Science.gov

Sample records for great lakes coastal

  1. BIOLOGICAL INDICATOR DEVELOPMENT AND CLASSIFICATION FOR GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Great Lakes coastal wetlands are a valued aquatic resource that provide important ecological functions for the Great Lakes including serving as fish habitat, aquatic food web support, and nutrient and sediment retention from watersheds. Great Lakes resource managers need assessme...

  2. Hydrogeomorphic classification for Great Lakes coastal wetlands

    USGS Publications Warehouse

    Albert, Dennis A.; Wilcox, Douglas A.; Ingram, Joel W.; Thompson, Todd A.

    2005-01-01

    A hydrogeomorphic classification scheme for Great Lakes coastal wetlands is presented. The classification is hierarchical and first divides the wetlands into three broad hydrogeomorphic systems, lacustrine, riverine, and barrier-protected, each with unique hydrologic flow characteristics and residence time. These systems are further subdivided into finer geomorphic types based on physical features and shoreline processes. Each hydrogeomorphic wetland type has associated plant and animal communities and specific physical attributes related to sediment type, wave energy, water quality, and hydrology.

  3. A MANAGEMENT SUPPORT SYSTEM FOR GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    The Great Lakes National Program Office in conjunction with the Great Lakes Commission and other researchers is leading a large scale collaborative effort that will yield, in unprecedented detail, a management support system for Great Lakes coastal wetlands. This entails the dev...

  4. ALGAL RESPONSES TO NUTRIENT LOADING IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    We are evaluating the influence of nutrient loading on phytoplankton and periphyton in coastal wetlands of the Great Lakes as part of an EPA study associated with the Great Lakes Environmental Indicator (GLEI) project. A primary goal is to assess the role of wetland morphology an...

  5. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  6. DIEL OXYGEN-INDUCED MOVEMENT OF FISH ASSEMBLAGES IN A GREAT LAKES COASTAL WETLAND

    EPA Science Inventory

    To determine the importance of dissolved oxygen conditions in influencing daily ovement patterns of fishes in Great Lakes coastal wetlands, we sampled migrating fish assemblages from habitats with varying diurnal dissolved oxygen patterns in a Lake Superior coastal wetland during...

  7. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    EPA Science Inventory

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  8. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    EPA Science Inventory

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  9. Factors affecting the evolution of coastal wetlands of the Laurential Great Lakes: an overview

    USGS Publications Warehouse

    Mayer, T.; Edsall, T.; Munawar, M.

    2004-01-01

    Coastal wetlands play a pivotal role in the Great Lakes ecosystem. As buffer zones between the land and open waters of the Great Lakes, they perform a variety of essential functions providing both direct and indirect anthropogenic benefits. Geology, morphology and climate are the dominant variables that influence Laurentian Great Lakes wetland development. However, anthropogenic factors are the major contributors to alteration of natural wetland processes. This paper provides an overview of natural and anthropogenic factors important in Great Lakes coastal wetland development and provides statistical information describing the Great Lakes Basin. A brief description of wetlands classification and research issues is also presented.

  10. Hydrologic Factors Determining Linkages of Great Lake Coastal Wetlands to Watershed and Lake

    EPA Science Inventory

    Water can enter Great Lakes coastal wetlands (CWs) from both watershed and offshore sources. Identifying the relative contribution of these potential sources, and the spatial scale at which sources are influenced by human activities, are critical steps in wetland protection. We d...

  11. Watershed and Lake Influences on the Energetic Base of Coastal Wetland Food Webs across the Great Lakes Basin

    EPA Science Inventory

    This manuscript examines the responses of Great Lakes coastal wetland food webs to nutrient enrichment and identifies three classes of systems whose food webs respond differently. Or is that differentially? Anyway, coastal wetlands with relatively long hydraulic residence times ...

  12. Coastal processes influencing water quality at Great Lakes beaches

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  13. Status of the amphipod Diporeia ssp. in coastal waters of the Laurentian Great Lakes

    EPA Science Inventory

    Diporeia has historically been the dominant benthic macroinvertebrate in deeper waters of the Laurentian Great Lakes, and its abundance has been proposed as an indicator of ecological condition. In 2010, the USEPA incorporated the Great Lakes into the National Coastal Condition A...

  14. WETLAND MORPHOLOGIC AND BIOGEOGRAPHIC INFLUENCES ON ALGAL RESPONSES TO NUTRIENT LOADING IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    We are testing the influence of wetland morphology (protected vs. riverine) and biogeography (upper vs. lower Great Lakes) on algal responses to nutrients in Great Lakes Coastal wetlands. Principal components analysis using nutrient-specific GIS data was used to select sites wit...

  15. Patterns in Habitat and Fish Assemblages within Great Lakes Coastal Wetlands and Implications for Sampling Design

    EPA Science Inventory

    Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...

  16. Analysis of fish movements between Great Lakes coastal wetlands and near shore habitat via otolith microchemistry

    EPA Science Inventory

    Great Lakes coastal wetlands are unique habitats with physical connections with near shore environments. This facilitates the exchange of energy between habitats in a principle known as habitat coupling. Coupling can be facilitated by movements of consumers; however, wetland us...

  17. Environmental Indicators for the Coastal Region of North American Great Lakes: Introduction and Prospectus

    EPA Science Inventory

    Environmental indicators are benchmarks for the current conditions of the Great Lakes coastal region and provide measurable endpoints to assess the success of future management, conservation, protection, and restoration of this important resource.

  18. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  19. Early Detection Monitoring for Vulnerable Great Lakes Coastal Ecosystems

    EPA Science Inventory

    Great Lakes harbors/embayments are vulnerable to introduction of aquatic invasive species. Monitoring is needed to inform on new introductions, as well as to track success of prevention programs intended to limit spread. We have completed a pilot field case study in the Duluth-...

  20. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David

    2014-01-01

    In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.

  1. LANDSCAPE-SCALE MONITORING OF AN OPPORTUNIST: PHRAGMITES AUSTRALIS (CAV) STEUDEL IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands of the Laurentian Great Lakes (LGL) are among the most fragmented ecosystems in the world, with a long history of human-induced disturbances, primarily as a result of agricultural conversions and hydrologic changes. A substantial number of remnant LGL coastal wet...

  2. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    EPA Science Inventory

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  3. A Review of Selected Ecosystem Services Supplied by Coastal Wetlands of the Laurentian Great Lakes

    EPA Science Inventory

    Significant ecosystem services derive from the coastal wetlands of the Laurentian Great Lakes even though they have undergone substantial declines since European settlement. Basin-wide, two-thirds of the original coastal wetlands have been lost, and the remaining 126,000 ha of US...

  4. A GIS APPROACH TO IDENTIFY AND CLASSIFY HYDROGEOMORPHIC TYPES OF COASTAL WETLANDS OF THE GREAT LAKES

    EPA Science Inventory

    There is a need by Great Lakes managers to have a comprehensive inventory of the coastal wetland resources for monitoring and assessment. An electronic database and geographic information system (GIS) point coverage of coastal wetland locations along the U.S. shoreline have been ...

  5. LANDSCAPE-SCALE ECOLOGICAL FACTORS AND THEIR ROLE IN PLANT OPPORTUNISM OF GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands of the Laurentian Great Lakes (USA and Canada) are among the most biologically diverse ecosystems of the world. However, since the 1970s the presence of opportunistic plant species such as common reed (Phragmites australis [Cav.] Steudel) have increased in Great ...

  6. Functional values of Great Lakes coastal wetlands: What we know and what we can be working towards

    EPA Science Inventory

    Water quality improvement, shoreline protection, carbon sequestration, and lake productivity subsidy are among the functional values commonly attributed to Great Lakes coastal wetlands (GLCWs). There is much less information concerning these than there is concerning habitat and f...

  7. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  8. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  9. Geographic, Anthropogenic and Habitat Influences on Great Lakes Coastal Wetland Fish Assemblages

    EPA Science Inventory

    We analyzed data from coastal wetlands across all five Laurentian Great Lakes to identify patterns in fish assemblages and relationships to local habitat, watershed condition, and regional setting. NMDS ordination of electrofishing catch-per-effort data revealed an overriding ge...

  10. NUTRIENT AND HABITAT INDICATORS FOR CRITERIA DEVELOPMENT IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    EPA's Mid-Continent Ecology Division is testing indicators and establishing stressor - response relationships to support development of nutrient and habitat criteria for Great Lakes coastal wetlands. Our focus is on water quality changes, food web shifts, and vegetation loss as ...

  11. Coastal wetland support of Great Lakes fisheries: progress from concept to quantification.

    EPA Science Inventory

    Fishery support is recognized as a valuable ecosystem service provided by aquatic systems but is harder to quantify than to describe conceptually. In this paper, we intersect data on fish inhabiting Great Lakes coastal wetlands with information on commercial and recreational har...

  12. Watershed Influences on Nearshore Waters Across the Entire US Great Lakes Coastal Region

    EPA Science Inventory

    We have combined three elements of observation to enable a comprehensive characterization of the Great Lakes nearshore that links nearshore conditions with their adjacent coastal watersheds. The three elements are: 1) a shore-parallel, high-resolution survey of the nearshore usin...

  13. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Keough, Janet R.; Thompson, Todd A.; Guntenspergen, Glenn R.; Wilcox, Douglas A.

    1999-01-01

    Gauging the impact of manipulative activities, such as rehabilitation or management, on wetlands requires having a notion of the unmanipulated condition as a reference. And understanding of the reference condition requires knowledge of dominant factors influencing ecosystem processes and biological communities. In this paper, we focus on natural physical factors (conditions and processes) that drive coastal wetland ecosystems of the Laurentian Great Lakes. Great Lakes coastal wetlands develop under conditions of large-lake hydrology and disturbance imposed at a hiearchy of spatial and temporal scales and contain biotic communities adapted to unstable and unpredictable conditions. Coastal wetlands are configured along a continuum of hydrogeomorphic types: open coastal wetlands, drowned river mouth and flooded delta wetlands, and protected wetlands, each developing distinct ecosystem propertics and biotic communities. Hydrogeomorphic factors associated with the lake and watershed operate at a hierarchy of scales: a) local and short-term (seiches and ice action), b) watershed / lakewide / annual (seasonal water-level change), and c) larger or year-to-year and longer (regional and/or greater than one-year). Other physical factors include the unique water quality features of each lake. The aim of this paper is to provide scientists and managers with a framework for considering regional and site-specific geomorphometry and a hierarchy of physical processes in planning management and conservation projects.

  14. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone

    PubMed Central

    Weinke, Anthony D.; Kendall, Scott T.; Kroll, Daniel J.; Strickler, Eric A.; Weinert, Maggie E.; Holcomb, Thomas M.; Defore, Angela A.; Dila, Deborah K.; Snider, Michael J.; Gereaux, Leon C.; Biddanda, Bopaiah A.

    2014-01-01

    During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 µg C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles. PMID:25954055

  15. Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented.

  16. Great Lakes: Great Gardening.

    ERIC Educational Resources Information Center

    New York Sea Grant Inst., Albany, NY.

    This folder contains 12 fact sheets designed to improve the quality of gardens near the Great Lakes. The titles are: (1) "Your Garden and the Great Lakes"; (2) "Organic Gardening"; (3) "Fruit and Vegetable Gardening"; (4) "Composting Yard Wastes"; (5) "Herbicides and Water Quality"; (6) "Watering"; (7) "Soil Erosion by Water"; (8) "Soil…

  17. Are Predators Limiting Zebra Mussel Colonization of Unionid Mussels in Great Lake Coastal Wetlands?

    NASA Astrophysics Data System (ADS)

    de Szalay, F. A.; Bowers, R.

    2005-05-01

    Although many native mollusc populations have been eliminated in the Laurentian Great Lakes by the exotic zebra mussel, recent surveys have found abundant unionid (Bivalvia: Unionidae) populations in some coastal wetlands. Unionid burrowing in soft sediments and predation by fish have been shown to reduce numbers of attached zebra mussels, and we tested these factors in a Lake Erie coastal wetland. In 2002, we held live unionids (Leptodea fragilis, Quadrula quadrula) and Pyganodon grandis shells in exclosures with wire mesh bottoms that were buried to sediment depths of either 5, 10, or 20 cm. After 2 months, numbers of attached dreissenids on unionids were significantly higher inside all exclosure treatments than outside exclosures. This indicated that either unionid burrowing was prevented in all sediment depth treatments or molluscivores were excluded by exclosures. In 2004, we measured dreissenid colonization on Q. quadrula and PVC plates in bottomless exclosures with different mesh sizes. After 6 months, dreissenid numbers on PVC plates and on Q. quadrula in 2.5 cm X 2.5 cm and 5 cm X 10 cm mesh exclosures were significantly higher than in open exclosures. These data suggest that molluscivores are important in limiting dreissenids in Great Lake coastal wetlands.

  18. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    USGS Publications Warehouse

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  19. Detecting and Mapping Invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR imagery

    NASA Astrophysics Data System (ADS)

    Bourgeau-chavez, L. L.; Scarbrough, K.; Jenkins, L. K.; Riordan, K.; Powell, R. B.; Brooks, C.; Kowalski, K.; Carlson Mazur, M.; Huberty, B.

    2011-12-01

    Phragmites australis is a non-native invasive plant that can form dense monocultures, causing negative impacts on coastal Great Lakes wetlands by reducing ecosystem services including habitat and therefore, biological diversity. Through Great Lakes Restoration Initiative funding, ALOS PALSAR imagery is being used to map the invasive plant as it occurs in monoculture stands of the U.S. coastal Great Lakes wetlands. These invasive Phragmites maps are being used as part of a USGS Great Lakes Science Center (GLSC) and US Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) program to identify major environmental drivers of invasive Phragmites distribution, to assess areas vulnerable to new invasion, and to provide this information to regional stakeholders through a decision support tool. The invasive Phragmites map is the first U.S. basin-wide map to be produced on the distribution of this species. Methods include maximum likelihood classification of multi-season ALOS PALSAR HH and HV polarization data. PALSAR is an L-band (23 cm wavelength) imaging radar sensor which is sensitive to differences in plant biomass and inundation patterns, allowing for the extraction of these tall (up to 15 m), high-density, high-biomass Phragmites wetland stands. To improve discrimination of Phragmites australis, the three date (spring, summer, fall) dataset is being used, which takes advantage of phenological changes in vegetation and inundation patterns over the seasons. Field collections of training and randomly selected validation data were conducted in spring summer and fall of 2010-11 to aid in the mapping and for accuracy assessment. The minimum mapping unit is 1/2 acre and thus all field sites were sampled at 1/2 acre units. All map products and field validation data will be complete by December 2011. Maps are being completed on a Lake basin basis. The first final map product was delivered for Lake Erie coastal wetlands to 10 km inland, with an overall map accuracy

  20. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This booklet introduces an environmental curriculum for use in a variety of elementary subjects. The lesson plans provide an integrated approach to incorporating Great Lakes environmental issues into the subjects of history, social studies, and environmental sciences. Each of these sections contains background information, discussion points, and a…

  1. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    EPA Science Inventory

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  2. Using Stable Isotope Mixing in a Great Lakes Coastal Tributary to Determine Food Web Linkages in Young Fishes

    EPA Science Inventory

    Our objectives were to determine whether we can detect a stable isotope gradient along the river-Great Lake hydrologic continuum in a coastal river and use it to identify changes across this gradient in the food web supporting young-of-year (YOY) and juvenile fish production. We ...

  3. Can a rapid underwater video approach enhance the benthic assessment capability of the National Coastal Condition Assessmentin the Great Lakes?

    EPA Science Inventory

    In the U.S. National Coastal Condition Assessment (NCCA) field survey in summer 2010, over 400 sites in the nearshore zone of the U.S. Great Lakes were sampled. As a supplement to core NCCA benthic taxonomy and sediment chemistry, underwater video images of the bottom condition ...

  4. HYPERSPECTRAL REMOTE SENSING, GPS, AND GIS APPLICATIONS IN OPPORTUNISTIC PLANT SPECIES MONITORING OF GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands of the Laurentian Great Lakes (LGL) are among the most fragmented and disturbed ecosystems of the world, with a long history of human-induced disturbance. LGL wetlands have undergone losses in the biological diversity that coincides with an increase in the presen...

  5. COASTAL WETLAND AND LAKE TROPHIC LINKAGES ALONG A GREAT LAKES PRODUCTIVITY GRADIENT

    EPA Science Inventory

    To examine effects of eutrophication on contributions of primary producers to higher trophic levels and linkages between food webs in adjacent habitats, we analyzed stable isotope signatures of organisms from wetland and adjacent offshore food webs in Green Bay, Lake Michigan. Nu...

  6. SHIFTS BETWEEN PERIPHYTON-AND PHYTOPLANKTON-BASED FOOD WEBS IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Numerous studies have revealed the importance of algae as an energetic base for wetland food webs. Earlier carbon and nitrogen stable isotope analyses in a Lake Superior coastal wetland (Allouez Bay, WI) indicated that, despite the large amount of vascular plant biobass present, ...

  7. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  8. Early Detection Monitoring Approaches for Non-indigenous Species in Vulnerable Great Lakes Coastal Ecosystems

    EPA Science Inventory

    Great Lakes harbors/embayments are vulnerable to introductions of non-indigenous species (NIS). Early detection of new NIS is desirable to allow for a timely management response, raising the question of how to accomplish this in a consistent, cost-effective manner. To that end, ...

  9. RESEARCH ON WATER QUALITY AND BIOLOGICAL CONDITIONS OF GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Presentation is to 4th - 10th grade teachers participating in a NSF-funded, Sea-Grant led program for enhancing science curricula in schools by educating teachers about research and issues in some focal area (Great Lakes in this case). Background information provided on ecology ...

  10. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  11. AN ECOLOGICAL ASSESSMENT OF INVASIVE AND AGRESSIVE PLANT SPECIES IN COASTAL WETLANDS OF THE LAURENTIAN GREAT LAKES: A COMBINED FIELD BASED AND REMOTE SENSING APPROACH

    EPA Science Inventory

    The aquatic plant communities within coastal wetlands of the Laurentian Great Lakes are among the most biologically diverse and productive systems of the world. Coastal wetlands have been especially impacted by landscape conversion and have undergone a marked decline in plant com...

  12. National Assessment of Historical Shoreline Change: A Pilot Study of Historical Coastal Bluff Retreat in the Great Lakes, Erie, Pennsylvania

    USGS Publications Warehouse

    Hapke, Cheryl J.; Malone, Shamus; Kratzmann, Meredith

    2009-01-01

    Coastal bluff retreat is a chronic problem along many high-relief coastlines in the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regard-ing trends and rates of bluff retreat. There is also a need for a comprehensive analysis that is consistent from one coastal region to another. To address these national needs, the U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards Project, conducted a pilot study of bluff retreat along the Lake Erie, Pa., coastline to assess the feasibility of undertaking a larger, multi-state analysis in the Great Lakes region. This report provides an overview of the pilot-study location and bluff geomorphology, the data sources and methodology, results of the analysis, and a discussion of the feasibility of undertaking a similar analysis along eroding bluffs in other Great Lakes states. This pilot study is part of an ongoing effort by the USGS to provide a comprehensive analysis of historical shoreline change and cliff and bluff retreat along open-ocean coastlines of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of the work is to develop standard, repeatable methods for mapping and analyzing coastal change so that systematic and consistent periodic updates of coastal erosion can be made nationally. Bluff-retreat evaluations are conducted by comparing the location of a historical bluff edge digitized from aerial photographs with those of recent bluff edges interpreted from both aerial photographs and lidar topographic surveys. The historical bluff edge is from 1938, whereas the more recent bluff edges are from 1998 and 2006 lidar data. Long-term (68-year) rates of retreat are calculated using the available bluff-edge data. The rates of retreat presented in this report represent conditions from the 1930s to 1998/2006, and are not intended for

  13. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    USGS Publications Warehouse

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  14. AN ECOLOGICAL ASSESSMENT OF OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS USING AIRBORNE HYPERSPECTRAL DATE

    EPA Science Inventory

    Airbome hyperspectral data were used to detect dense patches of Phragmites australis, a native opportunist plant species, at the Pointe Mouillee coastal wetland complex (Wayne and Monroe Counties, Michigan). This study provides initial results from one of thirteen coastal wetland...

  15. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  16. GREAT LAKES LIMNOLOGY MONITORING

    EPA Science Inventory

    The Great Lakes National Program Office (GLNPO) of the United States Environmental Protection Agency (USEPA) has primary responsibility within the U.S. for conducting surveillance monitoring of the offshore waters of the Great Lakes. This monitoring is intended to fulfill provis...

  17. Great Lakes Teacher's Guide.

    ERIC Educational Resources Information Center

    Reid, Ron

    The Great Lakes are one of the world's greatest reservoirs of fresh water, the foundation of Ontario's economic development, a primary force in ecological systems, and a base for pleasure and recreation. They are also a magnificent resource for the teachers of Ontario. Study of the Great Lakes can bring to life the factors that shape the ecology…

  18. An Inventory and Classification of Coastal Wetlands of the Laurentian Great Lakes

    EPA Science Inventory

    This inventory and classification of DRM/riverine coastal wetlands is needed for doing a probability based selection for assessments of this valued aquatic resource across large areas, e.g., by states for 305B reports of coastal wetland condition.

  19. ALL THAT "PHRAG": BRINGING ENGINEERING, WETLAND ECOLOGY, ENVIRONMENTAL SCIENCE, AND LANDSCAPE ECOLOGY TO BEAR ON THE QUESTION OF COMMON REED IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  20. EXOTIC AND INVASIVE AQUATIC PLANTS IN GREAT LAKES COASTAL WETLANDS: DISTRIBUTION AND RELATION TO WATERSHED LAND USE AND PLANT RICHNESS AND COVER

    EPA Science Inventory

    This manuscript provides previously unavailable information to researchers and managers concerning exotic plants in the Great Lakes...This work arises out of our broader efforts to describe biota - habitat relationships in coastal wetlands, and as such falls under Aquatic Stresso...

  1. Determining Sources of Water and Nutrients to Great Lakes Coastal Wetlands: A Classification Approach.

    EPA Science Inventory

    Water and associated nutrients can enter freshwater and marine coastal wetlands from both watershed and offshore sources. Identifying the relative contribution of these potential sources, and the spatial scale at which sources are influenced by anthropogenic activities, are crit...

  2. The Great Lakes.

    ERIC Educational Resources Information Center

    Seasons, 1987

    1987-01-01

    The Great Lakes are one of the world's greatest reserviors of fresh water, the foundation of Ontario's economic development, a primary force in ecological systems, and a base for pleasure and recreation. These lakes and their relationship with people of Canada and the United States can be useful as a subject for teaching the impact of human…

  3. Developing Remote Sensing Products for Monitoring and Modeling Great Lakes Coastal Wetland Vulnerability to Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Bourgeau-Chavez, L. L.; Miller, M. E.; Battaglia, M.; Banda, E.; Endres, S.; Currie, W. S.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hyndman, D. W.

    2014-12-01

    Spread of invasive plant species in the coastal wetlands of the Great Lakes is degrading wetland habitat, decreasing biodiversity, and decreasing ecosystem services. An understanding of the mechanisms of invasion is crucial to gaining control of this growing threat. To better understand the effects of land use and climatic drivers on the vulnerability of coastal zones to invasion, as well as to develop an understanding of the mechanisms of invasion, research is being conducted that integrates field studies, process-based ecosystem and hydrological models, and remote sensing. Spatial data from remote sensing is needed to parameterize the hydrological model and to test the outputs of the linked models. We will present several new remote sensing products that are providing important physiological, biochemical, and landscape information to parameterize and verify models. This includes a novel hybrid radar-optical technique to delineate stands of invasives, as well as natural wetland cover types; using radar to map seasonally inundated areas not hydrologically connected; and developing new algorithms to estimate leaf area index (LAI) using Landsat. A coastal map delineating wetland types including monocultures of the invaders (Typha spp. and Phragmites austrailis) was created using satellite radar (ALOS PALSAR, 20 m resolution) and optical data (Landsat 5, 30 m resolution) fusion from multiple dates in a Random Forests classifier. These maps provide verification of the integrated model showing areas at high risk of invasion. For parameterizing the hydrological model, maps of seasonal wetness are being developed using spring (wet) imagery and differencing that with summer (dry) imagery to detect the seasonally wet areas. Finally, development of LAI remote sensing high resolution algorithms for uplands and wetlands is underway. LAI algorithms for wetlands have not been previously developed due to the difficulty of a water background. These products are being used to

  4. USEPA RESEARCH ON FISH - HABITAT RELATIONSHIPS IN GREAT LAKES COASTAL MARSHES

    EPA Science Inventory

    Despite numerous studies documenting fish use of particular habitat elements, the role of habitat mosaics in supporting wetland fishes is poorly understood. USEPA's Mid-Continent Ecology Division has initiated research to identify relationships of fish and habitat in coastal mars...

  5. Promoting species establishment in a phragmites-dominated great lakes coastal wetland

    USGS Publications Warehouse

    Carlson, M.L.; Kowalski, K.P.; Wilcox, D.A.

    2009-01-01

    This study examined efforts to promote species establishment and maintain diversity in a Phragmites-dominated wetland where primary control measures were underway. A treatment experiment was performed at Crane Creek, a drowned-river-mouth wetland in Ottawa National Wildlife Refuge along the shore of western Lake Erie. Following initial aerial spraying of Phragmites with glyphosate, this study tested combinations of cutting, raking, and additional hand spraying of Phragmites with glyphosate as methods to promote growth of other wetland species and increase plant diversity. Percent-cover vegetation data were collected in permanent plots before and after treatments, and follow-up sampling was performed the following year. Increased species richness, species emergence, and relative dominance of non-Phragmites taxa were used as measures of treatment success. We also examined treatment effects on Phragmites cover. Dimensionality of seedbank and soil properties was reduced using principal component analysis. With the exception of nitrogen, soil nutrients affected species establishment, non-Phragmites taxa dominance, and Phragmites cover. A more viable seedbank led to greater species emergence. Treatments had differential effects on diversity depending on elevation and resulting degree of hydrologic inundation. Whereas raking to remove dead Phragmites biomass was central to promoting species establishment in dry areas, spraying had a greater impact in continually inundated areas. For treatment success across elevations into the year following treatments, spraying in combination with cutting and raking had the greatest effect. The results of this study suggest that secondary treatments can produce a short-term benefit to the plant community in areas treated for Phragmites.

  6. Great Lakes Energy Institute

    SciTech Connect

    Alexander, J. Iwan

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  7. Not so Great Lakes?

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In 1965, Frank Sinatra won the Grammy Award for his album, "September of My Years;" "Early Bird," the first commercial communications satellite, was launched; and Dr. Martin Luther King, Jr. was arrested in Selma, Alabama, during demonstrations against voter-registration rules.The year 1965 was also the last time water levels in the U.S. Great Lakes were as low as they are now.

  8. Not so Great Lakes?

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In 1965, Frank Sinatra won the Grammy Award for his album, “September of My Years” “Early Bird,” the first commercial communications satellite, was launched; and Dr. Martin Luther King, Jr. was arrested in Selma, Alabama, during demonstrations against voter-registration rules.The year 1965 was also the last time water levels in the U.S. Great Lakes were as low as they are now.

  9. HYDROGEOMORPHIC PATTERNS IN COASTAL WETLANDS OF LAKE SUPERIOR: RELATIVE ROLE OF LAKE AND TRIBUTARY

    EPA Science Inventory

    Despite the documented importance of hydrodynamics in influencing the structure and fundtion of Great Lakes coastal wetlands, systematic assessments of the hydrology of coastal wetlands are lacking. This paper addresses this gap by describing patterns in lake and tributary inputs...

  10. Anthropogenic Influences on Water Quality and Biota of Great Lakes Coastal Wetlands, with an Eye towards Criteria Development

    EPA Science Inventory

    Twin Ports Freshwater Folk is a group of folks in Duluth in the field of aquatics sciences and management that meets roughly monthly to network and hear about ongoing science projects. My talk to them will focus on how we might use the data collected from our Great Lakes wide we...

  11. USING GRADIENTS IN LANDSCAPECHARACTER TO IDENTIFY RESPONSES TO NUTRIENTS AND OTHER STRESSORS IN GREAT LAKES COASTAL ECOSYSTEMS

    EPA Science Inventory

    Using GIS and coarse-scale, publicly-available data, the GLEI project has defined the landscape character of areas draining to 76d2 shoreline segments - the entire US portion of the Great Lakes basin. Using principal components and clustering analyses to discriminate among the se...

  12. Monitoring and Modelling Lakes and Coastal Environments

    NASA Astrophysics Data System (ADS)

    Odada, Eric

    2009-01-01

    The monitoring and modeling of lakes and coastal environments is becoming ever more important, particularly because these environments bear heavy loads in terms of human population, and their resources are critical to the livelihoods and well-being of coastal inhabitants and ecosystems. Monitoring and Modelling Lakes and Coastal Environments is a collection of 18 papers arising from the Lake 2004 International Conference on Conservation, Restoration and Management of Lakes and Coastal Wetlands, held in Bhubaneswar, Orissa, India, 9-13 December 2004. Consequently, 15 of the papers are concerned with studies on the Indian subcontinent, and many of the papers focus on India's Lake Chilika, the site of a special session during the conference. Two papers concern Japan, and one focuses on North America's Great Lakes region. Although the book has a regional bias, the replication of best practices that can be drawn from these studies may be useful for an international audience.

  13. Diel variation in near-shore great lakes fish assemblages and implications for assessment sampling and coastal management

    USGS Publications Warehouse

    McKenna, J.E., Jr.

    2008-01-01

    I compared fish assemblages captured in three different microhabitats (shoreline, pelagic near-shore, and benthic near-shore) during day and night fishing in different protection (inside bay or tributary vs. outside in Lake Ontario proper) and turbidity regimes of four near-shore areas of Lake Ontario. The effects of diel movement and availability to gear were clearly evident. Fish assemblages were consistently and significantly more diverse at night than during the day, with nighttime assemblages often being supersets of daytime assemblages. Evidence for a turbidity effect was much weaker than the effects of nocturnal movements and changes in availability to the gear associated with darkness. Nighttime sampling is more likely to capture the full array of species in near-shore areas of the Great Lakes than daytime sampling.

  14. Europa's Great Lakes

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  15. Michigan: The Great Lakes State

    ERIC Educational Resources Information Center

    McKay, Sandra Lee; La Luzerne-Oi, Sally

    2009-01-01

    Although Michigan is often called the "Wolverine State," its more common nickname is the "Great Lakes State." This name comes from the fact that Michigan is the only state in the United States that borders four of the five Great Lakes. Also referred to as the "Water Wonderland," Michigan has 11,000 additional lakes, 36,000 miles of streams, and…

  16. Georeferencing the Large-Scale Aerial Photographs of a Great Lakes Coastal Wetland: A Modified Photogrammetric Method

    USGS Publications Warehouse

    Murphy, Marilyn K.; Kowalski, Kurt P.; Grapentine, Joel L.

    2010-01-01

    The geocontrol template method was developed to georeference multiple, overlapping analog aerial photographs without reliance upon conventionally obtained horizontal ground control. The method was tested as part of a long-term wetland habitat restoration project at a Lake Erie coastal wetland complex in the U.S. Fish and Wildlife Service Ottawa National Wildlife Refuge. As in most coastal wetlands, annually identifiable ground-control features required to georeference photo-interpreted data are difficult to find. The geocontrol template method relies on the following four components: (a) an uncontrolled aerial photo mosaic of the study area, (b) global positioning system (GPS) derived horizontal coordinates of each photo’s principal point, (c) a geocontrol template created by the transfer of fiducial markings and calculated principal points to clear acetate from individual photographs arranged in a mosaic, and (d) the root-mean-square-error testing of the system to ensure an acceptable level of planimetric accuracy. Once created for a study area, the geocontrol template can be registered in geographic information system (GIS) software to facilitate interpretation of multiple images without individual image registration. The geocontrol template enables precise georeferencing of single images within larger blocks of photographs using a repeatable and consistent method.

  17. Linking a Large-Watershed Hydrogeochemical Model to a Wetland Community-Ecosystem Model to Estimate Plant Invasion Risk in the Coastal Great Lakes Region, USA

    NASA Astrophysics Data System (ADS)

    Currie, W. S.; Bourgeau-Chavez, L. L.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hart, S.; Hyndman, D. W.; Kendall, A. D.; Martin, S. L.; Martina, J. P.

    2014-12-01

    In the Laurentian Great Lakes region of the Upper Midwest, USA, agricultural and urban land uses together with high N deposition are contributing to elevated flows of N in rivers and groundwater to coastal wetlands. The functioning of coastal wetlands, which provide a vital link between land and water, are imperative to maintaining the health of the entire Great Lakes Basin. Elevated N inflows are believed to facilitate the spread of large-stature invasive plants (cattails and Phragmites) that reduce biodiversity and have complex effects on other ecosystem services including wetland N retention and C accretion. We enhanced the ILHM (Integrated Landscape Hydrology Model) to simulate the effects of land use on N flows in streams, rivers, and groundwater throughout the Lower Peninsula of Michigan. We used the hydroperiods and N loading rates simulated by ILHM as inputs to the Mondrian model of wetland community-ecosystem processes to estimate invasion risk and other ecosystem services in coastal wetlands around the Michigan coast. Our linked models produced threshold behavior in the success of invasive plants in response to N loading, with the threshold ranging from ca. 8 to 12 g N/m2 y, depending on hydroperiod. Plant invasions increased wetland productivity 3-fold over historically oligotrophic native communities, decreased biodiversity but slightly increased wetland N retention. Regardless of invasion, elevated N loading resulted in significantly enhanced rates of C accretion, providing an important region-wide mechanism of C storage. The linked models predicted a general pattern of greater invasion risk in the southern basins of lakes Michigan and Huron relative to northern areas. The basic mechanisms of invasion have been partially validated in our field mesocosms constructed for this project. The general regional patterns of increased invasion risk have been validated through our field campaigns and remote sensing conducted for this project.

  18. GREAT LAKES CONTAMINATED SEDIMENTS PROGRAM

    EPA Science Inventory

    Contaminated sediments are a significant problem in the Great Lakes basin. Although discharges of toxic substances to the Great Lakes have been reduced in the last 20 years, persistent high concentrations of contaminants in the bottom sediments of rivers and harbors have raised...

  19. The Great Lakes Food Web.

    ERIC Educational Resources Information Center

    Baker, Marjane L.

    1997-01-01

    Presents a play for students in grades four to nine that incorporates the scientific names, physical characteristics, feeding habits, interactions, and interdependence of the plants and animals that make up the Great Lakes food web to facilitate the learning of this complex system. Includes a Great Lakes food web chart. (AIM)

  20. GREAT LAKES PLANKTON PROGRAM

    EPA Science Inventory

    Phytoplankton, which have short carbon turnover rates, are sensitive to water quality conditions and grazing by zooplankton, and thus respond rapidly to perturbations of the lake ecosystem. The determination of phytoplankton abundance and species composition is one method to tra...

  1. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  2. Lake Buchannan, Great Dividing Range, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Buchannan, a small but blue and prominent in the center of the view, lies in the Great Dividing of Queensland, Australia (22.0S, 146.0E). The mountain range in this case is a low plateau of no more than 2,000 to 3,000 ft altitude. The interior is dry, mostly in pasture but the coastal zone in contrast, is wet tropical country where bananas and sugarcane are grown.

  3. The first US National Coastal Condition Assessment survey in the Great Lakes: Development of the GIS frame and exploration of spatial variation in nearshore water quality results

    EPA Science Inventory

    A comprehensive approach to assess conditions in the Great Lakes nearshore zone has been lacking for decades. We had the opportunity to conduct a pilot survey in Lake Erie (45 sites) in summer 2009 and to develop a full survey across the 5 lakes (~400 sites) as part of the US N...

  4. An Integrated Set of Observations to Link Conditions of Great Lakes Nearshore Waters to their Coastal Watersheds

    EPA Science Inventory

    We combine three elements for a comprehensive characterization that links nearshore conditions with coastal watershed disturbance metrics. The three elements are: 1) a shore-parallel, high-resolution nearshore survey using continuous in situ towed sensors; 2) a spatially-balanc...

  5. Physical constraints and the comparative ecology of coastal ecosystems across the US Great Lakes, with a coda, presentation

    EPA Science Inventory

    One of my favorite papers by Scott Nixon (1988) was the story he build around the observation that marine fisheries yields were higher per unit area or per unit primary production than temperate lakes. The story, and the putative agent for the freshwater/marine difference, involv...

  6. Physical constraints and the comparative ecology of coastal ecosystems across the US Great Lakes, with a coda

    EPA Science Inventory

    One of my favorite papers by Scott Nixon (1988) was the story he build around the observation that marine fisheries yields were higher than temperate lakes. The putative agent for the freshwater/marine difference, involved a higher energy of mixing due to tides in marine environm...

  7. 33 CFR 125.08 - Great Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Great Lakes. 125.08 Section 125... VESSELS § 125.08 Great Lakes. The term Great Lakes as used in the regulations in this subchapter shall include the Great Lakes and their connecting and tributary waters....

  8. 33 CFR 125.08 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Great Lakes. 125.08 Section 125... VESSELS § 125.08 Great Lakes. The term Great Lakes as used in the regulations in this subchapter shall include the Great Lakes and their connecting and tributary waters....

  9. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  10. Monitoring Change in Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Naftz, David; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Carling, Gregory

    2013-08-01

    Great Salt Lake is the largest hypersaline lake in the Western Hemisphere and the fourth largest terminal lake in the world (Figure 1). The open water and adjacent wetlands of the Great Salt Lake ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere [Aldrich and Paul, 2002]. In addition, the area is of important economic value: Brine shrimp (Artemia franciscana) residing in Great Salt Lake support an aquaculture shrimp cyst industry with annual revenues as high as $60 million.

  11. EPA Research Strengthens Great Lakes Restoration Initiative

    EPA Science Inventory

    As the largest group of freshwater lakes on Earth, the Great Lakes (Lakes Erie, Huron, Michigan, Ontario and Superior) are a source of economic prosperity, recreation and raw materials. Human activity, however, has resulted in pollution and other stressors. The Great Lakes curren...

  12. The Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki

    For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).

  13. Early eutrophication in the lower great lakes:.

    PubMed

    Schelske, C L; Stoermer, E F; Conley, D J; Robbins, J A; Glover, R M

    1983-10-21

    New Evidence from Biogenic Silica in Sediments New evidence from studies of biogenic silica and diatoms in sediment cores indicates that eutrophication in the lower Great Lakes resulted from nutrient enrichment associated with early settlement and forest clearance. Diatom production peaked from 1820 to 1850 in Lake Ontario, at about 1880 in Lake Erie, but not until 1970 in Lake Michigan. This is the first reported sediment record of the silica-depletion sequence for the Great Lakes. PMID:17734831

  14. Exploiting Habitat and Gear Patterns for Efficient Detection of Rare and Non-native Benthos and Fish in Great Lakes Coastal ecosystems

    EPA Science Inventory

    There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...

  15. ZOOBENTHOS ASSEMBLAGES AS INDICATORS OF LAKE SUPERIOR COASTAL WETLAND CONDITIONS

    EPA Science Inventory

    Little is known about the diversity or structure of zoobenthos assemblages in Great Lakes coastal wetlands. As part of a comparative study in western Lake Superior we wanted to investigate whether these assemblages might be useful as indicators of wetland condition. We also wante...

  16. TOXAPHENE IN THE GREAT LAKES. (R825246)

    EPA Science Inventory

    This paper presents the most current data for toxaphene in the water, sediments, and biota of the Laurentian Great Lakes of North America. Concentrations in water range from 1.1 ng/L in Lake Superior to 0.17 ng/L in Lake Ontario. Lake Superior has the highest water concentrati...

  17. Great Lakes Education Booklet, 1990-1991.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  18. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  19. Area contingency plan: Eastern Great Lakes. (COTP Buffalo)

    SciTech Connect

    1994-06-30

    The Area Contingency Plan, mandated under the Oil Pollution Act, was developed by the Eastern Great Lakes Area Committee, which is chaired by the Coast Guard and consists of local, state, federal, and private members. The plan prepares in advance for an oil or hazardous substance spill in the COTP Buffalo Coastal Zone.

  20. Near shore-wetland fish movements in the Great Lakes

    EPA Science Inventory

    Linkages of Great Lakes coastal wetlands and near shore habitats are under-explored, yet 90 species of fish are known to utilize wetlands for spawning and/or nursery habitat. The duration and frequency of wetland use for pelagic species with mobile adult stages is also poorly un...

  1. Great Lakes nearshore-offshore: Distinct water quality regions

    EPA Science Inventory

    We compared water quality of nearshore regions in the Laurentian Great Lakes to water quality in offshore regions. Sample sites for the nearshore region were from the US EPA National Coastal Condition Assessment and based on a criteria or sample-frame of within the 30-m depth co...

  2. A Great Salt Lake waterspout

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Mccumber, M.; Roff, G.; Morton, B. R.; Labas, K.; Dietachmayer, G.; Penc, R.

    1991-01-01

    Results are presented of observations of a waterspout funnel and spray ring performed under a cumulus line over the Great Salt Lake for about 5 min shortly after sunrise on June 26, 1985. These observations were used as the basis for a study of the initiation and evolution of waterspouts through a series of numerical experiments at two scales, that of a cloud and a waterspout. The cloud scale was simulated using an improved Goddard-Schlesinger model with nearby Salt Lake City soundings. Results showed that for each mode of cloud initiation, the vortex that started at the anticyclonic center grew faster than those started at other centers. This result strongly suggests that the cloud vorticity was important in its initiation. The greatest azimuthal speed for the bubble-initiated cloud was 11 m/s, when the vortex model was started at 28-min cloud time with time-varying boundary conditions, whereas it was 21 m/s when started at 12 min in the line-initiated cloud. The results support the hypothesis that, at least in some circumstances, cloud processes alone can produce waterspouts in the absence of external vorticity sources such as surface convergence lines or other shear features.

  3. HABITAT FINGERPRINTS FOR LAKE SUPERIOR COASTAL WETLANDS DERIVED FROM ELEMENTAL ANALYSIS OF YELLOW PERCH OTOLITHS

    EPA Science Inventory

    Assessing the ecological importance of coastal habitats to Great Lakes ecosystems requires an understanding of the ecological linkages between coastal and offshore waters. . . . Our results suggest that otolith elemental fingerprints may be useful for quantifying the relative con...

  4. Availability of lake trout reproductive habitat in the Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Kennedy, Gregory W.

    1995-01-01

    A decades-long program to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the four lower Great Lakes produced excellent fisheries supported by stocked fish. These fish spawned widely and small numbers of their offspring were collected intermittently from Lakes Michigan, Huron, and Ontario, but no self-sustaining stocks were established. Irt this paper we address habitat sufficiency as a factor in the failure of stocked lake trout to established self-sustaining populations in the four lower Great Lakes. We present the previously unpublished results of lake trout spawning habitat surveys conducted at seven sites in the Great Lakes since 1987 and we compare them with the published results of similar surveys conducted at 24 other sites in the four lower lakes since 1981. Our evaluation indicates all but two of these sites can support the production of viable fry from spawnings by the shallow-water strains of lake trout that are stocked in the Great Lakes. However, some of the best spawning, egg, and fry habitat in the lower Great Lakes seems to be at deeper offshore sites that may be unattractive to these shallow-water strains. Thus, we suggest also stocking the lower four lakes with strains from Lake Superior that might more fully exploit the best spawning habitat at these deeper, offshore sites.

  5. Eutrophication of the St. Lawrence Great Lakes

    USGS Publications Warehouse

    Beeton, Alfred M.

    1965-01-01

    Lakes Huron, Michigan, and Superior are classified as oligotrophic lakes on the basis of their biological, chemical, and physical characteristics. Lake Ontario, although rich in nutrients, is morphometrically oligotrophic or mesotrophic because of its large area of deep water. Lake Erie, the most productive of the lakes and the shallowest, is eutrophic. Several changes commonly associated with eutrophication in small lakes have been observed in the Great Lakes. These changes apparently reflect accelerated eutrophication in the Great Lakes due to man's activity. Chemical data compiled from a number of sources, dating as early as 1854, indicate a progressive increase in the concentrations of various major ions and total dissolved solids in all of the lakes except Lake Superior. The plankton has changed somewhat in Lake Michigan and the plankton, benthos, and fish populations of Lake Erie are greatly different today from those of the past. An extensive area of hypolimnetic water of Lake Erie has developed low dissolved oxygen concentrations in late summer within recent years.

  6. Pacific salmonines in the Great Lakes Basin

    USGS Publications Warehouse

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  7. CONNECTING WATERSHED CHARACTERISTICS TO NUTRIENT REGIME FROM HEADWATERS TO RECEIVING WATERS IN THE LAURENTIAL GREAT LAKES

    EPA Science Inventory

    We are evaluating the influence of position along the tributary-coastal wetland-lake continuum on the expression of watershed characteristics in the water quality of Great Lakes (GL) coastal ecosystems as part of an EPA study focused on determining stressor-response relationships...

  8. δD and δ18O evidence for inputs to groundwater at a wetland coastal boundary in the southern Great Lakes region of Canada

    NASA Astrophysics Data System (ADS)

    Huddart, P. A.; Longstaffe, F. J.; Crowe, A. S.

    1999-01-01

    The stable isotope compositions ( δ18O and δD) of water have been used to determine the relative contributions of different water sources to the groundwater in a barrier sand-bar that separates a coastal freshwater marsh from Lake Erie, Canada. An extensive groundwater study was initiated by Environment Canada at Point Pelee National Park after elevated nutrient concentrations were measured in the park's marsh, located on a spit of land that extends 15 km south into Lake Erie. As part of this larger study, which includes groundwater and nutrient modelling, the stable isotope compositions ( δ18O and δD) of water have been used to independently determine the nature and extent of groundwater flow within sand deposits that separate the marsh from Lake Erie. One of the two study sites chosen for this investigation is located near a large septic-system tile-bed that receives human waste from a public toilet facility within the park, and could potentially release nutrients to the marsh via the groundwater. Both transects studied are well suited to isotopic investigation because they are located between two potentially recharging surface water bodies with temporally variable isotopic compositions, and because the transects are subject to recharge by local precipitation, which exhibits large seasonal isotopic variations. These differing isotopic compositions, when considered spatially and temporally, make it possible to establish the source and movement of groundwater within the transects. The oxygen and hydrogen isotopic compositions of surface waters from the Point Pelee marsh and Lake Erie lie on an evaporation line with a slope of 5.7. The isotopic composition of Lake Erie remained relatively stable for over 21 months ( δ18O=-7.5‰ to -6.7‰) whereas the marsh exhibited considerable spatial and temporal variability ( δ18O=-8.4‰ to -0.1‰). The δD and δ18O values of precipitation samples vary seasonally with local surface temperatures, and constitute a local

  9. Directory of Great Lakes Education Material.

    ERIC Educational Resources Information Center

    International Joint Commission, Windsor (Ontario). Great Lakes Regional Office.

    The Great Lakes Science Advisory Board of the International Joint Commission surveyed several hundred educators and producers of educational programs. One of the results of the survey was the development of this directory, which is limited to materials and producers of materials dealing with the Great Lakes Basin ecosystem, environmental studies,…

  10. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  11. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2016-05-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  12. Genetic diversity of Diporeia in the Great Lakes: comparison of Lake Superior to the other Great Lakes

    EPA Science Inventory

    Abundances of Diporeia have dropped drastically in the Great Lakes, except in Lake Superior, where data suggest that population counts actually have risen. Various ecological, environmental, or geographic hypotheses have been proposed to explain the greater abundance of Lake Supe...

  13. Great Lakes rivermouths: a primer for managers

    USGS Publications Warehouse

    Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  14. Remediation, restoration, revitalization (R2R2R): How Great Lakes communities benefit from AOC delisting

    EPA Science Inventory

    Throughout the Great Lakes, remediation and restoration activities in areas of concern (AOC) are providing economic and social benefits (“revitalization”) to coastal communities. However, there is a general lack of documentation and evaluation of benefits that have co...

  15. How the Great Lakes Were Evaluated

    ERIC Educational Resources Information Center

    Sonzogni, William C.

    1975-01-01

    The Great Lakes Basin Commission exhaustively studied the world's largest fresh water ecosystem. The reconnaissance-type investigation provided a broad-scale analysis of resource needs and problems in the United States portion of the Basin. (BT)

  16. Animation: 'Great Lake' on Jupiter's Moon Europa

    NASA Video Gallery

    Data from a NASA planetary mission have provided scientists evidence of what appears to be a body of liquid water, equal in volume to the North American Great Lakes, beneath the icy surface of Jupi...

  17. ERTS-1 views the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.

  18. THE USE OF MACROINVERTEBRATE ASSEMBLAGES TO DIAGNOSE CAUSES OF IMPAIRMENT IN LAKE MICHIGAN COASTAL WETLANDS

    EPA Science Inventory

    Our understanding of the causes of biological impairment in Great Lakes coastal wetland ecosystems lags behind our understanding of causes of these impairments in streams. In 2000 and 2001 a regional EMAP study of Lake Michigan coastal riverine wetlands was undertaken with the go...

  19. ARE COASTAL WETLAND-LAKE LINKAGES IMPORTANT?

    EPA Science Inventory

    Because coastal werlands typically comprise only a small percentage of the overall surface area in large lakes, an assumption has often been made that functional links between wetlands and the lake proper are of little significance. Recent investigations of functional linkages be...

  20. Energy and water in the Great Lakes.

    SciTech Connect

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  1. Early Holocene Great Salt Lake, USA

    NASA Astrophysics Data System (ADS)

    Oviatt, Charles G.; Madsen, David B.; Miller, David M.; Thompson, Robert S.; McGeehin, John P.

    2015-07-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5-10.2 cal ka BP; 10-9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column - a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  2. Life in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is life in the Great Lakes. Students learn about shorebird adaptations,…

  3. Great Lakes Environmental Issues. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The subject of this book is environmental issues in the Great Lakes. Students learn about the…

  4. Great Lakes Sinkholes: A Microbiogeochemical Frontier

    NASA Astrophysics Data System (ADS)

    Biddanda, Bopaiah A.; Nold, Stephen C.; Ruberg, Steven A.; Kendall, Scott T.; Sanders, T. Garrison; Gray, Jefferson J.

    2009-02-01

    Recent underwater explorations have revealed unique hot spots of biogeochemical activity at several submerged groundwater vents in Lake Huron, the third largest of the Laurentian Great Lakes. Fueled by venting groundwater containing high sulfate and low dissolved oxygen, these underwater ecosystems are characterized by sharp physical and chemical gradients and spectacularly colorful benthic mats that overlie carbon-rich sediments. Here, typical lake inhabitants such as fish and phytoplankton are replaced by communities dominated by microorganisms: bacteria and archaea that perform unique ecosystem functions. Shallow, sunlit sinkholes are dominated by photosynthetic microorganisms and processes, while food webs in deep aphotic sinkholes are supported primarily by chemosynthesis.

  5. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  6. 46 CFR 42.05-40 - Great Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST... Definition of Terms Used in This Subchapter § 42.05-40 Great Lakes. (a) This term means the Great Lakes of North America. (b) As used in this part, the term solely navigating the Great Lakes includes any...

  7. 46 CFR 42.05-40 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST... Definition of Terms Used in This Subchapter § 42.05-40 Great Lakes. (a) This term means the Great Lakes of North America. (b) As used in this part, the term solely navigating the Great Lakes includes any...

  8. Natural remediation in the Great Lakes

    USGS Publications Warehouse

    Passino-Reader, Dora R.; Kamrin, Michael A.; Hickey, James P.

    2000-01-01

    Overall, the existence of stricter environmental laws during the last 30 years and a reduction in the manufacturing base in the Great Lakes has resulted in improvement in conditions in harbors, rivers, and nearshore waters. Problems remain, such as the inability to dredge certain harbors and remove sediments because of lack of disposal facilities for contaminated sediments. Because of the wide extent of of contaminated sediments in the Great Lakes, much work remains to be done to document the condition of contaminated areas and the degree to which remediation of these areas is occurring from biotic and abiotic natural processes.

  9. Contaminant trends in Great Lakes fish

    SciTech Connect

    De Vault, D.S.; Anderson, D.J.

    1994-12-31

    Dramatic declines have been observed in the concentrations of PCB, DDT, dieldrin, and other organochlorine contaminants since fish were first monitored in the mid 1970s. These declines have, however, slowed or ceased entirely in recent years. PCB and DDT concentrations have not changed significantly in walleye from Lake Erie since 1982 and lake trout from the upper Great Lakes since 1986. In coho salmon from Lakes Michigan and Erie, PCB concentrations have increased significantly since the mid 1980s. The lack of recent declines and increases in contaminant concentrations appear to be the result of several factors including internal cycling of contaminants, continued loadings from the atmosphere, and changes in the food web brought about by the introduction of exotic species. Contaminant trends and probable causes will be discussed, as will the relationship between contaminant trends in the water column, top predator fish species and loading history.

  10. Coregonid fishes of the Great Lakes

    USGS Publications Warehouse

    Koelz, Walter N.

    1929-01-01

    Wherever they occur, the coregonids, like the salmonids, are important food fishes; but probably nowhere do they attain so much importance in the fisheries as in the region of the Great Lakes. This investigation has as its object the determination of the forms of coregonid fishes that occur in these lakes and the collection of data on their natural history. In addition to its economic significance, the problem is one of scientific interest. It concerns not merely the ecology of the Great Lakes species but it involves also the ultimate consideration of their origin and evolution and of their relationships with one another and with the coregonids of Asia and Europe, as well as with those of other parts of America.

  11. Global Change in the Great Lakes: Scenarios.

    ERIC Educational Resources Information Center

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  12. Temperature Over Time at the Great Lakes.

    ERIC Educational Resources Information Center

    Meyer, Rick; Fortner, Rosanne W.

    1997-01-01

    Presents an activity in which water temperature is investigated in relation to water depth, weather patterns, land use, time of year, and other factors students choose to investigate with data collected from the Internet. Uses the Great Lakes as the setting for this investigation and examines how and why the temperature of a body of water changes…

  13. Great Lakes Environmental Education. Special Report.

    ERIC Educational Resources Information Center

    International Joint Commission, Windsor (Ontario). Great Lakes Regional Office.

    The International Joint Commission report builds on a previous report to the Governments of the United States and Canada that recommended the Great Lakes (GL) States and Provinces incorporate the GL ecosystem as a priority topic in existing school curricula. This report begins by building an argument showing the need for environmental education…

  14. The Future of Great Lakes Rivermouth Research

    EPA Science Inventory

    The Great Lakes Rivermouth Collaboratory, a group of scientists and stakeholders representing academics, federal and state agencies, and non-governmental organizations (NGOs) are developing a conceptual model that draws upon existing data sources to synthesize the "state of the s...

  15. Seasonal and spatial patterns in coupled nitrification-denitrification rates in a large Great Lakes coastal system: The St. Louis River Estuary

    EPA Science Inventory

    Anthropogenic inputs of excess nitrogen (N) to aquatic systems are detrimental, but aquatic plants and sediments have the potential to mitigate N-loading. Sediment processes are driven by microbially mediated N-cycling. Coastal embayments purportedly play a significant role in N-...

  16. Microseisms from the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Goddard, K. J.; Koper, K. D.; Burlacu, V.

    2014-12-01

    Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA We performed frequency-dependent polarization and power analysis on continuous ambient seismic energy recorded by broadband seismic stations that were part of the Utah Regional Seismic Network (UU) for the years of 2001-2013. The number of broadband seismometers increased from 10 to 28 in this time period. As expected, at all 28 stations the single and double frequency peaks caused by microseisms were observed in the range of 3-20 s. At four of the stations located around the Great Salt Lake (BGU, HVU, NOQ, and SPU) an additional noise peak was intermittently observed in the period range of 0.8-1.2 s. This noise peak was strongest at SPU, a station located on the tip of a peninsula jutting into the lake from the north, and weakest at NOQ, a station located a few kilometers south of the lake in the Oquirrh Mountains. The noise peaks occur in both daytime and nighttime, and have durations lasting from a couple of hours to multiple days. They occur more frequently in the spring, summer, and fall, and less commonly in the winter. The occurrences of noise peaks in the summer show a day night pattern and seem to reach a peak during the night. The time dependence of this 1-s seismic noise was compared to records of wind speed measured at 1-hr intervals from nearby meteorological stations run by the NWS, and to lake level gage height measurements made by the USGS. Correlations with wind speed and lake level were done for every month of the year in 2013. Results showed that the correlations with wind varied throughout the year from a high of 0.49 in November to a low of 0.20 in the month of January. The correlation with lake level also varied throughout the year and the strongest correlation was found in the month of December with a correlation of 0.43. While these correlation values are statistically significant, neither wind nor lake level can completely explain the seismic observations

  17. Group calls for protecting Great Lakes water

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Neither Canadian nor United States governments should allow any surface or groundwater removals from the Great Lakes Basin that endanger the region and its ecosystem, an intergovernmental body recommended on August 18.In addition, the governments should lower substantially the trigger point for proposed new or increased water use that require notice, consultation, and the seeking of consent and concurrence, said the International Joint Commission (IJC).

  18. Beach science in the Great Lakes

    USGS Publications Warehouse

    Nevers, Meredith B.; Byappanahalli, Murulee N.; Edge, Thomas A.; Whitman, Richard L.

    2014-01-01

    Monitoring beach waters for human health has led to an increase and evolution of science in the Great Lakes, which includes microbiology, limnology, hydrology, meteorology, epidemiology, and metagenomics, among others. In recent years, concerns over the accuracy of water quality standards at protecting human health have led to a significant interest in understanding the risk associated with water contact in both freshwater and marine environments. Historically, surface waters have been monitored for fecal indicator bacteria (fecal coliforms, Escherichia coli, enterococci), but shortcomings of the analytical test (lengthy assay) have resulted in a re-focusing of scientific efforts to improve public health protection. Research has led to the discovery of widespread populations of fecal indicator bacteria present in natural habitats such as soils, beach sand, and stranded algae. Microbial source tracking has been used to identify the source of these bacteria and subsequently assess their impact on human health. As a result of many findings, attempts have been made to improve monitoring efficiency and efficacy with the use of empirical predictive models and molecular rapid tests. All along, beach managers have actively incorporated new findings into their monitoring programs. With the abundance of research conducted and information gained over the last 25 years, “Beach Science” has emerged, and the Great Lakes have been a focal point for much of the ground-breaking work. Here, we review the accumulated research on microbiological water quality of Great Lakes beaches and provide a historic context to the collaborative efforts that have advanced this emerging science.

  19. 46 CFR 46.05-20 - Great Lakes voyage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Great Lakes voyage. 46.05-20 Section 46.05-20 Shipping... VESSELS Definitions Used in This Part § 46.05-20 Great Lakes voyage. A Great Lakes voyage is any voyage from a United States port or place on the Great Lakes to another United States port or place on...

  20. 46 CFR 46.05-20 - Great Lakes voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Great Lakes voyage. 46.05-20 Section 46.05-20 Shipping... VESSELS Definitions Used in This Part § 46.05-20 Great Lakes voyage. A Great Lakes voyage is any voyage from a United States port or place on the Great Lakes to another United States port or place on...

  1. COASTAL WETLAND INSECT COMMUNITIES ALONG A TROPHIC GRADIENT IN GREEN BAY, LAKE MICHIGAN

    EPA Science Inventory

    Insects of Great Lakes coastal wetlands have received little attention in spite of their importance in food webs and sensitivity to anthropogenic stressors. We characterized insect communities from four coastal wetlands that spanned the length of a trophic gradient in Green Bay d...

  2. HABITAT ASSOCIATIONS OF LARVAL FISH IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Habitat associations of larval fishes in Great Lakes coastal wetlands (GLCW) are not well documented. To determine the distribution of larval fish in coastal wetlands with regard to location and vegetation characteristics, we used a larval tow-sled to sample four macrohabitat typ...

  3. CHECKLIST OF DIATOMS FROM THE LAURENTIAN GREAT LAKES

    EPA Science Inventory

    An updated diatom (Bacillariophyta) checklist for the Great Lakes has been completed (J. Great Lakes Res. 1999) and supplants the preliminary checklist (J. Great Lakes Res. 1978). The present list is effectively a 20-year update. The updated list is based upon: 1) the 1978 checkl...

  4. The Great Lakes. An Environmental Atlas and Resource Book.

    ERIC Educational Resources Information Center

    Botts, Lee; Krushelnicki, Bruce

    This atlas was developed jointly by the Canadian and American governments, and is intended to provide an ecosystem approach to the understanding of the Great Lakes Basin. Chapter one provides an introduction to both the natural and cultural aspects of the Great Lakes. Chapter two, "Natural Processes in the Great Lakes," describes such factors as…

  5. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST... Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes....

  6. 46 CFR 90.10-13 - Great Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Great Lakes. 90.10-13 Section 90.10-13 Shipping COAST... Definition of Terms Used in This Subchapter § 90.10-13 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes....

  7. 46 CFR 151.03-29 - Great Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Great Lakes. 151.03-29 Section 151.03-29 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-29 Great Lakes. A designation for all vessels in Great Lakes service....

  8. 77 FR 33228 - Great Lakes Pilotage Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applicants. SUMMARY: The Coast Guard seeks applications for membership on the Great Lakes... of Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage,...

  9. 78 FR 49544 - Great Lakes Pilotage Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applications. SUMMARY: The Coast Guard seeks applications for membership on the Great Lakes... of Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage,...

  10. 76 FR 62085 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee... the Federal Register of October 4, 2011, a notice announcing a Great Lakes Pilotage Advisory Committee... authority of the Great Lakes Pilotage program. If you have been adversely affected by the one-day delay...

  11. 46 CFR 90.10-13 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Great Lakes. 90.10-13 Section 90.10-13 Shipping COAST... Definition of Terms Used in This Subchapter § 90.10-13 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes....

  12. 46 CFR 151.03-29 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Great Lakes. 151.03-29 Section 151.03-29 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-29 Great Lakes. A designation for all vessels in Great Lakes service....

  13. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST... Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes....

  14. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  15. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    USGS Publications Warehouse

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  16. ROV dives under Great Lakes ice

    USGS Publications Warehouse

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  17. Forecasting Lake-Effect Snow in the Great Lakes Using NASA Satllite Data

    NASA Technical Reports Server (NTRS)

    Cipullo, Michelle; Molthan, Andrew; Shafer, Jackie; Case, Jonathan; Jedlovec, Gary

    2011-01-01

    This slide presentation reviews the forecast of the lake effect snow in the Great Lakes region using models and infrared estimates of Great Lake Surface Temperatures (GLSTs) from the MModerate Resolution Imaging Spectroradiometer (MODIS) instrument on Terra and Aqua satellites, and other satellite data. This study analyzes Lake Erie and Lake Ontario which produce storm total snowfall ranged from 8-18 inches off of Lake Ontario and 10-12 inches off of Lake Erie for the areas downwind.

  18. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  19. Drainage water phosphorus losses in the great lakes basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  20. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  1. THE GREAT LAKES BASIN LANDSCAPE ECOLOGY METRIC DATA BROWSER (BETA V1.0)

    EPA Science Inventory

    The principal focus of this project is the mapping and interpretation of landscape scale (i.e., broad scale) ecological metrics among hydrologic units and within 1 km, 5 km, and 10 km regions of coastal land in the Great Lakes Basin (GLB). Much is still unknown about the ecologic...

  2. EXTRACELLULAR ENZYME ACTIIVTY AS A SURROGATE FOR NUTRIENTS AND NUTRIENT HISTORY IN GREAT LAKES WETLANDS

    EPA Science Inventory

    Great Lakes ecosystems are generally thought to be P-limited, but N-limitation may be more common than previously suspected. N-limitation should be most obvious in freshwater coastal wetlands, where the anaerobic oxidation of organic carbon may be limited by nitrate availability...

  3. 2010 NCCA oligochaete trophic index results to inform benthic index development for the Great Lakes

    EPA Science Inventory

    Over 400 sites were sampled in the nearshore of the U.S. Great Lakes during the National Coastal Condition Assessment (NCCA) field survey in summer 2010. To assess benthic ecological condition, 393 PONARs were attempted, and collected macroinvertebrates were identified and enume...

  4. Aquatic invasive species early detection in the Great Lakes: Lessons concerning strategy

    EPA Science Inventory

    Great Lakes coastal systems are vulnerable to introduction of a wide variety of non-indigenous species (NIS), and the desire to effectively respond to future invaders is prompting efforts towards establishing a broad early-detection network. Such a network requires statistically...

  5. Progress towards design elements for a Great Lakes-wide aquatic invasive species early detection network

    EPA Science Inventory

    Great Lakes coastal systems are vulnerable to introduction of a wide variety of non-indigenous species (NIS), and the desire to effectively respond to future invaders is prompting efforts towards establishing a broad early-detection network. Such a network requires statistically...

  6. Base flow in the Great Lakes Basin

    USGS Publications Warehouse

    Neff, B.P.; Day, S.M.; Piggott, A.R.; Fuller, L.M.

    2005-01-01

    Hydrograph separations were performed using the PART, HYSEP 1, 2, and 3, BFLOW and UKIH methods on 104,293 years of daily streamflow records from 3,936 streamflow-gaging stations in Ontario, Canada and the eight Great Lakes States of Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin to estimate base-flow index (BFI) and base flow. BFI ranged an average of 0.24 BFI depending on which hydrograph-separation method was used. BFI data from 959 selected streamflow-gaging stations with a combined 28,784 years of daily streamflow data were used to relate BFI to surficial geology and the proportion of surface water within the gaged watersheds. This relation was then used to derive estimates of BFI throughout the Great Lakes, Ottawa River, and upper St. Lawrence River Basins at a scale of 8-digit hydrologic unit code (HUC) watersheds for the U.S. and tertiary watersheds in Canada. This process was repeated for each of the six hydrograph-separation methods used. When applied to gaged watersheds, model results predicted observed base flow within 0.2 BFI up to 94 percent of the time. Estimates of long-term (length of streamflow record) average annual streamflow in each HUC and tertiary watershed were calculated and used to determine average annual base flow from BFI estimates. Possibilities for future study based on results from this study include long-term trend analysis of base flow and improving the scale at which base-flow estimates can be made.

  7. Perchlorate in the Great Lakes: isotopic composition and origin.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean. PMID:25171443

  8. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  9. Radionuclides in the Great Lakes basin.

    PubMed

    Ahier, B A; Tracy, B L

    1995-12-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  10. Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration

    USGS Publications Warehouse

    Hansen, Michael J.

    1999-01-01

    The lake trout (Salvelinus namaycush) was important to the human settlement of each of the Great Lakes, and underwent catastrophic collapses in each lake in the nineteenth and twentieth centuries. The timing of lake trout stock collapses were different in each lake, as were the causes of the collapses, and have been the subject of much scientific inquiry and debate. The purpose of this chapter is to summarize and review pertinent information relating historical changes in Great Lakes lake trout stocks, binational efforts to restore those stocks, and progress toward stock restoration. This presentation attempts to generalize patterns across the Great Lakes, rather than to focus within each lake. Lake specific analyses have been used to understand lake specific causes and effects, but there is continuing debate about some of these causes and effects. A basinwide review may suggest mechanisms for observed changes that are not evident by lake specific analysis.

  11. Genetic evaluation of a Great Lakes lake trout hatchery program

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Bast, D.; Holey, M.E.; Burnham-Curtis, M. K.

    2005-01-01

    Efforts over several decades to restore lake trout Salvelinus namaycush in U.S. waters of the upper Great Lakes have emphasized the stocking of juveniles from each of six hatchery broodstocks. Retention of genetic diversity across all offspring life history stages throughout the hatchery system has been an important component of the restoration hatchery and stocking program. Different stages of the lake trout hatchery program were examined to determine how effective hatchery practices have been in minimizing the loss of genetic diversity in broodstock adults and in progeny stocked. Microsatellite loci were used to estimate allele frequencies, measures of genetic diversity, and relatedness for wild source populations, hatchery broodstocks, and juveniles. We also estimated the effective number of breeders for each broodstock. Hatchery records were used to track destinations of fertilized eggs from all spawning dates to determine whether adult contributions to stocking programs were proportional to reproductive effort. Overall, management goals of maintaining genetic diversity were met across all stages of the hatchery program; however, we identified key areas where changes in mating regimes and in the distribution of fertilized gametes and juveniles could be improved. Estimates of effective breeding population size (Nb) were 9-41% of the total number of adults spawned. Low estimates of Nb were primarily attributed to spawning practices, including the pooling of gametes from multiple males and females and the reuse of males. Nonrandom selection and distribution of fertilized eggs before stocking accentuated declines in effective breeding population size and increased levels of relatedness of juveniles distributed to different rearing facilities and stocking locales. Adoption of guidelines that decrease adult reproductive variance and promote more equitable reproductive contributions of broodstock adults to juveniles would further enhance management goals of

  12. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  13. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  14. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  15. Snow From Great Lakes Covers Buffalo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On November 20, 2000, Buffalo, New York was blanketed by a late-autumn storm that left 25 inches of snow on the ground in a 24-hour period, most of it during the afternoon rush hour. Buffalo officials declared a state of emergency and New York National Guardsmen were called in to assist with clearing snow from roads. With the exception of essential vehicles or people retrieving stranded children, all driving was banned in the city. This SeaWiFS pass over the central United States and Canada depicts a source for all of the snow in Buffalo. Cold, dry Canadian air blowing toward the southeast picked up a lot of moisture from the relatively warm Great Lakes -- forming the clouds that lightened their loads over Buffalo. This image was acquired November 21, 2000, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the Orbview-2 satellite. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  16. The southern Lake Michigan coastal erosion study

    SciTech Connect

    Folger, D.W. )

    1993-03-01

    As a result of damage inflicted on the Chicago shoreline by exceptionally high waters in 1985-87, the U.S. Geological Survey (USGS) initiated a cooperative 5-year (1988--1992) study to evaluate the geologic framework of the area, the frequency of lake level fluctuations, and the processes responsible for the intense coastal erosion. The study involved 19 scientists from the USGS, Illinois State Geological Survey, Indiana Geological Survey, Indiana University, Purdue University, Northeastern Illinois University, Oregon State University, and the University of Washington. Some important results of the study follow: (1) the failure of revetments protecting the Chicago lakeshore is mainly structural and not erosional. (2) Prehistoric lake level fluctuations exceeded historic fluctuations by as much as a factor of two. For example, in the 17th century, lake level changed over a range of [approximately]3 m, whereas between the 1964 low and the 1986 high it changed only [approximately]1.6 m. (3) Bluff retreat between Wilmette and Waukegan varies from 10--75 cm/yr and averages 20--25 cm/yr; erosion rates north of Waukegan have been as high as 3 m/yr. (4) Eroding bluffs provide most of the sand to the nearshore zone; however, possibly due to construction of shore protection, the nearshore sand wedge has shown a dramatic decrease in volume during the last two decades. (5) Ice ridges as high as 7 m form along the lakeshore but do not effectively protect the beach from winter erosion as previously thought. (6) The Indiana Dunes National Lakeshore apparently was a major sink for sand moving southward along both sides of the lake; sediment input now appears to come mostly from the eastern shore.

  17. GREAT LAKES ENVIRONMENTAL PLANNING USING LIMNOLOGICAL SYSTEMS ANALYSIS: MODEL SPECIFICATIONS

    EPA Science Inventory

    The report documents the deliberate decision making process used by the Great Lakes Basin Commission in concluding that rational modeling methodologies could be used to evaluate the effect of different planning alternatives on the Great Lakes and that planning for specific proble...

  18. GREAT LAKES ENVIRONMENTAL PLANNING USING LIMNOLOGICAL SYSTEMS ANALYSIS: SUMMARY

    EPA Science Inventory

    The report documents the deliberate decision making process used by the Great Lakes Basin Commission in concluding that rational modeling methodologies could be used to evaluate the effect of different planning alternatives on the Great Lakes and that planning for specific proble...

  19. 75 FR 8728 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... (``Great Lakes Pilotage Ratemaking Methodology,'' 74 FR 35838), in accordance with requirements of 46 U.S.C... August 26, 2009 (74 FR 43148) and will be accepted until the position is filled. Procedural The meeting... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Notice...

  20. 78 FR 5474 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Docket... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage...

  1. 77 FR 24729 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Docket: For... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage...

  2. 78 FR 54264 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ..., issue of the Federal Register (73 FR 3316). Docket: For access to the docket to read documents or... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee management; notice of Federal Advisory Committee meeting. SUMMARY: The Great Lakes Pilotage...

  3. Relative cancer risks of chemical contaminants in the great lakes

    NASA Astrophysics Data System (ADS)

    Bro, Kenneth M.; Sonzogni, William C.; Hanson, Mark E.

    1987-08-01

    Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.

  4. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    USGS Publications Warehouse

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  5. GREAT LAKES REGIONAL ASSESSMENT: REPORT OF A WORKSHOP ON CLIMATE CHANGE IN THE UPPER GREAT LAKES REGION

    EPA Science Inventory

    The Upper Great Lakes workshop, sponsored by the U.S. Environmental Protection Agency (USEPA), was held at the University of Michigan in Ann Arbor, Michigan from 4-7 May 1998 to discuss some of the potential consequences of climate change in the Upper Great Lakes region (e.g., Mi...

  6. Land & Water Interactions in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The subject of this book is land and water interactions. Students examine how the Great Lakes were…

  7. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  8. Temporal evolution of (36)Cl abundances in the Great Lakes.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C

    2015-06-01

    The observed (36)Cl isotopic abundance in Great Lakes water decreases from west to east, with the highest (36)Cl/Cl ratio of 1332 × 10(-15) in Lake Superior and the lowest (36)Cl/Cl ratio of 151 × 10(-15) in Lake Erie, whereas the (36)Cl concentration ((36)Cl atoms/L) is lowest in Lake Superior and higher in the other Great Lakes. The (36)Cl concentration in Lake Superior is much higher than expected from normal atmospheric deposition over the basin, consistent with deposition of nuclear bomb-produced (36)Cl during 1952-1964. A conservative mass-balance model constrained by hydrological parameters and available (36)Cl fluence measurements predicts the (36)Cl abundances in the Great Lakes from 1945 to 2015, in excellent agreement with available data for Lakes Superior, Michigan, and Huron, but the model underestimates (36)Cl abundances for Lakes Erie and Ontario. However, assuming that (36)Cl demonstrates non-conservative behavior and is significantly retained in the drainage basins, a model incorporating a delayed input parameter successfully predicts observed (36)Cl concentrations in all of the Great Lakes. PMID:25817926

  9. A spatial classification and database for management, research, and policy making: The Great Lakes aquatic habitat framework

    USGS Publications Warehouse

    Wang, Lizhu; Riseng, Catherine M.; Mason, Lacey; Werhrly, Kevin; Rutherford, Edward; McKenna Jr, James E.; Castiglione, Chris; Johnson, Lucinda B.; Infante, Dana M.; Sowa, Scott P.; Robertson, Mike; Schaeffer, Jeff; Khoury, Mary; Gaiot, John; Hollenhurst, Tom; Brooks, Colin N.; Coscarelli, Mark

    2015-01-01

    Managing the world's largest and most complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that is comparable across the region. To meet such a need, we developed a spatial classification framework and database — Great Lakes Aquatic Habitat Framework (GLAHF). GLAHF consists of catchments, coastal terrestrial, coastal margin, nearshore, and offshore zones that encompass the entire Great Lakes Basin. The catchments captured in the database as river pour points or coastline segments are attributed with data known to influence physicochemical and biological characteristics of the lakes from the catchments. The coastal terrestrial zone consists of 30-m grid cells attributed with data from the terrestrial region that has direct connection with the lakes. The coastal margin and nearshore zones consist of 30-m grid cells attributed with data describing the coastline conditions, coastal human disturbances, and moderately to highly variable physicochemical and biological characteristics. The offshore zone consists of 1.8-km grid cells attributed with data that are spatially less variable compared with the other aquatic zones. These spatial classification zones and their associated data are nested within lake sub-basins and political boundaries and allow the synthesis of information from grid cells to classification zones, within and among political boundaries, lake sub-basins, Great Lakes, or within the entire Great Lakes Basin. This spatially structured database could help the development of basin-wide management plans, prioritize locations for funding and specific management actions, track protection and restoration progress, and conduct research for science-based decision making.

  10. Restoring the Great Lakes: DOI stories of success and partnership in implementing the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    U.S. Department of the Interior; U.S. Fish and Wildlife Service; National Park Service; U.S. Geological Survey; Bureau of Indian Affairs

    2013-01-01

    The Great Lakes are a monumentally unique national treasure containing nearly ninety-five percent of the United States' fresh surface water. Formed by receding glaciers, the Great Lakes support a thriving, resilient ecosystem rich with fish, wildlife, and abundant natural resources. The Great Lakes also support an array of commercial uses, including shipping, and provide a source of recreation, drinking water, and other critical services that drive the economy of the region and the Nation. Regrettably, activities such as clear cutting of mature forests, over-harvesting of fish populations, industrial pollution, invasive species, and agricultural runoffs have degraded these treasured lakes over the decades creating long-term impacts to the surrounding watershed. Fortunately, the people who live, work, and recreate in the region recognize the critical importance of a healthy Great Lakes ecosystem, and have come together to support comprehensive restoration. To stimulate and promote the goal of a healthy Great Lakes region, President Obama and Congress created the Great Lakes Restoration Initiative (GLRI) in 2009. This program provides the seed money to clean up legacy pollution, restore habitats, protect wildlife, combat invasive species, and address agricultural runoff in the Great Lakes watershed. At the same time GLRI promotes public outreach, education, accountability, and partnerships.

  11. EAARL coastal topography--North Shore, Lake Pontchartrain, Louisiana, 2010

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Barras, J.A.

    2012-01-01

    This DVD contains lidar-derived coastal topography GIS datasets of a portion of the north shore of Lake Pontchartrain, Louisiana. These datasets were acquired on February 28, March 1, and March 5, 2010.

  12. FISH ASSEMBLAGES AS INDICATORS OF LAKE SUPERIOR COASTAL WETLAND CONDITION

    EPA Science Inventory

    Fish assemblages associated with coastal wetlands in Lake Superior are poorly described. Understanding the environmental factors structuring the biota in these habitats is essential to developing robust indicators of their condition. To identify key environmental influences struc...

  13. NUTRITIONAL ECOLOGY OF GREAT LAKES 'CLADOPHORA GLOMERATA'

    EPA Science Inventory

    Various bioassays, primarily plant analysis, were utilized to evaluate relative nutrient supplies and primary growth limiting nutrients for Cladophora glomerata growth in parts of Green Bay, Lake Michigan, known to differ markedly in degree of pollution. Preliminary studies indic...

  14. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  15. HYDROGEOMORPHIC INFLUENCES ON MACROPHYTES AS HABITAT IN GREAT LAKES WETLANDS

    EPA Science Inventory

    We used rapid survey techniques to map saubmergerd, floating and emergent vegetation in 10 coastal wetlands of Lake Superior. Density and structure of plant beds in "bay," "main channel," and "side channel" areas was evaluated from cover indices and presence/dominance by growth f...

  16. REVIEW OF HISTORICAL AND RECENT MERCURY CONCENTRATIONS IN GREAT LAKES SEDIMENTS

    EPA Science Inventory

    Sediments of the Great Lakes have been impacted by inputs of mercury to the lakes. The first measurements of mercury concentrations in Great Lakes sediments were for samples collected in 1968 for Lake Ontario, 1969 for Lake Huron, 1969-70 for Lake Michigan, 1970 for Lake St. Cl...

  17. Nutrients in the Great Lakes. Teacher's Guide and Student Workbook.

    ERIC Educational Resources Information Center

    Brothers, Chris; And Others

    This teacher guide and student workbook set presents two learning activities, designed for fifth through ninth grade students, that concentrate on nutrients in the Great Lakes. In activity A, students simulate aquatic habitats using lake water and goldfish in glass jars and observe the effects of nutrient loading and nutrient limitation on aquatic…

  18. Fisheries Education: From the Great Lakes to the Sea.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Mayer, Victor J.

    1980-01-01

    Described are investigations related to fisheries education developed by the Ohio Sea Grant Education Office as a part of a series of Oceanic Education Activities for Great Lake Schools. The investigations discussed are "Yellow Perch in Lake Erie," which concerns fisheries management, and "It's Everyone's Sea: Or Is It," which focuses on fishing…

  19. Cyclopoid and harpacticoid copepods of the Laurentian Great Lakes

    USGS Publications Warehouse

    Hudson, Patrick L.; Reid, Janet W.; Lesko, Lynn T.; Selgeby, James H.

    1998-01-01

    Historical collections of cyclopoid and harpacticoid copepod crustaceans in the Great Lakes have mainly been based on samples taken with plankton nets in deeper waters (>5 m). Of the non-calanoid copepod species known from the Great Lakes, 58 or 64 live primarily on or in the sediments and rarely are collected in plankton samples. Because of their small size, they are rarely retained in the coarse sieves used to concentrate samples of benthic invertebrates. Thus, the abundance and distribution of most species of these two groups of copepods have never been adequately documented in the Great Lakes. We examined the stomach contents of small, bottom-feeding fishes such as slimy sculpin which feed on benthic copepods that live in deep, inaccessible rocky areas of the Great Lakes to collect some of the material. We also collected in shallow nearshore habitats, including wetlands. We present an annotated checklist of cyclopoid and harpacticoid copepods based on published records and our recent collections in the Great Lakes. We have added 14 species of cyclopoid copepods to the Great Lakes record, increasing the total to 30. Because we probably have accounted for most of the cyclopoid species, we provide a key to the identification of this group. We have added 19 species of harpacticoid copepods to the 15 previously known to the Great Lakes, and suspect that additional species remain to be discovered. In individual lakes, there were approximately as many species of cyclopoids as harpacticoids; the total number of species per lake ranged from 35 to 57. The most speciose genera were Bryocamptus (7), Canthocamptus (5), and Moraria (5) in the Harpacticoida, and Diacyclops (6) and Acanthocyclops (5) in the Cyclopoida. The origin of introduced species, our ability to classify copepod habitat, and the ecological significance of copepods are discussed.

  20. Draft Mercury Aquatic Wildlife Benchmarks for Great Salt Lake Assessment

    EPA Science Inventory

    This document describes the EPA Region 8's rationale for selecting aquatic wildlife dietary and tissue mercury benchmarks for use in interpreting available data collected from the Great Salt Lake and surrounding wetlands.

  1. Great Lakes Environmentalists Push for Zero Chemical Pollution.

    ERIC Educational Resources Information Center

    Heylin, Michael

    1991-01-01

    Described are the efforts of a coalition of several environmental organizations to influence federal legislation regarding water pollution in the Great Lakes region. Statements from regional legislators are included. (CW)

  2. Extent of Pleistocene lakes in the western Great Basin

    USGS Publications Warehouse

    Reheis, Marith C.

    1999-01-01

    During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased

  3. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  4. Species succession and fishery exploitation in the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1968-01-01

    The species composition of fish in the Great Lakes has undergone continual change since the earliest records. Some changes were caused by enrichment of the environment, but others primarily by an intensive and selective fishery for certain species. Major changes related to the fishery were less frequent before the late 1930's than in recent years and involved few species. Lake sturgeon (Acipenser fulvescens) were overexploited knowingly during the late 1800's because they interfered with fishing for preferred species; sturgeon were greatly reduced in all lakes by the early 1900's. Heavy exploitation accompanied sharp declines of lake herring (Leucichthys artedi) in Lake Erie during the 1920's and lake whitefish (Coregonus clupeaformis) in Lake Huron during the 1930's. A rapid succession of fish species in Lakes Huron, Michigan, and Superior that started about 1940 has been caused by selective predation by the sea lamprey (Petromyzon marinus) on native predatory species, and the resultant shifting emphasis of the fishery and species interaction as various species declined. Lake trout (Salvelinus namaycush) and burbot (Lota lota), the deepwater predators, were depleted first; this favored their prey, the chubs (Leucichthys spp.). The seven species of chubs were influenced differently according to differences in size. Fishing emphasis and predation by sea lampreys were selective for the largest species of chubs as lake trout and burbot declined. A single slow-growing chub, the bloater, was favored and increased, but as the large chubs declined the bloater was exploited by a new trawl fishery. The growth rate and size of the bloater increased, making it more vulnerable to conventional gillnet fishery and lamprey predation. This situation in Lakes Michigan and Huron favored the small alewife (Alosa pseudoharengus) which had recently become established in the upper Great Lakes, and the alewife increased rapidly and dominated the fish stocks of the lakes. The successive

  5. Assessment of differences in physical watershed characteristics between gaged and ungaged portions of the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Hunter, T. S.; Fry, L. M.; Gronewold, A. D.; Kult, J. M.

    2012-12-01

    Prediction of hydrologic response in ungaged basins often relies on regression relationships between physical watershed characteristics in gaged basins and either calibrated rainfall-runoff model parameters or model-independent hydrologic response indices (e.g. runoff, runoff ratio, baseflow index, etc.). Predictive skill using these types of modeling approaches may be compromised when watershed characteristics in the ungaged areas are substantially different from those in the gaged areas used to establish the regression relationships. In the case of the Great Lakes basin, regionalization may be complicated by characteristics unique to coastal regions. For example, coastal regions of the Great Lakes contain eight large urbanized metro areas (Milwaukee, Chicago, Detroit, Toledo, Cleveland, Windsor, Toronto, and Buffalo), unique coastal wetland areas, and distinctive meteorological conditions (e.g. lake effect snow). This research investigates the extent to which a set of physical watershed characteristics may vary between gaged (inland) and ungaged (coastal) portions of the Great Lakes basin and therefore complicate regionalization schemes. The work is conducted alongside development of a new regionalization scheme for simulating discharge to the Great Lakes.

  6. ASSESSING THE CONDITION OF FRESHWATER ECOSYSTEMS: THE GREAT LAKES AND GREAT RIVERS

    EPA Science Inventory

    The principal research objective is develop assessment methodology that can be used to report on the condition of the Great Rivers and Great Lakes that can be used for state's reporting conditions under Section 303(b) of the CWA. One component of Great River research will determ...

  7. An investigation of historical lake-atmosphere interactions in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Holman, Kathleen Danielle

    The Laurentian Great Lakes are a tremendous freshwater resource, holding approximately 20% of the world's unfrozen freshwater. With a combined surface area of 244,000 km2, the Great Lakes are constantly interacting with the overlying atmosphere through fluxes of heat, moisture, and momentum. In the current study, we explore interactions between the Great Lakes and overlying atmosphere using a combination of observational and modeling tools. Results based on historical observations indicate that over-lake precipitation from the Lake Superior watershed is associated with transient Rossby waves during each month of the year. Further analysis indicates the origin and path of these waves change with the background flow. During summer and early fall, the Pacific jet is relatively sharp and acts as a waveguide, such that Rossby wave trains traversing the Great Lakes region do not follow a great-circle path. While the atmosphere primarily dictates hydrology in the Great Lakes basin, each of the Great Lakes feeds back on the overlying atmosphere, ultimately influencing the local and regional climate. Historical observational and modeling studies support this claim; however, a consistent, long-term analysis of the impacts of the Great Lakes on climate has yet to be executed. In the current analysis, the influence of the Great Lakes on climate is assessed by comparing two decade-long regional climate simulations, with the lakes present or replaced by woodland. Model results indicate the Great Lakes dampen seasonal and daily surface air temperature ranges, alter the strength and track of synoptic systems, and modify atmospheric stability. Additional analysis based on output from the regional climate model indicates that seasonal fluctuations in atmospheric stability over Lake Superior influence the ratio of over-lake to over-land precipitation. Since the current operational technique used to estimate over-lake precipitation does not account for variations in atmospheric

  8. Influence of the Laurentian Great Lakes on Regional Climate

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S. J.; Bennington, V.

    2012-12-01

    The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region, while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October-March and decreases during May-August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea-level pressure in autumn-winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.

  9. Federal Great Lakes fishery research objectives, priorities, and projects

    USGS Publications Warehouse

    Tait, Howard D.

    1973-01-01

    Fishery productivity of the Great Lakes has declined drastically since settlement of the area. Premium quality fishes of the Great Lakes such as whitefish, lake trout, and walleyes have been replaced by less desired species. This change is attributed to selective overfishing, pollution, and the extreme instability of fish populations. Sea lamprey predation is still a vexing problem but progress is being made in controlling this parasite. The federal fishery research program with headquarters in Ann Arbor, Michigan, has the objective of providing baseline information, needed in resource use decisions, about the fishes of the Great Lakes. Studies of the habitat requirements of fish are high priority. The program includes fish population assessments, studies of the effects of mercury and other contaminants on fish, thermal effects studies, and general investigation of the impact of engineering projects on Great Lakes fisheries. The work is closely coordinated with state and Canadian agencies through the Great Lakes Fishery Commission. Four small research vessels and four field stations are utilized with a staff of 90 and an annual budget of about $1.5 million.

  10. Functional convergence among pelagic sculpins of Lake Baikal and deepwater ciscoes of the Great Lakes

    USGS Publications Warehouse

    Eshenroder, Randy L.; Sideleva, Valentina G.; Todd, Thomas N.

    1999-01-01

    The vast, well-oxygenated hypolimnia of Lake Baikal and the Great Lakes were both dominated by endemic planktivorous fishes. These dominants, two species of sculpins (Comephorus, Comephoridae) in Lake Baikal and six species of deepwater ciscoes (Coregonus, Salmonidae) in the Great Lakes, although distant taxonomically, have morphologies suggesting a surprising degree of functional convergence. Here it is proposed that the same two buoyancy-regulation strategies observed in Baikal sculpins also arose in the deepwater ciscoes of the Great Lakes. One strategy favors hydrostatic lift (generated by low specific gravity) and is characterized by fatter, larger-bodied fish with smaller paired fins; the second strategy favors hydrodynamic lift (generated by swimming) and is characterized by leaner, smaller-bodied fish with larger paired fins. Both types likely evolved to feed on a single species of ecologically analogous, vertically migrating macrozooplankter: Macrohectopus branickii in Lake Baikal and Mysis relicta in the Great Lakes. It is suggested that Coregonus did not diversify and proliferate in Lake Baikal as they did in the Great Lakes because by the time Coregonus colonized Lake Baikal, pelagic sculpins were already dominant.

  11. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  12. Risks and Benefits of Consumption of Great Lakes Fish

    PubMed Central

    Bhavsar, Satyendra P.; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O.

    2011-01-01

    Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed. PMID

  13. Fog Plumes over the Great Lakes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A southerly flow of unseasonably warm, moist air (temperatures of +20o to +26o C, dew points of +14o to +16o C) over the relatively cool (generally +2o to +5o C ) water of Lake Michigan and Lake Huron contributed to the development of large advection fog plumes (caused by the horizontal motion of air) during the day on April 16, 2002. These fog plumes moved northward during the day, eventually interacting with various land features to produce patterns of wave diffraction and packets of reflected waves (resembling 'shock waves') as the fog plumes impinged upon the rugged coastline of Wisconsin, the Upper Peninsula of Michigan, and Ontario. These waves remained trapped within the strong marine layer temperature inversion which was sustained by the continued flow of warm air across the cool water surface. The above image was acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite. Red = .645um (red), green = 1.627um, (shortwave infrared), blue = 2.13um (shortwave infrared). Image courtesy Space Science and Engineering Center, University of Wisconsin

  14. CO2-Induced Acidification of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    McKinley, G. A.; Phillips, J.; Bennington, V.; Bootsma, H. A.; Pilcher, D.; Sterner, R.; Urban, N. R.

    2013-12-01

    A number of studies indicate that air-water equilibration is the dominant control on pCO2 in several Great Lakes at annual timescales or longer. Assuming this is the case across all lakes at present and into the future, we show that pH will decline by 0.3-0.4 units through 2100 under a business-as-usual CO2 emission scenario. In a survey of the Great Lakes scientific community, 87% of respondents indicate that CO2-driven acidification is likely. The available pH data do not support these predicted trends, but limited sampling in an environment characterized by significant spatio-temporal variability, as well as significant measurement uncertainty, cast doubt on the ability of the historical pH record to resolve the predicted trends. Evaluation of the current sampling strategy using eddy-resolving numerical models of Lake Superior and Lake Michigan are key evidence that the current monitoring strategy is inadequate. In order to track long-term pH change and assess whether atmospheric CO2 will affect the Great Lakes like the oceans, a new approach to Great Lakes pH monitoring is required. Ecological impacts of CO2 acidification have not been studied for the Great Lakes, but potential effects can be gleaned from the literature. In addition, our qualitative and quantitative survey results suggest that processes such as fish recruitment, dreissenid mussel growth, and nutrient cycling may be sensitive to pH, but there is lack of consensus about the magnitude and overall significance of these effects.

  15. The Dynamics of Laurentian Great Lakes Surface Energy Budgets

    NASA Astrophysics Data System (ADS)

    Spence, C.; Blanken, P.; Lenters, J. D.; Gronewold, A.; Kerkez, B.; Xue, P.; Froelich, N.

    2015-12-01

    The Laurentian Great Lakes constitute the largest freshwater surface in the world and are a valuable North American natural and socio-economic resource. In response to calls for improved monitoring and research on the energy and water budgets of the lakes, there has been a growing ensemble of in situ measurements - including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms -deployed through an ongoing, bi-national collaboration known as the Great Lakes Evaporation Network (GLEN). The objective of GLEN is to reduce uncertainty in Great Lakes seasonal and 6-month water level forecasts, as well as climate change projections of the surface energy balance and water level fluctuations. Although It remains challenging to quantify and scale energy budgets and fluxes over such large water bodies, this presentation will report on recent successes in three areas: First, in estimating evaporation rates over each of the Great Lakes; Second, defining evaporation variability among the lakes, especially in winter and; Third, explaining the interaction between ice cover, water temperature, and evaporation across a variety of temporal and spatial scales. Research gaps remain, particularly those related to spatial variability and scaling of turbulent fluxes, so the presentation will also describe how this will be addressed with enhanced instrument and platform arrays.

  16. DEVELOPMENT OF NUTRIENT EXPOSURE AND BIOLOGICAL RESPONSE INDICATORS FOR LAKE MICHIGAN COASTAL WETLANDS

    EPA Science Inventory

    This study examines how landscape-scale gradient affect sedimentation rates, nutrient exposure, and biological responses in Lake Michigan coastal wetlands, and assess indicators for these trends. Twenty riverine coastal wetlands in Lake Michigan (Herdendorf 1981) were selected t...

  17. Portion of the Great Lakes area as seen from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An oblique view of a portion of the Great Lakes (43.0N, 70.0W) area as seen from the Skylab space station in Earth orbit. lake Erie is in the foreground; and Lake Ontario is in the background. The Niagara Falls area is in the center of the photograph. Portions of Pennsylvania, New York, and Ontario, Canada are visible, but under nearly complete snow cover. Major structural features, drainage patterns, road systems and the cities of Buffalo and Toronto are easily distinguished and actually enhanced by the snow. At the time this picture was taken, these two Great Lakes had no observable ice, although cloud formations partially mask the southern shores of the two bodies of water.

  18. Thiamine concentrations in lake whitefish eggs from the upper Great Lakes are related to maternal diet

    USGS Publications Warehouse

    Riley, S.C.; Rinchard, J.; Ebener, M.P.; Tillitt, D.E.; Munkittrick, K.R.; Parrott, J.L.; Allen, J.D.

    2011-01-01

    Thiamine deficiency is responsible for reproductive impairment in several species of salmonines in the Great lakes, and is thought to be caused by the consumption of prey containing thiaminase, a thiamine-degrading enzyme. Because thiaminase levels are extremely high in dreissenid mussels, fish that prey on them may be susceptible to thiamine deficiency. We determined thiamine concentrations in lake whitefish Coregonus clupeaformis eggs from the upper Laurentian Great Lakes to assess the potential for thiamine deficiency and to determine if thiamine concentrations in lake whitefish eggs were related to maternal diet. Mean thiamine concentrations in lake whitefish eggs were highest in Lake Huron, intermediate in Lake Superior, and lowest in Lake Michigan. Some fish had thiamine concentrations below putative thresholds for lethal and sublethal effects in salmonines, suggesting that some larval lake whitefish may currently be at risk of at least sublethal effects of low thiamine concentrations, although thiamine thresholds are unknown for lake whitefish. Egg thiamine concentrations in lake whitefish eggs were statistically significantly related to isotopic carbon signatures, suggesting that egg thiamine levels were related to maternal diet, but low egg thiamine concentrations did not appear to be associated with a diet of dreissenids. Egg thiamine concentrations were not statistically significantly related to multifunction oxidase induction, suggesting that lower egg thiamine concentrations in lake whitefish were not related to contaminant exposure.

  19. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  20. Development of an Integrated Assessment of Great Lakes Using Towed in situ Sensor Technologies: Linking Nearshore Conditions with Adjacent Watersheds

    EPA Science Inventory

    Coastal and nearshore regions of the US/Canadian Great Lakes have not been included in monitoring efforts in any regular, consistent, or comprehensive fashion. To address this need, we have been developing a survey strategy using towed in situ sensors to provide spatially-compreh...

  1. Historical land cover changes in the Great Lakes Region

    USGS Publications Warehouse

    Cole, K.L.; Davis, M.B.; Stearns, F.; Guntenspergen, G.; Walker, K.

    1999-01-01

    Two different methods of reconstructing historical vegetation change, drawing on General Land Office (GLO) surveys and fossil pollen deposits, are demonstrated by using data from the Great Lakes region. Both types of data are incorporated into landscape-scale analyses and presented through geographic information systems. Results from the two methods reinforce each other and allow reconstructions of past landscapes at different time scales. Changes to forests of the Great Lakes region during the last 150 years were far greater than the changes recorded over the preceding 1,000 years. Over the last 150 years, the total amount of forested land in the Great Lakes region declined by over 40%, and much of the remaining forest was converted to early successional forest types as a result of extensive logging. These results demonstrate the utility of using GLO survey data in conjunction with other data sources to reconstruct a generalized 'presettlement' condition and assess changes in landcover.

  2. Reaching Regional and Local Learners via a Great Lakes MOOC

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  3. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  4. An operational all-weather Great Lakes ice information system

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1975-01-01

    A description is given of the NASA developed all-weather ice information system for the Great Lakes winter navigation program. The system utilizes an X-band side looking airborne radar (SLAR) for determining type, location, and areal distribution of the ice cover in the Great Lakes and an airborne, S band, down looking short pulse radar for obtaining ice thickness. Digitized SLAR data are relayed in real time via the NOAA-GOES satellite in geosynchronous orbit. The SLAR images along with hand drawn interpretative ice charts for various Great Lakes winter shipping areas are broadcast to facsimile recorders aboard vessles is the area via the MARAD marine VHF-FM radio network. These data assist such vessels in navigating both through and around the ice.

  5. Great Lakes fish consumption and reproductive outcomes

    SciTech Connect

    Dar, E.

    1989-01-01

    This epidemiological investigation determined prenatal exposure to polychlorinated biphenyls (PCBs), through contaminated fish consumption, and ascertained reproductive outcomes. Green Bay, Wisconsin was chosen as the study site because it was known for its environmental contamination of PCBs. These chemicals are environmentally stable and persistent, and tend to bioaccumulate up the food chain, with highest levels found in predatory sport fish from Lake Michigan. The Green Bay area provided a population with potential PCB exposure from sport fish consumption. Accidental poisoning incidents showed detrimental reproductive effects of high dose PCB exposures. A Michigan study found significant effects on birth weight and gestational age when mothers consumed two sport fish meals per month. This study population was drawn from women during their first prenatal visit at two Green Bay clinics during a one year period. 1,112 participants completed a self-administered questionnaire. Maternal and cord blood samples were obtained for selected PCB serum analyses. Reproductive outcome measures were abstracted from hospital labor reports. Study results indicated that maternal consumption was correlated to maternal PCB serum levels. Regression techniques estimated significant exposure coefficients for subsets of two birth size parameters. Birth length was positively associated with PCB exposure in shorter mothers. Significant associations of PCB exposure and birth weight percentiles were estimated for two income groups in the urban residence/weight gain less than 34 pounds subset.

  6. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a)...

  7. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a)...

  8. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a)...

  9. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a)...

  10. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a)...

  11. Contaminant trends in lake trout (Salvelinus namaycush) of the upper Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Willford, Wayne A.; Hesselberg, Robert J.

    1985-01-01

    Contaminant body burdens in lake trout from the Upper Great Lakes have been monitored since 1970 on Lake Michigan and since 1977 and 1978 on Lakes Superior and Huron by USEPA, Great Lakes National Program Office and USFWS, Great Lakes Fishery Laboratory. Analysis of the Lake Michigan data shows that mean PCB concentrations declined from a maximum of 22.91 mg/kg in 1974 to 5.63 in 1982. Mean total DDT concentrations declined from 19.19 mg/kg in 1970 to 2.74 mg/kg in 1982. The decline in both contaminants closely followed first order loss kinetics. If the current decline continues, PCB concentrations will decline to the USFDA tolerance of 2.0 mg/kg in 1988. Mean total DDT concentrations will fall to the IJC objective of 1.0 mg/kg by 1991. Mean dieldrin concentrations increased significantly from 0.20 mg/kg in 1971 to 0.58 mg/kg in 1979 before declining to 0.21 mg/kg in 1982. The decline from 1979-1982 followed first order loss kinetics. As this decline is not reflected in other species (bloater chubs, smelt) it will require additional years of monitoring to determine if the decline in dieldrin concentrations between 1979 and 1982 truly represents a declining trend. Contaminants in lake trout from Lake Superior and Lake Huron generally declined over the study period. The only statistically significant trend other than in Lake Michigan was for total DDT which declined significantly in Lake Superior lake trout. Large data variance and the short time frame covered (1977-1982) interfered with detection of trends on Lakes Superior and Huron.

  12. Quantitative interpretation of Great Lakes remote sensing data

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  13. Implications of thiamine deficiency in Great Lakes salmonines

    USGS Publications Warehouse

    Brown, S.B.; Fitzsimons, J.D.; Honeyfield, D.C.; Tillitt, D.E.

    2005-01-01

    Our recent experimental work and ecoepizootiological assessments provide mechanistic data supporting a plausible hypothesis for an association between a prey base comprised of a large biomass of nonnative alewives Alosa pseudoharengus and the recruitment difficulties currently experienced by Great Lakes salmonines. We hypothesize that the thiamine deficiency induced by alewives, a species harboring high thiaminase activity, represents an ongoing cause of fry and adult mortality in salmonines. Overall ramifications of the thiamine deficiency on recruitment have not been firmly established but may represent a substantial bottleneck for natural recruitment in feral salmonine populations in the Great Lakes. ?? Copyright by the American Fisheries Society 2005.

  14. Total organochlorine content of fish from the Great Lakes

    SciTech Connect

    Newsome, W.H.; Andrews, P.; Conacher, H.B.; Rao, R.R.; Chatt, A. )

    1993-07-01

    Residues of polychlorinated biphenyls (PCBs) and organochlorine pesticides were determined in several species of commercial fish from the Great Lakes and compared to the total organic chlorine determined by neutron activation analysis. The mean organochlorine contents ranged from 44 to 138 ppm (lipid basis) and were 5 to 72 times higher than the contents of PCBs and organochlorine pesticides. Marine fish also contained a large proportion of unidentified organic chlorine. The unknown material in the Great Lakes fish was found to chromatograph with the high molecular weight lipid fraction by gel permeation chromatography.

  15. Reservoir Computing approach to Great Lakes water level forecasting

    NASA Astrophysics Data System (ADS)

    Coulibaly, Paulin

    2010-02-01

    SummaryThe use of echo state network (ESN) for dynamical system modeling is known as Reservoir Computing and has been shown to be effective for a number of applications, including signal processing, learning grammatical structure, time series prediction and motor/system control. However, the performance of Reservoir Computing approach on hydrological time series remains largely unexplored. This study investigates the potential of ESN or Reservoir Computing for long-term prediction of lake water levels. Great Lakes water levels from 1918 to 2005 are used to develop and evaluate the ESN models. The forecast performance of the ESN-based models is compared with the results obtained from two benchmark models, the conventional recurrent neural network (RNN) and the Bayesian neural network (BNN). The test results indicate a strong ability of ESN models to provide improved lake level forecasts up to 10-month ahead - suggesting that the inherent structure and innovative learning approach of the ESN is suitable for hydrological time series modeling. Another particular advantage of ESN learning approach is that it simplifies the network training complexity and avoids the limitations inherent to the gradient descent optimization method. Overall, it is shown that the ESN can be a good alternative method for improved lake level forecasting, performing better than both the RNN and the BNN on the four selected Great Lakes time series, namely, the Lakes Erie, Huron-Michigan, Ontario, and Superior.

  16. Status of coregonine fishes in the Laurentian Great Lakes

    USGS Publications Warehouse

    Fleischer, Guy W.

    1992-01-01

    The post-glacial coregonine assemblage in the Great Lakes included several species of the genera Prosopium and Coregonus. Overfishing, habitat degradation, and competition with various exotic fish species severely reduced coregonine abundance and altered their distribution by the mid to latter part of the 20th century. Most of the original Coregonus species, some which were endemic to the Great Lakes, are now extinct or are extremely rare. The prevailing coregonines are mostly benthic and deep-water species, contrasted to the original assemblage dominated by pelagic, nearshore species. Lake whitefish (Coregonus clupeaformis) populations have recovered and now support record fisheries in Lakes Superior, Michigan, and Huron. Bloaters (C. hoyi) have recovered to dominate the planktivorous fish community in Lake Michigan and are rapidly increasing in Lake Huron. The recent resurgence in some coregonine populations are linked to declines in exotic fish populations and favorable climatic changes. The reduced diversity of the coregonines may explain the dominance of the remaining species. The stability of this simplified coregonine community is uncertain but the existing coregonines have demonstrated resiliency.

  17. Reconstructing paleo lake levels from relict shorelines along the Upper Great Lakes

    USGS Publications Warehouse

    Baedke, Steve J.; Thompson, Todd A.; Johnston, John W.; Wilcox, Douglas A.

    2004-01-01

    Shorelines of the upper Great Lakes include many embayments that contain strandplains of beach ridges. These former shoreline positions of the lakes can be used to determine changes in the elevation of the lakes through time, and they also provide information on the warping of the ground surface that is occurring in the Great Lakes after the weight of glacial ice was removed. Relative lake-level hydrographs can be created by coring the beach ridges to determine the elevation of basal foreshore (swash zone) deposits in each ridge and by obtaining radiocarbon dates of basal wetland sediments between ridges to generate an age model for the ridges. Because the relative-level hydrographs are the combination of lake-level change and vertical ground movement (isostatic rebound), the rebound must be removed to produce a graph that shows only the physical limits and timing of past lake-level fluctuations referenced to a common outlet. More than 500 vibracores of beach-ridge sediments were collected at five sites along Lake Michigan and four sites along Lake Superior. The cores showed a sequence of dune deposits overlying foreshore deposits that, in turn, overlie upper shoreface deposits. The base of the foreshore deposits is coarser and more poorly sorted than an overlying and underlying sediment and represents the plunge-point sediments at the base of the swash zone. The plunge-point deposits are a close approximation of the elevation of the lake when the beach ridge formed. More than 150 radiocarbon ages of basal wetland sediments were collected to produce age models for the sites. Currently, age models exist for all Lake Michigan sites and one Lake Superior site. By combining the elevation data with the age models, six relative lake-level hydrographs were created for the upper Great Lakes. An iterative approach was used to remove rebound from the five Lake Michigan relative hydrographs and merge the graphs into a single hydrograph. The resultant hydrograph shows long

  18. Use of egg traps to investigate lake trout spawning in the Great Lakes

    USGS Publications Warehouse

    Schreiner, Donald R.; Bronte, Charles R.; Payne, N. Robert; Fitzsimons, John D.; Casselman, John M.

    1995-01-01

    Disk-shaped traps were used to examine egg deposition by lake trout (Salvelinus namaycush) at 29 sites in the Great Lakes. The main objectives were to; first, evaluate the disk trap as a device for sampling lake trout eggs in the Great Lakes, and second, summarize what has been learned about lake trout spawning through the use of disk traps. Of the 5,085 traps set, 60% were classified as functional when retrieved. Evidence of lake trout egg deposition was documented in each of the lakes studied at 14 of 29 sites. A total of 1,147 eggs were trapped. The percentage of traps functioning and catch per effort were compared among sites based on depth, timing of egg deposition, distance from shore, size of reef, and type of reef (artificial or natural). Most eggs were caught on small, shallow, protected reefs that were close to shore. Use of disk traps on large, shallow, unprotected offshore reefs or along unprotected shorelines was generally unsuccessful due to the effects of heavy wind and wave action. Making multiple lifts at short intervals, and retrieval before and re-deployment after storms are recommended for use in exposed areas. On large reefs, preliminary surveys to identify preferred lake trout spawning habitat may be required to deploy disk traps most effectively. Egg deposition by hatchery-reared fish was widespread throughout the Great Lakes, and the use of artificial structures by these fish was extensive.

  19. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  20. Evidence for early hunters beneath the Great Lakes

    PubMed Central

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron. PMID:19506245

  1. Forecasting Lake-Effect Precipitation in the Great Lakes Region Using NASA Enhanced-Satellite Data

    NASA Technical Reports Server (NTRS)

    Cipullo, Michelle; Molthan, Andrew; Shafer, Jackie; Case, Jonathan; Jedlovec, Gary

    2011-01-01

    Lake-effect precipitation is common in the Great Lakes region, particularly during the late fall and winter. The synoptic processes of lake-effect precipitation are well understood by operational forecasters, but individual forecast events still present a challenge. Locally run, high resolution models can assist the forecaster in identifying the onset and duration of precipitation, but model results are sensitive to initial conditions, particularly the assumed surface temperature of the Great Lakes. The NASA Short-term Prediction Research and Transition (SPoRT) Center has created a Great Lakes Surface Temperature (GLST) composite, which uses infrared estimates of water temperatures obtained from the MODIS instrument aboard the Aqua and Terra satellites, other coarser resolution infrared data when MODIS is not available, and ice cover maps produced by the NOAA Great Lakes Environmental Research Lab (GLERL). This product has been implemented into the Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS), used within forecast offices to run local, high resolution forecasts. The sensitivity of the model forecast to the GLST product was analyzed with a case study of the Lake Effect Storm Echinacea, which produced 10 to 12 inches of snowfall downwind of Lake Erie, and 8 to 18 inches downwind of Lake Ontario from 27-29 January 2010. This research compares a forecast using the default Great Lakes surface temperatures from the Real Time Global sea surface temperature (RTG SST), in the WRF-EMS model to the enhanced NASA SPoRT GLST product to study forecast impacts. Results from this case study show that the SPoRT GLST contained less ice cover over Lake Erie and generally cooler water temperatures over Lakes Erie and Ontario. Latent and sensible heat fluxes over Lake Ontario were decreased in the GLST product. The GLST product decreased the quantitative precipitation forecast (QPF), which can be correlated to the decrease in temperatures and heat

  2. First record of Daphnia lumholtzi Sars in the Great Lakes

    USGS Publications Warehouse

    Muzinic, Christopher J.

    2000-01-01

    Adults of the cladoceran Daphnia lumholtzi, native to Australia, Africa, and parts of Asia, were first collected in August 1999 in Lake Erie. Individuals were collected near East Harbor State Park, Lakeside, Ohio from vertical plankton net tows. The average number of D. lumholtzi that were found (0.03/L) indicate that D. lumholtzi is beginning to establish itself in Lake Erie. The morphology of this Daphnia differs greatly from native species because of its elongated head and tail spine. This sighting is important because it acknowledges yet another exotic invader into the Great Lakes basin and it also shows that this, normally, warm water species continues to expand its range northward.

  3. Area contingency plan western lake Superior Coastal zone. (COTP Duluth)

    SciTech Connect

    1995-02-15

    The Area Contingency Plan, mandated under the Oil Pollution Act, was developed by the Western Lake Superior Area Committee, which is chaired by the Coast Guard and consists of local, state, federal, and private members. The plan prepares in advance for an oil or hazardous substance spill in the COTP Duluth Coastal Zone.

  4. A thermal scanning study of coastal upwelling in Lake Superior

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Green, T., III; Madding, R. P.

    1979-01-01

    The use of a thermal scanner to monitor the time evolution of the thermal structure of the coastal waters in Lake Superior during an upwelling event is described. Mosaics of thermal imagery from ten different times are described. Qualitative descriptions of the imagery give insight into the upwelling event. Recommendations for future use of a thermal scanner to monitor an upwelling event are discussed.

  5. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    EPA Science Inventory

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  6. A LANDSCAPE ECOLOGY ANALYSIS OF THE GREAT LAKES BASIN

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Natural Resources Canada: Canada Centre for Remote Sensing (CCRS) are conducting a cooperative research landscape ecological study of the Great Lakes Basin. The analyses will include the areas located along the border of the Unit...

  7. A REGIONAL ECOLOGICAL ANALYSIS OF THE GREAT LAKES BASIN

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Natural Resources Canada: Canada Centre for Remote Sensing (CCRS) are conducting a cooperative research landscape ecological study of the Great Lakes Basin. The analyses will include the areas located along the border of the Unit...

  8. Repeated Measures of Students' Marine and Great Lakes Awareness.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Mayer, Victor J.

    1991-01-01

    Describes a longitudinal statewide study of Ohio fifth and ninth graders' knowledge about and attitude toward the oceans and Great Lakes. Results indicate a knowledge score increase except for humanities items. Among science items, earth science topics showed the greatest deficiencies, and oceanic attitudes declined over the period. (15…

  9. Conceptual Model for Selenium Cycling in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Conover, M. R.; Wurtsbaugh, W. A.; Adams, J.

    2006-12-01

    The conceptual model for Selenium cycling in the Great Salt Lake was developed to guide investigations in support of determining an open water selenium standard for the Great Salt Lake. The motivation to determine this particular selenium standard derives from public concern for a plan to allow disposal of reverse osmosis (RO) concentrate in the GSL, which would contain elevated concentrations of major and trace elements, including selenium. The development of an open water standard for selenium requires a working knowledge of the biological significance of existing selenium concentrations in the Great Salt Lake, as well as a working understanding of the likely changes of these concentrations over time given existing and proposed loads to the system. This working knowledge" is being represented in a conceptual model that accounts for selenium in various stocks" in the system (e.g. water, sediment, biota) and the flow" of selenium between stocks (e.g., precipitation and settling, volatilization, bioconcentration). It illustrates the critical pathway of selenium in the Great Salt Lake from water, to microorganisms, to brine shrimp and brine flies, to birds, and to their eggs. It also addresses the complexity of the GSL system: a) Spatially diverse, being comprised by four distinct bays and two layers, with major differences in salinity among their waters. b) Temporally dynamic, due to seasonal and inter-annual variations in runoff. The conceptual model is presently descriptive, but will serve as the basis for a semi-quantitative model that will be fed by data accumulated during subsequent investigations.

  10. Allocating Great Lakes forage bases in response to multiple demand

    USGS Publications Warehouse

    Brown, Edward H., Jr.; Busiahn, Thomas R.; Jones, Michael L.; Argyle, Ray L.

    1999-01-01

    Forage base allocation, which has become an important issue because of major changes in the fish communities and fisheries of the Great Lakes since the 1950s is examined and documented in this chapter. Management initiatives that were used to address the issue, and supporting research and development that provided new or improved methods of field sampling and analysis are also highlighted.