in SESANS measurement. The exploration shows a characteristically different SESANS correlation function for interacting soft colloids, in comparison to that of the referential uniform hard sphere system, due to the Abel transform imbedded in the mathematical formalism bridging the SESANS spectra and the spatial autocorrelation.

  19. Nanostructural Features in Silica-polyvinyl Acetate Nanocomposites Characterized by Small-Angle Scattering

    SciTech Connect

    Raghavan, Aravinda N; Thiyagarajan, P.; Zhu, Dr. Ai-Jun; Ash, Dr. Benjamin J.; Shofner, M. L.; Schadler, Linda; Kumar, Sanat K; Sternstein, S. S.

    2007-01-01

    Small-angle scattering (SAS) experiments were carried out on nanocomposites of poly(vinyl acetate) (PVAc) and fumed silica nanoparticles with different surface areas and chemical treatment, in the wave-vector (Q) range: 0.0002-1 A-1 . SAS data on composites with matrices of two different molecular weights indicate that the particle aggregation is independent of the molecular weight of the matrix for a fixed filler concentration and surface treatment. Particle size distributions derived from the SAS data suggest that particle aggregation is reduced when the native surface hydroxyl groups are blocked by various surface treatments, which also reduce the bonding strength to the polymer matrix. The unified exponential/power-law analysis of the SAS data shows three levels of hierarchy in the organization of silica particles. The first level consists of small aggregates of silica particles. At the second level we observe polydispersed aggregates resembling mass-fractal objects that is corroborated by TEM. The polydispersed aggregates further associate to form agglomerates at the third level. The relevance of these findings to the mechanism of nanofiller reinforcement of linear amorphous polymers above Tg is discussed.

  20. Modeling RNA topological structures using small angle X-ray scattering.

    PubMed

    Bhandari, Yuba R; Jiang, Wei; Stahlberg, Eric A; Stagno, Jason R; Wang, Yun-Xing

    2016-07-01

    Detailed understanding of the structure and function relationship of RNA requires knowledge about RNA three-dimensional (3D) topological folding. However, there are very few unique RNA entries in structure databases. This is due to challenges in determining 3D structures of RNA using conventional methods, such as X-ray crystallography and NMR spectroscopy, despite significant advances in both of these technologies. Computational methods have come a long way in accurately predicting the 3D structures of small (<50nt) RNAs to within a few angstroms compared to their native folds. However, lack of an apparent correlation between an RNA primary sequence and its 3D fold ultimately limits the success of purely computational approaches. In this context, small angle X-ray scattering (SAXS) serves as a valuable tool by providing global shape information of RNA. In this article, we review the progress in determining RNA 3D topological structures, including a new method that combines secondary structural information and SAXS data to sample conformations generated through hierarchical moves of commonly observed RNA motifs. PMID:27090001

  1. Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering¶

    SciTech Connect

    Littrell, Kenneth C.; Gallas, James M.; Zajac, Gerry W.; Thiyagarajan, Pappannan

    2003-01-01

    Small-angle X-ray scattering was used to measure the effects of chemical bleaching on the size and morphology of tyrosine-derived synthetic melanin dispersed in aqueous media. The average size as measured by the radius of gyration of the melanin particles in solution, at neutral to mildly basic pH, decreases from 16.5 to 12.5 angstroms with increased bleaching. The melanin particles exhibit scattering characteristic of sheet-like structures with a thickness of approximately 11 angstroms at all but the highest levels of bleaching. The scattering data are well described by the form factor for scattering from a pancake-like circular cylinder. These data are consistent with the hypothesis that unbleached melanin, at neutral to mildly basic pH, is a planar aggregate of 6- to 10-nm-sized melanin protomolecules, hydrogen bonded through their quinone and phenolic perimeters. The observed decrease in melanin particle size with increased bleaching is interpreted as evidence for deaggregation, most probably the result of oxidative disruption of hydrogen bonds and an increase in the number of charged, carboxylic acid groups, whereby the melanin aggregates disassociate into units composed of decreasing numbers of protomolecules.

  2. Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Westermeier, F.; Lehmkühler, F.; Conrad, H.; Schavkan, A.; Zozulya, A. V.; Fischer, B.; Roseker, W.; Sprung, M.; Gutt, C.; Grübel, G.

    2016-02-01

    We report on high pressure small angle x-ray scattering on suspensions of colloidal crystallites in water. The crystallites made out of charge-stabilized poly-acrylate particles exhibit a complex pressure dependence which is based on the specific pressure properties of the suspending medium water. The dominant effect is a compression of the crystallites caused by the compression of the water. In addition, we find indications that also the electrostatic properties of the system, i.e. the particle charge and the dissociation of ions, might play a role for the pressure dependence of the samples. The data further suggest that crystallites in a metastable state induced by shear-induced melting can relax to a similar structural state upon the application of pressure and dilution with water. X-ray cross correlation analysis of the two-dimensional scattering patterns indicates a pressure-dependent increase of the orientational order of the crystallites correlated with growth of these in the suspension. This study underlines the potential of pressure as a very relevant parameter to understand colloidal crystallite systems in aqueous suspension.

  3. Small-angle neutron scattering correlation functions of bulk magnetic materials

    PubMed Central

    Mettus, Denis; Michels, Andreas

    2015-01-01

    On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets (e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣM/dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣM/dΩ (e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength H p to the jump ΔM in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio H p/ΔM, the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel. PMID:26500464

  4. Small-angle scattering studies of the pore spaces of shaly rocks

    NASA Astrophysics Data System (ADS)

    Hall, Peter L.; Mildner, David F. R.; Borst, Roger L.

    1986-02-01

    Small-angle neutron and X ray scattering (SANS and SAXS) measurements have been performed on shaly rocks from a variety of oil field locations. Thin core sections cut parallel to their bedding planes give circularly symmetric scattering patterns. On the basis of the model of Debye et al., the data indicate characteristic pore dimensions of 9-15 nm. Sections cut normal to the bedding planes exhibit elliptically symmetric scattering indicative of pores flattened in the direction of sedimentary compaction. Fourier inversion of the symmetric SANS data in all cases yields a broad distribution of pore diameters having peaks typically in the range 4-6 nm. These distributions are in reasonable agreement with distributions derived from nitrogen adsorption isotherms, although often in disagreement with nitrogen desorption or mercury porosimetry data. At higher scattering vectors, in the Porod region, differences between the SAXS and SANS data are observed which are explained in terms of the rather different sensitives of the two techniques to empty and filled pores. The data indicate that a significant component of the total porosity is due to pores of less than 2 nm in diameter, in which water is retained under ambient conditions. In several cases, pore dimensions measured by SANS increase after extraction of bitumens by methylene chloride solution, suggesting an intimate microscopic association of hydrocarbon and fine mineral grains.

  5. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    SciTech Connect

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M.

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  6. Small Angle Neutron Scattering of Mixtures of Linear and Network Polyelectrolyes with an Oppositely Charged Surfactant

    NASA Astrophysics Data System (ADS)

    Lee, Wonjoo; Kofinas, Peter; Briber, Robert M.

    2007-03-01

    In general, it has been found solutions containing a (linear) polyelectrolyte and an oppositely charged surfactant exhibit a complex range of phase behavior. We have performed small angle neutron scattering (SANS) on dilute and semi-dilute solutions of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) with sodium dodecylsulfate (SDS). And, a structured hydrogel was formed by crosslinking a semi-dilute PDMAEMA solution containing SDS. SANS intensity of a dilute PDMAEMA solution shows that this polymer in D2O has only a few charges. In a dilute PDMAEMA solution with SDS, it was confirmed by SANS that spherical micelle-like structures associated along the polymer chain in a bead-and-necklace structure consistent with what has been observed in the (uncharged) poly(ethylene oxide)/SDS system. As the PDMAEMA concentration increased, a change of a peak position and a scattering shape was observed due to the interaction of the SDS with PDMAEMA. Furthermore, it is shown that the interaction between PDMAEMA and micelles is strong enough to maintain the nanoscale structure formed along the polymer chain, even after crosslinking, leading to a structured hydrogel.

  7. Percolating bulk-heterostructures from neutron reflectometry and small angle scattering data

    NASA Astrophysics Data System (ADS)

    Olds, Daniel; Duxbury, Phillip

    2013-03-01

    We present a novel algorithm for efficiently calculating the simulated small angle scattering data of any discretized morphological model of arbitrary scale and resolution, referred to as the distribution function method (DFM). Unlike standard SAS fitting methods, the DFM algorithm allows for the calculation of form factors and structure factors from complex nanoscale morphologies commonly encountered in many modern polymeric and nanoparticle based systems, which have no exact analytical corollary. The computational efficiency of the DFM algorithm suggests it's use in morphological model refinement. We will present a number of simple examples to demonstrate the accuracy and limits of the algorithm, followed by an example of incorporation of the DFM algorithm into reverse Monte Carlo structural refinement of bulk-heterojunction two-phase morphologies, such as those commonly found in organic photovoltaic devices. We will show that morphological features introduced via direct incorporation of experimental neutron reflectometry and SANS data to the models has a direct effect on the results of device simulations. The authors thank CORE-CM at Michigan State University for it's funding of this research.

  8. Pore distributions in nanocrystalline metals from small-angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A.

    1998-07-24

    Recent upgrades in inert-gas condensation processing equipment have produced nanocrystalline metal samples with high densities and low-impurity levels. Typical Cu and Pd samples have densities {ge}98% of theoretical and oxygen and hydrogen impurity concentrations {le}0.5 at. %. Lower porosity and impurity levels may make it difficult to produce and maintain samples with the smallest nanocrystalline grain sizes. These improved samples were studied by small-angle neutron scattering (SANS) to determine the volume fraction and size distribution of pores. Excellent correlation was obtained between the total volume fraction of pores and the Archimedes density for Pd, signifying that most of the pores were relatively small and in the detectability range of SANS ({approx}1--100 nm). Nanocrystalline Cu is shown to exhibit a wider pore size distribution. For Pd, the average pore sizes were slightly smaller than the average grain size, while for Cu the pore size and grain size were about the same. Both materials exhibited a trend of increasing pore size with increasing grain size. In terms of processing prerequisites, the principal condition for the production of high-density nanocrystalline Cu is an exceptionally clean synthesis environment, while nanocrystalline Pd requires compaction at elevated temperatures. These differences are the result of Cu having both a lower melting point and a greater susceptibility to contamination by gaseous impurities such as oxygen.

  9. Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations.

    PubMed

    Perutková, Šárka; Daniel, Matej; Rappolt, Michael; Pabst, Georg; Dolinar, Gregor; Kralj-Iglič, Veronika; Iglič, Aleš

    2011-02-28

    In this study we present experimental and theoretical results which concern the deviations from circularity of the pivotal plane in the inverse hexagonal phases (H(II)) of phospholipid self-assemblies. Due to packing constraints, the cross-section of the polar/apolar interface deviates from a circle, which we studied in minute detail by analysing small-angle X-ray diffraction data of dioleoyl-phosphatidylethanolamine (DOPE) and stearoyl-oleoyl-phosphatidylethanolamine (SOPE), respectively. On this structural basis, Monte Carlo (MC) simulated annealing variations of the free energy were carried out, both on the formation of the H(II)-phase and on the particular shape of the cross-section in the H(II)-phase. The equilibrium of the H(II)-phase pivotal plane contour and the corresponding values of the mean intrinsic curvature, H(m), and the hydrocarbon chain stiffness, τ, were determined from MC calculations. The results of these calculations were tested by solving the corresponding system of non-linear differential equations derived using variational calculus. Here our main aim is to predict the range of possible values of H(m) and τ. Comparing the measured structural data with predictions from MC calculations including lipid anisotropy, and accounting for the elastic deformations of the pivotal plane allowed us to determine a relationship between the bending deformation and stretching of hydrocarbon chains. PMID:21063616

  10. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    PubMed

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components. PMID:26581292

  11. The accurate assessment of small-angle X-ray scattering data

    PubMed Central

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality. PMID:25615859

  12. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  13. In-situ small-angle neutron scattering from a block copolymer solution under shear

    SciTech Connect

    Balsara, N.P.; Kesani, P.K.; Jonnalagadda, S.V. . Dept. of Chemical Engineering); Hammouda, B. ); Straty, G.C. )

    1994-04-25

    Small-angle neutron scattering profiles from a concentrated (65 wt%) polystyrene-polyisoprene block copolymer solution in dioctyl phthalate under shear were obtained both above and below the quiescent order--disorder transition (ODT). The ordered solution has a lamellar structure under quiescent conditions. The shear-induced structure was inferred from scattering measurements in two planes: the v-vx[del]v plane and the [del]v-vx[del]v plane (v is the fluid velocity direction and [del]v is the velocity gradient direction). Below the quiescent ODT, oscillatory shear produces lamellae that are aligned along the shearing surface, while steady shear results in a reorientation of the lamellae normals from the v-vx[del]v plane to the [del]v-vx[del]v plane. Above the quiescent ODT, steady shear induces order above a critical shear rate. The resulting scattering anisotropy obtained at different temperatures obeys a universal scaling law, and the critical shear rate increases exponentially with temperature.

  14. Kinetic small angle neutron scattering of the skyrmion lattice in MnSi

    NASA Astrophysics Data System (ADS)

    Mühlbauer, S.; Kindervater, J.; Adams, T.; Bauer, A.; Keiderling, U.; Pfleiderer, C.

    2016-07-01

    We report a kinetic small angle neutron scattering (SANS) study of the skyrmion lattice (SL) in MnSi. Induced by an oscillatory tilting of the magnetic field direction, the elasticity and relaxation of the SL along the magnetic field direction have been measured with microsecond resolution. For the excitation frequency of 325 {{Hz}} the SL begins to track the tilting motion of the applied magnetic field under tilting angles exceeding {α }{{c}}≳ 0.4^\\circ . Empirically the associated angular velocity of the tilting connects quantitatively with the critical charge carrier velocity of ∼ 0.1 {{mm}} {{{s}}}-1 under current driven spin transfer torques, for which the SL unpins. In addition, a pronounced temperature dependence of the skyrmion motion is attributed to the variation of the skyrmion stiffness. Taken together our study highlights the power of kinetic SANS as a new experimental tool to explore, in a rather general manner, the elasticity and impurity pinning of magnetic textures across a wide parameter space without parasitic signal interferences due to ohmic heating or Oersted magnetic fields.

  15. Investigation of the interaction of dimethyl sulfoxide with lipid membranes by small-angle neutron scattering

    SciTech Connect

    Gorshkova, J. E. Gordeliy, V. I.

    2007-05-15

    The influence of dimethyl sulfoxide (CH{sub 3}){sub 2}SO (DMSO) on the structure of membranes of 1,2-dimiristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in an excess of a water-DMSO solvent is investigated over a wide range of DMSO molar concentrations 0.0 {<=} X{sub DMSO} {<=} 1.0 at temperatures T = 12.5 and 55 deg. C. The dependences of the repeat distance d of multilamellar membranes and the thickness d{sub b} of single vesicles on the molar concentration X{sub DMSO} in the L{sub {beta}}{sub '} gel and L{sub {alpha}} liquid-crystalline phases are determined by small-angle neutron scattering. The intermembrane distance d{sub s} is determined from the repeat distance d and the membrane thickness d{sub b}. It is shown that an increase in the molar concentration X{sub DMSO} leads to a considerable decrease in the intermembrane distance and that, at X{sub DMSO} = 0.4, the neighboring membranes are virtually in steric contact with each other. The use of the deuterated phospholipid (DMSO-D6) and the contrast variation method makes it possible, for the first time, to determine the number of DMSO molecules strongly bound to the membrane.

  16. Small-angle neutron scattering reveals a pH-dependent conformational change in cellobiohydrolase I

    SciTech Connect

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; McGaughey, Joseph; Urban, Volker S; Myles, Dean A A; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4-5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  17. On the small angle twist sub-grain boundaries in Ti3AlC2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun

    2016-04-01

    Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al–Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.

  18. Radiation embrittlement studies using anomalous small-angle x-ray scattering

    SciTech Connect

    Alexander, D. E.; Kestel, B. J.; Seifert, S.; Jemian, P. R.; Odette, G. R.; Klingensmith, D.; Gragg, D.

    1999-12-06

    Anomalous small angle x-ray scattering (ASAXS) was performed on an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy subjected to annealing or electron irradiation. ASAXS takes advantage of natural variations in the atomic scattering factor which exist at energies very near an element's x-ray absorption edge. By performing systematic SAXS experiments at energies near these absorption edges of the constituent alloy elements it is possible to vary the contrast of scattering centers containing the elements and in doing so quantify scatterer composition. The results of such an analysis for the samples in this work indicate the presence of Cu-rich, Cu{sub 85}Mn{sub 15} precipitates in the alloy. By applying the maximum entropy technique to the scattering data, it was possible to extract size distributions of scattering centers fog the different treatments. The results demonstrate the ability to detect and characterize small (11 {angstrom} radius) scatterers at quite low irradiation damage levels (5x10{sup {minus} 4} displacements per atom).

  19. Small-angle x-ray scattering studies of the manganese stabilizing subunit in photosystem II.

    SciTech Connect

    Svensson, B.; Tiede, D. M.; Barry, B. A.; Univ. of Minnesota

    2002-08-29

    Small-angle X-ray scattering studies (SAXS) were used to determine the size, shape, and oligomeric composition of the manganese stabilizing protein (MSP) of photosystem II. This extrinsic protein subunit plays an important role in photosynthetic oxygen evolution. As its name implies, MSP stabilizes the tetranuclear Mn cluster of the water oxidation complex. Removal of MSP lowers activity and decreases the stability of active-site manganese. Reconstitution of MSP reverses these effects. In this study, MSP was extracted from spinach PSII membranes using CaCl{sub 2} or urea. Through the use of MALDI-TOF mass spectrometry, the molecular weight of MSP was determined to be 26.53 kDa. X-ray scattering results show that both samples display a monodisperse scattering pattern; this pattern is consistent with a homogeneous protein solution. The CaCl{sub 2} extracted and urea extracted MSP samples have radii of gyration of 25.9 {+-} 0.4 and 27.0 {+-} 0.01 {angstrom}, respectively. MSP is shown to be monomeric in solution. This was determined using a cytochrome c standard and the scattering intensity, extrapolated to zero scattering angle, which is proportional to the molecular weight. This SAXS study suggests that, in solution, MSP is a monomeric, elongated prolate ellipsoid with dimensions, 112 x 23 x 23 {angstrom}{sup 3} and an axial ratio of 4.8.

  20. Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering.

    PubMed

    Gurnon, A Kate; Godfrin, P Douglas; Wagner, Norman J; Eberle, Aaron P R; Butler, Paul; Porcar, Lionel

    2014-01-01

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions. PMID:24561395

  1. Measuring Material Microstructure Under Flow Using 1-2 Plane Flow-Small Angle Neutron Scattering

    PubMed Central

    Gurnon, A. Kate; Godfrin, P. Douglas; Wagner, Norman J.; Eberle, Aaron P. R.; Butler, Paul; Porcar, Lionel

    2014-01-01

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions. PMID:24561395

  2. BCL::SAXS: GPU Accelerated Debye Method for computation of Small Angle X Ray Scattering Profiles

    PubMed Central

    Putnam, Daniel K.; Weiner, Brian E.; Woetzel, Nils; Lowe, Edward W.; Meiler, Jens

    2016-01-01

    Small angle X-ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS – an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of Hen Egg White Lysozyme. Using this protein we show how to generate SAXS profiles representing: 1) complete models, 2) models with approximated side chain coordinates, and 3) models with approximated side chain and loop region coordinates. We evaluated the ability of SAXS profiles to identify a correct protein topology from a non-redundant benchmark set of proteins. We find that complete SAXS profiles can be used to identify the correct protein by receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We show how our approximation of loop coordinates between secondary structure elements improves protein recognition by SAXS for protein models without loop regions and side chains. Agreement with SAXS data is a necessary but not sufficient condition for structure determination. We conclude that experimental SAXS data can be used as a filter to exclude protein models with large structural differences from the native. PMID:26018949

  3. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering.

    PubMed

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface. PMID:26342380

  4. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering

    PubMed Central

    Zhang-Haagen, Bo; Biehl, Ralf; Nagel-Steger, Luitgard; Radulescu, Aurel; Richter, Dieter; Willbold, Dieter

    2016-01-01

    Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1–40 and 1.6±0.1 nm for Aβ1–42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1–40 and 3.2±0.4 nm for Aβ1–42 including a surface layer of dHFIP solvent molecules. PMID:26919121

  5. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  6. In situ microfluidic dialysis for biological small-angle X-ray scattering

    PubMed Central

    Skou, Magda; Skou, Søren; Jensen, Thomas G.; Vestergaard, Bente; Gillilan, Richard E.

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample aggregation was induced by the concentration process at the levels achieved in these experiments. Simulations of fluid dynamics and transport properties within the device strongly suggest that aggregates, and possibly even higher-order oligomers, are preferentially retained by the device, resulting in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. PMID:25242913

  7. Small angle neutron scattering study of the gemini nonionic surfactant in heavy water solutions

    NASA Astrophysics Data System (ADS)

    Rajewska, A.

    2012-03-01

    The nonionic gemini surfactant α α'-[2,4,7,9-tetramethyl-5-decyne-4,7diyl]bis[ω hydroxyl-polyoxyethylene] (S-10) was investigated in heavy water solutions only for concentrations: 2.3%, 2.5%,3%, 3.4%, 4% and 5% at temperature 25°C with small angle neutron scattering (SANS) method. All of surfactants solutions were prepared using D2O (99.9% deuterated, Prikladnaia Chimia, St. Petersburg, Russia) as a solvent. The nonionic gemini surfactant S-10 was obtained from Air Products & Chemicals, Inc., and used without further purification. All SANS measurements were performed on V-4 SANS spectrometer at BENSC, Berlin (Germany). Neutrons were used in wavelength range of 0.02 - 4 nm-1. For the measurements quartz cells of were used during experiment. Up to 14 such cells were placed in a holder. Results from experiment was calculated and evaluated with PCG 2.0 program from Graz University (Austria). In the investigated solutions two axis ellipsoidal micelles was observed.

  8. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  9. Small angle x-ray scattering study of the porosity in coals

    NASA Astrophysics Data System (ADS)

    Schmidt, P. W.; Kalliat, M.; Kwak, C. Y.

    1981-02-01

    Small-angle scattering curves have bee obtained for some Pennsylvania State University PSOC coal samples and for several other coals. The x-ray scattering data provide information about the porosity in the coals and suggest that there are three classes of pores, which have average dimensions of the order of 1000 A˚, 30 A˚, and less than 5 A˚, corresponding to the macropores, transition pores and micropores discussed by Dubinin. The principal factor determining the form of the scattering curves has been found to be the rank of the coal. In coals of all ranks, the specific surface associated with the macropores is about 1 to 10 m2/gm. The micropores are most highly developed in high-rank coals. Comparison of the x-ray and adsorption results suggests that x-ray scattering and nitrogen adsorption detect only the specific surface of the macropores and transition pores, while carbon dioxide adsorption measures the total porosity from the micropores. Scattering data have also been recorded for a series of coals which had been tested for their suitability for conversion to liquid fuels. All the coals which were well-suited for producing liquid fuels were found to have a well-developed transition pore structure, while coals which were not especially good for coal liquefaction processes had almost no transition pores.

  10. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  11. Modeling and small-angle neutron scattering spectra of chromatin supernucleosomal structures at genome scale

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Grigoriev, Mikhail; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2011-11-01

    Eukaryotic genome is a highly compacted nucleoprotein complex organized in a hierarchical structure based on nucleosomes. Detailed organization of this structure remains unknown. In the present work we developed algorithms for geometry modeling of the supernucleosomal chromatin structure and for computing distance distribution functions and small-angle neutron scattering (SANS) spectra of the genome-scale (˜106 nucleosomes) chromatin structure at residue resolution. Our physical nucleosome model was based on the mononucleosome crystal structure. A nucleosome was assumed to be rigid within a local coordinate system. Interface parameters between nucleosomes can be set for each nucleosome independently. Pair distance distributions were computed with Monte Carlo simulation. SANS spectra were calculated with Fourier transformation of weighted distance distribution; the concentration of heavy water in solvent and probability of H/D exchange were taken into account. Two main modes of supernucleosomal structure generation were used. In a free generation mode all interface parameters were chosen randomly, whereas nucleosome self-intersections were not allowed. The second generation mode (generation in volume) enabled spherical or cubical wall restrictions. It was shown that calculated SANS spectra for a number of our models were in general agreement with available experimental data.

  12. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  13. Small-Angle Neutron Scattering study of the NIST mAb reference material

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Liu, Yun; Krueger, Susan; Curtis, Joseph

    Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry because they can be engineered to target specific antigens. Due to their importance, the biomanufacturing initiative at NIST is developing an IgG1 mAb reference material `NIST mAb', which can be used by industry, academia, and regulatory authorities. As part of this collaborative effort, we aim at characterizing the reference material using neutron scattering techniques. We have studied the small-angle scattering profile of the NIST mAb in a histidine buffer at 0 and 150 mM NaCl. Using Monte Carlo simulations, we generate an ensemble of structures and calculate their theoretical scattering profile, which can be directly compared with experimental data. Moreover, we analyze the structure factor to understand the effect of solution conditions on the protein-protein interactions. Finally, we have measured the solution scattering of the NIST mAb, while simultaneously performing freeze/thaw cycles, in order to investigate if the solution structure was affected upon freezing. The results from neutron scattering not only support the development of the reference material, but also provide insights on its stability and guide efforts for its development under different formulations.

  14. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (< 20 nm)/larger Q values of shale samples increase systematically as temperature increase during pyrolysis from 250 oC to 600oC (Fig.1a). These results in combination with hydrocarbon fractions measurements during the same process (Fig. 1b) provide a quantitative relation between pore characteristics and hydrocarbons generation. Our results indicate that hydrocarbon expulsion primarily causes the observed changes in smaller pores. They also demonstrate that due to its sensitivity to hydrogen, SANS locates all pores whether the pore is filled or not with hydrocarbons. Thus, SANS is particularly suited for probing hydrocarbon behavior in tight shale reservoirs and the factors that impact their pore dynamics for the petroleum industry.

  15. Diamond-shaped small-angle scattering and the deformation of fibrous textures

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Sanjeeva Murthy, N.

    2009-03-01

    Small-angle x-ray scattering from materials with fibrous texture are typically characterized by intense diamond-shaped equatorial streaks. Single family of elongated voids aligned along the fiber axis modeled as ellipsoids with a certain orientation distribution yield a fan-like 2D pattern. The diamond-shaped patterns from fibers, such as polyesters, polyamide 6 and polyacrylonitrile, could not be explained with such single class of misoriented voids. Analysis of the orientation distribution and the isointensity contours suggest that there are at least two distinct entities that contribute to this equatorial scattering. Voids with larger cross section (˜ 20 nm dia.), which are likely to be in the interfibrillar regions, give rise to low-q contours with smaller eccentricities and respond poorly to deformation. Entities with smaller cross section (˜ 5 nm dia.), which are likely to be in the intrafibrillar regions, give rise to high-q contours with larger eccentricities and respond to deformation in the same way as crystalline domains. The scattering from these objects appear as two distinct families of elliptical contours with different eccentricities, and the observed diamond-shaped scattering results from the superposition of these two sets of contours.

  16. Small angle neutron scattering for the structural study of intrinsically disordered proteins in solution: a practical guide.

    PubMed

    Gabel, Frank

    2012-01-01

    Small angle neutron scattering (SANS) allows studying bio-macromolecular structures and interactions in solution. It is particularly well-suited to study structural properties of intrinsically disordered proteins (IDPs) over a wide range of length-scales ranging from global aspects (radii of gyration and molecular weight) down to short-distance properties (e.g., cross-sectional analysis). In this book chapter, we provide a practical guide on how to carry out SANS experiments on IDPs and discuss the complementary aspects and strengths of SANS with respect to small angle X-ray scattering (SAXS). PMID:22821521

  17. Three Biomedical Beamlines at NSLS-II for Macromolecular Crystallography and Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Schneider, D. K.; Berman, L. E.; Chubar, O.; Hendrickson, W. A.; Hulbert, S. L.; Lucas, M.; Sweet, R. M.; Yang, L.

    2013-03-01

    We report on the status of the development of three beamlines for the National Synchrotron Light Source-II (NSLS-II), two for macromolecular crystallography (MX), and one for wide- and small-angle x-ray scattering (SAXS). Funded by the National Institutes of Health, this suite of Advanced Beamlines for Biological Investigations with X-rays (ABBIX) is scheduled to begin operation by 2015. The two MX beamlines share a sector with identical canted in-vacuum undulators (IVU21). The microfocusing FMX beamline on the inboard branch employs a two-stage horizontal source demagnification scheme, will cover an energy range of 5 - 23 keV, and at 12.7 keV will focus a flux of up to 1013 ph/s into a spot of 1 μm width. The companion AMX beamline on the short outboard branch of the sector is tunable in the range of 5 - 18 keV and has a native focus of 4 μm (h) × 2 μm (v). This robust beamline will be highly automated, have high throughput capabilities, and with larger beams and low divergence will be well suited for structure determinations on large complexes. The high brightness SAXS beamline, LIX, will provide multiple dynamic and static experimental systems to support scientific programs in solution scattering, membrane structure determination, and tissue imaging. It will occupy a different sector, equipped with a single in-vacuum undulator (IVU23). It can produce beams as small as 1 μm across, and with a broad energy range of 2.1 - 18 keV it will support anomalous SAXS.

  18. Nanostructure in block copolymer solutions: Rheology and small-angle neutron scattering

    SciTech Connect

    Habas, Jean-Pierre; Pavie, Emmanuel; Perreur, Christelle; Lapp, Alain; Peyrelasse, Jean

    2004-12-01

    Triblock copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) present an amphiphilic character in aqueous solutions. Since PPO is less hydrophilic than PEO and since their solubilities decrease when the temperature increases, the copolymers self-assemble spontaneously, forming micelles at moderate temperatures. For higher temperatures or concentrations, the copolymers or the micelles are ordered because of repulsive interactions and form lyotropic liquid crystalline phases. These are phases of very great viscosity with the aspect of gels, and transitions between different crystalline phases can occur at fixed concentration during an increase of temperature. We studied solutions of three different copolymers. The first two have a star structure. They are both composed of four branches (EO){sub x}(PO){sub y} fixed on an ethylene diamine, but differ by the values of x and y. Their commercial name is Tetronic 908 (x=114, y=21) and Tetronic 704 (x=16, y=18). The third copolymer (EO){sub 37}(PO){sub 56}(EO){sub 37} is linear and is known under the name of Pluronic P105. The measurements of the shear complex elastic modulus according to the temperature is used to determine the temperatures of the different transitions. Then, small-angle neutron scattering on samples under flow and true crystallographic arguments make it possible to identify the nature of the crystalline phases. For the systems studied, we show that the branched copolymers form only one type of liquid crystalline phase, which is bcc for the T908 and lamellar for the T704. For the linear copolymer, it is possible to identify three transitions: micellar solution to hexagonal phase, hexagonal phase to body-centered cubic phase, and finally body-centered cubic phase to lamellar phase.

  19. Structural characterization of a polymer substituted fullerene (flagellene) by small angle neutron scattering

    SciTech Connect

    Affholter, K.A.; Bunick, G.J.; Wignall, G.D.; Desimone, J.M.; Hunt, M.O. Jr.; Menceloglu, Y.Z.; Samulski, E.T.

    1994-12-31

    Small-angle neutron scattering (SANS) can structurally characterize fullerenes in solvents with strong SANS contrast (e.g. CS{sub 2}). Deuterated solvents (e.g. toluene-d{sub 8}) have a high scattering length density (SLD), which is close to that of C{sub 60} and C{sub 70} moieties. Hence, there is virtually no SANS contrast with the solvent and these particles are practically ``invisible`` in such media. On the other hand, the negative scattering length of hydrogen means that the SLD of H{sup 1}-containing materials is much lower, so they have strong contrast with toluene-d{sub 8}. Thus, SANS makes it possible to study the size and shapes of modified buckyballs such as the polymer-substituted fullerenes, or flagellenes. These consist of C{sub 60} cores to which 1-4 polystryene chains (with a molecular weight, MW {approx_equal} 2000) are attached. The extrapolated cross section at zero angle of scatter [d{Sigma}/d{Omega}(0)] is a function of the number of pendant chains, so SANS can be used to assess the number of ``arms`` which are covalently attached to the fullerene ``sphere.`` Close agreement ({plus_minus}4%) between measured and calculated values of d{Sigma}/d{Omega}(0) along with independent estimates of the radius of gyration (R{sub g}) and second virial coefficient (A{sub 2}) for a calibration linear polystyrene sample serves as a cross check on the validity of this methodology.

  20. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering.

    PubMed

    Goodwin, Daniel J; Sepassi, Shadi; King, Stephen M; Holland, Simon J; Martini, Luigi G; Lawrence, M Jayne

    2013-11-01

    Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight. Isotopic substitution of the aqueous solvent to match the scattering length density of the drug nanoparticles (i.e., the technique of contrast matching) meant that neutron scattering resulted only from the adsorbed polymer layer. The layer thickness and amount of hydroxypropylcellulose adsorbed on nabumetone nanoparticles derived from fitting the SANS data to both model-independent and model dependent volume fraction profiles were insensitive to polymer molecular weight over the range Mv = 47-112 kg/mol, indicating that the adsorbed layer is relatively flat but with tails extending up to approximately 23 nm. The constancy of the absorbed amount is in agreement with the adsorption isotherm determined by measuring polymer depletion from solution in the presence of the nanoparticles. Insensitivity to polymer molecular weight was similarly determined using SANS measurements of nabumetone or halofantrine nanoparticles stabilized with hydroxypropylmethylcellulose or poly(vinylpyrrolidone). Additionally SANS studies revealed the amount adsorbed, and the thickness of the polymer layer was dependent on both the nature of the polymer and drug particle surface. The insensitivity of the adsorbed polymer layer to polymer molecular weight has important implications for the production of nanoparticles, suggesting that lower molecular weight polymers