Sample records for great meteor seamount

  1. The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences

    NASA Astrophysics Data System (ADS)

    Ribeiro, Luisa Pinto; Martins, Sofia; Hildenbrand, Anthony; Madureira, Pedro; Mata, João

    2017-12-01

    New geochemical, isotopic (Sr-Nd-Hf-Pb) and K-Ar data, are presented here on samples from the Southern Azores Seamount Chain (SASC) located south of the Azores Plateau. The SASC also includes the Great Meteor, Small Meteor and Closs seamounts, morphologically connected by a saddle at - 4100 m deep. We conclude that the SASC are characterized by a narrow isotopic variability that falls within the Azores isotopic field. Although each seamount has its own isotopic signature, their mantle source must comprise four local mantle end-members, three of which are common to the Azores, e.g. Plato isotopic signature results from the mixing between HIMU and N-MORB while Great Meteor signature results from this mix with the Azores Common Component (AzCC). A fourth end-member with high 208Pb/204Pb and decoupled Th/U ratios (Δ8/4 up to 59.2) is identified on Great Meteor northern flank. New K-Ar ages on Plato (33.4 ± 0.5 Ma) and Small Hyeres (31.6 ± 0.4 Ma) show nearly coeval volcanism, which is contemporaneous with the E-MORBs erupted at the MAR, drilled on oceanic crust with 30-34 Ma (DSDP82). This study endorses the genetic link between the Azores Archipelago and the SASC to the long-term activity of the Azores plume and the large-scale ridge-hotspot interaction, contributing to better constrain the temporal-spatial evolution of this region of the North Atlantic.

  2. BIOMETORE Project - Studying the Biodiversity in the Northeastern Atlantic Seamounts

    NASA Astrophysics Data System (ADS)

    Dos Santos, A.; Biscoito, M.; Campos, A.; Tuaty Guerra, M.; Meneses, G.; Santos, A. M. P. A.

    2016-02-01

    Understanding the deep-sea ecosystem functioning is a key issue in the study of ocean sciences. Bringing together researchers from several scientific domains, the BIOMETORE project aims to the increase knowledge on deep-sea ecosystems and biodiversity at the Atlantic seamounts of the Madeira-Tore and Great Meteor geological complexes. The project outputs will provide important information for the understanding and sustainable management of the target seamount ecosystems, thus contributing to fulfill knowledge gaps on their biodiversity, from bacteria to mammals, and food webs, as well as to promote future sustainable fisheries and sea-floor integrity. The plan includes the realization of eight multidisciplinary surveys, four done during the summer of 2015 and another four planned for the same season of 2016, in target seamounts: the Gorringe bank, the Josephine, and others in the Madeira-Tore, and selected ones in the Greta Meteor (northeastern Atlantic Ocean). The surveys cover a number of scientific areas in the domains of oceanography, ecology, integrative taxonomy, geology, fisheries and spatial mapping. We present and discuss BIOMETORE developments, the preliminary results from the four 2015 summer surveys, and the planning of the next four surveys.

  3. The Azores plume influence on the SASC-Great Meteor and MAR: the importance for the Portuguese Extension of the Continental Shelf Project (PECSP)

    NASA Astrophysics Data System (ADS)

    Ribeiro, Luisa P.; Madureira, Pedro; Hildenbrand, Anthony; Martins, Sofia; Mata, João

    2017-04-01

    The Southern Azores Seamount Chain (SASC) is a group of large seamounts located south of the Azores Plateau and east of the Mid-Atlantic Ridge (MAR) and part of the natural prolongation of the Azores land mass. The SASC, including the Great Meteor Seamount (aprox. 1000km south of São Miguel), is rooted on a flat, gently SE dipping Terrace, surrounded by steep scarps with almost 2000 m high. Only a few studies from the 70-80's discuss the geologic and/or geodynamic evolution of this region based on scarce bathymetry and geophysical data. Wendt et al. (1976) presented geochemical data and K-Ar ages on three basalt from the Great Meteor Seamount (<16Ma old), later analyzed for Sr-Nd-Pb isotopes by Geldmacher et al. (2006). Given the rarity of geochemical data, the origin of the seamounts and the regional evolution of this large area of the Atlantic, remains largely unknown. During the preparatory work of the PECSP, the EMEPC promoted three oceanographic campaigns to the SASC (2007, 2008 and 2009) with multidisciplinary teams. Within these cruises, more than 120 samples were dredged or collected with the Luso ROV (rated to 6000m depth) although less than 50 were suitable for major and trace elements analysis, for Sr-Nd-Pb-Hf isotopes and for K-Ar radiometric dating. Early studies relating the SASC with the New England Seamounts can be refuted by geophysical data and kinematic models presented by Gente et al. (2003) and, also by our new isotopic data, which shows that isotope ratios are clearly distinct from New England (Ribeiro et al., in prep). However, the analyzed SASC basalts display isotope ratios that overlap the Azores isotopic signature. Two new K-Ar ages (unspiked Cassignol-Gillot technique on fresh separated groundmass and/or plagioclase microlites) on the seamounts show coeval volcanism at Plato Seamount SE flank (33.4±0.5 Ma) an at Small Hyeres Seamount (31.7±0.5Ma). The SASC basalts erupted on the Terrace through an oceanic crust with 26Ma and 43Ma

  4. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  5. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    PubMed

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Four years of meteor spectra patrol

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1974-01-01

    The development of the NASA-Langley Research Center meteor spectra patrol is described in general terms. The recording of very faint meteors was made possible by three great strides in optical and photographic technology in the 1960's: (1) the availability of optical-grade fused silica at modest cost, (2) the development of large transmission gratings with high blaze efficiency, and (3) the development of a method for avoiding plate fogging due to background skylight, which consisted of using a photoelectric meteor detector which actuates the spectrograph shutter when a meteor occurs in the field. The classification scheme for meteor spectra developed by Peter M. Millman is described.

  7. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  8. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  9. The makings of meteor astronomy: part VII.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1994-08-01

    The idea that meteors might be some form of "electrical manifestation" was a popular one for several decades near the end of the 18th century. The great fireball of August 18, 1783, prompted one researcher, Charles Blagden, to develop a detailed empirical model which described all manner of meteoric phenomena.

  10. Meteor Beliefs Project: Musical Meteors, meteoric imagery as used in near-contemporary song lyrics

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2010-01-01

    Items collected from contemporary song lyrics featuring meteoric imagery, or inspired by meteors, are given, with some discussion. While not a major part of the Meteor Beliefs Project, there are points of interest in how such usage may become passed into popular beliefs about meteors.

  11. High-Resolution Geomorphometry of Seamounts of the Young Walvis Ridge Guyot Province

    NASA Astrophysics Data System (ADS)

    Schnur, S. R.; Koppers, A. A.

    2012-12-01

    In February and March 2012, cruise MV1203 surveyed and dredged seamounts at the young end of the Walvis Ridge hotspot trail in the South Atlantic. The scientific goals were to better understand the hotspot origins of the Walvis Ridge by collecting rock samples for high-precision 40Ar/39Ar geochronology and by investigating the relationship between seamount morphology and different mechanisms of intra-plate volcanism. The area had until now been only sparsely-sampled, and most of the seamounts had never been mapped with multibeam. Here we present a geomorphometric analysis of edifice size and shape parameters from 74 seamounts of the young Walvis Ridge guyot province. The base data for each seamount consists of Simrad EM122 multibeam bathymetry combined with bathymetry from the SRTM30 PLUS compilation (V7.0: Becker et al., 2009; Sandwell and Smith, 2009), gridded at 180 m resolution. Multibeam coverage of individual seamounts ranges from 100% for small seamounts to 15% for large seamounts, with most seamounts having at least 50% coverage. Most of this data focuses on seamount flanks rather than flat guyot tops, covering the areas of greatest topographic variability even for seamounts with relatively low multibeam coverage. For each seamount we quantify edifice height, perimeter, volume, elongation, azimuth, irregularity and distance to nearest neighbor. These variables are compared to the age of the underlying crust, distance to the Mid-Atlantic Ridge and distance from the Etendeka flood basalts of Namibia, which are thought to signal the initial stages of hotspot volcanism at the old end of the chain. Additionally we assess how the addition of high resolution data affects these geomorphologic parameters. We will present an overview of the cruise outcomes as well as highlight unusual features observed in the new bathymetry and backscatter data. The cruise data suggest that the young Walvis Ridge guyot province holds great potential for further exploration and

  12. Fully correcting the meteor speed distribution for radar observing biases

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea V.; Brown, Peter G.; Campbell-Brown, Margaret D.; Heynen, Denis; Cooke, William J.

    2017-09-01

    Meteor radars such as the Canadian Meteor Orbit Radar (CMOR) have the ability to detect millions of meteors, making it possible to study the meteoroid environment in great detail. However, meteor radars also suffer from a number of detection biases; these biases must be fully corrected for in order to derive an accurate description of the meteoroid population. We present a bias correction method for patrol radars that accounts for the full form of ionization efficiency and mass distribution. This is an improvement over previous methods such as that of Taylor (1995), which requires power-law distributions for ionization efficiency and a single mass index. We apply this method to the meteor speed distribution observed by CMOR and find a significant enhancement of slow meteors compared to earlier treatments. However, when the data set is severely restricted to include only meteors with very small uncertainties in speed, the fraction of slow meteors is substantially reduced, indicating that speed uncertainties must be carefully handled.

  13. Meteor Beliefs Project: ``Year of Meteors''

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Drobnock, George J.; Gheorghe, Andrei Dorian

    2011-10-01

    We present a discussion linking ideas from a modern music album by Laura Veirs back to a turbulent time in American history 150 years ago, which inspired poet Walt Whitman to compose his poem "Year of Meteors", and the meteor beliefs of the period around 1859-1860, when collection of facts was giving way to analyses and theoretical explanations in meteor science.

  14. Seamount statistics in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Jordan, Thomas H.

    1988-04-01

    We apply the wide-beam sampling technique of Jordan et al. (1983) to approximately 157,000 km of wide-beam profiles to obtain seamount population statistics for eight regions in the eastern and southern Pacific Ocean. Population statistics derived from wide-beam echograms are compared with seamount counts from Sea Beam swaths and with counts from bathymetric maps. We find that the average number of seamounts with summit heights h ≥ H is well-approximated by the exponential frequency-size distribution: ν(H)=νoe-βH. The exponential model for seamount sizes, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model, which has no intrinsic scale, in describing the average distribution of Pacific seamounts, and it appears to be valid over a size spectrum spanning 5 orders of magnitude in abundance. Large-scale regional variations in seamount populations are documented. We observe significant differences in seamount densities across the Murray fracture zone in the North Pacific and the Eltanin fracture zone system in the South Pacific. The Eltanin discontinuity is equally evident on both sides of the Pacific-Antarctic ridge. In the South Pacific, regions symmetrically disposed about the ridge axis have very similar seamount densities, despite the large difference between Pacific plate and Antarctic plate absolute velocities; evidently, any differences in the shear flows at the base of the Pacific and Antarctic plates do not affect seamount emplacement. Systematic variations in νo and β are observed as a function of lithospheric age, with the number of large seamounts increasing more rapidly than small seamounts. These observations have been used to develop a simple model for seamount production under the assumptions that (1) an exponential size-frequency distribution is maintained, (2) production is steady state, and (3) most small seamounts are formed on or near the ridge axis. The limited data available from

  15. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  16. Meteor Showers.

    ERIC Educational Resources Information Center

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  17. The Meteor Meter.

    ERIC Educational Resources Information Center

    Eggensperger, Martin B.

    2000-01-01

    Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)

  18. Morphology and distribution of seamounts surrounding Easter Island

    USGS Publications Warehouse

    Rappaport, Y.; Naar, D.F.; Barton, C.C.; Liu, Z.-J.; Hey, R.N.

    1997-01-01

    We investigate the morphology and distribution of a seamount population on a section of seafloor influenced by both superfast seafloor spreading and hotspot volcanism. The population under investigation is part of a broad chain of seamounts extending eastward from the East Pacific Rise, near Easter Island. In order to define the morphological variability of the seamounts, basal shape, cross-sectional area, volume, flatness, and flank slope are plotted against height for 383 seamounts with heights greater than 200 m, based on bathymetry data collected by GLORI-B and SeaBeam 2000, during three cruises onboard the R/V Melville in the spring of 1993. Nearly complete swath mapping coverage of the seamounts is available for the analysis of size and shape distribution. We quantitatively describe the seamount population of this active region, in which seamounts cover ???27% of the seafloor, and account for ???4.2% of the total crustal volume. Over 50% of the total volume (61,000 km3) of seamounts used in this study is made up by the 14 largest seamounts, and the remaining volume is made up by the 369 smaller seamounts (>200 m in height). Our analysis indicates there are at least two seamount populations in the Easter Island-Salas y Gomez Island (25??-29??S, 113??-104??W) study area. One population of seamounts is composed of short seamounts (1200 m), shield-like, pointy cones (flatness ???1200 m) originate exclusively from a hotspot source, but only a portion of the smaller volcanoes (

  19. Benthic Macrofaunal Communities at Newly Explored Caribbean Seamounts in the Greater/Lesser Antilles Transition Zone and a Comparison to Nearby Habitats

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Bourque, J. R.; Cordes, E. E.; Chaytor, J. D.; Quattrini, A.

    2016-02-01

    Seamounts are topographically and oceanographically complex features with environmental characteristics, including substrate types, carbon flux, and current patterns, that vary greatly within and among seamounts. While seamounts are reputed to be oases and biodiversity hotspots, comparisons across multiple spatial scales of a seamount chain have yet to be explored. Along the margins of the Caribbean Sea basin, numerous seamounts punctuate the seafloor. In 2013 and 2014, we investigated the deep-sea benthic community ecology at Noroît, Dog, and Conrad Seamounts and nearby ridge, bank, and rift environments at depths ranging from 630 to 2930 m. Sediment push cores were collected to quantify macrofaunal (> 300 μm) density, diversity, community composition, grain size, and organic content. In addition, environmental data collected from CTDs and extracted from high resolution multibeam mapping efforts (e.g. slope, rugosity, roughness, slope orientation), allowed us to evaluate the role of microhabitats in structuring these communities. Preliminary results indicate that macrofaunal density across all sites decreased with depth in both seamount and non-seamount sediments, with the highest densities occurring in non-seamount environments. However, macrofaunal density patterns varied on individual seamounts. Macrofaunal densities on shallow seamounts (Conrad and Dog) increased with depth, whereas densities decreased with depth on the deeper Noroît seamount. The relationship between environmental parameters and macrofaunal community structure and biodiversity varied among seamounts and non-seamount environments. This study represents the first investigation of seamount infauna in the region and places this baseline information on seamount faunal biodiversity, spatial distribution of taxa, and overall ecology into a broader biogeographic context.

  20. Meteor detections at the Metsähovi Fundamental Geodetic Research Station (Finland)

    NASA Astrophysics Data System (ADS)

    Raja-Halli, A.; Gritsevich, M.; Näränen, J.; Moreno-Ibáñez, M.; Lyytinen, E.; Virtanen, J.; Zubko, N.; Peltoniemi, J.; Poutanen, M.

    2016-01-01

    We provide an overview and present some spectacular examples of the recent meteor observations at the Metsähovi Geodetic Research Station. In conjunction with the Finnish Fireball Network the all-sky images are used to reconstruct atmospheric trajectories and to calculate the pre-impact meteor orbits in the Solar System. In addition, intensive collaborative work is pursued with the meteor research groups worldwide. We foresee great potential of this activity also for educational and outreach purposes.

  1. The Seamount Catalog in EarthRef.org

    NASA Astrophysics Data System (ADS)

    Gotberg, N. K.; Koppers, A. A.; Staudigel, H.; Perez, J.

    2004-12-01

    Seamounts are important to research and education in many scientific fields, providing a wide range of data on physical, chemical, biological and geological processes. In order to make a diverse set of seamount data accessible we have developed the Seamount Catalog in EarthRef.org, available through the http://earthref.org/databases/SC/. The primary goal of the Seamount Catalog is to provide access to digital data files on a large assortment of interdisciplinary seamount research. The catalog can be searched at a variety of ability or expert levels allowing it to be used from basic education to advanced research. Each seamount is described in terms of its location, height, volume, elongation, azimuth, irregularity, rifts, morphological classification and relation to other features. GEBCO (General Bathymetric Chart of the Ocean) gazetteer data (2002; 2003) is included in the database in order to provide information on the history, discovery and names of the seamounts. Screen-optimized bathymetry maps, grid files and the original multibeam data files are available for online viewing with higher resolution downloadable versions (AI, PS, PDF) also offered. The data files for each seamount include a map made from the multibeam data only, a map made from Smith and Sandwell's (1996) predicted bathymetry, a merged map incorporating both data sets, and a map showing the differences between the two data sets. We are working towards expanding the Seamount Catalog by integrating bathymetry data from various sources, developing and linking disciplinary reference models, and integrating information from multiple disciplines and from the literature. We hope to create a data integrative environment that provides access to seamount data and the tools needed for working with that data.

  2. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  3. Antarctic meteor observations using the Davis MST and meteor radars

    NASA Astrophysics Data System (ADS)

    Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.

    2008-07-01

    This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1

  4. Meteor velocity distribution from CILBO double station video camera data

    NASA Astrophysics Data System (ADS)

    Drolshagen, Esther; Ott, Theresa; Koschny, Detlef; Drolshagen, Gerhard; Poppe, Bjoern

    2014-02-01

    This paper is based on data from the double-station meteor camera setup on the Canary Islands - CILBO. The data has been collected from July 2011 until August 2014. The CILBO meteor data of one year (1 June 2013 - 31 May 2014) were used to analyze the velocity distribution of sporadic meteors and to compare the distribution to a reference distribution for near-Earth space. The velocity distribution for 1 AU outside the influence of Earth derived from the Harvard Radio Meteor Project (HRMP) was used as a reference. This HRMP distribution was converted to an altitude of 100 km by considering the gravitational attraction of Earth. The new, theoretical velocity distribution for a fixed meteoroid mass ranges from 11 - 71 𝑘𝑚/𝑠 and peaks at 12.5 𝑘𝑚/𝑠. This represents the predicted velocity distribution. The velocity distribution of the meteors detected simultaneously by both cameras of the CILBO system was examined. The meteors are sorted by their stream association and especially the velocity distribution of the sporadics is studied closely. The derived sporadic velocity distribution has a maximum at 64 𝑘𝑚/𝑠. This drastic difference to the theoretical curve confirms that fast meteors are usually greatly over-represented in optical and radar measurements of meteors. The majority of the fast sporadics are apparently caused by the Apex contribution in the early morning hours. This paper presents first results of the ongoing analysis of the meteor velocity distribution.

  5. Meteor Beliefs Project: Meteors in the Maori astronomical traditions of New Zealand

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Hamacher, Duane W.

    2014-02-01

    We review the literature for perceptions of meteors in the Maori culture of Aotearoa or New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture, and note that some early scholars conflated the terms comet and meteor.

  6. The Ecology of Seamounts: Structure, Function, and Human Impacts

    NASA Astrophysics Data System (ADS)

    Clark, Malcolm R.; Rowden, Ashley A.; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I.; Rogers, Alex D.; O'Hara, Timothy D.; White, Martin; Shank, Timothy M.; Hall-Spencer, Jason M.

    2010-01-01

    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.

  7. Radar observations of the Volantids meteor shower

    NASA Astrophysics Data System (ADS)

    Younger, J.; Reid, I.; Murphy, D.

    2016-01-01

    A new meteor shower occurring for the first time on 31 December 2015 in the constellation Volans was identified by the CAMS meteor video network in New Zealand. Data from two VHF meteor radars located in Australia and Antarctica have been analyzed using the great circle method to search for Volantids activity. The new shower was found to be active for at least three days over the period 31 December 2015 - 2 January 2016, peaking at an apparent radiant of R.A. = 119.3 ± 3.7, dec. = -74.5 ± 1.9 on January 1st. Measurements of meteoroid velocity were made using the Fresnel transform technique, yielding a geocentric shower velocity of 28.1 ± 1.8 km s-1. The orbital parameters for the parent stream are estimated to be a = 2.11 AU, e = 0.568, i = 47.2°, with a perihelion distance of q = 0.970 AU.

  8. Characteristics of Seamounts Near Hawaii as Viewed by GLORIA

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Using images and data acquired from the GLORIA sonar system, 390 seamounts within the U.S. Hawaiian Exclusive Economic Zone (HEEZ) off Hawaii have been studied. Their diameters range from 1 to 57 km. with most less than 15 km. Seamount abundance increases exponentially with decreasing size. The areal density of observed seamounts having diameters greater than 1 km is 182/10(exp 6) sq km. The theoretical abundance of seamounts of all sizes normalized to a unit area is (309 +/- 17)/10(exp 6) sq km, about an order of magnitude less than other surveyed areas of the Pacific. This may reflect a lower abundance of Cretaceous seamounts in this region, the covering of small seamounts by sediment, or discrepancies from the use of different data sets to derive the abundance statistics. The seamounts have morphologies ranging from steep-sided, flat-topped structures to cones to more amorphous structures; they are similar to volcanoes found elsewhere on the seafloor. A suite of secondary features associated with the seamounts includes summit craters, summit mounds, coalesced boundaries, landslides, and graben. Several seamount chains are aligned parallel to Cretaceous fracture zones, consistent with an origin close to the ancestral East Pacific Rise. Others are aligned parallel to the Necker Ridge, suggesting that they formed contemporaneously with Necker in the plate interior. This observation, together with high abundances of seamounts where other intraplate igneous processes have occurred, suggests some seamounts formed since leaving the spreading center.

  9. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    NASA Technical Reports Server (NTRS)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office (MEO) is the only US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. Using observations from meteor networks like the NASA All Sky Fireball Network or the Southern Ontario Meteor Network, such a characterization is often easy. If found, casual recordings from the public and stationary web cameras can be used to roughly analyze a meteor if the camera's location can be identified and its imagery calibrated. This technique was used with great success in the analysis of the Chelyabinsk meteorite fall. But if the event is outside meteor network coverage, if an insufficient number of videos are found, or if the imagery cannot be geolocated or calibrated, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. The output is illustrated in Figure 1. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network will be presented.

  10. Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Southworth, R. B.

    1975-01-01

    Population parameters of 275 streams including 20 additional streams in the synoptic-year sample were found by a computer technique. Some 16 percent of the sample is in these streams. Four meteor streams that have close orbital resemblance to Adonis cannot be positively identified as meteors ejected by Adonis within the last 12000 years. Ceplecha's discrete levels of meteor height are not evident in radar meteors. The spread of meteoroid fragments along their common trajectory was computed for most of the observed radar meteors. There is an unexpected relationship between spread and velocity that perhaps conceals relationships between fragmentation and orbits; a theoretical treatment will be necessary to resolve these relationships. Revised unbiased statistics of synoptic-year orbits are presented, together with parallel statistics for the 1961 to 1965 radar meteor orbits.

  11. Seamount ecology and dynamics: A multidisciplinary data set from repeated surveys at different seamounts in the Northeast Atlantic and Mediterranean (2003 - 2013).

    NASA Astrophysics Data System (ADS)

    Mohn, C.; Christiansen, B.; Denda, A.; George, K. H.; Kaufmann, M.; Maranhão, M.; Martin, B.; Metzger, T.; Peine, F.; Schuster, A.; Springer, B.; Stefanowitsch, B.; Turnewitsch, R.; Wehrmann, H.

    2016-02-01

    Seamounts are amongst the most common physiographic open ocean systems, but remoteness and geographic complexity have limited the number of integrated and multidisciplinary seamount surveys in the past. As a consequence, important aspects of seamount ecology and dynamics remain poorly studied. Here we present a multi-parameter data set from individual and repeated seamount surveys conducted at different sites in the Northeast Atlantic and Eastern Mediterranean between 2003 and 2013. The main objective of these surveys was to establish a collection of ecosystem relevant descriptors and to develop a better understanding of seamount ecosystem composition and variability in different dynamical and bio-geographic environments. Measurements were conducted at four seamounts in the Northeast Atlantic (Ampère, Sedlo, Seine, Senghor) and two seamounts in the Eastern Mediterranean (Anaximenes, Eratosthenes). The data set comprises records from a total number of 11 cruises including physical oceanography (temperature, salinity, pressure, currents), biology (phytoplankton, zooplankton, fish, benthos) and biogeochemistry (sedimentary particle dynamics, carbon flux). The resulting multi-disciplinary data collection provides a unique opportunity for comparative studies of seamount ecosystem structure and dynamics between different physical, biological and biogeochemical regimes

  12. Meteor Beliefs Project: Meteoric references in Ovid's Metamorphoses

    NASA Astrophysics Data System (ADS)

    Gheorghe, A. D.; McBeath, A.

    2003-10-01

    Three sections of Ovid's Metamorphoses are examined, providing further information on meteoric beliefs in ancient Roman times. These include meteoric imagery among the portents associated with the death of Julius Caesar, which we mentioned previously from the works of William Shakespeare (McBeath and Gheorghe, 2003b).

  13. Cascadia Seismicity Related to Seamount Subduction as detected by the Cascadia Initiative Amphibious Data

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2016-12-01

    Unlike other subduction zones, the Cascadia subduction zone (CSZ) is notable for the absence of detected and located small and moderate magnitude interplate earthquakes, despite the presence of recurring episodic tremor and slip (ETS) downdip and evidence of pre-historic great earthquakes. Thermal and geodetic models indicate that the seismogenic zone exists primarily, if not entirely, offshore; therefore the perceived unusual seismic quiescence may be a consequence of seismic source location in relation to land based seismometers. The Cascadia Initiative (CI) amphibious community seismic experiment includes ocean bottom seismometers (OBS) deployed directly above the presumed locked seismogenic zone. We use the CI dataset to search for small magnitude interplate earthquakes previously undetected using the on-land sensors alone. We implement subspace detection to search for small earthquakes. We build our subspace with template events from existing earthquake catalogs that appear to have occurred on the plate interface, windowing waveforms on CI OBS and land seismometers. Although our efforts will target the entire CSZ margin and full 4-year CI deployment, here we focus on a previously identified cluster off the coast of Oregon, related to a subducting seamount. During the first year of CI deployment, this target area yields 293 unique detections with 86 well-located events. Thirty-two of these events occurred within the seamount cluster, and 13 events were located in another cluster to the northwest of the seamount. Events within the seamount cluster are separated into those whose depths place them on the plate interface, and a shallower set ( 5 km depth). These separate event groups track together temporally, and seem to agree with a model of seamount subduction that creates extensive fracturing around the seamount, rather than stress concentrated at the seamount-plate boundary. During CI year 2, this target area yields >1000 additional event detections.

  14. Science Priorities for Seamounts: Research Links to Conservation and Management

    PubMed Central

    Clark, Malcolm R.; Schlacher, Thomas A.; Rowden, Ashley A.; Stocks, Karen I.; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling

  15. Science priorities for seamounts: research links to conservation and management.

    PubMed

    Clark, Malcolm R; Schlacher, Thomas A; Rowden, Ashley A; Stocks, Karen I; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling

  16. Asteroidal-meteoric complexes.

    NASA Astrophysics Data System (ADS)

    Shestaka, I. S.

    1994-12-01

    Fourteen asteroidal-meteoric complexes were identified by means of the criterion of similarity of quasistationary parameters μ, ν and Tisserand's invariant Ti. Each of these complexes consists of several meteor swarms and one or several asteroids. The existence of such complexes confirms the possibility of formation of meteor swarms by means of disintegration of asteroids and their fragments.

  17. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  18. The Radio Meteor Zoo: searching for meteors in BRAMS radio observations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Calders, S.; Tétard, C.; Verbeeck, C.; Martinez Picar, A.; Gamby, E.

    2017-09-01

    The Radio Meteor Zoo is a citizen science project where users are asked to identify meteor echoes in BRAMS radio data obtained mostly during meteor showers. The project will be described in details and preliminary results obtained during the Perseids and Geminids 2016, Quadrantids 2016 and 2017, and Lyrids 2017 are shown. Discussion about improvements will also be provided.

  19. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  20. Construction of a meteor orbit calculation system for comprehensive meteor observation

    NASA Astrophysics Data System (ADS)

    Mizumoto, S.; Madkour, W.; Yamamoto, M.

    2016-01-01

    At Kochi University of Technology (KUT), the development of an HRO (Ham-band Radio meteor Observation) -Interferometer (IF) was started in 2003, and we realized the meteor orbit calculation system by multiple-site radio observation with GPS time-keeping combining with the 5 channel (5ch) HRO-IF in 2012. Here, we introduce a future plan of comprehensive meteor observation by Radio, Optical and Infrasound observation.

  1. Is there a seamount effect on microbial community structure and biomass? The case study of Seine and Sedlo seamounts (northeast Atlantic).

    PubMed

    Mendonça, Ana; Arístegui, Javier; Vilas, Juan Carlos; Montero, Maria Fernanda; Ojeda, Alicia; Espino, Minerva; Martins, Ana

    2012-01-01

    Seamounts are considered to be "hotspots" of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0-150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a "seamount effect" is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community.

  2. Modeling internal wave generation by seamounts in oceans

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.

    2017-12-01

    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  3. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    NASA Astrophysics Data System (ADS)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  4. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  5. 3D gravity modelling for Anyongbok Seamount in the East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Moo Hee; Han, Hyun-Chul; Yun, Hyesu; Kong, Gee Soo; Kim, Kyong O.; Lee, Youn Soo

    2007-09-01

    A seamount chain with an approximately WNW trend is observed in the northeastern Ulleung Basin. It has been argued that these seamounts, including two islands called Ulleung and Dok islands, were formed by a hotspot process or by ridge related volcanism. Many geological and geophysical studies have been done for all the seamounts and islands in the chain except Anyongbok Seamount, which is close to the proposed spreading ridge. We first report morphological characteristics, sediment distribution patterns, and the crustal thickness of Anyongbok Seamount using multibeam bathymetry data, seismic reflection profiles, and 3D gravity modeling. The morphology of Anyongbok Seamount shows a cone shaped feature and is characterized by the development of many flank cones and flank rift zones. The estimated surface volume is about 60 km3, and implies that the seamount is smaller than the other seamounts in the chain. No sediments have been observed on the seamount except the lower slope, which is covered by more than 1,000 m of strata. The crustal structure obtained from a 3D gravity modeling (GFR = 3.11, SD 3.82 = mGal) suggests that the seamount was formed around the boundary of the Ulleung Plateau and the Ulleung Basin, and the estimated crustal thickness is about 20 km, which is a little thicker than other nearby seamounts distributed along the northeastern boundary of the Ulleung Basin. This significant crustal thickness also implies that Anyongbok Seamount might not be related to ridge volcanism.

  6. Meteor research program

    NASA Technical Reports Server (NTRS)

    Southworth, R. B.; Mccrosky, R. E.

    1970-01-01

    An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned.

  7. Time-Dependent Flexural Deformation Beneath the Emperor Seamounts

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Watts, A. B.; Kim, S. S.

    2014-12-01

    The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load

  8. New meteor showers – yes or not?

    NASA Astrophysics Data System (ADS)

    Koukal, Jakub

    2018-01-01

    The development of meteor astronomy associated with the development of CCD technology is reflected in a huge increase in databases of meteor orbits. It has never been possible before in the history of meteor astronomy to examine properties of meteors or meteor showers. Existing methods for detecting new meteor showers seem to be inadequate in these circumstances. The spontaneous discovery of new meteor showers leads to ambiguous specifications of new meteor showers. There is a duplication of already discovered meteor showers and a division of existing meteor showers based on their own criteria. The analysis in this article considers some new meteor showers in the IAU MDC database.

  9. Meteor researches at KHNURE

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    2005-01-01

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs.

  10. Meteor Researches at Khnure

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs

  11. Trawling on seamounts: can we balance exploitation and conservation?

    NASA Astrophysics Data System (ADS)

    Clark, M. R.; O'Driscoll, R. L.; Rowden, A. A.

    2006-12-01

    Seamounts are prominent features of the worlds underwater topography. They are widely regarded as productive, but fragile, habitat. They are the focus of commercial fishing for a number of demersal and pelagic fish and invertebrate species. Most fishing operations have some impact, either on the target species, associated bycatch species, or the benthic communities and habitat. Longlines, gillnets, traps and pots can all have some effect on the seafloor, but bottom trawling is the most well-known for causing considerable impact on the benthic habitat. There are few published studies on seamounts specifically, and recent research in New Zealand will be described. This has focused on deepwater fisheries for species such as orange roughy, which can form large aggregations over seamount features. The research includes analysis of the distribution of commercial catch and effort data from deepwater seamount fisheries, and "compare and contrast" surveys of seamounts that indicate the effects of bottom trawling can be severe on benthic invertebrate fauna. Fishing has clear consequences for structural complexity of the benthic habitat, and can alter species composition, and abundance. The results of such research are discussed with respect to management of seamount habitat in New Zealand, and the search for a balance that can allow sustainable seamount fisheries, and biodiversity conservation.

  12. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  13. Seamounts are hotspots of pelagic biodiversity in the open ocean.

    PubMed

    Morato, Telmo; Hoyle, Simon D; Allain, Valerie; Nicol, Simon J

    2010-05-25

    The identification of biodiversity hotspots and their management for conservation have been hypothesized as effective ways to protect many species. There has been a significant effort to identify and map these areas at a global scale, but the coarse resolution of most datasets masks the small-scale patterns associated with coastal habitats or seamounts. Here we used tuna longline observer data to investigate the role of seamounts in aggregating large pelagic biodiversity and to identify which pelagic species are associated with seamounts. Our analysis indicates that seamounts are hotspots of pelagic biodiversity. Higher species richness was detected in association with seamounts than with coastal or oceanic areas. Seamounts were found to have higher species diversity within 30-40 km of the summit, whereas for sets close to coastal habitat the diversity was lower and fairly constant with distance. Higher probability of capture and higher number of fish caught were detected for some shark, billfish, tuna, and other by-catch species. The study supports hypotheses that seamounts may be areas of special interest for management for marine pelagic predators.

  14. Seamounts are hotspots of pelagic biodiversity in the open ocean

    PubMed Central

    Morato, Telmo; Hoyle, Simon D.; Allain, Valerie; Nicol, Simon J.

    2010-01-01

    The identification of biodiversity hotspots and their management for conservation have been hypothesized as effective ways to protect many species. There has been a significant effort to identify and map these areas at a global scale, but the coarse resolution of most datasets masks the small-scale patterns associated with coastal habitats or seamounts. Here we used tuna longline observer data to investigate the role of seamounts in aggregating large pelagic biodiversity and to identify which pelagic species are associated with seamounts. Our analysis indicates that seamounts are hotspots of pelagic biodiversity. Higher species richness was detected in association with seamounts than with coastal or oceanic areas. Seamounts were found to have higher species diversity within 30–40 km of the summit, whereas for sets close to coastal habitat the diversity was lower and fairly constant with distance. Higher probability of capture and higher number of fish caught were detected for some shark, billfish, tuna, and other by-catch species. The study supports hypotheses that seamounts may be areas of special interest for management for marine pelagic predators. PMID:20448197

  15. Pacific seamount volcanism in space and time

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  16. Deep subsurface microbiology of 64-71 million year old inactive seamounts along the Louisville Seamount Chain

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Morono, Y.; Grim, S.; Inagaki, F.; Edwards, K. J.

    2013-12-01

    One of the objectives of IODP Expedition 330, Louisville Seamount Trail, was to sample and learn about the subsurface biosphere in the Louisville Seamount Chain (LSC). Seamounts are volcanic constructs that are ubiquitous along the seafloor - models suggest there are >100,000 seamounts of >1 km in height globally (Wessel et al., 2010). Therefore, knowledge about microbiology in the LSC subsurface can broadly be interpreted as representative of much the seafloor. In addition, despite the fact that the vast majority of the sea floor is comprised of crust >10 Ma, the majority of work to date has focused on young sites with active hydrology. Our presentation summarizes work focusing on subsurface microbiology from two different LSC seamounts: holes U1374A (65-71 Ma) and U1376A (64 Ma). We here present data for microbial biomass in the LSC subsurface using a method we developed to quantify microbial biomass in subseafloor ocean crust. We also present results from pyrotag analysis of 15 samples from holes U1374A and holes U1376A, representing several different lithologies from 40-491 meters below seafloor (mbsf) in hole U1374A and from 29-174 mbsf in hole U1376A. Finally, we present preliminary analysis of metagenomic sequencing from three of the samples from Hole U1376A. Biomass was low in the subsurface of both seamounts, ranging from below detection to ~104 cells cm-3. Bacteria comprised >99% of the prokaryotic community in LSC subsurface samples, therefore, bacterial diversity was assessed through 454 pyrosequencing of the V4V6 region of the 16S rRNA gene. Rarefaction analysis indicates that bacterial communities from the LSC subsurface are low diversity, on the order of a few hundred operational taxonomic units per sample. The phyla Actinobacteria, Bacteroidetes, Firmicutes and the classes α-, β- and γ-Proteobacteria are most abundant in the LSC subsurface. Within these, the orders Actinomycetales, Sphingobacteriales, Bacillales and Burkholderiales are the most

  17. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    NASA Technical Reports Server (NTRS)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  18. The Census of Marine Life on Seamounts: results from a global science program

    NASA Astrophysics Data System (ADS)

    Stocks, K.; Clark, M.; Rowden, A.; Consalvey, M.

    2010-12-01

    CenSeam (a Global Census of Marine Life on Seamounts) is a network of more than 500 scientists, policy makers and conservationists around the world. These participants are collaborating to increase our understanding of the factors driving seamount community composition and diversity, such that we can better understand and manage the effects of human activities. The major scientific outcomes of the CenSeam community include the findings that 1) Seamount community composition is often similar to surrounding habitats; however, community structure can be different. 2) Contrary to conventional wisdom, few seamounts follow island biogeography predictions. 3) Seamounts can support a higher benthic biomass than surrounding habitats. 4) Seamounts can support species and communities new to science, and represent range extensions for known species, which are being described from CenSeam voyages. 5) For the first time, the extent of the vulnerability and risk to seamount benthic communities from fishing has been quantified. 6) Whilst long assumed, CenSeam researchers have demonstrated that seamount communities are disturbed by fishing and are slow to recover. And 7) Seamounts might act as repositories of biodiversity during future periods of extreme environmental change, as they have likely done in the past. The major products of Censeam include 1) a book synthesizing seamount knowledge: Seamounts: Ecology, Fisheries and Conservation (from Blackwell Publishing); 2) a recent review of the structure and function of seamount benthic communities, human impacts, and seamount management and conservation (Ann Rev Mar Sci); 3) hundreds of scientific publications, including Special Issues in Marine Ecology and Oceanography (in collaboration with the Seamount Biogeogsciences Network), and a Special Collection in PLoSONE; 4) guidance documents and formal advising for seamount management communities, including the United Nations Environment Program, International Seabed Authority

  19. Meteor stream activity. 2: Meteor outbursts

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.

    1995-01-01

    In the past two centuries, alert amateur and professional meteor astronomers have documented 35 outbursts of 17 individual meteor streams well enough to allow the construction of a homogeneous set of activity curves. These curves add to similar profiles of the annual streams in a previous paper (Paper 1). This paper attempts to define the type and range of phenomena that classify as meteor outbursts from which the following is concluded: Outbursts are associated with the return of the comet to perihelion (near-comet type outbursts), but occur also when the parent comet is far from perihelion and far from the Earth (far-comet type). All outbursts of a given type only, depending on encounter geometry. The activity curves, expressed in terms of Zenith Hourly Rates (ZHR), have a shape that is generally well described by: ZHR = ZHR(sub max) 10(sup(-B (the absolute value of lambda (sub dot in a circle) - lambda (sup max) (sub dot in a circle))). The steepness of the slopes varies from an exponent of B = 7 to B = 220 per degree of solar longitude, with a typical value of B = 30. In addition, most near-comet type outbursts have a broader component underlying the main peak with B approximately 1 - 7.The duration Delta t is approximately 1/B of the main peak is almost independent of location near the comet, while the background component varies considerably in duration and relative intensity from one return to another. The two components in the activity curve are due to two distinct structures in the dust distribution near the parent comet, where the main component can be due to a sheet of dust that emanates from the IRAS dust trail. This brings the total number of distinct structures in meteor streams to four, including the two structures from the annual stream activity in Paper 1.

  20. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    PubMed

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts

    NASA Astrophysics Data System (ADS)

    Sonnekus, Martinus J.; Bornman, Thomas G.; Campbell, Eileen E.

    2017-02-01

    A survey of six seamounts and two transects through the subtropical convergence zone (SCZ) in the South Indian Ocean in November and December 2009 showed a strong latitudinal gradient from the subtropics to the Sub-Antarctic Front. Concentrations of oxygen, nitrate, nitrite, soluble reactive phosphorous as well as phytoplankton biomass (measured as chlorophyll a) increased while salinity and temperature decreased with an increase in latitude. These differences resulted in significant differences between seamounts. The chlorophyll a maximum became shallower at higher latitudes, changing from a depth of 85 m in the subtropics to 35 m over the seamounts and in the SCZ. The mixed layer depth also increased from 50 m in the subtropics to 100 m at higher latitude stations. The N:P and N:Si ratio indicated that NO3- was limiting at all the seamounts except one, at which SiO4 was the limiting nutrient. The phytoplankton community also showed a latitudinal gradient with decreasing diversity and a change in dominance from dinoflagellates in the tropics to diatoms towards the SCZ. The dominant diatom genus of the survey (>50% of the cell counts) was Pseudo-nitzschia. Nutrients exhibited an inverse linear relationship with temperature and salinity. The oligotrophic subtropical areas differed from the mesotrophic seamounts in temperature while waters over seamounts north and south of the Agulhas Return Current (ARC) differed in salinity. The phytoplankton (148 taxa) responded to these differences, showing three communities: subtropical seamount phytoplankton (Atlantis Seamount, Walters Seamount and off-mount samples), phytoplankton of the waters north of the ARC (Melville Bank, Sapmer Bank, Middle of What Seamount) and phytoplankton south of the ARC (Coral Seamount, SCZ1) characterised by a bloom of Phaeocystis antarctica. The environmental drivers most strongly linked to these observed differences were nitrate, temperature and oxygen. These environmental drivers displayed a

  2. Meteor Beliefs Project: Shakespeare revisited and the Elizabethan stage's `blazing star'

    NASA Astrophysics Data System (ADS)

    Gheorghe, Andrei Dorian; McBeath, Alastair

    2007-06-01

    Some fresh Shakespearean citations of meteors, further to those given previously in the Project, are presented, along with a discussion of the Elizabethan stage's use of the `blazing star', with especial reference to the great comet of 1577.

  3. Recent meteor observing activities in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2005-02-01

    The meteor train observation (METRO) campaign is described as an example of recent meteor observing activity in Japan. Other topics of meteor observing activities in Japan, including Ham-band radio meteor observation, the ``Japan Fireball Network'', the automatic video-capture software ``UFOCapture'', and the Astro-classroom programme are also briefly introduced.

  4. The size distribution of Pacific Seamounts

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Jordan, Thomas H.

    1987-11-01

    An analysis of wide-beam, Sea Beam and map-count data in the eastern and southern Pacific confirms the hypothesis that the average number of "ordinary" seamounts with summit heights h ≥ H can be approximated by the exponential frequency-size distribution: v(H) = vo e-βH. The exponential model, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model. The exponential model provides a good first-order description of the summit-height distribution over a very broad spectrum of seamount sizes, from small cones (h < 300 m) to tall composite volcanoes (h > 3500 m). The distribution parameters obtained from 157,000 km of wide-beam profiles in the eastern and southern Pacific Ocean are vo = (5.4 ± 0.65) × 10-9m-2 and β = (3.5 ± 0.21) × 10-3 m-1, yielding an average of 5400 ± 650 seamounts per million square kilometers, of which 170 ± 17 are greater than one kilometer in height. The exponential distribution provides a reference for investigating the populations of not-so-ordinary seamounts, such as those on hotspot swells and near fracture zones, and seamounts in other ocean basins. If we assume that volcano height is determined by a hydraulic head proportional to the source depth of the magma column, then our observations imply an approximately exponential distribution of source depths. For reasonable values of magma and crustal densities, a volcano with the characteristic height β-1 = 285 m has an apparent source depth on the order of the crustal thickness.

  5. An Ecosystem Evaluation Framework for Global Seamount Conservation and Management

    PubMed Central

    Taranto, Gerald H.; Kvile, Kristina Ø.; Pitcher, Tony J.; Morato, Telmo

    2012-01-01

    In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals. PMID:22905190

  6. An ecosystem evaluation framework for global seamount conservation and management.

    PubMed

    Taranto, Gerald H; Kvile, Kristina Ø; Pitcher, Tony J; Morato, Telmo

    2012-01-01

    In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals.

  7. An Investigation of the Fine Spatial Structure of Meteor Streams Using the Relational Database ``Meteor''

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Yumagulov, E. Z.

    2003-05-01

    We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.

  8. Geophysical investigation of seamounts near the Ogasawara Fracture Zone, western Pacific

    NASA Astrophysics Data System (ADS)

    Lee, T.-G.; Lee, K.; Hein, J. R.; Moon, J.-W.

    2009-03-01

    This paper provides an analysis of multi-channel seismic data obtained during 2000-2001 on seamounts near the Ogasawara Fracture Zone (OFZ) northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone that includes many seamounts. Seven units are delineated on the basis of acoustic characteristics and depth: three units (I, II, and III) on the summit of seamounts and four units (IV, V, VI, and VII) in basins. Acoustic characteristics of layers on the summit of guyots and dredged samples indicate that the seamounts had been built above sea level by volcanism. This was followed by reef growth along the summit margin, which enabled deposition of shallow-water carbonates on the summit, and finally by subsidence of the edifices. The subsidence depth of the seamounts, estimated from the lower boundary of unit II, ranges between 1,550 and 2,040 m. The thick unit I of the southern seamounts is correlated with proximity to the equatorial high productivity zone, whereas local currents may have strongly affected the distribution of unit I on northern seamounts. A seismic profile in the basin around the Ita Mai Tai and OSM4 seamounts shows an unconformity between units IV and V, which is widespread from the East Mariana Basin to the Pigafetta Basin.

  9. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  10. Meteors Without Borders: a global campaign

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.

    2012-01-01

    "Meteors Without Borders" is a global project, organized by Astronomers Without Borders and launched during the Global Astronomy Month in 2010 for the Lyrid meteor shower. The project focused on encouraging amateur astronomy groups to hold public outreach events for major meteor showers, conduct meteor-related classroom activities, photography, poetry and art work. It also uses social-media platforms to connect groups around the world to share their observations and photography, live during the events. At the International Meteor Conference 2011, the progress of the project was presented along with an extended invitation for collaborations for further improvements of the project.

  11. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  12. Meteor Shower Identification and Characterization with Python

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  13. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  14. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount and Kilauea Volcano

    USGS Publications Warehouse

    Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.

    2000-01-01

    Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.

  15. International cooperation and amateur meteor work

    NASA Astrophysics Data System (ADS)

    Roggemans, P.

    Today, the existing framework for international cooperation among amateur meteor workers offers numerous advantages. However, this is a rather recent situation. Meteor astronomy, although popular among amateurs, was the very last topic within astronomy to benefit from a truly international approach. Anyone attempting long term studies of, for instance, meteor stream structures will be confronted with the systematic lack of usable observations due to the absence of any standards in observing, recording and reporting, any archiving or publishing policy. Visual meteor observations represent the overall majority of amateur efforts, while photographic and radio observing were developed only in recent decades as technological specialties of rather few meteor observing teams.

  16. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  17. Recycling Seamounts: Implications for Mantle Source Heterogeneities

    NASA Astrophysics Data System (ADS)

    Madrigal, P.; Gazel, E.

    2016-12-01

    Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the mantle. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper mantle heterogeneity. Our evidence suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep mantle plume upwellings.

  18. Geophysical exploration of the Southeast Tyrrhenian Sea (Italy): Seamounts batimetries

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; Milano, Girolamo

    2010-05-01

    The Tyrrhenian Sea is a young extensional basin in the Central Mediterranean that formed within a complex convergent boundary between Africa and Eurasian Plates. Its opening, associated to the west dipping subduction of the Ionian lithosphere, started about 11 My ago and was marked first by an EW and successively by an ESE directed extension. This last mainly affected the Southeast Tyrrhenian Sea and led to the formation of the Marsili ocean-like basin. This large-scale extension produced the onset of volcanism throughout the Tyrrhenian Sea and the formation of several seamounts. High values of heat flow (>150 mW m-2) and the thin crust (7 km on average) and lithosphere (30 km on average) testify the young age of formation of oceanic crust in the Southeast Tyrrhenian Sea. On November 2007, a multidisciplinary oceanographic survey was carried out in the Southeast Tyrrhenian Sea by a group of researchers of the IAMC-CNR (Naples), Osservatorio Vesuviano (INGV, Naples), NOAA (Seattle) and GNS (New Zealand) on board of the R/V Urania. The main aim of the survey was the identification and the exploration of potential active volcanic and/or hydrothermal vents on the seamounts located in the Southeast Tyrrhenian Sea. Twelve Tyrrhenian seamounts have been explored with a modified CTD system, in order to acquire "tow-yo" profiles in dynamic mode (real time monitoring of physical and chemical parameters of seawater along vertical/horizontal profiles). In addiction, Multibeam swath bathymetry was carried out over fifteen seamounts. The strategy for the achieving of the aim consisted in two phases: i) row multibeam acquisition of the sea floor morphology to verify, confirm or review all available data, ii) tow-yo activity and seawater sampling. Here, we show the main results of bathymetric data acquisition carried out over fifteen seamounts with the use of the Reson Seabat 8160 multibeam sonar system mounted on keel of the R/V Urania. The most interesting morphostructural

  19. Review of amateur meteor research

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen

    2017-09-01

    Significant amounts of meteor astronomical data are provided by amateurs worldwide, using various methods. This review concentrates on optical data. Long-term meteor shower analyses based on consistent data are possible over decades (Orionids, Geminids, κ-Cygnids) and allow combination with modelling results. Small and weak structures related to individual stream filaments of cometary dust have been analysed in both major and minor showers (Quadrantids, September ε-Perseids), providing feedback to meteoroid ejection and stream evolution processes. Meteoroid orbit determination from video meteor networks contributes to the improvement of the IAU meteor data base. Professional-amateur cooperation also concerns observations and detailed analysis of fireball data, including meteorite ground searches.

  20. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25-30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount's summit. Sediment waves

  1. Meteor Beliefs Project: Seven years and counting

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Drobnock, G. J.; Gheorghe, A. D.

    2010-04-01

    The Meteor Beliefs Project's seventh anniversary is celebrated with an eclectic mixture of meteor beliefs from the 1799 Leonids in Britain, the folkloric link between meteors and wishing in some Anglo-American sources, how a meteoric omen came to feature in Nathaniel Hawthorne's 1850 novel The Scarlet Letter, and a humorous item from the satirical magazine Punch in 1861, all helping to show how meteor beliefs can be transformed by different parts of society.

  2. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  3. The observation of sporadic meteors and meteor showers by means of radio technology measuring equipment

    NASA Astrophysics Data System (ADS)

    Schippke, W.

    1981-08-01

    Advantages regarding a tracking of meteors with the aid of the instruments of radio technology are related to the possibility for continuous observations without any dependence on meteorological conditions or on the time of day or night. Two methods exist for the registration of the traces of meteors, including a passive and an active method. The appropriate frequency range for both methods is the lower VHF range. For passive observations a very sensitive measurement receiver is required along with recording equipment, and a suitable antenna system. In Europe there are many television transmitters which are eminently suited for a detection of meteor traces. The active method for tracking meteors is more difficult and requires for its employment more expensive equipment than the passive method. It is based on the use of a VHF metric-wave radar. These devices operate normally also at a frequency of approximately 50 or 60 MHz. Attention is given to the theory of meteoric scattering, the various types of ionized trails, the geometry of meteor traces, results obtained in an observational station in Munich, and observations in the 144-MHz band.

  4. Meteor Observations as Big Data Citizen Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.

    2016-12-01

    Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.

  5. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 𔄃 3ASTRACT (Continue on reverse of necessary and identify by block number

  6. Anisotropic diffusion of meteor trails due to the geomagnetic field over King Sejong Station (62.2°S, 58.8°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Min; Kwak, Young-Sil; Kim, Yong Ha; Lee, Changsup; Kim, Jeong-Han; Jee, Geonhwa; Yang, Tae-Yong

    2018-06-01

    We analyzed meteor decay times measured by a VHF meteor radar at King Sejong Station, Antarctica (62.22°S, 58.78°W) to study diffusion processes of the meteor trails above the altitude of ˜93 km. Above this altitude, where the atmospheric density is so dilute that collisions between trail ions and ambient molecules become rare, diffusion of a meteor trail can be greatly affected by the geomagnetic field, resulting in anisotropic distribution of measured decay times over the azimuthal and elevation angles. Our preliminary analysis confirm the anisotropic nature of meteor decay times due to geomagnetic field.

  7. Tidal influence on particulate organic carbon export fluxes around a tall seamount

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dumont, Matthew; Kiriakoulakis, Kostas; Legg, Sonya; Mohn, Christian; Peine, Florian; Wolff, George

    2016-12-01

    As tall seamounts may be 'stepping stones' for dispersion and migration of deep open ocean fauna, an improved understanding of the productivity at and food supply to such systems needs to be formed. Here, the 234Th/238U approach for tracing settling particulate matter was applied to Senghor Seamount - a tall sub-marine mountain near the tropical Cape Verde archipelago - in order to elucidate the effects of topographically-influenced physical flow regimes on the export flux of particulate organic carbon (POC) from the near-surface (topmost ⩽ 100 m) into deeper waters. The comparison of a suitable reference site and the seamount sites revealed that POC export at the seamount sites was ∼2-4 times higher than at the reference site. For three out of five seamount sites, the calculated POC export fluxes are likely to be underestimates. If this is taken into account, it can be concluded that POC export fluxes increase while the passing waters are advected around and over the seamount, with the highest export fluxes occurring on the downstream side of the seamount. This supports the view that biogeochemical and biological effects of tall seamounts in surface-ocean waters might be strongest at some downstream distance from, rather than centred around, the seamount summit. Based on measured (vessel-mounted ADCP) and modelled (regional flow field: AVISO; internal tides at Senghor: MITgcm) flow dynamics, it is proposed that tidally generated internal waves result in a 'screen' of increased rates of energy dissipation that runs across the seamount and leads to a combination of two factors that caused the increased POC export above the seamount: (1) sudden increased upward transport of nutrients into the euphotic zone, driving brief pulses of primary production of new particulate matter, followed by the particles' export into deeper waters; and (2) pulses of increased shear-driven aggregation of smaller, slower-settling into larger, faster-settling particles. This study

  8. The Composition of the Y2K Meteor

    NASA Astrophysics Data System (ADS)

    Coulson, S. G.

    During the Leonid meteor shower of November 1999 a very bright meteor train, subsequently called the Y2K meteor, was observed. Analysis of the trajectory of the meteor suggests that it was composed of two distinct materials. The bulk of the meteor was composed of a comet-like material, while a much smaller fraction was of a denser carbonaceous material. A simple model is used to analytically determine the mass of the meteor fragments.

  9. Geophysical investigation of seamounts near the Ogasawara fracture zone, western Pacific

    USGS Publications Warehouse

    Lee, T.-G.; Lee, Kenneth; Hein, J.R.; Moon, J.-W.

    2009-01-01

    This paper provides an analysis of multi-channel seismic data obtained during 2000-2001 on seamounts near the Ogasawara Fracture Zone (OFZ) northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone that includes many seamounts. Seven units are delineated on the basis of acoustic characteristics and depth: three units (I, II, and III) on the summit of seamounts and four units (IV, V, VI, and VII) in basins. Acoustic characteristics of layers on the summit of guyots and dredged samples indicate that the seamounts had been built above sea level by volcanism. This was followed by reef growth along the summit margin, which enabled deposition of shallow-water carbonates on the summit, and finally by subsidence of the edifices. The subsidence depth of the seamounts, estimated from the lower boundary of unit II, ranges between 1,550 and 2,040 m. The thick unit I of the southern seamounts is correlated with proximity to the equatorial high productivity zone, whereas local currents may have strongly affected the distribution of unit I on northern seamounts. A seismic profile in the basin around the Ita Mai Tai and OSM4 seamounts shows an unconformity between units IV and V, which is widespread from the East Mariana Basin to the Pigafetta Basin. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  10. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  11. Constraints on Meteoric Smoke Composition and Meteoric Influx Using SOFIE Observations With Models

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Brooke, James S. A.; Feng, Wuhu; Bardeen, Charles G.; Plane, John M. C.

    2017-12-01

    The composition of meteoric smoke particles in the mesosphere is constrained using measurements from the Solar Occultation For Ice Experiment (SOFIE) in conjunction with models. Comparing the multiwavelength observations with models suggests smoke compositions of magnetite, wüstite, magnesiowüstite, or iron-rich olivine. Smoke compositions of pure pyroxene, hematite, iron-poor olivine, magnesium silicate, and silica are excluded, although this may be because these materials have weak signatures at the SOFIE wavelengths. Information concerning smoke composition allows the SOFIE extinction measurements to be converted to smoke volume density. Comparing the observed volume density with model results for varying meteoric influx (MI) provides constraints on the ablated fraction of incoming meteoric material. The results indicate a global ablated MI of 3.3 ± 1.9 t d-1, which represents only iron, magnesium, and possibly silica, given the smoke compositions indicated here. Considering the optics and iron content of individual smoke compositions gives an ablated Fe influx of 1.8 ± 0.9 t d-1. Finally, the global total meteoric influx (ablated plus surviving) is estimated to be 30 ± 18 t d-1, when considering the present results and a recent description of the speciation of meteoric material.

  12. Bi-telescopic, deep, simultaneous meteor observations

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1986-01-01

    A statistical summary is presented of 10 hours of observing sporadic meteors and two meteor showers using the Experimental Test System of the Lincoln Laboratory. The observatory is briefly described along with the real-time and post-processing hardware, the analysis, and the data reduction. The principal observational results are given for the sporadic meteor zenithal hourly rates. The unique properties of the observatory include twin telescopes to allow the discrimination of meteors by parallax, deep limiting magnitude, good time resolution, and sophisticated real-time and post-observing video processing.

  13. Global Distribution of Seamounts as Inferred from Ship Depth Soundings and Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Kim, S.; Sandwell, D. T.

    2006-12-01

    Traditionally, seamounts are active or extinct undersea volcanoes rising more than 1 km above the abyssal plain, but scientists now regularly apply the seamount label to features of just a few tens of meters in height. As constructional features they represent a small but significant fraction of the total volcanic extrusive budget for oceanic seafloor and their distribution provides key information on the variations in intraplate volcanic activity through space and time. Furthermore, they sustain significant ecological communities, determine habitats for fish, and act as obstacles to ocean currents, thus enhancing tidal energy dissipation and ocean mixing. Consequently, it is of some importance to locate and characterize seamounts. Two approaches are used to map the global distribution of seamounts. Depth soundings from single- and multi-beam echo sounders can provide the most detailed maps with up to 100--200 m horizontal resolution. However, soundings from the 5600 publicly available cruises sample only a small fraction of the ocean floor. Direct radar measurements of the ocean surface by satellite-borne altimeters have been used to infer the marine gravity field. By examining such gravity data one can characterize seamounts taller than ~2 km and such studies have produced seamount catalogues holding almost 15,000 seamounts. Recent retracking of the original radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a two-fold increase in resolution. By extrapolating the inferred power-law that relates seamount size to frequency we estimate that 45,000 smaller seamounts taller than 1.5 km still remain uncharted. Future altimetry missions could improve on resolution and decrease noise levels even further, allowing for an even larger number of small (1--1.5 km) seamounts to be separated from the background abyssal hill fabric. Mapping the complete global distribution of seamounts will help constrain competing models of seamount formation

  14. Photoacoustic sounds from meteors

    DOE PAGES

    Spalding, Richard; Tencer, John; Sweatt, William; ...

    2017-02-01

    Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with –11 to –13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally.more » Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that –12 brightness meteors can generate audible sound at ~25 dB SPL. As a result, the photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.« less

  15. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  16. Meteor showers of the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kerr, Steve

    2014-04-01

    We present the results of an exhaustive meteor shower search in the southern hemisphere. The underlying data set is a subset of the IMO Video Meteor Database comprising 50,000 single station meteors obtained by three Australian cameras between 2001 and 2012. The detection technique was similar to previous single station analysis. In the data set we find 4 major and 6 minor northern hemisphere meteor showers, and 12 segments of the Antihelion source (including the Northern and Southern Taurids and six streams from the MDC working list). We present details for 14 southern hemisphere showers plus the Centaurid and Puppid-Velid complex, with the η Aquariids and the Southern δ Aquariids being the strongest southern showers. Two of the showers (θ^2 Sagittariids and τ Cetids) were previously unknown and have received preliminary designations by the MDC. Overall we find that the fraction of southern meteor showers south of -30deg declination (roughly 25%) is clearly smaller than the fraction of northern meteor showers north of +30deg declination (more than 50%) obtained in our previous analysis.

  17. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  18. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  19. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  20. 50 CFR 665.209 - Fishing moratorium at Hancock Seamounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Fishing moratorium at Hancock Seamounts. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium at Hancock Seamounts. Fishing for, and possession of...

  1. 50 CFR 665.209 - Fishing moratorium on Hancock Seamount.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fishing moratorium on Hancock Seamount. 665.209 Section 665.209 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.209 Fishing moratorium on Hancock Seamount. Fishing for Hawaii bottomfish and...

  2. Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  3. Paleomagnetic modeling of seamounts near the Hawaiian Emperor bend

    NASA Astrophysics Data System (ADS)

    Sager, William W.; Lamarche, Amy J.; Kopp, Christian

    2005-08-01

    The Hawaiian-Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for ˜80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past ˜45 m.y.

  4. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

    PubMed Central

    Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment

  5. In the Footsteps of Charles Darwin: Patterns of Coastal Subsidence and Uplift Associated with Seamount Subduction, Basal Fore-arc Erosion and Seamount Accretion in Latin America

    NASA Astrophysics Data System (ADS)

    Fisher, D. M.; Kirby, S. H.; David, S. W.

    2004-12-01

    In Geological Observations on South America (1846), Charles Darwin described beds of late Cenozoic marine seashells that were uplifted to elevations as much as several hundred meters above some localities on the western coastline of South America and implied that the whole coast was uplifting at geologic time scales. We know now that such evidence is generally restricted to coastal embayments above fore-arc basins where offshore seamounts are colliding with the South American fore arc (e.g., the Juan Fernandez seamount chain, Valpariso Basin and Valpariso Bay). We suggest that the phenomena of basal fore-arc erosion and basin formation and coastal uplift are closely related to effects of seamount subduction. Marine multibeam sonar images and multichannel seismic reflection surveys by others demonstrate that seamounts, although locally cut by normal faults in the outer-rise/near-trench region, initally subduct intact and the primary interaction with the toe of the fore arc is plowing, with material eroded from the fore arc that accumulates above and on the margins of the seamount. Submarine landslides above such regions over-steepened by plowing can lead to coastal embayments far upslope of the plowing. Such plowing interaction can therefore lead to the formation of large forearc basins and coastal embayments such as those at Valpariso, Chile, or narrow corridors of subsidence in the wake of subducting seamounts in Costa Rica. It is also known that the transition between interplate thrust seismicity, representing mechanical coupling between the plates, and aseismic slip occurs at depths of typically 30-60 km and often geographically near coastlines that mark the boundary between outer fore-arc subsidence and inner fore-arc uplift. We suggest that decoupling can occur at the base of seamounts (i.e., the originally sedimented seafloor on which the seamount lavas are laid down) and that such seamounts can be accreted to the fore arc above and lead to coastal uplift

  6. The First Confirmed Videorecordings of Lunar Meteor Impacts

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Cudnik, B.; Palmer, D. M.; Sada, P. V.; Melosh, J.; Beech, M.; Pellerin, L.; Asher, D.; Frankenberger R.; Venable R.

    2000-01-01

    North American observers recorded at least six meteors striking the Moon's surface during the Leonid meteor shower on 1999 Nov. 18. Each meteor produced a flash that was recorded from at least two separate locations, marking the first confirmed lunar meteor impacts.

  7. Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2012-01-01

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  8. Quantifying the direct use value of Condor seamount

    NASA Astrophysics Data System (ADS)

    Ressurreição, Adriana; Giacomello, Eva

    2013-12-01

    Seamounts often satisfy numerous uses and interests. Multiple uses can generate multiple benefits but also conflicts and impacts, calling, therefore, for integrated and sustainable management. To assist in developing comprehensive management strategies, policymakers recognise the need to include measures of socioeconomic analysis alongside ecological data so that practical compromises can be made. This study assessed the direct output impact (DOI) of the relevant marine activities operating at Condor seamount (Azores, central northeast Atlantic) as proxies of the direct use values provided by the resource system. Results demonstrated that Condor seamount supported a wide range of uses yielding distinct economic outputs. Demersal fisheries, scientific research and shark diving were the top-three activities generating the highest revenues, while tuna fisheries, whale watching and scuba-diving had marginal economic significance. Results also indicated that the economic importance of non-extractive uses of Condor is considerable, highlighting the importance of these uses as alternative income-generating opportunities for local communities. It is hoped that quantifying the direct use values provided by Condor seamount will contribute to the decision making process towards its long-term conservation and sustainable use.

  9. A meteor stream study of 1966

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra

    2017-03-01

    3600 individual photographic orbits of meteor bodies and about 2000 visual meteor radiants with corresponding velocities were compiled and carefully studied in detail. 154 minor meteor streams were detected in the Solar System, their basic orbital and other data are given. Firstly some remarkable shower and stream properties are established: examples of the large elliptic radiation areas with semi-major axes perpendicular to the Ecliptic; the existence of the Northern (N) , Southern (S) and Ecliptical (Q) branches of some streams; stream-antipodes and radiant-antipodes (symmetrically arranged relatively to the Ecliptic) with angular distances from the Ecliptic to 40-80°; a number of short-perihelion streams (q 0.05-0.07 A.U.); some meteor streams perpendicular to the Ecliptic's plane. There are also some unique meteor bodies with their orbits enclosed within the limits of the Earth's one, or having the clockwise and anticlockwise direction in two similar orbits. Hyperbolic photographic velocities vh = 57-88 km /sec are treated as real ones according to the best radar and visual observations. A "bunch" of ecliptical streams, discovered in the USSR in 1950, is a complex of orbits of the mostly massive meteor particles of the Zodiacal Cloud. The stream evolution rate is comparatively high. The total complex of sporadic meteor bodies is not totally chaotic and accidental.

  10. Effect of the Galapagos Hotspot on Seamount Formation along the Galapagos Spreading Center

    NASA Astrophysics Data System (ADS)

    Behn, M. D.; Sinton, J. M.; Detrick, R. S.

    2002-12-01

    Studies along the Mid-Atlantic Ridge (MAR) and East Pacific Rise (EPR) have shown seamount formation to be a strong function of spreading rate. At the MAR, seamounts are a dominant morphologic feature of the inner valley floor, while at the EPR seamounts are rarely observed within the neovolcanic zone. The Galapagos Spreading Center (GSC) provides an excellent location to test the influence of a hotspot on the process of seamount generation at a relatively constant spreading rate. In this study we use multi-beam bathymetry data acquired during the G-PRIME cruise in April-May, 2000 to examine the distribution of axial seamounts along the GSC with distance from the hotspot. We use a numerical algorithm to identify isolated volcanic edifices, by searching bathymetry for closed, concentric contours protruding above the surrounding seafloor. Seamount populations are fit with a maximum likelihood model to estimate the total number of seamounts per unit area, ν o, and the characteristic seamount height, β-1. The number of seamounts in the axial zone decreases significantly as the Galapagos hotspot is approached, suggesting a change from dominantly point-source to fissure-fed volcanism as magma supply increases. West of the 95.5°W propagator, the total number of seamounts per unit area (ν o = 279+/-16 per 103 km2) is similar to values observed at the MAR. In comparison, east of 92.7°W, where magma supply is higher, seamount density (50+/-9 per 103 km2) is similar to observations at the fast-spreading EPR. Our results show that the transition from point-source to fissure-fed eruptions occurs gradually, in contrast to the "threshold" effect observed in axial magma chamber depth and axial morphology in which small changes in magma supply result in large changes in these variables. In summary, the western GSC displays the same range in seamount density observed along the global mid-ocean ridge system suggesting that both spreading rate and magma supply are important

  11. Geological and petrologic evolution of seamounts near the EPR based on submersible and camera study

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey; Smith, Terri L.; Niu, Yaoling

    1989-09-01

    Observations from 17 ALVIN dives and 14 ANGUS runs plus laboratory study of basalt samples collected with ALVIN help to constrain the morphologic, volcanic and petrologic evolution of four seamounts near the East Pacific Rise (EPR). Comparison among the four volcanoes provides evidence for a general pattern of near-EPR seamount evolution and shows the importance of sedimentation, mass wasting, hydrothermal activity and other geologic processes that occur on submerged oceanic volcanoes. Seamount 5, closest to the EPR (1.0 Ma) is the youngest seamount and may still be active. Its summit is covered by fresh lavas, recent faults and hydrothermal deposits. Seamount D is on crust 1.55 Ma and is inactive; like seamount 5, it has a breached caldera and is composed exclusively of N-MORB. Seamounts 5 and D represent the last stages of growth of typical N-MORB-only seamounts near the EPR axis. Seamounts 6 and 7 have bumpy, flattish summits composed of transitional and alkalic lavas. These lavas probably represent caldera fillings and caps overlying an edifice composed of N-MORB. Evolution from N-MORB-only cratered edifices to the alkalic stage does not occur on all near-EPR seamounts and may be favored by location on structures with relative-motion-parallel orientation.

  12. Subducted seamounts and recent earthquakes beneath the central Cascadia forearc

    USGS Publications Warehouse

    Tréhu, Anne M.; Blakely, Richard J.; Williams, Mark C.

    2012-01-01

    Bathymetry and magnetic anomalies indicate that a seamount on the Juan de Fuca plate has been subducted beneath the central Cascadia accretionary complex and is now located ∼45 km landward of the deformation front. Passage of this seamount through the accretionary complex has resulted in a pattern of uplift followed by subsidence that has had a profound influence on slope morphology, gas hydrate stability, and sedimentation. Based on potential-field data and a new three-dimensional seismic velocity model, we infer that this is the most recent of several seamounts subducted over the past several million years beneath this segment of Cascadia. More deeply subducted seamounts may be responsible for recent earthquake activity on the plate boundary in this region and for along-strike variations in the thickness of the subduction channel, which may affect coupling across the plate boundary.

  13. Pursuing a historical meteor shower

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; Sato, Mikiya; Kasuga, Toshihiro

    2006-11-01

    The strong outburst of the Phoenicids was witnessed by people in a Japanese expedition ship, Soya, in 1956. After that, this meteor shower has never been observed at this activity level. Although its parent comet has not been strictly identified, the possible candidate was the comet D/1819W1 (Blanpain) which appeared only once in 1819. A newly discovered asteroid 2003WY25 becomes a clue to the mystery of this meteor shower. We introduce our result on the investigation of this meteor shower on the basis of the dust trail theory.

  14. Statistical self-similarity of hotspot seamount volumes modeled as self-similar criticality

    USGS Publications Warehouse

    Tebbens, S.F.; Burroughs, S.M.; Barton, C.C.; Naar, D.F.

    2001-01-01

    The processes responsible for hotspot seamount formation are complex, yet the cumulative frequency-volume distribution of hotspot seamounts in the Easter Island/Salas y Gomez Chain (ESC) is found to be well-described by an upper-truncated power law. We develop a model for hotspot seamount formation where uniform energy input produces events initiated on a self-similar distribution of critical cells. We call this model Self-Similar Criticality (SSC). By allowing the spatial distribution of magma migration to be self-similar, the SSC model recreates the observed ESC seamount volume distribution. The SSC model may have broad applicability to other natural systems.

  15. Petrogenesis of Near-Ridge Seamounts: AN Investigation of Mantle Source Heterogeneity and Melting Processes

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Lundstrom, C.; Clague, D. A.

    2010-12-01

    Near-ridge (NR) seamounts offer an important opportunity to study lavas that have similar sources to ridge basalts but have been less affected by fractionation and homogenization that takes place at adjacent spreading ridge axes. By studying lavas erupted at these off-axis sites, we have the potential to better understand source heterogeneity and melting and transport processes that can be applied to the ridge system as a whole. One purpose of our study is to investigate the role of dunite conduits in the formation of near-ridge seamount chains. We believe that near-ridge seamounts could form due to focusing of melts in dunite channels located slightly off-axis and that such conduits may be important in the formation and transport of melt both on- and off-axis (Lundstrom et al., 2000). New trace element and isotopic analyses of glasses from Rogue, Hacksaw, and T461 seamounts near the Juan de Fuca Ridge (JdFR), the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N, and the Vance Seamounts next to the JdFR ~45°N provide a better understanding of the petrogenesis of NR seamounts. Our data indicate that lavas from these seamounts have diverse incompatible trace element compositions that range from highly depleted to slightly enriched in comparison to associated ridge basalts. Vance A lavas (the oldest in the Vance chain) have the most enriched signatures and lavas from Rogue seamount on the JdFR plate have the most depleted signatures. Sr-Nd-Pb isotopic ratios indicate that NR seamount lava compositions vary within the chains as well as within individual seamounts, and that there is some mixing between heterogeneous, small-scale mantle sources. Using the program PRIMELT2.XLS (Herzberg and Asimow, 2008), we calculated mantle potential temperatures (Tp) for some of the most primitive basalts erupted at these seamounts. Our data indicate that NR seamount lavas have Tp values that are only slightly higher than that of average ambient mantle. Variations in

  16. eMeteorNews: website and PDF journal

    NASA Astrophysics Data System (ADS)

    Roggemans, P.; Kacerek, R.; Koukal, J.; Miskotte, K.; Piffl, R.

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews was prepared in April 2016. The year 2016 will be a test period for this project. The mission statement of this project is: "Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work."

  17. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    NASA Astrophysics Data System (ADS)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be

  18. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  19. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

    PubMed Central

    Geersen, Jacob; Ranero, César R.; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  20. Magnetic anomaly study and geologic implications for Gilbert and Tokelau seamounts, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sager, W. W.; Koppers, A. A.; Staudigel, H.

    2006-12-01

    The Gilbert and Tokelau seamounts are linear chains in the central Pacific with trends similar to the Emperor seamounts, implying the two poorly-known chains were formed by the same mechanism, widely regarded as hotspot volcanism. Multibeam bathymetry and magnetic data were collected over many Gilbert and Tokelau seamounts and have been used to make magnetic models to help understand the geologic evolution of the two chains. Magnetic models were done for 10 Gilbert and 10 Tokelau seamounts. Gilbert seamounts gave about equal number of reversed and normal polarity models and several have complex magnetizations that may indicate a mixture of opposing polarity rocks. Both observations imply formation during a time that included multiple geomagnetic reversals, consistent with radiometric dates from dredged rocks (65-72 Ma) [Koppers, A., and H. Staudigel, Science, 307, p. 905, 2005]. In the Tokelau chain, large volcanic edifices with summit islands (Howland, Baker, Fakaofu) also appear to have complex anomalies, making interpretation difficult. These volcanoes may also have formed over periods of time including magnetic reversals. The rest of the modeled central Tokelau seamounts have simpler magnetic anomalies and all but one is reversely polarized (6 reversed, 1 normal). Although this bias seems unusual if the geomagnetic field spent equal time in both polarities, it is consistent with radiometric ages of 59-66 Ma [Koppers and Staudigel, 2005], a period of dominantly reversed polarity. Paleomagnetic poles calculated from both seamount groups fall along the N-S trend of the Late Cretaceous to Cenozoic Pacific apparent polar wander path, consistent with Latest Cretaceous or early Cenozoic radiometric ages. More than half of the poles lie >30° east of the accepted polar wander path, perhaps indicating that the early Cenozoic polar wander path should be farther east. Ten (55%) of the paleomagnetic poles have lower latitudes than expected for Late Cretaceous or Cenozoic

  1. New radio meteor detecting and logging software

    NASA Astrophysics Data System (ADS)

    Kaufmann, Wolfgang

    2017-08-01

    A new piece of software ``Meteor Logger'' for the radio observation of meteors is described. It analyses an incoming audio stream in the frequency domain to detect a radio meteor signal on the basis of its signature, instead of applying an amplitude threshold. For that reason the distribution of the three frequencies with the highest spectral power are considered over the time (3f method). An auto notch algorithm is developed to prevent the radio meteor signal detection from being jammed by a present interference line. The results of an exemplary logging session are discussed.

  2. Why to start with eMeteorNews?

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews has been prepared in May 2016. The year 2016 will be a test period for this project. The mission statement of this project is: “Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work.”

  3. Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.

    2013-12-01

    In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.

  4. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  5. The Pliocene seamount series of La Palma/Canary Islands

    NASA Astrophysics Data System (ADS)

    Staudigel, Hubert; Schmincke, Hans-Ulrich

    1984-12-01

    A Pliocene submarine series of alkali basaltic pillow lavas, hyaloclastites, and breccias (A), a sheeted dike swarm (B), and a basal suite of gabbro and ultramafic rocks (C) from La Palma (Canary Islands) is interpreted as a cross section through an uplifted seamount. This series has been tilted to its present orientation of 50°/230° (plunge and azimuth), probably by upwarping due to intrusions in the central portion of the island. The basal plutonic complex (C) also includes intrusives coeval with up to 2000 m of younger subaerial alkali basaltic lavas unconformably overlying the submarine series. The plutonic suite (C) is overlain abruptly by more than 1800 m of sills (B), 0.4-1 m thick on average, with minor screens of lavas and breccias. Extrusives (A) form a 1750 m thick sequence of pillow lavas, breccias, and hyaloclastites. The clastic rocks increase in abundance upward and are of four main types: (1) breccias, consisting of partly broken pillows, formed nearly in situ, (2) heterolithologic pillow fragment breccias, (3) hyaloclastites composed dominantly of highly vesicular lapilli and ash sized shards, the latter thought to have formed by near surface explosive eruptions and been subsequently transported downslope by mass flows, (2) and (3) being interpreted to have been resedimented, and (4) pillow scoria breccias from the upper 700 m of the extrusive section consisting of amoeboidal, highly vesicular "pillows" and lava stringers and local bombs, probably formed by cracking and "bleeding" of gas-rich expanding pillow lava and some shallow submarine/subaerial lava fountaining. The extrusive series is chemically and mineralogically crudely zoned, with the most differentiated rocks (metatrachytes and mugearites) at the base and most picritic lavas occurring near the top of the series. Subsequent to emplacement, the entire extrusive and intrusive series has been hydrothermally altered, the lower part to greenschist and the upper part to smectite

  6. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  7. Seasonal Variation in Meteor Decay Time Profiles Measured by a Meteor Radar at King Sejong Station (62°S, 58°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Lee, C.; Jee, G.

    2008-12-01

    A VHF meteor radar at King Sejong Station (62°S, 58°W), Antarctica has been detecting echoes from more than 20,000 meteors per day since March 2007. Meteor echoes are decayed typically within seconds as meteor trail plasma spread away or are neutralized. Assuming that diffusion is the only process for decay of meteor echo signals, the atmospheric temperatures and pressures have been inferred from the measured meteor decay times at the peak meteor altitudes around 90 km. In this study, we analyze altitude profiles of meteor decay times in each month, which clearly show a maximum at 80 ~ 85 km. The maximum appears at higher altitude during austral summer than winter. The fast decay of meteor signals below the maximum cannot be explained by atmospheric diffusion which decreases with increasing atmospheric densities. We find that the measured meteor decay time profiles can be fitted with a loss rate profile, in addition to diffusion, with a peak altitude of 55 ~ 73 km and a peak rate of 4 ~ 15 sec- 1. The additional loss of meteor plasma may be due to electron absorption by icy particles in the mesosphere, but the estimated peak altitudes are much lower than the layers of NLC or PME. The estimated peak loss rates seem to be too large to be accounted by absorption by icy or dust particles. We will discuss other processes to explain the fast meteor times and their variation over season.

  8. 75 FR 69015 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish; Measures To Rebuild...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    .... 100618274-0543-03] RIN 0648-AY92 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish... this final rule is necessary for the conservation and management of Hawaii seamount and groundfish..., Fishing, Hancock seamounts, Hawaii, Seamount groundfish. Dated: November 4, 2010. Samuel D. Rauch III...

  9. Modeling Meteor Flares for Spacecraft Safety

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven

    2017-01-01

    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  10. Meteor showers in review

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2017-09-01

    Recent work on meteor showers is reviewed. New data is presented on the long duration showers that wander in sun-centered ecliptic coordinates. Since the early days of meteor photography, much progress has been made in mapping visual meteor showers, using low-light video cameras instead. Now, some 820,000 meteoroid orbits have been measured by four orbit surveys during 2007-2015. Mapped in sun-centered ecliptic coordinates in 5° intervals of solar longitude, the data show a number of long duration (>15 days) meteor showers that have drifting radiants and speeds with solar longitude. 18 showers emerge from the antihelion source and follow a drift pattern towards high ecliptic latitudes. 27 Halley-type showers in the apex source move mostly towards lower ecliptic longitudes, but those at high ecliptic latitudes move backwards. Also, 5 low-speed showers appear between the toroidal ring and the apex source, moving towards the antihelion source. Most other showers do not last long, or do not move much in sun-centered ecliptic coordinates. The surveys also detected episodic showers, which mostly document the early stages of meteoroid stream formation. New data on the sporadic background have shed light on the dynamical evolution of the zodiacal cloud.

  11. Infrasound detection of meteors

    NASA Astrophysics Data System (ADS)

    ElGabry, M. N.; Korrat, I. M.; Hussein, H. M.; Hamama, I. H.

    2017-06-01

    Meteorites that penetrate the atmosphere generate infrasound waves of very low frequency content. These waves can be detected even at large distances. In this study, we analyzed the infrasound waves produced by three meteors. The October 7, 2008 TC3 meteor fell over the north Sudan Nubian Desert, the February 15, 2013 Russian fireball, and the February 6, 2016 Atlantic meteor near to the Brazil coast. The signals of these three meteors were detected by the infrasound sensors of the International Monitoring System (IMS) of the Comprehensive Test Ban Treaty Organization (CTBTO). The progressive Multi Channel Technique is applied to the signals in order to locate these infrasound sources. Correlation of the recorded signals in the collocated elements of each array enables to calculate the delays at the different array element relative to a reference one as a way to estimate the azimuth and velocity of the coming infrasound signals. The meteorite infrasound signals show a sudden change in pressure with azimuth due to its track variation at different heights in the atmosphere. Due to movement of the source, a change in azimuth with time occurs. Our deduced locations correlate well with those obtained from the catalogues of the IDC of the CTBTO.

  12. Problems in the design of multifunction meteor-radar networks

    NASA Astrophysics Data System (ADS)

    Nechitailenko, V. A.; Voloshchuk, Iu. I.

    The design of meteor-radar networks is examined in connection with the need to conduct experiments on a mass scale in meteor geophysics and astronomy. Attention is given to network architecture features and procedures of communication-path selection in the organization of information transfer, with allowance for the features of the meteor communication link. The meteor link is considered as the main means to ensure traffic in the meteor-radar network.

  13. Hahajima Seamount: an enigmatic tectonic block at the junction between Izu-Bonin and Mariana Trench

    NASA Astrophysics Data System (ADS)

    Tokunaga, W.; Fujioka, K.; Yokose, H.

    2005-12-01

    The Hahajima Seamount located at the junction between Izu-Bonin and Mariana forearc slopes, represents a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, NE-SW and NW-SE. These lineaments are of faults based on the topographic cross sections and three-dimensional view (Whale's-eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin in the Philippine Sea whereas the latter is to the nearby transform fault on the subducting Pacific Plate underneath the Izu-Bonin arc-trench system. The rocks obtained from the Hahajima Seamount are ultramafic rocks mostly harzburgite, boninite, basalt, andesite, gabbro breccia and sedimentary rocks, which characterize an island arc and an ocean basin affinities. The gravity measurement and seismic reflection survey offer neither definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. The NW-SE trending fault and small scale serpentine flows were observed during the JAMSTEC submersible Shinkai 2000 dives at the Hahajima Seamount. The rectangular shape, size of seamount, various kinds of rocks and all the geophysical measurements strongly support that the Hahajima Seamount is not a simple serpentine seamount but a tectonic block unlike previously believed that was controlled by various tectonic movements.

  14. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão

    2013-12-01

    Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.

  15. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  16. Chemically diverse, sporadic volcanism at seamounts offshore southern and Baja California

    USGS Publications Warehouse

    Davis, A.S.; Gunn, S.H.; Bohrson, W.A.; Gray, L.-B.; Hein, J.R.

    1995-01-01

    Compositions of lavas from seven small to medium-sized seamounts offshore southern and Baja California, include low-K2O tholeiitic, transitional, and mildly to moderately alkalic basalt and their differentiates. The seamounts with these MORB-like lavas are inferred to have formed at or near the spreading center. Based on 40Ar/39Ar laser fusion techniques, MORB-like lava from one of the northern edifices is as old as the underlying oceanic crust (>20 Ma), indicating that it originated at a spreading center. Other seamount lava ages are much younger than the oceanic crust on which they reside. Some of the seamounts with transitional and alkalic lavas may have formed as part of a short, age-progressive chain formed by a short-lived mantle plume. Many others, may have resulted from upwelling mantle diapirs in response to localized extension. -from Authors

  17. Meteor Shower Forecasting for Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.; Campbell-Brown, Margaret D.

    2017-01-01

    Although sporadic meteoroids generally pose a much greater hazard to spacecraft than shower meteoroids, meteor showers can significantly increase the risk of damage over short time periods. Because showers are brief, it is sometimes possible to mitigate the risk operationally, which requires accurate predictions of shower activity. NASA's Meteoroid Environment Office (MEO) generates an annual meteor shower forecast that describes the variations in the near-Earth meteoroid flux produced by meteor showers, and presents the shower flux both in absolute terms and relative to the sporadic flux. The shower forecast incorporates model predictions of annual variations in shower activity and quotes fluxes to several limiting particle kinetic energies. In this work, we describe our forecasting methods and present recent improvements to the temporal profiles based on flux measurements from the Canadian Meteor Orbit Radar (CMOR).

  18. Palaeointensity determinations, palaeodirections and magnetic properties of basalts from the Emperor seamounts

    NASA Astrophysics Data System (ADS)

    Carvallo, Claire; Özdemir, Özden; Dunlop, David J.

    2004-01-01

    We measured palaeodirections and palaeointensities by the Thellier method on 93 samples from three of the Emperor seamounts: 20 from Detroit seamount (81 Ma), 48 from Nintoku seamount (56 Ma) and 25 from Koko seamount (48 Ma). Reliable palaeodirections obtained from three lava flows on Nintoku seamount give an average palaeolatitude of 32.7°, which is different from the present-day latitude of Hawaii and supports the hypothesis of a moving hotspot. According to the selection criteria traditionally used in palaeointensity determination, 17 samples give a reliable result. The samples show a very wide variety in unblocking temperatures, revealing an important variation in titanium content and the oxidation state of titanomagnetites. In order to assess the reliability of the palaeofield recording in the accepted samples, we carried out measurements of saturation isothermal remanent magnetization at low temperature and thermomagnetic curves. We found Curie temperatures varying from 250 to 580 °C, not only between seamounts but even within one lava flow. Thermomagnetic curves enabled us to identify titanomaghemite in several lava flows. After rejecting the results from samples showing evidence of maghemitization, only four samples, all from Nintoku seamount, can be considered as truly reliable. The palaeointensity values range between 34.2 and 36.9 μT. The low virtual axial dipole moment (VADM) values calculated from the palaeofield values are consistent with the most reliable VADM estimates in this time range and they are very close to the average VADM in the 0.3-300 Ma time interval.

  19. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  20. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  1. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera

  2. Meteoric 10Be in soil profiles - A global meta-analysis

    USGS Publications Warehouse

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  3. The genus Diphasia L. Agassiz, 1862 (Cnidaria, Hydrozoa) in Northwest Africa.

    PubMed

    Gil, Marta; Ramil, Fran

    2017-12-12

    This paper is the result of the study of large collections of Sertulariidae Lamouroux, 1812 (Cnidaria, Hydrozoa, Hydroidolina) obtained from continental margins of Northwest Africa by several Spanish and Norwegian surveys between 2004 and 2012. Material collected from Lusitanian seamounts by the French Seamount 1 expedition and from the Great Meteor Bank by the German survey Meteor 42/3 were also examined. A total of 12 species belonging to the genus Diphasia were studied and illustrated, and four new species were described: Diphasia leonisae n. sp., Diphasia saharica n. sp., Diphasia africana n. sp., and Diphasia anaramosae n. sp. Diphasia attenuata, Diphasia fallax and Diphasia tropica were not represented in the collections. However, they have been discussed here because they had been previously reported in the study area or in the eastern North Atlantic. One species was only identified to the genus level. The syntype material of Diphasia attenuata var. robusta Billard, 1924, neotype of Diphasia delagei Billard, 1912, and comparison material for the other species that have been preserved in several zoological collections were also examined. Besides, an identification key for these species is provided.

  4. On associations of Apollo asteroids with meteor streams

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Stohl, Jan; Vana, R.

    1992-01-01

    Potential associations of Apollo asteroids with meteor streams are searched on the basis of the orbital parameters comparison. From all Apollo asteroids discovered through 1991 June those are only selected for further analysis whose orbits approach to less than 0.1 AU to the Earth's orbit. Their orbits are compared with precise photographic orbits of individual meteors from the Meteor Data Center in Lund. Results on the associations of asteroids with meteor streams are presented and discussed.

  5. ScienceCast 20: Summer Meteor Shower

    NASA Image and Video Library

    2011-07-21

    If you're camping out and can't sleep, maybe your slumber is being interrupted by the flash of meteors. The summer Perseid meteor shower is getting underway as Earth enters the debris stream from comet Swift-Tuttle.

  6. The archiving of meteor research information

    NASA Technical Reports Server (NTRS)

    Nechitailenko, V. A.

    1987-01-01

    The results obtained over the past years under GLOBMET are not reviewed but some of the problems the solution of which will guide further development of meteor investigation and international cooperation in this field for the near term are discussed. The main attention is paid to problems which the meteor community itself can solve, or at least expedite. Most of them are more or less connected with the problem of information archiving. Information archiving deals with methods and techniques of solving two closely connected groups of problems. The first is the analysis of data and information as an integral part of meteor research and deals with the solution of certain methodological problems. The second deals with gathering data and information for the designing of models of the atmosphere and/or meteor complex and its utilization. These problem solutions are discussed.

  7. The 2014 May Camelopardalid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  8. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii bottomfish and seamount groundfish fisheries. [Reserved] 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... WESTERN PACIFIC Hawaii Fisheries § 665.200 Hawaii bottomfish and seamount groundfish fisheries. [Reserved] ...

  9. Erratic Continental Rocks on Volcanic Seamounts off California and Oregon

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Davis, A. S.

    2006-12-01

    The seamounts off the California continental margin, and those well offshore of California and Oregon that formed near mid-ocean ridges, are all constructed of basaltic lava flows and volcanic breccias and sandstones. However, explorations of these seamounts using dredges, and more recently, the remotely operated vehicle Tiburon, frequently recover rocks of a wide assortment of continental lithologies including gabbro, granodiorite, silicic volcanics, limestone, dolomite, and metamorphic rocks. These rocks are often rounded like river and beach cobbles, and the softer rocks are bored as by worms or bivalves. They are covered with manganese oxide crusts of thicknesses that range from a patina to several cm, approaching the thickness on the in-situ basaltic rocks. These rocks are often easier to collect than the basalts. We recognize these rocks to be erratics of continental origin. Erratics have been documented as being transported by icebergs at higher latitudes, but this mechanism is unlikely to be responsible for the erratics we have found as far south as 31.9° N. Three brief papers published by K.O. Emery from 1941 to 1954 proposed that such erratics found in many thick sections of fine-grained sedimentary sequences such as the Monterey Formation, were transported long distances by kelp holdfasts, tree roots, or in the guts of pinnipeds. We propose that these vectors also transport erratics to seamounts, where they have been accumulating since the seamounts formed millions of years ago. Those seamounts that were once islands would have intercepted even more erratics along their shorelines while they stood above sea level. We have recovered or observed such erratics on the Vance Seamounts; Gumdrop, Pioneer, Guide, Davidson, Rodriguez, San Juan, Little Joe, and San Marcos Seamounts; on the muddy bottom of Monterey Bay; and on Northeast Bank and along the Patton Escarpment at the western edge of the California Borderland. These locations are as far as 250 nautical

  10. Morphology of GALÁPAGOS Platform Seamounts: a History of Emergence and Submergmence

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Wanless, V. D.; Fornari, D. J.; Jones, M.; Schwartz, D. M.; Richards, M. A.

    2016-12-01

    The morphology of submarine volcanoes is generally well-preserved due to the lack of erosion. However, when submarine volcanoes breach the sea surface, significant erosion can occur through wave action. New bathymetric mapping of seamounts around the Galápagos Islands of Santiago, Floreana, and Isabela show evidence of such subaerial erosion despite currently residing at depths >100m. We present results from a Sept. 2015 cruise to the Galapagos platform on the M/V Alucia including ship-based bathymetric mapping, AUV-based bathymetric and sidescan sonar mapping, and observations and samples from human-occupied submersible dives. The bathymetric mapping reveals dozens of previously unknown seamounts on the relatively unexplored shallow Galápagos platform (<1000m). Among these seamounts, many display evidence of having been previously above sea level including erosional benches (insular shelves) or entirely flat tops along, heavily eroded cobbles and beach deposits, and subaerially erupted lavas at depths from 120m to >200m. Seamounts, however, can develop flat tops without having been exposed above sea level. Thus, we combine a variety of data sets to determine whether seamounts were exposed above sea level and how the morphology of those seamounts can be discriminated from seamounts that have never reached the sea surface. Included in these data sets are measurements of cosmogenic Helium that provides an independent means to confirm which seamounts were emergent. The existence of broad areas of originally-subaerial lava flows on the Galápagos platform that are now at water depths >200 m requires that in addition to ice-age-related sea level excursions, there has also been at least 100m (and perhaps more) dynamic subsidence of the platform as it has passed over the active Galapagos plume. As a result, much of the platform may have been exposed subaerially during the past several million years, with significant implications for speciation among the endemic fauna.

  11. Photoacoustic Sounds from Meteors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spalding, Richard E.; Tencer, John; Sweatt, William C.

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appearmore » to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.« less

  12. Paleointensity Determinations of Basalts From The Emperor Seamounts

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Dunlop, D. J.; Özdemir, Ö.; Leg 197 Shipboard Scientific Party, Odp

    Thellier-Thellier paleointensity experiments were carried out on sixty-six basaltic samples coming from three Emperor seamounts (Detroit, Nintoku and Koko) drilled during ODP Leg 197. Twelve samples yield reliable results. One samples from De- troit seamount (81 Ma) gives a VADM of 3.06+/-0.26×1022 Am2. Six samples from Nintoku (56 Ma) give VADMs between 2.90+/-0.15×1022 and 6.70+/-0.38×1022 Am2. Five samples from Koko seamount (44 Ma) give VADMs between 1.12+/-0.74×1022 and 2.94+/-0.20×1022 Am2. The low success rate was due to chemical changes during the heatings. Samples have a wide distribution of unblocking temperatures and bulk susceptibility variations during heating, revealing an important variation in oxidation state and titanium content with depth and between seamounts. In sea­floor basalts, low­temperature oxidation of ti- tanomagnetite can replace the original thermoremanent magnetization by a chemical remanent magnetization of reduced intensity, yielding too low paleointensity values. Therefore we need to do measurements such as low­temperature properties and ther- momagnetic curves in order to identify the magnetic minerals and assess the reliability of the paleointensity determinations. However, assuming that the accepted samples did not undergo any maghemitization, the generally low VADM values we measured are in agreement with other records of paleointensities in this time range.

  13. Seamount Hydrothermal Systems as Analogies for Ocean Worlds: Reaction Paths Throughout the Lo'ihi Seamount (Hawaii Archipelago)

    NASA Astrophysics Data System (ADS)

    Milesi, V.; Shock, E.

    2018-05-01

    Thermodynamic modeling is performed to investigate the possible reaction paths of sea water throughout the Lo'ihi seamount and the associated geochemical supplies of energy that can support autotrophic microbial communities.

  14. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments

    PubMed Central

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  15. Meteors with anomalous apparent heights from TV observations in Kyiv

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2017-12-01

    Basing on additional studying and précised processing of video-records of double-station meteor TV observations in Astronomical Observatory of Taras Shevchenko National University of Kyiv the selection of meteors with anomalous photometrical and kinematical characteristics has been carried out. A special attention was paid to the registration of meteors on extreme heights exceeding 130km. In opposite to practically proved at the moment facts about appearance of fast bright bolides created by massive bodies belonging to Leonids, Perseids and Orionids streams on heights over 130-135km, and up to even 160-195km we obtained the confirmation of appearance on the anomalous heights of low-light meteors of masses 10-3g. In 1993 during observations of Perseid meteor shower we registered for the first time the shower meteor with apparent height of 136.84 - 0.12km. In 2001 and 2003 during September observations of sporadic meteors we registered only one meteor from 98 on the height over 135km. During observations of Leonids meteor storm in 2002 we registered five relatively low-light meteors belonging to the shower with apparent heights exceeding 135-140km with masses 10^-3 g.

  16. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus-Wake seamount chain

    NASA Astrophysics Data System (ADS)

    Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi

    2010-10-01

    Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.

  17. Fish Biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An Updated Database

    PubMed Central

    Pinheiro, Hudson T.; Mazzei, Eric; Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Carvalho-Filho, Alfredo; Braga, Adriana C.; Costa, Paulo A. S.; Ferreira, Beatrice P.; Ferreira, Carlos Eduardo L.; Floeter, Sergio R.; Francini-Filho, Ronaldo B.; Gasparini, João Luiz; Macieira, Raphael M.; Martins, Agnaldo S.; Olavo, George; Pimentel, Caio R.; Rocha, Luiz A.; Sazima, Ivan; Simon, Thiony; Teixeira, João Batista; Xavier, Lucas B.; Joyeux, Jean-Christophe

    2015-01-01

    Despite a strong increase in research on seamounts and oceanic islands ecology and biogeography, many basic aspects of their biodiversity are still unknown. In the southwestern Atlantic, the Vitória-Trindade Seamount Chain (VTC) extends ca. 1,200 km offshore the Brazilian continental shelf, from the Vitória seamount to the oceanic islands of Trindade and Martin Vaz. For a long time, most of the biological information available regarded its islands. Our study presents and analyzes an extensive database on the VTC fish biodiversity, built on data compiled from literature and recent scientific expeditions that assessed both shallow to mesophotic environments. A total of 273 species were recorded, 211 of which occur on seamounts and 173 at the islands. New records for seamounts or islands include 191 reef fish species and 64 depth range extensions. The structure of fish assemblages was similar between islands and seamounts, not differing in species geographic distribution, trophic composition, or spawning strategies. Main differences were related to endemism, higher at the islands, and to the number of endangered species, higher at the seamounts. Since unregulated fishing activities are common in the region, and mining activities are expected to drastically increase in the near future (carbonates on seamount summits and metals on slopes), this unique biodiversity needs urgent attention and management. PMID:25738798

  18. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  19. Major and Daytime Meteor Showers using Global Radio Meteor Observations covering the period 2001-2016

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Steyaert, Christian

    2017-10-01

    With radio, it is possible to observe meteor activity even in bad weather and during daytime. The research in this paper succeeded in detecting the important stream features, such as peak time, peak level and FWHM (Full Width Half Maximum) in not only major streams but also daytime meteor showers, using worldwide radio forward scattering data covering the period 2001-2016.

  20. Genesis of Central Indian Ocean basin seamounts: morphological, petrological, and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar D.; Amonkar, Ankeeta Ashok; Das, Pranab

    2018-04-01

    We present the petrological investigation carried out of the seamounts located between water depths of 4300 and 5385 m in the Central Indian Ocean Basin (CIOB). The seamounts have variable shapes (conical and elongated) and heights (625-1200 m). The basalts have a glassy veneer that forms the outer rind, while the holocrystalline interior shows variable textures. The basalts are plagioclase phyric and compositionally have low FeO* (8.0-10.5 wt%) and TiO2 (1.3-2.0 wt%), and variable K2O (0.1-1.0 wt%) contents and are slightly enriched in the light rare-earth elements. These characteristics are similar to the basalts from the CIOB seafloor and the Central Indian and Southeast Indian Ridges. These facts attest to the simultaneous formation of the CIOB seafloor and associated seamounts that shared a common source between 56 and 51 Ma when the spreading (half) rate was 95 mm/year. Similar to the East Pacific Rise (EPR), the source melt was perhaps ferrobasalts which over a period of time fractionated to N-MORB during the emplacement of the seamounts. The production of the seamounts may have involved a periodic tapping of a regularly replenished and shallow seated source melt. These basalts from the older seamounts of the CIOB are analogous to their present-day counterparts that form at the fast-spreading EPR and other locales in the world oceans.

  1. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... No. Name Latitude Longitude 1 Dickins Seamount 54 39.00 N 136 48.00 W 54 39.00 N 137 9.00 W 54 27.00 N 137 9.00 W 54 27.00 N 136 48.00 W 2 Denson Seamount 54 13.20 N 137 6.00 W 54 13.20 N 137 36.00 W 53 57.00 N 137 36.00 W 53 57.00 N 137 6.00 W 3 Brown Seamount 55 0.00 N 138 24.00 W 55 0.00 N 138 48...

  2. Constraining the Physical Properties of Meteor Stream Particles by Light Curve Shapes Using the Virtual Meteor Observatory

    NASA Technical Reports Server (NTRS)

    Koschny, D.; Gritsevich, M.; Barentsen, G.

    2011-01-01

    Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.

  3. A spreadsheet that calculates meteor orbits

    NASA Astrophysics Data System (ADS)

    Langbroek, M.

    2004-08-01

    The author has written an MS Excel spreadsheet application called Metorb08.xls which calculates a meteor's orbital elements from its apparent radiant position and initial speed. It can be downloaded from URL http://home.wanadoo.nl/marco.langbroek along with a suite of other meteor-related Excel applications.

  4. CAMS confirmation of previously reported meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  5. The California All-sky Meteor Surveillance (CAMS) System

    NASA Astrophysics Data System (ADS)

    Gural, P. S.

    2011-01-01

    A unique next generation multi-camera, multi-site video meteor system is being developed and deployed in California to provide high accuracy orbits of simultaneously captured meteors. Included herein is a description of the goals, concept of operations, hardware, and software development progress. An appendix contains a meteor camera performance trade study made for video systems circa 2010.

  6. Present State and Prospects for the Meteor Research in Ukraine

    NASA Astrophysics Data System (ADS)

    Shulga, O.; Voloshchuk, Y.; Kolomiyets, S.; Cherkas, Y.; Kimakovskay, I.; Kimakovsky, S.; Knyazkova, E.; Kozyryev, Y.; Sybiryakova, Y.; Gorbanev, Y.; Stogneeva, I.; Shestopalov, V.; Kozak, P.; Rozhilo, O.; Taranukha, Y.

    2015-03-01

    ODESSA. Systematical study of the meteor events are being carried out since 1953. In 2003 complete modernization of the observing technique was performed, and TV gmeteor patrolh on the base of WATEC LCL902 cameras was created. @ wide variety of mounts and objectives are used: from Schmidt telescope F = 540 mm, F/D = 2.25 (field of view FOV = (0.68x0.51) deg, star limiting magnitude SLM = 13.5 mag, star astrometric accuracy 1-2 arcsec) up to Fisheye lenses F = 8 mm, F/D = 3.5 (FOV = (36x49) deg, SLM = 7 mag). The database of observations that was collected between 2003 and 2012 consists of 6176 registered meteor events. Observational programs on basis and non-basis observations in Odessa (Kryzhanovka station) and Zmeiny island are presented. Software suite of 12 programs was created for processing of meteor TV observations. It enables one to carry out the whole cycle of data processing: from image preprocessing up to orbital elements determination. Major meteor particles research directions: statistic, areas of streams, precise stream radiant, orbit elements, phenomena physics, flare appearance, wakes, afterglow, chemistry and density. KYIV. The group of meteor investigations has been functioning more than twenty years. The observations are carried out simultaneously from two points placed at the distance of 54 km. Super-isocon low light camera tubes are used with photo lens: F = 50mm, F/D = 1.5 (FOV = (23.5 x 19.0) deg, SLM = 9.5 mag), or F = 85, F/D = 1.5 (FOV = (13x11) deg, SLM = 11.5 mag). Astrometry, photometry, calculation of meteor trajectory in Earth atmosphere and computation of heliocentric orbit are realized in developed gFalling Starh software. KHARKOV. Meteor radio-observations have begun in 1957. In 1972, the radiolocation system MARS designed for automatic meteor registration was recognized as being the most sensitive system in the world. With the help of this system 250 000 faint meteors (up to 12 mag) were registered between 1972 and 1978 (frequency

  7. IAU Meteor Data Center-the shower database: A status report

    NASA Astrophysics Data System (ADS)

    Jopek, Tadeusz Jan; Kaňuchová, Zuzana

    2017-09-01

    Currently, the meteor shower part of Meteor Data Center database includes: 112 established showers, 563 in the working list, among them 36 have the pro tempore status. The list of shower complexes contains 25 groups, 3 have established status and 1 has the pro tempore status. In the past three years, new meteor showers submitted to the MDC database were detected amongst the meteors observed by CAMS stations (Cameras for Allsky Meteor Surveillance), those included in the EDMOND (European viDeo MeteOr Network Database), those collected by the Japanese SonotaCo Network, recorded in the IMO (International Meteor Organization) database, observed by the Croatian Meteor Network and on the Southern Hemisphere by the SAAMER radar. At the XXIX General Assembly of the IAU in Honolulu, Hawaii in 2015, the names of 18 showers were officially accepted and moved to the list of established ones. Also, one shower already officially named (3/SIA the Southern iota Aquariids) was moved back to the working list of meteor showers. At the XXIX GA IAU the basic shower nomenclature rule was modified, the new formulation predicates ;The general rule is that a meteor shower (and a meteoroid stream) should be named after the constellation that contains the nearest star to the radiant point, using the possessive Latin form;. Over the last three years the MDC database was supplemented with the earlier published original data on meteor showers, which permitted verification of the correctness of the MDC data and extension of bibliographic information. Slowly but surely new database software options are implemented, and software bugs are corrected.

  8. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  9. The motion of radio meteor reflection point of Geminids

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kouji; Ishikawa, Toshiyuki; Hattori, Shinobu; Nishimura, Osamu; Miyazawa, Akiko; Yanagisawa, Masatoshi; Endo, Makoto; Kawamura, Masaki; Maruyama, Toshiyuki; Hosayama, Kai; Tokunaga, Mai; Maegawa, Kimio; Abe, Shinsuke

    2001-11-01

    Ham-band Radio Observation (HRO) is one of the observational techniques for the forward scatter observation of meteors. We observe the meteor echo with two-element loop antennas (F/B ratio is 10 dB) at the Nagano National College of Technology (Nagano, Japan) using the continuous transmission of beacon signals for meteor observations at 53.750 MHz, 50W from Fukui National College of Technology (Fukui, Japan). To prove that the radio echo is really the echo due to meteor, we have constructed the direction determination system using the paired antennas that can detect the direction roughly where the radio echo come from. The direction of one of this paired antennas was West toward Sabae and the other was East which has proved to be the most sensitive for this research. Using this system, we detected the change of the direction of reflection point of meteor radio signal of Geminids in 2000; from the westward to eastward before and after the culmination of the radiant which is consistent the formula of reflection point of meteors. At the same time, we detected the change of an intensity and a trend of the Doppler shift of meteor echoes. This result is consistent of the meteor wind data of MU Rader of Radio Science Center for Space & Atmosphere (RASC), Kyoto University.

  10. IODP Expedition 366 Reveals Widespread Seamount Subduction Effects in the Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Wheat, C. G.; Williams, T.

    2017-12-01

    Numerous studies of the subduction of seamounts at accretionary convergent plate margins show considerable vertical tectonic deformation in the forearc region. This includes embayment of the trench axis, steepening of the inner trench slope, the creation of troughs in the wake of the seamount track beneath the forearc sediment wedge, but hypotheses regarding the seismogenic consequences of these processes are frequently at odds. In the nonaccretionary Mariana convergent plate margin, it is clear that ridges crosscut the entire forearc region in commensurate dimensions with thicker areas of subducting Pacific plate. Furthermore, to-date deep-sea drilling results on ODP Legs 125 and 195 and on IODP Expedition 366 recovered seamount materials from 5 serpentinite mud volcanoes over a 640 km along-strike distance, within 90 km west of the trench axis, and from 13 to 19 km depth to slab. The location of the serpentinite mud volcanoes is always associated with fault lineaments. The faulting creates the conduits for eruption of mixtures of fluids from the subduction channel and fault gouge from both the subduction channel and the forearc lithosphere. Cores from IODP 366 confirm that seamount subduction and deformation is a temporally and spatially pervasive process on the Mariana forearc. The new findings provide windows on a continuum of the evolution of plate and seamount subduction from the trench to nearly 20 km depth within the subduction channel. Cased boreholes were deployed at the summits of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts) during Expedition 366. These, plus the existing borehole observatory at ODP Site 1200C on the active summit of Conical Seamount provide a means to monitor processes of subduction related to serpentinite mud volcanism of the Mariana forearc. Such drilling results and borehole observations impact current paradigms of lithospheric deformation, mass cycling

  11. Meteor Observation in a Group

    NASA Astrophysics Data System (ADS)

    Zimnikoval, Peter

    2010-08-01

    Observation in former Czechoslovakia has more than 100 years tradition. These activities started in Czech part of the republic, mostly. More serious and systematic observations began in second half of the 20-th century. Important role played the International Geophysical Year 1957/58. Part of this event was International Meteor Year. Czechoslovakian astronomers were accredited as main organisers of the IMY. It was improved observe methods for this reason. High role in meteor observations has establishment of public observatories in Slovakia in 70-ties, too. Beside of popularization of astronomy one of main task was to organise amateur observations. Important role had collaboration of Copernicus Observatory and planetarium Brno (now Czech republic) and observatory Banská Bystrica from 1972. Main purpose of the collaboration was organising of so-called National Meteor Expeditions. These expeditions runs till 1988. Tradition of expeditions continues in Slovakia until today.

  12. ScienceCast 73: 2012 Perseid Meteor Shower

    NASA Image and Video Library

    2012-08-09

    The Perseid meteor shower is underway. There's more to see than meteors, however, when the shower peaks on August 11th through 13th. The brightest planets in the solar system are lining up in the middle of the display.

  13. MST radar observations of Perseid meteor shower 2004

    NASA Astrophysics Data System (ADS)

    Venkata Phani Kumar, D.; Reddy, K. Chenna; Yellaiah, G.

    2006-09-01

    There was a special attention for Perseid meteor shower observations in view of the predictions of an intense activity on 11th August 2004 caused by a filament of dust drifting across the Earth's orbit. Results of a systematic study of Perseid meteor shower observations, carried out during 12-15 August 2004 using Indian MST radar are presented. Based on over 27 hours of observing time, we detected 2260 meteor echoes occurring between 80 km and 120 km with a mean height of 103 km. For our observations, the peak activity of the shower occured on 12/13 August, corresponding to solar longitude lambdao = 140.565± 0.16 with an average rate of 250 meteor echoes per hour. The SNR distribution of the echoes observed during the shower indicates that the smaller size meteoroids are more compared to larger size meteoroids in the perseid meteor stream. The three distinct peaks observed in the shower activity is presented and discussed.

  14. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  15. First 3-D simulations of meteor plasma dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2015-02-01

    Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.

  16. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  17. Detection of the Phoenicids meteor shower in 2014

    NASA Astrophysics Data System (ADS)

    Sato, Mikiya; Watanabe, Jun-ichi; Tsuchiya, Chie; Moorhead, Althea V.; Moser, Danielle E.; Brown, Peter G.; Cooke, William J.

    2017-09-01

    An appearance of the Phoenicids meteor shower was predicted in 2014 by using a dust trail simulation of an outburst of 1956. We detected Phoenicids meteors on December 2 through multiple observation methods. The NASA All Sky Fireball Network and the Southern Ontario Meteor Network detected five meteors of Phoenicids via video observation. The Canadian Meteor Orbit Radar (CMOR) found fourteen candidate meteors, eight of which were confirmed as Phoenicids. The observed radiant point is consistent with that of our model predictions. In addition to the above observations, a visual observation was carried out by the Japanese team near the Observatorio del Roque de los Muchachos (ORM) of Instituto de Astrofisica de Canarias (IAC) in La Palma Island. The obtained zenithal hourly rate (ZHR) was 16.4±4.9. The maximum ZHR was roughly estimated to be between 20 and 30, which indicates that the cometary activity of parent object 289P/Blanpain in the early 20th century was only about one fifth or one eighth as high as its activity in the late 18th and early 19th century. Accordingly, it seems to be the case that 289P/Blanpain is gradually transforming from a comet to a dormant object.

  18. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  19. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  20. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  1. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  2. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  3. The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.

    2011-01-01

    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el

  4. Radio Meteors Observations Techniques at RI NAO

    NASA Astrophysics Data System (ADS)

    Vovk, Vasyl; Kaliuzhnyi, Mykola

    2016-07-01

    The Solar system is inhabited with large number of celestial bodies. Some of them are well studied, such as planets and vast majority of big asteroids and comets. There is one group of objects which has received little attention. That is meteoroids with related to them meteors. Nowadays enough low-technology high-efficiency radio-technical solutions are appeared which allow to observe meteors daily. At RI NAO three methodologies for meteor observation are developed: single-station method using FM-receiver, correlation method using FM-receiver and Internet resources, and single-station method using low-cost SDR-receiver.

  5. Adaptive data rate capacity of meteor-burst communications

    NASA Astrophysics Data System (ADS)

    Larsen, J. D.; Melville, S. W.; Mawrey, R. S.

    The use of adaptive data rates in the meteor-burst communications environment is investigated. Measured results obtained from a number of meteor links are presented and compared with previous theoretical predictions. The contribution of various meteor trail families to throughput capacity are also investigated. The results show that the use of adaptive data rates can significantly increase the throughput capacity of meteor-burst communication systems. The greatest rate of increase in throughput with increase in operating rate is found at low operating rates. This finding has been confirmed for a variety of links and days. Reasonable correspondence is obtained between the predicted modified overdense model and the observed results. Overdense trails, in particular two trail types within the overdense family, are shown to dominate adaptive data throughput.

  6. Mesozooplankton respiration and community structure in a seamount region of the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Frederick, Leissing; Escribano, Ruben; Morales, Carmen E.; Hormazabal, Samuel; Medellín-Mora, Johanna

    2018-05-01

    Seamounts in the Juan Fernandez Ridge, as well as in other seamount regions in the eastern South Pacific and in the world oceans, remain poorly studied ecosystems in terms of structure and functioning. Here, community respiration by epipelagic mesozooplankton in three seamounts of the Juan Fernandez Ridge, including the O`Higgins Seamount close to the coastal upwelling zone and two oceanic seamounts near the Juan Fernandez Archipelago ( 33°S-78°W), was assessed. Oxygen consumption by mixed assemblages was estimated using continuous measurements of dissolved oxygen concentration under controlled temperature during onboard, short-term incubations (2-4 h). Mesozooplankton composition was analyzed with a ZooScan device and expressed in terms of community normalized size spectra, and taxa and size diversity (Shannon-Wiener index). Carbon-specific community respiration rates in the upper 100 m layer were in the range of 0.3-1.9 mg O2 m-2 d-1, indicating that up to 3.1% of the mesozooplankton biomass can be respired on a daily basis. The mesozooplankton community was dominated by small-size copepods but the proportions of small copepods, large copepods, and gelatinous zooplankton (mostly salps) changed between the seamounts, in association with modifications in taxa composition, size diversity, and the slope of the size spectrum. Community respiration was significantly correlated to these community descriptors, suggesting the composition of the pelagic community has a direct impact on the total amount of respired-C. Connectivity between the coastal upwelling zone and the Juan Fernandez Ridge region mediated by mesoscale activity, interacting with the seamounts, is suggested as a most important process in controlling zooplankton community structure and in turn community metabolism.

  7. Meteor studies in the framework of the JEM-EUSO program

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Acheli, A.; Adams, J. H.; Ahmad, S.; Ahriche, A.; Albert, J.-N.; Allard, D.; Alonso, G.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Aouimeur, W.; Arai, Y.; Arsene, N.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, A.; Belov, K.; Benadda, B.; Benmessai, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Boudaoud, R.; Bozzo, E.; Briggs, M. S.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Castellini, G.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Djemil, T.; Djenas, S. A.; Dulucq, F.; Dupieux, M.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fang, K.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Geary, J.; Gelmini, G.; Genci, J.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guehaz, R.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber, W.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Kang, D.; Kanouni, F.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kim, Sug-Whan; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larsson, O.; Lee, J.; Licandro, J.; Lim, H.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Martens, K.; Martín, Y.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mehrad, L.; Mendoza, M. A.; Merino, A.; Mernik, T.; Meseguer, J.; Messaoud, S.; Micu, O.; Mimouni, J.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Nadji, B.; Nagano, M.; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Nardelli, A.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Painter, W.; Panasyuk, M. I.; Panico, B.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perdichizzi, M.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pierog, T.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Rabanal, J.; Radu, A. A.; Rahmani, M.; Reardon, P.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sanchez, J. C.; Sánchez, J. L.; Santangelo, A.; Santiago Crúz, L.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Sledd, J.; Słomińska, K.; Sobey, A.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tahi, H.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2017-09-01

    We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.

  8. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  9. Observations on Gulf of Alaska seamount chains by multi-beam sonar

    NASA Astrophysics Data System (ADS)

    Smoot, N. Christian

    1985-06-01

    Geomorphic and age data are presented for the Dellwood, Denson, Dickins, Giacomini, and Ely seamounts, the Tsimshian Seachannel, and the southern Juan de Fuca Ridge with Brown Bear, Bear Cub, Grizzly Bear, and Cobb seamounts. Formational speculations extrapolated to a regional scale allow the strikes and outer limits of the seamount chains to be interpreted. Six of these chains are shown in the Gulf of Alaska, none of which conform to the Pratt-Welker or Kodiak-Bowie in the literature. Different strikes show the chains/plate to have rotated 23° about 17 m.y. ago. Morphology also shows that there are four less guyots in the Gulf than previously thought, and that, at least in the Gulf of Alaska, guyot heights do not necessarily reflect sealevel during erosion.

  10. METEOR - an artificial intelligence system for convective storm forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  11. Aeromagnetic Detection and Definition of Seamounts.

    DTIC Science & Technology

    1982-06-01

    airborne gravimetry may be feasible, al- though further testing is necessary. A possible difficulty may result from the problem of obtaining useful data on...high calcium precipitation . Hopefully, the curves will increase the "safety factor" by an under-estimation of seamount peak depths. Another problem

  12. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... Sanctuary Pt. 922, Subpt. M, App. F Appendix F to Subpart M of Part 922—Davidson Seamount Management Zone...

  13. Results of the IMO Video Meteor Network - June 2015

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciejewski, Maciej; Maslov, Mikhail

    2015-10-01

    Observations of the IMO Video Meteor Network are presented for 2015 June. Activity profile is presented for the Daytime Arietids, based on 28 shower meteors. The meteor rate of the Daytime Arietids between June 5 and 11, normalized for the limiting magnitude and angular velocity, is found to be about one quarter of that of the eta-Aquariids during their maximum.

  14. Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410

    NASA Astrophysics Data System (ADS)

    Rogers, A. D.; Alvheim, O.; Bemanaja, E.; Benivary, D.; Boersch-Supan, P.; Bornman, T. G.; Cedras, R.; Du Plessis, N.; Gotheil, S.; Høines, A.; Kemp, K.; Kristiansen, J.; Letessier, T.; Mangar, V.; Mazungula, N.; Mørk, T.; Pinet, P.; Pollard, R.; Read, J.; Sonnekus, T.

    2017-02-01

    The seamounts of the southern Indian Ocean remain some of the most poorly studied globally and yet have been subject to deep-sea fishing for decades and may face new exploitation through mining of seabed massive sulphides in the future. As an attempt to redress the knowledge deficit on deep-sea benthic and pelagic communities associated mainly with the seamounts of the South West Indian Ridge two cruises were undertaken to explore the pelagic and benthic ecology in 2009 and 2011 respectively. In this volume are presented studies on pelagic ecosystems around six seamounts, five on the South West Indian Ridge, including Atlantis Bank, Sapmer Seamount, Middle of What Seamount, Melville Bank and Coral Seamount and one un-named seamount on the Madagascar Ridge. In this paper, existing knowledge on the seamounts of the southwestern Indian Ocean is presented to provide context for the studies presented in this volume. An account of the overall aims, approaches and methods used primarily on the 2009 cruise are presented including metadata associated with sampling and some of the limitations of the study. Sampling during this cruise included physical oceanographic measurements, multibeam bathymetry, biological acoustics, and net sampling of phytoplankton, macrozooplankton and micronekton/nekton. The studies that follow reveal new data on the physical oceanography of this dynamic region of the oceans, and the important influence of water masses on the pelagic ecology associated with the seamounts of the South West Indian Ridge. New information on the pelagic fauna of the region fills an important biogeographic gap for the mid- to high-latitudes of the oceans of the southern hemisphere.

  15. Three-dimensional flexure modelling of seamounts near the Ogasawara Fracture Zone in the western Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Gook; Moon, Jai-Woon; Jung, Mee-Sook

    2009-04-01

    The geophysical data were obtained in 2000-2003 during a survey of seamounts near the Ogasawara Fracture Zone (OFZ) to the northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone showing 600-km-long right-lateral movement between the Pigafetta Basin (PB) and East Mariana Basin (EMB), and contains many seamounts (e.g. the Magellan Seamounts and the seamounts on the Dutton Ridge). Most seamounts in this study are newly mapped using modern multibeam echosounder (Seabeam 2000) and denoted sequentially by Korea Ocean Research and Development Institute (KORDI). OSM2, OSM4, OSM7, OSM8-1 and OSM8-2 seamounts of the study area are located in the OFZ which formed by the spreading ridge between the Izanagi and Pacific plates, and OSM5-1, Seascan, OSM6-1 and OSM6-2 seamounts in the PB which is a part of the oldest oceanic crust in the Pacific. In this study, the densities of seamounts and the elastic thickness values of lithosphere are estimated by using 3-D flexure and gravity modelling by considering several boundary conditions and a constant sediment layer. The infinite model with two different elastic thickness values is the best-fitting model and it indicates that the OFZ was mechanically coupled with plate of different elastic thickness values, probably after the reorganization of Izanagi-Pacific spreading zone. Very low elastic thickness values (5-10 km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of the lithosphere by widespread volcanism pulses, whereas higher elastic thickness values (15-20 km), relatively younger lithosphere, and old seamounts of the west study area are comparable with a simple cooling plate model. It implies that the west study area is outside the rejuvenation range of the lithosphere. In the flexure and gravity modelling, the different residual pattern of OSM6-1 and OSM6-2, which are joined, suggests that they have different

  16. Meteor Shower Records: A Reference Table of Observations from Previous Centuries

    NASA Astrophysics Data System (ADS)

    Koseki, M.

    2009-10-01

    Meteor history shows the complex nature of meteor showers. The author presents the Comae Berenicids as an example of the difficulties in defining meteor showers for visibility using different observational techniques. It is not useful to give a fixed or coded name to a 'meteor shower' because it may not be real and could lead observers to fictitious results.

  17. Are the Leonid Meteor Storms Coming?

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Yau, K.; Weissman, P. R.

    1995-01-01

    On Nov. 17, 1996 an extraordinary Leonid meteor storm (144,000 per hour) was witnessed by observers in central and western United States. With an orbital period of 33 years, the next return to perihelion will be Feb. 28, 1998. Because the distribution of the particles flying in formation with the parent comet is poorly known, no secure predictions can be made for Leonid meteor storms in the coming years.

  18. Magmatic Plumbing Systems in the Eastern Galápagos: Monogenetic Seamounts Surrounding San­tiago Island­

    NASA Astrophysics Data System (ADS)

    Schwartz, D. M.; Wanless, V. D.; Soule, S. A.; Kurz, M. D.

    2017-12-01

    The hotspot derived Galápagos Archipelago consists of innumerable subaerial and submarine volcanic features, ranging from monogenetic cones to complex multigenetic islands. The older, eastern islands of Santiago, Santa Cruz, and San Cristobal have remained active long since their transport off the hotspot center, and erupt variable lava compositions from distributed vent systems. Two recent cruises to the Galápagos by the E/V Nautilus (7/15) and M/V Alucia (8/15) mapped and sampled seamounts surrounding Santiago, to assess their origins and their relationship to the magmatic plumbing systems of the larger subaerial volcano. We collected 74 rock samples from 11 seamounts surrounding Santiago (18-588 m depth), by ROV and HOV and analyzed them for major and trace element concentrations, and 3He/4He. We have identified 34 seamounts with relief >100 m, resulting in a total seamount volume of 6.7 km3, which is 8% of the subaerial volume of Santiago Island (82 km3). The seamounts are comprised of relatively mafic (Mg# = 45-67), tholeiitic to mildly alkaline (K2O+Na2O = 1.4-5.4 wt%) basalts. Limited variability of trace element ratios at individual seamounts suggest that they are monogenetic in origin (e.g., RSD of [La/Sm]N at 10 seamounts < 5%). The highest density of seamounts is located off the island's eastern flank. These seamounts form multiple lineaments and are variably elongate (mean aspect ratio = 1.7) subparallel to their respective lineaments (mean elongation direction = 96°), and to the strike of the elliptical island of Santiago. Seamounts along single lineaments typically have similar trace element ratios, but variable chemistries between closely spaced lineaments suggests they were generated from different extents of melting (e.g., [Sm/Yb]N= 1.3-2.3) and mantle sources (3He/4He =8.5-11.9 RA; [La/Nb] N = 0.80-1.1). The compositions of these lavas, and those from more dispersed, circular (mean aspect ratio = 1.1) seamounts off the island's southwestern

  19. Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California.

    PubMed

    Jorgensen, Salvador J; Klimley, A Peter; Muhlia-Melo, Arturo; Morgan, Steven G

    2016-01-01

    Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a 'blue water' habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a 'fall assemblage' tracking warmer overall temperature, a 'spring assemblage' correlated with cooler temperature, and a 'year-round assemblage' with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts.

  20. ``Hiss, clicks and pops'' - The enigmatic sounds of meteors

    NASA Astrophysics Data System (ADS)

    Finnegan, J. A.

    2015-04-01

    The improbability of sounds heard simultaneously with meteors allows the phenomenon to remain on the margins of scientific interest and research. This is unjustified, since these audibly perceived electric field effects indicate complex, inconsistent and still unresolved electric-magnetic coupling and charge dynamics; interacting between the meteor; the ionosphere and mesosphere; stratosphere; troposphere and the surface of the earth. This paper reviews meteor acoustic effects, presents illustrating reports and hypotheses and includes a summary of similar and additional phenomena observed during the 2013 February 15 asteroid fragment disintegration above the Russian district of Chelyabinsk. An augmenting theory involving near ground, non uniform electric field production of Ozone, as a stimulated geo-physical phenomenon to explain some hissing `meteor sounds' is suggested in section 2.2. Unlike previous theories, electric-magnetic field fluctuation rates are not required to occur in the audio frequency range for this process to acoustically emit hissing and intermittent impulsive sounds; removing the requirements of direct conversion, passive human transduction or excited, localised acoustic `emitters'. Links to the Armagh Observatory All-sky meteor cameras, electrophonic meteor research and full construction plans for an extremely low frequency (ELF) receiver are also included.

  1. Species replacement dominates megabenthos beta diversity in a remote seamount setting.

    PubMed

    Victorero, Lissette; Robert, Katleen; Robinson, Laura F; Taylor, Michelle L; Huvenne, Veerle A I

    2018-03-07

    Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity.

  2. TV observations of the Perseid meteor shower in 2012-2013

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna P.; Bolgova, Galina T.

    2015-12-01

    The results of television meteor observations during the Perseid meteor shower activity in 2012-2013 are presented. The observations were carried out in the Moscow region using the television system PatrolCa - the patrol camera with the field of view of 56°×44° and limiting magnitude (for meteors) of +4m. The distribution of the Index of Meteors Activity of the Perseid meteor shower in 2012-2013 was estimated. The maximum activity occurs on August 12 with the Index of Meteors Activity (IMA) (λ=140.4°) 192 (±0.03)*103 particles to the Earth per 1 h in 2012 and 122 (±0.06)*103 particles to the Earth per 1 h in 2013 (λ=140.2°). In total for 91 meteoroids radiants, geocentric velocities and orbit parameters were calculated. The daily drift of Perseid radiant was determined. The dependence of the beginning and ending heights by absolute magnitude is presented.

  3. Meteor stream survey in the southern hemisphere using SAAMER

    NASA Astrophysics Data System (ADS)

    Janches, D.; da Silva, D.; Pifko, S.; Hormaechea, J.; Hocking, W.; Brunini, C.; Close, S.; Fritts, D.

    2014-07-01

    We present in this manuscript two meteor shower surveys in the Southern Hemisphere utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. For the first survey, we applied the statistical methodology developed by Jones and Jones (2006) to the data collected each day during 4 years and compiled the results into 1 composite representative year at 1-degree resolution in Solar Longitude. We then search for enhancements in the activity, which last for at least 3 days and evolve temporally as is expected for a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list (Janches et al., 2014). Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012. We also present a 1-year survey using a wavelet-transform approach (Galligan and Baggaley, 2002ab; Brown et al., 2008) of this new orbital dataset to isolate enhancements in radiant density in geocentric coordinates resulting in not only radiant information but shower orbital properties.

  4. The Tasmantid Seamounts: A window into the structural inheritance of ocean floor fabric

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Kalnins, L. M.; Watts, A. B.; Cohen, B. E.; Beaman, R. J.

    2015-12-01

    The extinct Tasman Sea spreading centre, active from 84--53 Ma, is intersected at a number of locations by the Tasmantid Seamount Chain. The chain, which extends for over 2000 km off the east coast of Australia, progressively increases in age from south to north with ages ranging between 6 Ma and ˜50 Ma. While thick sediment (˜1 km) obscures much of the northern Tasman Sea basement, detailed morphological and geophysical analyses of the seamounts reveal a strong correlation between tectonic setting, seamount orientation, and volcanic structure, despite the ≥20 Ma offset between spreading cessation and initial seamount emplacement. Morphologically, structural inheritance is evidenced by the contrast between two volcanic styles: 1) the rugged, predominantly fissure-fed, fabrics characterizing seamounts emplaced at inside corners of spreading segment-transform intersections; and 2) the conical seamounts with summit craters and isolated dyke-fed flank cones that develop off-axis. Furthermore, volcanic fabrics align closely with the principal stress directions expected for a spreading ridge system in which strong mechanical coupling occurs across transform faults. This suggests that the lithosphere is dissected by numerous deep faults, allowing magma to be channelled away from the site of melting along pre-existing structural trends. The generally low effective elastic thickness, TeT_e, (≤15 km) and lack of a plate age-TeT_e relationship along the chain indicate that structural inheritance is also the major control on lithospheric strength near the extinct spreading centre. While the importance of structural inheritance in controlling magmatic behaviour is commonly acknowledged in continental settings, these results clearly demonstrate the need to also consider it in the oceanic realm.The extinct Tasman Sea spreading centre, active from 84--53 Ma, is intersected at a number of locations by the Tasmantid Seamount Chain. The chain, which extends for over 2000 km off

  5. Meteor activity from 2001XQ on 2-3 December 2016?

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2016-04-01

    The minor shower 66 Draconid (541 SDD) which was discovered by the Croatian Meteor Network has a mean orbit based on 43 meteors, similar to the orbit of 2001 XD. The asteroid 2001 XD has an orbit typical for Jupiter family comets and therefore may be a dormant comet. The shower activity ranges from November 23 until December 21. All meteor observers are encouraged to pay attention to any possible meteors from this source, although no outburst or any anything spectacular has to be expected.

  6. Meteore 63 commercial seaplane

    NASA Technical Reports Server (NTRS)

    1927-01-01

    Societe Provencale de Constructions Aeronautiques, builder of the "Meteore 63" has constructed a three engine (biplane) seaplane which has met conditions for a seaworthy certificate of the first class.

  7. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  8. Meteor burst communications for LPI applications

    NASA Astrophysics Data System (ADS)

    Schilling, D. L.; Apelewicz, T.; Lomp, G. R.; Lundberg, L. A.

    A technique that enhances the performance of meteor-burst communications is described. The technique, the feedback adaptive variable rate (FAVR) system, maintains a feedback channel that allows the transmitted bit rate to mimic the time behavior of the received power so that a constant bit energy is maintained. This results in a constant probability of bit error in each transmitted bit. Experimentally determined meteor-burst channel characteristics and FAVR system simulation results are presented.

  9. On geoid heights derived from GEOS 3 altimeter data along the Hawaiian-Emperor seamount chain

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1979-01-01

    The geoid heights derived from preliminary GEOS 3 satellite radar altimeter data over the Hawaiian-Emperor seamount chain are examined. Two objectives are pursued: (1) to evaluate the contribution of the topography of the seamount chain and its compensation to the marine geoid; and (2) to determine whether geoid heights derived from GEOS 3 altimeter data can be used to provide information on isostasy at geological features such as the Hawaiian-Emperor seamount chain which formed as relatively young loads on the oceanic lithosphere. Short-wavelength geoid highs of 5-12 m over the crest of the seamount chain and geoid lows over flanking regions are observed. The geological undulations can be explained by a simple model in which the seamount-chain load is supported by a strong rigid lithospheric plate. The elastic thickness estimates agree with values based on surface ship gravity and bathymetry observations, and provide further support to the hypothesis that the elastic thickness acquired at a surface load depends on the temperature gradient of the lithosphere at the time of loading.

  10. Residency and Spatial Use by Reef Sharks of an Isolated Seamount and Its Implications for Conservation

    PubMed Central

    Barnett, Adam; Abrantes, Kátya G.; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (∼14 km away) and one grey reef shark completed a round trip of ∼250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef. PMID:22615782

  11. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    PubMed

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  12. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  13. Linear feature detection algorithm for astronomical surveys - II. Defocusing effects on meteor tracks

    NASA Astrophysics Data System (ADS)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko

    2018-03-01

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.

  14. Multi-Year CMOR Observations of the Geminid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  15. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.

    2015-01-01

    The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  16. Meteors: A Delivery Mechanism of Organic Matter to The Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Wilson, Mike A.; Packan, Dennis; Laux, Christophe O.; Krueger, Charles H.; Boyd, Iain, D.; Popova, Olga P.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.

  17. A test of the comet hypothesis of the Tunguska Meteor Fall - Nature of the meteor 'thermal' explosion paradox

    NASA Technical Reports Server (NTRS)

    Liu, V. C.

    1978-01-01

    The hypothesis that a comet was responsible for the Tunguska Meteor Fall is rejected because the hypothesis does not seem to account for the intense terminal spherical shock. A porous meteoroid model is proposed, and an analysis indicates that an entity of this type might produce an aerodynamic heat flux large enough to account for the terminal meteor explosion. It is suggested that the presence of olivine and of highly irregular macrostructure in meteors might indicate the presence of some porosity. For a highly porous meteoroid, it is postulated that during entry into the atmosphere the aerodynamic heat transfer at its external or pore walls would become so intensified as to cause either complete ablation with popping or a solid-liquid-vapor phase transition accompanied by an explosion.

  18. Open-source meteor detection software for low-cost single-board computers

    NASA Astrophysics Data System (ADS)

    Vida, D.; Zubović, D.; Šegon, D.; Gural, P.; Cupec, R.

    2016-01-01

    This work aims to overcome the current price threshold of meteor stations which can sometimes deter meteor enthusiasts from owning one. In recent years small card-sized computers became widely available and are used for numerous applications. To utilize such computers for meteor work, software which can run on them is needed. In this paper we present a detailed description of newly-developed open-source software for fireball and meteor detection optimized for running on low-cost single board computers. Furthermore, an update on the development of automated open-source software which will handle video capture, fireball and meteor detection, astrometry and photometry is given.

  19. Oceanic Sharks Clean at Coastal Seamount

    PubMed Central

    Oliver, Simon P.; Hussey, Nigel E.; Turner, John R.; Beckett, Alison J.

    2011-01-01

    Interactions between pelagic thresher sharks (Alopias pelagicus) and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by “circular-stance-swimming,” presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays. PMID:21423796

  20. Interactions between meteoric smoke particles and the stratospheric aerosol layer

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Marshall, L.; Brooke, J. S. A.; Dhomse, S.; Plane, J. M. C.; Feng, W.; Neely, R.; Bardeen, C.; Bellouin, N.; Dalvi, M.; Johnson, C.; Abraham, N. L.; Schmidt, A.; Carslaw, K. S.; Chipperfield, M.; Deshler, T.; Thomason, L. W.

    2017-12-01

    In-situ measurements in the Arctic, Antarctic and at mid-latitudes suggest a widespread presence of meteoric smoke particles (MSPs), as an inclusion within a distinct class of stratospheric aerosol particles. We apply the UM-UKCA stratosphere-troposphere composition-climate model, with interactive aerosol microphysics, to map the global distribution of these "meteoric-sulphuric particles" and explore the implications of their presence. Comparing to balloon-borne stratospheric aerosol measurements, we indirectly constrain the uncertain MSP flux into the upper mesosphere, and assess whether meteoric inclusion can explain observed refractory/non-volatile particle concentrations. Our experiments suggest meteoric-sulphuric particles are present at all latitudes, the Junge layer transitioning from mostly homogeneously nucleated particles at the bottom, to mostly meteoric-sulphuric particles at the top. We find MSPs exert a major influence on the quiescent Junge layer, with meteoric-sulphuric particles generally bigger than homogeneously nucleated particles, and therefore more rapidly removed into the upper troposphere. Resolving the smoke interactions weakens homogeneous nucleation in polar spring, reduces the quiescent sulphur burden, and improves comparisons to a range of different stratospheric aerosol measurements. The refractory nature of meteoric-sulphuric particles also means they "survive" ascent through the uppermost Junge layer, whereas homogeneously nucleated particles evaporate completely. Simulations through the Pinatubo-perturbed period are more realistic, with greater volcanic enhancement of effective radius, causing faster decay towards quiescent conditions, both effects matching better with observations. Overall, our experiments suggest meteoric-sulphuric particles are an important component of the Junge layer, strongly influential in both quiescent and volcanically perturbed conditions.

  1. Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Campbell-Brown, M.; Cooke, W.; Kingery, A.; Weryk, R.; Gill, J.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established a two-station system to calculate daily automated meteor fluxes in the millimeter-size-range for both single-station and double-station meteors. The cameras each consist of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902H2 Ultimate CCD video camera, producing a 21.7x15.5 degree field of view. This configuration sees meteors down to a magnitude of +6. This paper outlines the concepts of the system, the hardware and software, and results of 3,000+ orbits from the first 18 months of operations. Video from the cameras are run through ASGARD (All Sky and Guided Automatic Real-time Detection), which performs the meteor detection/photometry, and invokes MILIG and MORB (Borovicka 1990) codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for approximate shower identification in single-station detections. The ASGARD output is used in routines to calculate the flux. Before a flux can be calculated, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting stellar magnitude is found using astrometry.net (Lang et al. 2012) to identify stars and translated to the corresponding shower and sporadic limiting meteor magnitude. It is found every 10 minutes and is able to react to quickly changing sky conditions. The extensive testing of these results on the Geminids and Eta Aquariids is shown. The flux involves dividing the number of meteors by the collecting area of the system, over the time interval for which that collecting area is valid. The flux algorithm employed here differs from others currently in use in that it does not make the gross oversimplication of choosing a single height to calculate the collection area of the system. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the

  2. Density variations of meteor flux along the Earth's orbit

    NASA Technical Reports Server (NTRS)

    Svetashkova, N. T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.

  3. Formation and evolution of the near axis 8˚20'N seamount chain: Evidences from the geophysical data analysis

    NASA Astrophysics Data System (ADS)

    Romano, V.; Gregg, P. M.; Zhan, Y.; Fornari, D. J.; Perfit, M. R.; Battaglia, M.

    2017-12-01

    The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition is a multidisciplinary effort to systematically investigate the 8˚20'N Seamount Chain to better understand the melting processes in the southern portion of the 9-10˚N segment of the East Pacific Rise (EPR). The 8˚20'N Seamount Chain extends 160 km west from its initiation, 15km northwest of the EPR-Siqueiros ridge transform intersection (RTI). To investigate the emplacement of the 8˚20'N Seamounts, shipboard EM-122 multibeam, BGM-3 gravity, and towed magnetometer data were collected using the R/V Atlantis in November 2016. Multibeam data show that the seamount chain is characterized by discrete seamounts in the distal portion of the chain, while east of 105˚20' W, the chain is a nearly-continuous volcanic ridge comprised of small cones and coalesced edifices. Free Air Anomalies are used to calculate isostatic anomalies along several profiles crossing the main edifices of the seamount chain, and indicate that the seamounts formed within 100 km of the EPR ridge axis. Excess crustal thickness variations of 0.5 to 1 km, derived from the Residual Mantle Bouguer Anomaly, suggest an increase in melt flux eastward along the chain. Consistently high emplacement volumes are observed east of -105 ˚20' W, 130 km from the ridge axis corresponding with lithosphere younger than 2 Myr. Inverted three-dimensional magnetization data indicate that the seamounts have recorded a series of magnetic reversals along the chain, which correlate to reversals recorded in the surrounding seafloor upon which the seamounts were built. However, reversals along the eastern portion of the chain appear skewed to the west indicating that seamount formation is likely long-lived. While the geophysical observations indicate that the overall seamount chain is age progressive, they suggest coeval volcanism in a region 15-100km from the EPR. The seamounts do not follow absolute plate motions, but are located consistently 15-20 km

  4. Sound Propagation around Underwater Seamounts

    DTIC Science & Technology

    2009-02-01

    Algorithm 177 C.1 Processing Real World Data .................. ........ 178 C.2 Method for Finding Zero -crossings ................... .... 179 C.3 Handling...BASSEX experiment (figure is from Hyun Joe Kim, M IT, PhD Thesis) ................... .. .......... 25 2-2 Time front generated using the Range...30 2-4 Pressure level, given in dB re 1lPa, inside the forward-scattered field of the Kermit-Roosevelt Seamount. Results are generated using the RAM

  5. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently

  6. A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data

    NASA Astrophysics Data System (ADS)

    Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.

    2015-12-01

    Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.

  7. Geophysical and Geochemical Analysis of the 8°20' N Seamount Chain: Studies of Off-Axis Volcanism

    NASA Astrophysics Data System (ADS)

    McCully, E.; Fornari, D. J.; Gregg, P. M.; Perfit, M. R.; Wanless, V. D.; Anderson, M.; Lubetkin, M.

    2017-12-01

    The 8°20' N Seamount Chain is an off-axis lineament of volcanoes located west of the East Pacific Rise (EPR) and 15 km north of the Siqueiros Fracture Zone. The volcanoes are located 11 km west of the EPR axis and extend 160 km to the west. The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition in November 2016 collected ship-based EM122 bathymetry aboard the R/V Atlantis over the entire seamount chain at a 50 m resolution, and AUV Sentry bathymetric and sidescan sonar data were collected over 11 selected areas on some of the seamount summits and flanks at 1-2 m resolution. 90,000 high-resolution digital images were acquired using DSV Alvin and analyzed and classified according to morphology, structure, sediment and manganese presence, and biology. These data are used to create geologic facies maps to correlate seafloor morphology and type with acoustic reflectivity. Major and trace element data of samples collected by Alvin and dredging are also correlated to geological parameters of the seafloor features on each studied seamount. Initial estimates for the volumes of individual constructional features (e.g., mounds, cones) that comprise the seamounts were derived from the high-resolution EM122 multibeam and Sentry AUV bathymetric data and calculated using IVS Fledermaus and plotted as a function of distance from the EPR. These individually constructed volcanic features, dependent on geochemical diversity, may ultimately be grouped into larger eruptive volumes. Thus far, Sentry-derived volumes range from 0.0011-2.96 km3, while EM122-derived volumes range from 0.13-123 km3. The seamounts were classified into 3 shapes; circular, volcanic lineaments aligning parallel to the ridge-axis, and ridge-like constructions, trending perpendicular to the EPR axis. The central 60 km of the chain (60-120 km off-axis) is dominated by ridges and circular seamounts, which exhibit the largest volumes observed along the 8°20' N chain. The seamounts with the lowest

  8. Radar and optical observations of small mass meteors at Arecibo

    NASA Astrophysics Data System (ADS)

    Michell, R.; Janches, D.; DeLuca, M. D.; Samara, M.; Chen, R. Y.

    2016-12-01

    Optical observations of meteors were conducted over 4 separate nights alongside the Arecibo radar. Meteors were detected in the optical imaging data and with both of the radars at Arecibo. The UHF (430 MHz) radar is the most sensitive and therefore detected the most meteors however the VHF (46.8 MHz) radar detected a higher percentage of meteors in common with the optics, due to the larger beam size and larger mass detectability threshold. The emphasis of this presentation is on meteors that were detected by the optics and one or both radars. The comparisons between the the relative sensitivities of these 3 detecting techniques will improve the meteoroid mass estimates made from the optical intensities. The overall aim would be to develop more accurate and robust methods of calculating meteoroid mass from the radar data alone.

  9. Evidence of shallow mitochondrial divergence in the slender armorhead, Pentaceros wheeleri (Pisces, Pentacerotidae) from the Emperor Seamount Chain.

    PubMed

    Bae, Seung Eun; Kim, Hanna; Choi, Seok-Gwan; Kim, Jin-Koo

    2018-01-12

    Competitive overexploitation of the slender armorhead, Pentaceros wheeleri, a deep-sea fish inhabiting the Emperor Seamount Chain caused a serious population decline. Therefore, it is urgently necessary to clarify its genetic diversity and connectivity among populations of P. wheeleri for appropriate stock management. For this, we compared 677 base pairs (bp) of mitochondrial (mt) DNA control region (CR) sequences of 80 individuals from three seamounts (the Milwaukee, Kinmei, and Koko Seamounts) in the southern part of the Emperor Seamount Chain. Contrary to our expectation, the three seamount populations showed high genetic diversity, not yet reflecting effects from the recent population decline or due to mixed two clades. Analysis of molecular variance indicated no significant genetic differentiation between seamount populations, however, the neighbour-joining tree and minimum spanning network showed significant separation into two clades (K2P distance= 1.2-3.2%, ϕ st  = 0.5739, p < .05) regardless of seamount. The divergence time between the two clades was estimated to be 0.3-0.8 Mya, during the period of Pleistocene glacial cycles, suggesting that associated environmental changes and the unique life history traits of Pentaceros spp. might have resulted in the initiation of divergence between these clades.

  10. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales

    PubMed Central

    Garrigue, Claire; Clapham, Phillip J.; Geyer, Ygor; Kennedy, Amy S.; Zerbini, Alexandre N.

    2015-01-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h−1, while movements within the breeding ground averaged 2.01±1.63 km h−1. The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management. PMID:26716006

  11. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales.

    PubMed

    Garrigue, Claire; Clapham, Phillip J; Geyer, Ygor; Kennedy, Amy S; Zerbini, Alexandre N

    2015-11-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h(-1), while movements within the breeding ground averaged 2.01±1.63 km h(-1). The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management.

  12. Off-Axis Seamount Lavas at 8°20' N Span the Entire Range of East Pacific Rise MORB Compositions

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Wanless, V. D.; Perfit, M. R.; Gregg, P. M.; Fornari, D. J.; McCully, E.; Ridley, W. I.

    2017-12-01

    Lavas erupted at off-axis seamounts can provide a window into mantle heterogeneity and melting systematics that are not easily observed on-axis at fast-spreading mid-ocean ridges (MORs), where melts are efficiently mixed and homogenized within shallow axial magma chambers. To investigate off-axis magmatism, we systematically mapped the 8°20' N seamount chain in November of 2016 on R/V Atlantis using shipboard EM122 multibeam system and AUV Sentry. This 160-km long chain of off-axis seamounts and ridges is located perpendicular to the ridge axis, west of the East Pacific Rise (EPR) and north of the Siqueiros Fracture Zone. The high-resolution surface and AUV-based multibeam and AUV sidescan maps are combined with geochemical analyses of 300 basalt samples, collected using HOV Alvin and dredging, to evaluate magmatic plumbing and sources off-axis. Preliminary major and trace element concentrations reveal remarkable geochemical heterogeneity (including both normal and enriched basalt compositions) across the entire seamount chain and within individual seamounts. For example, (La/Sm)N contents span the entire range of known values for basalts from northern Pacific MORs and seamounts (0.45—2.76). MgO contents vary from 10.25 to 4.56 wt. % across the seamount chain and by as much as 3.61 wt. % from volcanic features sampled at an individual seamount (Beryl). Additionally, K2O/TiO2 ratios range from 4.9 to 61.3 across the seamount chain, and by as much as 54.4 at a single seamount (Beryl), indicating heterogeneous mantle sources or variable extents of melting occur at both regional and local scales. We combine the geochemical results and bathymetric maps with petrologic models to evaluate extents and depths of fractional crystallization and mantle melting in the off-axis environment.

  13. Seamount subduction at seismogenic depths: structural and metamorphic evidence from the Zagros suture zone

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Agard, P.; Angiboust, S.; Fournier, M.; Omrani, J.

    2017-12-01

    Large-scale seafloor topographic features, such as seamounts, are for the most part subducted with the downgoing oceanic plate. They are expected to critically impact the seismogenic and mechanic behavior of subduction zones, but their exact role is strongly debated (i.e., as to whether they represent barriers to propagation or asperities promoting nucleation). Rare natural examples of metamorphosed seamounts, which got sliced off the slab along the plate interface and escaped recycling into the mantle, are therefore precious witnesses to document processes operating at depths of 0-30 km. We herein report the existence of a large-scale oceanic topographic structure sandwiched in the Zagros suture zone (Siah Kuh - SK - unit), most probably a former seamount, along with other blueschist units (Angiboust et al., EPSL 2016). The main criteria for identifying this seamount are its: (1) shape: the SK unit is a 1.5-2 km thick, rounded-shaped body with a 15-20 km diameter, (2) lithologies: it is made mainly of a regular succession of massive basaltic flows, commonly as pillow basalts, minor ophiolite-type gabbros and serpentinite, together with subordinate more differenciated volcanic and plutonic rocks. (3) sedimentary cover: basalts are overlain by shallowly deposited reef limestone and deepening-up sediments with the occurrence of cherts and pelagic limestones (which points to possible subsidence). Basalts have been analyzed for trace elements and have usually a N-MORB to OIB signature, which might be explained by its potential origin as a mid-oceanic ridge seamount. HP-LT minerals (lawsonite, aragonite, blue amphiboles) found across the whole structure, particularly in zones of localized compressive deformation, indicate that this seamount was shallowly subducted at 20 km. This deformation, interpreted to be syn-subduction, is assisted by a décollement rooting in serpentinite and/or oceanic metasediments and is associated with rare cataclase in magmatic rocks. We

  14. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    NASA Astrophysics Data System (ADS)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  15. 40Ar-39Ar age clustering in the active phonolitic Cadamosto Seamount (Cape Verdes): Indications for periodic magmatic activity

    NASA Astrophysics Data System (ADS)

    Samrock, L. K.; Hansteen, T. H.; Wartho, J. A.

    2017-12-01

    The Cape Verde archipelago is situated 400-800 km off the west coast of Africa and is comprised of a northern and southern chain of islands and seamounts. Morphological observations and previous radiometric dating of the islands indicate a slow age progression, over 22 Ma, from east to west (Holm et al. 2008). We present the first radiometric ages for Cadamosto Seamount, which is composed of complex evolved volcanics and is situated at the southwestern tip of the Cape Verde archipelago (e.g. Barker et al. 2012). We analyzed five different submarine phonolites that were sampled by remotely operated vehicles (ROV) Kiel 6000 and dredging during the RV Meteor (M80/3) and RV Poseidon (POS320/2) cruises. Fresh sanidine, nepheline, and biotite grains were selected and carefully prepared for 40Ar-39Ar single grain total fusion analysis. Sanidine single grain 40Ar-39Ar ages from 5 samples range from 11.5 ± 6.5 ka to 349.0 ± 20.4 ka (2σ errors), and cluster in several age groupings (using the decay constant and atmospheric air ratio of Steiger & Jäger (1977), and age standard TCS2 (27.87 ± 0.04 Ma; 1σ; M.A. Lanphere, pers. comm.)). Three age groups can be identified within the youngest (0-170 ka) sanidines, which are separated by periods of 52-54 ka. Nepheline grains from one sample yielded much older ages of 169.5 ± 16.5 ka to 1521.5 ± 8.3 ka (2σ). Our data suggests young ages for the Cadamosto Seamount, which is in accordance with recorded seismic activity (Grevemeyer et al. 2010), and its position adjacent to the recently active islands of Fogo (last eruption in 2014/2015) and Brava (recent seismic activity). The different sub-groups of sanidine 40Ar-39Ar ages can be used to identify different activity maxima corresponding to cycles of magmatic productivity in a long-lived magmatic system. Ongoing petrologic investigations will be used to identify the relative importance of processes such as mantle melting rates, magma replenishment and magma chamber processes

  16. SPA Meteor Section Results: 2006

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2010-12-01

    A summary of the main analyzed results and other information provided to the SPA Meteor Section from 2006 is presented and discussed. Events covered include: the radio Quadrantid maximum on January 3/4; an impressive fireball seen from parts of England, Belgium and the Netherlands at 22h53m51s UT on July 18, which was imaged from three EFN stations as well; the Southern delta-Aquarid and alpha-Capricornid activity from late July and early August; the radio Perseid maxima on August 12/13; confirmation that the October 5/6 video-meteor outburst was not observed by radio; visual and radio findings from the strong, bright-meteor, Orionid return in October; another impressive UK-observed fireball on November 1/2, with an oil painting of the event as seen from London; the Leonids, which produced a strong visual maximum around 04h-05h UT on November 18/19 that was recorded much less clearly by radio; radio and visual reports from the Geminids, with a note regarding NASA-observed Geminid lunar impact flashes; and the Ursid outburst recorded by various techniques on December 22.

  17. Meteor Beliefs Project: some meteoric imagery in the works of William Shakespeare

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-08-01

    Passages from three of William Shakespeare's plays are presented, illustrating some of the beliefs in meteors in 16th-17th century England. They also reflect earlier beliefs and information which it is known Shakespeare drew on in constructing his works.

  18. Distribution of epibenthic megafauna and lebensspuren on two central North Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Kaufmann, Ronald S.; Wakefield, W. Waldo; Genin, Amatzia

    1989-12-01

    The abundance, composition and spatial distribution of megafaunal communities and lebensspuren assemblages at three sites on two deep seamounts in the central North Pacific were surveyed photographically using still cameras mounted on the research submersible Alvin. Photographic transects were made on the summit cap (˜1500 m depth) and summit perimeter (˜ 1800 m depth) of Horizon Guyot and on the summit cap (˜3100 m depth) of Magellan Rise. The summit caps of both seamounts were covered with foraminiferal sand, while the summit perimeter of Horizon Guyot was characterized by numerous rock outcroppings (basalt and chert encrusted with ferromanganese oxides) on which was situated a speciose assemblage of suspension-feeding organisms. The most abundant megafauna at all three sites were large, sediment-agglutinating protists belonging to the class Xenophyophorea. Among the three sites, the Horizon Guyot summit cap supported the highest densities of fishes and lebensspuren and the fewest echinoderms, while the Magellan Rise summit cap was populated by a diverse community of deposit-feeding echinoderms. Megafaunal abundances on Horizon Guyot were lower than those at equivalent depths on the western North Atlantic continental slope, while those on Magellan Rise were higher. The faunal differences observed between the two seamounts were attributed primarily to differences in hydrodynamic conditions, substrate availability and nutrient availability. Most of the lebensspuren on these seamounts appeared to be patchily distributed on spatial scales of 10-1000 m, while xenophyophore distributions were predominantly random on the same spatial scales. Biogeographically the species identified exhibited predominantly widespread to cosmopolitan distributions with Indo-West Pacific faunal affinities, typical of other seamounts in the same depth range and biogeographic province.

  19. Activity and observability of meteor showers throughout the year

    NASA Astrophysics Data System (ADS)

    Zimnikoval, Peter

    2014-02-01

    Diagrams on the poster present the activity periods of meteor showers as well as the rising and setting times of meteor shower radiants. Plotted are sunrises, sunsets and the period of twilight. It was constructed according to data from the IMO Meteor Shower Working List. More active showers are displayed in red and less active showers in green. The diagrams are calculated for geographic latitudes of 40° N, 0° and 40° S. The time scale is given as local time at the relevant zonal meridian and supplemented by local daylight saving time. The diagrams contain rounded values of solar longitude J2000. The star chart shows the radiant positions and drift of IMO meteor showers while the other diagrams display shower activity and date of maximum.

  20. Feasibility Study Utilizing Meteor Burst Communications for Vessel Monitoring

    DOT National Transportation Integrated Search

    1981-01-01

    This document discusses the feasibility of using meteor burst communications for monitoring vessel position, in particular the Prince William Sound VMS near Valdez, Alaska. This document describes the equipment and operational performance of meteor b...

  1. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  2. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  3. New insights into asteroid 3200 Phaethon's meteor complex

    NASA Astrophysics Data System (ADS)

    Jakubik, Marian; Neslusan, Lubos

    2015-11-01

    In this work, we study the meteor complex originating from asteroid 3200 Phaethon. Using a modeling of variety of meteoroid streams and following their dynamical evolution, we confirm the presence of two filaments crossing the Earth observed as Geminid and Daytime Sextantid meteor showers. We use numerical integrations of modeled particles performed for several past perihelion passages of the asteroid considering (i) only the gravity of planets and (2) gravity of planets and the Poynting-Robertson effect. We present the results of comparing our models (predicted showers) with observed showers. We also point out discrepancies, their possible solutions and/or new hypothesis concerning the examined meteor complex.

  4. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; hide

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  5. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; hide

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heat shields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kWcm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses.With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  6. Three-Dimensional Dynamics of Baroclinic Tides Over a Seamount

    NASA Astrophysics Data System (ADS)

    Vlasenko, Vasiliy; Stashchuk, Nataliya; Nimmo-Smith, W. Alex M.

    2018-02-01

    The Massachusetts Institute of Technology general circulation model is used for the analysis of baroclinic tides over Anton Dohrn Seamount (ADS), in the North Atlantic. The model output is validated against in situ data collected during the 136th cruise of the RRS "James Cook" in May-June 2016. The observational data set includes velocity time series recorded at two moorings as well as temperature, salinity, and velocity profiles collected at 22 hydrological stations. Synthesis of observational and model data enabled the reconstruction of the details of baroclinic tidal dynamics over ADS. It was found that the baroclinic tidal waves are generated in the form of tidal beams radiating from the ADS periphery to its center, focusing tidal energy in a surface layer over the seamount's summit. This energy focusing enhances subsurface water mixing and the local generation of internal waves. The tidal beams interacting with the seasonal pycnocline generate short-scale internal waves radiating from the ADS center. An important ecological outcome from this study concerns the pattern of residual currents generated by tides. The rectified flows over ADS have the form of a pair of dipoles, cyclonic and anticyclonic eddies located at the seamount's periphery. These eddies are potentially an important factor in local larvae dispersion and their escape from ADS.

  7. Jasper Seamount: seven million years of volcanism

    USGS Publications Warehouse

    Pringle, M.S.; Staudigel, H.; Gee, J.

    1991-01-01

    Jasper Seamount is a young, mid-sized (690 km3) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable 40Ar/39Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual 40Ar/39Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitional series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. -from Authors

  8. Seamount influences on mid-water shrimps (Decapoda) and gnathophausiids (Lophogastridea) of the South-West Indian Ridge

    NASA Astrophysics Data System (ADS)

    Letessier, Tom B.; De Grave, Sammy; Boersch-Supan, Philipp H.; Kemp, Kirsty M.; Brierley, Andrew S.; Rogers, Alex D.

    2017-02-01

    Maintenance of often-observed elevated levels of pelagic diversity and biomass on seamounts, of relevance to conservation and fishery management, involves complex interactions between physical and biological variables that remain poorly understood. To untangle these biophysical processes we explore factors influencing the distribution of epi- and meso-pelagic (0-1000 m) micronektonic crustaceans (>15 mm; order Lophogastridea, family Gnathophausiidea; and order Decapoda) on and off seamounts along the South West Indian Ridge (SWIR, 27° to 42°S) and on a seamount off the Madagascar Ridge (31.6°S, 42.8°E). Thirty-one species of micronektic crustaceans were caught using mid-water trawls within the study area but there was no apparent latitude-related patterns in species richness or abundance. Species richness predicted by rarefraction curves and numerical abundance was highest in the vicinity (<1 km) of seamounts (species richness: 15 to 21; abundance: 10±2 to 20±1 ind.10-3 m-1) compared with over the abyssal plains and ridge slopes (species richness: 9.2-9.9; abundance: 24±2 to 79±8 ind.10-3 m-1). Multivariate analysis of assemblage composition revealed significant groupings of individual trawl samples with respect to whether the sample was on or off a seamount and hydrographic region, but not with time of sampling relative to diel cycle (day/night or dawn) or depth of sampling (0-500, 500-800, >800 m). The dominant species assemblage comprised the shrimps Systellaspis debilis (37%) and Sergia prehensilis (34%), and was restricted to seamounts on the subtropical SWIR. Our observations suggest that the 'oasis effect' of seamounts conventionally associated with higher trophic levels is also applicable to pelagic micronektic crustaceans at lower trophic levels. We suggest that the enhanced biomass and species richness attributed is due to 'habitat enrichment', whereby seamounts provide favourable habitats for both pelagic and bentho-pelagic mid-water crustaceans.

  9. About distribution and origin of the peculiar group of sporadic meteors

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.

    1992-01-01

    A particular group of sporadic meteors are picked out from analysis of meteor catalogs derived from results of radar observations in Mogadisho and Kharkov. The semi-major axes are equal or more than 1.73 AU and inclinations of orbits are equal or more than 90 degrees for these meteors. The distributions of radiants, velocities, and elements of orbits were derived. The probable source of meteor bodies of this peculiar group is the long-period comets, in particular, the comets of the Kreutz's group.

  10. Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    PubMed Central

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K. A. Kamesh; Mudholkar, Abhay

    2011-01-01

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only. PMID:21297959

  11. BRAMS --- the Belgian RAdio Meteor Stations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Martinez Picar, A.; Gamby, E.; Calders, S.; Anciaux, M.; De Keyser, J.

    2014-07-01

    BRAMS is a new radio observing facility developed by the Belgian Institute for Space Aeronomy (BISA) to detect and characterize meteors using forward scattering. It consists of a dedicated beacon located in the south-east of Belgium and in 25 identical receiving stations spread over the Belgian territory. The beacon transmits a pure sinusoidal wave at a frequency of 49.97 MHz with a power of 150 watts. A complete description of the BRAMS network and the data produced will be provided. The main scientific goals of the project are to compute fluxes, retrieve trajectories of individual objects, and determine physical parameters (speed, ionization, mass) for some of the observed meteor echoes. All these goals require a good knowledge of the radiation patterns of the transmitting and receiving antennas. Simulations have been made and will be validated with in-situ measurements using a UAV/drone equipped with a transmitter flying in the far-field region. The results will be provided. Each receiving station generates around 1 GB of data per day with typical numbers of sporadic meteor echoes of 1500--2000. An automatic detection method of these meteor echoes is therefore mandatory but is complicated by spurious echoes mostly due to airplanes. The latest developments of this automatic detection method will be presented and compared to manual counts for validation. Strong and weak points of the method will be presented as well as a possible alternative method using neural networks.

  12. The fish fauna of Ampère Seamount (NE Atlantic) and the adjacent abyssal plain

    NASA Astrophysics Data System (ADS)

    Christiansen, Bernd; Vieira, Rui P.; Christiansen, Sabine; Denda, Anneke; Oliveira, Frederico; Gonçalves, Jorge M. S.

    2015-03-01

    An inventory of benthic and benthopelagic fishes is presented as a result of two exploratory surveys around Ampère Seamount, between Madeira and the Portuguese mainland, covering water depths from 60 to 4,400 m. A total of 239 fishes were collected using different types of sampling gear. Three chondrichthyan species and 31 teleosts in 21 families were identified. The collections showed a vertical zonation with little overlap, but indications for an affinity of species to certain water masses were only vague. Although most of the species present new records for Ampère Seamount, all of them have been known for the NE Atlantic; endemic species were not found. The comparison with fish communities at other NE Atlantic seamounts indicates that despite a high ichthyofaunal similarity, which supports the "stepping stone" hypothesis of species dispersal, some differences can be attributed to the local features of the seamounts.

  13. Kinematic Characteristics of Meteor Showers by Results of the Combined Radio-Television Observations

    NASA Astrophysics Data System (ADS)

    Narziev, Mirhusen

    2016-07-01

    One of the most important tasks of meteor astronomy is the study of the distribution of meteoroid matter in the solar system. The most important component to address this issue presents the results of measurements of the velocities, radiants, and orbits of both showers and sporadic meteors. Radiant's and orbits of meteors for different sets of data obtained as a result of photographic, television, electro-optical, video, Fireball Network and radar observations have been measured repeatedly. However, radiants, velocities and orbits of shower meteors based on the results of combined radar-optical observations have not been sufficiently studied. In this paper, we present a methods for computing the radiants, velocities, and orbits of the combined radar-TV meteor observations carried out at HisAO in 1978-1980. As a result of the two-year cycle of simultaneous TV-radar observations 57 simultaneous meteors have been identified. Analysis of the TV images has shown that some meteor trails appeared as dashed lines. Among the simultaneous meteors of d-Aquariids 10 produced such dashed images, and among the Perseids there were only 7. Using a known method, for such fragmented images of simultaneous meteors - together with the measured radar distance, trace length, and time interval between the segments - allowed to determine meteor velocity using combined method. In addition, velocity of the same meteors was measured using diffraction and radar range-time methods based on the results of radar observation. It has been determined that the mean values of meteoroid velocity based on the combined radar-TV observations are greater in 1 ÷ 3 km / c than the averaged velocity values measured using only radar methods. Orbits of the simultaneously observed meteors with segmented photographic images were calculated on the basis of the average velocity observed using the combined radar-TV method. The measured results of radiants velocities and orbital elements of individual meteors

  14. Magmatic evolution of the Easter microplate-Crough Seamount region (South East Pacific)

    USGS Publications Warehouse

    Hekinian, R.; Stoffers, P.; Akermand, D.; Binard, N.; Francheteau, Jean; Devey, C.; Garbe-Schonberg, D.

    1995-01-01

    The Easter microplate-Crough Seamount region located between 25?? S-116?? W and 25?? S-122?? W consists of a chain of seamounts forming isolated volcanoes and elongated (100-200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065??), to the present day general spreading direction (N 100??) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26??30??? S-115?? W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges ( 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1-2.5}, {(La/Sm)N = 0.4-1.2} and {(Zr/Y)N = 0.7-2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (??? 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25?? S-118?? W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed

  15. The unexpected 2012 Draconid meteor storm

    NASA Astrophysics Data System (ADS)

    Ye, Quanzhi; Wiegert, Paul A.; Brown, Peter G.; Campbell-Brown, Margaret D.; Weryk, Robert J.

    2014-02-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar on 2012 October 8. The peak flux occurred at ˜16:40 UT on October 8 with a maximum of 2.4 ± 0.3 h-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax ≈ 9000 ± 1000 using 5-min intervals, using a mass distribution index of s = 1.88 ± 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the outburst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming that a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19 h UT, 2012 October 8, was αg = 262.4° 4 ± 0.1°, δg = 55.7° ± 0.1° (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR ˜ 200), suggesting that the magnitude-cumulative number relationship is not a simple power law. Ablation modelling of the observed meteors as a population does not yield a unique solution for the grain size and distribution of Draconid meteoroids, but is consistent with a typical Draconid meteoroid of mtotal between 10-6 and 10-4 kg being composed of 10-100 grains. Dynamical simulations indicate that the outburst was caused by dust particles released during the 1966 perihelion passage of the parent comet, 21P/Giacobini-Zinner, although there are discrepancies between the modelled and observed timing of the encounter, presumably caused by approaches of the comet to Jupiter during 1966-1972. Based on the results of our dynamical simulation, we predict possible increased activity of the Draconid meteor shower in 2018, 2019, 2021 and 2025.

  16. Intraplate Seamounts of the Northwest Sector of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Mirlin, E. G.; Mironov, Yu. V.; Rodkin, M. W.; Chesalova, E. I.

    2018-03-01

    A method is proposed for identifying seamounts in the northwest sector of the Pacific based on the following criteria: a closed, close to isometric contour of the isobaths at the base of a structure, its quasi-conical shape, and angles of slope exceeding 5° within the limits of the closed contour. A catalog of the mountains has been compiled, consisting of 1995 objects and their quantitative characteristics. The catalog data were statistically processed, and the following was calculated: the correlation between the number of seamounts from the radius of their base and volume, the distribution of the number of mountains, and the total volume within the study area. It is shown that seamounts are characterized as multiscale, and they are located very unevenly: areas with and without their accumulation are distinguished, and the composition of volcanic rocks is typically isotopically and geochemically heterogeneous. It is concluded that currently there is no single geodynamic model that can explain the revealed phenomena in their entirety. At the same time, the data suggest that the nature of some magma chambers that feed intraplate volcanoes is caused by transformation of energy in the lithosphere as a nonlinear open system.

  17. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    NASA Technical Reports Server (NTRS)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office is a US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. If the event is outside meteor network coverage and there is no imagery recorded by the public, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network are presented.

  18. Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less

  19. Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks

    DOE PAGES

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; ...

    2017-12-05

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less

  20. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric

  1. American Meteor Society Fireball reporting system and mobile application

    NASA Astrophysics Data System (ADS)

    Hankey, M.

    2014-07-01

    The American Meteor Society (AMS) founded in 1911 pioneered the visual study of meteors and has collected data relating to meteor observations and bright fireballs for over 100 years. In December 2010, the online fireball reporting system was upgraded to an interactive application that utilizes Google Maps and other programmatic methods to pinpoint the observer's location, azimuth and elevation values with a high degree of precision. The AMS has collected 10s of 1000s of witness reports relating to 100s of events each year since the new application was released. Three dimensional triangulation methods that average the data collected from witnesses have been developed that can determine the start and end points of the meteor with an accuracy of <50 km (when compared to published solutions provided by operators of all sky cameras). RA and DEC radiant estimates can also be computed for all significant events reported to the AMS. With the release of the mobile application, the AMS is able to collect more precise elevation angles than through the web application. Users can file a new report directly on the phone or update the values submitted through a web report. After web users complete their fireball report online, they are prompted to download the app and update their observation with the more precise data provided by the sensors in the mobile device. The mobile app also provides an accurate means for the witness to report the elapsed time of the fireball. To log this value, the user drags the device across the sky where they saw the fireball. This process is designed to require no button click or user interaction to start and stop the time recording. A count down initiates the process and once the user's phone crosses the plane of azimuth for the end point of the fireball the velocity timer automatically stops. Users are asked to log the recording three times in an effort to minimize error. The three values are then averaged into a final score. Once enough

  2. Radio polarisation measurements of meteor trail echoes with BRAMS

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Anciaux, M.; Calders, S.; De Keyser, J.; Gamby, E.

    2012-04-01

    BRAMS, the Belgian RAdio Meteor Stations, is a network of radio receiving stations using forward scatter techniques to detect and characterize meteors. The transmitter is a dedicated beacon located in Dourbes in the south-west of Belgium. It emits towards the zenith a purely sinusoidal wave circularly polarised, at a frequency of 49.97 MHz and with a power of 150 watts. The main goals of the project are to compute meteoroid flux rates and trajectories. Most receiving stations are using a 3 element Yagi antenna and are therefore only sensitive to one polarisation. The station located in Uccle has also a crossed 3 element Yagi antenna and therefore allows measurements of horizontal and vertical polarisations. We present the preliminary radio polarisation measurements of meteor trail echoes and compare them with the theoretical predictions of Jones & Jones (1991) for oblique scattering of radio waves from meteor trails.

  3. Improving Photometric Calibration of Meteor Video Camera Systems.

    PubMed

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-09-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  4. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  5. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is less than 13 km/s (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/cm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to greater than 20 km/s; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current

  6. Mapping the Mariana Seismogenic Zone Through the Measurement of Geochemical Tracers in Serpentinite Seamounts

    NASA Astrophysics Data System (ADS)

    Hulme, S. M.; Wheat, C. G.; Mottl, M. J.; Fryer, P.

    2003-12-01

    The Mariana forearc contains tens of seamounts up to 2 km high and 20-50 km in diameter. These seamounts were formed by serpentinite mud volcanism, sometimes in combination with uplift of serpentinized forearc mantle blocks, in which fluids driven off of the subducting slab infiltrated the overlying mantle and serpentinized the harzburgite and dunite rocks creating a density imbalance within the mantle. The resulting fluid-rock matrix flows along faults and exposes mantle-sourced serpentinite muds, blueschist facies metamorphosed mafic clasts, and slab-sourced fluids at the seafloor. The protrusion of these materials allows direct observation of active subduction zone components that are elsewhere buried beneath kilometers of rock and sediment. A multi-disciplinary survey of the Mariana Forearc was conducted in the spring of 2003 to study the biogeochemical properties of this mud volcanism. Seven different seamounts were sampled using shipboard and subsea coring techniques employing RV Thomas G. Thompson and ROV Jason II, respectively. Pore waters were extracted from these sediment cores and analyzed for several chemical constituents at sea. The measured values were consistent with preliminary work from 1997. Systematic trends in chemical composition of these high pH fluids (up to 12.3) are observed with distance from the trench (proxy for the depth to slab). These trends include low alkalinity and high Ca near the trench (e.g., Blue Moon Seamount; 0.26 mmol alkalinity/kg and 55 mmol Ca/kg), and high alkalinity and low Ca further from the trench (e.g., Big Blue Seamount; 69 mmol alkalinity/kg and 0.14 mmol Ca/kg) consistent with carbonate dissolution at the top of the plate between depths of 17 km and 22 km. Here we report results from trace element analyses that similarly show trends across the forearc region. For example, fluids upwelling at Baby Blue Seamount have; 58 μ mol Sr/kg, 31 μ mol Li/kg, 1.4 μ mol Rb/kg, 10 nmol Cs/kg, 0.2 μ mol Ba/kg, 0.1 μ mol Mo

  7. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    NASA Technical Reports Server (NTRS)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the

  8. High Resolution Directional Variation And Time Variation Of Sporadic Meteors

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, Margaret

    2007-10-01

    The directional dependence of the flux and orbits of sporadic meteoroids is of great importance to understanding the origin and nature of this population of small solar system bodies. The Canadian Meteor Orbit Radar (CMOR) has recorded over 5 million meteoroid orbits from 2002 to the present. This dataset, larger than any previously available, makes it possible to study the sporadic meteor distribution at much greater spatial resolution than previously possible. The rates of meteor orbits with radiants occurring in two degree bins over the whole sky have been calculated from five years of data. The rates have been corrected for observing biases, such as initial trail radius and the collecting area for each radiant, and weighted to a constant limiting mass and a constant limiting energy. The variation of the rates with solar longitude is also examined. The directional variation of geocentric speed, semimajor axis, eccentricity, inclination and other orbital parameters has been calculated, as have the collision probabilities of each meteoroid with the Earth, and the average collisional lifetime for the observed meteoroids. The majority of meteoroids in the mass range observed by CMOR originate in the helion and antihelion sporadic sources. In addition to the north and south apex sources and the north toroidal source, the CMOR data shows a ring of radiants approximately 55 degrees from the apex, with a significant depletion of radiants immediately inside the ring. The depletion of radiants appears to be caused by removal of meteoroids through collisions, as the collisional lifetimes of meteoroids inside the ring are significantly shorter than those observed outside the ring. Further study of the sporadic meteoroid distribution may reveal whether the complex is in a steady state, and the approximate number and orbital characteristics of the parent bodies. Thanks to the NASA MSFC MEO Office.

  9. A survey of southern hemisphere meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Baggaley, Jack; Crumpton, Ian; Aldous, Peter; Pokorny, Petr; Janches, Diego; Gural, Peter S.; Samuels, Dave; Albers, Jim; Howell, Andreas; Johannink, Carl; Breukers, Martin; Odeh, Mohammad; Moskovitz, Nicholas; Collison, Jack; Ganju, Siddha

    2018-05-01

    Results are presented from a video-based meteoroid orbit survey conducted in New Zealand between Sept. 2014 and Dec. 2016, which netted 24,906 orbits from +5 to -5 magnitude meteors. 44 new southern hemisphere meteor showers are identified after combining this data with that of other video-based networks. Results are compared to showers reported from recent radar-based surveys. We find that video cameras and radar often see different showers and sometimes measure different semi-major axis distributions for the same meteoroid stream. For identifying showers in sparse daily orbit data, a shower look-up table of radiant position and speed as a function of time was created. This can replace the commonly used method of identifying showers from a set of mean orbital elements by using a discriminant criterion, which does not fully describe the distribution of meteor shower radiants over time.

  10. Multi-instrumental observations of the 2014 Ursid meteor outburst

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, Manuel; Trigo-Rodríguez, Josep M.; Madiedo, José María; Vaubaillon, Jérémie; Williams, Iwan P.; Gritsevich, Maria; Morillas, Lorenzo G.; Blanch, Estefanía; Pujols, Pep; Colas, François; Dupouy, Philippe

    2017-06-01

    The Ursid meteor shower is an annual shower that usually shows little activity. However, its Zenith hourly rate sometimes increases, usually either when its parent comet, 8P/Tuttle, is close to its perihelion or its aphelion. Outbursts when the comet is away from perihelion are not common and outbursts when the comet is close to aphelion are extremely rare. The most likely explanation offered to date is based on the orbital mean motion resonances. The study of the aphelion outburst of 2000 December provided a means of testing that hypothesis. A new aphelion outburst was predicted for 2014 December. The SPanish Meteor Network, in collaboration with the French Fireball Recovery and InterPlanetary Observation Network, set up a campaign to monitor this outburst and eventually retrieve orbital data that expand and confirm previous preliminary results and predictions. Despite unfavourable weather conditions over the south of Europe over the relevant time period, precise trajectories from multistation meteor data recorded over Spain were obtained, as well as orbital and radiant information for four Ursid meteors. The membership of these four meteors to the expected dust trails that were to provoke the outburst is discussed, and we characterize the origin of the outburst in the dust trail produced by the comet in the year ad 1392.

  11. Atmospheric motion investigation for vapor trails and radio meteors

    NASA Technical Reports Server (NTRS)

    Bedinger, J.

    1973-01-01

    The dynamics are investigated of the lower thermosphere through comparison of optical observations of motions of ejected vapor trails with radar observations of motions of ionized meteor trails. In particular, the winds obtained from a series of vapor trail observations which occurred at Wallops Island, Virginia during the night of 14-15 December 1970 are to be compared with wind data deduced from radar observations of meteor trails during the same period. The comparison of these data is considered important for two reasons. First, the most widely used methods of measuring winds in the lower thermosphere are the vapor trails and the radar meteors. However, the two techniques differ markedly and the resultant sets of data have been analyzed and presented in different formats. Secondly, and possibly of greater immediate concern is the fact that the radar meteor method appears to be an appropriate approach to the synoptic measurement of winds. During the night of 14-15 December 1970, five vapor trails were ejected from Nike Apache rockets over Wallops Island, Virginia from 2208 EST through 0627 EST. The wind data which were obtained from these trails are presented, and features of the wind profiles which relate to the radar meteor trails results are discussed.

  12. Meteor Beliefs Project: Three Meteoric Similes in The Argonautica of Apollonius of Rhodes

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-06-01

    Three passages from Apollonius Rhodius' Argonautica which draw on meteoric imagery are discussed. Two different translations are given for each, to show some variations that may occur, which hint at problems of interpretation that may be found when trying to use such materials.

  13. Arago Seamount: The missing hotspot found in the Austral Islands

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Le Suavé, Raymond; Audin, Laurence; Clouard, Valérie; Dosso, Laure; Yves Gillot, Pierre; Janney, Philip; Jordahl, Kelsey; Maamaatuaiahutapu, Keitapu

    2002-11-01

    The Austral archipelago, on the western side of the South Pacific superswell, is composed of several volcanic chains, corresponding to distinct events from 35 Ma to the present, and lies on oceanic crust created between 60 and 85 Ma. In 1982, Turner and Jarrard proposed that the two distinct volcanic stages found on Rurutu Island and dated as 12 Ma and 1 Ma could be due to two different hotspots, but no evidence of any recent aerial or submarine volcanic source has ever been found. In July 1999, expedition ZEPOLYF2 aboard the R/V L'Atalante conducted a geophysical survey of the northern part of the Austral volcanic archipelago. Thirty seamounts were mapped for the first time, including a very shallow one (<27 m below sea level), located at lat 23°26.4‧S, long 150°43.8‧W, ˜120 km southeast of Rurutu. A nepheline-rich scoriaceous basalt sample from pillow lavas dredged on the newly mapped seamount's western flank gave a K-Ar age of 230 ± 0.004 ka obtained on pure selected nepheline. We propose that this seamount, already called Arago Seamount after a French Navy ship that discovered its summit in 1993, is the missing hotspot in the Cook-Austral history. This interpretation adds a new hotspot to the already complicated geologic history of this region. We suggest that several hotspots have been active simultaneously on a region of the seafloor that does not exceed 2000 km in diameter and that each of them had a short lifetime (<20 m.y.). These short-lived and closely spaced hotspots cannot be the result of discrete deep-mantle plumes and are likely due to more local upwelling in the upper mantle strongly influenced by weaknesses in the lithosphere.

  14. Categorizing vitric lithofacies on seamounts: implications for recognizing deep-marine pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Clague, D. A.

    2011-12-01

    Glassy fragmental deposits commonly found capping seamounts have been variably interpreted as the products of quench-fragmentation (hyaloclastite), suppressed steam expansion, and/or explosive fire-fountains (pyroclastite). To better understand these vitriclastic deposits we use a multidisciplinary approach that outlines six lithofacies based on textures, sedimentary structures, geochemical diversity, and associations with seamount landforms. All seamounts studied yield MORB compositions and formed on or near mid-ocean ridge axes of the northeast Pacific Ocean. Consolidated deposits were sampled from the Taney (~29 Ma), President Jackson (~3 Ma), and Vance (~2 Ma) seamounts using ROV manipulator arms and dredge hauls. Unconsolidated deposits from the currently active Axial Seamount of the Juan de Fuca Ridge were sampled using ROV push core and vacuum techniques. Lithofacies occur with talus breccias and pillow basalt on steeply dipping outer flanks and caldera walls, and with pillow and sheet flows on subhorizontal rims and nested caldera floors of the seamounts. Vitric lithofacies within or near steeply dipping regions have very angular textures, coarse grain-sizes and abundant crystalline basalt fragments. Jig-saw fit texture is common in units with monomict geochemistry and closely associated with adjacent pillow basalt, suggesting in-situ fragmentation akin to pillow breccia. Similar units bearing polymodal geochemistry are generally associated with talus breccias along caldera walls and basal slopes, and are interpreted as fault-scarp derived debrites. Laterally these lithofacies abruptly grade into bottom-current reworked lithofacies on flat caldera floors. Reworked lithofacies have >40% muddy matrix with abundant angular mineral fragments, biogenic grains and minor devitrified glass shards. They typically exhibit well-defined planar lamination and locally show sinusoidal ripple forms. Horizontal burrows including Planolites are common. Locally this

  15. Structure and sources of the sporadic meteor background from video observations

    NASA Astrophysics Data System (ADS)

    Jakšová, Ivana; Porubčan, Vladimír; Klačka, Jozef

    2015-10-01

    We investigate and discuss the structure of the sporadic meteor background population in the near-Earth space based on video meteor orbits from the SonotaCo database (SonotaCo 2009, WGN, 37, 55). The selection of the shower meteors was done by the Southworth-Hawkins streams-search criterion (Southworth & Hawkins 1963, Smithson. Contr. Astrophys., 7, 261). Of a total of 117786 orbits, 69.34% were assigned to sporadic background meteors. Our analysis revealed all the known sporadic sources, such as the dominant apex source which is splitting into the northern and southern branch. Part of a denser ring structure about the apex source connecting the antihelion and north toroidal sources is also evident. We showed that the annual activity of the apex source is similar to the annual variation in activity of the whole sporadic background. The antihelion source exhibits a very broad maximum from July until January and the north toroidal source shows three maxima similar to the radar observations by the Canadian Meteor Orbit Radar (CMOR). Potential parent bodies of the sporadic population were searched for by comparison of the distributions of the orbital elements of sporadic meteors, minor planets and comets.

  16. Distributions of underdense meteor trail amplitudes and its application to meteor scatter communication system design

    NASA Astrophysics Data System (ADS)

    Weitzen, J. A.; Bourque, S.; Ostergaard, J. C.; Bench, P. M.; Baily, A. D.

    1991-04-01

    Analysis of data from recent experiments leads to the observation that distributions of underdense meteor trail peak signal amplitudes differ from classic predictions. In this paper the distribution of trail amplitudes in decibels relative 1 W (dBw) is considered, and it is shown that Lindberg's theorem can be used to apply central limit arguments to this problem. It is illustrated that a Gaussian model for the distribution of the logarithm of the peak received signal level of underdense trails provides a better fit to data than classic approaches. Distributions of underdense meteor trail amplitudes at five frequencies are compared to a Gaussian distribution and the classic model. Implications of the Gaussian assumption on the design of communication systems are discussed.

  17. Meteor trail footprint statistics

    NASA Astrophysics Data System (ADS)

    Mui, S. Y.; Ellicott, R. C.

    Footprint statistics derived from field-test data are presented. The statistics are the probability that two receivers will lie in the same footprint. The dependence of the footprint statistics on the transmitter range, link orientation, and antenna polarization are examined. Empirical expressions for the footprint statistics are presented. The need to distinguish the instantaneous footprint, which is the area illuminated at a particular instant, from the composite footprint, which is the total area illuminated during the lifetime of the meteor trail, is explained. The statistics for the instantaneous and composite footprints have been found to be similar. The only significant difference lies in the parameter that represents the probability of two colocated receivers being in the same footprint. The composite footprint statistics can be used to calculate the space diversity gain of a multiple-receiver system. The instantaneous footprint statistics are useful in the evaluation of the interference probability in a network of meteor burst communication nodes.

  18. Comparing Molecular Variation to Morphological Species Designations in the Deep-Sea Coral Narella Reveals New Insights into Seamount Coral Ranges

    PubMed Central

    Baco, Amy R.; Cairns, Stephen D.

    2012-01-01

    Recent studies have countered the paradigm of seamount isolation, confounding conservation efforts at a critical time. Efforts to study deep-sea corals, one of the dominant taxa on seamounts, to understand seamount connectivity, are hampered by a lack of taxonomic keys. A prerequisite for connectivity is species overlap. Attempts to better understand species overlap using DNA barcoding methods suggest coral species are widely distributed on seamounts and nearby features. However, no baseline has been established for variation in these genetic markers relative to morphological species designations for deep-sea octocoral families. Here we assess levels of genetic variation in potential octocoral mitochondrial barcode markers relative to thoroughly examined morphological species in the genus Narella. The combination of six markers used here, approximately 3350 bp of the mitochondrial genome, resolved 83% of the morphological species. Our results show that two of the markers, ND2 and NCR1, are not sufficient to resolve genera within Primnoidae, let alone species. Re-evaluation of previous studies of seamount octocorals based on these results suggest that those studies were looking at distributions at a level higher than species, possibly even genus or subfamily. Results for Narella show that using more markers provides haplotypes with relatively narrow depth ranges on the seamounts studied. Given the lack of 100% resolution of species with such a large portion of the mitochondrial genome, we argue that previous genetic studies have not resolved the degree of species overlap on seamounts and that we may not have the power to even test the hypothesis of seamount isolation using mitochondrial markers, let alone refute it. Thus a precautionary approach is advocated in seamount conservation and management, and the potential for depth structuring should be considered. PMID:23029093

  19. New approaches to some methodological problems of meteor science

    NASA Technical Reports Server (NTRS)

    Meisel, David D.

    1987-01-01

    Several low cost approaches to continuous radioscatter monitoring of the incoming meteor flux are described. Preliminary experiments were attempted using standard time frequency stations WWVH and CHU (on frequencies near 15 MHz) during nighttime hours. Around-the-clock monitoring using the international standard aeronautical beacon frequency of 75 MHz was also attempted. The techniques are simple and can be managed routinely by amateur astronomers with relatively little technical expertise. Time series analysis can now be performed using relatively inexpensive microcomputers. Several algorithmic approaches to the analysis of meteor rates are discussed. Methods of obtaining optimal filter predictions of future meteor flux are also discussed.

  20. Rock Magnetic Properties and Paleointensity Determinations of Basalts From the Emperor Seamounts

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Dunlop, D. J.; Ozdemir, O.

    2002-12-01

    Thellier-Thellier paleointensity experiments were carried out on sixty-six basaltic samples coming from three Emperor seamounts (Detroit, Nintoku and Koko) drilled during ODP Leg 197. Seventeen samples yielded reliable results. One sample from Detroit Seamount (81 Ma) gives a VADM of 3.0+/-0.2x1022Am2. Ten samples from Nintoku (56 Ma) give VADMs between 1.6+/-0.1x1022 and 4.7+/-0.2x1022Am2. Six samples from Koko seamount (44 Ma) give VADMs between 0.6+/-0.1x1022 and 1.8+/-0.1x1022Am2. Assuming that the accepted samples did not undergo any maghemitization, the generally low VADM values we measured are in agreement with other records of paleointensities in this time range. The low success rate was due to chemical changes during the heatings. Samples have a wide distribution of unblocking temperatures and bulk susceptibility variations during heating, revealing an important variation in oxidation state and titanium content with depth and between seamounts. Other rock magnetic properties such as low-temperature measurements and thermomagnetic curves also indicate that the magnetic composition of the basalt varies from almost pure magnetite to titanomagnetite (x=0.4) within the same hole. Identification of magnetic minerals is important in order to assess the reliability of paleointensity and paleomagnetic measurements. It might also provide some information on parameters such as cooling rate of the lava flows or alteration.

  1. Knut Lundmark, meteors and an early Swedish crowdsourcing experiment.

    PubMed

    Kärnfelt, Johan

    2014-10-01

    Mid twentieth century meteor astronomy demanded the long-term compilation of observations made by numerous individuals over an extensive geographical area. Such a massive undertaking obviously required the participation of more than just professional astronomers, who often sought to expand their ranks through the use of amateurs that had a basic grasp of astronomy as well as the night sky, and were thus capable of generating first-rate astronomical reports. When, in the 1920s, renowned Swedish astronomer Knut Lundmark turned his attention to meteor astronomy, he was unable to rely even upon this solution. In contrast to many other countries at the time, Sweden lacked an organized amateur astronomy and thus contained only a handful of competent amateurs. Given this situation, Lundmark had to develop ways of engaging the general public in assisting his efforts. To his advantage, he was already a well-established public figure who had published numerous popular science articles and held talks from time to time on the radio. During the 1930s, this prominence greatly facilitated his launching of a crowdsourcing initiative for the gathering of meteor observations. This paper consists of a detailed discussion concerning the means by which Lundmark's initiative disseminated astronomical knowledge to the general public and encouraged a response that might directly contribute to the advancement of science. More precisely, the article explores the manner in which he approached the Swedish public, the degree to which that public responded and the extent to which his efforts were successful. The primary aim of this exercise is to show that the apparently recent Internet phenomenon of 'crowdsourcing', especially as it relates to scientific research, actually has a pre-Internet history that is worth studying. Apart from the fact that this history is interesting in its own right, knowing it can provide us with a fresh vantage point from which to better comprehend and appreciate

  2. Seamounts and ferromanganese crusts within and near the U.S. EEZ off California - Data for RV Farnella cruise F7-87-SC

    USGS Publications Warehouse

    Hein, James R.; Reid, Jane A.; Conrad, Tracey A.; Dunham, Rachel E.; Clague, David A.; Schulz, Marjorie S.; Davis, Alice S.

    2010-01-01

    The purpose of this report is to present and briefly describe ship-board and laboratory data for a U.S. Geological Survey (USGS) research cruise aboard the RV Farnella that took place December 3-21, 1987 (cruise F7-87-SC). The purpose of the cruise was to survey seamounts and ferromanganese crusts within and near the U.S. Exclusive Economic Zone (EEZ) off California. Eight seamounts were studied - Rodriguez, San Marcos, Adam, Hoss, Little Joe, Ben, Flint, and Jasper. A geophysical survey of Jasper Seamount took place, but that seamount was not sampled; whereas Adam and Hoss Seamounts were sampled, but not surveyed with geophysics lines.

  3. Detecting Forward-Scattered Radio Signals from Atmospheric Meteors Using Low-Cost Software Defined Radio

    ERIC Educational Resources Information Center

    Snjegota, Ana; Rattenbury, Nicholas James

    2017-01-01

    The forward scattering of radio signals from atmospheric meteors is a known technique used to detect meteor trails. This article outlines the project that used the forward-scattering technique to observe the 2015 August, September, and October meteor showers, as well as sporadic meteors, in the Southern Hemisphere. This project can easily be…

  4. Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith

    2015-02-01

    Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up

  5. Plasma distributions in meteor head echoes and implications for radar cross section interpretation

    NASA Astrophysics Data System (ADS)

    Marshall, Robert A.; Brown, Peter; Close, Sigrid

    2017-09-01

    The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.

  6. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-05-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding

  7. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    USGS Publications Warehouse

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-01-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while

  8. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015.

    PubMed

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-04-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.

  9. Comets, meteors, and eclipses: Art and science in early Renaissance Italy

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    2002-11-01

    We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more believable, convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (circa 1301-1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards. Halley's Comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and "astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328-30; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20) contain dazzling meteor showers that reveal the artist's observed astronomical phenomena, such as the "radiant" effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and only accepted in the nineteenth century. Lorenzetti also painted sporadic, independent

  10. Meteor Beliefs Project: Meteoric imagery associated with the death of John Brown in 1859

    NASA Astrophysics Data System (ADS)

    Drobnock, G. J.; McBeath, A.; Gheorghe, A. D.

    2009-12-01

    An examination is made of metaphorical meteor imagery used in conjunction with the death of American anti-slavery activist John Brown, who was executed in December 1859. Such imagery continues to be used in this regard into the 21st century.

  11. Meteor astronomy using a forward scatter set-up

    NASA Astrophysics Data System (ADS)

    Wislez, Jean-Marc

    2006-08-01

    An overview of the classical theory of the reflection of radio waves off meteor trails is given: the reflection conditions and mechanisms are discussed, and typical (t,A)-profiles of radio meteors are derived. Various configurations of the receive station(s) are proposed. The goal is to give the radio observer more insight in the possibilities, limitations and relevant parameters of forward scattering, and on how to obtain these through observations.

  12. A Subducted Seamount Revealed: 2016, NOAA OER Deepwater Exploration of the Marianas

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Kelley, C.; Pomponi, S. A.; Glickson, D.; Amon, D.

    2017-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea

  13. Resolving the Subsidence Anomaly of the East Tasman Plateau Using New Insights from the Cascade Seamount, Southwest Tasman Sea

    NASA Astrophysics Data System (ADS)

    Vorsanger, S. L.; Scher, H.; Johnson, S.; Mundana, R.; Sauermilch, I.; Duggan, B.; Whittaker, J. M.

    2017-12-01

    The Cascade Seamount is a wave-planated feature located on the microcontinent of the East Tasman Plateau (ETP). The minimum subsidence rate of the Seamount and the ETP can be estimated by dividing the present-day depth of the wave-cut surface (640 m) by the age of Cascade Seamount basalts as determined by potassium-argon (K-Ar) dating (33.4 and 36 Ma). This approach yields a subsidence rate of 18 m/Myr. However, significantly more rapid subsidence rates of the East Tasman Plateau (ETP) — upon which the Cascade Seamount rests — since the Eocene-Oligocene transition have been proposed utilizing a nearby sediment core, Ocean Drilling Program (ODP) Site 1172. Late Eocene paleodepths determined by Stickley et al. (2004) using sedimentological and biostratigraphic techniques, indicate a subsidence rate of 85 m/Myr for the ETP. These two results present a paradox, which implies that the ETP subsided at a rate greater than the Seamount itself, over the same time interval. It also implies that the seamount formed above sea level. The subsidence ambiguity may be attributed to the presence of a turbidity current deposit in the sediment core, or uncertainty in the age and/or location of the K-Ar dated basalts of the Cascade Seamount. Statistical analysis of the published grain size measurements will be used to test for the presence of a turbidity current deposit in ODP Site 1172. We will also measure 87Sr/86Sr ratios of marine carbonate samples from conglomerates obtained from the Cascade Seamount during the August 2016 RV Investigator voyage (IN2016_E01) to confirm the age of the wave planated surfaces by Strontium Isotope Stratigraphy. This will allow for a more robust calculation for the subsidence of the ETP which was a critical barrier in the Tasmanian Gateway that allowed for the formation of the Antarctic Circumpolar Current.

  14. Seamount Lineaments of the Northern Galápagos and Plume-ridge Interaction

    NASA Astrophysics Data System (ADS)

    Cushman, W.; Harpp, K. S.; Kurz, M. D.; Geist, D.; Mittelstaedt, E. L.; Fornari, D. J.; Soule, S.; R/v Melville Mv1007 Flamingo Scientific Team

    2010-12-01

    The Northern Galápagos Province (NGP) is located between the Galápagos Archipelago and the Galápagos Spreading Center (GSC). There are 3 volcanic lineaments in the NGP, trending NW/SE. The lineaments’ origins remain enigmatic, but may provide information about plume-ridge interaction. In 2010, the R/V Melville MV1007 Cruise employed EM122 multibeam bathymetry, MR1 sidescan sonar, and dredging to study the area. The western lineament, the Wolf-Darwin Lineament (WDL), intersects the GSC at ~92°10’W and is the largest of the 3. The WDL is ~190km long and has 6 main volcanic centers, with many smaller satellite vents. The Central Lineament (CL) intersects the GSC at ~91°48’W and is ~60 km long with 4 major seamounts. The largest is roughly 2/3 the volume of the WDL’s smallest seamount. The Eastern Lineament (EL) intersects the GSC at ~91°16’W and is ~100km long. The EL includes 5 major seamounts with intermediate volumes. From N to S, the edifices in the WDL and the EL become more elongate, suggesting greater deviatoric stresses away from the ridge. The elongation is more pronounced in WDL seamounts than on those in the EL. The bathymetric footprints of seamounts on the N end of both lineaments are more symmetrical, as are all those of the CL. Seamounts with circular bases are probably monogenetic, with limited ranges of Mg#, phenocryst content, and incompatible trace element (ITE) concentrations. Most have single vents. The larger elongate seamounts have multiple vents and wider compositional ranges, likely the result of polygenetic eruptive histories. Lavas erupted along the lineaments have ITE ratios ranging between Galápagos Plume and depleted upper mantle sources, suggesting that mixing between the 2 sources occurs in the NGP. No seamount is more enriched than GSC axial lavas from within the study area, and no systematic gradient exists along strike of any of the lineaments, indicating that mixing between the plume and ridge is not simply

  15. The Isotopic Record From Monogenetic Seamounts: Insights Into Recycling Time Scales In The Upper Mantle

    NASA Astrophysics Data System (ADS)

    Madrigal Quesada, P.; Gazel, E.

    2017-12-01

    Monogenetic seamounts related to non-plume intraplate magmatism provide a window into the composition of upper mantle heterogeneities, nevertheless, the origin of these heterogeneities are still not well constrained. Radiogenic isotopes (Sr-Nd-Pb) from present-day ocean island basalts (OIB) produced by this type of magmatism can help establish the source compositions of these chemically and isotopically enriched reservoirs. Here we present evidence that suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle. We explore this hypothesis using data from non-plume related OIB volcanism; focusing on isolated monogenetic seamounts with no apparent age progression and interpreted to be related to either plate flexure, shear driven convection and/or edge convection. The isotopic record compiled, added to new results obtained from accreted petit-spot seamounts from Santa Elena Peninsula in Costa Rica, suggest that a highly radiogenic mantle reservoir originated from recycled seamount materials can be formed in a shorter time scale than ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle "flavor" found in some of these small-scale seamounts. The implications of these results entail that the recycling of already enriched materials in short time scales and in restricted depths within the Upper Mantle may play an important role in the source of OIBs (plume and non-plume related), as well as, the most enriched suites of EMORBs.

  16. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Hanyu, Takeshi; Tejada, Maria Luisa G.; Shimizu, Kenji; Ishizuka, Osamu; Fujii, Toshiyuki; Kimura, Jun-Ichi; Chang, Qing; Senda, Ryoko; Miyazaki, Takashi; Hirahara, Yuka; Vaglarov, Bogdan S.; Goto, Kosuke T.; Ishikawa, Akira

    2017-12-01

    Many seamounts on the Ontong Java Plateau (OJP) occur near the Stewart Arch, a topographic high that extends parallel to the North Solomon Trench along the southern margins of the plateau. Despite the thick sediment cover, several volcanic cones with strong acoustic reflection were discovered on the submarine flank of the Nuugurigia Seamount. From such volcanic cones, basalts were successfully sampled by dredging. Radiometric dating of basalts and ferromanganese encrustation indicate eruption age of 20-25 Ma, significantly younger than the 122 Ma main OJP plateau and post-plateau basalts. The age range coincides with the collision of the OJP with the Solomon Arc. The Nuugurigia basalts geochemically differ from any other rocks sampled on the OJP so far. They are alkali basalts with elevated Sr, low Zr and Hf, and Enriched Mantle-I (EMI)-like isotopic composition. Parental magmas of these alkali basalts may have formed by small-degree melting of peridotitic mantle impregnated with recycled pyroxenite material having enriched geochemical composition in the OJP's mantle root. We conclude that small-volume alkali basalts from the enriched mantle root migrated through faults or fractures caused by the collision along the Stewart Arch to form the seamount. Our results suggest that the collision of the OJP with the Solomon arc played an important role in the origin of similar post-plateau seamounts along the Stewart Arch.

  17. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  18. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hancock, P.; Devillepoix, H. A. R.; Wayth, R. B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-07-01

    Recently, low-frequency, broad-band radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broad-band spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν ∝ να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Wide Field Array (MWA) at 72-103 MHz. In our 322 h survey, down to a 5σ detection threshold of 3.5 Jy beam-1, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95 per cent confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, such as reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  19. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-04-01

    Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  20. Optical Meteor Fluxes and Application to the 2015 Perseids

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M.; Kingery, A.

    2016-01-01

    This paper outlines new methods to measure optical meteor fluxes for showers and sporadic sources. Many past approaches have found the collecting area of a detector at a fixed 100 km altitude, but this approach considers the full volume, finding the area in two km height intervals based on the position of the shower or sporadic source radiant and the population's velocity. Here, the stellar limiting magnitude is found every 10 minutes during clear periods and converted to a limiting meteor magnitude for the shower or sporadic source having fluxes measured, which is then converted to a limiting mass. The final output is a mass limited flux for meteor showers or sporadic sources. Presented are the results of these flux methods as applied to the 2015 Perseid meteor shower as seen by the Meteoroid Environment Office's eight wide-field cameras. The peak Perseid flux on the night of August 13, 2015, was measured to be 0.002989 meteoroids/km2/hr down to 0.00051 grams, corresponding to a ZHR of 100.7.

  1. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von Huene, Roland E.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  2. Bacterial Community Sstructure and Novel Species of Magnetotactic Bacteria in Sediments from a Seamount in the Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    PAN, H.; LIU, J.; Zhang, W.; Xiao, T.; Wu, L. F.

    2017-12-01

    Seamounts are unique ecosystems where undersea mountains rise abruptly from the sea floor and interact dynamically with underwater currents, creating peculiar biological habitats with various microbial community structures. Certain bacteria associated with seamounts form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend knowledge of seamount microorganisms we performed a systematic analysis of the population composition and occurrence of live magnetotactic bacteria (MTB) in sediments of a seamount in the Mariana volcanic arc. Proteobacteria dominated at 13 stations, and were the second in abundance to members of the Firmicutes at a deep station on a steep slope facing the Yap-Mariana trench. We found MTB that synthesize intracellular iron-oxide nanocrystals in biogenic sediments at all 14 stations, at seawater depths ranging from 238 to 2023 m. A novel flagellar apparatus, and the most complex yet reported, was observed in magnetotactic cocci; it comprises one or two bundles of 19 flagella arranged in a 3:4:5:4:3 array. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. The geographic properties at the various stations on the seamount appear to be important in shaping the microbial community structure.

  3. Measurement of the Earth's Radiation Budget components from Russian satellites "Meteor-M" № 1 and "Meteor-M" № 2

    NASA Astrophysics Data System (ADS)

    Cherviakov, M.

    2015-12-01

    One of the foremost challenges to monitoring the climate system is the ability to make a precise measurement of Earth's radiation budget components from space. Thereupon a new "Meteor-M" satellite program has been started in Russia. The first satellite of new generation "Meteor-M" № 1 was put into orbit in September, 2009 and second satellite "Meteor-M" № 2 - in July, 2014. Some measurements results obtained by the nadir looking medium field of view radiometers IKOR-M which was installed on "Meteor-M" satellites are presented. These equipments were created in Saratov State University under the direction of Yu. A. Sklyarov for monitoring of outgoing shortwave radiation (OSR), albedo and absorbed solar radiation (ASR) at TOA. The basic products of data processing are given in the form of global maps of distribution OSR, albedo and ASR. Such maps were made for each month during observation period. Fig. 1 presents the map of global distribution of monthly averaged values of albedo in April, 2014. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. TOA fluxes deduced from the "Meteor-M" № 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and ASR over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the

  4. The Brava seamount, Cape Verde: Beyond the spatial extent of EM1 and petrogenesis of highly evolved alkaline lavas.

    NASA Astrophysics Data System (ADS)

    Barker, Abigail; Andersson, Axel; Troll, Valentin; Hansteen, Thor; Ellam, Robert

    2010-05-01

    Alkaline lavas from the Brava seamount, Cape Verde are investigated to establish the spatial distribution of compositional heterogeneity in the southwest of the Cape Verde archipelago. Highly evolved lavas provide a record of shallow level magma-crust interaction beneath the Brava seamount. The Brava seamount, located southwest of the island of Brava, Cape Verde was sampled during research cruise 8/85 of the R.R.S. Charles Darwin in 1985. Two groups of highly evolved alkaline volcanics are distinguished from the Brava seamount: 1) pyroxene-phonolites containing clinopyroxene, amphibole, nepheline, ±biotite, and minor sanidine and 2) feldspathoid-phonolites containing nepheline, nausean, minor biotite and leucite. All of the samples have MgO between 0.8 and 2 wt%, comparable to the most evolved volcanics sampled in the Cape Verde archipelago. The feldspathoid-phonolites have NaO2 of 12-13 wt%. Alkaline lavas from the Brava seamount have higher 87Sr/87Sr (0.70337 to 0.70347) at ɛNd of +6 to +7 than previously sampled in Cape Verde. Sr isotopes will be integrated with oxygen isotopes to establish magma and crust interactions in the magmatic plumbing system beneath the Brava seamount. Clinopyroxene-melt thermobarometry will be presented to constrain the depths of equilibrium crystallisation. Sr-O isotopes and thermobarometry will be combined to build a picture of the levels of magma stalling and interaction between magmas and the crust beneath the Brava seamount. The Brava seamount phonolitic lavas have high 206Pb/204Pb of 19.5 to 19.8 with negative ?8/4 and high ɛNd of +6 to +7 in contrast to the positive ?8/4 for lavas from nearby Brava and the southern islands of the Cape Verde archipelago. Lavas from the Brava seamount have Pb-Nd isotope systematics comparable to the northern Cape Verde islands, indicating the southwestern boundary in mantle heterogeneity and thereby the spatial extent of the EM1-like source contributing to the southern islands. The extensive

  5. Meteors as a Delivery Vehicle for Organic Matter to the Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Only in recent years has a concerted effort been made to study the circumstances under which extraterrestrial organic matter is accreted on Earth by way of meteors. Meteors are the luminous phenomena associated with the (partial) ablation of meteoric matter and represent the dominant pathway from space to Earth, with the possible exception of rare giant impacts of asteroids and comets. Meteors dominated the supply of organics to the early Earth if organic matter survived this pathway efficiently. Moreover, meteors are a source of kinetic energy that can convert inert atmospheric gases such as CO, N, and H2O into useful compounds, such as HCN and NO. Understanding these processes relies heavily on empirical evidence that is still very limited. Here I report on the observations in hand and discuss their relevance in the context of the origin of life.

  6. The 2017 Meteor Shower Activity Forecast for Earth Orbit

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea; Cooke, Bill; Moser, Danielle

    2017-01-01

    Most meteor showers will display typical activity levels in 2017. Perseid activity is expected to be higher than normal but less than in 2016; rates may reach 80% of the peak ZHR in 2016. Despite this enhancement, the Perseids rank 4th in flux for 0.04-cm-equivalent meteoroids: the Geminids (GEM), Daytime Arietids (ARI), and Southern delta Aquariids (SDA) all produce higher fluxes. Aside from heightened Perseid activity, the 2017 forecast includes a number of changes. In 2016, the Meteoroid Environment Office used 14 years of shower flux data to revisit the activity profiles of meteor showers included in the annual forecast. Both the list of showers and the shape of certain major showers have been revised. The names and three-letter shower codes were updated to match those in the International Astronomical Union (IAU) Meteor Data Center, and a number of defunct or insignificant showers were removed. The most significant of these changes are the increased durations of the Daytime Arietid (ARI) and Geminid (GEM) meteor showers. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteor models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Perseids (PER), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that meteor shower fluxes drop dramatically with increasing particle size. As an example, the Arietids contribute a flux of about 5x10(exp -6) meteoroids m(exp -2) hr-1 in the 0.04-cm-equivalent range, but only 1x10(exp -8) meteoroids m(sub -2) hr-1 for the 0

  7. Observations of fauna attending wood and bone deployments from two seamounts on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Amon, Diva J.; Copley, Jonathan T.; Dahlgren, Thomas G.; Horton, Tammy; Kemp, Kirsty M.; Rogers, Alex D.; Glover, Adrian G.

    2017-02-01

    The Southwest Indian Ridge is an ultraslow-spreading mid-ocean ridge with numerous poorly-explored seamounts. The benthic fauna of seamounts are thought to be highly heterogeneous, within even small geographic areas. Here we report observations from a two-year opportunistic experiment, which was comprised of two deployments of mango wood and whale bones. One was deployed at 732 m on Coral Seamount ( 32 °S) and the other at 750 m on Atlantis Bank ( 41 °S), two areas with little background faunal knowledge and a significant distance from the continental shelf. The packages mimic natural organic falls, large parcels of food on the deep-sea floor that are important in fulfilling the nutritional needs and providing shelter and substratum for many deep-sea animals. A large number of species colonised the deployments: 69 species at Coral Seamount and 42 species at Atlantis Bank. The two colonising assemblages were different, however, with only 11 species in common. This is suggestive of both differing environmental conditions and potentially, barriers to dispersal between these seamounts. Apart from Xylophaga and Idas bivalves, few organic-fall specialists were present. Several putative new species have been observed, and three new species have been described from the experiments thus far. It is not clear, however, whether this is indicative of high degrees of endemism or simply a result of under-sampling at the regional level.

  8. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: Electron photomicrography and microprobe chemistry

    USGS Publications Warehouse

    Jeong, K.S.; Jung, H.-S.; Kang, J.-K.; Morgan, C.L.; Hein, J.R.

    2000-01-01

    Seven ferromanganese crusts from the northwest intertropical Pacific seamounts were analyzed for photomicroscopic growth structures, microprobe chemistry, and ages based on Co-chronometer growth rate. The crusts on the Marshall Islands seamounts are thick and ale divided into phosphatized lower older and nonphosphatized upper younger growth generations: the older crust consists of compact laminations and columns impregnated with carbonate fluoapatite (CFA), whereas the younger crust is characterized by porous botryoids and columns of ??-MnO2 and Fe oxyhydroxide. The crusts on the Federated States of Micronesia (FSM) and Palau Islands seamounts are thin and are often incorporated with inorganic opal-A in the uppermost part, comprising the younger generation. Some crusts show scours and fractures. Although the growth of crusts has been often interrupted by mass failure of slope sediments, the crusts on the Marshall Islands seamounts are estimated to have grown at rate of about 3 mm/Ma since the middle Eocene and to have been phosphatized in the late Oligocene during the host seamounts were located beneath the equatorial zone of high productivity. Prolonged infiltration of the oxygen minimum zone (OMZ) water into shallower water older crusts redistributed crust composition by precipitating CFA, enriching subsequent amounts of Mn and Ni, and removing some Co. The younger crust has formed at slower rate (about 2 mm/Ma) under the stronger influence of bottom-water circulation in the north of the equatorial zone, concentrating abundant Co. In the uppermost part of some crusts, siliceous skeletons transform with burial to inorganic opal-A and Si-rich Fe oxyhydroxide, suggesting that biosilica diagenesis can enhance crust growth. (C) 2000 Elsevier Science B.V.

  9. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  10. Chemistry of cometary meteoroids from video-tape records of meteor spectra

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The chemistry of the cometary meteoroids was studied by closed circuit television observing systems. Vidicon cameras produce basic data on standard video tape and enable the recording of the spectra of faint shower meteors, consequently the chemical study is extended to smaller particles and we have a larger data bank than is available from the more conventional method of recording meteor spectra by photography. The two main problems in using video tape meteor spectrum records are: (1) the video tape recording has a much lower resolution than the photographic technique; (2) video tape is relatively new type of data storage in astronomy and the methods of quantitative photometry have not yet been fully developed in the various fields where video tape is used. The use of the most detailed photographic meteor spectra to calibrate the video tape records and to make positive identification of the more prominent chemical elements appearing in the spectra may solve the low resolution problem. Progress in the development of standard photometric techniques for the analysis of video tape records of meteor spectra is reported.

  11. Trench-parallel variations in Pacific and Indo-Australian crustal velocity structure due to Louisville Ridge seamount subduction

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Knight, T. P.; Peirce, C.; Watts, A. B.; Grevemeyer, I.; Paulatto, M.; Bassett, D.; Hunter, J.; Kalnins, L. M.

    2012-12-01

    Variations in trench and forearc morphology, and lithospheric velocity structure are observed where the Louisville Ridge seamount chain subducts at the Tonga-Kermadec Trench. Subduction of these seamounts has affected arc and back-arc processes along the trench for the last 5 Myr. High subduction rates (80 mm/yr in the north, 55 mm/yr in the south), a fast southwards migrating collision zone (~180 km/myr), and the obliquity of the subducting plate and the seamount chain to the trench, make this an ideal location to study the effects of seamount subduction on lithospheric structure. The "before and after" subduction regions have been targeted by several large-scale geophysical projects in recent years; the most recent being the R/V Sonne cruise SO215 in 2011. The crust and upper mantle velocity structure observed in profiles along strike of the seamount chain and perpendicular to the trench from this study, are compared to a similar profile from SO195, recorded ~100 km to the north. The affects of the passage of the seamounts through the subduction system are indicated by velocity anomalies in the crust and mantle of the overriding plate. Preliminary results indicate that in the present collision zone, mantle velocities (Pn) are reduced by ~5%. Around 100 km to the north, where seamounts are inferred to have subducted ~1 Myr ago, a reduction of 7% in mantle P-wave velocity is observed. The width of the trench slope and elevation of the forearc also vary along strike. At the collision zone a >100 km wide collapse region of kilometre-scale block faults comprise the trench slope, while the forearc is elevated. The elevated forearc has a 5 km think upper crust with a Vp of 2.5-5.5 km/s and the collapse zone also has upper crustal velocities as low as 2.5 km/s. To the east in the Pacific Plate, lower P-wave velocities are also observed and attributed to serpentinization due to deep fracturing in the outer trench high. Large bending faults permeate the crust and the

  12. Comet 209P/LINEAR and the associated Camelopardalids meteor shower

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Hui, M.; Wiegert, P.; Campbell-Brown, M.; Brown, P.; Weryk, R.

    2014-07-01

    Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on the Earth on 2014 May 24. Here we present our observations and simulations prior to the event. We reanalyze the optical observations of P/LINEAR obtained during its 2009 apparition to model the corresponding meteor stream. We find that the comet is relatively depleted in dust production, with Afρ at 1-cm level within eight months around its perihelion. A syndyne simulation shows that the optical cometary tail is dominated by larger particles with β˜0.003. Numerical simulation of the cometary dust trails confirms the arrival of particles on 2014 May 24 from some of the 1798--1979 trails, with nominal radiant in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly towards larger particles, which, coupling with the result of the syndyne simulation, suggested that the event (if detectable) may be dominated by bright meteors. Preliminary results from the observations of P/LINEAR during its 2014 apparition as well as the Camelopardalids meteor shower will also be presented.

  13. MENTOR: Adding an outlying receiver to an ST radar for meteor-wind measurement

    NASA Technical Reports Server (NTRS)

    Roper, R. G.

    1984-01-01

    Radar scattering from ionized meteor trails has been used for many years as a way to determine mesopause-level winds. Scattering occurs perpendicular to the trails, and since the ionizing efficiency of the incoming meteoroids depends on the cosine of the zenith angle of the radiant, echoes directly overhead are rare. Stratosphere-troposphere (ST) radars normally sample within 15 deg of the vertical, and thus receive few meteor echoes. Even the higher powdered mesosphere-stratosphere-troposphere (MST) radars are not good meteor radars, although they were used to successfully retrieved meteor winds from the Poker Flat, Alaska MST radar by averaging long data intervals. It has been suggested that a receiving station some distance from an ST radar could receive pulses being scattered from meteor trails, determine the particular ST beam in which the scattering occurred, measure the radial Doppler velocity, and thus determine the wind field. This concept has been named MENTOR (Meteor Echoes; No Transmitter, Only Receivers).

  14. The distribution of near-axis seamounts at intermediate spreading ridges

    NASA Astrophysics Data System (ADS)

    Howell, J. K.; Bohnenstiehl, D. R.; White, S. M.; Supak, S. K.

    2008-12-01

    The ridge axes along the intermediate-spreading rate Galapagos Spreading Center (GSC, 46-56 mm/yr) and South East Indian Ridge (SEIR, 72-76 mm/yr) vary from rifted axial valleys to inflated axial highs independent of spreading rate. The delivery and storage of melt is believed to control axial morphology, with axial highs typically observed in areas underlain by a shallow melt lens and axial valleys in areas without a significant melt lens [e.g., Baran et al., 2005 G-cubed; Detrick et al. 2002 G-cubed]. To investigate a possible correlation between the style of seafloor volcanism and axial morphology, a closed contour algorithm is used to identify near axis (2.5km off axis) semi-circular seamounts of heights greater than 20m from shipboard multibeam bathymetry. In areas characterized by an axial high, more seamounts are formed at the ends of the segments than in the center. This is consistent with observations at fast-spreading ridges and suggests a tendency of lavas to erupt at lower effusion rates near second-order segment boundaries. Segments with a rift valley along the GSC show the opposite trend, with more seamounts at the center of second-order segments. Both patterns however are observed along SEIR segments with rift valleys where magma supply may be reflected in size and not their abundance.

  15. Monte-Carlo Method Application for Precising Meteor Velocity from TV Observations

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2014-12-01

    Monte-Carlo method (method of statistical trials) as an application for meteor observations processing was developed in author's Ph.D. thesis in 2005 and first used in his works in 2008. The idea of using the method consists in that if we generate random values of input data - equatorial coordinates of the meteor head in a sequence of TV frames - in accordance with their statistical distributions we get a possibility to plot the probability density distributions for all its kinematical parameters, and to obtain their mean values and dispersions. At that the theoretical possibility appears to precise the most important parameter - geocentric velocity of a meteor - which has the highest influence onto precision of meteor heliocentric orbit elements calculation. In classical approach the velocity vector was calculated in two stages: first we calculate the vector direction as a vector multiplication of vectors of poles of meteor trajectory big circles, calculated from two observational points. Then we calculated the absolute value of velocity independently from each observational point selecting any of them from some reasons as a final parameter. In the given method we propose to obtain a statistical distribution of velocity absolute value as an intersection of two distributions corresponding to velocity values obtained from different points. We suppose that such an approach has to substantially increase the precision of meteor velocity calculation and remove any subjective inaccuracies.

  16. Meteor fireball sounds identified

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1992-01-01

    Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.

  17. The First Year of Croatian Meteor Network

    NASA Astrophysics Data System (ADS)

    Andreic, Zeljko; Segon, Damir

    2010-08-01

    The idea and a short history of Croatian Meteor Network (CMN) is described. Based on use of cheap surveillance cameras, standard PC-TV cards and old PCs, the Network allows schools, amateur societies and individuals to participate in photographic meteor patrol program. The network has a strong educational component and many cameras are located at or around teaching facilities. Data obtained by these cameras are collected and processed by the scientific team of the network. Currently 14 cameras are operable, covering a large part of the croatian sky, data gathering is fully functional, and data reduction software is in testing phase.

  18. Antarctic ozone - Meteoric control of HNO3

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Rodriguez, Jose M.

    1988-01-01

    Atmospheric circulation leads to an accumulation of debris from meteors in the Antarctic stratosphere at the beginning of austral spring. The major component of meteoric material is alkaline, comprised predominantly of the oxides of magnesium and iron. These metals may neutralize the natural acidity of stratospheric aerosols, remove nitric acid from the gas phase, and bond it as metal nitrates in the aerosol phase. Removal of nitric acid vapor has been previously shown to be a critical link in the photochemical depletion of ozone in the Antarctic spring, by allowing for increased catalytic loss from chlorine and bromine.

  19. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2016-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.

  20. Hard- and software problems of spaced meteor observations by optical electronics

    NASA Technical Reports Server (NTRS)

    Shafiev, R. I.; Mukhamednazarov, S.; Ataev, A. SH.

    1987-01-01

    An optical electronic facility is being used for meteor observations along with meteor radars and astronomical TV. The main parts of the facility are cameras using UM-92 optical electronic image tubes. The three cascade optical electronic image tube with magnetic focusing has a 40 mm cathode and resolution in the center of up to 30 pairs of lines/mm. The photocathode is of a multislit S-20 type. For meteor spectra observations, replica gratings of 200 and 300 lines/mm are used as the dispersive element.

  1. Hunting for seamounts using neural networks: learning algorithms for geomorphic studies

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Kalnins, L. M.; Trampert, J.

    2012-04-01

    Many geophysical studies rely on finding and analysing particular topographic features: the various landforms associated with glaciation, for example, or those that characterise regional tectonics. Typically, these can readily be identified from visual inspection of datasets, but this is a tedious and time-consuming process. However, the development of techniques to perform this assessment automatically is often difficult, since a mathematical description of the feature of interest is required. To identify characteristics of a feature, such as its spatial extent, each characteristic must also have a mathematical description. Where features exhibit significant natural variations, or where their signature in data is marred by noise, performance of conventional algorithms may be poor. One potential avenue lies in the use of neural networks, or other learning algorithms, ideal for complex pattern recognition tasks. Rather than formulating a description of the feature, the user simply provides the algorithm with a training set of hand-classified examples: the problem then becomes one of assessing whether some new example shares the characteristics of this training data. In seismology, this approach is being developed for the identification of high-quality seismic waveforms amidst noisy datasets (e.g. Valentine & Woodhouse, 2010; Valentine & Trampert, in review): can it also be applied to topographic data? To explore this, we attempt to identify the locations of seamounts from gridded bathymetric data (e.g. Smith & Sandwell, 1997). Our approach involves assessing small 'patches' of ocean floor to determine whether they might plausibly contain a seamount, and if so, its location. Since seamounts have been extensively studied, this problem provides an ideal testing ground: in particular, various catalogues exist, compiled using 'traditional' approaches (e.g. Kim & Wessel, 2011). This allows us to straightforwardly generate training datasets, and compare algorithmic

  2. Long-time observation of meteor induced layers with ionosonde

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  3. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  4. Constraints from Seamounts on Pacific Plate or Plume Motion Prior to 80 Ma.

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Koppers, A. A. P.; Jackson, M. G.; Finlayson, V.; Konrad, K.

    2015-12-01

    The Hawaii-Emperor and Louisville hotspot tracks have long dominated the data set constraining absolute plate motion models. However, prior to ~80 Ma, multiple shorter, discontinuous hotspot trails and oceanic plateaus have been used to constrain absolute plate motion. Based on this earlier work, a clear Hawaii-Emperor style bend seems apparent around 100 Ma in the West Pacific Seamount Province (WPSP). More importantly, the ongoing debate on a plate versus plume motion origin for the Hawaii-Emperor Bend is applicable here, as the ~100 Ma bend may correspond to a global plate reorganization (Matthews et al., EPSL, 2012). Data for a comparison of bends comes from three groups with similar geographic patterns: 1) Mid-Pacific Mountains, Line Islands; 2) Shatsky Rise, Hess Rise, Musician and Wentworth Seamounts; and 3) Wake Seamounts, Marshall Islands, Magellan Seamounts. Both groups 1 and 2 feature a large igneous province (LIP) at their oldest end: Shatsky Rise and the Mid-Pacific Mountains. According to plate reconstructions these LIPs were constructed near all-ridge triple junctions, thus potential plume-ridge interactions need to be clarified before these LIPs can be used to define an absolute mantle reference frame. In contrast, the volcanoes of the third group (Wake, Marshall, Magellan) did erupt truly intra-plate and we therefore argue that this group provides a constraint on plate motion beyond 80 Ma that is independent of plume-ridge interactions. Since the volcanoes in this group are part of the WPSP, which is densely populated with seamounts, a combination of 40Ar/39Ar ages and Sr-Nd-Pb-Hf isotopes is needed to distinguish different hotspot tracks in this region. Backtracking each volcano through its age to its original eruptive location and using compositional color-coding, reveals groupings and patterns that vary by plate motion model, while the temporal patterns of backtracked locations inform us about potential plume motions.

  5. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  6. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197

    NASA Astrophysics Data System (ADS)

    Duncan, Robert A.; Keller, Randall A.

    2004-08-01

    The Hawaiian-Emperor seamount chain is the "type" example of an age-progressive, hot spot-generated intraplate volcanic lineament. However, our current knowledge of the age distribution within this province is based largely on radiometric ages determined several decades ago. Improvements in instrumentation, sample preparation methods, and new material obtained by recent drilling warrant a reexamination of the age relations among the older Hawaiian volcanoes. We report new age determinations (40Ar-39Ar incremental heating method) on whole rocks and feldspar separates from Detroit (Sites 1203 and 1204), Nintoku (Site 1205), and Koko (Site 1206) Seamounts (Ocean Drilling Program (ODP) Leg 197) and Meiji Seamount (Deep Sea Drilling Project (DSDP) Leg 19, Site 192). Plateaus in incremental heating age spectra for Site 1203 lava flows give a mean age of 75.8 ± 0.6 (2σ) Ma, which is consistent with the normal magnetic polarity directions observed and biostratigraphic age assignments. Site 1204 lavas produced discordant spectra, indicating Ar loss by reheating and K mobilization. Six plateau ages from lava flows at Site 1205 give a mean age of 55.6 ± 0.2 Ma, corresponding to Chron 24r. Drilling at Site 1206 intersected a N-R-N magnetic polarity sequence of lava flows, from which six plateau ages give a mean age of 49.1 ± 0.2 Ma, corresponding to the Chron 21n-22r-22n sequence. Plateau ages from two feldspar separates and one lava from DSDP Site 192 range from 34 to 41 Ma, significantly younger than the Cretaceous age of overlying sediments, which we relate to postcrystallization K mobilization. Combined with new dating results from Suiko Seamount (DSDP Site 433) and volcanoes near the prominent bend in the lineament [, 2002], the overall trend is increasing volcano age from south to north along the Emperor Seamounts, consistent with the hot spot model. However, there appear to be important departures from the earlier modeled simple linear age progression, which we

  7. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  8. Meteor Beliefs Project: Spears of GodSpears of God

    NASA Astrophysics Data System (ADS)

    Hendrix, Howard V.; McBeath, Alastair; Gheorghe, Andrei Dorian

    2012-04-01

    A selection of genuine or supposedly sky-fallen objects from real-world sources, a mixture of weapons, tools and "magical" objects of heavenly provenance, are drawn from their re-use in the near-future science-fiction novel Spears of God by author Howard V Hendrix, with additional discussion. The book includes other meteoric and meteoritic items too, some of which have been the subject of previous Meteor Beliefs Project examinations.

  9. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  10. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  11. The Leonids: The Lion King of Meteor Showers

    NASA Astrophysics Data System (ADS)

    Rao, J.

    1995-08-01

    The night of November 12-13, 1833, sparked awareness of the Leonids meteor shower as well as the birth of meteor astronomy: from much of North America that night, a rain of shooting stars, a shower of flashing light, spread over the entire sky. More than one superstitious person on that spectacular night was certain that the end of the world had come. People kept repeating that the meteors were falling "like snowflakes". In the aftermath of the display, it was realized that meteors could be produced by an extraterrestrial source: streams or swarms of particle that travel around the Sun in more or less well-defined orbits, grazing, at least at one point, the orbit of our Earth. In 1866, G. Schiaparelli established the orbit of the stream of particles that produce the Leonids, and soon others independently noted a striking resemblance of the Leonids with the orbit of periodic comet Tempel-Tuttle. The comet and meteor stream were subsequently found to be following nearly identical orbits with periods of roughly 33 years. A few years earlier (in 1863) it was discovered similarly spectacular Leonid meteor displays had occured prior to 1833, with accounts of the Leonids traceable as far back as A.D. 902. Based solely on the 33-year cycle, a prediction for a meteor storm in the year 1866 verified. In 1899 a re-enactment of the 1833 storm was confidently expected, despite calculations that demonstrated that the orbit of P/Tempel-Tuttle (and probably the associated Leonid particles) were likely perturbed by the planets Jupiter and Saturn. The failure of a storm to materialize seriously damaged the credibility of astronomers in the eyes of the general public. Since 1899, the Leonids have been following a rather erratic and unpredictable schedule: meteor storms unexpectedly occurred in 1900 and 1901; no storm was noted in 1931 and 1932, leading many to believe that Leonid activity had significantly declined. But during the 1960s, they again revived, capped by a short

  12. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  13. Flexural bending-induced plumelets and their seamounts in accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Dilek, Y.

    2015-12-01

    Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.

  14. Paleomagnetic and rock magnetic results from Koko Seamount (ODP Leg 197, Site 1206): Implications for hotspot motion

    NASA Astrophysics Data System (ADS)

    Olton, G.; Cottrell, R. D.; Tarduno, J. A.; Carvallo, C.; Torii, M.; Doubrovine, P. V.

    2002-12-01

    ODP Leg 197 sought to test whether the Hawaiian hotspot was fixed in the mantle during Late Cretaceous to Early Tertiary times. The principal goal was the recovery of basalt sequences from several of the Emperor seamounts and the main tool to be applied was paleomagnetism. Koko Seamount, near the bend in the Hawaiian-Emperor Seamounts, was the southernmost site drilled during Leg 197. Fifteen basalt units separated by thick volcaniclastic units were recovered in 278 m of penetration. Based on nannofossil stratigraphy of the sediments above basalt, the top of the volcanic section is 43.5-49.7 m.y.-old. Shipboard geochemical analyses (Initial Reports, Leg 197) indicate the lavas include tholeiites, suggesting that the age of the sequence recovered is similar to that of the major phase of shield building. Detailed, stepwise alternating field demagnetization experiments, and subsequent principal component analysis (all conducted aboard the JOIDES Resolution) yielded 14 inclination groups suggesting a mean paleolatitude of 21.7o N, slightly steeper than that the present-day latitude of Hawaii. Shore-based hysteresis measurements of basalt samples indicate single to pseudo-single domain behavior (mean Hc = 170 Oe, Hcr = 309 Oe, Mr/Ms = 0.274), whereas unblocking temperatures range from 200-300 oC and 550-600 oC. These data suggest the presence of high titanium titanomagnetite and magnetite. Shore-based thermal demagnetization inclinations are similar to the shipboard alternating field demagnetization data. The paleomagnetic data from Koko Seamount, together with results from Detroit, Suiko and Nintoku Seamounts form a southward decreasing series of paleolatitudes that appear to track motion of the Hawaiian ``hotspot" in the mantle. Rates of motion based on paleolatitudes of the Emperor Seamounts range from 30-50 mm/yr, similar to that observed for some continental plates.

  15. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  16. Prediction of meteor shower of comet 161P/2004 V2

    NASA Astrophysics Data System (ADS)

    Tomko, D.; Neslušan, L.

    2014-07-01

    We deal with theoretical meteoroid stream of Halley-type comet 161P/2004 V2. For two perihelion passages in the far past, we model the stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of artificial particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of artificial particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about -23 grad) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ~ 53 km/s.

  17. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  18. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  19. An Automatic Video Meteor Observation Using UFO Capture at the Showa Station

    NASA Astrophysics Data System (ADS)

    Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.

    2012-05-01

    The goal of our study is to clarify meteor activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic meteor detection and recording at Syowa station, Antarctica.

  20. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  1. UV meteor observation from a space platform

    NASA Astrophysics Data System (ADS)

    Scarsi, P.

    2004-07-01

    The paper reports on the evaluation of the meteor light curve in the 300-400 nm UV band produced by meteoroids and space debris interacting with the Earth atmosphere; the aim is to assess the visibility of the phenomenon by a near-Earth space platform and to estimate the capability for measuring the solid-body influx on the Earth from outer space. The simulations have been conceived on the basis of general processes only, without introducing a priori observational inputs: the calibration with real data can be made in orbit by validation with "characterized" meteor streams. Computations are made for different values of the entry velocity (12 to 72 km/s) and angle of impact of the meteoroid when entering the atmosphere, with initial-mass values ranging from 10-12 kg to the kg size encompassing the transition from micrometeorites ( m < 10-9-10-8kg) to the "ablation" regime typical of larger masses. The data are presented using units in UV Magnitudo to facilitate direct comparison with the common literature in the field. The results concern observations of the atmosphere up to M UV = 18 by a height of 400 km above the Earth surface (average for the International Space Station--ISS), with reference to the mission "Extreme Universe Space Observatory--EUSO" designed as an external payload for the module "Columbus" of the European Space Agency. Meteors represent for EUSO an observable as a slow UV phenomenon with seconds to minutes characteristic time duration, to be compared to the fast phenomenon typical of the Extensive Air Shower (EAS) induced by the energetic cosmic radiation, ranging from microseconds to milliseconds. Continuous wide-angle observation by EUSO with its high inclination orbit and sensitivity reaching M UV = 18 will allow the in-depth exploration of the meteor "sporadic" component and to isolate the contribution of minor "streams".

  2. Axial Seamount Relative Eruption Timing Constraints Based on Paleointensity Data

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Dreyer, B. M.; Clague, D. A.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca Ridge in the northeast Pacific, is one of the most extensively studied seamounts in the world. High-resolution mapping and camera imagery by remotely operated vehicle (ROV) have allowed for the creation of a geologic map of the caldera. Individual flow fields have been identified, and relative ages have been assigned based on ROV observations. Some constraints on absolute age have been obtained by 14C dating of the overlying sediments, and flows with inadequate sediment to sample are assumed to be less than 300 years old. To refine relative age relationships between flow fields, geomagnetic paleointensity recorded in basaltic glass is compared with models of field behavior over the past ~1,000 years. Thellier-type paleointensity experiments were carried out on samples from within Axial caldera. Paleointensity results from the 2011 Axial eruption give a paleofield value of 46.0×4.5 μT compared to the IGRF value of 52.1 μT. This suggests that the geodynamo-produced field is being locally distorted by the pre-existing magnetic topography of Axial seamount. Long-wavelength distortion may arise from the large seamount edifice itself, or short- wavelength distortion may arise from small scale (meters to 10s of meters) roughness in the surface flows. The dominance of long-wavelength distortion is implied by an analysis of samples from other flows within the Axial caldera. Within each flow, the paleointensity values are relatively tightly clustered compared to the overall scatter in the data, suggesting that short-wavelength distortion is minimized. These flows are thought to be less than a few hundred years old, and over this time period, the strength of the geomagnetic field should be monotonically decreasing. Such a decreasing trend is recovered in paleointensity results from flows in the north, south, and east caldera regions, supporting the relative age interpretations made from ROV observations. However, all

  3. Meteor tracking via local pattern clustering in spatio-temporal domain

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel

    2016-09-01

    Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).

  4. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology

    USGS Publications Warehouse

    Ludvigson, Greg A.; Gonzalez, Luis A.; Metzger, R.A.; Witzke, B.J.; Brenner, Richard L.; Murillo, A.P.; White, T.S.

    1998-01-01

    Sphaerosiderite, a morphologically distinct millimeter-scale spherulitic siderite (FeCO3), forms predominantly in wetland soils and sediments, and is common in the geologic record. Ancient sphaerosiderites are found in paleosol horizons within coal-bearing stratigraphic intervals and, like their modern counterparts, are interpreted as having formed in water-saturated environments. Here we report on sphaerosiderites from four different stratigraphic units, each of which has highly variable 13C and relatively stable 18O compositions. The unique isotopic trends are analogous to well-documented meteoric calcite lines, which we define here as meteoric sphaerosiderite lines. Meteoric sphaerosiderite lines provide a new means of constraining ground-water ??18O and thus allow evaluation of paleohydrology and paleoclimate in humid continental settings.

  5. Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik

    2014-05-01

    The use of meteoric 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, meteoric 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of meteoric 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, meteoric 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of meteoric 10Be both within the soil profile and at landscape scale is essential before meteoric 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in meteoric 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical meteoric 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of meteoric 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited meteoric 10Be, (ii) highly degraded and stony

  6. Polarization rotation in meteor burst communication systems

    NASA Astrophysics Data System (ADS)

    Cannon, P. S.

    1986-06-01

    Theoretical modeling of several meteor burst communication (MBC) paths indicates that polarization rotation losses are significant for a linearly polarized system operating near 40 MHz. Losses for a hybrid system with physical installation problems, consisting of linearly polarized transmitting and circularly polarized receiving antennas, were found to be less. Both ionospheric Faraday rotation polarization changes, and underdense meteor trail scattering wave polarization rotation, are considered. These losses are found to cause a 15-70 percent data throughput reduction of the value predicted for the situation without polarization rotation, in the two 40-MHz linearly polarized links considered for noon summer solstice conditions during high solar sunspot number periods. Qualitative experimental confirmation is provided through a cross polarization approach.

  7. ScienceCast 31: Draconid Meteor Outburst

    NASA Image and Video Library

    2011-10-05

    Forecasters say Earth is heading for a stream of dust from Comet 21P/Giacobini-Zinner. A close encounter with the comet's fragile debris could spark a meteor outburst over parts of our planet on October 8th.

  8. Chinstrap penguin foraging area associated with a seamount in Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Kokubun, Nobuo; Lee, Won Young; Kim, Jeong-Hoon; Takahashi, Akinori

    2015-12-01

    Identifying marine features that support high foraging performance of predators is useful to determine areas of ecological importance. This study aimed to identify marine features that are important for foraging of chinstrap penguins (Pygoscelis antarcticus), an abundant upper-trophic level predator in the Antarctic Peninsula region. We investigated the foraging locations of penguins breeding on King George Island using GPS-depth loggers. Tracking data from 18 birds (4232 dives), 11 birds (2095 dives), and 19 birds (3947 dives) were obtained in 2007, 2010, and 2015, respectively. In all three years, penguins frequently visited an area near a seamount (Orca Seamount) in Bransfield Strait. The percentage of dives (27.8% in 2007, 36.1% in 2010, and 19.1% in 2015) and depth wiggles (27.1% in 2007, 37.2% in 2010, and 22.3% in 2015) performed in this area was higher than that expected from the size of the area and distance from the colony (8.4% for 2007, 14.7% for 2010, and 6.3% for 2015). Stomach content analysis showed that the penguins fed mainly on Antarctic krill. These results suggest that the seamount provided a favorable foraging area for breeding chinstrap penguins, with high availability of Antarctic krill, possibly related to local upwelling.

  9. The Chelyabinsk meteor

    NASA Astrophysics Data System (ADS)

    Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.

    2014-07-01

    A review is given about what was learned about the 0.5-Mt Chelyabinsk airburst of 15 February 2013 by field studies, the analysis of recovered meteorites, and numerical models of meteoroid fragmentation and airburst propagation. Previous events with comparable or larger energy in recent times include only the 0.5-Mt -sized 3 August 1963 meteor over the south Atlantic, for which only an infrasound signal was recorded, and the famous Tunguska impact of 1908. Estimates of the initial kinetic energy of the Tunguska impact range from 3 to 50 Mt, due to the lack of good observations at the time. The Chelyabinsk event is much better documented than both, and provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and calculate the damaging effects of a shock wave from a large meteoroid impact. A better understanding of what happened might help future impact hazard mitigation efforts by calibrating models of what might happen under somewhat different circumstances. The initial kinetic energy is estimated from infrasonic signals and the fireball's lightcurve, as well as the extent of the glass damage on the ground. Analysis of video observations of the fireball and the shadow movements provided an impact trajectory and a record of the meteor lightcurve, which describes how that energy was deposited in the atmosphere. Ablation and fragmentation scenarios determine the success of attempts to reproduce the observed meteor lightcurve and deceleration profile by numerical modeling. There was almost no deceleration until peak brightness. Meteoroid fragmentation occurred in different forms, some part of the initial mass broke in well separated fragments, the surviving fragments falling on the ground as meteorites. The specific conditions during energy deposition determined the fraction of surviving mass. The extent of the glass damage was mapped by visiting over 50 villages in the area. A number of numerical simulations were conducted that

  10. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  11. FreeTure: A Free software to capTure meteors for FRIPON

    NASA Astrophysics Data System (ADS)

    Audureau, Yoan; Marmo, Chiara; Bouley, Sylvain; Kwon, Min-Kyung; Colas, François; Vaubaillon, Jérémie; Birlan, Mirel; Zanda, Brigitte; Vernazza, Pierre; Caminade, Stephane; Gattecceca, Jérôme

    2014-02-01

    The Fireball Recovery and Interplanetary Observation Network (FRIPON) is a French project started in 2014 which will monitor the sky, using 100 all-sky cameras to detect meteors and to retrieve related meteorites on the ground. There are several detection software all around. Some of them are proprietary. Also, some of them are hardware dependent. We present here the open source software for meteor detection to be installed on the FRIPON network's stations. The software will run on Linux with gigabit Ethernet cameras and we plan to make it cross platform. This paper is focused on the meteor detection method used for the pipeline development and the present capabilities.

  12. Radiometric Ages From ODP Leg 197 Drilling Along the Emperor Seamount Chain

    NASA Astrophysics Data System (ADS)

    Duncan, R. A.; Huard, J.

    2002-12-01

    The Hawaiian-Emperor Seamount chain is the "type" example of an age-progressive, hotspot-generated intraplate volcanic lineament. However, our current knowledge of the age distribution within this province is based on radiometric ages determined several decades ago. Improvements in instrumentation, sample preparation methods and new material obtained by recent drilling warrant a re-examination of the age relations among the older Hawaiian volcanoes. We report new age determinations (40Ar-39Ar incremental heating method) on whole rocks and feldspar separates from Detroit (Sites 1203 and 1204), Nintoku (Site 1205) and Koko (Site 1206) seamounts in the Emperor chain, recovered by drilling during ODP Leg 197. Only normal magnetic polarity was observed at Sites 1203 and 1204, and biostratigraphic data assigned ages of 75-76 Ma (nanofossil zone cc22) to sediments interbedded with lava flows. Plateaus in incremental heating age spectra give a mean age for Site 1203 of 75.3 +/- 1.0 Ma (relative to biotite monitor FCT-3 at 28.04 Ma; all errors are 2s). Site 1204 lavas have produced only discordant data so far (5 samples). These new ages are significantly younger than the 81 Ma age reported by Keller et al. (1995) for Site 884 (reverse polarity lavas) on the northeastern flank of Detroit seamount, and suggest that this complex may include several large volcanoes. All volcanic units at Site 1205 exhibit reverse polarity magnetization and biostratigraphic data place the lowermost sediments close to the Eocene-Paleocene boundary. Six plateau ages from lava flows spanning the 283m cored section give a mean age of 55.6 +/- 0.2 Ma (range: 55.2-56.4 Ma), corresponding to Chron 24r. Drilling at Site 1206 intersected a 278m N-R-N sequence of lava flows. Six plateau ages give a mean age of 49.1 +/- 0.2 Ma (range: 47.9-49.7 Ma), corresponding to the Chron 21n-21r-22n sequence. Deep penetration at the three seamounts and shipboard geochemical data suggest that the main shield

  13. CAMS newly detected meteor showers and the sporadic background

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.

  14. IAU MDC Photographic Meteor Orbits Database: Version 2013

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Porubčan, V.; Svoreň, J.

    2014-05-01

    A new 2013 version of the IAU MDC photographic meteor orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249-260) is presented. To the 2003 version additional 292 orbits are added, thus the new version of the database consists of 4,873 meteors with their geophysical and orbital parameters compiled in 41 catalogues. For storing the data, a new format enabling a more simple treatment with the parameters, including the errors of their determination is applied. The data can be downloaded from the IAU MDC web site: http://www.astro.sk/IAUMDC/Ph2013/

  15. Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Carmo, Vanda; Santos, Mariana; Menezes, Gui M.; Loureiro, Clara M.; Lambardi, Paolo; Martins, Ana

    2013-12-01

    Seamounts are common topographic features around the Azores archipelago (NE Atlantic). Recently there has been increasing research effort devoted to the ecology of these ecosystems. In the Azores, the mesozooplankon is poorly studied, particularly in relation to these seafloor elevations. In this study, zooplankton communities in the Condor seamount area (Azores) were investigated during March, July and September 2010. Samples were taken during both day and night with a Bongo net of 200 µm mesh that towed obliquely within the first 100 m of the water column. Total abundance, biomass and chlorophyll a concentrations did not vary with sampling site or within the diel cycle but significant seasonal variation was observed. Moreover, zooplankton community composition showed the same strong seasonal pattern regardless of spatial or daily variability. Despite seasonal differences, the zooplankton community structure remained similar for the duration of this study. Seasonal variability better explained our results than mesoscale spatial variability. Spatial homogeneity is probably related with island proximity and local dynamics over Condor seamount. Zooplankton literature for the region is sparse, therefore a short review of the most important zooplankton studies from the Azores is also presented.

  16. Theoretical and Observational Studies of Meteor Interactions with the Ionosphere

    DTIC Science & Technology

    2006-06-01

    within an order of magnitude. The histograms of scattering mass, calculated from data collected at the ALTAIR rada are contained in Figure 1 . These...RTO-MP-IST-056 12 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Theoretical and Observational Studies of Meteor Interactions with the...Observational Studies of Meteor Interactions with the Ionosphere. In Characterising the Ionosphere (pp. 12- 1 – 12-12). Meeting Proceedings RTO-MP-IST-056

  17. Autonomous spectrographic system to analyse the main elements of fireballs and meteors

    NASA Astrophysics Data System (ADS)

    Espartero, Francisco Ángel; Martínez, Germán; Frías, Marta; Montes Moya, Francisco Simón; Castro-Tirado, Alberto Javier

    2018-01-01

    We present a meteor observation system based on imaging CCD cameras, wide-field optics and a diffraction grating. This system is composed of two independent spectrographs with different configurations, which allows us to capture images of fireballs and meteors with several fields of view and sensitivities. The complete set forms a small autonomous observatory, comprised of a sealed box with a sliding roof, weather station and computers for data storing and reduction. Since 2014, several meteors have been studied using this facility, such as the Alcalá la Real fireball recorded on 30 September 2016.

  18. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Seismic characterization of the Chelyabinsk meteor's terminal explosion

    NASA Astrophysics Data System (ADS)

    González, Álvaro; Heimann, Sebastian; Wang, Rongjiang; Cesca, Simone; Dahm, Torsten

    2014-05-01

    On February 15th, 2013, an exceptionally large meteor in the region of Chelyabinsk, Russia, produced a powerful shock wave which caused unprecedented damage to people and property, the strongest atmospheric infrasound signal ever recorded, and remarkable ground motion. Here we describe and model the resulting Rayleigh waves, recorded at broadband seismic stations at distances from ~230 to ~4,100 km. Our full-waveform modeling uses a seismogram simulation code specifically tailored to consider wave propagation in the atmosphere and solid Earth, and the coupling at the interface between them. An isotropic point-like airburst reproduces very well the available seismic observations, without requiring a more complex explanation, such as a moving source. The measured seismic shaking was generated by direct coupling of the atmospheric shock wave to the ground, and then it propagated outwards faster than the atmospheric shock wave itself, at up to 3.9 km/s. The best-fitting airburst location (61.22° E, 54.88° N) is SW of Chelyabinsk city, exactly at the terminal part of the meteor's trajectory, just after it experienced a dramatic flare, with apparent brightness larger than the Sun's. We estimated the meteor's ground path from published trajectory data, eyewitness observations, and detailed satellite imagery of the exact location where a major meteorite fragment landed, in the frozen Lake Chebarkul (60.32074° E, 54.95966° N). Fixing the source origin time allowed us calculating that the explosion took place in the stratosphere, at an altitude of 22.5 ± 1.5 km. This value is lower than the reported altitude of peak brightness (about 29.5 km), but more consistent with the observations of shock wave travel times. Such results highlight the importance of terminal energy release down to lower altitude. We analyzed a surveillance video recorded inside a factory (61.347° E, 54.902° N) at Korkino, a locality close to the airburst. It shows a time delay of 87.5 seconds

  20. Estimation of Mesospheric Densities at Low Latitudes Using the Kunming Meteor Radar Together With SABER Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na

    2018-04-01

    Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.

  1. The ecology of xenophyophores (Protista) on eastern Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Thomas, Cynthia L.

    1988-12-01

    Large, agglutinating protozoans of the class Xenophyophorea are the dominant epifaunal organisms on soft and hard substrates of many bathyal seamounts in the eastern Pacific Ocean off Mexico. Observations made with the submersible Alvin and remotely towed camera sleds on 17 seamounts at 31°, 20°, 13° and 10°N revealed more than ten distinct xenophyophore test morphologies. Most of these appear to represent previously undescribed species. Reticulate forms are numerically dominant at 20°, 13° and 10°N. Xenophyophore abundances increase with decreasing latitude, being rare at 30°N, present at densities of 0.1-1.0 m -2 at 20° and 13°N and often exceeding 1.0 m -2 at 10°N, occasionally reaching 10-18 m -2. Highest concentrations are observed on caldera floors near the base of steep caldera walls, at depths between 1700 and 2500 m. Most individuals select sand-size pelagic foraminiferan tests (63-500 μm) and exclude pebble, silt and clay-size particles for test construction. Xenophyophore on seamounts modify the structure of metazoan communities and may play a role in maintenance of infaunal diversity. Twenty-seven xenophyophore tests were found to provide habitat for 16 major macrofaunal taxa (152 individuals) and three meiofaunal taxa (333 individuals). The presence of xenophyophores also enhances the abundance of isopods, tanaids, ophiuroids, nematodes and harpacticoid copepods dwelling in sediments surrounding the tests. Mobile megafauna are attracted to sediment beneath and adjacent to xenophyophores. We suggest that xenophyophores, which are abundant on many topographic features in deep water (e.g. guyots, trenches, canyons and continental slopes), are a functionally important component of deep-sea benthic communities and require further autecological and synecological investigation.

  2. On the interaction between ocean surface waves and seamounts

    NASA Astrophysics Data System (ADS)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  3. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  4. Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.

    2008-12-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  5. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2010-02-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  6. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2009-09-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  7. Winds in the meteor zone over Trivandrum

    NASA Astrophysics Data System (ADS)

    Reddi, C. R.; Rajeev, K.; Ramakumar, Geetha

    1991-04-01

    The height profiles of the zonal and meridional wind obtained from the meteor wind radar data recorded at Trivandrum (8 deg 36 min N, 77 deg E) are presented. Large wind shears were found to exist in the meteor zone over Trivandrum. The profiles showed quasi-sinusoidal variations with altitude and vertical wavelength of the oscillation in the range 15-25 km. Further, there was a large day-to-day variability in the profiles obtained for the same local time on consecutive days. The results are discussed in the light of the winds due to tides and equatorial waves in the low latitudes. The implications of the large wind shears with reference to the local wind effects on the equatorial electrojet are outlined.

  8. The New Meteor Radar at Penn State: Design and First Observations

    NASA Technical Reports Server (NTRS)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  9. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  10. Results of the first continuous meteor head echo survey at polar latitudes

    NASA Astrophysics Data System (ADS)

    Schult, Carsten; Stober, Gunter; Janches, Diego; Chau, Jorge L.

    2017-11-01

    We present the first quasi continuous meteor head echo measurements obtained during a period of over two years using the Middle Atmosphere ALOMAR Radar System (MAARSY). The measurements yield information on the altitude, trajectory, vector velocity, radar cross section, deceleration and dynamical mass of every single event. The large statistical amount of nearly one million meteor head detections provide an excellent overview of the elevation, altitude, velocity and daily count rate distributions during different times of the year at polar latitudes. Only 40% of the meteors were detected within the full width half maximum of the specific sporadic meteor sources. Our observation of the sporadic meteors are compared to the observations with other radar systems and a meteor input function (MIF). The best way to compare different radar systems is by comparing the radar cross section (RCS), which is the main detection criterion for each system. In this study we aim to compare our observations with a MIF, which provides information only about the meteoroid mass. Thus, we are using a statistical approach for the elevation and velocity dependent visibility and a specific mass selection. The predicted absolute count rates from the MIF are in a good agreement with the observation when it is assumed that the radar system is only sensitive to meteoroids with masses higher than one microgram. The analysis of the dynamic masses seems to be consistent with this assumption since the count rate of events with smaller masses are low and decrease even more by using events with relatively small errors.

  11. Nocturnal Air Seiches in the Arizona Meteor Crater

    NASA Astrophysics Data System (ADS)

    Muschinski, A.; Fritts, D. C.; Zhong, S.; Oncley, S. P.

    2011-12-01

    The Arizona Meteor Crater near Winslow, AZ is 170 m deep, has a diameter of 1.2 km, and it has a nearly circular shape. The motivation of the Meteor Crater Experiment (METCRAX), conducted in October 2006, was to use the Meteor Crater as a natural laboratory to study atmospheric phenomena that are typical for small basins. Among other observations, high-resolution wind, temperature and pressure measurements were collected with sonics and microbarometers, respectively, during the entire month. The sensors were mounted between 0.5 m and 8.5 m AGL on seven portable towers, five of which were located within the crater and two on the crater rim. Here we report observations of nocturnal air seiches, that is, standing gravity waves associated with the time-harmonic sloshing of the cold-air pool that forms at the bottom of the crater due to radiative cooling at night. We present time series, spectra, and spectrograms of temperature, wind and pressure fluctuations that characterize those air seiches. Typical seiche periods were 15 min. We compare the observations with the time-harmonic solutions of the shallow-water equation and with numerical simulations.

  12. Effects of meteoroid fragmentation on radar observations of meteor trails

    NASA Astrophysics Data System (ADS)

    Elford, W. Graham; Campbell, L.

    2001-11-01

    Radar reflections from meteor trails often differ from the predictions of simple models. There is general consensus that these differences are probably the result of fragmentation of the meteoroid. Several examples taken from different types of meteor radar observations are considered in order to test the validity of the fragmentation hypothesis. The absence of the expected Fresnel oscillations in many observations of transverse scatter from meteor trails is readily explained by assuming a number of ablating fragments spread out along the trails. Observations of amplitude fluctuations in head echoes from "down-the-beam" meteoroids are explained by gross fragmentation of a meteoroid into two or more pieces. Another down-the-beam event is modeled by simulation of the differential retardation of two fragments of different mass, giving reasonable agreement between the observed and predicted radar signals.

  13. METEOR: An Enterprise Health Informatics Environment to Support Evidence-Based Medicine.

    PubMed

    Puppala, Mamta; He, Tiancheng; Chen, Shenyi; Ogunti, Richard; Yu, Xiaohui; Li, Fuhai; Jackson, Robert; Wong, Stephen T C

    2015-12-01

    The aim of this paper is to propose the design and implementation of next-generation enterprise analytics platform developed at the Houston Methodist Hospital (HMH) system to meet the market and regulatory needs of the healthcare industry. For this goal, we developed an integrated clinical informatics environment, i.e., Methodist environment for translational enhancement and outcomes research (METEOR). The framework of METEOR consists of two components: the enterprise data warehouse (EDW) and a software intelligence and analytics (SIA) layer for enabling a wide range of clinical decision support systems that can be used directly by outcomes researchers and clinical investigators to facilitate data access for the purposes of hypothesis testing, cohort identification, data mining, risk prediction, and clinical research training. Data and usability analysis were performed on METEOR components as a preliminary evaluation, which successfully demonstrated that METEOR addresses significant niches in the clinical informatics area, and provides a powerful means for data integration and efficient access in supporting clinical and translational research. METEOR EDW and informatics applications improved outcomes, enabled coordinated care, and support health analytics and clinical research at HMH. The twin pressures of cost containment in the healthcare market and new federal regulations and policies have led to the prioritization of the meaningful use of electronic health records in the United States. EDW and SIA layers on top of EDW are becoming an essential strategic tool to healthcare institutions and integrated delivery networks in order to support evidence-based medicine at the enterprise level.

  14. From the epipelagic zone to the abyss: Trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic - Part I zooplankton and micronekton

    NASA Astrophysics Data System (ADS)

    Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd

    2017-12-01

    Specific mechanisms, driving trophic interactions within the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure of zooplankton and micronekton above and around Ampère and Senghor, two shallow seamounts in the subtropical and tropical Eastern Atlantic, and over the adjacent abyssal plains. For the identification of food sources and trophic positions stable isotope ratios (δ13C and δ15N) were used. δ13C ranged from -24.7‰ to -15.0‰ and δ15N covered a total range of 0.9-15.9‰. Based on epipelagic particulate organic matter, zooplankton and micronekton usually occupied the 1st-3rd trophic level, including herbivorous, omnivorous and carnivorous taxa. δ13C and δ15N values were generally lower in zooplankton and micronekton of the subtropical waters as compared to the tropical region, due to the differing nutrient availability and phytoplankton communities. Correlations between δ13C and δ15N values of particulate organic matter, zooplankton, micronekton and benthopelagic fishes suggest a linear food chain based on a single energy source from primary production for Ampère Seamount, but no evidence was found for an autochthonus seamount production as compared to the open ocean reference site. Between Senghor Seamount and the open ocean δ13C signatures indicate that hydrodynamic effects at seamounts may modify the energy supply at times, but evidence for a seamount effect on the trophic structure of the pelagic communities was weak, which supports the assumption that seamount communities rely to a large extent on advected food sources.

  15. 76 FR 10524 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ...-XA174 Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Temporary rule; closure. SUMMARY: NMFS is closing the commercial and non-commercial fisheries in the main...

  16. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  17. Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material

    NASA Astrophysics Data System (ADS)

    James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.; Whale, Thomas F.; Plane, John M. C.; Murray, Benjamin J.

    2018-04-01

    Heterogeneous nucleation of crystalline nitric acid hydrates in polar stratospheric clouds (PSCs) enhances ozone depletion. However, the identity and mode of action of the particles responsible for nucleation remains unknown. It has been suggested that meteoric material may trigger nucleation of nitric acid trihydrate (NAT, or other nitric acid phases), but this has never been quantitatively demonstrated in the laboratory. Meteoric material is present in two forms in the stratosphere: smoke that results from the ablation and re-condensation of vapours, and fragments that result from the break-up of meteoroids entering the atmosphere. Here we show that analogues of both materials have a capacity to nucleate nitric acid hydrates. In combination with estimates from a global model of the amount of meteoric smoke and fragments in the polar stratosphere we show that meteoric material probably accounts for NAT observations in early season polar stratospheric clouds in the absence of water ice.

  18. Results of the IMO Video Meteor Network - April 2016

    NASA Astrophysics Data System (ADS)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-10-01

    In 2016 April, a total of 78 video cameras of the IMO Video Meteor Network recorded more than 16 000 meteors in almost 7 700 hours of observing time. The flux density profile of the Lyrids 2016 is presented and compared to the average for the years 2011-2015. The flux density increased significantly as twilight set in on the morning of 2016 April 22. A similar increase was also seen in 2012. The population index of the Lyrids is also derived from observations around the shower maximum.

  19. Evolution of the central Atlantic hot spots cluster in the last 100 Myr: interaction between plate tectonics, a lower mantle thermochemical instability and upper mantle secondary plumes

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Davaille, A.; Marques, F. O.; Hildenbrand, A.

    2014-12-01

    Born 200 Ma ago, the central Atlantic presents nowadays a large low seismic velocity anomaly in the lower mantle, a cluster of "hot" spots (Azores, Cape Verde, Madeira, Canary, Great Meteor), a mid-ocean ridge, and a triple junction located in the Azores. We carried out laboratory experiments to examine the possible links between mantle instabilities, plate boundary migration, and the
development of the volcanism on various spatial and temporal scales. Coupled with the current knowledge of these volcanic areas (tomography, tectonics and K/Ar dating), our fluid mechanics
experiments suggest that: (1) The Azores, as Canary, Cape Verde, Madeira Islands and Great Meteor seamounts might be the surface expression of a cluster of mantle instabilities rising from the top of a large thermochemical dome located in the lower mantle. However, such secondary plumes present a strong
time-dependence 5-40 Myr time scale. (2) These secondary instabilities could be sufficiently weak to adapt their motions to the pre-existing force
balance, and morphology and mechanical properties of the lithosphere. Based on current knowledge and modelling, we present a scenario of the Central Atlantic area evolution in the last 100 Ma combining a triple junction and decompression melting-generated buoyant material (i.e. such in volatiles and/or
temperature) under a cooling and thickening lithosphere.

  20. The cometary and asteroidal origins of meteors

    NASA Technical Reports Server (NTRS)

    Kresak, L.

    1973-01-01

    A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.

  1. Meteors do not break exogenous organic molecules into high yields of diatomics

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Schaller, Emily L.; Laux, Christophe O.; Wilson, Michael A.; Schmidt, Greg; Rairden, Rick L.

    2004-01-01

    Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.

  2. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  3. 50 CFR 665.200 - Hawaii bottomfish and seamount groundfish fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii bottomfish and seamount groundfish fisheries. [Reserved] 665.200 Section 665.200 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  4. Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward

    2016-04-01

    Optical observations of faint meteors (10-7 < mass < 10-4 kg) were collected by the Canadian Automated Meteor Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify meteors and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the meteor light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most meteor light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. Meteors that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (I > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.

  5. On the electrophonic generation of audio frequency sound by meteors

    NASA Astrophysics Data System (ADS)

    Kelley, Michael C.; Price, Colin

    2017-04-01

    Recorded for centuries, people can hear and see meteors nearly concurrently. Electromagnetic energy clearly propagates at the speed of light and converts to sound (called electrophonics) when coupled to metals. An explanation for the electromagnetic energy source is suggested. Coma ions around the meteor head can easily travel across magnetic field lines up to 120 km. The electrons, however, are tied to magnetic field lines, since they must gyrate around the field above 75 km. A large ambipolar electric field must be generated to conserve charge neutrality. This localized electric field maps to the E region then drives a large Hall current that launches the electromagnetic wave. Using antenna theory and following, a power flux of over 10-8 W/m2 at the ground is found. Electrophonic conversion to sound efficiency then needs to be only 0.1% to explain why humans can hear and see meteors nearly concurrently.

  6. Meteor reporting made easy- The Fireballs in the Sky smartphone app

    NASA Astrophysics Data System (ADS)

    Sansom, E.; Ridgewell, J.; Bland, P.; Paxman, J.

    2016-01-01

    Using smartphone technology, the award-winning 'Fireballs in the Sky' app provides a new approach to public meteor reporting. Using the internal GPS and sensors of a smartphone, a user can record the start and end position of a meteor sighting with a background star field as reference. Animations are used to visualize the duration and characteristics of the meteor. The intuitive application can be used in situ, providing a more accurate eye witness account than after-the-fact reports (although reports may also be made through a website interface). Since its launch in 2013, the app has received over 2000 submissions, including 73 events which were reported by multiple users. The app database is linked to the Desert Fireball Network in Australia (DFN), meaning app reports can be confirmed by DFN observatories. Supporting features include an integrated meteor shower tool that provides updates on active showers, their visibility based on moon phase, as well as a tool to point the user toward the radiant. The locations of reports are also now shown on a live map on the Fireballs in the Sky webpage.

  7. Orbit characteristics of the tristatic EISCAT UHF meteors

    NASA Astrophysics Data System (ADS)

    Szasz, C.; Kero, J.; Meisel, D. D.; Pellinen-Wannberg, A.; Wannberg, G.; Westman, A.

    2008-07-01

    The tristatic EISCAT 930-MHz UHF system is used to determine the absolute geocentric velocities of meteors detected with all three receivers simultaneously at 96 km, the height of the common radar volume. The data used in this study were taken between 2002 and 2005, during four 24-h runs at summer/winter solstice and vernal/autumnal equinox to observe the largest seasonal difference. The observed velocities of 410 tristatic meteors are integrated back through the Earth atmosphere to find their atmospheric entry velocities using an ablation model. Orbit calculations are performed by taking zenith attraction, Earth rotation as well as obliquity of the ecliptic into account. The results are presented in the form of different orbital characteristics. None of the observed meteors appears to be of extrasolar or asteroidal origin; comets, particularly short-period (<200 yr) ones, may be the dominant source for the particles observed. About 40 per cent of the radiants can be associated with the north apex sporadic meteor source and 58 per cent of the orbits are retrograde. There is evidence of resonance gaps at semimajor axis values corresponding to commensurabilities with Jupiter, which may be the first convincing evidence of Jupiter's gravitational influence on the population of small sporadic meteoroids surveyed by radar. The geocentric velocity distribution is bimodal with a prograde population centred around 38 kms-1 and a retrograde population peaking at 59 kms-1. The EISCAT radar system is located close to the Arctic Circle, which means that the North Ecliptic Pole (NEP) is near zenith once every 24 h, i.e. during each observational period. In this particular geometry, the local horizon coincides with the ecliptic plane. The meteoroid influx should therefore be directly comparable throughout the year.

  8. ScienceCast 127: Geminid Meteors at Dawn

    NASA Image and Video Library

    2013-12-12

    The Geminid meteor shower is underway. Forecasters say the best time to look is during the dark hours before sunrise on Saturday morning, Dec. 14th. Dark-sky observers could see dozens of bright shooting stars.

  9. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and

  10. Seasonal occurrence of sperm whales (Physeter macrocephalus) around Kelvin Seamount in the Sargasso Sea in relation to oceanographic processes

    NASA Astrophysics Data System (ADS)

    Wong, Sarah N. P.; Whitehead, Hal

    2014-09-01

    Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream's interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.

  11. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  12. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  13. Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland

    2014-05-01

    Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.

  14. An Initial Meteoroid Stream Survey in the Southern Hemisphere Using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.

    2013-01-01

    We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1 resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.

  15. Are the stratospheric dust particles meteor ablation debris or interplanetary dust?

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Kyte, F. T.

    1978-01-01

    Natural and laboratory created fusion crusts and debris from artificial meteor samples were used to develop criteria for recognizing meteor ablation debris in a collection of 5 to 50 micron particles from the stratosphere. These laboratory studies indicate that meteor ablation debris from nickel-iron meteoroids produce spherules containing taenite, wuestite, magnetite, and hematite. These same studies also indicate that ablation debris from chondritic meteoroids produce spheres and fragmentary debris. The spheres may be either silicate rich, containing zoned olivine, magnetite, and glass, or sulfide rich, containing iron oxides (e.g., magnetite, wuestite) and iron sulfides (e.g., pyrrhotite, pentlandite). The fragmentary debris may be either fine-grained aggregates of olivine, magnetite, pyroxene, and occasionally pyrrhotite (derived from the meteorite matrix) or individual olivine and pyroxene grains (derived from meteorite inclusions).

  16. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S.

    1998-11-01

    The Magellan Seamount Trail (MST) delineates a northwest trending chain of four Cretaceous guyots in the West Pacific Seamount Province (WPSP). Seamount morphology, 40Ar/ 39Ar geochronology and Sr-Nd-Pb geochemistry of the MST provides evidence for a hotspot origin between the Samoa, Rarotonga and Society hotspots of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The MST yields an excellent linear age progression of 47.6±1.6 mm/yr ( r2=1.000; MSWD = 0.23; 1 σ SE) including Vlinder guyot (95.1±0.5 Ma, n=5; 2 σ SD), Pako guyot (91.3±0.3 Ma, n=3) and Ioah guyot (87.1±0.3 Ma, n=2). The MST also exhibits a small range in Sr-Nd-Pb isotopic compositions indicating enriched mantle sources with an affinity of EMI. Nevertheless, three volcanic events are found out of sequence with linear MST hotspot volcanism: (1) an independent volcanic pedestal was formed 4-7 Myr before shield-volcanism started at Vlinder guyot, (2) a post-erosional volcanic cone was formed at least 20-30 Myr after drowning of Vlinder guyot, and (3) Ita Mai Tai guyot (118.1±0.5 Ma, n=3) was formed 34-36 Myr before the MST hotspot arrived at the predicted location of this guyot. By identifying and ruling out discordant volcanic events, we can use the age progression in MST to test the fixity of its hotspot. When presuming the fixed hotspot hypothesis, the local age progressions of the MST (47.6±1.6 mm/yr) and the copolar Musicians seamount trail (55.8±6.4 mm/yr) are not compatible with their 100-80 Ma Euler pole. We investigate two options: (1) acceptance of a `forced' Euler pole obeying the hotspot hypothesis by using both the age progressions and the azimuths of the studied seamount trails, or (2) acceptance of a `best-fit' Euler pole by using the azimuths of the studied seamount trail exclusively. In the first option, the angular speed of the Pacific plate during the 100-80 Ma stage pole is calculated at 0.502±0.017°/Myr. In the second option, the `best-fit' Euler pole is found

  17. The MAGIC Meteoric Smoke Particle Sampler - Description and Results

    NASA Astrophysics Data System (ADS)

    Hedin, J.

    2013-12-01

    Between a few to several hundred tons of meteoric material enters the Earth's atmosphere each day, and much of this material ablates in the 70 -130 km region of the atmosphere. Already in the early 1960's it was suggested that meteoroid ablation products could recondense and form solid nanometer-scale smoke particles in the altitude range of the mesosphere and lower thermosphere (MLT). These so-called meteoric smoke particles (MSPs) are then subject to further coagulation, sedimentation, and transport by the mesospheric meridional circulation which in turn determines the latitudinal and seasonal variation of the MSP distribution. MSPs have been suggested to be important for a variety of atmospheric phenomena: 1. they are the most likely candidate for the nuclei of mesospheric ice particles (NLC and PMSE); 2. they provide surface area on which heterogeneous chemical reactions take place and may influence, for example, the water vapor distribution and Ox/HOx chemistry in the mesosphere; 3. they act as ultimate sink in mesospheric metal chemistry by scavenging various gas-phase products of meteoric ablation; 4. they can significantly influence the ionospheric D-region charge balance by scavenging free electrons and positive ions; and 5. they may be involved in the formation of NAT particles in polar stratospheric clouds and the destruction of ozone. Given the above points, it is obvious that there is a large scientific interest in the properties and global distribution of MSPs. Basic information about MSP properties is today available from optical occultation measurements (AIM/SOFIE) and, more indirectly, from in-situ measurements of the charged particle population. In order to understand the role of meteoric smoke particles in the mesosphere and their impact on that environment their presence must be certified and their physical characterization (number density, size distribution, shape, composition etc.) determined. A way to obtain maximum information about particle

  18. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Janches, Diego; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Jenniskens, Peter

    2011-12-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (gsim 105 yr at 1 AU) than postulated in the standard collisional models (~104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ~4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ~104-105 kg s-1. The input is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ~15,000 tons yr-1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration

  19. Detailed seamount-scale studies of ferromanganese crusts reveal new insights into their formation and resource assessment.

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Lusty, P.; Yeo, I. A.; Howarth, S.

    2017-12-01

    The seafloor hosts abundant mineral deposits critical for low-carbon economies and emerging technologies. These include ferromanganese crusts (FeMnC) that grow on seamounts. While the broad distribution of FeMnC is known, local controls on growth, composition and formation are not. Here, we describe a detailed study of a gyot in the NE Atlantic (Tropic Seamount) that explores the controls, from the surface to the seafloor, exerted on FeMnC growth from current energy, surface productivity, sediment distribution, seafloor morphology, substrate lithology, sediments mobility and thickness, and seamount subsidence. During cruise JC142 (2016), we mapped the seamount with EM120 multibeam, mapped the 400km2 summit with AUV multibeam, sidescan sonar, sub-bottom profiler and 361,644 photographs. During 28 ROV dives we drilled 58 core and collected 344 individual rock samples. We found FeMnC at all depths, with the thickest (<20cm) located at the greatest depths (3000-4000m). The thinnest are on the summit plateau, with the centre and southern edge having the thickest sediment. FeMnC pavements form many different terraces on the summit. Frequent undercuts expose a calcareous substrate. Elsewhere, cobbles and pebbles form the nucleolus for crusts up to 10cm thick, with growth into the sediment. Many substrates are found to comprise semi-consolidated sediment. The presence of thick crusts at the base of the seamount contradicts accepted understanding of FeMnC deposition just below the oxygen minimum zone (OMZ). In areas on the eastern and western spurs, between 2500m and 1000m, where current energy is greatest, sessile fauna are most abundant. Dense coral debris at these locations appears to inhibit crust formation and coral and sponge `gardens' are frequent on near vertical cliffs. The observation that crusts have grown downwards into and over soft sediment is enigmatic since present understanding requires hard substrates to be exposed to seawater for crusts to grow, and any

  20. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a

  1. Characterizing the 2016 Perseid Meteor Shower Outburst

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Moser, D. E.; Molau, S.; Schult, C.; Stober, G.

    2017-01-01

    The Perseid meteor shower has been observed for millennia and is known for its visually spectacular meteors and occasional outbursts. Normal activity displays Zenithal Hourly Rates (ZHRs) of approximately100. The Perseids were expected to outburst in 2016, primarily due to particles released during the 1862 and 1479 revolutions of parent Comet Swift-Tuttle. NASA's Meteoroid Environment Office predicted the timing, strength and duration of the outburst for spacecraft risk using the MSFC Meteoroid Stream Model [1]. A double peak was predicted, with an outburst displaying a ZHR of 210 +/- 50 at 00:30 UTC Aug 12 (139.5deg Solar Longitude), and a traditional peak 12 hours later with rates still heightened from the outburst [2]. Video, visual, and radar observations taken worldwide by various entities were used to characterize the shower and compare to predictions.

  2. Characteristics of Fe Ablation Trials Observed During the 1998 Leonid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Chu, Xin-Zhao; Pan, Wei-Lin; Papen, George; Swenson, Gary; Gardner, Chester S.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Eighteen Fe ablation trails were observed during the 17/18 Nov 1998 Leonid meteor shower with an airborne Fe lidar aboard the National Simulation Facility/National Center for Atmospheric Research (NSF/NCAR) Electra aircraft over Okinawa. The average altitude of the 18 trails from the high velocity (72 km/s) Leonid meteors, 95.67 +/- 0.93 km, is approximately 6.7 km higher than previously observed for slower (approx. 30 km/s) sporadic meteors. This height difference is consistent with the assumption that meteors ablate when the kinetic energy imparted to the atmosphere reaches a critical threshold. The average age of the Fe trails, determined by a diffusion model, is 10.1 min. The youngest ages were observed below 92 km and above 98 km where chemistry and diffusion dominate, respectively. The average abundance of the trails is ten percent of the abundance of the background Fe layer. Observations suggest that the 1998 Leonid shower did not have a significant impact on the abundance of the background Fe layer.

  3. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    NASA Astrophysics Data System (ADS)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  4. Tidal currents and anticyclonic motions on two North Pacific seamounts

    USGS Publications Warehouse

    Genin, A.; Noble, M.; Lonsdale, P.F.

    1989-01-01

    Near-bottom currents were measured for several days at three sites on the summits of Fieberling Guyot (32??26???N, 127??46???W) and Horizon Guyot (19??15???N, 160??00???W). Three moorings comprised of two current meters were deployed on each summit; two moorings were deployed on opposite sides of the rim of the summit and one mooring was deployed near the center of the summit. The observed currents were strong, with maximum speeds of 48 and 24 cm s-1 on Fieberling and Horizon, respectively. The currents at specific frequencies were enhanced relative to those in the surrounding ocean. Diurnal currents were the dominant component of the current field on Fieberling Guyot. They accounted for 39-68% of the energy and had amplitudes around 12 cm s-1. We suspect that these diurnal currents were waves trapped over the seamount. Semidiurnal internal tidal currents were the strongest currents over Horizon Guyot, with amplitudes around 4 cm s-1. The flow patterns determined in this study seemed to affect the biological and geological characteristics of the seamounts. ?? 1990.

  5. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    PubMed

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  6. Meteor Shower observations from the Indian Sub-Continent (Visual Photographic and Radio)

    NASA Astrophysics Data System (ADS)

    Dabhade, R.; Savant, V.; Belapure, J.

    2011-01-01

    We review the present status of meteor shower observing from the Indian sub-continent. Some amateur groups are active in visual observations, although they are restricted by the lack of good observing sites. Ham radio appears to be promising as a technique to monitor the major meteor showers in this region. We present radio observations of the 2006 Quadrantids.

  7. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedidmore » member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage

  8. Increasing Geminid meteor shower activity

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.; Rendtel, J.

    2018-03-01

    Mathematical modelling has shown that activity of the Geminid meteor shower should rise with time, and that was confirmed by analysis of visual observations 1985-2016. We do not expect any outburst activity of the Geminid shower in 2017, even though the asteroid (3200) Phaethon has a close approach to Earth in December of 2017. A small probability to observe dust ejected at perihelia 2009-2016 still exists.

  9. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed

  10. A Global Model of Meteoric Sodium

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  11. Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.

    2012-12-01

    Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.

  12. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    NASA Astrophysics Data System (ADS)

    Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk

    2018-03-01

    Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

  13. Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard

    2016-04-01

    Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.

  14. A fireball analysis from Spanish meteor observations

    NASA Astrophysics Data System (ADS)

    Benítez Sánchez, O.; Ocaña González, F.

    2004-03-01

    Naked eye meteor records from Spain are used for an analysis of 3240 fireballs reported by members of the Sociedad de Observadores de Meteoros Y Cometas de España (SOMYCE) and by casual eye-witnesses from 1982 to 2000. This analysis concerns various areas, such as statistical studies of the colours and the frequency of fireballs in annual meteor showers. Annual and diurnal variations are also discussed. We describe the population index r for magnitudes brighter than m=-2 for ORI, VIR, AQU, TAU, CAP, QUA, GEM, LYR, LEO, KCG, PER and sporadic fireballs. The typical population index is always in the range ≃ 1.2 to 1.9, except for Perseids and Geminids. An investigation of visual fireballs radiants was attempted with the Radiant software. The sample of fireballs (282 fireballs with the path reported) only shows evidence for the Perseids and Leonids.

  15. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  16. Identifying epibenthic habitats on the Seco de los Olivos Seamount: Species assemblages and environmental characteristics

    NASA Astrophysics Data System (ADS)

    De la Torriente, A.; Serrano, A.; Fernández-Salas, L. M.; García, M.; Aguilar, R.

    2018-05-01

    High habitat diversity was observed on the Seco de los Olivos Seamount (SW Mediterranean Sea), a Site of Community Importance belonging to the Spanish marine Natura 2000 Network. Thirteen epibenthic habitats were identified by analysing 55 Remotely Operated Vehicle (ROV) transects from 76 m to 700 m depth and derived data from multibeam bathymetry and high resolution seismic profiles. Habitat identification was based on a combination of assemblages of habitat-forming species and the environmental characteristics supporting their distribution. Depth and slope were identified as the main significant factors structuring epibenthic assemblages. The high diversity and patchiness of habitats found on the Seco de los Olivos Seamount can be explained by the high environmental variability resulting from its wide geomorphologic diversity, where flat summits, steep flanks, rocky outcrops and sedimentary moats are combined. The distribution of benthic habitats at this seamount is likely a combination of suitable ecological conditions, local recruitment, feeding strategies and attachment mechanisms. Knowledge on the occurrence of habitats in areas of natural importance is crucial to species and habitats conservation and to develop proper monitoring and management programs aimed at fulfilling European regulation requirements.

  17. 95 years anniversary of Professor BL Kashcheyev (1920 - 2004) - the well-known Ukrainian researcher of meteors by the radar method

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana

    2015-08-01

    Meteor astronomy is constantly evolving. We can distinguish several stages in the development of meteor astronomy. One of these steps is the period associated with carrying out the global program called "International Geophysical Year 1957" (IGY1957). Thanks to this program in Ukraine in Kharkiv has been studied meteors using radar techniques. One of the organizers of the IGY 1957 meteor program execution in Ukraine (and in the former Soviet Union) was prof. BL Kashcheyev (1920-2004). At the IAU GA in 1958 prof. BL Kashcheyev made the report on the meteor radar studies in Kharkiv. These research were considered by the IAU Commission 22 as the best in the world. The name of Professor BL Kashcheyev related to the creation of the Kharkiv meteor radar system and the long series of meteor observations, creating the database of 250 thousand orbits of faint meteors (12^ M), carrying out the variety of meteor projects (including the GLOBMET). In 2004 the Kharkiv meteor radar complex was given the status of national heritage of Ukraine. In 2007, the organizers of the program "International Heliophisic Year 2007" (IHY2007) remarked the BL Kashcheyev contribution to the IGY 1957 (the certificate and the pin "The IGY1957 Gold ").

  18. Two bright fireballs over Great Britain

    NASA Astrophysics Data System (ADS)

    Koukal, Jakub; Káčerek, Richard

    2018-02-01

    On November 24, 2017 shortly before midnight and on November 25, 2017 shortly before sunrise, two very bright fireballs lit up the sky over the United Kingdom. The UKMON (United Kingdom Meteor Observation Network) cameras and onboard cameras in the automobiles recorded their flight. The fireballs paths in the Earth's atmosphere were calculated, as well as the orbits of bodies in the Solar System. The flight of both bodies, the absolute magnitude of which approached the brightness of the full Moon, was also observed by numerous random observers from the public in Great Britain, Ireland and France.

  19. In Situ Measurements of Meteoric Ions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aikin, Arthur C.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Metal ions found in the atmosphere above 60 km are the result of incoming meteoroid atmospheric ablation. Layers of metal ions are detected by sounding rocket in situ mass spectrometric sampling in the 80 to 130 km region, which coincides with the altitude region where meteors are observed. Enhancements of metal ion concentrations occur during meteor showers. Even outside of shower periods, the metal ion altitude profiles vary from measurement to measurement. Double layers are frequent at middle latitudes. More than 40 different meteoric atomic and molecular ions, including isotopes, have been detected. Atmospheric metal ions on average have an abundance that matches chrondritic material, the same composition as the early solar system. However there are frequently local departures from this composition due to differential ablation, species dependent chemistry and mass dependent ion transport. Metal ions react with atmospheric O2, O, O3, H2O and H2O2 to form oxygenated and hydrogenated ionic compounds. Metal atomic ions at high altitudes have long lifetimes. As a result, these ions, in the presence of Earth's magnetic field, are transported over long distances by upper atmospheric winds and ionospheric electric fields. Satellite measurements have detected metal ions as high as, approximately 1000 km and have revealed circulation of the ions on a global scale.

  20. Dynamical Behavior of Meteor in AN Atmosphere: Theory vs Observations

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria

    Up to now the only quantities which directly follow from the available meteor observations are its brightness, the height above sea level, the length along the trajectory, and as a consequence its velocity as a function of time. Other important parameters like meteoroid's mass, its shape, bulk and grain density, temperature remain unknown and should be found based on physical theories and special experiments. In this study I will consider modern methods for evaluating meteoroid parameters from observational data, and some of their applications. The study in particular takes an approach in modelling the meteoroids' mass and other properties from the aerodynamical point of view, e.g. from the rate of body deceleration in the atmosphere as opposed to conventionally used luminosity [1]. An analytical model of the atmospheric entry is calculated for registered meteors using published observational data and evaluating parameters describing drag, ablation and rotation rate of meteoroid along the luminous segment of the trajectory. One of the special features of this approach is the possibility of considering a change in body shape during its motion in the atmosphere. The correct mathematical modelling of meteor events is necessary for further studies of consequences for collisions of cosmic bodies with the Earth [2]. It also helps us to estimate the key parameters of the meteoroids, including deceleration, pre-entry mass, terminal mass, ablation coefficient, effective destruction enthalpy, and heat-transfer coefficient. With this information, one can use models for the dust influx onto Earth to estimate the number of meteors detected by a camera of a given sensitivity. References 1. Gritsevich M. I. Determination of Parameters of Meteor Bodies based on Flight Obser-vational Data // Advances in Space Research, 44, p. 323-334, 2009. 2. Gritsevich M. I., Stulov V. P. and Turchak L. I. Classification of Consequences for Col-lisions of Natural Cosmic Bodies with the Earth

  1. Implications from Meteoric and Volcanic Infrasound Measured in the Netherlands

    NASA Astrophysics Data System (ADS)

    Evers, L.

    2003-12-01

    Infrasound observations started in the Netherlands in 1986. Since then, several array configurations and instruments have been developed, tested and made operational. Currently, three infrasound arrays are continuously measuring infrasound with in-house developed microbarometers. The array apertures vary from 30 to 1500 meters and the number of instruments from 6 to 16 microbarometers. The inter-array distance ranges from 50 up to 150 km. This dense network of infrasound arrays is used to distinguish between earthquakes and sources in the atmosphere. Sonic booms, for example, can be experienced in the same manner as small (gas induced) earthquakes. Furthermore, Comprehensive Nuclear-Test-Ban Treaty (CTBT) related research is done. Meteors are one of the few natural impulsive sources generating energy in kT TNT equivalent range. Therefore, the study of meteors is essential to the CTBT where infrasound is applied as monitoring technique. Studies of meteors in the Netherlands have shown the capability of infrasound to trace a meteor through the stratosphere. The propagation of infrasound is in first order dependent on the wind and temperature structure of the atmosphere. The meteor's path could be reconstructed by using ECMWF atmospheric models for wind and temperature. The results were compared to visual observations, confirming the location, direction and reported origin time. The accuracy of the localization mainly depends on the applied atmospheric model and array resolution. Successfully applying infrasound depends on the array configuration that should be based on the -frequency depend- spatial coherence of the signals of interest. The array aperture and inter-element distance will play a decisive role in detecting low signal-to-noise ratios. This is shown by results from studies on volcanic infrasound from Mt. Etna (Italy) detected in the Netherlands. Sub-array processing on the 16 element array revealed an increased detectability of infrasound for small

  2. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar

  3. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Janches, Diego; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F.; Jenniskens, Peter

    2011-01-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (approx. > 10(exp 5) yr at 1 AU) than postulated in the standard collisional models (approx 10(exp 4) yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) 10(exp 11) sq km and approx. 4 10(exp 19) g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be approx. 10(exp 4)-10(exp 5) kg/s. The input is up to approx 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 micron and 1 cm is found to be approx 15,000 tons/yr (factor of 2 uncertainty), which is

  4. DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr

    2011-12-20

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving atmore » the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer ({approx}> 10{sup 5} yr at 1 AU) than postulated in the standard collisional models ({approx}10{sup 4} yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) Multiplication-Sign 10{sup 11} km{sup 2} and {approx}4 Multiplication-Sign 10{sup 19} g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be {approx}10{sup 4}-10{sup 5} kg s{sup -1}. The input is up to {approx}10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 {mu}m and 1 cm is found to be {approx

  5. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    -field rock and meteorite ejecta parameters, 13) Inferred and estimated cloud-rise and fall-out conditions, 14) Late-stage meteorite falls after impact, 15) Estimated damage effect ranges, 16) Erosion of crater and ejecta blanket, 17) New topographic and digital maps of crater and ejecta blanket, 18) Other. (Suggestions are welcome) This compilation will contain expanded discussions of new data as well as revised interpretations of existing information. For example in Item 1, we suggest the impacting body most likely formed during a collision in the main asteroid belt that fragmented the iron-nickel core of an asteroid some 0.5 billion years ago. The fragments remained in space until about 50,000+/-3000 yrs ago, when they were captured by the Earth's gravitational field. In Item 3, the trajectory of the impacting body is interpreted by EMS as traveling north-northwest at a relatively low impact angle. The presence of both shocked meteorite fragments and melt spherules indicate the meteorite had a velocity in the range of about 13 to 20 km/s, probably in the lower part of this range [4]. In Item 4, the coherent meteorite diameter is estimated to have been 45 to 50 m with a mass of 300,000 to 400,000 tons, i.e., large enough to experience less than 1% in both mass ablation and velocity deceleration. During this time, minor flake-off of the meteorite's exterior produced a limited number of smaller fragments that followed the main mass to the impact site but at greatly reduced velocities. In Item 6, we estimate the kinetic energy of impact to be in the range of 20 to 40 Mt depending on the energy coupling functions used and corrections for angle of oblique impact. At impact, terrain conditions were about as we see them today, a gently rolling plain with outcrops of Moenkopi and a meter or so of soil cover. In Item 18, EMS estimates production of a Meteor Crater-size event should occur on the continents about every 50,000 years; interestingly, this is the age of Meteor Crater

  6. Physical and kinematic characteristics of meteoroids producing bright radio meteors. Meteor showers and associations

    NASA Astrophysics Data System (ADS)

    Narziev, M.

    2014-07-01

    This paper contains radiants, velocities, masses and densities of 214 meteor showers and associations identified among more than 6100 radar meteors observed in the Gissar Astronomical Observatory during one year cycle 1968-1969. Part of these streams and associations were observed by the radar technique for a very first time. We have determined the masses and densities of the meteoroids which constitute streams and associations. The mean values of masses fall into interval 7x10^{-4}-0.3 g, and densities are in range of 0.3-7 g/cm^{3}. For 76% showers and associations, the mean values of the meteoroid densities concentrate between 1 and 4 g/cm^3. For 11% of showers and associations, the particle densities have mean values from 4 up to 7 g/cm^3, and in the case of remaining 13% the mean densities of the particles proved to be smaller than 1 g/cm^3. For the meteoroids, members of showers and associations, our analysis has shown that, with an increase of the average mass of the particle, its average density decrease. Based on the radar observations the density and the porosity of meteoroid streams of common origin (twin meteoroid streams) have been estimated. It was established that the densities and the structure of meteoroid stream particles of common origin are similar.

  7. Spectra of Full 3-D PIC Simulations of Finite Meteor Trails

    NASA Astrophysics Data System (ADS)

    Tarnecki, L. K.; Oppenheim, M. M.

    2016-12-01

    Radars detect plasma trails created by the billions of small meteors that impact the Earth's atmosphere daily, returning data used to infer characteristics of the meteoroid population and upper atmosphere. Researchers use models to investigate the dynamic evolution of the trails. Previously, all models assumed a trail of infinite length, due to the constraints of simulation techniques. We present the first simulations of 3D meteor trails of finite length. This change more accurately captures the physics of the trails. We characterize the turbulence that develops as the trail evolves and study the effects of varying the external electric field, altitude, and initial density. The simulations show that turbulence develops in all cases, and that trails travel with the neutral wind rather than electric field. Our results will allow us to draw more detailed and accurate information from non-specular radar observations of meteors.

  8. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  9. Diffuse Volcanism at the Young End of the Walvis Ridge - Tristan - Gough Seamount Province: Geochemical Sampling and Constraints on Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Class, C.; Koppers, A. A. P.; Sager, W. W.; Schnur, S.

    2014-12-01

    The Walvis Ridge-Tristan/Gough seamount province in the South Atlantic represents 130 Myr of continuous intra-plate volcanism that can be connected to the once conjunct Parana-Etendeka flood basalt province. With this it represents one of the few primary hotspots consistent with the thermal plume model. However, around 60 Ma, the morphological expression of the Walvis Ridge changed drastically from a robust 200 km wide aseismic ridge into a 400 km wide region of diffuse and diminished volcanism. As a result, this part of the plume trail has been described by two subtracks, one ending at Tristan da Cunha and another at Gough Island more than 400 km to the SSE. Where the Walvis Ridge forks into these two tracks there is a center prong. There is also the 39.5°S lineament of seamounts between, but oblique to, the two subtracks, which is parallel to the local fracture zone directions. All these features are at odds with the classical definition of a narrow hotspot track although Rohde et al. (2013) showed that the Tristan and Gough subtracks retain a distinct geochemical signature over 70 Myr and are consistent with a zoned, deep-seated plume. The first Sr-Nd-Hf-Pb isotopic and trace element analyses from the detailed dredge sampling cruise MV1203 show that samples from two prominent seamounts at the western end of the 39.5°S lineament have a Gough-type signature, which makes an upper mantle source for this lineament unlikely but rather indicates that the Gough-type source stretches some 200 km NNW from Gough. Tristan track seamount samples are comparable with published data, however, one new sample has a Gough-type composition suggesting leakage of this component into the Tristan-type plume zone. Seamounts on the middle prong of the Walvis Ridge fork have compositions intermediate to Gough and Tristan domains, suggesting mixing between sources or melts of the two domains. Thus, the Gough-component in the last 60 Myr of plume activity is volumetrically much more

  10. About Catalogue of Orbit and Atmospheric Trajectory of 4500 Radio Meteors Brighter +5m

    NASA Astrophysics Data System (ADS)

    Narziev, M.; Tshebotaryov, P.

    2017-09-01

    Published by this time the majority of catalogues of a radiant, speeds and elements of orbits of meteors, basically, are based on a interpretation of the given radio observations by diffraction-time a method. However the given method is applicable for processing of 15-25 % of observed meteors that leads to loss of the most part of an observed material. Besides, the error of measurement of an antiaircraft corner of a radiant σZr with increase in a corner to 60°÷70 ° will be increased in 2-3 times, and at the further increase in a corner the error grows even faster, so measurements lose meaning. In 1968-1970 in action period of the Soviet equatorial meteor expedition to Somalia, simultaneously and radio observations of meteors in HisAO from four points have been resulted. For interpretation of the radar data the bearing-time method radio method developed and applied for the first time in Tajikistan is used. This approximately twice increases number of the measured radiant and speeds. What's more, the error of measurement of an antiaircraft corner does not depend on antiaircraft distance of a radiant. The velocity of meteor is determined by the bearing-time method, and by the diffraction picture. In the catalogue along with a radiant, speeds and elements of orbits, for the first time the height, value of linear electronic density, radio magnitude and masses of each of 4500 radio meteors registered since December 1968 till May, 1969 are resulted.

  11. Instrument for the detection of meteors in the infrared

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Koschny, D.; Ter Haar, J.

    2014-07-01

    The flux of interplanetary particles in the size range 2 mm to 20 m is poorly constrained due to insufficient data --- the larger bodies may be observed remotely by ground-based or space-based telescopes and the smaller particles are measured by in-situ impact detectors in space or by meteor cameras from ground. An infrared video rate imager in Earth orbit would enable a systematic characterization for an extended period, day and night, of the flux in this range by monitoring the bright meteor/fireball generated during atmospheric entry. Due to the low flux of meteoroids in this range a very large detector is required. With this method a large portion of the Earth atmosphere is in fact used as a huge detector. Such an instrument has never flown in Earth orbit. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. The knowledge on emission of light by meteors/bolides at infrared wavelengths is very limited while it can be suspected that the continuum emission from meteors/bolides have stronger emission at infrared wavelengths than in the visible due to the likely low temperatures of these events. At the same time line emission is dominating over the continuum in the visible so it is not clear how this will compare with the continuum in the infrared. We have developed a bread-board version of an IR video rate camera, the SPOSH-IR. The instrument is based on an earlier technology development, SPOSH --- Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replaced by a cooled IR detector and new infrared optics. The earlier work has proven the concept of the instrument and of automatic detection of meteors/bolides in the visible wavelength range. The new hardware has been built by Jena-Optronik, Jena, Germany and has been tested during several meteor showers in the Netherlands and at ESA's OGS

  12. Will comet 209P/LINEAR generate the next meteor storm?

    NASA Astrophysics Data System (ADS)

    Ye, Quanzhi; Wiegert, Paul A.

    2014-02-01

    Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on Earth on 2014 May 24; however, exact timing and activity level is difficult to estimate due to the limited physical observations of the comet. Here, we reanalyse the optical observations of 209P/LINEAR obtained during its 2009 apparition. We find that the comet is relatively depleted in dust production, with Afρ at 1 cm level within eight months around its perihelion. This feature suggested that this comet may be currently transitioning from a typical comet to a dormant comet. Syndyne simulation shows that the optical cometary tail is dominated by larger particles with β ˜ 0.003. Numerical simulations of the cometary dust trails confirm the arrival of particles on 2014 May 24 from some of the 1798-1979 trails. The nominal radiant is at RA 122° ± 1°, Dec. 79° ± 1° (J2000) in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm (ZHR ≥ 1000) may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly to larger particles. Coupling with the result of syndyne simulation, we think that the event, if detectable, may be dominated by bright meteors. We encourage observers to monitor the expected meteor event as it will provide us with rare direct information on the dynamical history of 209P/LINEAR which is otherwise irretrievably lost.

  13. The Working Group on Meteor Showers Nomenclature: a History, Current Status and a Call for Contributions

    NASA Technical Reports Server (NTRS)

    Jopek, T. J.; Jenniskens, P. M.

    2011-01-01

    During the IAU General Assembly in Rio de Janeiro in 2009, the members of Commission 22 established the Working Group on Meteor Shower Nomenclature, from what was formerly the Task Group on Meteor Shower Nomenclature. The Task Group had completed its mission to propose a first list of established meteor showers that could receive officially names. At the business meeting of Commission 22 the list of 64 established showers was approved and consequently officially accepted by the IAU. A two-step process is adopted for showers to receive an official name from the IAU: i) before publication, all new showers discussed in the literature are first added to the Working List of Meteor Showers, thereby receiving a unique name, IAU number and three-letter code; ii) all showers which come up to the verification criterion are selected for inclusion in the List of Established Meteor Showers, before being officially named at the next IAU General Assembly.

  14. The Innisfree meteorite: Dynamical history of the orbit - Possible family of meteor bodies

    NASA Astrophysics Data System (ADS)

    Galibina, I. V.; Terent'eva, A. K.

    1987-09-01

    Evolution of the Innisfree meteorite orbit caused by secular perturbations is studied over the time interval of 500000 yrs (from the current epoch backwards). Calculations are made by the Gauss-Halphen-Gorjatschew method taking into account perturbations from the four outer planets - Jupiter, Saturn, Uranus and Neptune. In the above mentioned time interval the meteorite orbit has undergone no essential transformations. The Innisfree orbit intersected in 91 cases the Earth orbit and in 94 - the Mars orbit. A system of small and large meteor bodies (producing ordinary meteors and fireballs) which may be genetically related to the Innisfree meteorite has been found, i.e. there probably exists an Innisfree family of meteor bodies.

  15. Ferromanganese deposits from the Gulf of Alaska seamount province: mineralogy, chemistry, and origin.

    USGS Publications Warehouse

    Koski, R.A.

    1988-01-01

    Petrographic and chemical data presented and discussed permit the following conclusions regarding the high-latitude Gulf of Alaska (GA) Fe-Mn deposits: 1) thick (10-50 mm) Fe-Mn crusts form on alkali-basalt and volcaniclastic substrates by hydrogenetic processes, contain delta -MnO2 as the principal Mn phase, and have compositions similar to those of seamount crusts from comparable depths in the Hawaiian archipelago. GA crusts have higher Mn/Fe and lower Co contents than crusts from low-altitude, central Pacific seamounts; 2) thin (<10 mm) crusts on tuffaceous conglomerate, sandstone and phosphorite have a high proportion of crystalline Mn oxides and are genetically related to vein deposits; 3) vein deposits of todorokite and cryptomelane form during low-T oxidative diagenesis of volcanogenic sediment. Mn and other transition metals are supplied during the initial palagonitization of basaltic glass. The oxidation of Fe2+ to Fe3+ in palagonite and the dissolution of the diluted microfossil fraction of the sediment lower the Eh of the ambient pore fluid and enhance the solubility of Mn2+. The K released during the formation of palagonite may be redeposited in secondary phyllosilicate minerals, phillipsite, todorokite and cryptomelane; 4) the vein deposits formed soon after the deposition of sediment derived from the erosion and mass wasting of Mill Seamount but before crust deposition. Therefore, the deposition of hydrogenous crusts and the deposition of diagenetic veins are chemically distinct processes in time and space.-J.M.H.

  16. An Orbital Meteoroid Stream Survey Using the Southern Argentina Agile Meteor Radar (SAAMER) Based on a Wavelet Approach

    NASA Technical Reports Server (NTRS)

    Pokorny, P.; Janches, D.; Brown, P. G.; Hormaechea, J. L.

    2017-01-01

    Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.

  17. An orbital meteoroid stream survey using the Southern Argentina Agile MEteor Radar (SAAMER) based on a wavelet approach

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Janches, D.; Brown, P. G.; Hormaechea, J. L.

    2017-07-01

    Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.

  18. Non-Hawaiian lithostratigraphy of Louisville seamounts and the formation of high-latitude oceanic islands and guyots

    NASA Astrophysics Data System (ADS)

    Buchs, David M.; Williams, Rebecca; Sano, Shin-ichi; Wright, V. Paul

    2018-05-01

    Guyots are large seamounts with a flat summit that is generally believed to form due to constructional biogenic and/or erosional processes during the formation of volcanic islands. However, despite their large abundance in the oceans, there are still very few direct constraints on the nature and formation of guyots, in particular those formed at high latitude that lack a thick cap of shallow-marine carbonate rocks. It is largely accepted based on geophysical constraints and surficial observations/sampling that the summit platform of these guyots is shaped by wave abrasion during post-volcanic subsidence of volcanic islands. Here we provide novel constraints on this hypothesis and the summit geology of guyots with a lithostratigraphic analysis of cores from three Louisville seamounts (South Pacific) collected during Expedition 330 of the Integrated Ocean Drilling Program (IODP). Thirteen lithofacies of sedimentary and volcanic deposits are described, which include facies not previously recognized on the top of guyots, and offer a new insight into the formation of high-latitude oceanic islands on a fast-moving plate. Our results reveal that the lithostratigraphy of Louisville seamounts preserves a very consistent record of the formation and drowning of volcanic islands, with from bottom to top: (i) volcaniclastic sequences with abundant lava-fed delta deposits, (ii) submarine to subaerial shield lava flows, (iii) post-volcanic shallow to deeper marine sedimentary rocks lacking thick reef deposits, (iv) post-erosional rejuvenated volcanic rocks, and (v) pelagic sediments. Recognition of erosional boundaries between subaerial lava flows and shallow-marine sedimentary rocks provides novel support for post-volcanic wave planation of guyots. However, the summit geology of Louisville seamounts is dissimilar to that of high-latitude Hawaiian-Emperor guyots that have emplaced in a similar tectonic and environmental setting and that include thicker lava stacks with apparently

  19. Variations of 17O/ 16O and 18O/ 16O in meteoric waters

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Barkan, Eugeni

    2010-11-01

    The variations of δ 17O and δ 18O in recent meteoric waters and in ice cores have proven to be an important tool for investigating the present and past hydrologic cycle. In order to close significant information gaps in the present distribution of δ 17O and δ 18O of meteoric water, we have run precise measurements, with respect to VSMOW, on samples distributed globally from low to high latitudes. Based on the new and existing data, we present the Global Meteoric Water Line (GMWL) for δ 17O and δ 18O as: ln(δ17O+1)=0.528ln(δ18O+1)+0.000033(R2=0.99999) In addition to meteoric water, we carried out the first measurements of seawater from the Pacific and Atlantic oceans with respect to VSMOW. The obtained results show that the slope of the trend line ln(δ 17O + 1) vs. ln(δ 18O + 1) of seawater samples is 0.528, the same as for meteoric water, but the regression intercept is -5 per meg. Thus, the positive intercept in the GMWL indicates an excess of 17O in meteoric waters with respect to the ocean. An excess (or depletion) of 17O in water is defined as: 17O-excess=ln(δ17O+1)-0.528(δ18O+1) Most meteoric water samples have positive 17O-excess of varying magnitudes with an average of 37 per meg with respect to VSMOW. We explain how these positive values originate from evaporation of sea water into marine air, which is undersaturated in water vapor, and how subsequent increase of 17O-excess occurs when atmospheric vapor condenses to form liquid and solid precipitation. We also clarify the effect of excessive evaporation on 17O-excess. Finally, based on the new results on 17O-excess of seawater we recalculated the relationship of δ 17O vs. δ 18O in vapor diffusion in air as 18α diff = 1.0096.

  20. On the age and parent body of the daytime Arietids meteor shower

    NASA Astrophysics Data System (ADS)

    Abedin, A.; Wiegert, P.; Pokorny, P.; Brown, P.

    2016-01-01

    The daytime Arietid meteor shower is active from mid-May to late June and is among the strongest of the annual meteor showers, comparable in activity and duration to the Perseids and the Geminids. Due to the daytime nature of the shower, the Arietids have mostly been constrained by radar studies. The Arietids exhibit a long-debated discrepancy in the semi-major axis and the eccentricity of meteoroid orbits as measured by radar and optical surveys. Radar studies yield systematically lower values for the semi-major axis and eccentricity, where the origin of these discrepancies remain unclear. The proposed parent bodies of the stream include comet 96P/Machholz and more recently the Marsden's group of sun-skirting comets. In this work, we present detailed numerical modelling of the daytime Arietid meteoroid stream, with the goal to identifying the parent body and constraining the age of the stream. We use observational data from an extensive survey of the Arietids by the Canadian Meteor Orbit Radar (CMOR), in the period of 2002-2013, and several optical observations by the SonotaCo meteor network and the Cameras for All-sky Meteor Surveillance (CAMS). Our simulations suggest that the age and observed characteristics of the daytime Arietids are consistent with cometary activity from 96P, over the past 12000 years. The sunskirting comets that presumably formed in a major comet breakup between 100 - 950 AD (Chodas and Sekanina, 2005), alone, cannot explain the observed shower characteristics of the Arietids. Thus, the Marsden sunskirters cannot be the dominant parent, though our simulations suggest that they contribute to the core of the stream.

  1. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  2. 15 CFR Appendix F to Subpart M of... - Davidson Seamount Management Zone

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Davidson Seamount Management Zone F Appendix F to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  3. Diversity of zoanthids (anthozoa: hexacorallia) on Hawaiian seamounts: description of the Hawaiian gold coral and additional zoanthids.

    PubMed

    Sinniger, Frederic; Ocaña, Oscar V; Baco, Amy R

    2013-01-01

    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals.

  4. Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    PubMed Central

    Sinniger, Frederic; Ocaña, Oscar V.; Baco, Amy R.

    2013-01-01

    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals. PMID:23326345

  5. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of

  6. ScienceCast 156: Perseid Meteors vs the Supermoon

    NASA Image and Video Library

    2014-07-28

    Which is brighter--a flurry of Perseid fireballs or a supermoon? Sky watchers will find out this August when the biggest and brightest full Moon of 2014 arrives just in time for the peak of the annual Perseid meteor shower.

  7. Seafloor Structural Geomorphic Evolution in Response to Seamount Subduction, Poverty Bay Indentation, New Zealand

    NASA Astrophysics Data System (ADS)

    Bodger, K. L.; Pettinga, J. R.; Barnes, P. M.

    2006-12-01

    More than 4000 km2 of high quality bathymetric and backscatter imaging of the Poverty Bay Indentation across the northern part of the Hikurangi subduction zone provide new insights into the relationship between seafloor morphology and active structures. The swath bathymetry extends from the edge of the continental shelf to the abyssal plain, at depths of between 100 to 3500 metres. The origin of the slope re-entrant is inferred to be related to multiple seamount impacts, and these collisions have initiated numerous large-scale gravitational collapse structures, multiple debris flow and avalanche deposits, which range in down-slope length from a few hundred metres to more than 40 km. The Poverty Bay Indentation has been simultaneously eroded by canyon systems that exhibit many of the features of incised river systems onshore. The swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as a limited number of core samples. Seismic reflection profiles and seafloor morphology are used to provide three morpho-structural sections. The comparison of these sections highlights the different effects of seamount subduction on the evolution of the margin and the re-entrant. The northern two sections are located to the north side of the re-entrant and reveal the role of seamount impact on the interrelationship between the structural evolution with respect to seafloor morphology. Here the development of an over-steepened margin with fault reactivation, inversion and over- printing leads to very complex structural styles of deformation and geometry in both seismic reflection profiles and seafloor morphology. There is evidence of an older, inactive thrust front buried beneath the upper and mid- slope basins. Beneath the mid-slope a subducted seamount is revealed by the presence of relief on the subduction interface and associated structural

  8. Various meteor scenes III: Recurrent showers and some minor showers

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2015-02-01

    Meteor activities vary widely from year to year. We study here the June Bootids (JBO), τ-Herculids (TAH), and Andromedids (AND) which are basic examples for the recurrent nature of meteor showers. Half a century has passed since well-known photographic or radar meteor showers were detected. It is necessary to note that some `established' IAU showers are historical ones and we cannot always see them. We find the historical trace of AND by video and four distinct activities in the area of JBC (=JBO+TAH). Meteor showers look different by different observational techniques. Many minor showers in the IAU list have been detected only by observations stored for many days and many years; visual observations in a single night cannot perceive them naturally. We studied the φ-Piscids (PPS), χ-Taurids (CTA), γ-Ursae Minorids (GUM), η-Pegasids (ETP), and α-Sextantids (ASX) as examples and found they have not been recognized by visual observers at all. It is noteworthy that some of them have possible identifications in the IAU list and in preceding observations or reports. The difference in search methods makes the situations much more complicated. The five minor showers we studied here do not have confirmations by all observational techniques. Geobased search (radiant point, time of the observation, and possibly geocentric velocity) may overlook showers which are dispersed in radiant position. A search using the D-criterion is dependent on the presumption of a spherical distribution in the orbital space and may not represent the real distribution, or may overestimate the accuracy of the observations and lead to subdividing the showers into several parts. We must use these search methods properly.

  9. Software for Photometric and Astrometric Reduction of Video Meteors

    NASA Astrophysics Data System (ADS)

    Atreya, Prakash; Christou, Apostolos

    2007-12-01

    SPARVM is a Software for Photometric and Astrometric Reduction of Video Meteors being developed at Armagh Observatory. It is written in Interactive Data Language (IDL) and is designed to run primarily under Linux platform. The basic features of the software will be derivation of light curves, estimation of angular velocity and radiant position for single station data. For double station data, calculation of 3D coordinates of meteors, velocity, brightness, and estimation of meteoroid's orbit including uncertainties. Currently, the software supports extraction of time and date from video frames, estimation of position of cameras (Azimuth, Altitude), finding stellar sources in video frames and transformation of coordinates from video, frames to Horizontal coordinate system (Azimuth, Altitude), and Equatorial coordinate system (RA, Dec).

  10. Faunal Biogeography Community Structure and Genetic Connectivity of North Atlantic Seamounts

    DTIC Science & Technology

    2008-09-01

    found the soft sediment infauna dominated by polychaetes, peracarid crustaceans, aplacophoran, bivalve and gastropod molluscs, sipunculans, nemerteans...seamount found that there was a higher proportion of species with short or no larval duration suggesting adaptation for local retention of larvae...Munida zebra, the two chirostylid crab Eumunida species and one plaktotrophic gastropod Sassia remensa, but significant structure for the non

  11. Meteoric Magnesium Ions in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Grebowsky, Joseph

    1999-01-01

    From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  12. Definitions of terms in meteor astronomy

    NASA Astrophysics Data System (ADS)

    Koschny, Detlef; Borovicka, Jiri

    2017-10-01

    Over the last year, the IAU commission F1 (Meteors, Meteorites and Interplanetary Dust) has discussed and agreed a new definition of terminology related to our field of interest. It is available online at this link: https://www.iau.org/static/science/scientific_bodies/commissions/f1/meteordefinitions_approved.pdf. For your convenience it is reproduced here. Please keep these definitions in mind in any future communications about our topic.

  13. Elementary process and meteor train spectra

    NASA Technical Reports Server (NTRS)

    Ovezgeldyev, O. G.

    1987-01-01

    Mechanisms of excitation of individual spectral line radiation were studied experimentally and theoretically and it was demonstrated that such processes as oxidation, resonant charge exchange, dissociative recombination and others play an important part in the chemistry of excited particles. The foundation was laid toward simulating the elementary processes of meteor physics. Having a number of advantages and possibilities, this method is sure to find a wide use in the future.

  14. Results from the US/Russian Meteor-3/Total Ozone Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Herman, Jay R. (Editor)

    1993-01-01

    The development of Meteor-3/TOMS (Total Ozone Mapping Spectrometer) was a joint project of the United States and Russia to fly a U.S. ozone measuring instrument (TOMS) onboard a Russian spacecraft (Meteor-3) and rocket (Cyclone), launched from Plesetsk, Russia. The Meteor-3/TOMS (M3TOMS) was launched into a 1202-km-high, near-polar orbit on 15 Aug. 1991, where it can obtain complete global coverage for most of each year. Both the U.S. and Russian sides have successfully received and processed data into ozone amounts from 25 Aug. 1991 to 1 Jun. 1992, and expect to continue for the life of the instrument and spacecraft. The successful development of the instrument hardware, spacecraft interface, data memory, telemetry systems, and software are described. Descriptions are given of the U.S. and Russian ground stations for receiving M3TOMS data. In addition, the data reduction software was independently developed by the U.S. and by the Russians, and is shown to agree to better than the precision of the measurements.

  15. Observing an artificial meteor: Cassini's entry into the atmosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Crary, Frank

    2016-10-01

    The Cassini spacecraft's mission at Saturn will end after over 13 years in orbit, on September 15th, 2017. The spacecraft will be disposed of by impacting Saturn and its atmospheric entry will be that of an artificial meteor. The resulting bolide will be observable in the far ultraviolet using Hubble Space Telescope's STIS instrument. We propose to observe this event using STIS-FUV MAMA, in TIME-TAG imaging mode. The goal of this observation is to determine the luminous efficiency of hypervelocity impacts on gas giants. Recent observations of meteor flashes on Jupiter could be used to determine the flux and size distribution of meteors in the outer solar system, but only if the luminoius efficiency is known. With a well-known mass (2186 kg) and impact velocity (34.9 km/s), the Cassini impact will provide this information. An additional goal is the validate and improve the existing model of Saturn's atmosphere, between 1 nanobar and a few microbars. This region is of particular interest to the interpretation of aurora observations and to the development of future missions involving atmospheric probes.

  16. Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Woodman, R. F.

    2004-03-01

    We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W) in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ) echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory) and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors) Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations.

    A novel cross-correlation detection technique (adaptive match-filtering) is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km) without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to

  17. Exploring Mesophotic Depths Off North Philippine Sea: Coral Reefs on the Benham Bank Seamount

    NASA Astrophysics Data System (ADS)

    Nacorda, H. M. E.; Dizon, R. M.; Meñez, L. A. B.; Nañola, C. L., Jr.; Hernandez, H. B.; Quimpo, F. A. T. R.; De Jesus, D. O.; Nacorda, J. O. O.; Tingson, K. N.; Roa-Chio, P. B. L.; Pardo, K. C. E.; Licuanan, W. R. Y.; Aliño, P. M.

    2016-02-01

    We conducted observational surveys of coral reef biodiversity at <60 m on the summit of the Benham Bank Seamount off North Philippine Sea. The reefs were found with excellent cover (75 to 100%) of mostly tiered, thick, rigid and foliose plate-forming Porites rus. Over 60 species of bony and cartilaginous fish were recorded; their estimated biomass ranged from 17 to 102 mt km-2. Four species of the green algae Halimeda dominated the reef-associated macroalgae, some of which were epiphytic. The prominent coral-attached sponges had arborescent growth form but irregular forms also occurred. The coarse biogenic surface sediments harbored mostly aerobic macroinfauna. These results comprise the first account of the biodiversity of an offshore mesophotic coral reef seamount. Although its diversity appears less than the shallower fringing reefs of the Philippines' Pacific Seaboard, the dynamic environment remains important to fisheries.

  18. A preliminary comparison of Na lidar and meteor radar zonal winds during quiet and sub-storm conditions

    NASA Astrophysics Data System (ADS)

    Grandhi, Kishore Kumar; Nesse Tyssøy, Hilde; Williams, Bifford P.; Stober, Gunter

    2017-04-01

    It is speculated that sufficiently large electric fields during geomagnetic disturbed conditions may decouple the meteor trail electron motions from the background neutral winds and leads to erroneous neutral wind estimation. As per our knowledge, the potential errors have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27oN,16.04oE) during intense sub storms in the declining phase of Jan 2005 solar proton event (21-22 Jan 2005). In total 14 hours of continuous measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal winds are averaged in meteor radar time and height bins. High cross correlations (˜0.8) are found in all height regions. The discrepancies can be explained in the light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the ionization impact on the meteor radar winds. For quiet hours, the observed meteor radar winds are quite consistent with lidar winds. While during the disturbed hours comparatively large differences are noticed at higher most altitudes. This might be due to ionization impact on meteor radar winds. At the present one event is not sufficient to make any consolidate conclusion. However, at least from this study we found some effect on the neutral wind measurements for the meteor radar. Further study with more co-located measurements are needed to test statistical significance of the result.

  19. Meteor radar wind over Chung-Li (24.9°N, 121°E), Taiwan, for the period 10-25 November 2012 which includes Leonid meteor shower: Comparison with empirical model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Su, C. L.; Chen, H. C.; Chu, Y. H.; Chung, M. Z.; Kuong, R. M.; Lin, T. H.; Tzeng, K. J.; Wang, C. Y.; Wu, K. H.; Yang, K. F.

    2014-08-01

    The neutral winds in the mesosphere and lower thermosphere (MLT) region are measured by a newly installed meteor trail detection system (or meteor radar) at Chung-Li, Taiwan, for the period 10-25 November 2012, which includes the Leonid meteor shower period. In this study, we use the 3 m field-aligned plasma irregularities in the sporadic E (Es) region in combination with the International Geomagnetic Reference Field model to calibrate the system phase biases such that the true positions of the meteor trails can be correctly determined with interferometry technique. The horizontal wind velocities estimated from the radial velocities of the meteor trails and their locations by using a least squares method show that the diurnal tide dominates the variation of the MLT neutral wind with time over Chung-Li, which is in good agreement with the horizontal wind model (HWM07) prediction. However, harmonic analysis reveals that the amplitudes of the mean wind, diurnal, and semidiurnal tides of the radar-measured winds in height range 82-100 km are systematically larger than those of the model-predicted winds by up to a factor of 3. A comparison shows that the overall pattern of the height-local time distribution of the composite radar-measured meteor wind is, in general, consistent with that of the TIMED Doppler Interferometer-observed wind, which is dominated by a diurnal oscillation with downward phase progression at a rate of about 1.3 km/h. The occurrences of the Es layers retrieved from fluctuations of the amplitude and excess phase of the GPS signal received by the FORMOSAT-3/COSMIC satellites during the GPS radio occultation (RO) process are compared with the shear zones of the radar-measured meteor wind and HWM07 wind. The result shows that almost all of the RO-retrieved Es layers occur within the wind shear zones that favor the Es layer formation based on the wind shear theory, suggesting that the primary physical process responsible for the Es layer events

  20. 76 FR 15222 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    .... 101210611-1185-02] RIN 0648-BA58 Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... period for in-season closure of the main Hawaiian Islands (MHI) Deep-7 bottomfish fishery from 14 to 7...

  1. Pito Seamount revisited: the discovery and mapping of new black smoker vents

    NASA Astrophysics Data System (ADS)

    Cheadle, M. J.; John, B. E.; German, C. R.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.; Swapp, S.

    2017-12-01

    In February 2017, the RV Atlantis PMaG (PaleoMagnetism and Gabbro) cruise re-visited a black smoker site originally discovered 24 years ago on Pito Seamount, by the submersible Nautile during the French Pito expedition (1993). Pito Seamount (111.639oW, 23.333oS) marks the northern tip of the propagating East Pacific Rise, bounding the east side of the Easter Microplate. There the seafloor rises to 2250mbsl and has a 900m wide, 50m deep axial valley, which hosts at least two separate fields of active hydrothermal vents. AUV Sentry mapping of the summit of Pito seamount (0.5-1m resolution) highlights over 50 active and inactive chimneys amid recent basaltic sheet flows, pillow mounds and ponded lava. The vents occur in two fields/sub-fields; the first covers an area of 800 x 200m, and lies parallel to the ridge axis, along incipient faults forming on the northeastern flank of the axial valley. The second field occurs in a 250m diameter area in the centre of the axial valley. Jason II dive 961 visited, sampled, measured vent orifice temperatures, and acquired 4k video of the chimneys, and re-discovered the active (Magnificent Village) vent first found by Nautile, in the now named Nautile vent field, together with five additional active hydrothermal vents (Jason, Medea, Sentry, Abe and Scotty's Castle). The Magnificent Village, the largest active vent, is 25m tall and has multiple active spires in three main groups surrounding a hollow amphitheater. Measured vent orifice temperatures ranged from 338oC (Magnificent Village) to 370oC (Jason). The vents host a fauna of alvinellid worms, bythograidid crabs, alvincardid shrimps, phymorhynchus gastropods, Corallimorphid anenomes and bathymodiolid mussels, but no vestimentiferan worms. Brisingid brittle stars colonize inactive chimneys.

  2. Hotspot volcanism in the southern South Atlantic: Geophysical constraints on the evolution of the southern Walvis Ridge and the Discovery Seamounts

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Reents, Stefanie

    2017-10-01

    The southern Atlantic hosts a variety of magmatic structures, namely the Walvis Ridge, the Discovery Seamounts and the Shona Ridge, which are believed to be related to the evolution/movement of hotspots. Although the basement of the Walvis Ridge has been sampled at different locations, geophysical data are too sparse to provide sufficient information about its deeper structure to compare it with other hotspot tracks. The Discovery Seamounts represent a completely different type feature in a way that it cannot be connected to any onshore volcanic feature. However, geological sampling of the volcanic basement indicates that the petrology of the Discovery track is very similar to Gough Island and the southern branch of Walvis Ridge. Both structures erupted into already existing seafloor and so have been seismically investigated to document how/if an associated thermal anomaly might have modified the underlying and surrounding oceanic crust. Seismic lines for both structures indicate rather normal seismic velocity distributions for oceanic crust. Both, the Walvis Ridge and the largest volcano of the Discovery Seamounts have a maximum thickness in our research area of 13 km. An interesting difference between these structures is a high velocity cone (> 6 km/s) at 2.4 km depth in the central part of Discovery Seamount. This might indicate a primarily intrusional type of seamount such as has been reported for several similar structures. In contrast the Walvis Ridge velocity structure does not show evidences for a shallow intrusional cone, but seismic velocities typical for oceanic layer 3 at a more or less constant depth level along the entire profile. This might indicate that the ridge's present-day topography is built mainly by extrusive material.

  3. Geophysical investigations of the Southeast Tyrrhenian Sea (Italy): high resolution DTM of the Marsili seamount

    NASA Astrophysics Data System (ADS)

    Milano, G.; Passaro, S.; Marsella, E.

    2009-04-01

    The Tyrrhenian Sea is the small extensional back-arc basin in the Central Mediterranean Sea characterized by a peculiar volcanic activity due to the presence of two sub-basin: Vavilov and Marsili. The central sector of the Marsili sub-basin, younger than the Valilov, is occupied by the Marsili Volcano. On November 2007, a geophysical survey was carried out by IAMC-CNR research institute (Naples, Italy) in the southeastern Tyrrhenian Sea within the "Aeolian_2007" cruise onboard the Urania oceanographic vessel. During the second Leg of the survey, detailed multibeam data acquisition was carried out in order to obtain high resolution DTM of the major Seamounts of the southeast Tyrrhenian Sea. Here, we report a new, very high resolution Digital Terrain Model (DTM) of the summit area of the Marsili Seamount. Multibeam data acquisition was carried out with the use of the Reson Seabat 8160 multibeam sonar system, which properly works in the 50-3500 m depth range. The system, interfaced with a Differential Global Positioning System, is mounted on keel of the R/V Urania and is composed of a ping source of 50 KHz, 150° degree for the whole opening of the transmitted pulse and a 126 beams-receiver. The whole dataset has been processed with the use of the PDS2000 swath editor tool, in accordance with the International Hydrographic Organization standard, and subsequently reorganized in an MXN matrix (Digital Terrain Model, DTM) of 25X25 m of grid cell size. The total amount of area coverage consists in more than 500 squared Km of multibeam sonar data. The Marsili volcano shows a global sigmoidal trend extending for about 55 km in the N10°E direction. Both the eastern and the western sides shows equal average slopes. Throughout the framework, crater-like morphologies are not clearly visible. The western side of the seamount reveals furrowed channels showing peculiar rounded sections. The northern sector morphologically differs from the rest of the seamount and seems separated

  4. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the

  5. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount.

    PubMed

    Pineda, Jesús; Cho, Walter; Starczak, Victoria; Govindarajan, Annette F; Guzman, Héctor M; Girdhar, Yogesh; Holleman, Rusty C; Churchill, James; Singh, Hanumant; Ralston, David K

    2016-01-01

    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

  6. Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars.

    PubMed

    Ivarsson, M; Lausmaa, J; Lindblom, S; Broman, C; Holm, N G

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between approximately 10 wt % and approximately 50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C(2)H(4), phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (approximately 10-40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  7. Fossilized Microorganisms from the Emperor Seamounts: Implications for the Search for a Subsurface Fossil Record on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Lausmaa, J.; Lindblom, S.; Broman, C.; Holm, N. G.

    2008-12-01

    We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between ˜10 wt % and ˜50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C2H4, phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (˜10 40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.

  8. Paleocommunity turnover in an Early Pliocene seamount from southeastern Spain

    NASA Astrophysics Data System (ADS)

    García-Ramos, Diego Antonio; Zuschin, Martin

    2017-04-01

    Seamounts are topographic elevations under the sea, regardless of their size and relief. They support rich living communities and are important biodiversity hotspots, but many of the fundamental ecological processes that maintain seamount communities remain poorly understood. In contrast to snapshot observations conducted on extant seamounts, fossil examples may provide the opportunity to assess how temporal changes in physico-chemical parameters relate to paleocommunity turnovers in these particular biotopes. Here we deal with an Early Pliocene (Zanclean) small seamount in southeastern Spain. This classic locality is extremely rich in fossil macroinvertebrates and was subject to studies of some taxonomic groups in the late seventies. However, the detailed stratigraphy is herein outlined for the first time. The overall feature is a shallowing upward succession about 35 m thick which onlaps a Miocene volcanic ridge. The occurrence of the planktonic foraminifera Globorotalia margaritae and G. puncticulata allow attribution to the MPl3 biozone of the Mediterranean Pliocene. We measured two sections that can be divided in a lower interval of fine-grained bryozoan-rich deposits and a upper interval of biocalcarenite increasingly rich in rhodoliths upsection. The whole series is bioturbated, with Thalassinoides traces being more common upsection. Biofabrics comprise mostly densely-packed suites of disarticulated and fragmented shells of calcitic fauna (large oysters are often bioeroded by clionid sponges), suggesting relatively low sedimentation rates and reworking by storms (e.g., channelized shell-beds, tubular tempestites). The prevailing taxonomic groups are cheilostome bryozoans, oysters, brachiopods, pectinids, echinoderms, cirripedes and corals. The lower interval contains octocoral internodes (Isididae) (only recorded at the base of the section). Scleratinians like Balanophyllia? decrease in abundance upsection. Bryozoans are extremely abundant and diverse, with

  9. The role of meteoric smoke in the Earth s environment

    NASA Astrophysics Data System (ADS)

    Plane, J.

    An average of about 120 tonnes of interplanetary dust is believed to enter the earth's atmosphere each day. At least 55% of this ablates completely into atoms and ions, mostly between 70 and 110 km. Meteoric ablation is the source of the layers of metal atoms (Na, Fe etc.) that occur globally in the upper mesosphere; these layers are observed routinely by ground-based resonance lidars. This paper is concerned with the subsequent fate of the meteoric metals, and other constituents such as sulfur. The laboratory programme at the University of East Anglia studies the reactions that metallic species are likely to undergo in this region of the atmosphere. The resulting rate coefficients and photolysis cross sections are then used in atmospheric models. Once these models can satisfactorily reproduce the characteristic features of the mesospheric metal layers (as is the case for Na and Fe), they can then be used to predict the condensation of metal-containing species (oxides, hydroxides, carbonates) into nanometer-sized dust particles, known as "meteoric smoke". This paper will discuss the role of this smoke in providing condensation nuclei for noctilucent clouds in the upper mesosphere, forming sulphuric acid particles in the stratospheric Junge layer, and fertilizing the Fe-deficient Southern Ocean.

  10. Alkalic Lavas From Nintoku Seamount, Emperor Seamount Chain: Geochemistry of Hawaiian Post-Shield Magmatism at 55 Ma

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Gudding, J. A.; Neal, C. R.; Regelous, M.

    2002-12-01

    Ocean Drilling Project (ODP) Leg 197, Site 1205 penetrated 283 m into the volcanic basement of Nintoku Seamount, which is located roughly half-way along the Emperor Seamount Chain and has been dated at approximately 55-56 Ma by 40Ar-39Ar (R. Duncan, pers. comm., 2002). 25 subaerially-erupted lava flows, together with interflow sediments and soil horizons, were recovered. We report major and trace element compositions of 33 rock samples spanning the entire lava sequence and hawaiite clasts from a conglomerate immediately overlying the igneous basement. The volcanic rocks at Site 1205 are dominantly alkalic to intermediate basalts with between 5 and 11% MgO, with the degree of alkalinity generally increasing up-section, and the eruption rate (inferred from the thickness and abundance of interflow soils) appears to have decreased with time. Two flows in the lower half of the hole are tholeiitic and divide the section into two different alkalic basalt series. One of these flows contains accumulated olivine crystals and has a picritic composition. The upper alkalic series generally becomes enriched in the highly incompatible elements (ITEs) up-section from the tholeiitic units and is overlain by a conglomerate that contains cobbles of hawaiite that are highly enriched in ITEs. Normalized patterns are subparallel to those of the upper series of alkalic basalts, suggesting the hawaiites may be related by fractional crystallization. The lower alkalic series contains basalts that are among the most ITE enriched of the recovered basement sequence, but does not show the same variations as the upper series. The petrology of the Site 1205 lavas is very similar to those of lavas erupted during the later evolutionary stages of young volcanoes from the Hawaiian Islands and were probably all erupted during the post-shield alkalic stage; at Nintoku the post-shield alkalic cap appears to be relatively thick (at least 300m) compared to many other Hawaiian volcanoes, but is similar to

  11. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    PubMed

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. UCM Meteor and Fireball Research group: Results 2012--2014

    NASA Astrophysics Data System (ADS)

    Ocaña, F.; Sánchez de Miguel, A.; Zamorano, J.; Izquierdo, J.; Pascual, S.; Palos, M. F.; Oré, S.; Rodríguez-Coira, G.; Zamora, S.; Lorenzo, C.; San Juan, R.; Muñoz-Ibáñez, B.; Vázquez, C.; Alonso-Moragón, A.; Gallego, J.; Trigo-Rodríguez, J. M.; Madiedo, J. M.

    2015-05-01

    Most of the activity of the group is based on the Fireball Detection Station located at the Observatorio UCM, a system consisting of 6 high-sensitivity videocameras covering the whole sky with wide-angle lenses during nighttime. Another 15 cameras have been placed by the researchers between 10 and 200 km away from Madrid for multiple station observations. It works as a node in the SPanish Meteor and Fireball Network (SPMN), a network of similar stations covering the atmosphere over Spain. Besides the continuous monitoring, the group has worked on the recording and analysis of some meteor showers. Most of the attention was focused on the Draconids 2011 campaign at Observatorio de Sierra Nevada (Trigo-Rodríguez, J. M., Madiedo, J. M., Williams, I. P., et al. 2013, MNRAS, 433, 560; Ocaña, F., Palos, M. F., Zamorano, J., et al. 2013, Proceedings of the International Meteor Conference, 31st IMC, La Palma, Canary Islands, Spain, 2012, 70), and the 2012 Geminids balloon-borne mission over Spain (Sánchez de Miguel, A., Ocaña, F., Madiedo, J. M., et al. 2013, Lunar and Planetary Science Conference, 44, 2202). The products of the station have been used for undergraduate thesis projects at the Physics Faculty (Ocaña, F., 2011, UCM e-prints, 13292) and other undergraduate projects. In 2013 the station received new equipment thanks to the Certamen Arquímedes award, complementing the detection with spectroscopic and frame-integrating devices.

  13. Expected Increase of Activity of Eta Aquariids Meteor Shower

    NASA Astrophysics Data System (ADS)

    Kulikova, N. V.; Chepurova, V. M.

    2018-04-01

    Analysis of the results of modeling disintegration of Comet 1P/Halley after its flare in 1991 has allowed us to predict an increase of the activity of the associated Eta Aquariids meteor shower in April-May 2018.

  14. First observational evidence for the connection between the meteoric activity and occurrence of equatorial counter electrojet

    NASA Astrophysics Data System (ADS)

    Vineeth, C.; Mridula, N.; Muralikrishna, P.; Kumar, K. K.; Pant, T. K.

    2016-09-01

    This paper presents the first direct observational evidence for the possible role of meteoric activity in the generation of the equatorial Counter Electrojets (CEJ), an enigmatic daytime electrodynamical process over the geomagnetic equatorial upper atmosphere. The investigation carried out using the data from Proton Precession Magnetometer and Meteor Wind Radar over a geomagnetic dip equatorial station, Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) in India, revealed that the occurrence of the afternoon CEJ events during a month is directly proportional to the average monthly meteor counts over this location. The observation is found to be very consistent during the considered period of study, i.e the years 2006 and 2007. The study vindicates that the meteor showers play a major role in setting up the background condition conducive for the generation of CEJ by reducing the strength of the upward polarization field.

  15. Constraining the Drag Coefficients of Meteors in Dark Flight

    NASA Technical Reports Server (NTRS)

    Carter, R. T.; Jandir, P. S.; Kress, M. E.

    2011-01-01

    Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.

  16. Collected Extraterrestrial Materials: Constraints on Meteor and Fireball Compositions

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III

    The bulk density and bulk porosity of IDPs and various meteorite classes show that protoplanet accretion and evolution were arrested at different stages as a function of parent body modification. The collected IDPs, micrometeorites and meteorites are aggregates of different structural entities that were inherited from the earliest times of solar system evolution. These structural entities and the extent of parent body lithification will determine the material strength of the meteoroids entering the Earth's atmosphere. There is a need for measurements of the material strength of collected extraterrestrial materials because they will in part determine the nature of the chemical interactions of descending meteors and fireballs in the atmosphere. High-precision determinations of meteor and fireball compositions are required to search for anhydrous, carbon-rich proto-CI material that has survived in the boulders of comet nuclei.

  17. Post launch performance of the Meteor-3/TOMS instrument

    NASA Technical Reports Server (NTRS)

    Jaross, Glen; Ahmad, Zia; Cebula, Richard P.; Krueger, Arlin J.

    1994-01-01

    The Meteor-3/TOMS instrument is the second in a series of Total Ozone Mapping Spectrometers (TOMS) following the 1978 launch of Nimbus-7/TOMS. TOMS instruments are designed to measure total ozone amounts over the entire earth on a daily basis, and have been the cornerstone of ozone trend monitoring. Consequently, calibration is a critical issue, and is receiving much attention on both instruments. Performance and calibration data obtained by monitoring systems aboard the Meteor-3 instrument have been analyzed through the first full year of operation, and indicate that the instrument is performing quite well. A new system for monitoring instrument sensitivity employing multiple diffusers has been used successfully and is providing encouraging results. The 3-diffuser system has monitored changes in instrument sensitivity of a few percent despite decreases in diffuser reflectivity approaching 50 percent since launch.

  18. Linear island and seamount chains, aseismic ridges and intraplate volcanism: Results from DSDP

    USGS Publications Warehouse

    Clague, David A.

    1981-01-01

    The Deep Sea Drilling Project drilled a substantial number of sites that bear on the origin of linear island and seamount chains, aseismic ridges and other more regional expressions of intraplate volcanism. Drilling in the Emperor Seamounts during Leg 55 was particularly successful. Results from this leg include: 1) the volcanoes of the Hawaiian-Emperor chain continue to increase in age away from Kilauea as predicted. 2) Suiko Seamount formed at a paleolatitide of 26.9±3.5°N, 7° north of present-day Hawaii, but far south of its present latitude of 44.8°N. 3) the volcanic rock types recovered include hawaiite, mugearite, alkalic basalt and tholeiitic basalt in the sequence and relative volume expected for Hawaiian volcanoes. 4) the tholeiitic and alkalic basalts recovered are geochemically similar to those in the Hawaiian Islands, only the ratio of 87Sr/86Sr appears to change through time. All the lavas appear to be derived from a source that has small-scale heterogeneities, but is homogeneous on a large scale. 4) The Emperor Seamounts were once volcanic islands that underwent subaerial and shallow marine erosion, and deposition of shallow-water biogenic carbonate sediments that capped all or most of each volcano.Drilling in other regions has yielded less conclusive results. For example, it is uncertain if the Line Islands are an age progressive chain (hot-spot trace) or result from some other type of intraplate volcanism. The mid-Pacific Mountains also show evidence of originating from a regional episode of volcanism in the mid-Cretaceous. Drilling in the Nauru Basin encountered a voluminous mid-Cretaceous volcanic flow-sill complex that overlies Jurassic magnetic anomalies, yet is composed of depleted tholeiite. In the Indian Ocean, drilling on the Ninety-East Ridge established that it 1) is volcanic in origin; 2) is older to the north; 3) formed in shallow water, and 4) formed further south and has moved northward. It appears that the Ninety-East Ridge, like

  19. Ambilpolar Electric Field and Diffusive Cooling of Electrons in Meteor Trails

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.; Kelley, M. C.

    2017-12-01

    Kelley and Price [GRL, 44, 2987, 2017] recently indicated that ambipolar electric fields may play a role in dynamics of dense plasmas generated by meteors. In the present work we discuss time dynamics of relaxation of electron temperature in meteor trails under relatively common conditions when meteor trail diffusion is not affected by the geomagnetic field (i.e., at low altitudes where both electrons and ions are not magnetized, or at higher altitudes in the plane defined by the trail and magnetic field when meteor trail is not aligned with the geomagnetic field [Ceplecha et al., Space Sci. Rev., 84, 327, 1998, and references therein]). The rate of ambipolar diffusion is a function of temperature and pressure [e.g., Hocking et al., Ann. Geophys., 34, 1119, 2016; Silber et al., Mon. Not. RAS, 469, 1869, 2017] and there is a significant spectroscopic evidence of initial plasma temperatures in meteor trails on the order 4400 deg K [Jennikens et al., Astrobiology, 4, 81, 2004]. For a representative altitude of 105 km chosen for our studies the results are consistent with previous analysis conducted in [Baggeley and Webb, J. Atm. Terr. Phys., 39, 1399, 1977; Ceplecha et al., 1998] indicating that the electron temperature remains elevated for significant time durations measured in tens of milliseconds. Our results indicate that in terms of their magnitudes the ambipolar electric fields can exceed the critical breakdown field of air, consistent with ideas expressed by Kelley and Price [GRL, 44, 2987, 2017], however, under considered conditions these fields lead to acceleration of electron cooling, with electron temperatures falling below the ambient air temperature (below 224 deg K at 105 km altitude). These effects are referred to as diffusive cooling [e.g., Rozhansky and Tsendin, Transport phenomena in partially ionized plasma, Taylor & Francis, 2001, p. 449] and represent a process in which diffusing electrons move against the force acting on them from ambipolar

  20. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang

    2017-02-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.

  1. The age and the probable parent body of the daytime arietid meteor shower

    NASA Astrophysics Data System (ADS)

    Abedin, Abedin; Wiegert, Paul; Pokorný, Petr; Brown, Peter

    2017-01-01

    The daytime Arietid meteor shower is active from mid-May to late June and is amongst the strongest of the annual meteor showers, comparable in activity and duration to the Perseids and the Geminids. Due to the daytime nature of the shower, the Arietids have mostly been constrained by radar studies. The Arietids exhibit a long-debated discrepancy in the semi-major axis and the eccentricity of meteoroid orbits as measured by radar and optical surveys. Radar studies yield systematically lower values for the semi-major axis and eccentricity, where the origin of these discrepancies remain unclear. The proposed parent bodies of the stream include comet 96P/Machholz [McIntosh, B.A., 1990. Comet P/Machholz and the Quadrantid meteor stream. Icarus 86, 894 299-304. doi:10.1016/0019-1035(90)90219-Y.] and more recently a member of the Marsden group of sun-skirting comets, P/1999 J6 [Sekanina, Z., Chodas, P.W., 2005. Origin of the Marsden and Kracht Groups of Sunskirting 922 Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex. ApJS 923 161, 551-586. doi:10.1086/497374.]. In this work, we present detailed numerical modelling of the daytime Arietid meteoroid stream, with the goal to identifying the parent body and constraining the age of the stream. We use observational data from an extensive survey of the Arietids by the Canadian Meteor Orbit Radar (CMOR), in the period of 2002-2013, and several optical observations by the SonotaCo meteor network and the Cameras for All-sky Meteor Surveillance (CAMS). We find the most plausible scenario to be that the age and the formation mechanism of the Arietids is consistent with continuous cometary activity of 96P/Machholz over a time interval of ≈12,000 years. The sun-skirting comet P/1999 J6 suggested by [Sekanina, Z., Chodas, P.W., 2005. Origin of the Marsden and Kracht Groups of Sunskirting 922 Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex. ApJS 923 161, 551-586. doi:10

  2. Comparisons of Spectra from 3D Kinetic Meteor PIC Simulations with Theory and Observations

    NASA Astrophysics Data System (ADS)

    Oppenheim, M. M.; Tarnecki, L. K.

    2017-12-01

    Meteoroids smaller than a grain of sand have significant impacts on the composition, chemistry, and dynamics of the atmosphere. The processes by which they turbulently diffuse can be studied using collisional kinetic particle-in-cell (PIC) simulations. Spectral analysis is a valuable tool for comparing such simulations of turbulent, non-specular meteor trails with observations. We present three types of spectral information: full spectra along the trail in k-ω space, spectral widths at common radar frequencies, and power as a function of angle with respect to B. These properties can be compared to previously published data. Zhou et al. (2004) use radar theory to predict the power observed by a radar as a function of the angle between the meteor trail and the radar beam and the size of field-aligned irregularities (FAI) within the trail. Close et al. (2008) present observations of meteor trails from the ALTAIR radar, including power returned as a function of angle off B for a small sample of meteors. Close et al. (2008) and Zhou et al. (2004) both suggest a power drop off of 2-3 dB per degree off perpendicular to B. We compare results from our simulations with both theory and observations for a range of conditions, including trail altitude and incident neutral wind speed. For 1m waves, power fell off by 1-3 dB per degree off perpendicular to B. These comparisons help determine if small-scale simulations accurately capture the behavior of real meteors.

  3. Telescopic and meteor observation of `Oumuamua, the first known interstellar asteroid

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi

    2018-04-01

    1I/2017 U1 ('Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is the first macroscopic object of extrasolar origin identified in the solar system. I will present imaging and spectroscopic observations of 'Oumuamua as well as a search of meteor activity potentially linked to this object using the Canadian Meteor Orbit Radar. We find that 'Oumuamua exhibits a moderate spectral gradient of 10%+-6% per 100 nm, a value lower than that of outer solar system bodies, indicative of a formation and/or previous residence in a warmer environment. Imaging observation and spectral line analysis show no evidence that 'Oumuamua is presently active. Negative meteor observation is as expected, since ejection driven by sublimation of commonly known cometary species such as CO requires an extreme ejection speed of ~40 m/s at ~100 au in order to reach the Earth. No obvious candidate stars are proposed as the point of origin for 'Oumuamua. Given a mean free path of ~109 ly in the solar neighborhood, 'Oumuamua has likely spent a very long time in interstellar space before encountering the solar system.

  4. Comets, Meteors, and Eclipses: Art and Science in Early Renaissance Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    1999-09-01

    We discuss several topics relating artists and their works with actual astronomical events in early Renaissance Italy to reveal the revolutionary advances made in both astronomy and naturalistic painting. Padua, where Galileo would eventually hold a chair at the University, was already by the fourteenth century (trecento) a renowned center for mathematics and nascent astronomy (which was separating from astrology). It is no wonder that when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (c. 1303) that in the scene of the Adoration of the Magi Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem. Moreover, he painted an historical apparition he recently had observed with a great understanding of its scientific structure: Halley's Comet of 1301 (since Olson's first publication of this idea in Scientific American we have expanded the argument in several articles and talks). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and ``astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we tackle the question how Giotto's pupil, Taddeo Gaddi, who is documented as having been partially blinded by lengthy unprotected observation of the partial phase of an annular solar eclipse, reflects his observations in his frescoes in Santa Croce, Florence (1328-30). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20), contain dazzling meteor showers that hold important symbolic meanings in the cyle's argument but more importantly reveal that the artist observed astronomical phenomena, such as the ``radiant" effect, which was first recorded by Alexander von Humboldt

  5. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili

    2018-03-01

    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  6. Insights into Meteoric 10Be Dynamics and Climate Stability along the Hawaiian Kohala Climosequence

    NASA Astrophysics Data System (ADS)

    Dixon, J. L.; Chadwick, O.

    2017-12-01

    We measure meteoric 10Be in soils across a well-studied climate gradient spanning Kohala, Hawaii to provide new understanding of the isotope behavior in soils and constraints on nuclide delivery rates to Earth's surface. Annual rainfall across the Kohala climogradient varies from 16 - 300 cm, with Hawaiian soils reflecting evolution over the past 150 ka, the nominal age of the volcanic parent material. We analyzed a sequence of nine soil profiles for meteoric 10Be and compared with previously measured data on soil chemistry and dust fluxes. In the Kohala system, soil inventories of 10Be span 40-300 x 109 atom/cm2 and generally increase linearly with rainfall, consistent with precipitation-driven fluxes and the high retention of 10Be in clay-rich soil horizons. However, nuclide inventories dramatically decrease for soils at rainfall >140 cm/y. The observed decrease corresponds with other strong changes in weathering intensity across the climate gradient, associated with previously studied and recognized pedogenic thresholds. These thresholds represent abrupt transitions in soil chemistry related to increased throughflow of soil solutions, decreases in base saturation and pH, and the destruction of phyllosilicates and replacement with amorphous oxyhydroxides. Meteoric-derived ages, based on 10Be-flux estimates and measured inventories are uniform for dry soils ( 60ka), but far less than the known substrate age (150ka), indicating that actual delivery rates are lower than predicted from current models in this region. Despite the offset in predicted and substrate ages, the consistency in pattern suggests that the rainfall gradient over the 150 thousand years of soil development has not deviated significantly from its present structure. Furthermore, based on clear 10Be losses in soils with high moisture availability, our results indicate meteoric 10Be may not be a robust tracer of soil age and movement in systems with high rainfall and weathering intensity and low soil

  7. Erosion of ejecta at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Grant, John A.; Schultz, Peter H.

    1993-01-01

    New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.

  8. On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1976-01-01

    The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.

  9. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  10. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal.

    PubMed

    Miller, Karen J; Gunasekera, Rasanthi M

    2017-04-10

    Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean's surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.

  11. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal

    NASA Astrophysics Data System (ADS)

    Miller, Karen J.; Gunasekera, Rasanthi M.

    2017-04-01

    Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean’s surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.

  12. Lunar and Planetary Science XXXV: Asteroids, Meteors, Comets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Asteroids, Meteors, Comets includes the following topics: 1) Where Some Asteroid Parent Bodies; 2) The Collisional Evolution of the Main Belt Population; 3) On Origin of Ecliptic Families of Periodic Comets; 4) Mineralogy and Petrology of Laser Irradiated Carbonaceous Chondrite Mighei; and 5) Interaction of the Gould Belt and the Earth.

  13. Seasonal temperature variation around the mesopause inferred from a VHF meteor radar at King Sejong Station (62S, 59W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Yongha; Kim, Jeong-Han; Lee, Changsup; Jee, Gun-Hwa

    A VHF meteor radar, installed at King Sejong Station in March, 2007, has been detecting echoes from more than 20,000 meteors per day. Meteor echoes are decayed typically within seconds as meteors spread away by atmospheric diffusion. The diffusion coefficients can thus be obtained from decay times of meteor echo signals, providing with information on the atmospheric temperatures and pressures at meteor altitudes from 70 to 100 km. In this study, we present altitude profiles of 15-min averaged diffusion coefficients in each month, which clearly show a minimum at 80 - 85 km. The minimum appears at higher altitude during austral summer than winter, and seems to be near the lower level of two temperature minimum structure around the mesopause seen by TIMED/SABER data at high latitudes. The higher mesopause level (95-100 km) of the SABER data does not appear in our diffusion profiles probably because it is too close the limit of meaningful diffusion coefficients that can be derived from meteor decay detection. In order to understand temperature variation around the mesopause more directly, we will discuss various methods to extract temperature profiles from the diffusion profiles. We will also present monthly averaged OH and O2 airglow temperatures observed at the same site, and compare them with those derived from the meteor radar observation.

  14. Report on radio observation of meteors (Iža, Slovakia)

    NASA Astrophysics Data System (ADS)

    Dolinský, Peter; Dorotovič, Ivan; Vidovenec, Marian

    2014-02-01

    During the period from 1 to 17 August 2014 meteors were experimentally registered using radio waves. This experiment was conducted in the village of Iža, Slovakia. Its main objective was to test the technical equipment intended for continuous registration of meteor echoes, which will be located in the Slovak Central Observatory in Hurbanovo. These tests are an indirect continuation of previous experiments of observation of meteor showers using the technology available in Hurbanovo at the end of the 20th and the beginning of the 21st century. The device consists of two independent receiver systems. One recorded echoes of the transmitter Graves 143.050 MHz (N47.3480° E5.5151°, France) and the second one recorded echoes of the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine). The apparatus for tracking radio echoes of the transmitter Graves consists of a 9-element Yagi antenna with vertical polarization (oriented with an elevation of 0° at azimuth 270°), the receiver Yaesu VR-5000 in CW mode, and a computer with registration using the program HROFFT v1.0.0f. The second apparatus recording the echoes of the transmitter Lviv consists of a LP (log-periodic) antenna with horizontal polarization (elevation of 0° and azimuth of 90°), the receiver ICOM R-75 in the CW mode, and also a computer with registration using HROFFT v1.0.0f. A total of about 78000 echoes have been registered during around 700 hours of registration. Probably not all of them are caused by meteors. These data were statistically processed and compared with visual observations in the IMO database. Planned own visual observations could not be performed due to unfavourable weather conditions lasting from 4 to 13 August 2014. The registered data suggest that observations were performed in the back-scatter mode in this configuration and not in the planned forward-scatter mode. Deeper analysis and longer data sets are, however, necessary to calibrate the observation system and this will

  15. Hydrothermal Plume Activity at Teahitia Seamount: Re-Awakening of the Society Islands Hot-Spot?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Xu, G.; Yeo, I. A.; Walker, S. L.; Moffett, J.; Cutter, G. A.; Devey, C. W.; Hyvernaud, O.; Reymond, D.; Resing, J. A.

    2016-12-01

    We report results from a combined mapping and CTD-rosette investigation of the summit of Teahitia Seamount, Society Islands hot-spot, that indicates that high temperature venting may have been present by late 2013 at a site that only hosted low-temperature vents ( 30°C) when previously visited by submersible, 25 years earlier. In 2013, a non-buoyant hydrothermal plume containing high concentrations (>100nmol/L) of both dissolved and total dissolvable Fe was observed at an apparent rise-height of 110-140m above a seafloor source at 1500-1530m water depth, implying a heat-flux for the underlying venting of 13-35MW. From a comparison to the past evolution of venting at Loihi seamount (Hawaii), coupled with an examination of recent seismicity detected by the Polynesian Seismic Network, we hypothesize that venting at Teahitia may have undergone perturbation only recently and that this, in turn, may be linked to a re-awakening of the Society Islands hotspot.

  16. 75 FR 17070 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...-XU60 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... commercial and non-commercial fisheries in the Main Hawaiian Islands fishery for seven deepwater bottomfish...

  17. Major Element Analysis of the Target Rocks at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Mittlefehldt, David W.; Varley, Laura; Mertzman, Stan; Roddy, David

    2002-01-01

    We collected approximately 400 rock chips in continuous vertical profile at Meteor Crater, Arizona, representing, from bottom to top, the Coconino, Toroweap, Kaibab, and Moenkopi Formations to support ongoing compositional analyses of the impact melts and their stratigraphic source depth(s) and other studies at Meteor Crater that depend on the composition of the target rocks. These rock chips were subsequently pooled into 23 samples for compositional analysis by XRF (x ray fluorescence) methods, each sample reflecting a specific stratigraphic "subsection" approximately 5-10 in thick. We determined the modal abundance of quartz, dolomite, and calcite for the entire Kaibab Formation at vertical resolutions of 1-2 meters. The Coconino Formation composes the lower half of the crater cavity. It is an exceptionally pure sandstone. The Toroweap is only two inches thick and compositionally similar to Coconino, therefore, it is not a good compositional marker horizon. The Kaibab Formation is approximately 80 in thick. XRD (x ray diffraction) studies show that the Kaibab Formation is dominated by dolomite and quartz, albeit in highly variable proportions; calcite is a minor phase at best. The Kaibab at Meteor Crater is therefore a sandy dolomite rather than a limestone, consistent with pronounced facies changes in the Permian of SE Arizona over short vertical and horizontal distances. The Moenkopi forms the 12 in thick cap rock and has the highest Al2O3 and FeO concentrations of all target rocks. With several examples, we illustrate how this systematic compositional and modal characterization of the target ideologies may contribute to an understanding of Meteor Crater, such as the depth of its melt zone, and to impact cratering in general, such as the liberation of CO2 from shocked carbonates.

  18. Determination of meteor parameters using laboratory simulation techniques

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Becker, D. G.

    1973-01-01

    Atmospheric entry of meteoritic bodies is conveniently and accurately simulated in the laboratory by techniques which employ the charging and electrostatic acceleration of macroscopic solid particles. Velocities from below 10 to above 50 km/s are achieved for particle materials which are elemental meteoroid constituents or mineral compounds with characteristics similar to those of meteoritic stone. The velocity, mass, and kinetic energy of each particle are measured nondestructively, after which the particle enters a target gas region. Because of the small particle size, free molecule flow is obtained. At typical operating pressures (0.1 to 0.5 torr), complete particle ablation occurs over distances of 25 to 50 cm; the spatial extent of the atmospheric interaction phenomena is correspondingly small. Procedures have been developed for measuring the spectrum of light from luminous trails and the values of fundamental quantities defined in meteor theory. It is shown that laboratory values for iron are in excellent agreement with those for 9 to 11 km/s artificial meteors produced by rocket injection of iron bodies into the atmosphere.

  19. Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.; Mitchell, N. J.; Taylor, M. J.

    2011-01-01

    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields.

  20. Observations of the new Camelopardalids meteor shower using a 38.9 MHz radar at Mohe, China

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Li, G.; Ning, B.; Hu, L.

    2015-06-01

    The Camelopardalids meteor shower was predicted to occur for the first time on 24 May 2014, based on optical observations of the comet 209P/LINEAR. Using a 38.9 MHz meteor radar located at Mohe, China, we were able to detect approximately 590 shower meteors originating from an average pre-infall radiant of R.A. = 129.1° ± 9.8°, declination = 79.4° ± 1.6° (J2000) with a geocentric velocity of 16.0 ± 1.6 km s-1. Measurements of the shower duration, direction, velocity, and individual meteor detection heights facilitated a detailed analysis of the parent debris stream. Orbital parameters were calculated including a semi-major axis of 2.86 AU, eccentricity of 0.659, and inclination of 21.1°. Combining orbital parameters with the shower activity duration FWHM of 5.09 h, it was found that the stream has a FWHM of at least 211,000 km at 1 AU, as measured perpendicular to the direction of orbital motion. A comparison of shower meteor detection heights and diffusion coefficient estimates with the sporadic background is consistent the prediction of Ye and Wiegert (Ye, Q., Wiegert, P. [2014]. Mon. Not. R. Astron. Soc. 437, 3283-3287) that Camelopardalid meteoroids are biased towards larger sizes or that Cameloppardalid meteoroids are less fragile than sporadic background meteoroids.