Science.gov

Sample records for grb host galaxies

  1. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  2. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel

    2015-08-01

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7. Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementary optical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  3. ALMA SUBMILLIMETER CONTINUUM IMAGING OF THE HOST GALAXIES OF GRB 021004 AND GRB 080607

    SciTech Connect

    Wang, Wei-Hao; Huang, Kui-Yun; Chen, Hsiao-Wen

    2012-12-20

    We report 345 GHz continuum observations of the host galaxies of gamma-ray bursts (GRBs) 021004 and 080607 at z > 2 using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Cycle 0. Of the two bursts, GRB 021004 is one of the few GRBs that originate in a Lyman limit host, while GRB 080607 is classified as a 'dark burst' and its host galaxy is a candidate of dusty star-forming galaxy at z {approx} 3. With an order of magnitude improvement in the sensitivities of the new imaging searches, we detect the host galaxy of GRB 080607 with a flux of S{sub 345} = 0.31 {+-} 0.09 mJy and a corresponding infrared luminosity of L{sub IR} = (2.4-4.5) Multiplication-Sign 10{sup 11} L{sub Sun }. However, the host galaxy of GRB 021004 remains undetected and the ALMA observations allow us to place a 3{sigma} upper limit of L{sub IR} < 3.1 Multiplication-Sign 10{sup 11} L{sub Sun} for the host galaxy. The continuum imaging observations show that the two galaxies are not ultraluminous infrared galaxies, but are at the faintest end of the dusty galaxy population that gives rise to the submillimeter extragalactic background light. The derived star formation rates of the two GRB host galaxies are less than 100 M{sub Sun} yr{sup -1}, which are broadly consistent with optical measurements. The result suggests that the large extinction (A{sub V} {approx} 3) in the afterglow of GRB 080607 is confined along its particularly dusty sight line, and not representative of the global properties of the host galaxy.

  4. X-Shooter slit observations of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Piranomonte, Silvia; Vergani, Susanna D.

    Considering that Gamma Ray Bursts (GRB) are supposed to explode in faint star forming galaxies they represent a very powerful way to investigate these kind of galaxies which seemed to be the bulk of galaxies at high redshift and to obtain a better estimate of the star formation density value. Currently observational estimates could underpredict ther real value of cosmic star formation density, because of their inability to observe this population of galaxies. The Italian-French X-shooter GRB host galaxies program which started at the end of 2009 allowed us to collect the spectra of about 30 GRB host galaxies in the 300-2400nm range from a redshift of about z=0.1 to z=2.7. We are using these spectra to retrieve information on the host metallicities, star formation rates and extinctions. In this talk I will show the state of the art of this work and which is the information on GRB hosts that we are collecting from the slit observations.

  5. Identifying the host galaxy of the short GRB 100628A

    NASA Astrophysics Data System (ADS)

    Nicuesa Guelbenzu, A.; Klose, S.; Palazzi, E.; Greiner, J.; Michałowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Krühler, T.; Knust, F.; Masetti, N.; Olivares E., F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.

    2015-11-01

    We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 m telescope, ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O ii], [O iii], Hα and Hβ, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the GRB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 × 1011L⊙ this galaxy resembles the probable giant elliptical host of the first well-localized short burst, GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population. Based on observations collected at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO programme 087.D-0503 and 290.D-5194; PI: A. Nicuesa Guelbenzu; 090.A-0825; PI: D. Malesani), GROND (PI: J. Greiner), and ATCA (Program C

  6. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Kupcu-Yoldas, A.; McBreen, S.; Olivares, E.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe

  7. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    SciTech Connect

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana; Rossi, Andrea; Klose, Sylvio; Savaglio, Sandra; Michalowski, Michal; Pian, Elena

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formation rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.

  8. GRB host galaxy studies with VLT/X-shooter.

    NASA Astrophysics Data System (ADS)

    Vergani, S. D.

    We present the Italian-French GTO program dedicated to optical-NIR spectroscopy of long gamma-ray bursts (LGRB) host galaxies with VLT/X-shooter. To date most of the spectroscopical studies of GRB hosts are limited to z<1. At the end of the GTO period we will have collected the slit spectra of ˜ 30 GRB hosts: about a half at 0.8 < z < 1.5 and the remaining at z>1.5. Thanks to the unique capability of the X-shooter spectrograph we will be able to determine the properties of these objects (star formation rate, metallicity, extinction...) and compare them to those observed in absorption through the afterglow spectroscopy and to those of the galaxy samples studied in current galaxy surveys. Using the IFU X-shooter setup we will also perform the first IFU survey of GRB hosts, collecting the IFU spectra for a sample of ˜ 15 hosts at z<0.5. Here we will show some example of the studies we are carrying on with some preliminary results. Based on observations made with ESO Telescopes at Paranal Observatory under programmes ID 084.A-0260 (PI: J. Fynbo), 084.A-0631, 085.A-0795 and 086.A-0874 (PIs: S. Piranomonte and H. Flores).

  9. The Late Afterglow and Host Galaxy of GRB 990712.

    PubMed

    Hjorth; Holland; Courbin; Dar; Olsen; Scodeggio

    2000-05-10

    We present deep Hubble Space Telescope (HST) imaging, as well as ground-based imaging and spectroscopy, of the optical afterglow associated with the long-duration gamma-ray burst GRB 990712 and its host galaxy. The data were obtained 48-123 days after the burst occurred. The magnitudes of the host (R=21.9, V=22.5) and optical afterglow (R=25.4, V=25.8, 47.7 days after the burst) favor a scenario in which the optical light follows a pure power-law decay with an index of alpha approximately -1.0. We find no evidence for a contribution from a supernova like SN 1998bw. This suggests that either there are multiple classes of long-duration gamma-ray bursts or that the peak luminosity of the supernova was more than 1.5 mag fainter than SN 1998bw. The HST images and EFOSC2 spectra indicate that the gamma-ray burst was located in a bright, extended feature (possibly a star-forming region) 1.4 kpc from the nucleus of a 0.2L*B galaxy at z=0.434, possibly a Seyfert 2 galaxy. The late-time afterglow and host galaxy of GRB 990712 bear some resemblance to those of GRB 970508. PMID:10813669

  10. Erratum: The Late Afterglow and Host Galaxy of GRB 990712

    NASA Astrophysics Data System (ADS)

    Hjorth, J.; Holland, S.; Courbin, F.; Dar, A.; Olsen, L. F.; Scodeggio, M.

    2000-08-01

    In the Letter ``The Late Afterglow and Host Galaxy of GRB 990712'' by J. Hjorth, S. Holland, F. Courbin, A. Dar, L. F. Olsen, & M. Scodeggio (ApJ, 534, L147 [2000]), there was an error in the flux calibration of the spectrum. The y-axis scale of Figure 2 and the fluxes in the last column of Table 1 should be multiplied by a factor of 3.47 to read 2.25, 0.86, 1.61, and 3.79×10-16 ergs s-1 cm-2. The error affects the luminosities and star formation rates (SFRs) presented in the third and fourth paragraphs of § 5 as follows. In the third paragraph, the total SFR based on the continuum flux should be 0.91-1.41 Msolar yr-1 instead of 0.29-0.45 the [O II] luminosity should be L3727=1.5×1041 ergs s-1 instead of 6.3×1040 and the implied [O II] SFR should be 2.12+/-0.60 Msolar yr-1 instead of 0.88+/-0.25. Consequently, the last two sentences of this paragraph are revised to read ``The derived SFR (from the [O II] flux) is about half of the SFR found by Bloom et al. (1999b) for the host of GRB 990123 and 2-3 times that of the host of GRB 970508 (Bloom et al. 1998). The specific SFR per unit luminosity of the GRB 990712 host galaxy is comparable to that of the host galaxies of GRB 990123 and GRB 970508.'' In the fourth paragraph, the total V-band flux in the feature should be 0.405+/-0.004 μJy instead of 0.323+/-0.003 the power-law spectral index should be β=-2.57 instead of -2.93 and the SFR in the feature should be 0.11-0.17 Msolar instead of 0.03-0.05. The main results and conclusions of the original Letter are unaffected by the error. The authors thank P. M. Vreeswijk for bringing this error to their attention.

  11. The host of GRB 060206: kinematics of a distant galaxy

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Wiersema, K.; Ledoux, C.; Starling, R. L. C.; de Ugarte Postigo, A.; Levan, A. J.; Fynbo, J. P. U.; Curran, P. A.; Gorosabel, J.; van der Horst, A. J.; Llorente, A.; Rol, E.; Tanvir, N. R.; Vreeswijk, P. M.; Wijers, R. A. M. J.; Kewley, L. J.

    2008-10-01

    Context: GRB afterglow spectra are sensitive probes of interstellar matter along the line-of-sight in their host galaxies, as well as in intervening galaxies. The rapid fading of GRBs makes it very difficult to obtain spectra of sufficient resolution and S/N to allow for these kinds of studies. Aims: We investigate the state and properties of the interstellar medium in the host of GRB 060206 at z= 4.048 with a detailed study of groundstate and finestructure absorption lines in an early afterglow spectrum. This allows us to derive conclusions on the nature and origin of the absorbing structures and their connection to the host galaxy and/or the GRB. Methods: We used early (starting 1.6 h after the burst) WHT/ISIS optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 detecting a range of metal absorption lines and their finestructure transitions. Additional information is provided by the afterglow lightcurve. The resolution and wavelength range of the spectra and the bright afterglow have facilitated a detailed study and fitting of the absorption line systems in order to derive column densities. We also used deep imaging to detect the host galaxy and probe the nature of an intervening system at z = 1.48 seen in absorption in the afterglow spectra. Results: We detect four discrete velocity systems in the resonant metal absorption lines, best explained by shells within and/or around the host created by starburst winds. The finestructure lines have no less than three components with strengths decreasing from the redmost components. We therefore suggest that the finestructure lines are best explained as being produced by UV pumping from which follows that the redmost component is the one closest to the burst where N V was detected as well. The host is detected in deep HST imaging with F814WAB = 27.48 ± 0.19 mag and a 3σ upper limit of H = 20.6 mag (Vega) is achieved. A candidate counterpart for the intervening absorption system is detected as well

  12. On the Host Galaxy of GRB 150101B and the Associated Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-06-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  13. Host Galaxy of the Dark Gamma-Ray Burst GRB 051008

    NASA Astrophysics Data System (ADS)

    Volnova, A. A.; Pozanenko, A. S.; Rumyantsev, V. V.; Biryukov, V. V.; Ibrahimov, M. A.; Sharapov, D. A.; Kann, D. A.; Gorosabel, J.; Castro-Tirado, A. J.; de Ugarte Postigo, A.

    2011-08-01

    We present observations of the dark Gamma-Ray Burst GRB 051008, the burst detected only in gamma- and X-rays but without any optical and radio afterglows. We identified the host galaxy of the burst, it has the R-magnitude of 23m.92+/-0m.07. The photometrical redshift of the galaxy is z = 1.07+/-0.13. We provide arguments in favor of the hypothesis that the galaxy is situated in a cluster. This is one of a few cases of the dark GRB host detection. We present details of observations, intrinsic properties of the host ant its environment.

  14. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  15. Late-time Observations of GRB 080319B: Jet Break, Host Galaxy, and Accompanying Supernova

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Rol, E.; Levan, A. J.; Svensson, K.; Fruchter, A. S.; Granot, J.; O'Brien, P. T.; Wiersema, K.; Starling, R. L. C.; Jakobsson, P.; Fynbo, J.; Hjorth, J.; Curran, P. A.; van der Horst, A. J.; Kouveliotou, C.; Racusin, J. L.; Burrows, D. N.; Genet, F.

    2010-12-01

    The Swift-discovered GRB 080319B was by far the most distant source ever observed at naked-eye brightness, reaching a peak apparent magnitude of 5.3 at a redshift of z = 0.937. We present our late-time optical (Hubble Space Telescope, Gemini, and Very Large Telescope) and X-ray (Chandra) observations, which confirm that an achromatic break occurred in the power-law afterglow light curve at ~11 days post-burst. This most likely indicates that the gamma-ray burst (GRB) outflow was collimated, which for a uniform jet would imply a total energy in the jet E jet >~ 1052 erg. Our observations also show a late-time excess of red light, which is well explained if the GRB was accompanied by a supernova (SN), similar to those seen in some other long-duration GRBs. The latest observations are dominated by light from the host and show that the GRB took place in a faint dwarf galaxy (r(AB) ≈ 27.0, rest frame MB ≈ -17.2). This galaxy is small even by the standards of other GRB hosts, which is suggestive of a low-metallicity environment. Intriguingly, the properties of this extreme event—a small host and bright SN—are entirely typical of the very low luminosity bursts such as GRB 980425 and GRB 060218.

  16. LATE-TIME OBSERVATIONS OF GRB 080319B: JET BREAK, HOST GALAXY, AND ACCOMPANYING SUPERNOVA

    SciTech Connect

    Tanvir, N. R.; O'Brien, P. T.; Wiersema, K.; Starling, R. L. C.; Rol, E.; Levan, A. J.; Svensson, K.; Fruchter, A. S.; Granot, J.; Jakobsson, P.; Fynbo, J.; Hjorth, J.; Curran, P. A.; Burrows, D. N.; Genet, F.

    2010-12-10

    The Swift-discovered GRB 080319B was by far the most distant source ever observed at naked-eye brightness, reaching a peak apparent magnitude of 5.3 at a redshift of z = 0.937. We present our late-time optical (Hubble Space Telescope, Gemini, and Very Large Telescope) and X-ray (Chandra) observations, which confirm that an achromatic break occurred in the power-law afterglow light curve at {approx}11 days post-burst. This most likely indicates that the gamma-ray burst (GRB) outflow was collimated, which for a uniform jet would imply a total energy in the jet E{sub jet} {approx}> 10{sup 52} erg. Our observations also show a late-time excess of red light, which is well explained if the GRB was accompanied by a supernova (SN), similar to those seen in some other long-duration GRBs. The latest observations are dominated by light from the host and show that the GRB took place in a faint dwarf galaxy (r(AB) {approx} 27.0, rest frame M{sub B} {approx} -17.2). This galaxy is small even by the standards of other GRB hosts, which is suggestive of a low-metallicity environment. Intriguingly, the properties of this extreme event-a small host and bright SN-are entirely typical of the very low luminosity bursts such as GRB 980425 and GRB 060218.

  17. Hubble Space Telescope Observations of Short GRB Host Galaxies: Morphologies, Offsets and Local Environments

    NASA Astrophysics Data System (ADS)

    Fong, Wen-fai; Berger, E.; Fox, D.

    2010-01-01

    The morphological properties of short-duration gamma-ray burst (GRB) host galaxies are not well understood. Here, we present optical observations of eight short GRB hosts obtained with ACS and WFPC2 on the Hubble Space Telescope (HST). These observations allow us to characterize the galactic and local environments of short GRBs as a powerful constraint on the nature of their progenitors. Using a variety of techniques, we determine the hosts' morphological properties, measure the physical and host-normalized offsets relative to the galaxy centers, and study the locations of short GRBs relative to their host light distributions. We also compare our results to those for long GRBs. Overall, we find that the majority of short GRB hosts have exponential disk profiles, and are on average twice as large as long GRB hosts. We also find that the distribution of projected physical offsets for short GRBs has a median of 5 kpc, a factor of five larger than the median for long GRBs. However, when normalized by the size of the hosts, the offset distributions for the two populations become nearly identical. Finally, unlike long GRBs which are concentrated in the brightest regions of their hosts, short GRBs are found to uniformly trace their host light distribution. These results are consistent with a progenitor population of NS-NS binaries, but do not rule out other potential progenitor models. This research is supported by Harvard University, the Smithsonian Astrophysical Observatory, and HST - Grant Number GO-10917.01.

  18. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    SciTech Connect

    Levesque, Emily M.; Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  19. THE LUMINOUS INFRARED HOST GALAXY OF SHORT-DURATION GRB 100206A

    SciTech Connect

    Perley, D. A.; Modjaz, M.; Morgan, A. N.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Miller, A. A.; Butler, N. R.

    2012-10-20

    The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star formation rates (SFRs) and a broad range of stellar masses, in general agreement with models associating the phenomenon with an old progenitor, such as merging neutron stars. In this paper, we positionally associate the recent unambiguously short-hard Swift GRB 100206A with a disk galaxy at redshift z = 0.4068 that is rapidly forming stars at a rate of {approx}30 M {sub Sun} yr{sup -1}, almost an order of magnitude higher than any previously identified short-GRB host. The galaxy is very red (g - K = 4.3 AB mag), heavily obscured (A{sub V} Almost-Equal-To 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]{sub KD02} = 9.2): it is a classical luminous infrared galaxy (LIRG), with L {sub IR} Almost-Equal-To 4 Multiplication-Sign 10{sup 11} L {sub Sun }. While these properties could be interpreted to support an association of this GRB with recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is also present. The specific SFR is modest (sSFR Almost-Equal-To 0.5 Gyr{sup -1}), the current SFR is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor. Given the precedent established by previous short-GRB hosts and the significant fraction of the universe's stellar mass in LIRG-like systems at z {approx}> 0.3, an older progenitor represents the most likely origin of this event.

  20. The Luminous Infrared Host Galaxy of Short-duration GRB 100206A

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Modjaz, M.; Morgan, A. N.; Cenko, S. B.; Bloom, J. S.; Butler, N. R.; Filippenko, A. V.; Miller, A. A.

    2012-10-01

    The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star formation rates (SFRs) and a broad range of stellar masses, in general agreement with models associating the phenomenon with an old progenitor, such as merging neutron stars. In this paper, we positionally associate the recent unambiguously short-hard Swift GRB 100206A with a disk galaxy at redshift z = 0.4068 that is rapidly forming stars at a rate of ~30 M ⊙ yr-1, almost an order of magnitude higher than any previously identified short-GRB host. The galaxy is very red (g - K = 4.3 AB mag), heavily obscured (AV ≈ 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]KD02 = 9.2): it is a classical luminous infrared galaxy (LIRG), with L IR ≈ 4 × 1011 L ⊙. While these properties could be interpreted to support an association of this GRB with recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is also present. The specific SFR is modest (sSFR ≈ 0.5 Gyr-1), the current SFR is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor. Given the precedent established by previous short-GRB hosts and the significant fraction of the universe's stellar mass in LIRG-like systems at z >~ 0.3, an older progenitor represents the most likely origin of this event.

  1. Detailed afterglow modelling and host galaxy properties of the dark GRB 111215A

    NASA Astrophysics Data System (ADS)

    van der Horst, A. J.; Levan, A. J.; Pooley, G. G.; Wiersema, K.; Krühler, T.; Perley, D. A.; Starling, R. L. C.; Curran, P. A.; Tanvir, N. R.; Wijers, R. A. M. J.; Strom, R. G.; Kouveliotou, C.; Hartoog, O. E.; Xu, D.; Fynbo, J. P. U.; Jakobsson, P.

    2015-02-01

    Gamma-ray burst (GRB) 111215A was bright at X-ray and radio frequencies, but not detected in the optical or near-infrared (nIR) down to deep limits. We have observed the GRB afterglow with the Westerbork Synthesis Radio Telescope and Arcminute Microkelvin Imager at radio frequencies, with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimetre observations from the literature to perform broad-band modelling, and determined the macro- and microphysical parameters of the GRB blast wave. By combining the broad-band modelling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark bursts for which similar modelling work has been performed. We also present deep imaging of the host galaxy with the Keck I telescope, Spitzer Space Telescope, and Hubble Space Telescope (HST), which resulted in a well-constrained photometric redshift, giving credence to the tentative spectroscopic redshift we obtained with the Keck II telescope, and estimates for the stellar mass and star formation rate of the host. Finally, our high-resolution HST images of the host galaxy show that the GRB afterglow position is offset from the brightest regions of the host galaxy, in contrast to studies of optically bright GRBs.

  2. GRB060111B: RTT150, Possible Host Galaxy

    NASA Astrophysics Data System (ADS)

    Khamitov, I.; Uluc, K.; Aslan, Z.; Kiziloglu, U.; Gogus, E.; Saygac, A. T.; Onal, O.; Burenin, R.; Pavlinsky, M.; Sunyaev, R.; Bikmaev, I.; Sakhibullin, N.

    2006-01-01

    We observed field around position of optical counterpart (Perri et al., GCN4487, Yost et al, GCN4488) of GRB060111B (Swift trigger 176918) with Russian-Turkish 1.5-m telescope (RTT150, Bakyrlytepe, TUBITAK National Observatory, Turkey), starting at Jan. 12, 02:11UT, i.e. A series of frames (13*300s exposures in R bands) were taken. We did not detect OT, but detect an extended source on about 5 arcsec NW from OT position with coordinates: RA= 19h05m43.0s (J2000.0) DEC=+70d22'29."8 (J2000.0) Using USNO-B1 stars we estimate the following magnitude for this source: R=20.52+/-0.03, and limiting magnitude of combined image as: R~22.6 The finding chart can be found at: http://www.tug.tubitak.gov.tr/~irekk/grb/grb060111b/grb060111B.JPG

  3. The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; Pérez-Ramírez, D.; Sollerman, J.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Castro-Tirado, A. J.; Jakobsson, P.; Christensen, L.; Hjorth, J.; Jóhannesson, G.; Guziy, S.; Castro Cerón, J. M.; Björnsson, G.; Sokolov, V. V.; Fatkhullin, T. A.; Nilsson, K.

    2005-12-01

    We present broad band photometry and spectroscopic observations of the host galaxy of GRB 030329. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy (Z˜0.004). The spectral energy distribution (SED) constructed with the photometric points has been fitted using synthetic and observational templates. The best SED fit is obtained with a starburst template with an age of 150 Myr and an extinction Av ˜ 0.6. We find that the GRB 030329 host galaxy is a subluminous galaxy (L ˜ 0.016 Lstar) with a stellar mass of ≳ 108 M⊙. Three independent diagnostics, based on the restframe UV continuum, the [O II], and the Balmer emission lines, provide a consistent unextinguished star formation rate of ˜ 0.6 M⊙ yr-1, implying a high unextinguished specific star formation rate ( 34 M⊙ yr-1 (L/Lstar)-1). We estimate that the unextinguished specific star formation rate of the GRB 030329 host is higher than 93.5% of the galaxies at a similar redshift. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on data taken at the 2.2-m and 3.5-m telescopes of the Centro Astronómico Hispano Alemán de Calar Alto, operated by the Max Planck institute of Heidelberg and Centro Superior de Investigaciones Científicas. The spectral observations were obtained at the European Southern Observatory, Cerro Paranal (Chile), under the Director's Discretionary Time programme 271.D-5006(A).

  4. On the Origin of the Mass-Metallicity Relation for GRB Host Galaxies

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; /Boston U., Dept. Astron.

    2011-06-02

    We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relative to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. We show that the nature of this reported offset may be explained by a recently proposed anti-correlation between the star formation rate (SFR) and the metallicity of star forming galaxies. If low metallicity galaxies produce more stars than their equally massive, high-metallicity counterparts, then transient events that closely trace the SFR in a galaxy would be more likely to be found in these low metallicity, low mass galaxies. Therefore, the offset between the GRB and SDSS defined M-Z relations may be the result of the different methods used to select their respective galaxy populations, with GRBs being biased towards low metallicity, high SFR, galaxies. We predict that such an offset should not be expected of transient events that do not closely follow the star formation history of their host galaxies, such as short duration GRBs and SN Ia, but should be evident in core collapse SNe found through upcoming untargeted surveys.

  5. The dark nature of GRB 130528A and its host galaxy

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.; Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin, A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.; Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2014-09-01

    Aims: We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Methods: Automatic observations were performed at the Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET robotic telescope. We also triggered target of opportunity (ToO) observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC + OSIRIS). The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as 10.4 m Gran Telescopio Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope (LT). Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Results: Thanks to millimetre (mm) observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate (M⊙/yr) > 6.18 M⊙/yr without correcting for dust extinction. The probable line-of-sight extinction towards GRB 130528A is revealed through analysis of the afterglow SED, resulting in a value of A^GRBV≥ 0.9 at the rest frame; this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (χ2/d.o.f. = 0.564) by a luminous (MB = -21.16), low-extinction (AV = 0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and

  6. GRB host galaxies with VLT/X-Shooter: properties at 0.8 < z < 1.3

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Japelj, J.; Vergani, S. D.; Savaglio, S.; Palazzi, E.; Covino, S.; Flores, H.; Goldoni, P.; Cupani, G.; Krühler, T.; Mannucci, F.; Onori, F.; Rossi, A.; D'Elia, V.; Pian, E.; D'Avanzo, P.; Gomboc, A.; Hammer, F.; Randich, S.; Fiore, F.; Stella, L.; Tagliaferri, G.

    2015-10-01

    Long gamma-ray bursts (LGRBs) are associated with the death of massive stars. Their host galaxies therefore represent a unique class of objects tracing star formation across the observable Universe. Indeed, recently accumulated evidence shows that GRB hosts do not differ substantially from general population of galaxies at high (z > 2) redshifts. However, it has been long recognized that the properties of z < 1.5 hosts, compared to general star-forming population, are unusual. To better understand the reasons for the supposed difference in LGRB hosts properties at z < 1.5, we obtained Very Large Telescope (VLT)/X-Shooter spectra of six hosts lying in the redshift range of 0.8 < z < 1.3. Some of these hosts have been observed before, yet we still lack well-constrained information on their characteristics such as metallicity, dust extinction and star formation rate (SFR). We search for emission lines in the VLT/X-Shooter spectra of the hosts and measure their fluxes. We perform a detailed analysis, estimating host average extinction, SFRs, metallicities and electron densities where possible. Measured quantities of our hosts are compared to a larger sample of previously observed GRB hosts at z < 2. SFRs and metallicities are measured for all the hosts analysed in this paper and metallicities are well determined for four hosts. The mass-metallicity relation, the fundamental metallicity relation and SFRs derived from our hosts occupy similar parameter space as other host galaxies investigated so far at the same redshift. We therefore conclude that GRB hosts in our sample support the found discrepancy between the properties of low-redshift GRB hosts and the general population of star-forming galaxies.

  7. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    SciTech Connect

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared galaxies in the short GRB

  8. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    SciTech Connect

    Sakamoto, T.; Troja, E.; Aoki, K.; Guiriec, S.; Barthelmy, S. D.; Im, M.; Jeon, Y.; Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I.; Melandri, A.; D'Avanzo, P.; Urata, Y.; Xu, D.; Gorosabel, J.; Sanchez-Ramirez, R.; Briggs, M. S.; Foley, S.; and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  9. Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts

    NASA Technical Reports Server (NTRS)

    Levan, Andrew; Fruchter, Andrew; Rhoads, James; Mobasher, Bahram; Tanvir, Nial; Gorosabel, Javier; Rol, Evert; Kouveliotou, Chryssa; DellAntonio, Ian; Merrill, Javier

    2004-01-01

    We present near-infrared (a) and optical observations of the afterglow of GRB 030115. Discovered in an infrared search at Kitt Peak 5 hours after the burst trigger, this afterglow is the faintest ever observed in the R-band at such an early epoch, and exhibits very red colors, with R-K approximately equal to 6. The magnitude of the optical afterglow of GRB 030115 is fainter than many upper limits for other bursts, suggesting that without early nIR observations it would have been classified as a "dark" burst. Both the color and optical magnitude of the afterglow are likely due to dust extinction and indicate that at least some optical afterglows are observations were also taken of the host galaxy and the surrounding field. Photometric redshifts imply that the host, and a substantial number of faint galaxies in the field are at z approximately 2.5. The overdensity of galaxies is sufficiently great that GRB 030115 may have occurred in a rich high-redshift cluster. The host galaxy shows extremely red colors (R-K=5) and is the first GRB host to be classified as an Extreme Red Object (ERO). Some of the galaxies surrounding the host also show very red colors, while the majority of the cluster are much bluer, indicating ongoing unobscured star formation. As it is thought that much of high redshift star formation occurs in highly obscured environments it may well be that GRB 030115 represents a transition object, between the relatively unobscured afterglows seen to date and a population which are very heavily extinguished, even in the nIR.

  10. The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.

    PubMed

    Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L

    2005-12-15

    Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. PMID:16355217

  11. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z <~ 1 and Consistency with Typical Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Michałowski, M. J.; Kamble, A.; Hjorth, J.; Malesani, D.; Reinfrank, R. F.; Bonavera, L.; Castro Cerón, J. M.; Ibar, E.; Dunlop, J. S.; Fynbo, J. P. U.; Garrett, M. A.; Jakobsson, P.; Kaplan, D. L.; Krühler, T.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; van der Horst, A. J.; Watson, D.; Wiersema, K.

    2012-08-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of ~825 M ⊙ yr-1, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least ~63% of GRB hosts have SFR < 100 M ⊙ yr-1 and at most ~8% can have SFR > 500 M ⊙ yr-1. For the undetected hosts the mean radio flux (<35 μJy 3σ) corresponds to an average SFR < 15 M ⊙ yr-1. Moreover, >~ 88% of the z <~ 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z <~ 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Programme 177.A-0591), the Australian Telescope Compact Array, the Giant Metrewave Radio Telescope, the Very Large Array, and the Westerbork

  12. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z {approx}< 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES

    SciTech Connect

    Michalowski, M. J.; Dunlop, J. S.; Kamble, A.; Kaplan, D. L.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Kruehler, T.; Reinfrank, R. F.; Bonavera, L.; Ibar, E.; Garrett, M. A.; Jakobsson, P.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; Van der Horst, A. J.; and others

    2012-08-20

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of {approx}825 M{sub Sun} yr{sup -1}, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least {approx}63% of GRB hosts have SFR < 100 M{sub Sun} yr{sup -1} and at most {approx}8% can have SFR > 500 M{sub Sun} yr{sup -1}. For the undetected hosts the mean radio flux (<35 {mu}Jy 3{sigma}) corresponds to an average SFR < 15 M{sub Sun} yr{sup -1}. Moreover, {approx}> 88% of the z {approx}< 1 GRB hosts have ultraviolet dust attenuation A{sub UV} < 6.7 mag (visual attenuation A{sub V} < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A{sub UV} of GRB hosts are consistent with those of Lyman break galaxies, H{alpha} emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z {approx}< 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.

  13. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    SciTech Connect

    Cucchiara, A.; Prochaska, J. X.; Werk, J.; Cenko, S. B.; Cardwell, A.; Turner, J.; Bloom, J. S.; Cobb, B. E.

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial information

  14. Hubble Space Telescope Observations of the Afterglow, Supernova, and Host Galaxy Associated with the Extremely Bright GRB 130427A

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-09-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E iso > 1054 erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ~17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v ph ~ 15, 000 km s-1). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v ph ~ 30, 000 km s-1), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ~4 kpc from the nucleus of a moderately star forming (1 M ⊙ yr-1), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  15. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    SciTech Connect

    Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Fruchter, A. S.; Hounsell, R. A.; Graham, J.; Hjorth, J.; Fynbo, J. P. U.; Pian, E.; Mazzali, P.; Perley, D. A.; Cano, Z.; Cenko, S. B.; Kouveliotou, C.; Misra, K.

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  16. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    NASA Technical Reports Server (NTRS)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  17. The Swift GRB Host Galaxy Legacy Survey. II. Rest-frame Near-IR Luminosity Distribution and Evidence for a Near-solar Metallicity Threshold

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Tanvir, N. R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Krühler, T.; Levan, A. J.; Michałowski, M. J.; Schulze, S.

    2016-01-01

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ˜ 0.5 and z ˜ 1.5, but little variation between z ˜ 1.5 and z ˜ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2 metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  18. Spectroscopy of the short-hard GRB 130603B. The host galaxy and environment of a compact object merger

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Thöne, C. C.; Rowlinson, A.; García-Benito, R.; Levan, A. J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sánchez-Ramírez, R.; Melandri, A.; D'Avanzo, P.; Oates, S.; D'Elia, V.; De Pasquale, M.; Krühler, T.; van der Horst, A. J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S. D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J. P. U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O. E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Vestergaard, M.; Wijers, R. A. M. J.

    2014-03-01

    Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-likesignature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims: Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods: Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results: From these spectra we determine the redshift of the burst to be z = 0.3565 ± 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of AV = 0.86 ± 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), NHX/AV is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions: The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary. Appendices are available in electronic form at http://www.aanda.org

  19. GRB 090417B and its Host Galaxy: A Step Towards an Understanding of Optically-Dark Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Sbarufatti, Boris; Shen, Rongfeng; Schady, Patricia; Cummings, Jay R.; Fonseca, Emmanuel; Fynbo, Johan P. U.; Jakobsson, Pall; Leitet, Elisabet; Linne, Staffan; Roming, Peter W.A.; Still, Martin; Zhang, Bing

    2009-01-01

    GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)> or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.

  20. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    NASA Technical Reports Server (NTRS)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; Xu, D.; DAvanzo, P.; Gorosabel, J.; Anderson, M. I.; Fynbo, J. P. U.; Aoki, K.; Sanchez-Ramirez, R.

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  1. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    SciTech Connect

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Davies, J. E.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000 μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  2. Photometry and spectroscopy of GRB 060526: a detailed study of the afterglow and host galaxy of a z = 3.2 gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Kann, D. A.; Jóhannesson, G.; Selj, J. H.; Jaunsen, A. O.; Fynbo, J. P. U.; Akerlof, C. W.; Baliyan, K. S.; Bartolini, C.; Bikmaev, I. F.; Bloom, J. S.; Burenin, R. A.; Cobb, B. E.; Covino, S.; Curran, P. A.; Dahle, H.; Ferrero, A.; Foley, S.; French, J.; Fruchter, A. S.; Ganesh, S.; Graham, J. F.; Greco, G.; Guarnieri, A.; Hanlon, L.; Hjorth, J.; Ibrahimov, M.; Israel, G. L.; Jakobsson, P.; Jelínek, M.; Jensen, B. L.; Jørgensen, U. G.; Khamitov, I. M.; Koch, T. S.; Levan, A. J.; Malesani, D.; Masetti, N.; Meehan, S.; Melady, G.; Nanni, D.; Näränen, J.; Pakstiene, E.; Pavlinsky, M. N.; Perley, D. A.; Piccioni, A.; Pizzichini, G.; Pozanenko, A.; Roming, P. W. A.; Rujopakarn, W.; Rumyantsev, V.; Rykoff, E. S.; Sharapov, D.; Starr, D.; Sunyaev, R. A.; Swan, H.; Tanvir, N. R.; Terra, F.; de Ugarte Postigo, A.; Vreeswijk, P. M.; Wilson, A. C.; Yost, S. A.; Yuan, F.

    2010-11-01

    Aims: With this paper we want to investigate the highly variable afterglow light curve and environment of gamma-ray burst (GRB) 060526 at z = 3.221. Methods: We present one of the largest photometric datasets ever obtained for a GRB afterglow, consisting of multi-color photometric data from the ultraviolet to the near infrared. The data set contains 412 data points in total to which we add additional data from the literature. Furthermore, we present low-resolution high signal-to-noise spectra of the afterglow. The afterglow light curve is modeled with both an analytical model using broken power law fits and with a broad-band numerical model which includes energy injections. The absorption lines detected in the spectra are used to derive column densities using a multi-ion single-component curve-of-growth analysis from which we derive the metallicity of the host of GRB 060526. Results: The temporal behaviour of the afterglow follows a double broken power law with breaks at t = 0.090 ± 0.005 and t = 2.401 ± 0.061 days. It shows deviations from the smooth set of power laws that can be modeled by additional energy injections from the central engine, although some significant microvariability remains. The broadband spectral-energy distribution of the afterglow shows no significant extinction along the line of sight. The metallicity derived from S ii and Fe ii of [S/H] = -0.57 ± 0.25 and [Fe/H] = -1.09 ± 0.24 is relatively high for a galaxy at that redshift but comparable to the metallicity of other GRB hosts at similar redshifts. At the position of the afterglow, no host is detected to F775W(AB) = 28.5 mag with the HST, implying an absolute magnitude of the host M(1500 Å) > -18.3 mag which is fainter than most long-duration hosts, although the GRB may be associated with a faint galaxy at a distance of 11 kpc. Based in part on observations obtained with the European Southern Observatory's Very Large Telescope under proposals 077.D-0661 (PI: Vreeswijk) and 177.A-0591

  3. Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    SciTech Connect

    Nicuesa Guelbenzu, A.; Klose, S.; Kann, D. A.; Rossi, A.; Schmidl, S.; Michałowski, M. J.; McKenzie, M. R. G.; Savaglio, S.; Greiner, J.; Hunt, L. K.; Gorosabel, J.

    2014-07-01

    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z = 0.381) with the Australia Telescope Compact Array. We detect the galaxy in the 5.5 GHz band with an integrated flux density of F {sub ν} = 43 ± 11 μJy, corresponding to an unobscured star-formation rate of about 24 M {sub ☉} yr{sup –1}, 40 times higher than what was found from optical emission lines. Among the ∼30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger timescale.

  4. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    NASA Astrophysics Data System (ADS)

    Krühler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang-Jensen, B.; Nicuesa Guelbenzu, A.; Palazzi, E.; Pian, E.; Piranomonte, S.; Sánchez-Ramírez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.

    2015-09-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 GRB host spectra available to date. Most of our GRBs were detected by Swift and 76% are at 0.5 GRB hosts up to z ~ 3.5 and find a strong change in their typical physical properties with redshift. The median SFR of our GRB hosts increases from SFRmed ~ 0.6 M⊙ yr-1 at z ~ 0.6 up to SFRmed ~ 15 M⊙ yr-1 at z ~ 2. A higher ratio of [O iii]/[O ii] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the Baldwin-Phillips-Terlevich diagram. There is weak evidence for a redshift evolution in AV and σ, with the highest values seen at z ~ 1.5 (AV) or z ~ 2 (σ). Oxygen abundances of the galaxies are distributed between 12 + log (O/H) = 7.9 and 12 + log (O/H) = 9.0 with a median 12 + log (O/H)med ~ 8.5. The fraction of GRB-selected galaxies with super-solar metallicities is ~20% at z< 1 in the adopted metallicity scale. This is significantly less than the fraction of total star formation in similar galaxies, illustrating that GRBs are scarce in high metallicity environments. At z ~ 3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z ≲ 0.5 Z⊙. Together with a high incidence of Z ~ 0.5 Z⊙ galaxies at z ~ 1.5, this indicates that a metallicity dependence at low redshift will not be dominant at z ~ 3. Significant correlations exist between the hosts' physical properties. Oxygen abundance, for example, relates to AV (12 + log (O/H) ∝ 0.17·AV), line width (12 + log (O/H) ∝ σ0.6), and SFR (12 + log (O/H) ∝ SFR0.2). In the

  5. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    SciTech Connect

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen, H.-W.; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ. /Harvard-Smithsonian Ctr. Astrophys. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /Penn State U., Astron. Astrophys. /UC, Irvine /MIT, MKI /UC, Davis /UC, Berkeley /Carnegie Inst. Observ. /UC, Berkeley, Space Sci. Dept. /Michigan U. /LBL, Berkeley /Spitzer Space Telescope

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that of long-duration GRBs. We thus find plausible

  6. Host Extinction and Colour Evolution for GRB 030329

    NASA Astrophysics Data System (ADS)

    Holland, S. T.; Bersier, D.; Garnavich, P. M.; Stanek, K. Z.

    2003-12-01

    GRB 030329 was the Rosetta Stone that provided a convincing connection between cosmological gamma-ray bursts and core-collapse supernovae. In addition to demonstrating the supernova link GRB 030329 also exhibited other unusual features, such as a rebrightening after one day and a second jet break at approximately ten days. The optical afterglow also exhibited colour variations between between one and ten days after the burst. These variations may provide information about the physics of the afterglow, and the environment that the burst expanded into. We use the observed colours of the optical afterglow to constrain the extinction in the host galaxy along the line of sight to the burst, and to study the nature of the afterglow during its first few days. The authors would like to thank the staffs of the MMT, FLWO, Las Campanas, Lick, Keck, and Kitt Peak observatories for providing time to observe the optical afterglow of GRB 030329. The authors would also like to thank Scott Barthelmy and the GRB Coordinates Network for rapidly dissemination information of gamma-ray bursts and Arne Henden for providing photometric calibration of fields containing gamma-ray bursts. STH acknowledges support from NASA/LTSA grant NAG5-9364.

  7. METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX

    SciTech Connect

    Levesque, Emily M.; Berger, Edo; Soderberg, Alicia M.; Chornock, Ryan

    2011-09-20

    The recent long-duration GRB 100316D, associated with supernova SN 2010bh and detected by Swift, is one of the nearest gamma-ray burst (GRB)-supernovae (SNe) ever observed (z = 0.059). This provides us with a unique opportunity to study the explosion environment on {approx}kpc scale in relation to the host galaxy complex. Here we present spatially resolved spectrophotometry of the host galaxy, focusing on both the explosion site and the brightest star-forming regions. Using these data, we extract the spatial profiles of the relevant emission features (H{alpha}, H{beta}, [O III]{lambda}5007, and [N II]{lambda}6584) and use these profiles to examine variations in metallicity and star formation rate (SFR) as a function of position in the host galaxy. We conclude that GRB 100316D/SN2010bh occurred in a low-metallicity host galaxy, and that the GRB-SN explosion site corresponds to the region with the lowest metallicity and highest SFR sampled by our observations.

  8. Host Galaxies of Long-Duration Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Bagley, Megan; Kewley, L. J.; Levesque, E. M.

    2009-01-01

    Long-duration gamma-ray bursts (GRBs) are associated with the deaths of massive, short-lived stars, and thus may be useful in tracking star formation in the universe. However, GRB progenitor models suggest that they might occur only in low-metallicity environments, introducing a bias into star formation studies. Presented here are the high-resolution spectra of two GRB host galaxies, one at z 0.03 and the other at z 0.7. The nearby galaxy, the host of GRB 060218, has a low metallicity, but one that is comparable to local galaxies of similar luminosity. It has little to no extinction and a star formation rate of 2x10-2 M⊙yr-1. The metallicity of the more distant galaxy, the host of GRB 991208, is not well constrained because the Hα and [N II] lines are redshifted into the near infrared and were not observed. It has a star formation rate of 1-9 M⊙yr-1 and, unlike the majority of GRB hosts, is dusty. These two galaxies will eventually be a part of a larger sample of GRB hosts. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawai'i's Institute for Astronomy and funded by the NSF.

  9. Searching for Progenitor Clues in the Local Environments of Long GRB Hosts

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter; Berger, Edo

    2015-01-01

    This study explores the sub-galactic environments in the host galaxies of Long Gamma-Ray Bursts (GRBs) to shed light on their progenitor population. Pre-Swift studies indicate GRB positions to be correlated with star formation, consistent with the standard picture of long GRBs originating from massive star explosions. We set out to test this using data accumulated over the last decade for Swift bursts. Using late-time HST imaging of a sample of 100 long GRB events and relative astrometry from ground-based afterglow detections we measure the projected offsets of long GRBs from their host centers. As the host centers are often not well-defined for the typically disturbed and irregular morphologies of long GRB hosts, we also employ a morphology-independent technique of assessing the relative brightness of the GRB site compared to the total host light distribution. As this study is currently in progress, preliminary results will be presented. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1144152.

  10. A quiescent galaxy at the position of the long GRB 050219A

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Piranomonte, S.; Savaglio, S.; Palazzi, E.; Michałowski, M. J.; Klose, S.; Hunt, L. K.; Amati, L.; Elliott, J.; Greiner, J.; Guidorzi, C.; Japelj, J.; Kann, D. A.; Lo Faro, B.; Nicuesa Guelbenzu, A.; Schulze, S.; Vergani, S. D.; Arnold, L. A.; Covino, S.; D'Elia, V.; Ferrero, P.; Filgas, R.; Goldoni, P.; Küpcü Yoldaş, A.; Le Borgne, D.; Pian, E.; Schady, P.; Stratta, G.

    2014-12-01

    Context. Long-duration gamma-ray bursts (LGRBs) are produced by the collapse of very massive stars. Because of the short life time of their progenitors, LGRBs pinpoint star-forming galaxies. Recent studies demonstrate that LGRBs populate all types of star-forming galaxies from sub-luminous, blue compact dwarfs to luminous infrared galaxies. Aims: We present here a multi-band search for the host galaxy of the long dark GRB 050219A within the enhanced Swift/XRT error circle. We aim to characterise the properties of its host galaxy and compare them with those of other LGRB host galaxies. Methods: We used spectroscopic observations acquired with VLT/X-Shooter to determine the redshift and star-formation rate of the most probable host galaxy identified on the basis of a chance probability criterion. We compared the results with the optical and infrared spectral energy distribution obtained with Swift/UVOT, the seven-channel imager GROND at the 2.2-m telescope on La Silla and the Herschel Space Observatory, supplemented by archival observations obtained with FORS2 at the ESO/VLT, the Spitzer Space Telescope, and the GALEX survey. Results: The most probable host galaxy of the genuine long-duration GRB 050219A is a 3 Gyr-old early-type galaxy at z = 0.211. It is characterised by a ratio of star-formation rate to stellar mass (specific star-formation rate) of ~ 6 × 10-12 yr-1 that is unprecedentedly low when compared to all known LGRB host galaxies. Its properties resemble those of post-starburst galaxies. Conclusions: GRB 050219A might be the first known long burst to explode in a quiescent early-type galaxy. This would be further evidence that GRBs can explode in all kinds of galaxies, with the only requirement being an episode of high-mass star formation. Based on observations collected with GROND at the 2.2 m telescope of the La Silla Observatory, Chile (PI: Greiner), at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (089.A-0843, PI

  11. GRB 051008: a long, spectrally hard dust-obscured GRB in a Lyman-break galaxy at z ≈ 2.8

    NASA Astrophysics Data System (ADS)

    Volnova, A. A.; Pozanenko, A. S.; Gorosabel, J.; Perley, D. A.; Frederiks, D. D.; Kann, D. A.; Rumyantsev, V. V.; Biryukov, V. V.; Burkhonov, O.; Castro-Tirado, A. J.; Ferrero, P.; Golenetskii, S. V.; Klose, S.; Loznikov, V. M.; Minaev, P. Yu.; Stecklum, B.; Svinkin, D. S.; Tsvetkova, A. E.; de Ugarte Postigo, A.; Ulanov, M. V.

    2014-08-01

    We present observations of the dark gamma-ray burst GRB 051008 provided by Swift/BAT, Swift/XRT, Konus-WIND, INTEGRAL/SPI-ACS in the high-energy domain and the Shajn, Swift/UVOT, Tautenburg, NOT, Gemini and Keck I telescopes in the optical and near-infrared bands. The burst was detected only in gamma- and X-rays and neither a prompt optical nor a radio afterglow was detected down to deep limits. We identified the host galaxy of the burst, which is a typical Lyman-break galaxy (LBG) with R-magnitude of 24.06 ± 0.10 mag. A redshift of the galaxy of z = 2.77_{-0.20}^{+0.15} is measured photometrically due to the presence of a clear, strong Lyman-break feature. The host galaxy is a small starburst galaxy with moderate intrinsic extinction (AV = 0.3) and has a star formation rate of ˜60 M⊙ yr-1 typical for LBGs. It is one of the few cases where a GRB host has been found to be a classical LBG. Using the redshift we estimate the isotropic-equivalent radiated energy of the burst to be Eiso = (1.15 ± 0.20) × 1054 erg. We also provide evidence in favour of the hypothesis that the darkness of GRB 051008 is due to local absorption resulting from a dense circumburst medium.

  12. GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09

    NASA Astrophysics Data System (ADS)

    Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano

    2015-02-01

    We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.

  13. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-03-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  14. Supernovae without host galaxies?. Hypervelocity stars in foreign galaxies

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Grunden, P.; Bomans, D. J.

    2011-12-01

    Context. Harvesting the SAI supernova catalog, the most complete list of supernovae (SNe) currently available, we search for SNe that apparently do not occur within a distinct host galaxy but lie a great distance (several arcmin) apart from the host galaxy given in the catalog or even show no sign of an identifiable galaxy in their direct vicinity. Aims: We attempt to distinguish between two possible explanations of this host-lessness of a fraction of reported SNe, namely (i) that a host galaxy is too faint (of too low surface brightness) to be detected within the limits of currently available surveys (presumably a low surface brightness galaxy) or (ii) the progenitor of the SN is a hypervelocity star (HVS) that exploded kiloparsecs away from its host galaxy. Methods: We use deep imaging to test the first explanation. If no galaxy is identified within our detection limit of ~27 mag arcsec-2, which is the central surface brightness of the faintest known LSB galaxy so far, we discard this explanation and propose that the SN, after several other checks, had a hypervelocity star progenitor. We focus on observations for which this is the case and give lower limits to the actual space velocities of the progenitors, making them the first hypervelocity stars known in galaxies other than our own Milky Way. Results: Analyzing a selected subsample of five host-less SNe, we find one, SN 2006bx in UGC 5434, is a possible hypervelocity progenitor category with a high probability, exhibiting a projected velocity of ~800 km s-1. SN 1969L in NGC 1058 is most likely an example of a very extended star-forming disk visible only in the far-UV, but not in the optical wavebands. Therefore, this SN is clearly due to in situ star formation. This mechanism may also apply to two other SNe that we investigated (SN 1970L and SN 1997C), but this cannot be determined with certainty. Another SN, SN 2005 nc which is associated with a gamma-ray burst (GRB 050525), is a special case that is not

  15. Supernovae in paired host galaxies

    NASA Astrophysics Data System (ADS)

    Nazaryan, T. A.; Petrosian, A. R.; Hakobyan, A. A.; Adibekyan, V. Zh.; Kunth, D.; Mamon, G. A.; Turatto, M.; Aramyan, L. S.

    2014-12-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe with respect to the preferred direction toward neighbor galaxy is found to be isotropic and independent of kinematical properties of the galaxy pair.

  16. The warm, the excited, and the molecular gas: GRB 121024A shining through its star-forming galaxy

    NASA Astrophysics Data System (ADS)

    Friis, M.; De Cia, A.; Krühler, T.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P. M.; Watson, D. J.; Malesani, D.; Gorosabel, J.; Starling, R. L. C.; Jakobsson, P.; Varela, K.; Wiersema, K.; Drachmann, A. P.; Trotter, A.; Thöne, C. C.; de Ugarte Postigo, A.; D'Elia, V.; Elliott, J.; Maturi, M.; Goldoni, P.; Greiner, J.; Haislip, J.; Kaper, L.; Knust, F.; LaCluyze, A.; Milvang-Jensen, B.; Reichart, D.; Schulze, S.; Sudilovsky, V.; Tanvir, N.; Vergani, S. D.

    2015-07-01

    We present the first reported case of the simultaneous metallicity determination of a gamma-ray burst (GRB) host galaxy, from both afterglow absorption lines as well as strong emission-line diagnostics. Using spectroscopic and imaging observations of the afterglow and host of the long-duration Swift GRB 121024A at z = 2.30, we give one of the most complete views of a GRB host/environment to date. We observe a strong damped Lyα absorber (DLA) with a hydrogen column density of log N({H I}) = 21.88± 0.10, H2 absorption in the Lyman-Werner bands (molecular fraction of log(f) ≈-1.4; fourth solid detection of molecular hydrogen in a GRB-DLA), the nebular emission lines Hα, Hβ, [O II], [O III] and [N II], as well as metal absorption lines. We find a GRB host galaxy that is highly star forming (SFR ˜ 40 M⊙ yr-1), with a dust-corrected metallicity along the line of sight of [Zn/H]corr = -0.6 ± 0.2 ([O/H] ˜ -0.3 from emission lines), and a depletion factor [Zn/Fe] = 0.85 ± 0.04. The molecular gas is separated by 400 km s-1 (and 1-3 kpc) from the gas that is photoexcited by the GRB. This implies a fairly massive host, in agreement with the derived stellar mass of log(M★/M⊙) = 9.9^{+0.2}_{-0.3}. We dissect the host galaxy by characterizing its molecular component, the excited gas, and the line-emitting star-forming regions. The extinction curve for the line of sight is found to be unusually flat (RV ˜ 15). We discuss the possibility of an anomalous grain size distributions. We furthermore discuss the different metallicity determinations from both absorption and emission lines, which gives consistent results for the line of sight to GRB 121024A.

  17. Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-08-01

    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and gamma-ray burst (GRB) host galaxies by the detailed modelling of the spectra. The results show that : 1) shock velocities are lower in long period GRB (LGRB) than in SN host galaxies. 2) O/H relative abundance in SN hosts are scattered within a range 8.0 <12+log(O/H)<8.85 but they are close to solar in LGRB hosts. N/H are lower than solar for both SN and LGRB. 3) The starburst temperatures within a few SN hosts reach Ts >10^5 K. Ts in LGRB hosts are 3-8 10^4 K. 4) Ha increases with the ionization parameter U. We suggest that SN-host symbiosis is stronger in terms of host galaxy activity than GRB-host in the range of energies related to the near UV - optical - near IR spectra.

  18. Detection of Three Gamma-ray Burst Host Galaxies at z ˜ 6

    NASA Astrophysics Data System (ADS)

    McGuire, J. T. W.; Tanvir, N. R.; Levan, A. J.; Trenti, M.; Stanway, E. R.; Shull, J. M.; Wiersema, K.; Perley, D. A.; Starling, R. L. C.; Bremer, M.; Stocke, J. T.; Hjorth, J.; Rhoads, J. E.; Curtis-Lake, E.; Schulze, S.; Levesque, E. M.; Robertson, B.; Fynbo, J. P. U.; Ellis, R. S.; Fruchter, A. S.

    2016-07-01

    Long-duration gamma-ray bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with the deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts z = 5.913 (GRB 130606A), z = 6.295 (GRB 050904), and z = 6.327 (GRB 140515A) in the F140W (wide-JH band, {λ }{{obs}}˜ 1.4 μ {{m}}) filter. The hosts have magnitudes (corrected for Galactic extinction) of {m}{λ {obs},{AB}}={26.34}-0.16+0.14,{27.56}-0.22+0.18, and {28.30}-0.33+0.25, respectively. In all three cases, the probability of chance coincidence of lower redshift galaxies is ≲ 2 % , indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high-redshift (z\\gt 5) GRB host galaxies in emission. The galaxies have luminosities in the range 0.1–0.6 {L}z=6* (with {M}1600* =-20.95+/- 0.12) and half-light radii in the range 0.6–0.9 {{kpc}}. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at z˜ 6. Spectroscopic analysis of the GRB afterglows indicate low metallicities ([{{M/H}}]≲ -1) and low dust extinction ({A}{{V}}≲ 0.1) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxy’s luminosity for its possible star-formation history and consider the potential for emission line metallicity determination with the upcoming James Webb Space Telescope.

  19. GRB hosts and the search for missing star formation at high redshift

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2014-10-01

    Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and the formation of galaxies at early times. Two common, complementary approaches are Lyman-Break-Galaxy (LBG) surveys, providing large samples, and Gamma-Ray-Bursts (GRBs) which can sign-post star formation even in the smallest galaxies. Recent results of both methods have found evidence for a dominant population of very faint star-forming galaxies at z>5, representing a continuation of the steepening of the galaxy luminosity function with redshift. However, LBG surveys are affected by possible incompleteness and contamination, while the magnitude limit means very large correction factors must be applied to account for these unseen galaxies. On the other hand GRBs suffer small number statistics and have their own selection biases. We propose to construct a new sample of six 6GRB hosts with deep imaging in order to assess the proportion of star formation in very faint galaxies during at this key epoch. This is a critical issue, since only if faint galaxies dominate global star formation can UV light from stars sustain reionization. We will carry out WFC3/IR (F140W) imaging to a limit approaching that of the current HUDF observations (M(AB)~-18) in all cases. Prior knowledge of the exact locations and redshifts of the targets means that this can be achieved relatively economically, since we can accept a lower level of significance and single filter. This method depends only on GRBs and SF tracing UV light (both likely at high-z), and in turn will constrain the completeness correction to be applied to LBG surveys in order to derive the ionizing photon budget.

  20. LONG GRBs ARE METALLICITY-BIASED TRACERS OF STAR FORMATION: EVIDENCE FROM HOST GALAXIES AND REDSHIFT DISTRIBUTION

    SciTech Connect

    Wang, F. Y.; Dai, Z. G. E-mail: dzg@nju.edu.cn

    2014-07-01

    We investigate the mass distribution of long gamma-ray burst (GRB) host galaxies and the redshift distribution of long GRBs by considering that long GRBs occur in low-metallicity environments. We calculate the upper limit on the stellar mass of a galaxy which can produce long GRBs by utilizing the mass-metallicity (M-Z) relation of galaxies. After comparing with the observed GRB host galaxies masses, we find that the observed GRB host galaxy masses can fit the predicted masses well if GRBs occur in low-metallicity 12 + log (O/H){sub KK04} < 8.7. GRB host galaxies have low metallicity, low mass, and high star formation rate compared with galaxies of seventh data release of the Sloan Digital Sky Survey. We also study the cumulative redshift distribution of the latest Swift long GRBs by adding dark GRBs and 10 new GRBs redshifts from the TOUGH survey. The observed discrepancy between the GRB rate and the star formation history can be reconciled by considering that GRBs tend to occur in low-metallicity galaxies with 12 + log (O/H){sub KK04} < 8.7. We conclude that the metallicity cutoff that can produce long GRBs is about 12 + log (O/H){sub KK04} < 8.7 from the host mass distribution and redshift distribution.

  1. Probing dust-obscured star formation in the most massive gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Greiner, Jochen; Michałowski, Michał J.; Klose, Sylvio; Hunt, Leslie K.; Gentile, Gianfranco; Kamphuis, Peter; Herrero-Illana, Rubén; Wieringa, Mark; Krühler, Thomas; Schady, Patricia; Elliott, Jonathan; Graham, John F.; Ibar, Eduardo; Knust, Fabian; Nicuesa Guelbenzu, Ana; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra

    2016-08-01

    Context. As a result of their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow the pinpointing of star formation in galaxies independent of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate star formation history over cosmic time. Aims: About half of the optical afterglows of long-duration GRBs are missed owing to dust extinction and are primarily located in the most massive GRB hosts. It is important to investigate the amount of obscured star formation in these GRB host galaxies to understand this bias. Methods: Radio emission of galaxies correlates with star formation, but does not suffer extinction as do the optical star formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-based and optical-based star formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Results: Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any radio emission related to star formation in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We detect radio emission from the position of GRB 020819B, but argue that it is in large part, if not completely, due to afterglow contamination. Conclusions: Half of our sample has radio-derived SFR limits, which are only a factor 2-3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust. Based on observations collected with ATCA under ID C2718, and at VLA under ID 13B-017.

  2. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  3. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    SciTech Connect

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-04-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2{sigma} upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M{sub Sun} yr{sup -1}, respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  4. AGN and their host galaxies

    NASA Astrophysics Data System (ADS)

    Steinborn, L. K.; Dolag, K.; Hirschmann, M.; Remus, R.-S.; Teklu, A. F.

    2016-06-01

    Large scale cosmological hydrodynamic simulations are an important tool to study the co-evolution between black holes (BHs) and their host galaxies. However, in order to model the accretion onto BHs and AGN feedback we need sub-grid models which contain several free parameters. The choice of these parameters has a significant impact on the properties of the BHs and their host galaxies. Therefore, we improve the accretion model and the AGN feedback model based on both theory and observations to eliminate most free parameters. In that way, the slope of the observed relation between BH mass and stellar mass is reproduced self-consistently. We performed a few extremely large simulation runs as part of the Magneticum Pathfinder simulation set, combining a high resolution with very large cosmological volumes, enabling us to study for example dual AGN, the role of galaxy mergers and AGN clustering properties.

  5. A Search for Host Galaxies of 24 Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ovaldsen, J.-E.; Jaunsen, A. O.; Fynbo, J. P. U.; Hjorth, J.; Thöne, C. C.; Féron, C.; Xu, D.; Selj, J. H.; Teuber, J.

    2007-06-01

    We report the results from observations of 24 gamma-ray burst (GRB) fields from 2005 and 2006 undertaken at the Danish 1.54 m telescope at ESO/La Silla. Photometry and positions for two previously unpublished host galaxy candidates (GRBs 050915 and 051021) are presented, as well as for eight other detected objects that are either known GRB hosts or candidate hosts. The candidates are suitable for spectroscopic follow-up in order to have their redshifts and other physical characteristics determined. In the cases where no likely host candidate is detected inside the refined Swift XRT error circle, we are still able to put interesting and rather deep limits on the host magnitude. On the basis of our detections and upper limits, we have performed simulations that suggest that the host galaxies are drawn from a fainter sample than those in previous (i.e., pre-Swift) studies.

  6. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    SciTech Connect

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D.; Hartoog, O. E.; Kaper, L.; Wiersema, K.; D'Elia, V.; Afonso, P. M. J.; Covino, S.; Flores, H.; Goldoni, P.; Jakobsson, P.; Klose, S.; Levan, A. J.; and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  7. Interpreting short gamma-ray burst progenitor kicks and time delays using the host galaxy-dark matter halo connection

    SciTech Connect

    Behroozi, Peter S.; Ramirez-Ruiz, Enrico; Fryer, Christopher L.

    2014-09-10

    Nearly 20% of short gamma-ray bursts (sGRBs) have no observed host galaxies. Combining this finding with constraints on galaxies' dark matter halo potential wells gives strong limits on the natal kick velocity distribution for sGRB progenitors. For the best-fitting velocity distribution, one in five sGRB progenitors receives a natal kick above 150 km s{sup –1}, consistent with merging neutron star models but not with merging white dwarf binary models. This progenitor model constraint is robust to a wide variety of systematic uncertainties, including the sGRB progenitor time-delay model, the Swift redshift sensitivity, and the shape of the natal kick velocity distribution. We also use constraints on the galaxy-halo connection to determine the host halo and host galaxy demographics for sGRBs, which match extremely well with available data. Most sGRBs are expected to occur in halos near 10{sup 12} M {sub ☉} and in galaxies near 5 × 10{sup 10} M {sub ☉} (L {sub *}); unobserved faint and high-redshift host galaxies contribute a small minority of the observed hostless sGRB fraction. We find that sGRB redshift distributions and host galaxy stellar masses weakly constrain the progenitor time-delay model; the active versus passive fraction of sGRB host galaxies may offer a stronger constraint. Finally, we discuss how searches for gravitational wave optical counterparts in the local universe can reduce follow-up times using these findings.

  8. Prompt, early and afterglow optical observations of five γ-ray bursts: GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A

    NASA Astrophysics Data System (ADS)

    Gorbovskoy, E. S.; Lipunova, G. V.; Lipunov, V. M.; Kornilov, V. G.; Belinski, A. A.; Shatskiy, N. I.; Tyurina, N. V.; Kuvshinov, D. A.; Balanutsa, P. V.; Chazov, V. V.; Kuznetsov, A.; Zimnukhov, D. S.; Kornilov, M. V.; Sankovich, A. V.; Krylov, A.; Ivanov, K. I.; Chvalaev, O.; Poleschuk, V. A.; Konstantinov, E. N.; Gress, O. A.; Yazev, S. A.; Budnev, N. M.; Krushinski, V. V.; Zalozhnich, I. S.; Popov, A. A.; Tlatov, A. G.; Parhomenko, A. V.; Dormidontov, D. V.; Senik, V.; Yurkov, V. V.; Sergienko, Yu. P.; Varda, D.; Kudelina, I. P.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Jelinek, M.; Tello, J. C.

    2012-04-01

    We present the results of the prompt, early and afterglow optical observations of five γ-ray bursts (GRBs): GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A. These observations were made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II Net), the 1.5-m telescope of the Sierra Nevada Observatory and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before the cessation of γ-ray emission, at 113 and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted in two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. A more detailed analysis of GRB 100901A and GRB 100906A, supplemented by Swift data, provides the following results and indicates different origins for the prompt optical radiation in the two bursts. The light-curve patterns and spectral distributions suggest that there is a common production site for the prompt optical and high-energy emission in GRB 100901A. The results of the spectral fits for GRB 100901A in the range from optical to X-ray favour power-law energy distributions and a consistent value of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve, suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. We obtain an upper limit on the value of the optical extinction on the host of GRB 100906A.

  9. CONSTRAINING STELLAR PROPERTIES OF INTERVENING DAMPED Ly{alpha} AND Mg II ABSORBING GALAXIES TOWARD GRB 050730

    SciTech Connect

    Minowa, Y.; Okoshi, K.; Kobayashi, N.; Takami, H.

    2012-09-15

    We performed multiband deep imaging of the field around GRB 050730 to identify the host galaxies of intervening absorbers, which consist of a damped Ly{alpha} absorption (DLA) system at z{sub abs} = 3.564, a sub-DLA system at z{sub abs} = 3.022, and strong Mg II absorption systems at z{sub abs} = 1.773 and 2.253. Our observations were performed after the gamma-ray burst afterglow had disappeared. Thus, our imaging survey has a higher sensitivity to the host galaxies of the intervening absorbers than the normal imaging surveys in the direction of QSOs, for which the QSO glare tends to hide the foreground galaxies. In this deep imaging survey, we could not detect any unambiguous candidates for the host galaxies of the intervening absorbers. Using the 3{sigma} upper limit of the flux in the optical to mid-infrared observing bands, which corresponds to the UV to optical bands in the rest frame of the intervening absorbers, we constrained the star formation rates and stellar masses of the hosts. We estimated the star formation rates for the intervening absorbers to be {approx}< 2.5 M{sub Sun} yr{sup -1} for z > 3 DLAs and {approx}< 1.0 M{sub Sun} yr{sup -1} for z {approx} 2 Mg II systems. Their stellar masses are estimated to be several times 10{sup 9} M{sub Sun} or smaller for all intervening galaxies. These properties are comparable to dwarf galaxies, rather than the massive star-forming galaxies commonly seen in the z > 2 galaxy surveys based on emission-line selection or color selection.

  10. LUMINOSITY DISTRIBUTION OF GAMMA-RAY BURST HOST GALAXIES AT REDSHIFT z = 1 IN COSMOLOGICAL SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS: IMPLICATIONS FOR THE METALLICITY DEPENDENCE OF GRBs

    SciTech Connect

    Niino, Yuu; Totani, Tomonori; Choi, Jun-Hwan; Nagamine, Kentaro; Zhang Bing; Kobayashi, Masakazu A. R.

    2011-01-10

    We study the relationship between the metallicity of gamma-ray burst (GRB) progenitors and the probability distribution function (PDF) of GRB host galaxies as a function of luminosity using cosmological hydrodynamic simulations of galaxy formation. We impose a maximum limit to the gas metallicity in which GRBs can occur and examine how the predicted luminosity PDF of GRB host galaxies changes in the simulation. We perform the Kolmogorov-Smirnov test and show that the result from our simulation agrees with the observed luminosity PDF of core-collapse supernovae (SNe) host galaxies when we assume that the core-collapse SNe trace star formation. When we assume that GRBs occur only in a low-metallicity environment with Z {approx}< 0.1 Z{sub sun}, GRBs occur in lower luminosity galaxies, and the simulated luminosity PDF becomes quantitatively consistent with the observed one. The observational bias against the host galaxies of optically dark GRBs owing to dust extinction may be another reason for the lower luminosities of GRB host galaxies, but the observed luminosity PDF of GRB host galaxies cannot be reproduced solely by the dust bias in our simulation.

  11. Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Michałowski, M. J.; Bourne, N.; Baes, M.; Fritz, J.; Cooray, A.; De Looze, I.; De Zotti, G.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S. J.; Scott, D.; Smith, D. J. B.; Smith, M. W. L.; Symeonidis, M.; Valiante, E.

    2015-04-01

    Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 BeppoSAX and Swift GRB host galaxies (at an average redshift of z = 3.1) located in the Herschel Astrophysical Terahertz Large Area Survey, the Herschel Virgo Cluster Survey, the Herschel Fornax Cluster Survey, the Herschel Stripe 82 Survey and the Herschel Multi-tiered Extragalactic Survey, totalling 880 deg2, or ˜3 per cent of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale Herschel survey - therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100-500 μm, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of <114 M⊙ yr-1. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic SFR density in an unbiased way, i.e. that the fraction of GRB hosts with SFR > 500 M⊙ yr-1 is consistent with the contribution of such luminous galaxies to the cosmic star formation density.

  12. Massive stars formed in atomic hydrogen reservoirs: H I observations of gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.; Krumholz, M. R.; Tanvir, N. R.; Kamphuis, P.; Burlon, D.; Baes, M.; Basa, S.; Berta, S.; Castro Cerón, J. M.; Crosby, D.; D'Elia, V.; Elliott, J.; Greiner, J.; Hunt, L. K.; Klose, S.; Koprowski, M. P.; Le Floc'h, E.; Malesani, D.; Murphy, T.; Nicuesa Guelbenzu, A.; Palazzi, E.; Rasmussen, J.; Rossi, A.; Savaglio, S.; Schady, P.; Sollerman, J.; de Ugarte Postigo, A.; Watson, D.; van der Werf, P.; Vergani, S. D.; Xu, D.

    2015-10-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line of sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the AustraliaTelescope Compact Array, implying high levels of atomic hydrogen (H i), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H i-to-H2 conversion is very efficient, which rapidly exhaust molecular gas), as has been theoretically shown to be possible. This can happen in low-metallicity gas near the onset of star formation because cooling of gas (necessary for star formation) is faster than the H i-to-H2 conversion. Indeed, large atomic gas reservoirs, together with low molecular gas masses, stellar, and dust masses are consistent with GRB hosts being preferentially galaxies which have very recently started a star formation episode after accreting metal-poor gas from the intergalactic medium. This provides a natural route for forming GRBs in low-metallicity environments. The gas inflow scenario is also consistent with the existence of the companion H I object with no optical counterpart ~19 kpc from the GRB 060505 host, and with the fact that the H I centroids of the GRB 980425 and 060505 hosts do not coincide with optical centres of these galaxies, but are located close to the GRB positions.

  13. Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-08-01

    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and γ-ray burst (GRB) host galaxies using a detailed modelling of the spectra. The coupled effect of shocks and radiation from the starburst within the host galaxy is considered. We have found the following. (i) Shock velocities are lower in long-period GRBs (LGRBs) than in SN host galaxies. (ii) O/H relative abundances in SN hosts are scattered within a range 8.0 < 12+log(O/H) < 8.85 but they are close to solar in LGRB hosts. LGRB galaxies hosting Wolf-Rayet stars have He/H = 0.13 in a few objects. (iii) The starburst temperatures within a few SN hosts are relatively high (T* > 105 K). The values of T* in LGRB hosts are ˜3-8 × 104 K. (iv) The Hα absolute flux calculated from the emitting clouds of a few SN hosts at 0.1 < z < 0.3 is sensibly higher than in the other galaxies. Hα increases sharply with the ionization parameter U. The present analysis suggests that the SN-host symbiosis is stronger than for GRBs in terms of activity. The physical and chemical conditions in the GRB host galaxies are similar to those in starburst galaxies within a large redshift range.

  14. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  15. LINKING SHORT GAMMA-RAY BURSTS AND THEIR HOST GALAXIES

    SciTech Connect

    Rhoads, James E.

    2010-02-01

    The luminosities of short-duration gamma-ray burst (SGRB) host galaxies appear to be anticorrelated with both the isotropic equivalent gamma-ray energy and the gamma-ray luminosity of the explosions, based on a sample of 12 bursts with host galaxy redshifts and photometry. The correlation does depend on the correct identification of the GRB 050509b host, but is otherwise robust. In particular, simple observational selection effects only strengthen the statistical significance of this correlation, from approx95% to approx99%. The correlation may indicate that there are two physically distinct groups of SGRBs. If so, it requires that the more luminous class of explosions be associated with the younger class of progenitors. Alternatively, it could be due to a continuous distribution of burst and host properties, in which case it could be used as a crude SGRB distance indicator. As one possible explanation, we find that the effect of binary neutron star masses on inspiral time and energy reservoir produces a correlation of the appropriate sign, but does not automatically reproduce the correlation slope or the full range of SGRB energy scales. If confirmed by larger samples, this correlation will provide a valuable new constraint on SGRB progenitor models.

  16. Gamma-ray burst afterglows as probes of their host galaxies and the cosmos

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino

    2010-12-01

    Gamma-ray Bursts (GRBs) represent the sole class of catastrophic phenomena seen over almost the entire history of the Universe. Their extreme luminosities in high energy gamma-ray radiation make them readily detectable, even with relatively small satellite-based detectors, out to the earliest cosmic epochs. Moreover, the brilliance of their fading afterglow light, routinely observed in X-ray, optical, near-infrared, and radio wavelengths, allows them to be exploited -- for hours, days, or weeks -- as cosmic lighthouses, probing the conditions of gas and dust along the line of sight, through their host galaxies and the cosmos at large. Since the November 2004 launch of Swift, this GRB-focused NASA mission has discovered more than 500 GRBs, in almost all cases reporting the burst coordinates to ground-based observers within seconds of the event. The availability of prompt burst positions from Swift, combined with promptly-reported flux measurements from instruments on Swift and an array of ground-based robotic telescopes, have enabled targeted spectroscopic campaigns that have gathered detailed observations of the young, bright afterglows of hundreds of these events. This thesis reports the results of my own efforts over the past 5 years, analyzing imaging and spectroscopic observations of Swift-detected GRBs as triggered according to my own requests, or as gathered from public data archives. In Chapter 2, I discuss our follow-up campaign for GRB090429B, one of our best "extreme redshift" (z > 8) candidates. This burst followed closely on the spectroscopicallyconfirmed z = 8.2 GRB090423, and our multiwavelength observations and SED modeling demonstrate the value and limitation of such studies, in cases where a spectroscopic redshift cannot be gathered in a timely fashion. I also address the importance of such extreme-redshift events from a cosmological perspective. In Chapter 3, I use high-resolution GRB afterglow spectra to study the properties of intervening

  17. Integral field spectroscopy of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Wisotzki, L.; Sánchez, S. F.; Christensen, L.; Becker, T.; Kelz, A.; Roth, M. M.

    2004-02-01

    We describe a project to study the state of the ISM in ˜20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe the development of the method to access the stellar and gas components of the spectrum without the strong nuclear emission, in order to access the host galaxy properties in the central region. It shows that integral field spectroscopy promises to be very efficient in studying the gas distribution and its velocity field, and also the spatially resolved stellar population in the host galaxies of luminous AGN.

  18. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    French, K. Decker; Arcavi, Iair; Zabludoff, Ann

    2016-02-01

    Tidal Disruption Events (TDEs) are transient events observed when a star passes close enough to a supermassive black hole to be tidally destroyed. Many TDE candidates have been discovered in host galaxies whose spectra have weak or no line emission yet strong Balmer line absorption, indicating a period of intense star formation that has recently ended. As such, TDE host galaxies fall into the rare class of quiescent Balmer-strong galaxies. Here, we quantify the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) with spectral properties like those of TDE hosts, determining the extent to which TDEs are over-represented in such galaxies. Galaxies whose spectra have Balmer absorption {{H}}{δ }{{A}} - σ(H{δ }{{A}}) > 4 Å (where σ(H{δ }{{A}}) is the error in the Lick {{H}}{δ }{{A}} index) and Hα emission equivalent width (EW) < 3 Å have had a strong starburst in the last ˜Gyr. They represent 0.2% of the local galaxy population, yet host 3 of 8 (37.5%) optical/UV-selected TDE candidates. A broader cut, {{H}}{δ }{{A}}\\quad \\gt 1.31 Å and Hα EW < 3 Å, nets only 2.3% of SDSS galaxies, but 6 of 8 (75%) optical/UV TDE hosts. Thus, quiescent Balmer-strong galaxies are over-represented among the TDE hosts by a factor of 33-190. The high-energy-selected TDE Swift J1644 also lies in a galaxy with strong Balmer lines and weak Hα emission, implying a \\gt 80× enhancement in such hosts and providing an observational link between the γ/X-ray-bright and optical/UV-bright TDE classes.

  19. A DETECTION OF MOLECULAR GAS EMISSION IN THE HOST GALAXY OF GRB 080517

    SciTech Connect

    Stanway, E. R.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Van der Laan, T. P. R.

    2015-01-01

    We have observed the host galaxy of the low-redshift, low-luminosity Swift GRB 080517 at 105.8 GHz using the IRAM Plateau de Bure interferometer. We detect an emission line with integrated flux SΔν = 0.39 ± 0.05 Jy km s{sup –1}—consistent both spatially and in velocity with identification as the J = 1-0 rotational transition of carbon monoxide (CO) at the host galaxy redshift. This represents only the third long gamma-ray burst (GRB) host galaxy with molecular gas detected in emission. The inferred molecular gas mass, M{sub H{sub 2}}∼6.3×10{sup 8} M {sub ☉}, implies a gas consumption timescale of ∼40 Myr if star formation continues at its current rate. Similar short timescales appear characteristic of the long GRB population with CO observations to date, suggesting that the GRB in these sources occurs toward the end of their star formation episode.

  20. GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT z {approx}> 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION

    SciTech Connect

    Trenti, Michele; Perna, Rosalba; Levesque, Emily M.; Shull, J. Michael; Stocke, John T.

    2012-04-20

    Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and galaxy formation. Two common complementary approaches are Lyman break galaxy (LBG) surveys for large samples and gamma-ray burst (GRB) observations for sensitivity to SFR in small galaxies. The z {approx}> 4 GRB-inferred SFR is higher than the LBG rate, but this difference is difficult to understand, as both methods rely on several modeling assumptions. Using a physically motivated galaxy luminosity function model, with star formation in dark matter halos with virial temperature T{sub vir} {approx}> 2 Multiplication-Sign 10{sup 4} K (M{sub DM} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }), we show that GRB- and LBG-derived SFRs are consistent if GRBs extend to faint galaxies (M{sub AB} {approx}< -11). To test star formation below the detection limit L{sub lim} {approx} 0.05L*{sub z=3} of LBG surveys, we propose to measure the fraction f{sub det}(L > L{sub lim}, z) of GRB hosts with L > L{sub lim}. This fraction quantifies the missing star formation fraction in LBG surveys, constraining the mass-suppression scale for galaxy formation, with weak dependence on modeling assumptions. Because f{sub det}(L > L{sub lim}, z) corresponds to the ratio of SFRs derived from LBG and GRB surveys, if these estimators are unbiased, measuring f{sub det}(L > L{sub lim}, z) also constrains the redshift evolution of the GRB production rate per unit mass of star formation. Our analysis predicts significant success for GRB host detections at z {approx} 5 with f{sub det}(L > L{sub lim}, z) {approx} 0.4, but rarer detections at z > 6. By analyzing the upper limits on host galaxy luminosities of six z > 5 GRBs from literature data, we infer that galaxies with M{sub AB} > -15 were present at z > 5 at 95% confidence, demonstrating the key role played by very faint galaxies during reionization.

  1. Tomography of a Gamma-ray Burst Progenitor and its Host Galaxy

    NASA Technical Reports Server (NTRS)

    Castro-Tirado, Alberto J.; Moller, Palle; Garcia-Segura, Guillermo; Gorosabel, Javier; Perez, Enrique; deUgartePostigo, Antonio; Solano, Enrique; BarradoyNavascues, David; CastroCeron, Jose Marie; Kouveliotou, Chryssa

    2005-01-01

    We have obtained near-infrared and high-resolution optical spectroscopy of the bright afterglow of the very intense gamma-ray burst recorded on 2002, October 4 (GRB 021004). Besides of line emission in the near-IR allowing an independent measurement of the systemic redshift (z = 2.3304 plus or minus 0.0005), we find several absorption line groups spanning a range of about 3,000 kilometers per second in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 kilometers per second and narrow lines with velocity widths of only approximately 20 kilometers per second. By analogy with QSO absorption line studies, the relative velocities, widths, and degrees of ionization of the lines ("line-locking", "ionization-velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf-Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of approximately 10 solar mass yr(sup -l).

  2. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  3. A Complete Sample of Supernova Host Galaxies

    NASA Astrophysics Data System (ADS)

    Quimby, Robert

    2011-01-01

    Traditionally, supernova surveys have drawn their samples by monitoring pre-selected lists of host galaxies. More recently, some surveys have made efforts to ignore host properties when selecting candidates, but because of limited resources they must usually add additional selection criteria, such as the color or light curve shape of the transient, in order to select the best targets for a specific study. Since 2004, we have conducted a search for supernovae that is designed to select targets irrespective of their host environment, and we have spectroscopic classifications for all of the new transients detected. Here we report on the host galaxies of first 72 supernovae detected by ROTSE-IIIb as part of the Texas Supernova Search and the ROTSE Supernova Verification Project. The supernova sample includes everything from perfectly normal Type Ia and Type II, to spectroscopically peculiar events, to several of the most luminous supernovae ever found. We compare multi-band photometry and spectroscopy of the host galaxy sample to the larger galaxy population. We cannot securely identify host galaxies brighter than -10 mag absolute for four of our discoveries, which suggests that these may be hostless, "tramp supernovae."

  4. Discovery of the nearby long, soft GRB 100316D with an associated supernova

    NASA Astrophysics Data System (ADS)

    Starling, R. L. C.; Wiersema, K.; Levan, A. J.; Sakamoto, T.; Bersier, D.; Goldoni, P.; Oates, S. R.; Rowlinson, A.; Campana, S.; Sollerman, J.; Tanvir, N. R.; Malesani, D.; Fynbo, J. P. U.; Covino, S.; D'Avanzo, P.; O'Brien, P. T.; Page, K. L.; Osborne, J. P.; Vergani, S. D.; Barthelmy, S.; Burrows, D. N.; Cano, Z.; Curran, P. A.; de Pasquale, M.; D'Elia, V.; Evans, P. A.; Flores, H.; Fruchter, A. S.; Garnavich, P.; Gehrels, N.; Gorosabel, J.; Hjorth, J.; Holland, S. T.; van der Horst, A. J.; Hurkett, C. P.; Jakobsson, P.; Kamble, A. P.; Kouveliotou, C.; Kuin, N. P. M.; Kaper, L.; Mazzali, P. A.; Nugent, P. E.; Pian, E.; Stamatikos, M.; Thöne, C. C.; Woosley, S. E.

    2011-03-01

    We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z= 0.0591 ± 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved γ-ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.

  5. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.

    2016-06-01

    A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.

  6. DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Fong, W.; Berger, E.; Chornock, R.; Margutti, R.; Czekala, I.; Zauderer, B. A.; Laskar, T.; Servillat, M.; Levan, A. J.; Tunnicliffe, R. L.; Tanvir, N. R.; Fox, D. B.; Perley, D. A.; Cenko, S. B.; Persson, S. E.; Monson, A. J.; Kelson, D. D.; Birk, C.; Murphy, D.; Anglada, G.

    2013-05-20

    We present observations of the afterglows and host galaxies of three short-duration gamma-ray bursts (GRBs): 100625A, 101219A, and 110112A. We find that GRB 100625A occurred in a z = 0.452 early-type galaxy with a stellar mass of Almost-Equal-To 4.6 Multiplication-Sign 10{sup 9} M{sub Sun} and a stellar population age of Almost-Equal-To 0.7 Gyr, and GRB 101219A originated in a star-forming galaxy at z = 0.718 with a stellar mass of Almost-Equal-To 1.4 Multiplication-Sign 10{sup 9} M{sub Sun }, a star formation rate of Almost-Equal-To 16 M{sub Sun} yr{sup -1}, and a stellar population age of Almost-Equal-To 50 Myr. We also report the discovery of the optical afterglow of GRB 110112A, which lacks a coincident host galaxy to i {approx}> 26 mag, and we cannot conclusively identify any field galaxy as a possible host. From afterglow modeling, the bursts have inferred circumburst densities of Almost-Equal-To 10{sup -4}-1 cm{sup -3} and isotropic-equivalent gamma-ray and kinetic energies of Almost-Equal-To 10{sup 50}-10{sup 51} erg. These three events highlight the diversity of galactic environments that host short GRBs. To quantify this diversity, we use the sample of 36 Swift short GRBs with robust associations to an environment ({approx}1/2 of 68 short bursts detected by Swift to 2012 May) and classify bursts originating from four types of environments: late-type ( Almost-Equal-To 50%), early-type ( Almost-Equal-To 15%), inconclusive ( Almost-Equal-To 20%), and ''host-less'' (lacking a coincident host galaxy to limits of {approx}> 26 mag; Almost-Equal-To 15%). To find likely ranges for the true late- and early-type fractions, we assign each of the host-less bursts to either the late- or early-type category using probabilistic arguments and consider the scenario that all hosts in the inconclusive category are early-type galaxies to set an upper bound on the early-type fraction. We calculate most likely ranges for the late- and early-type fractions of Almost-Equal-To 60

  7. HOST GALAXIES AS GAMMA-RAY BURST DISTANCE INDICATORS

    SciTech Connect

    D. BAND; ET AL

    2001-01-01

    We calculate the distributions of the total burst energy, the peak luminosity and the X-ray afterglow energy using burst observations and distances to the associated host galaxies. To expand the sample, we include redshift estimates for host galaxies without spectroscopic redshifts. The methodology requires a model of the host galaxy population; we find that in the best model the burst rate is proportional to the host galaxy luminosity at the time of the burst.

  8. Radio constraints on heavily obscured star formation within dark gamma-ray burst host galaxies

    SciTech Connect

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of 'dark' bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  9. Radio Constraints on Heavily Obscured Star Formation within Dark Gamma-Ray Burst Host Galaxies

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of "dark" bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  10. The galaxy hosts and large-scale environments of short-hard (gamma)-ray bursts

    SciTech Connect

    Prochaska, J X; Bloom, J S; Chen, H; Foley, R J; Perley, D A; Ramirez-Ruiz, E; Granot, J; Lee, W H; Pooley, D; Alatalo, K; Hurley, K; Cooper, M C; Dupree, A K; Gerke, B F; Hansen, B S; Kalirai, J S; Newman, J A; Rich, R M; Richer, H; Stanford, S A; Stern, D; van Breugel, W

    2006-04-07

    The nature of the progenitors of short duration, hard spectrum, gamma-ray bursts (GRBs) has remained a mystery. Even with the recent localizations of four short-hard GRBs, no transient emission has been found at long wavelengths that directly constrains the progenitor nature. Instead, as was the case in studying the different morphological subclasses of supernovae and the progenitors of long-duration GRBs, we suggest that the progenitors of short bursts can be meaningfully constrained by the environment in which the bursts occur. Here we present the discovery spectra of the galaxies that hosted three short-hard GRBs and the spectrum of a fourth host. The results indicate that these environments, both at the galaxy scale and galaxy-cluster scale, differ substantially from those of long-soft GRBs. The spatial offset of three bursts from old and massive galaxy hosts strongly favors an origin from the merger of compact stellar remnants, such as double neutron stars or a neutron-star black hole binary. The star-forming host of another GRB provides confirmation that, like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types. This indicates a class of progenitors with a wide distribution of delay times between formation and explosion.

  11. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  12. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  13. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  14. GRB 130606A as a Probe of the Intergalactic Medium and the Interstellar Medium in a Star-forming Galaxy in the First Gyr after the Big Bang

    NASA Astrophysics Data System (ADS)

    Chornock, Ryan; Berger, Edo; Fox, Derek B.; Lunnan, Ragnhild; Drout, Maria R.; Fong, Wen-fai; Laskar, Tanmoy; Roth, Katherine C.

    2013-09-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z ≈ 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 Å due to absorption from Lyα at redshift z ≈ 5.91, with some flux transmitted through the Lyα forest between 7000 and 7800 Å. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] >~ -1.7 and an upper limit of [S/H] <~ -0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Lyα seen in this spectrum over the redshift range z = 4.9-5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of Δz = 0.12 in the Lyα forest at z = 5.77 with no detected transmission, leading to a 3σ upper limit on the mean Lyα transmission fraction of lsim0.2% (or \\tau _{{GP}}^{{eff}} (Lyα) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Lyβ and Lyγ transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2σ upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Lyα red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.

  15. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    SciTech Connect

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy; Fox, Derek B.; Roth, Katherine C.

    2013-09-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z Almost-Equal-To 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 A due to absorption from Ly{alpha} at redshift z Almost-Equal-To 5.91, with some flux transmitted through the Ly{alpha} forest between 7000 and 7800 A. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] {approx}> -1.7 and an upper limit of [S/H] {approx}< -0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Ly{alpha} seen in this spectrum over the redshift range z = 4.9-5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of {Delta}z = 0.12 in the Ly{alpha} forest at z = 5.77 with no detected transmission, leading to a 3{sigma} upper limit on the mean Ly{alpha} transmission fraction of {approx}<0.2% (or {tau}{sub GP}{sup eff} (Ly{alpha}) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Ly{beta} and Ly{gamma} transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2{sigma} upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Ly{alpha} red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.

  16. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    SciTech Connect

    Perley, D. A.; Levan, A. J.; Tanvir, N. R.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N.; Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B.; Fruchter, A.; Kalirai, J.; Jakobsson, P.; Prochaska, J. X.

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  17. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  18. Comparing the host galaxies of different type supernovae

    NASA Astrophysics Data System (ADS)

    Liang, Yanchun; Shao, Xu; Dennefeld, Michel; Chen, Xiaoyan; Zhou, Li; Hammer, Francois

    2015-08-01

    We examine and compare the properties of host galaxies of 902 supernovae, including both SNe Ia and Core-collapse supernovae (SNe II and SNe Ibc), selected by cross-matching the Asiago Supernova Catalog with the SDSS DR7 main-galaxy sample. Then, a main working sample consisting 213 galaxies are further selected by requiring the light fraction > 15% covered by the fiber spectral observations. This criterion of light fraction minimizes the aperture effect on the analysis of properties of SN host galaxies. Since 135 among the 213 galaxies appear on the Baldwin-Phillips-Terlevich (BPT) diagram, we then could compare the host properties of different types of SNe on the basis of their BPT diagnosis, i.e. star-forming (SF) galaxies, AGNs, and then the rest 78 “Absorption” galaxies. A comparative sample composed by the remaining 689 galaxies are analyzed simultaneously for comparisons, then the obvious aperture effect on the properties of SN host galaxies are shown. The parameters Dn(4000), HδA, stellar masses, SFRs, specific SFRs and relations of stellar mass with metallicity of SN host galaxies are analyzed in the work.

  19. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Chornock, R.; Foley, R. J.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2011-01-01

    We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN2010ay at z approx 0.067 imaged by the Pan-STARRS1 3pi survey just approx 4 days after explosion. Combining our photometric observations with those available in the literature, we estimate the explosion date and the peak luminosity of the SN, M(sub R) approximately equals 20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ibc ever discovered. We measure the photospheric expansion velocity of the explosion from our spectroscopic follow-up observations, v(sub ph) approximately equals 19.2 X 10 (exp 3) km/s at approx 40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN2010ay is 2 - 5 X higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of Ni-56, M(sub Ni) = 0.9(+0.1/-0.1) solar mass. Our modeling of the light-curve points to a total ejecta mass, M(sub ej) approx 4.7 Solar Mass, and total kinetic energy, E(sub K,51) approximately equals 11. Thus the ratio of M(sub Ni) to M(sub ej) is at least twice as large for SN2010ay than in GRB-SNe and may indicate an additional energy reservoir. We also measure the metallicity (log(O/H) + 12 = 8.19) of the explosion site within the host galaxy using a high S/N optical spectrum. Our abundance measurement places this SN in the low-metallicity regime populated by GRB-SNe, and approx 0.2(0.5) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. Despite striking similarities to the recent GRB-SN100316D/2010bh, we show that gamma-ray observations rule out an associated GRB with E(sub gamma) approx < 6 X 10(exp 48) erg (25-150 keV). Similarly, our deep

  20. Super-solar metallicity at the position of the ultra-long GRB 130925A

    NASA Astrophysics Data System (ADS)

    Schady, P.; Krühler, T.; Greiner, J.; Graham, J. F.; Kann, D. A.; Bolmer, J.; Delvaux, C.; Elliott, J.; Klose, S.; Knust, F.; Nicuesa Guelbenzu, A.; Rau, A.; Rossi, A.; Savaglio, S.; Schmidl, S.; Schweyer, T.; Sudilovsky, V.; Tanga, M.; Tanvir, N. R.; Varela, K.; Wiseman, P.

    2015-07-01

    Over the last decade there has been immense progress in the follow-up of short and long gamma-ray bursts (GRBs), resulting in a significant rise in the detection rate of X-ray and optical afterglows, in the determination of GRB redshifts, and of the identification of the underlying host galaxies. Nevertheless, our theoretical understanding of the progenitors and central engines powering these vast explosions is lagging behind, and a newly identified class of ultra-long GRBs has fuelled speculation on the existence of a new channel of GRB formation. In this paper we present high signal-to-noise X-Shooter observations of the host galaxy of GRB 130925A, which is the fourth unambiguously identified ultra-long GRB, with prompt γ-ray emission detected for ~20 ks. The GRB line of sight was close to the host galaxy nucleus, and our spectroscopic observations cover this region along the bulge/disk of the galaxy and a bright star-forming region within the outskirts of the galaxy. From our broad wavelength coverage, we obtain accurate metallicity and dust-extinction measurements at the galaxy nucleus and at an outer star-forming region, and measure a super-solar metallicity at both locations, placing this galaxy within the 10-20% most metal-rich GRB host galaxies. Such a high metal enrichment has significant implications on the progenitor models of both long and ultra-long GRBs, although the edge-on orientation of the host galaxy does not allow us to rule out a large metallicity variation along our line of sight. The spatially resolved spectroscopic observations presented in this paper offer important insight into variations in the metal and dust abundance within GRB host galaxies. However, they also illustrate the need for integral field unit observations on a larger sample of GRB host galaxies of a variety of metallicities to provide a more quantitative view on the relation between the GRB circumburst environment and the galaxy-whole properties. Based on observations taken

  1. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  2. The Discovery and Broadband Follow-Up of the Transient Afterglow of GRB 980703

    NASA Technical Reports Server (NTRS)

    Bloom, J. S.; Frail, D. A.; Kulkarni, S. R.; Djorgovski, S. G.; Halpern, J. P.; Marzke, R. O.; Patton, D. R.; Oke, J. B.; Horne, K. D.; Gomer, R.; Goodrich, R.; Campbell, R.; Moriarity-Schieven, G. H.; Redman, R. O.; Feldman, P. A.; Costa, E.; Masetti, N.

    1998-01-01

    We report on the discovery of the radio, infrared, and optical transient coincident with an X-ray transient proposed to be the afterglow of GRB 980703. At later times when the transient has faded below detection, we see an underlying galaxy with R = 22.6; this galaxy is the brightest host galaxy (by nearly 2 mag) of any cosmological gamma-ray burst (GRB) thus far. In keeping with an established trend, the GRB is not significantly offset from the host galaxy. Interpreting the multiwavelength data in the framework of the popular fireball model requires that the synchrotron cooling break was between the optical and X-ray bands on 1998 July 8.5 UT and that the intrinsic extinction of the transient is A(sub v) = 0.9. This is somewhat higher than the extinction for the galaxy as a whole, as estimated from spectroscopy.

  3. GRB Prompt Optical Observations by Master and Lomonosov

    NASA Astrophysics Data System (ADS)

    Gorbovskoy, Evgeny

    We present the results of the prompt, early and afterglow optical observations of five γ-ray bursts (GRBs): GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A. These observations were made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II Net), the 1.5-m telescope of the Sierra Nevada Observatory and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before the cessation of γ-ray emission, at 113 and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted in two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. A more detailed analysis of GRB 100901A and GRB 100906A, supplemented by Swift data, provides the following results and indicates different origins for the prompt optical radiation in the two bursts. The light-curve patterns and spectral distributions suggest that there is a common production site for the prompt optical and high-energy emission in GRB 100901A. The results of the spectral fits for GRB 100901A in the range from optical to X-ray favour power-law energy distributions and a consistent value of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve, suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. We obtain an upper limit on the value of the optical extinction on the host of GRB 100906A. Also we consider prompt observation of dark gamma ray bursts for which on very widefield cameras MASTER-VWF and MASTER-II telescopes upper limits were received. We represent SHOCK experiment onboard the spacecraft Lomonosov.

  4. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-09-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  5. IFU Spectroscopy of 32 SweetSpot Supernova Host Galaxies

    NASA Astrophysics Data System (ADS)

    Ponder, Kara Ann; Wood-Vasey, W. Michael; Allen, Lori; Garnavich, Peter M.; Jha, Saurabh; Kroboth, Jessica Rose; Joyce, Richard R.; Matheson, Thomas; Rest, Armin; Weyant, Anja

    2016-06-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that gathered NIR lightcurves for 114 Type Ia supernovae (SNeIa) located in the Hubble flow. The aims of this survey are to test the standard nature of SNeIa in the NIR, explore their color evolution, study the dust of host galaxies, and provide an anchor for upcoming high redshift NIR surveys. Another primary goal of this survey is to explore relationships between SNeIa observed in the NIR with their host galaxy properties previously done with optical lightcurves.Correlations between the residual brightness of SNeIa with their host galaxy properties have been found in a series of recent papers, but have yet to be studied in the NIR. We study the NIR brightness of SNIa compared to both photometric and spectroscopic properties of the host galaxies. We use SDSS data to explore host galaxy color and mass relations with peak brightness of SNeIa. In order to examine local environment relationships, we obtained optical spectra of 32 host galaxies of NIR SNeIa using the WIYN 3.5-m Bench Spectrograph IFU HexPak. These spectra extend from H-beta through H-alpha and allow us to study the local surface brightness of very recent star formation.We here present preliminary results from these investigations.

  6. GRB 081007 AND GRB 090424: THE SURROUNDING MEDIUM, OUTFLOWS, AND SUPERNOVAE

    SciTech Connect

    Jin Zhiping; Covino, Stefano; Fugazza, Dino; Melandri, Andrea; Campana, Sergio; D'Avanzo, Paolo; Della Valle, Massimo; Ferrero, Patrizia; Malesani, Daniele; Fynbo, Johan P. U.; Hjorth, Jens; Pian, Elena; Salvaterra, Ruben; Bersier, David; Cano, Zach; Castro-Tirado, Alberto J.; Gorosabel, Javier; Guidorzi, Cristiano; Haislip, Joshua B.; and others

    2013-09-10

    We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum magnitude may be fainter, up to 0.7 mag, than observed in SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB 081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a gamma-ray burst (GRB) clearly associated with a massive-star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB 090424, likely due to the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse-shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB 081007 is estimated to be {Gamma} {approx} 200, while for GRB 090424 a lower limit of {Gamma} > 170 is derived. We also discuss the prompt emission of GRB 081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux-dominated outflow or to a dissipative photosphere.

  7. The ``Christmas burst'' GRB 101225A revisited

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  8. Host Galaxies of X-Shaped Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Cheung, C. C.

    2007-05-01

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Classical double-lobed radio galaxies are characterized by a single pair of "active" radio lobes. A small subset show an additional pair of lower surface brightness 'wings' of emission, thus forming an overall winged or X-shaped appearance. Two competing mechanisms have been proposed to explain the "winged" morphology. One model posits that these are the remnants left over from a relatively recent merger of a binary supermassive black hole system. Others have argued that they result naturally from strong backflow in a radio jet cocoon expanding into an asymmetric medium. We used available Sloan Digital Sky Survey r-band images of 11 X-shaped sources to measure the host galaxy ellipticities. By analyzing the host galaxy shapes, we trace the surrounding gas distribution. The radio morphologies are compared to the host galaxy parameters to analogize between differing model expectations. This work was funded by the Department of Energy's Student Undergraduate Laboratory Internship Program and the Stanford Linear Accelerator Center.

  9. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  10. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  11. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    SciTech Connect

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  12. GRB 070125 and the environments of spectral-line poor afterglow absorbers

    NASA Astrophysics Data System (ADS)

    De Cia, A.; Starling, R. L. C.; Wiersema, K.; van der Horst, A. J.; Vreeswijk, P. M.; Björnsson, G.; de Ugarte Postigo, A.; Jakobsson, P.; Levan, A. J.; Rol, E.; Schulze, S.; Tanvir, N. R.

    2011-11-01

    GRB 070125 is among the most energetic bursts detected and the most extensively observed so far. Nevertheless, unresolved issues are still open in the literature on the physics of the afterglow and on the gamma-ray burst (GRB) environment. In particular, GRB 070125 was claimed to have exploded in a galactic halo environment, based on the uniqueness of the optical spectrum and the non-detection of an underlying host galaxy. In this work we collect all publicly available data and address these issues by modelling the near-infrared to X-ray spectral energy distribution (SED) and studying the high signal-to-noise ratio Very Large Telescope/FOcal Reducer/low dispersion Spectrograph afterglow spectrum in comparison with a larger sample of GRB absorbers. The SED reveals a synchrotron cooling break in the ultraviolet, low equivalent hydrogen column density and little reddening caused by a Large Magellanic Cloud type or Small Magellanic Cloud type extinction curve. From the weak Mg II absorption at z= 1.5477 in the spectrum, we derived log N(Mg II) = 12.96+0.13- 0.18 and upper limits on the ionic column density of several metals. These suggest that the GRB absorber is most likely a Lyman limit system with a 0.03 < Z < 1.3 Z⊙ metallicity. The comparison with other GRB absorbers places GRB 070125 at the low end of the absorption-line equivalent width distribution, confirming that weak spectral features and spectral-line poor absorbers are not so uncommon in afterglow spectra. Moreover, we show that the effect of photoionization on the gas surrounding the GRB, combined with a low N(H I) along a short segment of the line of sight within the host galaxy, can explain the lack of spectral features in GRB 070125. Finally, the non-detection of an underlying galaxy is consistent with a faint GRB host galaxy, well within the GRB host brightness distribution. Thus, the possibility that GRB 070125 is simply located in the outskirts of a gas-rich, massive star-forming region inside its

  13. Radio afterglows and host galaxies of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Li, Long-Biao; Zhang, Zhi-Bin; Huang, Yong-Feng; Wu, Xue-Feng; Kong, Si-Wei; Li, Di; Chang, Heon-Young; Choi, Chul-Sung

    2015-08-01

    Considering the contribution of emission from the host galaxies of gamma-ray bursts (GRBs) to radio afterglows, we investigate the effect of host galaxies on observations statistically. For the three types of event, i.e. low-luminosity, standard and high-luminosity GRBs, it is found that a tight correlation exists between the ratio of the radio flux (RRF) of the host galaxy to the total radio peak emission and the observational frequency. Towards lower frequencies, in particular, the contribution from the host increases significantly. The correlation can be used to obtain a useful estimate for the radio brightness of those host galaxies that only have very limited radio afterglow data. Using this prediction, we reconsidered the theoretical radio afterglow light curves for four kinds of event: high-luminosity, low-luminosity, standard and failed GRBs, taking into account the contribution from host galaxies and aiming to explore the detectability of these events by the Five-hundred-metre Aperture Spherical radio Telescope (FAST). Lying at a typical redshift of z = 1, most of the events can be detected easily by FAST. For the less fierce low-luminosity GRBs, their radio afterglows are not strong enough to exceed the sensitivity limit of FAST at such distances. However, since a large number of low-luminosity bursts actually happen very near to us, it is expected that FAST will still be able to detect many of them.

  14. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Astrophysics Data System (ADS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kirshner, R. P.; Kudritzki, R.-P.; Luppino, G. A.; Lupton, R. H.; Magnier, E. A.; Monet, D. G.; Morgan, J. S.; Onaka, P. M.; Price, P. A.; Stubbs, C. W.; Tonry, J. L.; Wainscoat, R. J.; Waterson, M. F.

    2012-09-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ~4 days after explosion. The supernova (SN) had a peak luminosity, MR ≈ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si ≈ 19 × 103 km s-1 at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, M Ni = 0.9 M ⊙. Applying scaling relations to the light curve, we estimate a total ejecta mass, M ej ≈ 4.7 M ⊙, and total kinetic energy, EK ≈ 11 × 1051 erg. The ratio of M Ni to M ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E γ <~ 6 × 1048 erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E >~ 1048 erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters

  15. SN 2010ay Is a Luminous and Broad-Lined Type Ic Supernova Within a Low-Metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2012-01-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just approximately 4 days after explosion. The supernova (SN) had a peak luminosity, MR approx. -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si (is) approx. 19×10(exp 3) km s-1 at approximately 40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines approximately 2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, MNi = 0.9 solar mass. Applying scaling relations to the light curve, we estimate a total ejecta mass, Mej (is) approx. 4.7 solar mass, and total kinetic energy, EK (is) approx. 11 × 10(exp 51) erg. The ratio of MNi to Mej is approximately 2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and (is) approximately 0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E(gamma) (is) approximately less than 6 × 10(exp 48) erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E (is) approximately greater than 10(exp 48) erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF

  16. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS

    SciTech Connect

    Kelly, Patrick L.; Kirshner, Robert P.

    2012-11-10

    We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae (SN). The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates (SFRs) of the host galaxies provide circumstantial evidence on the origin of each SN type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific SFRs. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our SN sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the SN discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.

  17. How SN Ia host-galaxy properties affect cosmological parameters

    NASA Astrophysics Data System (ADS)

    Campbell, H.; Fraser, M.; Gilmore, G.

    2016-04-01

    We present a systematic study of the relationship between Type Ia Supernova (SN Ia) properties, and the characteristics of their host galaxies, using a sample of 581 SNe Ia from the full Sloan Digital Sky Survey II (SDSS-II) SN Survey. We also investigate the effects of this on the cosmological constraints derived from SNe Ia. Compared to previous studies, our sample is larger by a factor of >4, and covers a substantially larger redshift range (up to z ˜ 0.5), which is directly applicable to the volume of cosmological interest. We measure a significant correlation (>5σ) between the host-galaxy stellar-mass and the SN Ia Hubble Residuals (HR). We find a weak correlation (1.4σ) between the host-galaxy metallicity as measured from emission lines in the spectra, and the SN Ia HR. We also find evidence that the slope of the correlation between host-galaxy mass and HR is -0.11 mag/log(Mhost/M⊙) steeper in lower metallicity galaxies. We test the effects on a cosmological analysis using both the derived best-fitting correlations between host parameters and HR, and by allowing an additional free parameter in the fit to account for host properties which we then marginalize over when determining cosmological parameters. We see a shift towards more negative values of the equation-of-state parameter w, along with a shift to lower values of Ωm after applying mass or metallicity corrections. The shift in cosmological parameters with host-galaxy stellar-mass correction is consistent with previous studies. We find a best-fitting cosmology of Ω m =0.266_{-0.016}^{+0.016}, Ω _{Λ }=0.740_{-0.018}^{+0.018} and w=-1.151_{-0.121}^{+0.123} (statistical errors only).

  18. The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering

    NASA Technical Reports Server (NTRS)

    Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.

    1993-01-01

    Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.

  19. Herschel Dust Measurements of SDSS Supernovae Host Galaxies

    NASA Astrophysics Data System (ADS)

    Trinh, Donald; Cooray, Asantha R.; Nayyeri, Hooshang; Herschel Hermes and h-atlas Collaboration

    2016-01-01

    We use Herschel Spectral and Photometric Imaging Receiver (SPIRE) far-infrared observations of Supernova host galaxies to study the cosmological distant measurement from Hubble diagrams. We investigate the dust content of SN host galaxy from the Sloan Digital Sky Survery (SDSS) using the far-infrared stacks of Herschel in the Equatorial Stripe using , Herschel Multi-Tiered Extragalactic Survey (HELMS), and the Herschel Stripe 82 Survey (HERS). Cosmic dust may contribute to much more obscuring of standard candles than previously thought. Measuring the average flux values of stacks from dim Type-Ia supernovae provides a measure of the dust content of galaxies as a function of deviation of those sources from the Hubble diagram given a standard cosmology. Using the optical to far infrared stacked data of the galaxies we also measure the physical properties of the standard candles as a function of dust content.

  20. Stellar Populations of Quasar Host Galaxies Using WIYN

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Moravec, E.; Kotulla, R. C.

    2013-06-01

    We now know that most galaxies have supermassive black holes (SMBH) in their centers, and somewhat unexpectedly, there are relationships—such as the M-sigma relation—between the mass of the central black hole and the velocity dispersion of the host galaxy's stellar spheroid (bulge), even though they lie outside the black hole's influence. Galaxy merger models show reasonable evidence for coevolution of the bulge and black hole since the merging process initiates simultaneous growth of the black hole and galaxy by supplying gas to the nucleus for accretion onto the black hole and triggering bursts of star formation. The merging process truncates the growth of both by removing the gas reservoir via feedback from these processes. But recently, it’s been shown that this relation could arise from central limit-like arguments alone. To really judge connections between SMBH and their host, it’s crucial to study these galaxies at the peak of black hole growth—during the quasar phase. Using 3-d spectroscopy methods, namely Sparsepak, an integral field units (IFU) on WIYN, it is possible to successfully recover information about the host galaxy's integrated star formation history that can be used to check merger-induced galaxy evolution predicted by the models. However, it is critical to have a robust and careful analysis of the stellar population modeling. The research presented in this poster focuses on new results from Sparsepak and preliminary WHIRC H-band light profiles of select quasar host galaxies. The stellar populations are derived using a new statistical method called diffusion k-means, and the WHIRC data are analyzed using a Python code written by Ralf Kotulla.

  1. DISCOVERY OF SN 2009nz ASSOCIATED WITH GRB 091127

    SciTech Connect

    Cobb, B. E.; Bloom, J. S.; Perley, D. A.; Morgan, A. N.; Cenko, S. B.; Filippenko, A. V.

    2010-08-01

    We report SMARTS, Gemini, and Swift-UVOT observations of the optical transient (OT) associated with gamma-ray burst (GRB) 091127, at redshift 0.49, taken between 0.9 hr and 102 days following the Swift trigger. In our early-time observations, the OT fades in a manner consistent with previously observed GRB afterglows. However, after nine days post-burst, the OT is observed to brighten for a period of {approx}two weeks, after which the source resumes fading. A comparison of this late-time 'bump' to SN 1998bw (the broad-lined Type Ic supernova associated with GRB 980425), and several other GRB supernovae (SNe), indicates that the most straightforward explanation is that GRB 091127 was accompanied by a contemporaneous SN (SN 2009nz) that peaked at a magnitude of M{sub V} = -19.0 {+-} 0.2. SN 2009nz is globally similar to other GRB SNe, but evolves slightly faster than SN 1998bw and reaches a slightly dimmer peak magnitude. We also analyze the early-time UV-optical-IR spectral energy distribution of the afterglow of GRB 091127 and find that there is little to no reddening in the host galaxy along the line of sight to this burst.

  2. AGN identification and host galaxies properties in the MOSDEF survey

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF team

    2016-06-01

    We present new results on the identification and host galaxy properties of X-ray, IR and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey, which is obtaining rest-frame optical spectra of ~1,500 galaxies and AGN using the new Keck/MOSFIRE instrument. We find clear selection effects when identifying AGN at different wavelengths, in that optically-selected AGN are more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. There is also a bias against finding AGN at any wavelength in low mass galaxies. We find that optical AGN selection identifies less powerful AGN that may be obscured at other wavelengths. Combining the AGN we identify at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass. Finally, we do not find a significant correlation between either SFR or stellar mass and L[OIII], which argues against the presence of strong AGN feedback.

  3. Color indices of core-collapse supernova host galaxies

    NASA Astrophysics Data System (ADS)

    Polyakova, G. D.

    2015-04-01

    Using data from different catalogues, we determined color indices of early type (E, L, and S0/a) core-collapse supernova host galaxies. These color indices were compared with the colors of the galaxies of the same morphological types but in which explosions of such supernovae have not been observed. It is shown that in the blue sequence of the color-magnitude diagram, the compared samples of galaxies differ with probability P = 95% in the relative frequencies of the ( U - B){/Tc 0} and ( U - B){/T 0} color indices in the intervals from to and to . A difference in the relative frequencies with probability P = 99% was also obtained for the ( B - V){/Tc 0} and ( B - V){/T 0} colors in the interval . The calculated average colors of these intervals for the galaxies of both samples allow us to assume a significant proportion of the young population in them. The Kolmogorov-Smirnov test showed that the colors of the core-collapse supernova host galaxies and the early-type galaxies without explosions of such supernovae are similar on average with probability P = 95%, and the galaxies do not differ in stellar population content.

  4. Discovery of rare double-lobe radio galaxies hosted in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Sievers, Jonathan; Wadadekar, Yogesh; Hilton, Matt; Beelen, Alexandre

    2015-12-01

    Double-lobe radio galaxies in the local Universe have traditionally been found to be hosted in elliptical or lenticular galaxies. We report the discovery of four spiral-host double-lobe radio galaxies (J0836+0532, J1159+5820, J1352+3126, and J1649+2635) that are discovered by cross-matching a large sample of 187 005 spiral galaxies from SDSS DR7 (Sloan Digital Sky Survey Data Release 7) to the full catalogues of FIRST (Faint Images of the Radio Sky at Twenty-cm) and NVSS (NRAO VLA Sky Survey). J0836+0532 is reported for the first time. The host galaxies are forming stars at an average rate of 1.7-10 M⊙ yr-1 and possess supermassive black holes (SMBHs) with masses of a few times 108 M⊙. Their radio morphologies are similar to Fanaroff-Riley type II radio galaxies with total projected linear sizes ranging from 86 to 420 kpc, but their total 1.4-GHz radio luminosities are only in the range 1024-1025 W Hz-1. We propose that the formation of spiral-host double-lobe radio galaxies can be attributed to more than one factor, such as the occurrence of strong interactions, mergers, and the presence of unusually massive SMBHs, such that the spiral structures are not destroyed. Only one of our sources (J1649+2635) is found in a cluster environment, indicating that processes other than accretion through cooling flows e.g. galaxy-galaxy mergers or interactions could be plausible scenarios for triggering radio-loud active galactic nuclei activity in spiral galaxies.

  5. A case of mistaken identity? GRB060912A and the nature of the long-short GRB divide

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Jakobsson, P.; Hurkett, C.; Tanvir, N. R.; Gorosabel, J.; Vreeswijk, P.; Rol, E.; Chapman, R.; Gehrels, N.; O'Brien, P. T.; Osborne, J. P.; Priddey, R. S.; Kouveliotou, C.; Starling, R.; vanden Berk, D.; Wiersema, K.

    2007-07-01

    We investigate the origin of the GRB060912A, which has observational properties that make its classification as either a long or short burst ambiguous. Short-duration gamma-ray bursts (SGRBs) are thought to have typically lower energies than long-duration bursts, can be found in galaxies with populations of all ages and are likely to originate from different progenitors to the long-duration bursts. However, it has become clear that duration alone is insufficient to make a distinction between the two populations in many cases, leading to a desire to find additional discriminators of burst type. GRB060912A had a duration of 6s and occurred only ~10arcsec from a bright, low-redshift (z = 0.0936) elliptical galaxy, suggesting that this may have been the host, which would favour it being a short burst. However, our deep optical imaging and spectroscopy of the location of GRB060912A using the Very Large Telescope (VLT) shows that GRB060912A more likely originates in a distant star-forming galaxy at z = 0.937, and is most likely a long burst. This demonstrates the risk in identifying bright, nearby galaxies as the hosts of given gamma-ray bursts (GRBs) without further supporting evidence. Further, it implies that, in the absence of secure identifications, `host' type, or more broadly discriminators that rely on galaxy redshifts, may not be good indicators of the true nature of any given GRB. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 077.D-0691. E-mail: a.j.levan@warwick.ac.uk

  6. THE DISCOVERY OF VIBRATIONALLY EXCITED H{sub 2} IN THE MOLECULAR CLOUD NEAR GRB 080607

    SciTech Connect

    Sheffer, Y.; Prochaska, J. X.; Perley, D. A.; Bloom, J. S.

    2009-08-20

    GRB 080607 has provided the first observational signatures of molecular absorption bands toward any galaxy hosting a gamma-ray burst (GRB). Despite the identification of dozens of features as belonging to various atomic and molecular (H{sub 2} and CO) carriers, many more absorption features remained unidentified. Here, we report on a search among these features for absorption from vibrationally excited H{sub 2}, a species that was predicted to be produced by the UV flash of a GRB impinging on a molecular cloud. Following a detailed comparison between our spectroscopy and static, as well as dynamic, models of H{sub 2}* absorption, we conclude that a column density of 10{sup 17.5{+-}}{sup 0.2} cm{sup -2} of H{sub 2}* was produced along the line of sight toward GRB 080607. Depending on the assumed amount of dust extinction between the molecular cloud and the GRB, the model distance between the two is found to be in the range 230-940 pc. Such a range is consistent with a conservative lower limit of 100 pc estimated from the presence of Mg I in the same data. These distances show that substantial molecular material is found within hundreds of pc from GRB 080607, part of the distribution of clouds within the GRB host galaxy.

  7. Jet Feedback on the Hosts of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Lanz, L.; Ogle, P. M.; Alatalo, K.; Appleton, P. N.

    2016-06-01

    Feedback due to active galactic nuclei is one of the key components of the current paradigm of galaxy evolution; however our understanding of the process remains incomplete. Radio galaxies with strong rotational H_2 emission provide an interesting window into the effect of radio jet feedback on their host galaxies, since the large masses of warm (>100 K) H_2 cannot solely be heated by star formation, instead requiring jet-driven ISM turbulence to power the molecular emission. I will discuss the insights multiwavelength (X-ray to submm) observations of 22 H_2 luminous radio galaxies yield on the process of jet feedback in these galaxies and the impact on star formation activity. Specifically, I find that the diffuse X-ray and warm H_2 emission are consistent with both being powered by dissipation of the jet's mechanical energy into the interstellar medium (ISM) and that the resulting turbulence injected into the ISM by this process results in the suppression of star formation activity by a factor of 3--6. The hosts of these galaxies show a wide range of star formation activity and optical and IR colors, indicating a diversity of evolutionary states in which this process may be active.

  8. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Ho, Luis C.

    2013-08-01

    Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass [Formula: see text] and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from [Formula: see text] in brightest cluster ellipticals to [Formula: see text] in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105-106M⊙ are found in many bulgeless galaxies. Therefore, classical (elliptical-galaxy-like) bulges are not necessary for BH formation. On the other hand, although they live in galaxy disks, BHs do not correlate with galaxy disks. Also, any [Formula: see text] correlations with the properties of disk-grown pseudobulges and dark matter halos are weak enough to imply no close coevolution. The above and other correlations of host-galaxy parameters with each other and with [Formula: see text] suggest that there are four regimes of BH feedback. (1) Local, secular, episodic, and stochastic feeding of small BHs in largely bulgeless galaxies involves too little energy to result in coevolution. (2) Global feeding in major, wet galaxy mergers rapidly grows giant BHs in short-duration, quasar-like events whose energy feedback does affect galaxy evolution. The resulting hosts are classical bulges and coreless

  9. Identifying the host galaxy of gravitational wave signals

    SciTech Connect

    Nuttall, Laura K.; Sutton, Patrick J.

    2010-11-15

    One of the goals of the current LIGO-GEO-Virgo science run is to identify transient gravitational wave (GW) signals in near real time to allow follow-up electromagnetic (EM) observations. An EM counterpart could increase the confidence of the GW detection and provide insight into the nature of the source. Current GW-EM campaigns target potential host galaxies based on overlap with the GW sky error box. We propose a new statistic to identify the most likely host galaxy, ranking galaxies based on their position, distance, and luminosity. We test our statistic with Monte Carlo simulations of GWs produced by coalescing binaries of neutron stars and black holes, one of the most promising sources for ground-based GW detectors. Considering signals accessible to current detectors, we find that when imaging a single galaxy, our statistic correctly identifies the true host {approx}20% to {approx}50% of the time, depending on the masses of the binary components. With five narrow-field images the probability of imaging the true host increases from {approx}50% to {approx}80%. When collectively imaging groups of galaxies using large field-of-view telescopes, the probability improves from {approx}30% to {approx}60% for a single image and from {approx}70% to {approx}90% for five images. For the advanced generation of detectors (circa 2015+), and considering binaries within 100 Mpc (the reach of the galaxy catalogue used), the probability is {approx}40% for one narrow-field image, {approx}75% for five narrow-field images, {approx}65% for one wide-field image, and {approx}95% for five wide-field images, irrespective of binary type.

  10. Host Galaxies of X-Shaped Radio Sources

    SciTech Connect

    Springmann, Alessondra; /Wellesley Coll. /SLAC

    2006-09-27

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies have an ''X''-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being through the merger of a binary supermassive black hole system and the second being that the radio jets are expanding into an asymmetric medium. By analyzing radio host galaxy shapes, we probe the distribution of the stellar mass to compare the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN.

  11. The distribution of equivalent widths in long GRB afterglow spectra

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Fynbo, J. P. U.; Thöne, C. C.; Christensen, L.; Gorosabel, J.; Milvang-Jensen, B.; Schulze, S.; Jakobsson, P.; Wiersema, K.; Sánchez-Ramírez, R.; Leloudas, G.; Zafar, T.; Malesani, D.; Hjorth, J.

    2012-12-01

    Context. The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy at almost any redshift. Aims: We describe the distribution of rest-frame equivalent widths (EWs) of the most prominent absorption features in GRB afterglow spectra, providing the means to compare individual spectra to the sample and identify its peculiarities. Methods: Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame EWs distribution of features with an average rest-frame EW larger than 0.5 Å. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features in a GRB spectrum as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of their column densities by a curve of growth (CoG) fit. Results: We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-α (DLA) systems and slightly more ionised. In particular we find a larger excess in the EW of C ivλλ1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the

  12. A Search for Distant Galaxy Cluster Hosting Extreme Central Galaxies

    NASA Astrophysics Data System (ADS)

    Somboonpanyakul, Taweewat

    2016-01-01

    The recent discovery of the "Phoenix cluster" which, at z = 0.6, is the most X-ray luminous clusters known and harbors a massive starburst at its center, begs the question: Why was is not discovered until recently? In fact, the object has been previously detected by several all-sky surveys at a variety of wavelengths, but it is consistently classified as a quasar (QSO) because of the extremely bright central galaxy and a (relative) lack of extended X-ray emission due to its distance. This lead us to question of how many of these Phoenix-like clusters are currently mislabelled in existing all-sky surveys.A unique property of the Phoenix cluster which helps us identify other Phoenix-like objects is that it is bright at multiple wavelength, including X-ray (intracluster medium and central AGN), near-IR (giant central elliptical galaxy), mid-IR (warm dust from starburst and AGN) and radio (radio-loud central AGN). Therefore, we can identify potential Phoenix-like clusters by cross-correlating all-sky surveys from ROSAT (X-ray), 2MASS (near-IR), WISE (mid-IR) and both SUMSS and NVSS (radio). By requiring sources to be bright in all four surveys, we can quickly find (among other sources) a sample of Phoenix-like clusters that can be followed up either by using archival images from SDSS for Northern-hemisphere objects or taking new images from the Magellan telescope for Southern-hemisphere objects. Here, we will present the preliminary result from the project.

  13. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  14. On the environments of Type Ia supernovae within host galaxies

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; James, P. A.; Förster, F.; González-Gaitán, S.; Habergham, S. M.; Hamuy, M.; Lyman, J. D.

    2015-03-01

    We present constraints on Type Ia supernovae (SNe Ia) progenitors through an analysis of the environments found at the explosion sites of 102 events within star-forming host galaxies. Hα and Galaxy Evolution Explorer near-ultraviolet (UV) images are used to trace on-going and recent star formation (SF), while broad-band B, R, J, K imaging is also analysed. Using pixel statistics we find that SNe Ia show the lowest degree of association with Hα emission of all supernova (SN) types. It is also found that they do not trace near-UV emission. As the latter traces SF on time-scales less than 100 Myr, this rules out any extreme `prompt' delay times as the dominant progenitor channel of SNe Ia. SNe Ia best trace the B-band light distribution of their host galaxies. This implies that the population within star-forming galaxies is dominated by relatively young progenitors. Splitting SNe by their (B - V) colours at maximum light, `redder' events show a higher degree of association with H II regions and are found more centrally within hosts. We discuss possible explanations of this result in terms of line-of-sight extinction and progenitor effects. No evidence for correlations between SN stretch and environment properties is observed.

  15. Distributions of Quasar Hosts on the Galaxy Main Sequence Plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Shi, Yong; Rieke, George H.; Xia, Xiaoyang; Wang, Yikang; Sun, Bingqing; Wan, Linfeng

    2016-03-01

    The relation between star formation rates (SFRs) and stellar masses, i.e., the galaxy main sequence, is a useful diagnostic of galaxy evolution. We present the distributions relative to the main sequence of 55 optically selected PG and 12 near-IR-selected Two Micron All Sky Survey (2MASS) quasars at z ≤ 0.5. We estimate the quasar host stellar masses from Hubble Space Telescope or ground-based AO photometry, and the SFRs through the mid-infrared aromatic features and far-IR photometry. We find that PG quasar hosts more or less follow the main sequence defined by normal star-forming galaxies while 2MASS quasar hosts lie systematically above the main sequence. PG and 2MASS quasars with higher nuclear luminosities seem to have higher specific SFRs (sSFRs), although there is a large scatter. No trends are seen between sSFRs and SMBH masses, Eddington ratios, or even morphology types (ellipticals, spirals, and mergers). Our results could be placed in an evolutionary scenario with quasars emerging during the transition from ULIRGs/mergers to ellipticals. However, combined with results at higher redshift, they suggest that quasars can be widely triggered in normal galaxies as long as they contain abundant gas and have ongoing star formation.

  16. Optical Properties of Host Galaxies of Extragalactic Nuclear Water Masers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz (λ = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (MB ), larger velocity dispersion (σ), and higher [O III] λ5007 luminosity, with [O III] λ5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] λ5007 flux when available. This prioritization would improve maser detection efficiency, from an overall ~3% without pre-selection to ~16% for the strongest intrinsic [O III] λ5007 emitters, by a factor of ~5.

  17. THE PROPERTIES OF TYPE Ia SUPERNOVA HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Han, Du-Hwan; Park, Myeong-Gu; Park, Changbom; Choi, Yun-Young E-mail: mgp@knu.ac.k E-mail: yychoi@khu.ac.k

    2010-11-20

    We investigate the properties and environments of Type Ia Supernova (SN Ia) host galaxies in the Stripe 82 of the Sloan Digital Sky Survey-II Supernova Survey centered on the celestial equator. Host galaxies are defined as the galaxy nearest to the supernova (SN) in terms of angular distance whose velocity difference from the SN is less than 1000 km s{sup -1}. Eighty seven SN Ia host galaxies are selected from the SDSS Main galaxy sample with the apparent r-band magnitude m{sub r} < 17.77, and compared with the SDSS Main galaxies. The SN Ia rates for early- and late-type galaxies are 0.81 {+-} 0.19 SN (100 yr){sup -1} and 0.99 {+-} 0.21 SN (100 yr){sup -1}, respectively. We find that the host galaxies have a color distribution consistent with that of the Main galaxies, regardless of their morphology. However, host galaxies are on average brighter than the Main galaxies by {approx}0.3 mag over the range of -18.3>M{sub r} > - 21.3. But the brighter ends of their luminosity distributions are similar. The distribution of the distance to the nearest neighbor galaxy shows that SNe Ia are more likely to occur in isolated galaxies without close neighbors. We also find that the SN Ia host galaxies are preferentially located in a region close to massive galaxy clusters compared to the Main galaxies.

  18. Erratum: A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Schmitt, Henrique R.; Kinney, Anne L.; Storchi-Bergmann, Thaisa; Antonucci, Robert

    1997-08-01

    In the paper ``A Comparison of Radio Axis with Host Galaxy Plane Axis in Seyfert Galaxies'' by Henrique R. Schmitt, Anne L. Kinney, Thaisa Storchi-Bergmann, & Robert Antonucci (ApJ, 477, 623 [1997]), there are errors in Table 1 and Figure 6, and there is a reference to a previous work that should be stated. With respect to the latter, the authors compare the position angle of small-scale radio structures in Seyfert galaxies with the position angle of their host galaxy major axis. In their analysis they find a zone of avoidance, where the small-scale radio axis avoids close alignment with the host galaxy minor axis. The authors wish to note that J. S. Ulvestad and A. S. Wilson (ApJ, 285, 439 [1984]) already observed a paucity of radio structures aligned with the host galaxy minor axis in Seyfert 2 galaxies, although on a smaller sample. Ulvestad & Wilson was referenced in their paper as Ulvestad & Wilson (1984b). In Table 1 there were errors in the references listed in the note to the table. A new version of Table 1 with correct references is given here, and the following reference entries should be added to the reference list of the original paper: Mulchaey, J. S., Wilson, A. S., & Tsvetanov, Z. I. 1996, ApJS, 102, 309; Oke, J. B., & Lauer, T. R. 1979, ApJ, 230, 360; Simkin, S. M. 1975, ApJ, 200, 567. Figure 6a was printed twice, once correctly and once incorrectly in place of Figure 6c. The correct version of Figure 6c appears below.

  19. Supernova Host Galaxy Identification: Applications for the Dark Energy Survey and Future Surveys

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi; Kuhlmann, Stephen; Kovacs, Eve; Spinka, Harold; Goldstein, Daniel; Liotine, Camille; Pomian, Katarzyna; Kessler, Richard; D'Andrea, Christopher; Sullivan, Mark; Sako, Masao; Nichol, Robert; Papadopoulos, Andreas; Dark Energy Survey

    2016-01-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys, which will discover SNe by the thousands. Spectroscopic resources are very limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain redshifts which are then used for photometric classification of SNe. In addition, SN luminosities are known to correlate with host galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. Using both real and simulated galaxy catalog data, including information about galaxy position, shape, orientation, and redshifts, we develop and test methods for matching SNe to their host galaxies. We use an automated algorithm that is run on catalog data and assigns host galaxies to simulated SN positions. We present the results of this algorithm and demonstrate how including a machine learning component, run after the initial matching algorithm, boosts the accuracy of the matching.

  20. Morphology of QSO host galaxies --- a look at the SED

    NASA Astrophysics Data System (ADS)

    Andrei, A.; Coelho, B.; Anton, S.

    2015-08-01

    The Gaia Initial QSO Catalogue presents several characteristics of its 1,248,372 listed objects, among which the optical morphological type. From this a program studies the host galaxies of QSOs present in the SDSS up to its 8th release, based on retrieving a data bank of images in the five ugriz colors for the 105,783 objects spectroscopically found as QSOs. The first scope of this program is to study QSOs for which the isophotes of the host galaxy are not pronounced, so that the centroid determination is not affected for those fundamental grid-points of the Gaia Celestial Reference Frame. Since the target images come from relatively short exposures, we developed an approach to access disturbances of the target PSF relatively to the nearby stars. Here we focus on the first results for absolute magnitude of QSOs combining the SDSS colors and the SED library from Gaia.

  1. SNLS: Constraints on SN Ia progenitors from host galaxies

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Le Borgne, D.; Hodsman, A.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I. M.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, T. J.; Filliol, M.; Perlmutter, S.; Tao, C.; SNLS Collaboration

    2005-12-01

    We investigate the single degenerate and double degenerate progenitor scenarios for SNe Ia using Pegase galaxy population synthesis models fit to the SN Ia host galaxy ugriz data from the SNLS. For the single degenerate scenario, we present the results of a Monte Carlo sumulation combining limits on the star formation history of the model hosts and analytic contraints on the allowable primary and secondary mass distributions. Under the assuption that all SNe are from the single degenerate channel, we find that SNe in star forming galaxies have a wide range of secondary masses, with a median of about 5 solar masses. Supernovae from the older galaxy population must come from a narrower distribution of secondary masses, with a median less than two solar masses. When combined with the differing stretch distributions for the two populations, this argues that there is a light curve shape-secondary mass correlation if the single degenerate model is the only route to an SN Ia. However, the single degenerate scenario has difficulty producing the observed SN Ia rate in old populations so the double degenerate scenario may be preferred.

  2. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  3. Locating star-forming regions in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Eracleous, M.; Shemmer, O.; Netzer, H.; Gronwall, C.; Lutz, Dieter; Ciardullo, R.; Sturm, Eckhard

    2014-02-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II]λ3727, Hβ, [O III]λ5007 and Paα images, taken with the Wide Field Planetary Camera 2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of the order of a few tens of M⊙ yr-1. The host galaxies of our target quasars have stellar masses of the order of 1011 M⊙ and specific star-formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation versus stellar mass diagram. We see a clear trend of increasing star-formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.

  4. Properties of The Brightest Cluster Galaxy and Its Host Cluster

    NASA Astrophysics Data System (ADS)

    Katayama, H.; Hayashida, K.; Takahara, F.

    2001-09-01

    We investigate the relation between the brightest cluster galaxy (BCG) and its host cluster. A BCG is a bright and massive elliptical galaxy in a cluster of galaxies. The luminosity of a BCG is 10 times larger than that of normal field galaxy and the mass of a BCG is about 1013Msolar which corresponds to that of galaxy group. In order to explain the origin of BCGs, the following three models are proposed: (1) star formation from cooling flow. In this model, intracluster gas gradually condenses at the center of the cluster and forms the BCG. (2) ``Galactic cannibalism'' or the accretion of smaller galaxies. In this model, dynamical friction accounts for the formation of the BCG. These two models predict the BCG evolves with the evolution of cluster. (3) Galaxy merging in the early history of the formation of the cluster. In this model, the property of BCGs is determined no later than cluster collapse. In any model, the formation of BCGs is related to the collapse and formation of its host cluster. The relation between the BCG and its host cluster was studied by Edge (1991). Edge (1991) found that the optical luminosity of the BCG is positively correlated with the X-ray luminosity and temperature of its host cluster. Edge (1991) concludes that these correlations indicate that the BCG responds to the overall cluster properties. In order to investigate the other relation between the BCG and its host cluster, we analyzed ROSAT archival data and compared the displacement between the X-ray peak and the BCG with the Z parameter of the fundamental relation found by Fujita and Takahara (1999). It is found that the displacement is larger with decreasing Z. Furthermore, the large Z clusters tend to have a regular X-ray profile, which implies a relaxed system. The fundamental parameter Z depends mainly on the virial density ρvir, and is considered to be related to the formation epoch of the cluster, i.e., large Z clusters are old clusters and small Z clusters are young

  5. REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel; Gnedin, Nickolay Y.

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  6. Constraints on Short Gamma-Ray Burst Models with Optical Limits of GRB 050509b

    SciTech Connect

    Hjorth, Jens; Sollerman, J.; Gorosabel, J.; Granot, J.; Klose, S.; Kouveliotou, C.; Melinder, J.; Ramirez-Ruiz, E.; Starling, R.; Thomsen, B.; Andersen, M.I.; Fynbo, J.P.U.; Jensen, B.L.; Vreeswijk, P.M.; Castro-Ceron, J.M.; Jakobsson, P.; Levan, A.; Pedersen, K.; Rhoads, J.E.; Tanvir, N.R.; Watson, D.; /Bohr Inst. /Stockholm U. /IAA, Granada /KIPAC, Menlo Park /TLS, Tautenburg /NASA, Marshall /Princeton, Inst. Advanced Study /Amsterdam U., Astron. Inst. /Aarhus U. /Potsdam, Astrophys. Inst. /European Southern Obs., Chile /Leicester U. /Baltimore, Space Telescope Sci. /Hertfordshire U.

    2005-06-15

    We have obtained deep optical images with the Very Large Telescope at ESO of the first well-localized short-duration gamma-ray burst, GRB 050509b. We observed in the V and R bands at epochs starting at {approx}2 days after the GRB trigger and lasting up to three weeks. We detect no variable objects inside the small Swift/XRT X-ray error circle down to 5{sigma} limiting magnitudes of V = 26.5 and R = 25.2. The X-ray error circle includes a giant elliptical galaxy at z = 0.225, which has been proposed as the likely host of this GRB. Our limits indicate that if the GRB originated at z = 0.225, any supernova-like event accompanying the GRB would have to be over 100 times fainter than normal Type Ia SNe or Type Ic hypernovae, 5 times fainter than the faintest known Ia or Ic SNe, and fainter than the faintest known Type II SNe. Moreover, we use the optical limits to constrain the energetics of the GRB outflow, and conclude that there was very little radioactive material produced during the GRB explosion. These limits strongly constrain progenitor models for this short GRB.

  7. Constraints on Short Gamma-ray Burst Models with Optical Limits of GRB 050509b

    NASA Technical Reports Server (NTRS)

    Hjorth, J.; Sollerman, J.; Gorosabel, J.; Granot, J.; Klose, S.; Kouveliotou, C.; Melinder, J.; Ramirez-Ruiz, E.; Starling, R.; Thomsen, B.

    2005-01-01

    We have obtained deep optical images with the Very Large Telescope at ESO of the first well-localized short-duration gamma-ray burst, GRB 050509b. We observed in the V and R bands at epochs starting at approx. 2 days after the GRB trigger and lasting up to three weeks. We detect no variable objects inside the small Swift/XRT X-ray error circle down to 5(sigma) limiting magnitudes of V = 26.5 and R = 25.2. The X-ray error circle includes a giant elliptical galaxy at z = 0.225, which has been proposed as the likely host of this GRB. Our limits indicate that if the GRB originated at z = 0.225, any supernova-like event accompanying the GRB would have to be over 100 times fainter than normal Type Ia SNe or Type IC hypernovae, 5 times fainter than the faintest known Ia or IC SNe, and fainter than the faintest known Type II SNe. Moreover, we use the optical limits to constrain the energetics of the GRB outflow, and conclude that there was very little radioactive material produced during the GRB explosion. These limits strongly constrain progenitor models for this short GRB. Subject headings: gamma rays: bursts - supernovae

  8. Are Some Milky Way Globular Clusters Hosted by Undiscovered Galaxies?

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis; Crnojević, Denija; Sand, David J.

    2016-07-01

    The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass—halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy’s total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 109 M ⊙ of total mass, the surviving Milky Way (MW) subhalos with masses smaller than 1010 M ⊙ could host as many as 5–31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass–halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW’s outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.

  9. The Host Galaxies of Local PTF Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark; Howell, D. Andrew; Nugent, Peter; Hook, Isobel; Maguire, Kate; Blake, Sarah; Pan, Yen-Chen

    2012-02-01

    The discovery of correlations between Type Ia Supernova (SN Ia) peak luminosity and the parameters defining their host galaxy stellar populations has important implications for their use as standardised candles. Using new samples of low-redshift SNe Ia located with the Palomar Transient Factory (PTF), a rolling transient search in the local universe, we propose to continue our campaign to study in detail the host galaxies in which SNe Ia explode. We aim to establish which physical variable (metallicity or age) primarily drives the SN Ia luminosity variations using high signal-to-noise spectroscopy of their environments. These data will also improve the derivation of SN Ia "delay-time" distributions, and place tighter constraints on the nature of their progenitor systems. Evolution in SN Ia properties is now the largest single astrophysical systematic in SN Ia cosmology, with host galaxies playing a critical role in cosmological studies, and detailed study of their environments provides a realistic opportunity to improve their use for studying dark energy. We give a status report on the progress of this program to date, and demonstrate the feasibility of our study using our observations from earlier semesters.

  10. The host galaxies of local PTF Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark; Howell, D. Andrew; Hook, Isobel; Pan, Yen-Chen; Nugent, Peter; Maguire, Kate

    2012-08-01

    The discovery of correlations between Type Ia Supernova (SN Ia) peak luminosity and the parameters defining their host galaxy stellar populations has important implications for their use as standardised candles. Using new samples of low-redshift SNe Ia located with the Palomar Transient Factory (PTF), a rolling transient search in the local universe, we finish our campaign to study in detail the host galaxies in which SNe Ia explode. We aim to establish which physical variable (metallicity or age) primarily drives the SN Ia luminosity variations using high signal-to-noise spectroscopy of their environments. These data will also place tighter constraints on the nature of their progenitor systems. Evolution in SN Ia properties is now the largest single astrophysical systematic in SN Ia cosmology, with host galaxies playing a critical role in cosmological studies, and detailed study of their environments provides a realistic opportunity to improve their use for studying dark energy. We give a status report on the progress of this program to date, and demonstrate the feasibility of our study using our observations from earlier semesters.

  11. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    NASA Astrophysics Data System (ADS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  12. The mean star-forming properties of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Trakhtenbrot, B.; Lutz, D.; Netzer, H.; Trump, J. R.; Silverman, J. D.; Schramm, M.; Lusso, E.; Berta, S.; Bongiorno, A.; Brusa, M.; Förster-Schreiber, N. M.; Genzel, R.; Lilly, S.; Magnelli, B.; Mainieri, V.; Maiolino, R.; Merloni, A.; Mignoli, M.; Nordon, R.; Popesso, P.; Salvato, M.; Santini, P.; Tacconi, L. J.; Zamorani, G.

    2013-12-01

    Quasi-stellar objects (QSOs) occur in galaxies in which supermassive black holes (SMBHs) are growing substantially through rapid accretion of gas. Many popular models of the co-evolutionary growth of galaxies and black holes predict that QSOs are also sites of substantial recent star formation (SF), mediated by important processes, such as major mergers, which rapidly transform the nature of galaxies. A detailed study of the star-forming properties of QSOs is a critical test of these models. We present a far-infrared Herschel/PACS study of the mean star formation rate (SFR) of a sample of spectroscopically observed QSOs to z ~ 2 from the COSMOS extragalactic survey. This is the largest sample to date of moderately luminous QSOs (with nuclear luminosities that lie around the knee of the luminosity function) studied using uniform, deep far-infrared photometry. We study trends of the mean SFR with redshift, black hole mass, nuclear bolometric luminosity, and specific accretion rate (Eddington ratio). To minimize systematics, we have undertaken a uniform determination of SMBH properties, as well as an analysis of important selection effects of spectroscopic QSO samples that influence the interpretation of SFR trends. We find that the mean SFRs of these QSOs are consistent with those of normal massive star-forming galaxies with a fixed scaling between SMBH and galaxy mass at all redshifts. No strong enhancement in SFR is found even among the most rapidly accreting systems, at odds with several co-evolutionary models. Finally, we consider the qualitative effects on mean SFR trends from different assumptions about the SF properties of QSO hosts and from redshift evolution of the SMBH-galaxy relationship. While currently limited by uncertainties, valuable constraints on AGN-galaxy co-evolution can emerge from our approach.

  13. Fast outflows and star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2016-06-01

    Negative feedback from active galactic nuclei (AGN) is considered a key mechanism in shaping galaxy evolution. Fast, extended outflows are frequently detected in the AGN host galaxies at all redshifts and luminosities, both in ionised and molecular gas. However, these outflows are only potentially able to quench star formation, and we are still lacking decisive evidence of negative feedback in action. Here we present observations obtained with the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) H- and K-band integral-field of two quasars at z ~ 2.4 that are characterised by fast, extended outflows detected through the [Oiii]λ5007 line. The high signal-to-noise ratio of our observations allows us to identify faint narrow (FWHM< 500 km s-1) and spatially extended components in [Oiii]λ5007 and Hα emission associated with star formation in the host galaxy. This star formation powered emission is spatially anti-correlated with the fast outflows. The ionised outflows therefore appear to be able to suppress star formation in the region where the outflow is expanding. However, the detection of narrow spatially extended Hα emission indicates star formation rates of at least ~50-90 M⊙ yr-1, suggesting either that AGN feedback does not affect the whole galaxy or that many feedback episodes are required before star formation is completely quenched. On the other hand, the narrow Hα emission extending along the edges of the outflow cone may also lead also to a positive feedback interpretation. Our results highlight the possible double role of galaxy-wide outflows in host galaxy evolution. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A) and 091.A-0261(A).The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A28

  14. DYNAMICS OF LYMAN BREAK GALAXIES AND THEIR HOST HALOS

    SciTech Connect

    Lowenthal, James D.; Koo, David C.; Van Kampen, Eelco E-mail: koo@ucolick.or E-mail: evkampen@eso.or

    2009-09-20

    We present deep two-dimensional spectra of 22 candidate and confirmed Lyman break galaxies (LBGs) at redshifts 2 < z < 4 in the Hubble Deep Field (HDF) obtained at the Keck II telescope. The targets were preferentially selected with spatial extent and/or multiple knot morphologies, and we used slitmasks and individual slits tilted to optimize measurement of any spatially resolved kinematics. Our sample is more than 1 mag fainter and is at higher redshift than the kinematic LBG targets previously studied by others. The median target magnitude was I {sub 814} = 25.3, and total exposure times ranged from 10 to 50 ks. We measure redshifts, some new, ranging from z = 0.2072 to z = 4.056, including two interlopers at z < 1, and resulting in a sample of 14 LBGs with a median redshift z = 2.424. The morphologies and kinematics of the close pairs and multiple knot sources in our sample are generally inconsistent with galaxy formation scenarios postulating that LBGs occur only at the bottom of the potential wells of massive host halos; rather, they support 'collisional starburst' models with significant major merger rates and a broad halo occupation distribution. For 13 LBGs with possible kinematic signatures, we estimate a simple dynamical mass, subject to numerous caveats and uncertainties, of the galaxies and/or their host dark matter halos. Dynamical mass estimates of individual galaxies range from 4 x 10{sup 9} h {sup -1} M{sub sun} to 1.1 x 10{sup 11} h {sup -1} M{sub sun} and mass estimates of halos, based on close LBG pairs, range from <10{sup 10} h {sup -1} to {approx}10{sup 14} h {sup -1} M{sub sun} with a median value 1 x 10{sup 13} M{sub sun}. Comparison with a recent numerical galaxy formation model implies that indeed the pairwise velocities might not reflect true dynamical masses. We compare our dynamical mass estimates directly to stellar masses estimated for the same galaxies from SEDs, and find no evidence for a strong correlation. The diversity of

  15. The Massive Hosts of Radio Galaxies Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Seymour, Nick; SHzRG Collaboration

    2007-05-01

    We present the results of a comprehensive Spitzer survey of 69 radio galaxies across 1host galaxy stellar emission at rest-frame H-band. Stellar masses derived from rest-frame near-IR data, where AGN and young star contributions are minimized, are significantly more reliable than those derived from rest-frame optical and UV data. We find that the fraction of emitted light at rest-frame H-band from stars is >60% for 75% the high redshift radio galaxies. As expected from unified models of AGN, the stellar fraction of the rest-frame H-band luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5um) luminosity. Additionally, while the stellar H-band luminosity does not vary with stellar fraction, the total H-band luminosity anti-correlates with the stellar fraction as would be expected if the underlying hosts of these radio galaxies comprise a homogeneous population. The resultant stellar luminosities imply stellar masses of 10^{11-11.5}Msun even at the highest redshifts. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the stellar contribution to their mid-IR SEDs at shorter-wavelengths. The mid-IR luminosities alone classify most HzRGs as LIRGs or ULIRGs with even higher total-IR luminosities. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. Sub-mm observed starformation rates imply very high specific starformation rates, higher than other massive galaxies at these redshift ranges, suggesting we are watching the final formation of massive galaxies and black holes. We also present new evidence that the blackhole accretion rate (from mid-IR luminosity) correlates with radio lobe size and anti

  16. Large Dynamic Range Simulations of Galaxies Hosting Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Levine, Robyn

    2011-08-01

    The co-evolution of supermassive black holes (SMBHs) and their host galaxies is a rich problem, spanning a large-dynamic range and depending on many physical processes. Simulating the transport of gas and angular momentum from super-galactic scales all the way down to the outer edge of the black hole's accretion disk requires sophisticated numerical techniques with extensive treatment of baryonic physics. We use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting an SMBH, in a cosmological context (covering a dynamical range of 10 million!). We have adopted a piecemeal approach, focusing our attention on the gas dynamics in the central few hundred parsecs of the simulated galaxy (with boundary conditions provided by the larger cosmological simulation), and beginning with a simplified picture (no mergers or feedback). In this scenario, we find that the circumnuclear disk remains marginally stable against catastrophic fragmentation, allowing stochastic fueling of gas into the vicinity of the SMBH. I will discuss the successes and the limitations of these simulations, and their future direction.

  17. Metallicity Gradients of Stripped Core-Collapse Supernovae Host Galaxies

    NASA Astrophysics Data System (ADS)

    Fierroz, David F.; Modjaz, M.

    2013-01-01

    We examine a sample of over 30 galaxies that have hosted stripped core-collapse supernovae including SN IIb, SN Ib, SN Ic and SN Ic with broad lines (SN Ic-BL). The supernovae were discovered by both targeted and untargeted surveys including the Katzman Automatic Imaging Telescope (KAIT), the Nearby Supernova Factory (SNF) and the Palomar Transient Factory (PTF). The metallicity of the supernova environment is expected to play an important role during the short lifetimes of the massive stellar progenitors and likely influences the class of the explosion. We obtain spectra to measure metallicity at the nucleus of the galaxy as well as at HII regions going out to radii that include the supernova site. We use three different oxygen-abundance scales to calibrate and compare metallicities across core-collapse classes. By interpolating the metallicity across the host galaxy we construct our own metallicity gradients that can include SN that have no HII regions at their position and remove the selection effect in place by prior studies. This new feature allows us to probe SN environmental metallicities, even at sites that don’t have recent star formation activity.

  18. THE ANTICIPATED SUPERNOVA ASSOCIATED WITH GRB 090618

    SciTech Connect

    Dado, Shlomo; Dar, Arnon E-mail: arnon@physics.technion.ac.il

    2010-01-10

    We use the cannonball model of gamma-ray bursts (GRBs) and public data from the first day of observations of GRB 090618 to predict its X-ray and optical light curves until very late times, and, in particular, the emergence of a photometric and spectroscopic signature of an SN akin to SN1998bw in its optical afterglow with an anticipated peak brightness of magnitude {approx}23.2 in the R band around 2009 July 10, if extinction in the host galaxy can be neglected.

  19. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    SciTech Connect

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise E-mail: schinner@mpia.de E-mail: burillo@oan.es

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s{sup –1}) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  20. The bulge-disc decomposition of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; Mortlock, A.; Kocevski, D. D.; McGrath, E. J.; Rosario, D. J.

    2016-05-01

    We present the results from a study of the morphologies of moderate luminosity X-ray-selected active galactic nuclei (AGN) host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multiwavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sérsic and multiple Sérsic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sérsic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are indistinguishable from the general galaxy population except that beyond z ≃ 1.5 they have significantly higher bulge fractions. Even including nuclear sources in our modelling, the probability of this result arising by chance is ˜1 × 10-5, alleviating concerns that previous, purely single Sérsic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This data set also allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity. Our analysis of the bulge and disc fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.

  1. Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813

    NASA Technical Reports Server (NTRS)

    Ferrero, P.; Sanchez, S. F.; Kann, D. A.; Klose, S.; Greiner, J.; Gorosabel, J.; Hartmann, D. H.; Henden, A. A.; Moller, P.; Palazzi, E.; Rau, A.; Stecklum, B.; Castro-Tirado, A. J.; Fynbok J. P. U.; Hjorth, J.; Jakobsson, P.; Kouveliotou, C.; Masetti, N.; Pian, E.; Tanvir, N. R.; Wijers, R. A. M. J.

    2006-01-01

    We report early follow-up observations of the error box of the short burst 050813 using the telescopes at Calar Alto and at Observatorio Sierra Nevada (OSN), followed by deep VLT/FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. No evidence for a GRB afterglow was found in our Calar Alto and OSN data, no rising supernova component was detected in our FORS2 images. A potential host galaxy can be identified in our FORS2 images, even though we cannot state with certainty its association with GRB 050813. IN any case, the optical afterglow of GRB 050813 was very faint, well in agreement with what is known so far about the optical properties of afterglows of short bursts. We conclude that all optical data are not in conflict with the interpretation that GRB 050813 was a short burst.

  2. Simple Stellar Population Modeling of Quasar Host Galaxies with Diffusion K-Means Test Results

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Moravec, E. A.; Tremonti, C. A.; Wolf, M. J.

    2013-01-01

    In the last decade, the correlation of the masses of supermassive black holes (SMBHs) and their host galaxy stellar spheroid velocity dispersions (the M-sigma relation) was greeted as clear evidence for the co-evolution of host galaxies and their SMBHs. However, studies in the last five years have posited that this relation could arise from central-limit properties of hierarchical formation alone. To address the question of whether and how often the SMBHs evolve with their host galaxies, it is necessary to look at galaxies whose SMBHs are actively growing—quasars—and determine the host galaxy properties. The central nuclei of quasar host galaxies complicate this type of study because their high luminosity tends to wash out their host galaxies. But, by using 3-D spectroscopy with the integral field unit (IFU) Sparsepak on the WIYN telescope, we have shown that the quasar light can be mostly isolated to one fiber in order to obtain the spectra of the quasar and the host galaxy concurrently. We can then model simultaneously the scattered quasar light and the stellar populations in the host galaxy fiber using a new simple stellar population (SSP) modeling method called diffusion k-means (DFK). The objectives of the research presented in this poster are to model synthetic quasar host galaxies using a DFK basis and a more traditional basis, compare the accuracy of both modeling methods, and test the affects of various prescriptions for masking the quasar lines in the host galaxy fiber. We present results from our SSP modeling and Markov Chain Monte Carlo (MCMC) results for DFK and traditional modeling schemes using synthetic data. By determining and then using the more robust stellar population modeling method, we can more confidently study quasar host galaxies to answer remaining questions in galaxy evolution. This work was partially supported by a National Science Foundation Graduate Fellowship (NSF Grant DGE-0718123) and through the NSF's REU program (NSF Award

  3. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    SciTech Connect

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Valenti, S.; Smartt, S.; Botticella, M. T.; Hurley, K.; Barthelmy, S. D.; Gehrels, N.; Cline, T.; Levesque, E. M.; Narayan, G.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Golenetskii, S.; Mazets, E.; and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  4. Host galaxies of luminous type II AGN: Winds, shocks, and comparisons to The SAMI Galaxy Survey

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Pracy, Michael; SAMI Galaxy Survey Team

    2016-01-01

    We present IFS observations of luminous (log(L[O III]/L⊙) > 8.7) local (z < 0.11) type II AGN, and demonstrate that winds are ubiquitous within this sample and have a direct influence on the ISM of the host galaxies. We use both non-parametric (e.g. line width and asymmetry) and multi-Gaussian fitting to decompose the complex emission profiles close to the AGN. We find line widths containing 80% flux in the range 400 - 1600 km/s with a mean of 790 ± 90 km/s, such high velocities are strongly suggestive that these AGN are driving ionized outflows. Additionally, multi-Gaussian fitting reveals that 14/17 of our targets require 3 separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530 - 2520 km/s, with a mean value of 920 ± 50 km/s. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (> 95 %) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. In addition, we use stellar absorption features to measure kinematics for these AGN host galaxies and those of a control sample selected from the SAMI Galaxy Survey to search for evidence of these luminous AGN being preferentially hosted by disturbed or merging systems.

  5. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s‑1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr‑1 and the mean gas mass is ∼1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH–M * scaling relation.

  6. The host galaxy of a fast radio burst.

    PubMed

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts. PMID:26911781

  7. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  8. The impact of AGN on their host galaxies

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.

    2014-07-01

    In these proceedings I briefly: (1) review the impact (or ``feedback'') that active galactic nuclei (AGN) are predicted to have on their host galaxies and larger scale environment, (2) review the observational evidence for or against these predictions and (3) present new results on ionised outflows in AGN. The observational support for the ``maintenance mode'' of feedback is strong (caveat the details); AGN at the centre of massive halos appear to be regulating the cooling of hot gas, which could in turn control the levels of future star formation (SF) and black hole growth. In contrast, direct observational support for more rapid forms of feedback, which dramatically impact on SF (i.e., the ``quasar mode''), remains elusive. From a systematic study of the spectra of ~24 000 AGN we find that extreme ionised gas kinematics are common, and are most prevalent in radio bright AGN (L 1.4 GHz > 103 W Hz-1). Follow-up IFU observations have shown that these extreme gas kinematics are extended over kilo-parsec scales. However, the co-existence of high-levels of SF, luminous AGN activity and radio jets raises interesting questions on the primary drivers and impact of these outflows. Galaxy-wide, high-mass outflows are being observed in an increasing number of AGN and are a plausible mechanism for the depletion of gas; however, there is still much work to be done to determine the physical processes that drive these outflows and to measure the level of impact that they have on their host galaxies.

  9. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  10. The polarized gamma-ray burst GRB 061122

    NASA Astrophysics Data System (ADS)

    Götz, D.; Covino, S.; Fernández-Soto, A.; Laurent, P.; Bošnjak, Ž.

    2013-06-01

    We report on the polarization measure, obtained with IBIS on board INTEGRAL, of the prompt emission of GRB 061122. Over an 8 s interval containing the brightest part of the gamma-ray burst (GRB) we put a lower limit on its polarization fraction of 60 per cent at 68 per cent confidence level (c.l.) and of 33 per cent at 90 per cent c.l. on the 250-800 keV energy range. We performed late time optical and near-infrared imaging observations of the GRB field using the Telescopio Nazionale Galileo and the Canada-France-Hawaii Telescope. Our multiband (ugrizYJHK) photometry allowed us to identify the host galaxy of GRB 061122 and to build its spectral energy distribution. Using a photometric redshift code we fitted these data, and derived the basic properties of the galaxy, including its type and redshift, that we could constrain to the interval [0.57, 2.10] at a 90 per cent c.l., with a best-fitting value of z = 1.33. The polarization measurement in different energy bands, together with the distance determination, allowed us to put the most stringent limit (ξ ≲ 3.4 × 10-16) to date to a possible Lorentz invariance violation based on the vacuum birefringence effect, predicted by some quantum-gravity theories.

  11. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  12. A multi-wavelength survey of AGN in massive clusters: AGN distribution and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Klesman, Alison J.; Sarajedini, Vicki L.

    2014-07-01

    We investigate the effect of environment on the presence and fuelling of active galactic nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi-wavelength surveys covering regions centred on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. X-ray-selected AGN candidates appear to be more centrally concentrated than normal galaxies in the inner 20 per cent of the virial radius, while becoming less centrally concentrated in the outer regions. Mid-IR-selected AGN are less centrally concentrated overall. Optical variables have a similar distribution to normal galaxies in the inner regions, then become somewhat less centrally concentrated farther from the cluster centre. The host galaxies of AGN reveal a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the `green valley' between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star formation in the hosts. Among normal galaxies, we find that galaxy colours become generally bluer with increasing cluster radius, as is expected. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts, which may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy

  13. Strategies for Prompt Searches for GRB Afterglows: The Discovery of GRB 001011 Optical/Near-Infrared Counterpart Using Colour-Colour Selection

    NASA Technical Reports Server (NTRS)

    Gorosabel, J.; Fynbo, J. U.; Hjorth, J.; Wolf, C.; Andersen, M. I.; Pedersen, H.; Christensen, L.; Jensen, B. L.; Moller, P.; Afonso, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We report the discovery of the optical and near-infrared counterpart to GRB 001011. The GRB 001011 error box determined by Beppo-SAX was simultaneously imaged in the near-infrared by the 3.58-m. New Technology Telescope and in the optical by the 1.54-m Danish Telescope - 8 hr after the gamma-ray event. We implement the colour-colour discrimination technique proposed by Rhoads (2001) and extend it using near-IR data as well. We present the results provided by an automatic colour-colour discrimination pipe-line developed to discern the different populations of objects present in the GRB 001011 error box. Our software revealed three candidates based on single-epoch images. Second-epoch observations carried out approx. 3.2 days after the burst revealed that the most likely candidate had faded thus identifying it with the counterpart to the GRB. In deep R-band images obtained 7 months after the burst a faint (R=25.38 plus or minus 0.25) elongated object, presumably the host galaxy of GRB 001011, was detected at the position of the afterglow. The GRB 001011 afterglow is the first discovered with the assistance of colour-colour diagram techniques. We discuss the advantages of using this method and its application to boxes determined by future missions.

  14. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the

  15. Host Galaxies of Luminous Quasars: Structural Properties and the Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.

    2008-10-01

    We present stellar velocity dispersion measurements in the host galaxies of ten luminous quasars (MV < -23) using the Ca H&K lines in off-nuclear spectra. We combine these data with effective radii and magnitudes from the literature to place the host galaxies on the fundamental plane (FP) where their properties are compared with other types of galaxies. We find that the radio-loud (RL) QSO hosts have similar properties to massive elliptical galaxies, while the radio-quiet (RQ) hosts are more similar to intermediate-mass galaxies. The RL hosts lie at the upper extreme of the FP due to their large velocity dispersions (langσ*rang = 321 km s-1), low surface brightness (langμ e (r)rang = 20.8 mag arcsec-2), and large effective radii (langRe rang = 11.4 kpc), and have langM *rang = 1.5 × 1012 M sun and langM/Lrang = 12.4. In contrast, properties of the RQ hosts are langσ*rang = 241 km s-1, langM *rang = 4.4 × 1011 M sun, and M/L ~ 5.3. The distinction between these galaxies occurs at σ*~ 300 km s-1, Re ~ 6 kpc, and corresponding M * ~ 5.9 ± 3.5 × 1011 M sun. Our data support previous results that Palomar-Green QSOs are related to gas-rich galaxy mergers that form intermediate-mass galaxies, while RL QSOs reside in massive early-type galaxies, most of which also show signs of recent mergers or interactions. Previous authors have drawn these conclusions by using estimates of the black hole mass and inferring host galaxy properties from that, while here we have relied purely on directly measured host galaxy properties.

  16. Early-type Host Galaxies of Type Ia Supernovae. I. Evidence for Downsizing

    NASA Astrophysics Data System (ADS)

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-01

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  17. VLT/X-shooter spectroscopy of the GRB 120327A afterglow

    NASA Astrophysics Data System (ADS)

    D'Elia, V.; Fynbo, J. P. U.; Goldoni, P.; Covino, S.; de Ugarte Postigo, A.; Ledoux, C.; Calura, F.; Gorosabel, J.; Malesani, D.; Matteucci, F.; Sánchez-Ramírez, R.; Savaglio, S.; Castro-Tirado, A. J.; Hartoog, O. E.; Kaper, L.; Muñoz-Darias, T.; Pian, E.; Piranomonte, S.; Tagliaferri, G.; Tanvir, N.; Vergani, S. D.; Watson, D. J.; Xu, D.

    2014-04-01

    Aims: We present a study of the environment of the Swift long gamma-ray burst GRB 120327A at z ≈ 2.8 through optical spectroscopy of its afterglow. Methods: We analyzed medium-resolution, multi-epoch spectroscopic observations (R ~ 7000-12 000, corresponding to ~15-23 km s-1, S/N = 15-30 and wavelength range 3000-25 000 Å) of the optical afterglow of GRB 120327A, taken with X-shooter at the VLT 2.13 and 27.65 hr after the GRB trigger. Results: The first epoch spectrum shows that the ISM in the GRB host galaxy at z = 2.8145 is extremely rich in absorption features, with three components contributing to the line profiles. The hydrogen column density associated with GRB 120327A has log NH/cm-2 = 22.01 ± 0.09, and the metallicity of the host galaxy is in the range [X/H] = -1.3 to -1.1. In addition to the ground state lines, we detect absorption features associated with excited states of C ii, O i, Si ii, Fe ii, and Ni ii, which we used to derive information on the distance between the host absorbing gas and the site of the GRB explosion. The variability of the Fe iiλ2396 excited line between the two epochs proves that these features are excited by the GRB UV flux. Moreover, the distance of component I is found to be dI = 200+100-60 pc, while component II is located closer to the GRB, at dII = 100+40-30 pc. These values are among the lowest found in GRBs. Component III does not show excited transitions, so it should be located farther away from the GRB. The presence of H2 molecules is firmly established, with a molecular fraction f in the range f = 4 × 10-7-10-4. This particularly low value can be attributed to the small dust content. This represents the third positive detection of molecules in a GRB environment. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile, proposal code: 088.A-0051.The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  18. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    SciTech Connect

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  19. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon; Université de Lyon 1, Villeurbanne; CNRS and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  20. Type Ia Supernova Hubble Residuals and Host-galaxy Properties

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-03-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at Lt1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  1. The Host Galaxies of High-Luminosity Obscured Quasars at 2.5

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; Strauss, M. A.; Greene, J. E.; Zakamska, N. L.; Brandt, W. N.; Alexandroff, R.; Liu, G.; Smith, P. S.; The SDSS-III BOSS Quasar Working Group

    2014-01-01

    Active Galactic Nuclei play a key role in the evolution of galaxies. However, very little is known about the host galaxies of the most luminous quasars at redshift 2.5, the epoch when massive black hole growth peaked. The brightness of the quasar itself, which can easily outshine a galaxy by a large factor, makes it very difficult to study emission from extended gas or stars in the host galaxy. However, we have imaged the extended emission from the host galaxies of a unique sample of six optically extinguished (Type II) luminous quasars with 2.5, with the Hubble Space Telescope (Cycle 20, GO 13014) using ACS/F814W to access the rest-frame near-ultraviolet, and WFC3/F160W for the rest-frame optical longward of 4000A. These objects are selected from the spectroscopic database of the SDSS/Baryon Oscillation Spectroscopic Survey to have strong, narrow emission lines and weak continua. With these images, we have quantified the luminosity, morphology, and dynamical state of the host galaxies, and searched for extended scattered light from the obscured central engine. These observations are the first comprehensive study of both host galaxy light and scattered light in high-luminosity quasars at the epoch of maximum black hole growth, and give insights into the relationship between host galaxies and black holes during this important, and yet largely unexplored period.

  2. Comparing the Host Galaxies of Type Ia, Type II, and Type Ibc Supernovae

    NASA Astrophysics Data System (ADS)

    Shao, X.; Liang, Y. C.; Dennefeld, M.; Chen, X. Y.; Zhong, G. H.; Hammer, F.; Deng, L. C.; Flores, H.; Zhang, B.; Shi, W. B.; Zhou, L.

    2014-08-01

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D n (4000), Hδ A , stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D n (4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D n (4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (~0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  3. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  4. The host galaxy of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.; Eatough, R. P.; Stappers, B. W.; Totani, T.; Honma, M.; Furusawa, H.; Hattori, T.; Morokuma, T.; Niino, Y.; Sugai, H.; Terai, T.; Tominaga, N.; Yamasaki, S.; Yasuda, N.; Allen, R.; Cooke, J.; Jencson, J.; Kasliwal, M. M.; Kaplan, D. L.; Tingay, S. J.; Williams, A.; Wayth, R.; Chandra, P.; Perrodin, D.; Berezina, M.; Mickaliger, M.; Bassa, C.

    2016-02-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy’s redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called ‘missing baryons’. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  5. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  6. GRB 021211 as a Faint Analogue of GRB 990123: Exploring the Similarities and Differences in the Optical Afterglows

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Bersier, David; Bloom, J. S.; Garnavich, Peter M.; Caldwell, Nelson; Challis, Peter; Kirshner, Robert; Luhman, Kevin; McLeod, Brian; Stanek, K. Z.

    2004-01-01

    We present BVR(sub c)JHK(sub s) photometry of the optical afterglow of the gamma-ray burst GRB 021211 taken at the Magellan, MMT, and WIYN observatories between 0.7 and 50 days after the burst. We find an intrinsic spectral slope at optical and near-infrared wavelengths of 0.69 +/- 0.14 at 0.87 days. The optical decay during the first day is almost identical to that of GRB 990123 except that GRB 021211's optical afterglow was intrinsically approximately 38 times fainter and the transition from the reverse shock to the forward shock may have occurred earlier than it did for GRB 990123. We find no evidence for a jet break or the cooling break passing through optical frequencies during the first day after the burst. There is weak evidence for a break in the J-band decay between 0.89 and 1.87 days which may be due to a jet. The optical and infrared data are consistent with a relativistic fireball where the shocked electrons are in the slow cooling regime and the electron index is 2.3 +/- 0.1. The burst appears to have occurred in a homogeneous ambient medium. Our analysis suggests that the jet of GRB 021211 may have a small opening angle (1.4 deg-4.4 deg) and that the total gamma-ray energy is much less than the canonical value of 1.33 x 10(exp 51) erg. If, this is the case then most of the energy of the burst may be in another form such as a frozen magnetic field, in supernova ejecta, or in a second jet component. The host galaxy of GRB 021211 is subluminous and has a star formation rate of at least 1 solar mass/yr.

  7. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    SciTech Connect

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    2014-11-01

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.

  8. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  9. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-10-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  10. A spectral energy distribution analysis of AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Civano, Francesca M.; Hasinger, Guenther; Elvis, Martin; Marchesi, Stefano

    2015-01-01

    We present the host galaxy properties of a large sample of ~ 4000 X-ray selected Active Galactic Nuclei (AGN) in the Chandra COSMOS Legacy Survey to investigate the connection between BH accretion and host galaxy. The COSMOS Legacy survey reaching X-ray fluxes of 2x10-16 (cgs) in the 0.5-2 keV band, bridges the gap between large area shallow surveys and pencil beamed one. Making use of the existing multi-wavelength photometric data available for 96.6% of the sources, COSMOS Legacy survey provides a uniquely large sample to derive host galaxy properties for both obscured and unobscured sources. We perform a multi-component modeling from far-infrared (500 μm) when available to UV (1500 Å) using a 3-component fitting (nuclear hot dust, galaxy and starburst components) for obscured AGN and a 4-component fitting (nuclear hot dust, AGN big blue bump, galaxy, and starburst components) for unobscured AGN. Galaxy templates are from the stellar population synthesis models of Bruzual & Charlot (2003), nuclear hot dust templates are taken from Silva et al. (2004), and AGN big blue bump templates are from Richards et al. (2006). We use the column density information measured in the X-ray to constrain the AGN in the infrared band when available. Through detailed analysis of the broad-band spectral energy distribution, we derive the stellar masses and the star formation rates of the host galaxy as well as the nuclear and galaxy contribution at each frequency. We study the dependence of host galaxy properties on redshifts, luminosities, and black hole masses to infer the growth history of galaxies and black holes and we compare with a sample of inactive galaxies.

  11. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  12. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    NASA Technical Reports Server (NTRS)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  13. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  14. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  15. Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.; Uslenghi, M.

    2015-12-01

    We present a photometrical and morphological multicolour study of the properties of low-redshift (z < 0.3) quasar hosts based on a large and homogeneous data set of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger data set of ˜400 quasars at z < 0.5 for which both the host galaxies and their galaxy environments were studied. For 52 quasars, we undertake a study of the colour of the host galaxies and of their close environments in the u, g, r, i and z bands. We are able to resolve almost all the quasars in the sample in the filters g, r, i and z and also in u for about 50 per cent of the targets. We found that the mean colours of the QSO host galaxy (g - i = 0.82 ± 0.26; r - i = 0.26 ± 0.16 and u - g = 1.32 ± 0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colours. Both quasar hosts and the comparison sample of inactive galaxies have candidates of close (<50 kpc) companion galaxies for ˜30 per cent of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (MBH - Mhost) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated with the BH mass, is present in the galaxies hosting low-z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.

  16. The Properties Of The Stellar Nuclei With The Host Galaxy Morphology In The ACSVCS

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-chul

    2012-01-01

    We have revisited the ACS Virgo Cluster Survey (ACSVCS), a Hubble Space Telescope program to obtain ACS/WFC g and z bands imaging for a sample of 100 early-type galaxies in the Virgo Cluster. In this study, we examine 51 nucleated early-type galaxies in the ACSVCS in order to look into the relationship between the photometric and structural properties of stellar nuclei and their host galaxies. We morphologically dissect galaxies into five classes. We note that (1) the stellar nuclei of dwarf early-type galaxies (dS0, dE, and dE,N) are generally fainter and bluer with g > 18.95 and (g-z) < 1.40 compared to some brighter and redder counterparts of the ellipticals (E) and lenticular galaxies (S0), (2) the g-band half-light radii of stellar nuclei of all dwarf early-type galaxies (dS0, dE, and dE,N) are smaller than 20 pc and their average is about 4 pc, and (3) the colors of red stellar nuclei with (g-z) > 1.40 in bright ellipticals and lenticular galaxies are bluer than their host galaxies colors. We also show that most of the unusually RED stellar nuclei with (g-z) > 1.54 in the ACSVCS are the central parts of bright ellipticals and lenticular galaxies.

  17. Exploring Exotic Stellar Deaths with Standard TOO GRB Follow-Up Observations

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino; Fox, Derek; Berger, Edo; Chornock, Ryan; Fong, Wen-Fai; Cobb, Bethany; Cenko, Brad; Perley, Daniel; Bloom, Joshua; Prochaska, Jason Xavier; Morgan, Adam; Levan, Andrew; Tanvir, Nial; Fruchter, Andrew; Lopez, Sebastian; Wiersema, Klaas; Roth, Kathy

    2014-08-01

    The study of gamma-ray burst (GRB) afterglows, host galaxies, and associated supernovae (SNe) sheds light on a wide range of open questions in astrophysics, ranging from the deaths of massive stars to cosmic chemical enrichment and the reionization epoch, and soon, the electromagnetic (EM) counterparts of gravitational wave (GW) sources. Over the past decade, Gemini has played a leading role in all aspects of GRB science through its combination of rapid-response spectroscopy and imaging coupled with deep late-time host galaxy, afterglow, and GRB-SN follow-up. Here, we propose to step forward in our long-standing program of ToO observations, with this proposal focusing on "Standard ToO" science, enabled by observations at t >1 day. In conjunction with an array of multi-wavelength EM facilities, we focus on three key science topics: (1) Aggressive imaging and spectroscopic campaigns to discover and characterize the associated supernovae of the lowest-redshift (z < 0.5) GRBs; (2) Characterizing host galaxy environments and gathering extended light curves for short GRBs, as candidate compact binary merger events, for connection with forthcoming GW facilities; and (3) Gathering extended light curves of exceptionally energetic bursts detected by the Fermi-LAT instrument, to measure the degree of collimation and total energy release of these events. We also submitted a long-term proposal which will supersede this single-semester request in case of approval.

  18. GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment

    NASA Technical Reports Server (NTRS)

    Bradley, Cenko S.; Fox, Derek B.; Penprase, Brian E.; Kulkarni, Shri R.; Price, Paul A.; Berger, Edo; Kulkarni, Shri R.; Harrison, Fiona A.; Gal-Yam, Avishay; Ofek, Eran O.; Rau, Arne; Chandra, Poonam; Frail, Dale A.; Kasliwal, Mansi M.; Schmidt, Brian P.; Soderberg, Alicia M.; Cameron, P. Brian; Roth, Kathy C.

    2007-01-01

    We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z < 2.0, we find no strong (rest-frame equivalent width W > 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg 11 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +0I.-01 ) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>l where galaxy mergers occur more frequently.

  19. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    SciTech Connect

    Hargis, Jonathan R.; Rhode, Katherine L.

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant elliptical NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.

  20. The abundance of satellites depends strongly on the morphology of the host galaxy

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo; Trujillo, Ignacio; Mármol-Queraltó, Esther

    2015-12-01

    Using the spectroscopic catalogue of the Sloan Digital Sky Survey Data Release 10, we have explored the abundance of satellites around a sample of 254 massive (1011 < M⋆ < 2 × 1011 M⊙) local (z < 0.025) galaxies. We have divided our sample into four morphological groups (E, S0, Sa, Sb/c). We find that the number of satellites with M⋆ ≳ 109 M⊙ and R < 300 kpc depends drastically on the morphology of the central galaxy. The average number of satellites per galaxy host (NSat/NHost) down to a mass ratio of 1:100 is 4.5 ± 0.3 for E hosts, 2.6 ± 0.2 for S0, 1.5 ± 0.1 for Sa and 1.2 ± 0.2 for Sb/c. The amount of stellar mass enclosed by the satellites around massive E-type galaxies is a factor of 2, 4 and 5 larger than the mass in the satellites of S0, Sa and Sb/c types, respectively. If these satellites would eventually infall into the host galaxies, for all the morphological types, the merger channel will be largely dominated by satellites with a mass ratio satellite-host μ > 0.1. The fact that massive elliptical galaxies have a significant larger number of satellites than massive spirals could point out that elliptical galaxies inhabit heavier dark matter haloes than equally massive galaxies with later morphological types. If this hypothesis is correct, the dark matter haloes of late-type spiral galaxies are a factor of ˜2-3 more efficient on producing galaxies with the same stellar mass than those dark matter haloes of early-type galaxies.

  1. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua Evan

    Type Ia supernovae (SNe Ia) are the current standard-bearers for dark energy but face several hurdles for their continued success in future large surveys. For example, spectroscopic classification of the myriad SNe soon to be discovered will not be possible, and systematics from uncertainties in dust corrections and the evolution of SN demographics and/or empirical calibrations used to standardize SNe Ia must be studied. Through the identification of low-dust host galaxies and through increased understanding of both the SN - progenitor connections and empirical calibrations, host galaxy information may offer opportunities to improve the cosmological utility of SNe Ia. The first half of this thesis analyzes the sample of SNe Ia discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields. Correlations between properties of SNe and their host galaxies are examined at high redshift. Using galaxy color and quantitative morphology to determine the red sequence in 25 clusters, a model is developed to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, 6 early-type cluster member hosts and 11 SN Ia early-type field hosts are identified. For the first time at z > 0.9, the correlation between host galaxy type and the rise and fall time of SN Ia light curves is confirmed. The relatively simple spectral energy distributions of early-type galaxies also enables stellar mass measurements for these hosts. In combination with literature host mass measurements, these measurements are used to show, at z > 0.9, a hint of the correlation between host mass and Hubble residuals reported at lower redshift. By simultaneously fitting cluster galaxy formation histories and dust content to the scatter of the cluster red sequences, it is shown that dust reddening of early-type cluster SN hosts is likely less

  2. The galaxy-dark matter halo connection: which galaxy properties are correlated with the host halo mass?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2015-09-01

    We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.

  3. Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Merloni, A.; Brusa, M.; Magnelli, B.; Salvato, M.; Mignoli, M.; Zamorani, G.; Fiore, F.; Rosario, D.; Mainieri, V.; Hao, H.; Comastri, A.; Vignali, C.; Balestra, I.; Bardelli, S.; Berta, S.; Civano, F.; Kampczyk, P.; Le Floc'h, E.; Lusso, E.; Lutz, D.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Shankar, F.; Silverman, J.

    2012-12-01

    Using the wide multiband photometry available in the Cosmic Evolution Survey (COSMOS) field, we explore the host galaxy properties of a large sample of active galactic nuclei (AGNs; ˜1700 objects) with Lbol ranging from 1043 to 1047 erg s-1, obtained by combining X-ray and optical spectroscopic selections. Based on a careful study of their spectral energy distributions, which have been parametrized using a two-component (AGN+galaxy) model fit, we have derived dust-corrected rest-frame magnitudes, colours and stellar masses of the obscured and unobscured AGN hosts up to high redshift (z≲3). Moreover, for the sample of obscured AGNs, we have also derived reliable star formation rates (SFRs). We find that AGN hosts span a large range of stellar masses and SFRs. No colour-bimodality is seen at any redshift in the AGN hosts, which are found to be mainly massive, red galaxies. Once we have accounted for the colour-mass degeneracy in well-defined mass-matched samples, we find a residual (marginal) enhancement of the incidence of AGNs in redder galaxies with lower specific SFRs. We argue that this result might emerge because of our ability to properly account for AGN light contamination and dust extinction, compared to surveys with a more limited multiwavelength coverage. However, because these colour shifts are relatively small, systematic effects could still be considered responsible for some of the observed trends. Interestingly, we find that the probability for a galaxy to host a black hole that is growing at any given 'specific accretion rate' (i.e. the ratio of X-ray luminosity to the host stellar mass) is almost independent of the host galaxy mass, while it decreases as a power law with LX/M*. By analysing the normalization of such a probability distribution, we show how the incidence of AGNs increases with redshift as rapidly as (1 + z)4, which closely resembles the overall evolution of the specific SFR of the entire galaxy population. We provide analytical

  4. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    SciTech Connect

    Lagos, P.; Telles, E.; Nigoche-Netro, A.

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  5. DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY

    SciTech Connect

    Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Filippenko, Alexei V.; Cenko, S. Bradley; Mazzali, Paolo A.; Modjaz, Maryam; Horesh, Assaf; Kulkarni, Shrinivas R.; Perley, Daniel; Howell, D. Andrew; Graham, Melissa L.; Sand, David J.; Horst, J. Chuck; Leonard, Douglas C.; Im, Myunshin; Jeon, Yiseul; Sullivan, Mark; and others

    2012-12-01

    We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t){proportional_to}(t - t{sub 0}) {sup n}) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure ({approx}30, 000 km s{sup -1} derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M{sub Sun} and a large ((5-10) Multiplication-Sign 10{sup 51} erg) kinetic energy, the later being close to the regime of GRB-SN properties.

  6. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II. Star formation rates and metallicities at z < 1

    NASA Astrophysics Data System (ADS)

    Japelj, J.; Vergani, S. D.; Salvaterra, R.; D'Avanzo, P.; Mannucci, F.; Fernandez-Soto, A.; Boissier, S.; Hunt, L. K.; Atek, H.; Rodríguez-Muñoz, L.; Scodeggio, M.; Cristiani, S.; Le Floc'h, E.; Flores, H.; Gallego, J.; Ghirlanda, G.; Gomboc, A.; Hammer, F.; Perley, D. A.; Pescalli, A.; Petitjean, P.; Puech, M.; Rafelski, M.; Tagliaferri, G.

    2016-05-01

    Aims: Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (z< 1.5) LGRBs seem to prefer particular types of environment. Our aim is to study the host galaxies of a complete sample of bright LGRBs to investigate the effect of the environment on GRB formation. Methods: We studied host galaxy spectra of the Swift/BAT6 complete sample of 14 z< 1 bright LGRBs. We used the detected nebular emission lines to measure the dust extinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M⋆. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M⋆ relations) are compared to samples of field star-forming galaxies. Results: We find that LGRB hosts at z< 1 have on average lower SFRs than if they were direct star formation tracers. By directly comparing metallicity distributions of LGRB hosts and star-forming galaxies, we find a good match between the two populations up to 12 +log ≤ft( frac{OHright)} 8.4-8.5, after which the paucity of metal-rich LGRB hosts becomes apparent. The LGRB host galaxies of our complete sample are consistent with the mass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 z< 1 sample with respect to that of a field star-forming population. Given that the SFRs are low on average, the latter is ascribed to low stellar masses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected

  7. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    SciTech Connect

    Kelly, Patrick L.; Hicken, Malcolm; Burke, David L.; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  8. Physics of the GRB 030328 afterglow and its environment

    NASA Astrophysics Data System (ADS)

    Maiorano, E.; Masetti, N.; Palazzi, E.; Savaglio, S.; Rol, E.; Vreeswijk, P. M.; Pian, E.; Price, P. A.; Peterson, B. A.; Jelínek, M.; Amati, L.; Andersen, M. I.; Castro-Tirado, A. J.; Castro Cerón, J. M.; de Ugarte Postigo, A.; Frontera, F.; Fruchter, A. S.; Fynbo, J. P. U.; Gorosabel, J.; Henden, A. A.; Hjorth, J.; Jensen, B. L.; Klose, S.; Kouveliotou, C.; Masi, G.; Møller, P.; Nicastro, L.; Ofek, E. O.; Pandey, S. B.; Rhoads, J.; Tanvir, N. R.; Wijers, R. A. M. J.; van den Heuvel, E. P. J.

    2006-08-01

    Aims.To investigate the physical nature of the afterglow emission. We report on the photometric, spectroscopic and polarimetric observations of the optical afterglow of Gamma-Ray Burst (GRB) 030328 detected by HETE-2.Methods.Photometric, spectroscopic and polarimetric monitoring of the optical afterglow.Results.Photometry, collected at 7 different telescopes, shows that a smoothly broken powerlaw decay, with indices α1 = 0.76 ± 0.03, α2 = 1.50 ± 0.07 and a break at tb = 0.48 ± 0.03 days after the GRB, provides the best fit of the optical afterglow decline. This shape is interpreted as due to collimated emission, for which we determine a jet opening angle θ_jet ˜ 3.2 °. An achromatic bump starting around ~0.2 d after the GRB is possibly marginally detected in the optical light curves. Optical spectroscopy shows the presence of two rest-frame ultraviolet metal absorption systems at z = 1.5216 ± 0.0006 and at z = 1.295 ± 0.001, the former likely associated with the GRB host galaxy. Analysis of the absorption lines at z = 1.5216 suggests that the host of this GRB may be a Damped Lyman-α Absorber. The optical V-band afterglow appears polarized, with P = (2.4 ± 0.6)% and θ = 170° ± 7°, suggesting an asymmetric blastwave expansion. An X-ray-to-optical spectral flux distribution of the GRB 030328 afterglow was obtained at 0.78 days after the GRB and fitted using a broken powerlaw, with an optical spectral slope β_opt = 0.47 ± 0.15, and an X-ray slope βX = 1.0 ± 0.2.Conclusions.The discussion of the results in the context of the "fireball model" shows that the preferred scenario for this afterglow is collimated structured jet with fixed opening angle in a homogeneous medium.

  9. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  10. Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Nazaryan, T. A.; Adibekyan, V. Zh.; Petrosian, A. R.; Aramyan, L. S.; Kunth, D.; Mamon, G. A.; de Lapparent, V.; Bertin, E.; Gomes, J. M.; Turatto, M.

    2014-11-01

    We present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of spiral host galaxies of 692 SNe from the Sloan Digital Sky Survey in different stages of galaxy-galaxy interaction and activity classes of nucleus. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more Type Ia SNe. The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the highest value in post-merging/remnant galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging galaxies and slightly declines in post-merging/remnant subsample. The interpretation is that the star formation rates and morphologies of galaxies, which are strongly affected in the final stages of interaction, have an impact on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases (decreases) from star-forming to active galactic nuclei (AGN) classes of galaxies. These variations are consistent with the scenario of an interaction-triggered starburst evolving into AGN during the later stages of interaction, accompanied with the change of star formation and transformation of the galaxy morphology into an earlier type.

  11. Decreased specific star formation rates in AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J.

    2015-09-01

    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.

  12. The Role AGN Play in the Evolution of Quasars Host Galaxies with Spectral Signatures of Post-Starburst Stellar Polulations

    NASA Astrophysics Data System (ADS)

    Cales, Sabrina; Brotherton, M. S.; Shang, Z.; Bennert, V.; Canalizo, G.; Diamond-Stanic, A. M.

    2014-01-01

    Motivation: Our understanding of the link between galaxies and the active galactic nuclei (AGN) they host is crucial for our understanding of galaxy evolution, a major question for astronomy today. As such, galaxies that harbor both luminous, broad-lined AGN phenomenon and massive, post-starburst stellar populations (post- starburst quasars, PSQs) provide a natural laboratory for those studying AGN, galaxies and galaxy evolution alike. PSQs are predicted to be transitioning galaxies whereby both the AGN and post-starburst phenomenon exist simultaneously. Thus studying these objects can prove invaluable for understanding connections between nuclear activity and host galaxy evolution. Project: We present the latest work on the study of PSQs and their role in mutual black hole and galaxy evolution. In particular we utilize AGN/host galaxy light decomposition analysis of high quality imaging and spectroscopic data (including IFU) to look at PSQ morphology and AGN and post-starburst fundamental physical properties.

  13. A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-05-01

    We present Hubble Space Telescope (HST) Wide Field Camera 3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass within the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core-collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ≈ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ˜30 per cent of SLSNe-II arising from galaxies fainter than MnIR ˜ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.

  14. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  15. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7galaxies of typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  16. The chosen few: the low-mass haloes that host faint galaxies

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Theuns, Tom; Bower, Richard G.; Crain, Robert A.; Furlong, Michelle; Jenkins, Adrian; Schaller, Matthieu; Schaye, Joop

    2016-02-01

    Since reionization prevents star formation in most haloes less massive than 3 × 109 M⊙, dwarf galaxies only populate a fraction of existing dark matter haloes. We use hydrodynamic cosmological simulations of the Local Group to study the discriminating factors for galaxy formation in the early Universe and connect them to the present-day properties of galaxies and haloes. A combination of selection effects related to reionization, and the subsequent evolution of haloes in different environments, introduces strong biases between the population of haloes that host dwarf galaxies, and the total halo population. Haloes that host galaxies formed earlier and are more concentrated. In addition, haloes more affected by tidal stripping are more likely to host a galaxy for a given mass or maximum circular velocity, vmax, today. Consequently, satellite haloes are populated more frequently than field haloes, and satellite haloes of 108-109 M⊙ or vmax of 12-20 km s-1, compatible with stellar kinematics of Local Group dwarf spheroidals, have experienced a greater than average reduction in both mass and vmax after infall. They are on closer, more radial orbits with higher infall velocities and earlier infall times. Together, these effects make dwarf galaxies highly biased tracers of the underlying dark matter distribution.

  17. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  18. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    SciTech Connect

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  19. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE PAGESBeta

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that whileMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NSC / M ⋆ ,  tot for NSCs in spirals (at least those with Hubble typesc and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul ofMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for bothMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier thanbc appear to host systematically more massive NSCs than do typesc and later.« less

  20. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    PubMed

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion. PMID:15703739

  1. A new gamma-ray burst classification scheme from GRB 060614.

    PubMed

    Gehrels, N; Norris, J P; Barthelmy, S D; Granot, J; Kaneko, Y; Kouveliotou, C; Markwardt, C B; Mészáros, P; Nakar, E; Nousek, J A; O'Brien, P T; Page, M; Palmer, D M; Parsons, A M; Roming, P W A; Sakamoto, T; Sarazin, C L; Schady, P; Stamatikos, M; Woosley, S E

    2006-12-21

    Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts. PMID:17183315

  2. Swift Detects a Remarkable Gamma-Ray Burst, GRB 060614, That Introduces a New Classification Scheme

    SciTech Connect

    Gehrels, Neil; Norris, J.P.; Mangano, V.; Barthelmy, S.D.; Burrows, D.N.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C.B.; Meszaros, P.; Nakar, E.; Nousek, J.A.; O'Brien, P.T.; Page, M.; Palmer, D.M.; Parsons, A.M.; Roming, P.W.A.; Sakamoto, T.; Sarazin, C.L.; Schady, P.; Stamatikos, M.; /NASA, Goddard /Brera Observ. /Penn State U., Astron. Astrophys. /KIPAC, Menlo Park /USRA, Huntsville /NASA, Marshall /Maryland U. /Penn State U. /Caltech /Leicester U. /Mullard Space Sci. Lab. /Los Alamos /Oak Ridge /Virginia U., Astron. Dept. /UC, Santa Cruz

    2006-11-28

    Gamma ray bursts (GRBs) are known to come in two duration classes, separated at {approx}2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its {approx}102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.

  3. SWIFT Detects a remarkable Gamma-ray Burst, GRB 060514, that introduces a New Classification Scheme

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Norris, J. P.; Mangano, V.; Barthelmy, S. D.; Burrows, D. N.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C. B.; Meszaros, P.; Nakar, E.; Nousek, J. A.; O'Brien, P. T.; Page, M.; Palmer, D. M.; Parsons, A. M.; Roming, P. W. A.; Sakamoto, T.; Sarazin, C. L.; Schady, P.; Stamatikos, M.; Woosley, S. E.

    2007-01-01

    Gamma ray bursts (GFU3s) are known to come in two duration classes, separated at approx.2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its approx.102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.

  4. The X-shooter sample of GRB afterglow spectra: Properties of the absorption features

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, Antonio

    2015-08-01

    Since its commissioning at ESO's Very Large Telescope in 2009, the X-shooter spectrograph has become the reference instrument in gamma-ray burst (GRB) afterglow spectroscopy. During this time our collaboration has collected more than 70 spectra of GRB afterglows, with redshifts ranging from 0.06 to 6.3. Thanks to their extreme luminosity and simple intrinsic shape, GRB spectra are optimal tools for the study of galactic environments at basically any redshift. Being produced by the death of short-lived massive stars, they are also tracers of star formation.I will present the sample of absorption spectral features identified in X-shooter's GRB spectra describing observation and analysis techniques. The different features are compared with the characteristics of the explosion (duration, spectral shape, energetics, etc.) and with the properties of the host galaxy (mass, age, etc.) to improve our understanding of the nature of the explosions and how they interact with their environments. Using the large redshift range of the spectra collection we perform studies of the evolution of GRB environments across the history of the Universe and their relation with the evolution of star formation.

  5. Supernovae and their host galaxies - IV. The distribution of supernovae relative to spiral arms

    NASA Astrophysics Data System (ADS)

    Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; de Lapparent, V.; Bertin, E.; Mamon, G. A.; Kunth, D.; Nazaryan, T. A.; Adibekyan, V.; Turatto, M.

    2016-07-01

    Using a sample of 215 supernovae (SNe), we analyse their positions relative to the spiral arms of their host galaxies, distinguishing grand-design (GD) spirals from non-GD (NGD) galaxies. We find that: (1) in GD galaxies, an offset exists between the positions of Ia and core-collapse (CC) SNe relative to the peaks of arms, while in NGD galaxies the positions show no such shifts; (2) in GD galaxies, the positions of CC SNe relative to the peaks of arms are correlated with the radial distance from the galaxy nucleus. Inside (outside) the corotation radius, CC SNe are found closer to the inner (outer) edge. No such correlation is observed for SNe in NGD galaxies nor for SNe Ia in either galaxy class; (3) in GD galaxies, SNe Ibc occur closer to the leading edges of the arms than do SNe II, while in NGD galaxies they are more concentrated towards the peaks of arms. In both samples of hosts, the distributions of SNe Ia relative to the arms have broader wings. These observations suggest that shocks in spiral arms of GD galaxies trigger star formation in the leading edges of arms affecting the distributions of CC SNe (known to have short-lived progenitors). The closer locations of SNe Ibc versus SNe II relative to the leading edges of the arms supports the belief that SNe Ibc have more massive progenitors. SNe Ia having less massive and older progenitors, have more time to drift away from the leading edge of the spiral arms.

  6. INTERMEDIATE-AGE STELLAR POPULATIONS IN CLASSICAL QUASI-STELLAR OBJECT HOST GALAXIES

    SciTech Connect

    Canalizo, Gabriela; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Although mergers and starbursts are often invoked in the discussion of quasi-stellar object (QSO) activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a study of z {approx} 0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck/LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high signal-to-noise ratio of our spectra allows us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current active galactic nucleus activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.

  7. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  8. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  9. Supermassive black holes: Coevolution (or not) of black holes and host galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-07-01

    Supermassive black holes (BHs) have been found in 75 galaxies by observing spatially resolved dynamics. The Hubble Space Telescope (HST) revolutionized BH work by advancing the subject from its `proof of concept' phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH masses M • and the velocity dispersions σ of stars in the host galaxy bulge components at radii where the stars mostly feel each other and not the BH. Together with correlations between M • and bulge luminosity, with the `missing light' that defines galaxy cores, and with numbers of globular clusters, this has led to the conclusion that BHs and bulges coevolve by regulating each other's growth. This simple picture with one set of correlations for all galaxies dominated BH work in the past decade. New results are now replacing the above, simple story with a richer and more plausible picture in which BHs correlate differently with different kinds of galaxy components. BHs with masses of 105-106 M ⊙ live in some bulgeless galaxies. So classical (merger-built) bulges are not necessary equipment for BH formation. On the other hand, while they live in galaxy disks, BHs do not correlate with galaxy disks or with disk-grown pseudobulges. They also have no special correlation with dark matter halos beyond the fact that halo gravity controls galaxy formation. This leads to the suggestion that there are two modes of BH feeding, (1) local, secular and episodic feeding of small BHs in largely bulgeless galaxies that involves too little energy feedback to drive BH-host-galaxy coevolution and (2) global feeding in major galaxy mergers that rapidly grows giant BHs in short-duration events whose energy feedback does affect galaxy formation. After these quasar-like phases, maintenance-mode BH feedback into hot, X-ray-emitting gas continues to have a primarily negative effect in preventing late-time star formation when cold gas or gas-rich galaxies

  10. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies. PMID:12879063

  11. Cepheid Variables in the Maser-host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  12. The Black Hole–Bulge Mass Relation in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106–{10}8 {M}ȯ ) while the stellar mass of their spiral host galaxies are all ∼ {10}11 {M}ȯ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  13. The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts

    SciTech Connect

    Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.; /Lick Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /UNAM, Inst. Astron. /UC, Berkeley, Space Sci. Dept. /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley /UCLA /LBL, Berkeley /British Columbia U. /UC, Davis /LLNL, Livermore /Caltech, JPL

    2005-10-07

    The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R {approx} 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z < 1) environments that differ substantially from those of long-soft GRBs, both on individual galaxy scales and on galaxy-cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1M{sub {circle_dot}} yr{sup -1}) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M{sub {circle_dot}} yr{sup -1}. Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.

  14. The Black Hole–Bulge Mass Relation in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106–{10}8 {M}ȯ ) while the stellar mass of their spiral host galaxies are all ˜ {10}11 {M}ȯ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  15. Black Hole Growth and Host Galaxy Co-Evolution Over 8 Billion Years of Cosmic Time

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke D.

    Although much progress has been made in the investigation of the co-evolution of black holes and galaxies, the nature of AGN accretion triggers and AGN-host feedback remain open questions. Using samples of hard X-ray selected, moderate-luminosity AGN and their host galaxies from 0.25 < z < 2.67 in the GOODS deep multi-wavelength survey fields, this thesis assesses the growth rates and histories of these black holes, and uses their host galaxy morphologies and colors to test the applicability of established quasar-triggering models to lower-powered AGN. The analysis includes simulations of over 50,000 AGN+host galaxy images to assess the reliability of AGN-host decomposition, as well as a new technique to separate the spectral energy distribution of an obscured AGN from its dominant host galaxy. Moderate-luminosity AGN span a range of growth rates but are typically in a phase of slow growth (with ≈ 80% of the sample growing at less than 10% of the Eddington limit) with relatively high black hole masses (≈ 75% of the sample has MBH > 5 × 107 M⊙ , implying that they must have been growing at higher rates in the past in order to grow to the masses we observe. Additionally, a significant fraction of the host galaxies of moderate-luminosity AGN are disk-dominated: at the highest redshifts of the sample more than half of the host galaxies have at least 80% of their optical light from a disk. A further one-quarter to one-third of the sample (depending on redshift) has a significant disk contribution, with a stronger, but likely not dominant, bulge. Because major mergers both form bulges and destroy disks, this result indicates that models requiring major mergers to trigger the growth of black holes do not describe the majority of AGN. The range of both black hole growth rates and host galaxy colors and morphologies in the sample imply that secular processes are important to the growth of moderate-luminosity AGN, which collectively comprise a substantial fraction of

  16. Radio brightening of FRB 150418 host galaxy candidate

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Berger, E.; Chornock, R.

    2016-02-01

    Keane et al. (2016 Nature 530 453) reported a fading radio transient in the z=0.498 galaxy WISE J071634.59-190039.2 (WISE 0716-19; Williams & Berger, arxiv:1602.08434) that they associated with the fast radio burst FRB 150418.

  17. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Murray, S. S.; Paggi, A.; Ashby, M. L. N.; Huang, J.-S.; Kraft, R.; Willner, S. P.; Hickox, R. C.; Coil, A. L.; Cooper, M. C.; Newman, J. A.; Weiner, B. J.

    2014-03-01

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  18. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  19. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  20. A novel explosive process is required for the gamma-ray burst GRB 060614.

    PubMed

    Gal-Yam, A; Fox, D B; Price, P A; Ofek, E O; Davis, M R; Leonard, D C; Soderberg, A M; Schmidt, B P; Lewis, K M; Peterson, B A; Kulkarni, S R; Berger, E; Cenko, S B; Sari, R; Sharon, K; Frail, D; Moon, D-S; Brown, P J; Cucchiara, A; Harrison, F; Piran, T; Persson, S E; McCarthy, P J; Penprase, B E; Chevalier, R A; MacFadyen, A I

    2006-12-21

    Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required. PMID:17183318

  1. Optical and near-infrared observations of the GRB020405 afterglow

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Palazzi, E.; Pian, E.; Simoncelli, A.; Hunt, L. K.; Maiorano, E.; Levan, A.; Christensen, L.; Rol, E.; Savaglio, S.; Falomo, R.; Castro-Tirado, A. J.; Hjorth, J.; Delsanti, A.; Pannella, M.; Mohan, V.; Pandey, S. B.; Sagar, R.; Amati, L.; Burud, I.; Castro Cerón, J. M.; Frontera, F.; Fruchter, A. S.; Fynbo, J. P. U.; Gorosabel, J.; Kaper, L.; Klose, S.; Kouveliotou, C.; Nicastro, L.; Pedersen, H.; Rhoads, J.; Salamanca, I.; Tanvir, N.; Vreeswijk, P. M.; Wijers, R. A. M. J.; van den Heuvel, E. P. J.

    2003-06-01

    We report on photometric, spectroscopic and polarimetric monitoring of the optical and near-infrared (NIR) afterglow of GRB020405. Ground-based optical observations, performed with 8 different telescopes, started about 1 day after the high-energy prompt event and spanned a period of ~ 10 days; the addition of archival HST data extended the coverage up to ~ 150 days after the GRB. We report the first detection of the afterglow in NIR bands. The detection of Balmer and oxygen emission lines in the optical spectrum of the host galaxy indicates that the GRB is located at redshift z =0.691. Fe II and Mg II absorption systems are detected at z= 0.691 and at z = 0.472 in the afterglow optical spectrum. The latter system is likely caused by absorbing clouds in the galaxy complex located ~ 2'' southwest of the GRB020405 host. Hence, for the first time, the galaxy responsible for an intervening absorption line system in the spectrum of a GRB afterglow is spectroscopically identified. Optical and NIR photometry of the afterglow indicates that, between 1 and 10 days after the GRB, the decay in all bands is consistent with a single power law of index alpha = 1.54+/- 0.06. The late-epoch VLT J-band and HST optical points lie above the extrapolation of this power law, so that a plateau (or ``bump") is apparent in the VRIJ light curves at 10-20 days after the GRB. The light curves at epochs later than day ~ 20 after the GRB are consistent with a power-law decay with index alpha ' = 1.85+/- 0.15. While other authors have proposed to reproduce the bump with the template of the supernova (SN) 1998bw, considered the prototypical ``hypernova'', we suggest that it can also be modeled with a SN having the same temporal profile as the other proposed hypernova SN2002ap, but 1.3 mag brighter at peak, and located at the GRB redshift. Alternatively, a shock re-energization may be responsible for the rebrightening. A single polarimetric R-band measurement shows that the afterglow is polarized

  2. Heavily obscured quasar host galaxies at z ∼ 2 are discs, not major mergers

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Simmons, Brooke D.; Urry, C. Megan; Treister, Ezequiel; Glikman, Eilat

    2012-09-01

    We explore the nature of heavily obscured quasar host galaxies at z˜ 2 using deep Hubble Space Telescope Wide Field Camera 3/infrared imaging of 28 dust-obscured galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4 per cent, at most 11-25 per cent) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90 per cent of the host galaxies are either disc dominated, or have a significant disc. This disc-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the coincidence of mergers and active galactic nucleus activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers. a MUSYC catalogue ID, see Cardamone et al. (2010). Objects with X-ray detections are marked with *. b See images shown in Fig. 1. c The ratio of the host luminosity to the point source luminosity, reported only when GALFIT requires an unresolved object to yield a physical fit. This may be due to an AGN point source (in the case of the X-ray-detected DOGs) or an unresolved bulge or central concentration, i.e. a central bulge. d See Fig. 2.

  3. A weak lensing comparability study of galaxy mergers that host AGNs

    NASA Astrophysics Data System (ADS)

    Harvey, D.; Courbin, F.

    2015-07-01

    We compared the total mass density profiles of three different types of galaxies using weak gravitational lensing: (i) 29 galaxies that host quasars at bar{z}˜ 0.32 that are in a post-starburst quasar (PSQ) phase with high star formation indicating recent merger activity, (ii) 22 large elliptical galaxies from the Sloan Lens ACS Survey (SLACS) sample that do not host a quasar at bar{z}˜ 0.23, and (iii) 17 galaxies that host moderately luminous quasars at bar{z}˜ 0.36 powered by disc instabilities, but with no intense star formation. In an initial test we found no evidence for a connection between the merger state of a galaxy and the profile of the halo, with the PSQ profile comparable to that of the other two samples and consistent with the Leauthaud et al. study of moderately luminous quasars in Cosmic Evolution Survey (COSMOS). Given the compatibility of the two quasar samples, we combined these and found no evidence for any connection between black hole activity and the dark matter halo. All three mass profiles remained compatible with isothermality given the present data.

  4. Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph and FORS2 spectroscopy of the GRB 081008 afterglow

    NASA Astrophysics Data System (ADS)

    D'Elia, V.; Campana, S.; Covino, S.; D'Avanzo, P.; Piranomonte, S.; Tagliaferri, G.

    2011-11-01

    We aim at studying the gamma-ray burst (GRB), GRB 081008, environment by analysing the spectra of its optical afterglow. Ultraviolet and Visual Echelle Spectrograph/Very Large Telescope (UVES/VLT) high-resolution spectroscopy of GRB 081008 was secured ˜5 h after the Swift-BAT trigger. Our data set also comprises three VLT/FORS2 nearly simultaneous spectra of the same source. The availability of nearly simultaneous high- and low-resolution spectra for a GRB afterglow is an extremely rare event. The GRB-damped Lyman α system at z= 1.9683 shows that the interstellar medium (ISM) of the host galaxy is constituted by at least three components which contribute to the line profiles. Component I is the redmost one, and is 20 and 78 km s-1 redward components II and III, respectively. We detect several ground state and excited absorption features in components I and II. These features have been used to compute the distances between the GRB and the absorbers. Component I is found to be 52 ± 6 pc away from the GRB, while component II presents few excited transitions and its distance is 200+60- 80 pc. Component III only features a few, low-ionization and saturated lines suggesting that it is even farther from the GRB. Component I represents the closest absorber ever detected near a GRB. This (relatively) low distance can possibly be a consequence of a dense GRB environment, which prevents the GRB prompt/afterglow emission to strongly affect the ISM up to higher distances. The hydrogen column density associated with GRB 081008 is log NH/cm-2= 21.11 ± 0.10, and the metallicity of the host galaxy is in the range of [X/H] =-1.29 to -0.52. In particular, we found [Fe/H] =-1.19 ± 0.11 and [Zn/H] =-0.52 ± 0.11 with respect to solar values. This discrepancy can be explained by the presence of dust in the GRB ISM, given the opposite refractory properties of iron and zinc. By deriving the depletion pattern for GRB 081008, we find the optical extinction in the visual band to be AV

  5. Correlating Type Ia Supernova Properties with Their Local Environment Using HST Snapshots of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin; Garnavich, Peter M.

    2016-01-01

    Type Ia supernovae (SN Ia) are important tools for precision cosmology. But there are still uncertainties about how the host galaxy properties and local environment influence the luminosity, color and Hubble residuals of SN Ia. We investigate these questions by analyzing high angular resolution Hubble Space Telescope (HST) imaging of SDSS-II host galaxies. These are "snapshot" images obtained while the telescope was slewing to new targets, so the total exposure times are less than 30 minutes. ACS images were obtained in F475W and F625W filters, similar to SDSS g and r-bands. In total, we observed 61 host galaxies in Stripe 82 that had SN Ia discovered by the SDSS-II SN Survey. HST's resolution and low background allow for detailed analysis of both the region around the SN Ia and the galaxy as a whole. Co-added SDSS-II images of the hosts are used to supplement the HST data in regions of low surface brightness. From this data set we estimate the fractional pixel rank and photometric color of the SN Ia's location and correlate the local environment variables with SN Ia luminosity, light curve width, color and Hubble residual. We assess the impact of these correlations on the accuracy of SN Ia distance estimates and possible biases in measuring the Hubble constant and dark energy parameters.

  6. ASASSN-16fm: Discovery of A Probable Supernova with no Apparent Host Galaxy

    NASA Astrophysics Data System (ADS)

    Villanueva, S., Jr.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, with no apparent host galaxy.

  7. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.

    2015-09-01

    Calcium-rich supernovae (Ca-rich SNe) are peculiar low-luminosity SNe Ib with relatively strong Ca spectral lines at ˜2 months after peak brightness. This class also has an extended projected offset distribution, with several members of the class offset from their host galaxies by 30-150 kpc. There is no indication of any stellar population at the SN positions. Using a sample of 13 Ca-rich SNe, we present kinematic evidence that the progenitors of Ca-rich SNe originate near the centres of their host galaxies and are kicked to the locations of the SN explosions. Specifically, SNe with small projected offsets have large line-of-sight velocity shifts as determined by nebular lines, while those with large projected offsets have no significant velocity shifts. Therefore, the velocity shifts must not be primarily the result of the SN explosion. Additionally, nearly every Ca-rich SN is hosted by a galaxy with indications of a recent merger and/or is in a dense environment. We propose a progenitor model which fits all current data: the progenitor system for a Ca-rich SN is a double white dwarf (WD) system where at least one WD has a significant He abundance. This system, through an interaction with a super-massive black hole (SMBH) is ejected from its host galaxy and the binary is hardened, significantly reducing the merger time. After 10-100 Myr (on average), the system explodes with a large physical offset. The rate for such events is significantly enhanced for galaxies which have undergone recent mergers, potentially making Ca-rich SNe new probes of both the galaxy merger rate and (binary) SMBH population.

  8. Magellan LDSS3 emission confirmation of galaxies hosting metal-rich Lyman α absorption systems

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie A.; Johnson, Sean; York, Donald G.; Bowen, David V.; Florian, Michael; Kulkarni, Varsha P.; Lundgren, Britt; Péroux, Celine

    2016-06-01

    Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope, we target candidate absorption host galaxies detected in deep optical imaging (reaching limiting apparent magnitudes of 23.0-26.5 in g, r, i, and z filters) in the fields of three QSOs, each of which shows the presence of high metallicity, high N_{H I} absorption systems in their spectra (Q0826-2230: zabs = 0.9110, Q1323-0021: zabs = 0.7160, Q1436-0051: zabs = 0.7377, 0.9281). We confirm three host galaxies at redshifts 0.7387, 0.7401, and 0.9286 for two of the Lyman α absorption systems (one with two galaxies interacting). For these systems, we are able to determine the star formation rates (SFRs); impact parameters (from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity. Based on previous photometry, we find these galaxies have L > L*. The [O II] SFRs for these galaxies are in the range 11-25 M⊙ yr-1 (uncorrected for dust), while the impact parameters lie in the range 35-54 kpc. Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, no gradient in metallicity is indicated between the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies. We confirm the anticorrelation between impact parameter and N_{H I} from the literature. We also report the emission redshift of five other galaxies: three at zem > zQSO, and two (L < L*) at zem < zQSO not corresponding to any known absorption systems.

  9. The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity

    NASA Technical Reports Server (NTRS)

    Romanishin, W.; Hintzen, Paul

    1989-01-01

    An image modeling program is used to analyze optical imaging data for a sample of radio-loud quasars with redshifts between 0.2 and 0.7. It is found that the host galaxies of these quasars tend to be more compact than normal ellipticals. The cooling flow cluster elliptical galaxies near these host galaxies are studied. It is suggested that these cooling flow galaxies are also compact due to star formation in their central regions. Two populations of quasars are identified. One, in which activity is triggered by galaxy mergers of interactions has predominately spiral galaxies and are radio quiet. The other, in which activity is triggered by star formation bursts induced by cooling flows, has predominately elliptical hosts and may be radio loud.

  10. The Host Galaxy Properties of Variability Selected AGN in the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Gezari, S.; Kumar, S.; Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-07-01

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV ‑ r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.