Science.gov

Sample records for great plains usa

  1. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  2. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    USGS Publications Warehouse

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  3. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David; Krapu, Gary

    2016-01-01

    Numerous wind energy projects have been constructed in the central and southern Great Plains, USA, the main wintering area for midcontinental Sandhill Cranes (Grus canadensis). In an initial assessment of the potential risks of wind towers to cranes, we estimated spatial overlap, investigated potential avoidance behavior, and determined the habitat associations of cranes. We used data from cranes marked with platform transmitting terminals (PTTs) with and without global positioning system (GPS) capabilities. We estimated the wintering distributions of PTT-marked cranes prior to the construction of wind towers, which we compared with current tower locations. Based on this analysis, we found 7% spatial overlap between the distributions of cranes and towers. When we looked at individually marked cranes, we found that 52% would have occurred within 10 km of a tower at some point during winter. Using data from cranes marked after tower construction, we found a potential indication of avoidance behavior, whereby GPS-marked cranes generally used areas slightly more distant from existing wind towers than would be expected by chance. Results from a habitat selection model suggested that distances between crane locations and towers may have been driven more by habitat selection than by avoidance, as most wind towers were constructed in locations not often selected by wintering cranes. Our findings of modest regional overlap and that few towers have been placed in preferred crane habitat suggest that the current distribution of wind towers may be of low risk to the continued persistence of wintering midcontinental Sandhill Cranes in the central and southern Great Plains.

  4. Loess record of the Pleistocene-Holocene transition on the northern and central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Miao, X.; Hanson, P.R.; Johnson, W.C.; Jacobs, P.M.; Goble, R.J.

    2008-01-01

    Various lines of evidence support conflicting interpretations of the timing, abruptness, and nature of climate change in the Great Plains during the Pleistocene-Holocene transition. Loess deposits and paleosols on both the central and northern Great Plains provide a valuable record that can help address these issues. A synthesis of new and previously reported optical and radiocarbon ages indicates that the Brady Soil, which marks the boundary between late Pleistocene Peoria Loess and Holocene Bignell Loess, began forming after a reduction in the rate of Peoria Loess accumulation that most likely occurred between 13.5 and 15 cal ka. Brady Soil formation spanned all or part of the B??lling-Aller??d episode (approximately 14.7-12.9 cal ka) and all of the Younger Dryas episode (12.9-11.5 cal ka) and extended at least 1000 years beyond the end of the Younger Dryas. The Brady Soil was buried by Bignell Loess sedimentation beginning around 10.5-9 cal ka, and continuing episodically through the Holocene. Evidence for a brief increase in loess influx during the Younger Dryas is noteworthy but very limited. Most late Quaternary loess accumulation in the central Great Plains was nonglacigenic and was under relatively direct climatic control. Thus, Brady Soil formation records climatic conditions that minimized eolian activity and allowed effective pedogenesis, probably through relatively high effective moisture. Optical dating of loess in North Dakota supports correlation of the Leonard Paleosol on the northern Great Plains with the Brady Soil. Thick loess in North Dakota was primarily derived from the Missouri River floodplain; thus, its stratigraphy may in part reflect glacial influence on the Missouri River. Nonetheless, the persistence of minimal loess accumulation and soil formation until 10 cal ka at our North Dakota study site is best explained by a prolonged interval of high effective moisture correlative with the conditions that favored Brady Soil formation. Burial

  5. Life-cycle assessment of the beef cattle production system for the northern great plains, USA.

    PubMed

    Lupo, Christopher D; Clay, David E; Benning, Jennifer L; Stone, James J

    2013-09-01

    A life-cycle assessment (LCA) model was developed to estimate the environmental impacts associated with four different U.S. Northern Great Plains (NPG) beef production systems. The LCA model followed a "cradle-to-gate" approach and incorporated all major unit processes, including mineral supplement production. Four distinct operation scenarios were modeled based on production strategies common to the NGP, and a variety of impacts were determined. The scenarios include a normal operation, early weaning of the calf, fast-tack backgrounding, and grassfed. Enteric emissions and manure emissions and handling were consistently the largest contributors to the LCA impacts. There was little variability between production scenarios except for the grassfed, where the greenhouse gas (GHG) emissions were 37% higher due to a longer finishing time and lower finishing weight. However, reductions to GHG emissions (15-24%) were realized when soil organic carbon accrual was considered and may be a more realistic estimate for the NGP. Manure emissions and handing were primary contributors to potential eutrophication and acidification impacts. Mitigation strategies to reduce LCA impacts, including diet manipulation and management strategies (i.e., treatment of manure), were considered from a whole-systems perspective. Model results can be used for guidance by NGP producers, environmental practitioners, and policymakers. PMID:24216416

  6. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA

    USGS Publications Warehouse

    Preston, Todd M.; Kim, Kevin

    2016-01-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000 – 2015) development, the area and previous land cover of all well pads (pads) constructed during this time was determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990 ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121 ha have likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and- gas wells (i.e. stratigraphic test wells, water wells, injection wells, etc.), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  7. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA.

    PubMed

    Preston, Todd M; Kim, Kevin

    2016-10-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000-2015) development, the area and previous land cover of all well pads (pads) constructed during this time were determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121ha has likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and-gas wells (i.e. stratigraphic test wells, water wells, and injection wells), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin. PMID:27318516

  8. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    USGS Publications Warehouse

    Gosselin, D.C.; Harvey, F.E.; Frost, C.; Stotler, R.; Macfarlane, P.A.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist. ?? 2003 Elsevier Ltd. All rights reserved.

  9. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    USGS Publications Warehouse

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO2-4 due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ18OH2O, δ2HH2O, and δ34SSO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO4 reduction.

  10. Net global warming potential and greenhouse gas intensity under dryland cropping systems in the northern Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Sainju, U. M.; Usda-Ars-Gracenet

    2013-05-01

    Dryland cropping systems constitute a major farming system globally but little is known about management practices effect on net global warming potential (GWP) and greenhouse gas intensity (GHGI). We evaluated the effects of cropping sequences {conventional-tilled malt barley (Hordeum vulgaris L.)-fallow [CTB-F], no-tilled malt barley-pea (Pisum sativum L.) rotation [NTB-P], and no-tilled continuous malt barley [NTCB]} and N fertilization rates (0 and 80 kg N ha-1) on dryland soil greenhouse gas (GHG) emissions, GWP, and GHGI from 2008 to 2011 in eastern Montana, USA. The CO2 and N2O fluxes and CH4 uptake from spring to autumn were greater in NTB-P and NTCB with 80 kg N ha-1 than in other treatments. Net GWP and GHGI based on soil respiration and GHGI based on soil organic C (SOC) were greater in NTCB with 0 kg N ha-1 but GWP based on SOC was greater in CTB-F with 0 kg N ha-1 than in NTB-P with 0 and 80 kg N ha-1. Because of increased grain yield but reduced GWP and GHGI, NTB-P with 80 kg N ha-1 may be used as a management option to reduce dryland GWP and GHGI while sustaining crop yields in the northern Great Plains, USA.

  11. Management Strategies to Improve Yield and Nitrogen Use of Spring Wheat and Field Pea in the Semi-Arid Northern Great Plains USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available water and N fertility are primary constraints to crop production in the northern Great Plains of the USA. A field trial was initiated in 2004 to compare four crop rotations in a complete factorial of two tillage and two management systems. Rotations were continuous spring wheat (SW), pea-...

  12. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The geographic spread of Kentucky bluegrass in rangelands of the USA has increased significantly over the past decades. Preliminary analysis of National Resources Inventory data indicates that Kentucky bluegrass occupies a majority of ecological sites across the Northern Great Plains. Despite its fa...

  13. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The geographic spread of Kentucky bluegrass in rangelands of the USA has increased significantly over the past 3 decades. Preliminary analysis indicates that Kentucky bluegrass occupies over half of all ecological sites across the Northern Great Plains. Kentucky bluegrass has served as nutritious fo...

  14. EFFECT OF TILLAGE AND CHEMICALLY-WEEDED FALLOWING ON MEASURED WIND EROSION ON SUNFLOWER STUBBLE LAND IN THE NORTHERN GREAT PLAINS, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversification of cropping systems in the northern Great Plains of the USA includes crop species with residues that are less durable than small cereal grains, creating potential wind erosion hazards under drought and tillage disturbance. No-tillage with chemical weed control is currently considered...

  15. 'Duster' wheat: A durable, dual-purpose cultivar adapted to the southern great plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat (Triticum aestivum L.) cultivars which gain broad commercial acceptance in Oklahoma and surrounding states of the U.S. southern Great Plains must produce a definitive grain yield advantage, and they must demonstrate season-long dependability in dual purpose management systems, effective...

  16. 'Billings' wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection pressure for earliness, resistance to multiple pathogens, and quality attributes consistent with the hard red winter (HRW) wheat (Triticum aestivum L.) market class is tantamount to, or can obscure, selection for yield potential in lower elevations of the U.S. southern Great Plains. The de...

  17. Architecture, heterogeneity, and origin of late Miocene fluvial deposits hosting the most important aquifer in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Joeckel, R. M.; Wooden, S. R.; Korus, J. T.; Garbisch, J. O.

    2014-08-01

    The Ash Hollow Formation (AHF) of the Ogallala Group is an important sedimentary archive of the emergence of the Great Plains and it contains major groundwater resources. Stratal patterns of constituent alluvial lithofacies demonstrate that the AHF is much more heterogeneous than is commonly assumed. Very fine- to fine-grained sandstone dominate overall, chiefly lithofacies Sm (massive to locally stratified sandstone). Stacked, thin sheets of Sm with accretionary macroform surfaces are common, indicating that many sandstone architectural elements originated as compound-bar deposits in dominantly sand-bed streams. Channel forms are difficult to identify and steep cutbanks are absent. Multiple units of lithofacies Sm show dense, and sometimes deep, burrowing by insects well above water tables under ancient floodplains. Massive, pedogenically modified siltstones (Fm), which compose floodplain fine architectural elements, are subsidiary in volumetric abundance to sandstones. Paleosols in these siltstones lack evidence for well-developed B horizons and advanced stages of maturity. Thin lenses of impure carbonate and laminated mud (lithofacies association Fl + C), which appear in most exposures, are deposits of ponded water in abandoned channels. Paleosols, ponded-water elements, and large vertebrate burrows in both Sm and Fm indicate that episodes of floodplain deposition, bar accretion, and channel filling were regularly followed by intervals of nondeposition on floodplains and by channel migration and abandonment. This study documents a major downdip change in the Ogallala Group overall, from source-proximal gravelly successions in the Wyoming Gangplank and deep, narrow paleovalley fills extending eastward into the Nebraska Panhandle. The lithofacies composition, stratigraphic architecture, and stratal dimensions of the AHF in the present study area are compatible with the planform geometries and floodplain soils of modestly-sized, sandy, low-sinuosity braided streams

  18. Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?

    USGS Publications Warehouse

    Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd

    2010-01-01

    Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link

  19. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA

    USGS Publications Warehouse

    Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret

    2014-01-01

    1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the

  20. Evaluation of Spring Canola as a potential alternative crop in the Central Great Plains of the U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the adaptability of Spring Canola (Brassica napus L.) to the High Plains as an oil seed crop, 26 trials were conducted from 2005 to 2008. Trials were divided into five regions: (1.) 36-37N 108W, (2.) 39-40N 101-103W, (3.) 41-42N 102-103W, (4.) 41-42N104W, and (5.) 44N 106-108W. Cultu...

  1. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  2. Comparison of ornamental and invasive saltcedar in the USA northern Great Plains using chloroplast and nuclear DNA sequence markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saltcedars (Tamarix ramosissima, T. chinensis, and their hybrids) have invaded riverways and lakeshores across the western USA and northern Mexico. In Montana, ornamental plantings of saltcedar have been hypothesized, to varying degrees, to be the origin of nearby, wild populations. To examine this ...

  3. The potential response of eolian sands to greenhouse warming and precipitation reduction on the Great Plains of the U.S.A.

    USGS Publications Warehouse

    Muhs, D.R.; Maat, P.B.

    1993-01-01

    Sand dunes and sand sheets are extensive on the semi-arid GreatPlains but are at present stabilized by a sparse vegetation cover. Use of a dune mobility index, which incorporates wind strength and the ratio of mean annual precipitation to potential evapotranspiration, shows that under predicted greenhouse climate effects of increased temperature and reduced precipitation, sand dunes and sand sheets on the GreatPlains are likely to become reactivated over a significant part of the region.

  4. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    USGS Publications Warehouse

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  5. Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA

    USGS Publications Warehouse

    Machavaram, M.V.; Whittemore, D.O.; Conrad, M.E.; Miller, N.L.

    2006-01-01

    A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. ?? 2006 Elsevier B.V. All rights reserved.

  6. Great Plains Synfuels` hidden treasures

    SciTech Connect

    Kuhn, A.K.; Duncan, D.H.

    1996-12-31

    The Great Plains Synfuels Project was commissioned 12 years ago. While demonstrating success regarding SNG production, DGC quietly started development of chemical products derived from the liquid by-product streams of Lurgi moving bed gasifiers. Naphtha, crude phenol, and tar oil are the primary by-products, and these contain valuable compounds such as phenol, cresylic acid, catechols, naphthols, fluorene, and BTX. Process technologies have been developed for (1) separation of various impurities from cresylic acid distillate fractions or from whole cresylic acid; (2) extracting cresylic acid from tar oil; (3) conversion of tar pitch to a blend stock used in making anode binder pitch; and (4) separating high purity catechol and methyl catechols. As a result of this work, DGC built a phenol/cresylic acid facility. The cresylic acid side supplies over 10 percent of the world market. The achievement with the catechols is presently leading to bench scale routes for synthesis of chemical intermediates which ultimately may include compounds such as vanillin, pyrogallol, sesamol, homoveratrylamine, and many others, penetrating the fields of flavors and fragrances, pharmaceuticals, pesticides, photographic chemicals, dyes, etc. These efforts stimulate DGC`s growth and will provide an economic uplift. By-products already contribute more than 10% of revenues and are destined to rival natural gas in importance.

  7. a New High-Resolution Chronology of Megadrought Following the Medieval Climatic Anomaly and Little Ice Age in the Central Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Johnson, W. C.; Hanson, P. R.; Spencer, J. Q.; Woodburn, T.; Young, A. R.

    2010-12-01

    Recent research has emphasized using eolian sediments for reconstructing late Holocene megadroughts, especially in the Great Plains where other drought proxies are scarce. Eolian dune fields can serve as proxy sources for megadroughts because, during prolonged drought conditions, vegetation cover is diminished and eolian sedimentation ensues. In an effort to better characterize late-Holocene megadroughts, two dune fields spanning a 400 km east-west transect of the central Great Plains have been investigated, resulting thus far in over 110 optically stimulated luminescence ages. Ages from the Hutchinson and Arkansas River dune fields have provided a new, high-resolution chronology of dune activity that spans much of the past 2000 years. Both dune fields were stable prior to the Medieval Climatic Anomaly (MCA) but started to activate towards the height of the warming around 1.0 ka. Activity continued throughout the MCA but intensified as climate shifted towards cooler conditions between 0.8 and 0.7 ka. Around the onset of the Little Ice Age (LIA) dune activity decreased, but did not cease, and, by the end of the LIA, activity again intensified between 0.3 and 0.2 ka. Dune activity continued into historical times (e.g., 1930’s Dust Bowl drought), and today the dune fields are stable with only small areas of anthropogenically-triggered activity. A clustering of ages defines two periods of megadrought, at 0.8 to 0.7 and 0.3 to 0.2 ka. Dune activity between 0.8 and 0.7 ka correlates well with Palmer Drought Severity Index data constructed from tree-rings and regional dune activity; this suggests that one or more megadroughts occurred within much of the Great Plains during the MCA. The period of dune activity between 0.3 and 0.2 ka correlate with activity in the Great Bend Sand Prairie and southwestern Nebraska, but is not coeval with activation records from the Nebraska Sand Hills, or those from the Duncan and Abilene dune fields of the eastern Great Plains. This

  8. Life on the Great Plains. [Lesson Plan].

    ERIC Educational Resources Information Center

    2000

    In this four-part lesson, students examine the concept of geographic region by exploring the history of the United States Great Plains. In Part I, students gather information about the location and environment of the Great Plains in order to produce a map outlining the region in formal terms. In Part II, students examine how the region has been…

  9. The geologic story of the Great Plains

    USGS Publications Warehouse

    Trimble, Donald E.

    1980-01-01

    For more than half a century after Lewis and Clark crossed the country in 1805-6, the Great Plains was the testing ground of frontier America here America grew to maturity (fig. 1). In 1805-7, explorer Zebulon Pike crossed the southcentral Great Plains, following the Arkansas River from near Great Bend, Kans., to the Rocky Mountains. In later years, Santa Fe traders, lured by the wealth of New Mexican trade, followed Pike's path as far as Bents Fort, Colo., where they turned southwestward away from the river route. Those pioneers who later crossed the plains on the Oregon Trail reached the Platte River near the place that would become Kearney, Nebr., by a nearly direct route from Independence, Mo., and followed the Platte across the central part of the Great Plains.

  10. Arapahos on the Great Plains. Student Workbook.

    ERIC Educational Resources Information Center

    Spoonhunter, Bob; Woodenlegs, Martha

    The student workbook is derived from "An Ethnological Report on Cheyenne and Arapaho: Aboriginal Occupation," by Zachary Gussow and "Northern Snows to Southern Summers--An Arapaho Odyssey," by Bob Spoonhunter. The first section discusses the Arapaho origins by recounting many different legends that explain how they arrived on the Great Plains. The…

  11. Great plains regional climate assessment technical report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  12. Impacts of stream flow and climate variability on native and invasive woody species in a riparian ecosystem of a semi-arid region of the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.; Huddle, J.

    2012-04-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains (United States) have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought, have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. The study utilizes tree ring analysis of annual growth rates and stable isotope ratios of 13C and 18O to determine 1) the response P. deltoides and invasive J. virginiana and E. angustifulia have to climate variation and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Preliminary results have shown that P. deltoids annual growth rate (using basal area increment growth) continually declined over the last 40 yrs, while that of E. angustifolia steadily increased. Growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors than E. angustifolia. Ecological and hydrological significance of the results will be presented.

  13. Late Quaternary environmental change inferred from phytoliths and other soil-related proxies: Case studies from the central and southern Great Plains, USA

    USGS Publications Warehouse

    Cordova, C.E.; Johnson, W.C.; Mandel, R.D.; Palmer, M.W.

    2011-01-01

    This study investigates stable carbon isotopes (??13C), opal phytolith assemblages, burnt phytoliths, microscopic charcoal and Sporormiella spores from modern soils and paleosols in Kansas and Oklahoma. Grass and dicot phytoliths in combination with ??13C are used as proxies for reconstructing the structure of grasslands and woodlands. Burnt grass phytoliths and microscopic charcoal are evaluated as proxies for reconstructing paleofire incidence. Concentrations of the fungal spore Sporormiella are used as a proxy for assessing large herbivore activity. These proxies were tested on various modern grassland communities of the central and southern Great Plains, including areas with bison, cattle, and small herbivores, and areas under different fire frequencies.Opal phytolith assemblages and ??13C values show that before cal 11ka, C3 grasses and woody plants predominated in areas that today are dominated by C4 grasses. The origin of the shortgrass prairie dates back to about cal 10ka. The origin of the tallgrass prairie, however, is not clear as phytolith data show variable assemblages throughout the Holocene (mixed-grass, tallgrass, and tallgrass-woodland mosaic). Different proxies (burnt phytoliths vs. charcoal) reveal different fire frequencies, but it is apparent that microfossil evidence for fire incidence is closely related to the abundance of woody plants in the landscape.Before cal 12. ka, soils show somewhat elevated concentration of Sporormiella, but lower concentrations than the modern high-density bison and cattle grazing areas. Throughout the Holocene, Sporormiella frequencies are low, which suggests lower large ungulate densities and perhaps high mobility. ?? 2010 Elsevier B.V.

  14. Close evolutionary affinities between freshwater corbulid bivalves from the Neogene of western Amazonia and Paleogene of the northern Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Anderson, Laurie C.; Hartman, Joseph H.; Wesselingh, Frank

    2006-03-01

    Freshwater corbulid bivalves found in Miocene deposits of western Amazonia have been considered products of an endemic radiation of a marine clade within the large lacustrine system occupying the region at that time. Our reexamination of Paleocene freshwater corbulids of the Tongue River Formation of western North Dakota and eastern Montana, however, extends the stratigraphic and geographic range of three Amazonian taxa— Pachydon, Ostomya, and Anticorbula—to the Paleocene of the northern Great Plains of the United States. Both Paleocene and Miocene freshwater corbulid taxa occur in large freshwater systems with an intermittent marine connection. To test the phylogenetic relationships of one particularly widespread Paleocene species ( Pachydon mactriformis), we conducted cladistic analyses using maximum parsimony and heuristic searches of matrices of conchologic characters. Seven species of Pachydon and Pebasia dispar from the western Amazonian Neogene, Pachydon mactriformis from the Paleocene of North Dakota, representative species of eight neotropical marine corbulid genera, and three additional corbulid taxa were included. Corbula was the outgroup. All analyses produced similar regions of stability within trees. One such area is a Pachydon crown group that includes P. mactriformis, indicating that Paleocene and Miocene Pachydon are not convergent. Our results also indicate that Pachydon does not represent a separate basal radiation within the family. However, we have not resolved a robust sister clade relationship for the Pachydon crown group. Two Amazonian Neogene taxa do not fall within the Pachydon crown group, and their phylogenetic position is not resolved. At this time, we do not have sufficient evidence to refine the definitions of Pachydon and Pachydontinae as monophyletic clades. Although we have evidence that three genera of corbulid bivalves ( Pachydon, Ostomya, and Anticorbula) in the Pebas Formation are not endemic and have long geologic

  15. Impacts of Stream Flow and Climate Variability on Native and Invasive Woody Species in a Riparian Ecosystem of a Semi-Arid Region of the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.

    2012-12-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains, US have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic and biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. Tree ring analysis of annual growth rates were used to determine 1) the responses P. deltoides and invasive J. virginiana and E. angustifulia to climate variability and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Results show a dependency of growth for P. deltoides on the previous year summer temperature, and a less significant correlation to annual stream flow. J. virginiana showed the highest correlation to annual stream flow, as well as some dependency on the previous growing season precipitation. While the growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors, E. angustifolia displayed the lowest mean basal area growth and deviation from the growth. E

  16. Dust storms - Great Plains, Africa, and Mars

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Krauss, R.; Minzner, R.; Shenk, W.

    1977-01-01

    Dust storms in the Great Plains of North America and in the Sahara Desert are analyzed on the basis of imagery from the geostationary Synchronous Meteorological Satellite. The onset time, location and areal extent of the dust storms are studied. Over land surfaces, contrast enhancement techniques are needed to obtain an adequate picture of dust storm development. In addition, infrared imagery may provide a means of monitoring the strong horizontal temperature gradients characteristic of dust cloud boundaries. Analogies between terrestrial dust storms and the airborne rivers of dust created by major Martian dust storms are also drawn.

  17. Nest sites and conservation of endangered Interior Least Terns Sterna antillarum athalassos on an alkaline flat in the south-central Great Plains (USA)

    USGS Publications Warehouse

    Winton, Brian R.; Leslie, David M., Jr.

    2003-01-01

    We monitored nest sites of endangered Interior Least Terns on a 5 095 ha alkaline flat in north-central Oklahoma, USA. After nest loss, Least Terns commonly renested and experienced 30% apparent nest success in 1995-1996 (n = 233 nests). Nest success and predation differed by location on the alkaline flat in 1995 and overall, but nest success and flooding did not differ by microhabitat type. Predation was highest at nests ??? 5 cm from debris (driftwood/hay) in 1995. No differences in nesting success, flooding, or predation were observed on comparing nests inside and outside electrified enclosures. Coyotes and Striped Skunks were confirmed nest predators, and Ring-billed Gulls were suspected nest predators. We identified one location on the alkaline flat of about 1 000 ha with consistently lower nest losses attributable to flooding and predation and the highest hatching success compared with other parts of the alkaline flat; it was typified by open ground and bisected by several creeks. Management activities that minimize flooding and predation in this area could further enhance nest success and theoretically increase overall productivity of this population of Least Terns. However, the efficacy of electrified enclosures and nest-site enhancements, as currently undertaken, is questionable because of considerable annual variation in use by and protection of Least Terns.

  18. Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA

    PubMed Central

    Donovan, Michael P.; Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Peppe, Daniel J.

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404

  19. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    PubMed

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404

  20. Great Plains Wind Energy Transmission Development Project

    SciTech Connect

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the

  1. History of the Central Great Plains Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Great Plains Research Station was established in 1907 as one of several Agricultural Fact Finding Institutions located in the Great Plains of the United States by the Bureau of Plant Industry. This document summarizes the circumstances surrounding the creation of the station and changes ...

  2. Statistical Downscaling for the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Coburn, J.

    2014-12-01

    The need for detailed, local scale information about the warming climate has led to the use of ever more complex and geographically realistic computer models as well as the use of regional models capable of capturing much finer details. Another class of methods for ascertaining localized data is known as statistical downscaling, which offers some advantages over regional models, especially in the realm of computational efficiency. Statistical downscaling can be described as the process of linking coarse resolution climate model output to that of fine resolution or even station-level data via statistical relationships with the purpose of correcting model biases at the local scale. The development and application of downscaling has given rise to a plethora of techniques which have been applied to many spatial scales and multiple climate variables. In this study two downscaling processes, bias-corrected statistical downscaling (BCSD) and canonical correlation analysis (CCA), are applied to minimum and maximum temperatures and precipitation for the Northern Great Plains (NGP, 40 - 53°N and 95 - 120°W) region at both daily and monthly time steps. The abilities of the methods were tested by assessing their ability to recreate local variations in a set of both spatial and temporal climate metrics obtained through the analysis of 1/16 degree station data for the period 1950 to 2000. Model data for temperature, precipitation and a set of predictor variables were obtained from CMIP5 for 15 models. BCSD was applied using direct comparison and correction of the variable distributions via quadrant mapping. CCA was calibrated on the data for the period 1950 to 1980 using a series of model-based predictor variables screened for increasing skill, with the derived model being applied to the period 1980 to 2000 so as to verify that it could recreate the overall climate patterns and trends. As in previous studies done on other regions, it was found that the CCA method recreated

  3. Particulate Loads Caused by Wind Erosion in the Great Plains

    ERIC Educational Resources Information Center

    Hagen, Lawrence J.; Woodruff, Neil P.

    1975-01-01

    In this paper the annual flux of suspended particulates caused by wind erosion in the Great Plains is estimated. This study demonstrated that climate causes wide variations in air pollution from wind erosion. (BT)

  4. Great Plains Drought in Simulations of Twentieth Century

    NASA Astrophysics Data System (ADS)

    McCrary, R. R.; Randall, D. A.

    2008-12-01

    The Great Plains region of the United States was influenced by a number of multi-year droughts during the twentieth century. Most notable were the "Dust Bowl" drought of the 1930s and the 1950s Great Plains drought. In this study we evaluate the ability of three of the Coupled Global Climate Models (CGCMs) used in the Fourth Assessment Report (AR4) of the IPCC to simulate Great Plains drought with the same frequency and intensity as was observed during the twentieth century. The models chosen for this study are: GFDL CM 2.0, NCAR CCSM3, and UKMO HadCM3. We find that the models accurately capture the climatology of the hydrologic cycle of the Great Plains, but that they tend to overestimate the variability in Great Plains precipitation. We also find that in each model simulation at least one long-term drought occurs over the Great Plains region during their representations 20th Century Climate. The multi-year droughts produced by the models exhibit similar magnitudes and spatial scales as was observed during the twentieth century. This study also investigates the relative roles that external forcing from the tropical Pacific and local feedbacks between the land surface and the atmosphere have in the initiation and perpetuation of Great Plains drought in each model. We find that cool, La Nina-like conditions in the tropical pacific are often associated with long-term drought conditions over the Great Plains in GFDL CM 2.0 and UKMO HadCM3, but there appears to be no systematic relationship between tropical Pacific SST variability and Great Plains drought in CCSM3. It is possible the strong coupling between the land surface and the atmosphere in the NCAR model causes precipitation anomalies to lock into phase over the Great Plains thereby perpetuating drought conditions. Results from this study are intended to help assess whether or not these climate models are credible for use in the assessment of future drought over the Great Plains region of the United States.

  5. Rural School District Reorganization on the Great Plains.

    ERIC Educational Resources Information Center

    Bryant, Miles

    2002-01-01

    Rural school district reorganization and school consolidation are put into perspective by reviewing the large population increases that fueled small-school growth in the Great Plains, 1870-1930. Since the Dust Bowl and Great Depression, population losses, improvements in transportation, and arguments advocating economies of scale and increased…

  6. Causes and Predictability of the 2012 Great Plains Drought

    NASA Technical Reports Server (NTRS)

    Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R.

    2013-01-01

    Central Great Plains precipitation deficits during May-August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in summertime precipitation over the central Great Plains during 2012. Yet, diagnosis of the retrospective climate simulations also reveals a regime shift toward warmer and drier summertime Great Plains conditions during the recent decade, most probably due to natural decadal variability. As a consequence, the probability for severe summer Great Plains drought may have increased in the last decade compared to the 1980s and 1990s, and the so-called tail-risk for severe drought may have been heightened in summer 2012. Such an extreme drought event was nonetheless still found to be a rare occurrence within the spread of 2012 climate model simulations. Implications of this study's findings for U.S. seasonal drought forecasting are discussed.

  7. Synthetic fuels: Status of the Great Plains coal gasification project

    SciTech Connect

    Not Available

    1987-01-01

    Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

  8. The Great Plains IDEA Gerontology Program: An Online, Interinstitutional Graduate Degree

    ERIC Educational Resources Information Center

    Sanders, Gregory F.

    2011-01-01

    The Great-Plains IDEA Gerontology Program is a graduate program developed and implemented by the Great Plains Interactive Distance Education Alliance (Great Plains IDEA). The Great Plains IDEA (Alliance) originated as a consortium of Colleges of Human Sciences ranging across the central United States. This Alliance's accomplishments have included…

  9. Management implications of global change for Great Plains rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Just as water and temperature drive the ecology of Great Plains rangelands, we predict that the impacts of global change on this region will be experienced largely through changes in these two important environmental variables. A third global change factor which will impact rangelands is increasing ...

  10. Producing and Marketing Proso Millet in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proso millet is a short-season summer crop that produces well in the semi-arid western Great Plains and is suitable for diversifying and intensifying dryland production systems. Proso allows transition back to winter wheat in cropping rotations. No-till methods work well with proso establishment. Pr...

  11. Crop diversity on traditional great plains wheat farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the vast majority of cropland in the western Great Plains was either seeded to continuous monoculture wheat or was in a wheat-fallow rotation. The objective of this paper is to determine the combined effects of crop diversity and tillage systems on wheat grain yield and net returns fo...

  12. Regional dynamics of grassland change in the western Great Plains

    USGS Publications Warehouse

    Drummond, M.A.

    2007-01-01

    This paper examines the contemporary land-cover changes in two western Great Plains ecoregions between 1973 and 2000. Agriculture and other land uses can have a substantial effect on grassland cover that varies regionally depending on the primary driving forces of change. In order to better understand change, the rates, types, and causes of land conversion were examined for 1973, 1980, 1986, 1992, and 2000 using Landsat satellite data and a statistical sampling strategy. The overall estimated rate of land-cover change between 1973 and 2000 was 7.4% in the Northwestern Great Plains and 11.5% in the Western High Plains. Trends in both ecoregions have similarities, although the dynamics of change differ temporally depending on driving forces. Between 1973 and 1986, grassland cover declined when economic opportunity drove an expansion of agriculture. Between 1986 and 2000, grassland expanded as public policy and a combination of socioeconomic factors drove a conversion from agriculture to grassland. ?? 2007 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  13. Alternative Crop Rotations in the Semi-arid Central Great Plains Region: How Much Fallow? Evaluating the Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The traditional crop production system in the semi-arid Central Great Plains Region (CGPR) of the U.S.A. is winter wheat (Triticum aestivum L.)-summer fallow (WF) or one crop every two years. This system is not a long-term sustainable dryland system. It is conducive to soil degradation and provide...

  14. Distribution and nesting success of ferruginous hawks and Swainson's hawks on an agricultural landscape in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied nest site land cover associations, and reproductive success of two Buteo species of conservation concern on the southern Great Plains, USA. The study area was in Cimarron County, Oklahoma, where land use is dominated by row crop agriculture, livestock grazing, and Conservation Reserve Pro...

  15. Long-term Agroecosystem Research in the Northern Great Plains.

    NASA Astrophysics Data System (ADS)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  16. Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the Great Plains

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Scott, M.L.; Auble, G.T.

    1998-01-01

    The response of rivers and riparian forests to upstream dams shows a regional pattern related to physiographic and climatic factors that influence channel geometry. We carried out a spatial analysis of the response of channel geometry to 35 dams in the Great Plains and Central Lowlands, USA. The principal response of a braided channel to an upstream dam is channel-narrowing, and the principal response of a meandering channel is a reduction in channel migration rate. Prior to water management, braided channels were most common in the southwestern Plains where sand is abundant, whereas meandering channels were most common in the northern and eastern Plains. The dominant response to upstream dams has been channel-narrowing in the southwestern Plains (e.g., six of nine cases in the High Plains) and reduction in migration rate in the north and east (e.g., all of twelve cases in the Missouri Plateau and Western Lake Regions). Channel-narrowing is associated with a burst of establishment of native and exotic woody riparian pioneer species on the former channel bed. In contrast, reduction in channel migration rate is associated with a decrease in reproduction of woody riparian pioneers. Thus, riparian pioneer forests along large rivers in the southwestern Plains have temporarily increased following dam construction while such forests in the north and east have decreased. These patterns explain apparent contradictions in conclusions of studies that focused on single rivers or small regions and provide a framework for predicting effects of dams on large rivers in the Great Plains and elsewhere. These conclusions are valid only for large rivers. A spatial analysis of channel width along 286 streams ranging in mean annual discharge from 0.004 to 1370 cubic meters per second did not produce the same clear regional pattern, in part because the channel geometries of small and large streams are affected differently by a sandy watershed.

  17. Effect of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.; Kruse, A.D.; Piehl, J.L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  18. Effects of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, Kenneth F.; Kruse, Arnold D.; Piehl, James L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  19. Great Plains ASPEN model development: Phosam section. Final topical report

    SciTech Connect

    Stern, S S; Kirman, J J

    1985-02-01

    An ASPEN model has been developed of the PHOSAM Section, Section 4600, of the Great Plains Gasification Plant. The bases for this model are the process description given in Section 6.18 of the Great Plains Project Management Plan and the Lummus Phosam Schematic Process Flow Diagram, Dwg. No. SKD-7102-IM-O. The ASPEN model that has been developed contains the complete set of components that are assumed to be in the gasifier effluent. The model is primarily a flowsheet simulation that will give the material and energy balance and equipment duties for a given set of process conditions. The model is unable to predict fully changes in process conditions that would result from load changes on equipment of fixed sizes, such as a rating model would predict. The model can be used to simulate the steady-state operation of the plant at or near design conditions or to design other PHOSAM units. Because of the limited amount of process information that was available, several major process assumptions had to be made in the development of the flowsheet model. Patent literature was consulted to establish the ammonia concentration in the circulating fluid. Case studies were made with the ammonia content of the feed 25% higher and 25% lower than the base feed. Results of these runs show slightly lower recoveries of ammonia with less ammonia in the feed. As expected, the duties of the Stripper and Fractionator reboilers were higher with more ammonia in the feed. 63 references.

  20. Lacustrine carbonates of the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.

    2012-11-01

    The northern Great Plains of western Canada, a vast region stretching from the Precambrian Shield east of Winnipeg, Manitoba, westward for some 1600 km to the foothills of the Rocky Mountains, contains literally millions of lakes and wetlands. Although often characterized as a saline, Na-SO4 system, in fact the wide range of water chemistries exhibited by the lakes results in an unusually large diversity of sediment composition. Despite a long history of limnogeological study, it is only recently that the spectrum of carbonate minerals and sedimentological processes in these lakes has been realized. About 30 species of carbonate minerals have been reported from the modern and Holocene sediment of about 50 basins in the region. The ubiquity of detrital calcite and dolomite is a legacy of the carbonate bedrock and carbonate-rich glacial sediments. Elevated salinities of the lakes, together with high alkalinities, productivity, and pH values, act in concert to create thermodynamically saturated or supersaturated conditions with respect to many carbonate minerals. The most common non-detrital components are Mg-calcite, aragonite and non-stoichiometric dolomite. Many of the basins whose brines have very high Mg/Ca ratios also contain hydromagnesite, magnesite, and nesquehonite. Although not common, sodium carbonates, including trona, natron and nahcolite, also occur in some of the hypersaline lakes. Because of their great range of formative conditions, carbonates have been the workhorse for much of the physical and geochemical paleolimnology in the Canadian Great Plains. However, the often-difficult task of distinguishing endogenic lacustrine carbonates from allogenic and authigenic minerals has limited the use of carbonate stratigraphy in the region. Despite this problem, the carbonates have been useful in deciphering (i) past changes in hydrology and drainage basin characteristics, (ii) lake level and water column stratification fluctuations, and (iii) water chemistry

  1. Early Holocene Great Salt Lake, USA

    NASA Astrophysics Data System (ADS)

    Oviatt, Charles G.; Madsen, David B.; Miller, David M.; Thompson, Robert S.; McGeehin, John P.

    2015-07-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5-10.2 cal ka BP; 10-9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column - a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  2. A Sustainable Biomass Industry for the North American Great Plains

    SciTech Connect

    Rosenberg, Norman J.; Smith, Steven J.

    2009-12-01

    The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world can be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.

  3. Summertime Low-Level Jets over the Great Plains

    SciTech Connect

    Stensrud, D.J.

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  4. ESTAR Measurements During the Southern Great Plains Experiment (SGP99)

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Jackson, T. J.; Swift, C. T.; Haken, M.; Bidwell, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    During the Southern Great Plains experiment, the synthetic aperture radiometer, ESTAR, mapped L-band brightness temperature over a swath about 50 km wide and about 300 km long extending west from Oklahoma City to El Reno and north from the Little Washita River watershed to the Kansas border. ESTAR flew on the NASA P-3B Orion aircraft at an altitude of 7.6 km and maps were made on 7 days between July 8-20, 1999. The brightness temperature maps reflect the patterns of soil moisture expected from rainfall and are consistent with values of soil moisture observed at the research sites within the SGP99 study area and with previous measurements in this area. The data add to the resources for hydrologic modeling in this area and are further validation of the technology represented by ESTAR as a potential path to a future mission to map soil moisture globally from space.

  5. Building Indigenous Community Resilience in the Great Plains

    NASA Astrophysics Data System (ADS)

    Gough, B.

    2014-12-01

    Indigenous community resilience is rooted in the seasoned lifeways, developed over generations, incorporated into systems of knowledge, and realized in artifacts of infrastructure through keen observations of the truth and consequences of their interactions with the environment found in place over time. Their value lies, not in their nature as artifacts, but in the underlying patterns and processes of culture: how previous adaptations were derived and evolved, and how the principles and processes of detailed observation may inform future adaptations. This presentation examines how such holistic community approaches, reflected in design and practice, can be applied to contemporary issues of energy and housing in a rapidly changing climate. The Indigenous Peoples of the Great Plains seek to utilize the latest scientific climate modeling to support the development of large, utility scale distributed renewable energy projects and to re-invigorate an indigenous housing concept of straw bale construction, originating in this region. In the energy context, we explore the potential for the development of an intertribal wind energy dynamo on the Great Plains, utilizing elements of existing federal policies for Indian energy development and existing federal infrastructure initially created to serve hydropower resources, which may be significantly altered under current and prospective drought scenarios. For housing, we consider the opportunity to address the built environment in Indian Country, where Tribes have greater control as it consists largely of residences needed for their growing populations. Straw bale construction allows for greater use of local natural and renewable materials in a strategy for preparedness for the weather extremes and insurance perils already common to the region, provides solutions to chronic unemployment and increasing energy costs, while offering greater affordable comfort in both low and high temperature extremes. The development of large

  6. Preliminary Report of NRC Twin Otter Operations in the 1997 Southern Great Plains Experiment

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian

    1997-01-01

    From June 18 to July 17, 1997, the NRC Twin Otter atmospheric research aircraft was operated from Oklahoma City, U.S.A., in the Southern Great Plains 1997 (SGP97) Hydrology Experiment. The primary role of the aircraft was to measure the vertical fluxes of sensible and latent heat, CO2, ozone and momentum in the atmospheric boundary layer, along with supporting meteorological and radiometric data. Approximately 400 flux runs and 100 soundings were flown in 27 project flights over rural areas near Oklahoma City. This preliminary report documents the flight program, lists the instrumentation aboard the aircraft, and presents a summary of run-averaged data from each flux run. These data are from the in-field analysis and must be considered preliminary. A re-analysis incorporating updated calibrations is planned for the fall of 1997 followed by a more comprehensive technical report.

  7. Avian associations of the Northern Great Plains grasslands

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1983-01-01

    The grassland region of the northern Great Plains was divided into six broad subregions by application of an avian indicator species analysis to data obtained from 582 sample plots censused during the breeding season. Common, ubiquitous species and rare species had little classificatory value and were eliminated from the data set used to derive the avian associations. Initial statistical division of the plots likely reflected structure of the dominant plant species used for nesting; later divisions probably were related to foraging or nesting cover requirements based on vegetation height or density, habitat heterogeneity, or possibly to the existence of mutually similar distributions or shared areas of greater than average abundance for certain groups of species. Knowledge of the effects of grazing, mostly by cattle, on habitat use by the breeding bird species was used to interpret the results of the indicator species analysis. Moderate grazing resulted in greater species richness in nearly all subregions; effects of grazing on total bird density were more variable.

  8. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  9. View east over the Rocky Mountains and Great Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A color oblique view looking east over the Rocky Mountains and Great Plains (40.0N, 106.0W). This view covers a portion of the States of Colorado, Wyoming, and Nebraska. This entire region, covered with snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Only change to snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains that form the core of the Rocky Mountains. Individual mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton,

  10. Great Plains ASPEN model development: gasifier model. Final topical report

    SciTech Connect

    Benjamin, B.W.

    1985-01-01

    A rigorous model of a moving-bed, dry-bottom gasifier, RGAS, has been incorporated into ASPEN. The model is designed to calculate the variables which characterize gasifier performance: (1) the composition of the outlet gas; (2) the flow of the outlet gas; (3) the temperature of the outlet gas; (4) the temperature profile of the solids (especially important in dry bottom gasifiers because of the necessity of maintaining the maximum temperature of the bed below the ash softening temperature); and (5) the rate of steam generation in the jacket (if applicable). The option of using alternative kinetic expressions has been incorporated into the model structure. Presently, RGAS can be used to simulate gasifier performance using the kinetic expressions for gasification established at West Virginia University and the University of Delaware. The models of both West Virginia University and the University of Delaware were tuned to agree with the Great Plains gasifier flowsheet. Then, several case studies were run to determine the sensitivity of each model to changes in such inputs as: (1) feed rates; (2) feed temperatures; (3) reaction parameters; and (4) heat transfer coefficient. The data from these case studies have been compared with experimental findings. For example, increasing the oxygen feed rate or increasing the temperature of the inlet gas feed both serve to increase the reactor temperature which, in turn, increases the carbon conversion and steam generation rate. On the other hand, increasing the steam feed rate does the opposite. These results agree with trends observed experimentally. 5 references.

  11. Skip-row Planting Patterns Stabilize Corn Grain Yields in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly variable climate of the Central Great Plains makes dryland corn (Zea mays) production a risky enterprise. Twenty-three field trials were conducted across the Central Great Plains from 2004 through 2006 to quantify the effect of various skip-row planting patterns and plant populations on g...

  12. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  13. Agroecosystem diversity and pollinator ecosystem services on the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The northern Great Plains provide critical habitat to pollinators. In 2012, North and South Dakota produced one-third of the total honey in the U.S. According to large scale analyses, crop diversity in the northern Great Plains has increased during the past 35 years. Increased diversity, greater com...

  14. DEVELOPMENT AND EVALUATION OF A FISH ASSEMBLAGE INDEX OF BIOTIC INTEGRITY FOR NORTHWESTERN GREAT PLAINS STREAMS

    EPA Science Inventory

    Quantitative indicators of biological integrity are needed for streams in the Great Plains of North America, but it was not known if the Index of Biotic Integrity (IBI) approach would be effective in this semi-arid region. Great Plains streams have a depauperate and tolerant i...

  15. Catastrophic failure of the Northern Great Plains: A unifying hypothesis

    SciTech Connect

    Clausen, E.N. . Science Div.)

    1992-01-01

    The Northern Great Plains, at peak Laurentide glaciation, was a 1,600 km thick barrier between meltwater sources and the lower Missouri Valley. Meltwater and floodwaters flowed along the ice margin, moved between the Black Hills and Laurentide ice. Water was trapped between ice to the N and E and mountains to the W and S. The Pine Ridge Escarpment began as the S wall of a W-trending headcut while other headcuts eroded N, parallel to the ice margin. Sheetflow from the west and northwest stripped the easily-eroded surface between major headcuts. The Cheyenne Valley headcut then captured sheetflow from the eastern Powder River Basin, both N and S of the Black Hills. Sheetflow moving through the western Powder River Basin, however, continued to spill over the southern wall of the initial headcut, carving the upper White River Valley. These floodwaters filled the lower White River Valley, including the Scenic and Sage Creek Basins, and breached divides by spilling over into the newly formed Cheyenne Valley. Another W-trending headcut next initiated the upper Little Missouri Valley by diverting sheetflow from the northeastern Powder River Basin. The Little Missouri Valley was extended northward by diversion of flow to a fourth major headcut and then again by diversion to the Missouri Valley headcut. Sheetflow, moving SE into the Powder River Basin, was progressively captured and diverted as SW-trending headcuts formed the Yellowstone-Powder, Yellowstone-Tongue, and Yellowstone-Bighorn valleys. At the same time sheetflow was progressively captured and diverted by a northerly set of SW-trending headcuts which eroded the Redwater, Big Dry, and Musselshell valleys. Major spillways finally breached the 1,600 km thick barrier by cutting between the Highwood and Bearpaw Mountains and between Milk River Ridge and the Cypress Hills.

  16. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American

  17. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  18. Longitudinal variability in hydraulic geometry and substrate characteristics of a Great Plains sand-bed river

    NASA Astrophysics Data System (ADS)

    Costigan, Katie H.; Daniels, Melinda D.; Perkin, Joshuah S.; Gido, Keith B.

    2014-04-01

    Downstream trends in hydraulic geometry and substrate characteristics were investigated along a 200 km reach of the Ninnescah River in south central Kansas, USA. The Ninnescah River is a large sand-bed, perennial, braided river located in the Central Plains physiographic province and is a tributary of the Arkansas River. Hydraulic geometry characteristics were measured at eleven reaches and included slope, sinuosity, bankfull channel width, and bankfull channel depth. Results indicated that the Ninnescah River followed a predicted trend of decreasing slope and increasing depth and width downstream. There were localized divergences in the central tendency, most notability downstream of a substantial tributary that is impounded and at the end of the surveying reach where the Ninnescah River approaches the Arkansas River. Surface grain-size samples were taken from the top 10 cm of the bed at five points across the wetted cross-section within each of the 11 reaches. Sediment analyses demonstrated a significant trend in downstream fining of surface grain-sizes (D90 and D50) but unlike previous studies of sand-bedded rivers we observed coarsening of substrates downstream of the major tributary confluence. We propose that the overall low discharge from the tributary was the primary reason for coarsening of the bed downstream of the tributary. Results of this study provide valuable baseline information that can provide insight in to how Great Plains sand-bed systems may be conserved, managed, and restored in the future.

  19. Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary

    SciTech Connect

    DeMott, PJ; Suski, KJ; Hill, TCJ; Levin, EJT

    2015-03-01

    The first ever ice nucleating particle (INP) measurements to be collected at the Southern Great Plains site were made during a period from late April to June 2014, as a trial for possible longer-term measurements at the site. These measurements will also be used to lay the foundation for understanding and parameterizing (for cloud resolving modeling) the sources of these climatically important aerosols as well as to augment the existing database containing this knowledge. Siting the measurements during the spring was intended to capture INP sources in or to this region from plant, soil, dust transported over long distances, biomass burning, and pollution aerosols at a time when they may influence warm-season convective clouds and precipitation. Data have been archived of real-time measurements of INP number concentrations as a function of processing conditions (temperature and relative humidity) during 18 days of sampling that spanned two distinctly different weather situations: a warm, dry and windy period with regional dust and biomass burning influences in early May, and a cooler period of frequent precipitation during early June. Precipitation delayed winter wheat harvesting, preventing intended sampling during that perturbation on atmospheric aerosols. INP concentrations were highest and most variable at all temperatures in the dry period, where we attribute the INP activity primarily to soil dust emissions. Additional offline INP analyses are underway to extend the characterization of INP to cover the entire mixed phase cloud regime from -5°C to -35°C during the full study. Initial comparisons between methods on four days show good agreement and excellent future promise. The additional offline immersion freezing data will be archived as soon as completed under separate funding. Analyses of additional specialized studies for specific attribution of INP to biological and smoke sources are continuing via the National Science Foundation and National Aeronautics

  20. Historical and current environmental influences on an endemic great plains fish

    USGS Publications Warehouse

    Fischer, John R.; Paukert, C.P.

    2008-01-01

    Native fishes of the Great Plains are at risk of decline due to disturbances to physical habitat caused by changes in land and water use, as well as shifts in species assemblages driven by the invasion of introduced species with the loss of natives. We used historical and current fish assemblage data in conjunction with current habitat information to assess these influences on an endemic Great Plains stream fish, the plains topminnow (Fundulus sciadicus). Of the 31 sites where the plains topminnow occurred historically (1939-1940), it was found in only seven of those sites in 2003-2005. Our results demonstrate a shift in fish assemblage over time that coincides with the loss of plains topminnow. Changes in fish assemblages were characterized by increases in occurrence of exotic, invasive and generalist species with declines in occurrences of native fishes. An information theoretic approach was used to evaluate candidate models of current fish assemblage and physical/chemical habitat on the presence of the plains topminnow. Candidate models that included both instream habitat (e.g., vegetation coverage, undercut banks) and the native fish species assemblage are important to predicting presence of the plains topminnow within its historic range. Conservation of Great Plains fishes including the plains topminnow will need a combination of habitat protection and enhancement.

  1. The Buffalo Commons: Great Plains Residents' Responses to a Radical Vision

    ERIC Educational Resources Information Center

    Rees, Amanda

    2005-01-01

    The American Great Plains has gained and shed various regional meanings since Euro-American exploration began. From a desert to a garden to a dust bowl to a breadbasket, this region's identity has shifted radically and dramatically over the last 200 years. In the mid-1980s unusual things were happening on the Plains that suggested yet another…

  2. Carbon and Water cycling in Southern Great Plains ecosystems converted to switchgrass production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here the initiation of a multi-disciplinary, integrative program to investigate the effects of conversion of traditional southern Great Plains pasture and wheat systems to switchgrass (Panicum virgatum L.) production. The project is based at the USDA-ARS Southern Plains Range Research Stat...

  3. Dryland agriculture in Mexico and the U.S. Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following the "Dryland" monograph editors standardized chapter format, we describe the US southern Great Plains and northern Mexico dryland production regional boundaries and various climatic factors including: precipitation, evaporation, temperature, and water deficit. Dryland soil management, eros...

  4. Dynamical connection between Great Plains low-level winds and variability of central Gulf States precipitation

    NASA Astrophysics Data System (ADS)

    Pu, Bing; Dickinson, Robert E.; Fu, Rong

    2016-04-01

    The Great Plains low-level jet has been related to summer precipitation over the northern Great Plains and Midwest through its moisture transport and convergence at the jet exit area. Much less studied has been its negative relationship with precipitation over the southern Great Plains and the Gulf coastal area. This work shows that the southerly low-level winds at 30°-40°N over the southern Great Plains are significantly correlated with anticyclonic vorticity to its east over the central Gulf States (30°-35°N, 85°-95°W) from May to July. When the low-level jet is strong in June and July, anomalous anticyclonic vorticity over the central Gulf States leads to divergence and consequent subsidence suppressing precipitation over that region. In contrast, an enhanced southerly flow at the entrance region of the jet over the Gulf of Mexico, largely uncorrelated with the meridional wind over the southern Great Plains, is correlated with increased precipitation over the central Gulf States. Precipitation is large over the central Gulf States when the meridional wind over the southern Great Plains is weakest and over the Gulf of Mexico is strongest. This increase is consistent with the increased moisture transport and dynamic balance between loss of vorticity by advection and friction and gain by convergence.

  5. Projected climate change for the coastal plain region of Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  6. Dissolved phosphorus retention and release from southeastern USA Coastal Plain in-stream wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern USA Coastal Plain region, many inland surface water systems will meander through flat or depressional landscape areas prior to discharge into coastal estuaries. Slow water flow through these areas often causes flooding that promotes formation of in-stream wetlands with dense vege...

  7. The High Plains Aquifer, USA: Groundwater development and sustainability

    USGS Publications Warehouse

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.

    2002-01-01

    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  8. Alternative No-till Rotations and Drought Mitigation Research in the Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in the dryland portion of the Central Great Plains Region make their living on land that receives 14-20 inches of precipitation annually. The evaporative demand in the region is usually 4 to 8 times that amount and so the challenge to successfully farm this region is great. The crops and lan...

  9. Alfalfa production with subsurface drip irrigation in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated alfalfa production is gaining interest because of the growing number of dairies in the semi-arid U.S. Central Great Plains and its longstanding superior profitability compared to other alternative crops grown in the region. Irrigation requirements for alfalfa are great because of alfalfa's...

  10. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  11. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  12. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    NASA Astrophysics Data System (ADS)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  13. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  14. Late Pleistocene braided rivers of the Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Leigh, David S.; Srivastava, Pradeep; Brook, George A.

    2004-01-01

    Infrared Landsat imagery (band 4) clearly reveals braided river patterns on late Pleistocene terraces of unglaciated rivers in the Atlantic Coastal Plain of the southeastern United States, a region that presently exhibits meandering patterns that have existed throughout the Holocene. These Pleistocene braided patterns provide a unique global example of river responses to late Quaternary climate changes in an unglaciated humid subtropical region at 30-35° north latitude. Detailed morphological and chronological results are given for the Oconee-Altamaha River valley in Georgia and for the Pee Dee River valley in South Carolina, including 15 optically stimulated luminescence (OSL) dates and four radiocarbon dates. Correlative examples are drawn from additional small to large rivers in South- and North Carolina. OSL and radiocarbon ( 14C) dates indicate distinct braiding at 17-30 ka, within oxygen isotope stage 2 (OIS 2), and braiding probably existed at least during parts of OIS 3 and possibly OIS 4 back to ca 70 ka. The chronology suggests that braiding is the more common pattern for the late Quaternary in the southeastern United States. Braided terraces appear to have been graded to lower sea-levels and are onlapped by Holocene floodplain deposits up to 10-60 km from the coast. The braiding probably reflects the response of discharge and sediment yield to generally cooler and drier paleoclimates, which may have had a pronounced runoff season. Sedimentation of eolian dunes on the braid plains is coeval with braiding and supports the conclusion of dry soils and thin vegetation cover during the late Pleistocene. Our chronological data contribute to a body of literature indicating that reliable OSL age estimates can be obtained from quartz-rich bed load sand from braided rivers, based on good correlations with both radiocarbon dates from braided fluvial sediment and OSL dates from stratigraphically correlative eolian sand.

  15. Channel narrowing and vegetation development following a great plains flood

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Lewis, W.M., Jr.

    1996-01-01

    Streams in the plains of eastern Colorado are prone to intense floods following summer thunderstorms. Here, and in other semiarid and arid regions, channel recovery after a flood may take several decades. As a result, flood history strongly influences spatial and temporal variability in bottomland vegetation. Interpretation of these patterns must be based on understanding the long-term response of bottomland morphology and vegetation to specific floods. A major flood in 1965 on Plum Creek, a perennial sandbed stream, removed most of the bottomland vegetatiqn and transformed the single-thread stream into a wider, braided channel. Channel narrowing began in 1973 and continues today. In 1991, we determined occurrences of 150 vascular plant species in 341 plots (0.5 m2) along a 7-km reach of Plum Creek near Louviers, Colorado. We related patterns of vegetation to elevation, litter cover, vegetative cover, sediment particle size, shade, and year of formation of the underlying surface (based on age of the excavated root flare of the oldest woody plants). Geomorphic investigation determined that Plum Creek fluvial surfaces sort into five groups by year of formation: terraces of fine sand formed before 1965; terraces of coarse sand deposited by the 1965 flood; stable bars formed by channel narrowing during periods of relatively high bed level (1973-1986); stable bars similarly formed during a recent period of low bed level (1987-1990); and the present channel bed (1991). Canonical correspondence analysis indicates a strong influence of elevation and litter cover, and lesser effects of vegetative cover, shade, and sediment particle size. However, the sum of all canonical eigenvalues explained by these factors is less than that explained by an analysis including only the dummy variables that define the five geomorphically determined age groups. The effect of age group is significant even when all five other environmental variables are specified as covariables. Therefore, the

  16. Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of Mechanisms from SGP ARM Data

    SciTech Connect

    Sumant Nigam

    2013-02-01

    Work reported included analysis of pentad (5 day) averaged data, proposal of a hypothesis concerning the key role of the Atlantic Multi-decadal Oscillation in 20th century drought and wet periods over the Great Plains, analysis of recurrent super-synoptic evolution of the Great Plains low-level jet, and study of pentad evolution of the 1988 drought and 1993 flood over the Great Plains from a NARR perspective on the atmospheric and terrestrial water balance.

  17. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  18. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage.

    PubMed

    Falke, Jeffrey A; Bailey, Larissa L; Fausch, Kurt D; Bestgen, Kevin R

    2012-04-01

    Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions. PMID:22690636

  19. Global Warming Potential of Long-Term Grazing Management Systems in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing lands in the northern Great Plains of North America are extensive, occupying over 50 Mha. Yet grazing land contributions to, or mitigation of, global warming potential (GWP) is largely unknown for the region. The objective of this study was to estimate GWP for three long-term (70 to 90 yr)...

  20. Soil erosion and organic matter variations for central Great Plains cropping systems under residue removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  1. Dataset: Soil erosion and organic matter for central Great Plains cropping systems under residue removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  2. Cover crop biomass production and water use in the central great plains under varying water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  3. Crop Diversification and Management System Influence Yield and Weeds in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available water, depleted soil quality, and weed competition are major constraints to dryland crop production in the northern Great Plains. We initiated a trial in 2004 comparing four crop rotations, with each rotational component in a two-by-two matrix of tillage (conventional vs. zero tillage) an...

  4. Genetic Improvement in Winter Wheat Yields in the Great Plains of North America, 1959-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data from USDA-coordinated winter wheat regional performance nurseries collected over the time period 1959-2008 were used to estimate genetic gain (loss) in grain yield, grain volume weight, days to heading, and plant height in winter wheats (Triticum aestivum L.) adapted to the Great Plains. In bo...

  5. Circular buffer strips in center pivot irrigation for multiple benefits in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ogallala Aquifer has converted the Southern Great Plains from a dust bowl to a highly productive agricultural region in the US. However, over exploitation of the aquifer is threatening sustainability of irrigated agriculture in the region. Partial pivots, where high water using conventional crop...

  6. Black Enclaves of Violence: Race and Homicide in Great Plains Cities, 1890-1920

    ERIC Educational Resources Information Center

    McKanna, Clare V., Jr.

    2003-01-01

    The author examines interracial homicides in the early twentieth century in three Great Plains cities: Coffeyville, Kansas; Topeka, Kansas; and Omaha, Nebraska. Railroads attracted hundreds of young blacks searching for steady employment. Alcohol played an important role in violence levels as did the availability of cheap and handguns, and certain…

  7. Ancient Way in a New Land: Benedictine Education in the Great Plains

    ERIC Educational Resources Information Center

    Frigge, Marielle

    2003-01-01

    Benedictine men and women brought with them centuries of experience as learners and teachers, and they shared their educative way of life as well as their schools with Native peoples and European immigrants. In turn, the land and peoples of the Great Plains have contributed to the evolution of Benedictine monastic life in North America.

  8. Cover crops can affect subsequent wheat yield in the central great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production systems in the water-limited environment of the semi-arid central Great Plains may not have potential to profitably use cover crops because of lowered subsequent wheat (Triticum asestivum L.) yields following the cover crop. Cover crop mixtures have reportedly shown less yield-reduci...

  9. Inmigrants to the Northern Great Plains: Survey Results from Nebraska and North Dakota.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Cordes, Sam; Sell, Randall S.; Allen, John C.; Filkins, Rebecca

    2000-01-01

    A study of characteristics and motives of migrants to the Northern Great Plains surveyed 1,590 new residents in Nebraska and North Dakota. New arrivals were younger and had higher educational levels than existing residents. Most often cited reasons for moving were desire to be closer to relatives, safety concerns, and quality of the natural…

  10. SELECTING LEAST-DISTURBED SURVEY SITES FOR GREAT PLAINS STREAMS AND RIVERS

    EPA Science Inventory

    True reference condition probably does not exist for streams in highly utilized regions such as the Great Plains. Selecting least-disturbed sites for large regions is confounded by the association between human uses and natural gradients, and by multiple kinds of disturbance. U...

  11. TOWARDS A VERIFIABLE AMMONIA EMISSIONS INVENTORY FOR CATTLE FEEDLOTS IN THE GREAT PLAINS

    EPA Science Inventory

    Collectively, beef cattle feedlots in the Great Plains may be the nation’s single largest source of atmospheric ammonia. Unfortunately, the large uncertainty around these emissions not only affects the U.S. ammonia inventory, but also undermines attempts to understand and miti...

  12. Water use and yield of cotton grown in four Great Plains soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of earlier maturing and cool temperature tolerant varieties of cotton (Gossypium hirsutum L.) has allowed cotton production to expand northward in the US Great Plains to regions with shorter, cooler growing seasons. The expansion of the drought tolerant cotton into these regions as ...

  13. Early weaning in Northern Great Plains beef cattle production systems: II. Development of replacement heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr study was conducted to evaluate effects of weaning heifer calves early (approx. 80-d) or at the normal (approx. 215-d) weaning age on BW gain to 215-d, subsequent BW gain, luteal activity, and pregnancy rate in two herds located in the Northern Great Plains. In exp. 1 and 2, heifer calves fr...

  14. But What Is There to See? An Exploration of a Great Plains Aesthetic

    ERIC Educational Resources Information Center

    Tangney, ShaunAnne

    2004-01-01

    In the fall of 2001 I taught a beginning college composition course at Minot State University, a small state university located in the northwestern quadrant of North Dakota. It is typical of such courses to include a fair amount of reading, and one of the texts I assigned was Ian Frazier's "Great Plains". The book is a travelogue that Frazier…

  15. Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...

  16. Developing the 18th indicator for interpreting indicators of rangeland health on Northern Great Plains rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National Resources Inventory (NRI) resource assessment report shows little to no departure on Rangeland Health for most Northern Great Plains Rangelands. This information is supported by Interpreting Indicators of Rangeland Health (IIRH) data collected at local to regional scales. There is however a...

  17. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  18. Adaptation of Pulse Crops to the Changing Climate of the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate over the northern Great Plains has generally warmed over the last 60 yr. The rate of warming has varied temporally and spatially, confounding trend analysis for climate indicators such as increased length of the growing season. Change in precipitation has been even more variable. Despite thi...

  19. Child Labor in the Early Sugar Beet Industry in the Great Plains, 1890-1920

    ERIC Educational Resources Information Center

    Lyons-Barrett, Mary

    2005-01-01

    Children working in agriculture have always been a part of the rural culture and work ethos of the United States, especially on the Great Plains. Many teenagers still detassel corn or walk the beans in the summer months to earn spending money or money for college. But what about the children who work as migrant laborers in commercialized…

  20. Skip-row Corn and Sorghum in the West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skip-row planting of corn and sorghum has recently developed as a strategy for mitigating drought in the dryland regions of the western Central Great Plains. Here we compare 16 site-years of no-till feed grain yields when planted skip-row and when planted conventionally in Eastern Colorado and Weste...

  1. Simulating Alternative Dryland Rotational Cropping Systems in the Central Great Plains with RZWQM2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term crop rotation effects on crop water use and yield have been investigated in the Central Great Plains since the 1990s. System models are needed to synthesize these long-term results for making management decisions and for transferring localized data to other conditions. The objectives of th...

  2. Potential Climate Change Effects on Warm-Season Livestock Production in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate changes suggested by some global circulation models (GCM) will impact livestock production systems in the Great Plains region of the United States. Production/response models for growing swine and beef cattle, and milk-producing dairy cattle, were developed based on summary information conta...

  3. Weather pattern climatology of the Great Plains and the related wind regime

    SciTech Connect

    Barchet, W.R.

    1982-11-01

    The meteorology of the Great Plains can be described as a constant progression of air masses, fronts and cyclonic storm systems. Each of these meteorological conditions can be characterized by identifiable isobaric and related weather parameter patterns. Nine such patterns have been defined to type the weather patterns in the Great Plains. Time series of weather pattern types were produced for 62 stations on the Great Plains. Statistical analyses of these time series produced annual and seasonal frequencies of occurrence of the weather pattern types. Maps of the annual and seasonal frequency of occurrence of weather pattern type are presented for the Great Plains. Persistence and alternation frequencies match what is expected for traveling temperate latitude cyclones, anticyclones and fronts. The wind regime for stations at which the anemometer height and location was constant (and known) for a minimum of three consecutive years was stratified by weather pattern type. Statistical analyses were made to show the response of the wind to the large-scale distribution of air pressure associated with a weather pattern type. The response of the wind to the weather pattern is a site-specific result of the interaction of the large-scale meteorology with local terrain, surface roughness and atmospheric stability. Mean wind speed discriminates between pairs of weather pattern types with better than 75% confidence for more than two-thirds of the possible pairs of weather pattern types.

  4. Evidence for Wind-Driven Rain Erosion on Sunflower Stubble Land in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-crop production systems in the northern Great Plains have undergone species diversification to include those with non-durable residues. To assess hazards when lands with such crops are tilled or fallowed, a wind erosion study was established in central North Dakota on silt loam soil (Haplustoll...

  5. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  6. Identifying Winter Forage Triticale (X Triticosecale Wittmack) Strains for the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticale (X Triticosecale Wittmack), a human-made crop, is mainly used as a forage crop in the central Great Plains. A successful triticale cultivar should have high forage yield with good quality, and also high grain yield so the seed can be economically produced. Hence, the purpose of this study...

  7. IMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We exam...

  8. IIMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examin...

  9. Skip-Row Planting as a Drought Avoidance Strategy in the West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Great Plains Region is a net importer of feed grains. This market provides an incentive to develop stable dryland corn and sorghum yields. The lack of adequate moisture during silking/pollen shed is a major limitation to dryland feed-grain production in the region. Here we investigate st...

  10. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  11. Grain yield and plant characteristics of corn hybrids in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply for crop use is the primary factor controlling corn (Zea mays L.) grain yield in the west-central Great Plains. With water supply varying as production systems range from dryland through irrigated, selecting hybrids for optimum yield in the anticipated water environment is vital for suc...

  12. Understanding Great Plains Urbanization through the Lens of South Dakota Townscapes

    ERIC Educational Resources Information Center

    Conzen, Michael P.

    2010-01-01

    Most towns were crucial to the initial colonization and economic development of the Great Plains. Many were, directly or indirectly, creatures of railroad corporate planning, owing their location as well as their physical layout to the townsite companies controlled by railroad officials. This article examines how these facts shaped the fundamental…

  13. The future of irrigation on the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Great Plains, soil and water conservation is being achieved in both dryland and irrigated agricultural systems, and increasingly in combinations of these systems. Limiting tillage has increased the retention of crop residues on the surface and has reduced the evaporative loss of water, making...

  14. Cotton water use and lint yield in four Great Plains Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of earlier maturing and cool temperature tolerant varieties of cotton (Gossypium hirsutum L.) has allowed cotton production to expand northward in the United States Great Plains to regions with shorter, cooler growing seasons. Cotton, as a substitute for the less drought tolerant ma...

  15. Reflectance based characterization of wheat cultivars for identifying drought tolerance in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. Southern Great Plains (SGP), drought stress is the single most important factor for reducing yield in winter wheat. Selection of drought tolerant wheat cultivars has been and will continue to be a critical strategy for wheat management under limited water conditions. Currently, yield is ...

  16. Cover crop water use and impacts on subsequent wheat yields in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been demonstrated to provide a wide array of benefits to soils in various regions of the United States, but their use has not been thoroughly tested in the semi-arid environment of the Central Great Plains. This article reports on the results of an experiment with the objectives of ...

  17. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  18. Simulating the production potential of dryland spring canola in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola (Brassica napus L.) has potential to be grown as dryland crop to diversify the winter wheat (Triticum aestivum L.)-fallow production system of the semi-arid Central Great Plains. Extensive regional field studies have not been conducted under rainfed conditions to provide farmers, agricultural...

  19. Major advances of soil and water conservation in the U.S. Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Southern Great Plains comprise the broad expanse of prairie and steppe lands that lie east of the Rocky Mountains and cover parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas where semi-arid dryland crop production merges into rainfed farming. Except for exposed Pliocene alluvial st...

  20. National coal resource assessment: Fort Union coals of the Northern Rocky Mountains and Great Plains

    SciTech Connect

    Flores, R.M.; Bader, L.R.; Ellis, M.S. |

    1996-12-31

    The present investigation assesses geologic controls on the distribution, resource occurrence, and quality of the Paleocene Fort Union and equivalent coals in the northern Rocky Mountains and Great Plains. Results of this investigation will assist in predicting areas wit h high quality coals that will be available for development. Published products will include digital output and hard copy readily accessible for analysis and utilization.

  1. Restoration of Degraded/Eroded Soil under Different Management Practices in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmlands in the Central Great Plains Region (CGPR) have lost topsoil through wind and water erosion induced by tillage and poor soil management. These soils are now degraded with low soil quality and productivity. Productivity and quality of degraded/eroded soils can be restored using manure and i...

  2. Best Management Practices for Remediation/Restoration of Degraded Soils in the Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmlands in the Central Great Plains Region (CGPR) have lost topsoil through wind and water erosion induced by tillage and poor soil management (Wheat-fallow management). Productivity of degraded/eroded soils can be restored using organic amendment such as manure and improved crop and soil manageme...

  3. Remediation/Restoration of Degraded Soil to Improve Productivity In The Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality and productivity of some farmlands in the central Great Plains Region (CGPR) have been lost through wind and water erosion induced by tillage and poor soil management. Productivity of degraded/eroded soils can be restored using organic amendments such as manure and improved crop and soil...

  4. Cropping Intensity Impacts on Soil Aggregation and Carbon Sequestration in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The predominant cropping system in the Central Great Plains is conventional tillage (CT) winter wheat–summer fallow. We investigated the effect 15 yrs of variable cropping intensity, fallow frequency, and tillage (CT and no-till [NT]) had on soil organic C (SOC) sequestration, particulate organic ma...

  5. Greenhouse gas mitigation potential of dryland cropping systems in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Great Plains contain significant expanses of agricultural land dedicated to dryland cropping. Dryland cropping systems in the region that sequester soil organic carbon (SOC) and minimize nitrous oxide (N2O) emissions can serve to reduce the greenhouse gas (GHG) balance of U.S. agriculture....

  6. Resilience and vulnerability of beef cattle production in the southern great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate variability and periodic drought is a defining characteristic of the Southern Great Plains. Beef cattle production, based on a variety of crop, pasture, and native rangeland forages, is the most important economic commodity in this region and dominates the agricultural landscape. Press cov...

  7. Immigration to the Great Plains, 1865-1914: War, Politics, Technology, and Economic Development

    ERIC Educational Resources Information Center

    Garver, Bruce

    2011-01-01

    The advent and vast extent of immigration to the Great Plains states during the years 1865 to 1914 is perhaps best understood in light of the new international context that emerged during the 1860s in the aftermath of six large wars whose consequences included the enlargement of civil liberties, an acceleration of economic growth and technological…

  8. The Physics of Great Plains Drought, Its Predictability, and Its Changed Risk in a Warming World

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Livneh, B.

    2015-12-01

    The talk will examine the fundamental physics of Great Plains drought. The US Great Plains experienced a severe drought in 2012, symptoms of which included severe rainfall deficits and record setting high temperatures. An outstanding question is the relationship between the precipitation deficits and the heat wave, and further their mutual effects on soil moisture conditions. Land surface model simulations are presented to demonstrate the combined and separate effects of rainfall deficits and air temperature on soil moisture. The effects of antecedent conditions are also assessed, and implications for drought prediction are discussed. A further question to be addressed is the role of human-induced climate change on future Great Plains drought. Results are presented of the land surface responses to plausible scenarios for precipitation and temperature change. Applying an understanding of the fundamental physics of drought, we seek to better understand the sensitivity of deep soil moisture in a significantly warmer world that can inform discussions on risks for unprecedented future drought conditions in the Great Plains.

  9. Agricultural Producer Perceptions of Climate Change and Climate Education Needs for the Central Great Plains

    ERIC Educational Resources Information Center

    Hibbs, Amber Campbell; Kahl, Daniel; PytlikZillig, Lisa; Champion, Ben; Abdel-Monem, Tarik; Steffensmeier, Timothy; Rice, Charles W.; Hubbard, Kenneth

    2014-01-01

    The Central Great Plains Climate Education Partnership conducted focus groups throughout Kansas to gain a better understanding of farmer perceptions and attitudes towards climate change education. Results indicate concern about climatic changes, even if producers are unsure that "human caused climate change" is occurring. Participants…

  10. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  11. Growth and Quality of Perennial C3 Grasses in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring and fall gaps in forage production for systems utilizing winter wheat forage in the Southern Great Plains have led to an interest in additional resources such as C3 perennial grasses. We evaluated the potential of nine cool-season grass entries for forage production and quality through the fa...

  12. Growth and Quality of Cool-Season Perennial Grass Species in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annually planted winter wheat is the major cool-season livestock forage enterprise in a large part of the southern Great Plains and is a good complement to warm-season perennials. However, gaps in both fall and spring exist in the system. Cool-season perennial grasses that have origins in the Nort...

  13. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust prediction models describing vegetation and animal responses to stocking rate in North American Great Plains rangelands are lacking as across site comparisons are limited by different qualitative designations of light, moderate and heavy stocking. Comparisons of stocking rates across sites ca...

  14. 78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408) AGENCIES: Western Area... Service (Service), have, as joint lead agencies, prepared the Upper Great Plains Wind Energy Draft... wind energy development within Western's Upper Great Plains Customer Service Region (UGP Region),...

  15. Southwest USA Exhumation History Recorded Below the Great Unconformity

    NASA Astrophysics Data System (ADS)

    Heizler, M. T.; Karlstrom, K. E.

    2002-05-01

    The Southwestern USA Precambrian terranes preserve a long and variable exhumation history that can be tracked using thermochronological methods. This exhumation history is controlled on two interrelated scales. At first order, it is recognized that 1.7 to 1.4 Ga mid-crustal (10 km, 2-4 kbar) rocks were ultimately exhumed and reside below unconformities of variable age. In Arizona, Mesoproterozoic Apache Group and Neoproterozoic Supergroup sedimentary rocks lie directly on basement and thus indicate exhumation of some regions relatively soon following the 1.4 Ga events. In the Rocky Mountains of Colorado and the Rio Grande rift uplifts of New Mexico, basement is generally overlain by Cambrian to Mississippian strata. The unconformities are useful markers of net exhumation; however do not reveal a time-integrated path. Using published, and hundreds of new 40Ar/39Ar analyses of hornblende, muscovite, biotite and K-feldspar, and a growing U/Pb accessory mineral thermochronology database, we are extracting exhumation information with great detail. The thermochronological data continue to support the claim that relatively low net exhumation occurred following 1.7 to 1.6 Ga accretion of volcanic arc terranes to the southern margin of Laurentia. Mid-crustal (2-4 kbar) rocks stabilized soon after accretion, whereas in some regions like the Upper Granite Gorge, Grand Canyon deeper (6 kbar) metamorphic terranes decompressed to 3 kbar before stabilization. The cooling history of these mid-crustal rocks post 1.65 Ga remains somewhat unknown. Overall slow-cooling models (550 \\deg C to 300 \\deg C from 1.7 to 1.4 Ga) require high geothermal gradients in order to maintain 10 km deep rocks at high temperatures for 100's of Ma. Alternatively, isobaric cooling models to more normal geothermal gradients (i.e. 25 \\deg C/km) at ca. 1.65 Ga require later (1.4 Ga) thermal pulses and/or Mesoproterozoic vertical displacements to explain highly discordant thermochronological data. Either

  16. Spatial and Temporal Complexities of Current Great Plains Dunefield Chronological Data

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Johnson, W. C.

    2012-12-01

    The North American Great Plains span nearly 2.8 million km2, of which nearly half is mantled by aeolian sediments (loess deposits, sand sheets, and dunefields). Stratigraphies of these sediments contain a rich history of late-Quaternary climate change, in particular aeolian dunefields, which provide a record of drought. During arid conditions in the Great Plains, stabilizing vegetation is diminished, leaving dunefields susceptible to aeolian erosion; during periods of increased moisture, conversely, vegetation re-establishes and dunefields stabilize. Using radiometric dating techniques, researchers can extract from the stratigraphy of dunefields the timing of past activity, and, therefore, periods of past drought. To date, more than 50 chronologies, comprised of over 700 ages, have established a detailed record of past dunefield activity in the Great Plains. Despite this extensive dataset, correlating periods of past droughts across the region remains problematic, in large part due to the spatial and temporal limitations in the data. In this poster, we present a spatial and temporal synthesis of current Great Plains dunefield chronologies, followed by an analysis of the complexities of these data, in particular when used to determine periods of past drought. To illustrate these complexities, we present a bicentennial, 1 x 1 degree gridded model of dune activity (e.g., active, stable, no data) spanning the last 2000 years. Our model clearly illustrates gaps in spatial coverage and temporal biases of chronologies. To further highlight the complexities of using current Great Plains datasets as proxies for prehistoric drought, we compare a 2.5 x 2.5 degree gridded model of dune activity during the Medieval Climatic Anomaly (A.D. 1000-1400) and historic time (A.D. 1800-2000) to Palmer Drought Severity Index (PDSI)-reconstructed droughts for the same time intervals. In general, dunefield activity is in good agreement with PDSI-reconstructed drought, however, unlike tree

  17. Large-eddy simulation of flow over the Great Plains under stable atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Chow, F. K.

    2010-12-01

    The Great Plains in the central part of North America hosts enormous wind resources. One of the key meteorological features over the Great Plains is the frequent occurrence of nocturnal low-level jets under stably-stratified conditions. The flow speed up due to the formation of the low-level jets represents great wind power potential. In this study, large-eddy simulations (LES) will be performed over the site where the Cooperative Atmospheric-surface Exchange Study (CASES-99) field experiment took place. Atmospheric boundary layer (ABL) simulations driven by both strongly and weakly forced synoptic flows under stable atmospheric conditions will be investigated. While continuous turbulence is expected under strongly forced conditions, the weakly forced scenario is likely intermittent in nature, with occasional elevated turbulent bursts. The focus of this study includes vertical wind shear profiles, as well as turbulent statistics under stable conditions over the relatively flat, yet complex terrain. We will use an explicit filtering and reconstruction turbulence modeling LES approach. This approach has been proven advantageous in our previous work in terms of turbulence representation and agreement with similarity theory in neutral and stable atmospheric boundary layer flow over flat terrain. The dynamic reconstruction turbulence closure is capable of handling strong atmospheric stability, and predicting intermittent turbulence burst events in previous idealized simulations. This LES study ill provide detailed flow features under stable conditions over the Great Plains that can be valuable to the wind energy industry.

  18. Dynamics of Cultural Transmission in Native Americans of the High Great Plains

    PubMed Central

    Lycett, Stephen J.

    2014-01-01

    Culture is a phenomenon shared by all humans. Attempts to understand how dynamic factors affect the origin and distribution of cultural elements are, therefore, of interest to all humanity. As case studies go, understanding the distribution of cultural elements in Native American communities during the historical period of the Great Plains would seem a most challenging one. Famously, there is a mixture of powerful internal and external factors, creating-for a relatively brief period in time-a seemingly distinctive set of shared elements from a linguistically diverse set of peoples. This is known across the world as the “Great Plains culture.” Here, quantitative analyses show how different processes operated on two sets of cultural traits among nine High Plains groups. Moccasin decorations exhibit a pattern consistent with geographically-mediated between-group interaction. However, group variations in the religious ceremony of the Sun Dance also reveal evidence of purifying cultural selection associated with historical biases, dividing down ancient linguistic lines. The latter shows that while the conglomeration of “Plains culture” may have been a product of merging new ideas with old, combined with cultural interchange between groups, the details of what was accepted, rejected or elaborated in each case reflected preexisting ideological biases. Although culture may sometimes be a “melting pot,” the analyses show that even in highly fluid situations, cultural mosaics may be indirectly shaped by historical factors that are not always obvious. PMID:25372277

  19. Dynamics of cultural transmission in Native Americans of the high Great Plains.

    PubMed

    Lycett, Stephen J

    2014-01-01

    Culture is a phenomenon shared by all humans. Attempts to understand how dynamic factors affect the origin and distribution of cultural elements are, therefore, of interest to all humanity. As case studies go, understanding the distribution of cultural elements in Native American communities during the historical period of the Great Plains would seem a most challenging one. Famously, there is a mixture of powerful internal and external factors, creating-for a relatively brief period in time-a seemingly distinctive set of shared elements from a linguistically diverse set of peoples. This is known across the world as the "Great Plains culture." Here, quantitative analyses show how different processes operated on two sets of cultural traits among nine High Plains groups. Moccasin decorations exhibit a pattern consistent with geographically-mediated between-group interaction. However, group variations in the religious ceremony of the Sun Dance also reveal evidence of purifying cultural selection associated with historical biases, dividing down ancient linguistic lines. The latter shows that while the conglomeration of "Plains culture" may have been a product of merging new ideas with old, combined with cultural interchange between groups, the details of what was accepted, rejected or elaborated in each case reflected preexisting ideological biases. Although culture may sometimes be a "melting pot," the analyses show that even in highly fluid situations, cultural mosaics may be indirectly shaped by historical factors that are not always obvious. PMID:25372277

  20. Habitat relationships with fish assemblages in minimally disturbed Great Plains regions

    USGS Publications Warehouse

    Fischer, John R.; Paukert, C.P.

    2008-01-01

    Effects of local environmental influences on the structure of fish assemblages were evaluated from 159 sites in two regions of the Great Plains with limited anthropogenic disturbance. These regions offered an opportunity to evaluate the structure and variation of streams and fish assemblages within the Great Plains. We used canonical correspondence analyses to determine the influence of environmental conditions on species abundances, species occurrences and assemblage characteristics. Analysis of regions separately indicated that similar environmental factors structured streams and fish assemblages, despite differences in environmental conditions and species composition between regions. Variance in fish abundance and assemblage characteristics from both regions was best explained by metrics of stream size and associated metrics (width, depth, conductivity and instream cover). Our results provide a framework and reference for conditions and assemblage structure in North American prairie streams.

  1. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  2. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.

    1973-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.

  3. Simulation of the great plains low-level jet and associated clouds by general circulation models

    SciTech Connect

    Ghan, S.J.; Bian, X.; Corsetti, L.

    1996-07-01

    The low-level jet frequently observed in the Great Plains of the United States forms preferentially at night and apparently influences the timing of the thunderstorms in the region. The authors have found that both the European Centre for Medium-Range Weather Forecasts general circulation model and the National Center for Atmospheric Research Community Climate Model simulate the low-level jet rather well, although the spatial distribution of the jet frequency simulated by the two GCM`s differ considerably. Sensitivity experiments have demonstrated that the simulated low-level jet is surprisingly robust, with similar simulations at much coarser horizontal and vertical resolutions. However, both GCM`s fail to simulate the observed relationship between clouds and the low-level jet. The pronounced nocturnal maximum in thunderstorm frequency associated with the low-level jet is not simulated well by either GCM, with only weak evidence of a nocturnal maximum in the Great Plains. 36 refs., 20 figs.

  4. On the Micrometeorology of the Southern Great Plains 1: Legacy Relationships Revisited

    NASA Astrophysics Data System (ADS)

    Hicks, B. B.; Pendergrass, W. R.; Vogel, C. A.; Keener, R. N.; Leyton, S. M.

    2014-06-01

    Data from a 32-m tower located near Ocotillo, Texas (N; W), provide an opportunity to examine the relevance of standard micrometeorological flux-gradient formulations to observations made in an area characteristic of a large portion of the central USA, within the Southern Great Plains. Comparison with data obtained at a greater height (80 m) reveals that the velocity distributions change substantially between the lower set of observations and the upper, with the former being constrained at the low wind-speed end. In the early morning, sensible heat-flux divergence correlates well with the measured rate of change of temperature with time within the surface layer of air sampled by the tower, but this association disappears when the depth of the mixed layer extends beyond the reach of the tower. As in the case of all previous examinations of flux-gradient relationships, the overall dependence of the dimensionless wind and temperature gradients and on stability is characterized by considerable scatter, with the familiar relationships best describing the average. For conditions of stable stratification, there is indeed the expected close proximity of and , however, describing either or in terms of the classical stability index (where is the height above the zero plane and L is the Obukhov length scale of turbulence) then appears questionable because the dependence of on the measured sensible heat flux is not always single-valued, especially near the surface. For unstable stratification, support is found for the conclusions of early workers that free convection initiates at about , and that the general behaviour is then compatible with the concept of a moving air mass from which momentum is continuously extracted, embedded within freely convective cells. It is concluded that legacy descriptions of the relationships between fluxes and gradients apply to averages that might occur rarely, that a dominant factor is likely the chaotic nature of the processes that control the

  5. Kansas environmental and resource study: A Great Plains model, tasks 1-6

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1972-01-01

    There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.

  6. Are Droughts in the United States Great Plains Predictable on Seasonal and Longer Time Scales?

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, M.; Pegion, P.; Kistler, M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The United States Great Plains has experienced numerous episodes of unusually dry conditions lasting anywhere from months to several years, In this presentation, we will examine the predictability of such episodes and the physical mechanisms controlling the variability of the summer climate of the continental United States. The analysis is based on ensembles of multi-year simulations and seasonal hindcasts generated with the NASA Seasonal to-Interannual Prediction Project (NSIPP-1) General Circulation Model.

  7. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  8. Correlation of spacecraft passive microwave system data with soil moisture indices (API). [great plains corridor

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Mcfarland, M. J.; Theis, S.; Richter, J. G.

    1981-01-01

    Electrical scanning microwave radiometer brightness temperature, meteorological data, climatological data, and winter wheat crop information were used to estimate that soil moisture content in the Great Plains region. Results over the predominant winter wheat areas indicate that the best potential to infer soil moisture occurs during fall and spring. These periods encompass the growth stages when soil moisture is most important to winter wheat yield. Other significant results are reported.

  9. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, D.H.; Euliss, B.R.

    2001-01-01

    During 1997-1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 i?? 186.4 SE, whereas inactive colonies occupied 560.4 i?? 89.2 km2. These data represent the 1st quantitative assessment of prairie-dog colonies in the northern Great Plains. The survey dispels popular notions that millions of square kilometers of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts

  10. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, Mark A.; Auch, Roger F.; Karstensen, Krista A.; Sayler, Kristi L.; Taylor, Janis L.; Loveland, Thomas R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km x 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors.

  11. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, M.A.; Auch, R.F.; Karstensen, K.A.; Sayler, K.L.; Taylor, J.L.; Loveland, T.R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km ?? 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human-environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors. ?? 2011.

  12. The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.; Flanagan, L. B.; Hanan, N. P.; Litvak, M. E.; Suyker, A. E.

    2016-02-01

    In the Great Plains, grassland carbon dynamics differ across broad gradients of precipitation and temperature, yet finer-scale variation in these variables may also affect grassland processes. Despite the importance of grasslands, there is little information on how fine-scale relationships compare between them regionally. We compared grassland C exchanges, energy partitioning and precipitation variability in eight sites in the eastern and western Great Plains using eddy covariance and meteorological data. During our study, both eastern and western grasslands varied between an average net carbon sink and a net source. Eastern grasslands had a moderate vapor pressure deficit (VPD = 0.95 kPa) and high growing season gross primary productivity (GPP = 1010 ± 218 g C m-2 yr-1). Western grasslands had a growing season with higher VPD (1.43 kPa) and lower GPP (360 ± 127 g C m-2 yr-1). Western grasslands were sensitive to precipitation at daily timescales, whereas eastern grasslands were sensitive at monthly and seasonal timescales. Our results support the expectation that C exchanges in these grasslands differ as a result of varying precipitation regimes. Because eastern grasslands are less influenced by short-term variability in rainfall than western grasslands, the effects of precipitation change are likely to be more predictable in eastern grasslands because the timescales of variability that must be resolved are relatively longer. We postulate increasing regional heterogeneity in grassland C exchanges in the Great Plains in coming decades.

  13. Climatic Forcing of Wetland Landscape Connectivity in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Wright, C.

    2012-12-01

    Conservation biologists have recognized an urgent need to manage landscapes in a way that promotes biological adaptation to climate change. Of particular importance is the ability of species to adjust their ranges as climatic shifts occur. Habitat fragmentation complicates such an adjustment. We are using Great Plains wetlands as a general model for studying linkages between habitat connectivity and climatic forcing. Great Plains wetlands, including playas and prairie potholes, are sensitive to intra- and inter-seasonal variation in precipitation and evaporation. As a result, both the number and spatial configuration of wetlands containing surface water varies dramatically over short timespans. Additionally, land use heterogeneity within the intervening matrix affects dispersal between wetlands. We use graph theory to assess effects of this variability on habitat connectivity across a range of spatial scales. Here we will present results from both remote-sensing and modeling studies, focusing on the historical range-of-variability of habitat connectivity in the Great Plains and projecting future connectivity under climate change.

  14. Interannual Variability in Net Ecosystem Exchange in United States Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wylie, Bruce; Ji, Lei; Gilmanov, Tagir; Howard, Danny

    2010-05-01

    The grasslands in the United States Great Plains occupy about 1.5 million km2 and span considerable moisture and temperature gradients. The grasslands are characterized by different photosynthetic pathways, from C3 dominance in the north to C4 dominance in the south. The contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for these extensive and diverse grassland ecosystems and local variances in climate variability, land use changes, and varying land management practices. There are limited studies on the seasonal, spatial, and interannual variabilities in carbon exchange as well as responses to climatic change across the Great Plains. Our objective was to quantify how the grassland ecosystems will respond to climate under a variety of environmental conditions. Net ecosystem exchange (NEE) was measured at 15 flux towers distributed throughout the Great Plains. These sites represent the wide spatial, ecological, and climatological ranges of grasslands found in this region. We developed a remote sensing-based piecewise regression (PWR) model to estimate grassland carbon fluxes from 2000 to 2008 using flux-tower data and remotely sensed data (250-m resolution) input at 7-day intervals. The model integrated MODIS-derived vegetation indices, weather data, and phenological parameters with the observed NEE data. The correlation coefficient (r) for the independent tests between tower-measured NEE and PWR-estimated NEE were 0.61 to 0.98 for the individual tower sites withheld and 0.81 to 0.92 for the individual years withheld. We mapped 7-day interval NEE at 250-m resolution for the years 2000 to 2008 and evaluated the interannual variability of NEE and its response to climatic variation. NEE varied in space and time across the 9 years (from 0.3 in 2002 to 47.7 g C • m-2 • yr-1 in 2005) with an average annual NEE of 24 ± 14 g C • m-2 • yr-1 and a cumulative flux of 214 g C • m-2. On average, the

  15. Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, fourth quarter, 1983. [Great Plains, Mercer County, North Dakota

    SciTech Connect

    Not Available

    1983-01-01

    Activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Gasification Plant: detailed engineering in the Contractors' home office was completed in the fourth quarter. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the fourth quarter. Although the Plant's construction activities are still slightly behind schedule, it is currently forecasted that the construction schedule will be regained by the end of June 1984. Start-Up operations are continuing at a rapid pace. The current emphasis is on system turnover and commissioning activities. The environmental permitting for the construction phase is complete. Freedom Mine: mine development activities remain on schedule.

  16. SuomiNet efforts in the U. S. Southern Great Plains.

    SciTech Connect

    Peppler, R. A.; Carr, F. H.; Ahern, J. L.; Liljegren, J. C.; Eagan, R. C.; Smith, J. J.

    2000-10-10

    SuomiNet provides great promise for advancing research at the University of Oklahoma in numerical weather prediction and plate tectonics studies, and will further help the U.S. DOE ARM (Atmospheric Radiation Measurement) Program better specify the measurement of water vapor over the Southern Great Plains. The SuomiNet program is also allowing ARM to upgrade its data collection infrastructure to provide more reliable and near real-time observations not only to SuomiNet but also to other researchers.

  17. Hydrologic characteristics of soils in the High Plains, northern Great Plains, and Central Texas Carbonates Regional Aquifer Systems

    USGS Publications Warehouse

    Dugan, Jack T.; Hobbs, Ryne D.; Ihm, Laurie A.

    1990-01-01

    Certain physical characteristics of soils, including permeability, available water capacity, thickness, and topographic position, have a measurable effect on the hydrology of an area. These characteristics control the rate at which precipitation infiltrates or is transmitted through the soil, and thus they have an important role in determining the rates of actual evapotranspiration (consumptive water use), groundwater recharge, and surface runoff. In studies of groundwater hydrology, it is useful to differentiate soils spatially according to their physical characteristics and to assign values that indicate their hydrologic responses.The principal purpose of this report is to describe the relation between the hydrologic characteristics of the soils in the study area and those environmental factors that affect the development and distribution of the soils. This objective will be achieved by (1) defining both qualitatively and quantitatively those soil characteristics that affect hydrology, and (2) classifying and delineating the boundaries of the soils in the study area according to these hydrologic characteristics.The study area includes the High Plains, Northern Great Plains, the Central Texas Carbonates, and parts of the Central Midwest Regional Aquifer Systems as described by the U.S. Geological Survey Regional Aquifer-System Analysis (RASA) Program (Sun, 1986, p.5and Sun, personal commun., June 1985) and shown in figures 1 through 5. The spatial patterns of the soils classified according to their quantifiable hydrologic characteristics will subsequently serve as an integral component in the analysis of actual evapotranspiration (consumptive water use), consumptive irrigation requirements, and potential ground-water recharge of the study area.The classification system used to describe the soils in this report is compatible with that of Dugan (1986). Dugan described the same characteristics of soils that are immediately underlain by principal aquifers of

  18. Farmers, Ranchers, and the Railroad: The Evolution of Fence Law in the Great Plains, 1865-1900

    ERIC Educational Resources Information Center

    Kawashima, Yasuhide

    2010-01-01

    This article is divided into three parts. The first examines specific fencing policies in Kansas, Nebraska, and other Plains states, highlighting the transformation from the "fence-out" to "fence-in" (herd laws) policies. The second part discusses the coming of the railroads to the Great Plains and the farmers and the ranchers as beneficiaries who…

  19. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  20. Transmission of biology and culture among post-contact Native Americans on the western Great Plains.

    PubMed

    Lycett, Stephen J; von Cramon-Taubadel, Noreen

    2016-01-01

    The transmission of genes and culture between human populations has major implications for understanding potential correlations between history, biological, and cultural variation. Understanding such dynamics in 19th century, post-contact Native Americans on the western Great Plains is especially challenging given passage of time, complexity of known dynamics, and difficulties of determining genetic patterns in historical populations for whom, even today, genetic data for their descendants are rare. Here, biometric data collected under the direction of Franz Boas from communities penecontemporaneous with the classic bison-hunting societies, were used as a proxy for genetic variation and analyzed together with cultural data. We show that both gene flow and "culture flow" among populations on the High Plains were mediated by geography, fitting a model of isolation-by-distance. Moreover, demographic and cultural exchange among these communities largely overrode the visible signal of the prior millennia of cultural and genetic histories of these populations. PMID:27514818

  1. USGS Historical, Current, and Projected Future Land Cover Mapping for the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Sohl, T. L.; Gallant, A.; Sayler, K. L.

    2008-12-01

    Land cover in the Northern Great Plains has changed considerably in the last several decades. While a significant proportion of the landscape has been cultivated for over one hundred years, the intensity of cultivation, crop type, and management practices have changed in response to shifts in government policy, commodity prices, access to water, and technological advances. Changes in land cover impact a wide variety of ecosystem processes and services, including carbon balances, climate, hydrology and water quality, and biodiversity. A consistent record of historical land cover is required to understand relations between land- cover change and these ecological processes, while projections of future land cover are needed for planning and potential mitigation efforts. Several U.S. Geological Survey efforts have been completed or are ongoing in the Northern Great Plains, resulting in the compilation of an unmatched record of historical, current, and future land-cover information for the region. The USGS Land Cover Trends project is using the historical record of Landsat imagery and a robust sampling approach to examine the rates, causes, and consequences of contemporary (1973-2000) land-cover change on an ecoregional basis for the conterminous United States. Results from completed Trends analyses for Great Plains ecoregions revealed changes in the proportion and distribution of grassland/shrubland and agricultural uses during the study period; Some areas exhibited considerable loss in cultivated land after initiation of the Conservation Reserve Program (CRP) in the mid 1980s. In recent years (post-2000), agricultural commodity prices have skyrocketed as food and energy compete for use of agricultural products, which in conjunction with the expiration of many CRP contracts, has led to expansion of cultivated land. In the coming decades, calls for U.S. energy independence and the development of biofuels from cellulosic stock could result in a transformation of the Great

  2. Cowbird parasitism in grassland and cropland in the northern Great Plains

    USGS Publications Warehouse

    Koford, Rolf R.; Bowen, B.S.; Lokemoen, J.T.; Kruse, A.D.

    2000-01-01

    The landscape of the Great Plains has been greatly altered by human activities in the past century, and several grassland passerines have experienced significant population declines in recent decades. We explore here whether brood parasitism by Brown-headed Cowbirds, which are abundant in the Great Plains, has contributed to these declines. We measured the frequency of cowbird parasitism of passerine species in seeded grassland, natural grassland, and cropland in studies conducted in North Dakota during 1981-1993. The proportions of parasitized nests were 25%, 34%, and 39% in seeded grassland, natural grassland, and cropland, respectively. We speculate that much of the variation in parasitism rate among these habitats is related to the local abundance of cowbirds, to nest visibility, and to the presence of suitable perches for female cowbirds. Local abundance of cowbirds may be high in areas with cattle pastures. Nests and nesting behavior are probably more visible to female cowbirds in cropland than in grassland. Female cowbirds may use shrubs as perches while searching for host nests, and shrubs are more common in natural grasslands than in the other habitats we examined. Experimental work on the determinants of cowbird abundance in grasslands is needed.

  3. Cowbird parasitism in grassland and cropland in the northern Great Plains: Chapter 27

    USGS Publications Warehouse

    Koford, Rolf R.; Bowen, B.S.; Lokemoen, John T.; Kruse, Arnold D.

    2000-01-01

    The landscape of the Great Plains has been greatly altered by human activities in the past century, and several grassland passerines have experienced significant population declines in recent decades. We explore here whether brood parasitism by Brown-headed Cowbirds, which are abundant in the Great Plains, has contributed to these declines. We measured the frequency of cowbird parasitism of passerine species in seeded grassland, natural grassland, and cropland in studies conducted in North Dakota during 1981-1993. The proportions of parasitized nests were 25%, 34%, and 39% in seeded grassland, natural grassland, and cropland, respectively. We speculate that much of the variation in parasitism rate among these habitats is related to the local abundance of cowbirds, to nest visibility, and to the presence of suitable perches for female cowbirds. Local abundance of cowbirds may be high in areas with cattle pastures. Nests and nesting behavior are probably more visible to female cowbirds in cropland than in grassland. Female cowbirds may use shrubs as perches while searching for host nests, and shrubs are more common in natural grasslands than in the other habitats we examined. Experimental work on the determinants of cowbird abundance in grasslands is needed.

  4. Inventory methods for trees in nonforest areas in the Great Plains States.

    PubMed

    Lister, Andrew J; Scott, Charles T; Rasmussen, Steven

    2012-04-01

    The US Forest Service's Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in urban areas, in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g., shelterbelts), or in riparian areas. In the Great Plains States, little is known about the tree resource in these noninventoried, nonforest areas, and there is a great deal of concern about the potential impact of invasive pests, such as the emerald ash borer. To address this knowledge gap, FIA's National Inventory and Monitoring Applications Center has partnered with state cooperators and others in a project called the Great Plains Initiative to design and implement an inventory of trees in nonforest areas. The goal of the inventory is to characterize the nonforest tree resource using methods compatible with those of FIA so a holistic understanding of the resource can be obtained by integrating the two surveys. The goal of this paper is to describe the process of designing and implementing the survey, including plot and sample design, and to present some example results from a reporting tool we developed. PMID:21713500

  5. Evidence of Late-Holocene floods in the central Great Plains

    SciTech Connect

    May, D.W. . Dept. of Geography)

    1992-01-01

    From southwestern Kansas to northeastern Nebraska alluvial studies are revealing stratigraphic and morphological evidence of two brief periods of large-magnitude floods in the central Great Plains during the past 2,500 years. Evidence for these floods consists of deeply-scoured paleochannels, coarse-textured point-bar deposits overlying fine-grained deposits, soils on former floodplains that are buried by alluvium, and fluvial terraces. Wood and bone collagen in several deeply-scoured paleochannels date to about 2,300--2,000 yr B.P. Modest incision and floodplain reconstruction at this time is evident from both maps of fluvial landforms and C-14-dated stratigraphic sections in both large and small basins. Sediments near the base and top of inset gully fills in both trenched and untrenched tributary valleys to Great Plains rivers date to about 2,000 yr B.P. A second episode of large floods in the central Great Plains occurred about 1,300--850 yr B.P. Throughout most valleys a buried soil that developed in alluvium occurs from 50 cm to 1.0 m below terraces. Recently, stratified point-bar deposits beneath a low terrace in a small (9.6 km[sup 2]) basin in east-central Nebraska were exposed and studied. Crossbedded, gravelly sand strata alternative with massive, dark, silty strata. The C-14-dated section indicates that multiple floods occurred between 1,250 and 850 yr B.P. Such widespread evidence of flooding about 2,300--2,000 yr B.P. and again 1,250--850 yr B.P. attests to regional, and probably, global climate changes at these times. Discontinuities in the alluvial record have previously been recognized at 2,000 and 1,200 yr B.P. Furthermore, a discontinuity in the pollen record at 850 yr B.P. has long been recognized.

  6. The hydrology and hydrometeorology of extreme floods in the Great Plains of Eastern Nebraska

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Smith, James A.; Baeck, Mary Lynn

    The Great Plains of eastern Nebraska occupy a distinctive hydroclimatological niche, characterized by a high frequency of organized thunderstorm systems. A consequence of the hydroclimatology of these systems is a sharp seasonal peak in the regional flood frequency in late June. Pebble Creek and Maple Creek are adjacent drainage basins in the Great Plains of Nebraska with drainage areas of 528 and 1165 km2, respectively. The hydrometeorological and hydrologic controls of extreme floods are examined through analyses of a series of five major flood events that occurred in these catchments during the warm season of 1996. Particular attention is given to two storm systems. The 20-21 June flood event was produced by a series of tornadic supercell thunderstorms which tracked over Pebble Creek. The 4-5 August 1996 event, which resulted in record flood peaks in both Pebble Creek and Maple Creek, was produced by a system of multicellular thunderstorms. Analyses of the structure, motion and evolution of these two storm systems provide a conceptual framework for interpreting hydrometeorological controls of scale-dependent flood response. Hydrometeorological analyses are based on both volume scan WSR-88D reflectivity observations from the Omaha, Nebraska radar and composite reflectivity observations from the WSR-88D radar network. Analyses of composite reflectivity observations for the US east of the Rocky Mountains for the 4-year period from 1996 to 1999 are used to place the scale-dependent flood response of the Great Plains within a broader hydroclimatological context. Discharge data for Maple Creek and Pebble Creek, at 15 min time scale, serve as the basis for stream flow analyses. The striking contrasts in flood response between Maple Creek and Pebble Creek are related to contrasts in drainage network structure, infiltration properties and flood wave attenuation. The scale-dependent flood response of these catchments is analyzed in terms of the space-time variability of

  7. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  8. Expansion of Juniperus virginiana L. in the Great Plains: Changes in soil organic carbon dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Dixie L.; Johnson, Loretta C.

    2003-06-01

    Woody encroachment by Juniperus virginiana into Great Plains grasslands allowed us to answer: Does changing the type of plant input to soils alter soil organic carbon (SOC) distribution or soil carbon (C) storage? The answer is critical because woody encroachment may alter C cycling over millions of hectares in the Great Plains and Midwest. We predicted that (1) forest SOC would become concentrated in shallow soil layers compared to SOC distribution in grassland, (2) woody expansion would increase soil C storage, and (3) forest C would be apparent in the larger soil organic matter fractions. Using δ13C signatures of SOC, 1/5 of the C from 0 to 25 cm in juniper forest soils was derived from C3 juniper trees. Forest C3 input occurred primarily in shallow surface layers: Forest soils developed over former C4 prairie contained 42% C3-SOC from 0 to 2.5 cm depth, and decreased to 6% at 25 cm. Isotopic analysis of SOC size fractions revealed that at 0-2.5 cm, the forest soil fraction >212 μm was -25.7‰. The fraction <2 μm had a 13C isotope ratio of -17.0‰ at the same depth, reflecting the predominance of residual prairie C in the smallest fraction. In spite of fast dynamics of soil C turnover, there was no net change in SOC amounts over 40-60 years (cumulative mineral and organic SOC in forest, 8782 g C/m2 ± 810; in grassland, 7699 ± 1004). Thus as junipers expand into mesic areas of the Great Plains, juniper forests will provide little additional soil C storage.

  9. Hydrogeologic considerations for an interstate ground-water compact on the Madison aquifer, northern Great Plains

    USGS Publications Warehouse

    Konikow, Leonard F.

    1978-01-01

    The development of an interstate ground-water compact for the Madison aquifer in the Northern Great Plains may provide a framework to allocate equitably this large ground-water resource while avoiding possible future interstate legal conflicts. However, some technical problems will have to be resolved first. A compact designed to regulate or to allocate the available ground water will have to be written in very precise, legally acceptable definitions. The required definitions may infer a degree of measurement accuracy that cannot be technically or economically provided. Therefore, a trade off may be required between preserving natural conditions and allowing beneficial use of the ground-water resource.

  10. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J. C.

    1974-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data.

  11. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  12. Transitioning from Corn to Switchgrass in the US Great Plains: Implications for Climate and Water Resource

    NASA Astrophysics Data System (ADS)

    Oglesby, R. J.; Rowe, C. M.; Erickson, D. J.

    2007-12-01

    Much attention has been paid to the use of corn as a biofuel, in large part because corn is already grown throughout much of the US and technology is in place to convert it to ethanol. Increasingly, however, it is recognized that other types of vegetation are likely to be more efficient producers of biofuel. In particular, switchgrass (the primary component of prairie long grass) may be a very efficient producer in the Great Plains (as well as portions of the Midwest and Southeast), where it is an indigenous species. The dominant agricultural planting in the Great Plains at present is corn. A transition from corn to switchgrass may have numerous benefits, both because it may be a better source of biofuels, and because in the water-scarce Great Plains it would likely make better use of available water resources. In addition to these positive benefits, however, there may be effects on the climate of this region that can be deleterious. While switchgrass, with its deep and extensive root system may be less subject to drought, and less needing of irrigation, than corn, it also cycles much less water during its growing season. This reduction in water input to the atmosphere means less water available for local and regional precipitation, and also dramatically affects the surface energy balance, resulting in more sensible and longwave heating of the atmosphere. This may cause a significant increase in surface air temperature and stabilization of the atmosphere, leading to a reduction in precipitation as well as increased evaporative potential (both of which would help negate any increased water efficiency of switchgrass). We use the MM5 and WRF regional climate models to investigate these effects over the Great Plains. Simulations were made assuming all corn ('irrigated cropland') and all switchgrass ('grassland') and compared to a control using present-day land use types that is largely a mix of the two. Model runs are being made for three years with normal

  13. Stratigraphic evidence of desertification in the west-central Great Plains within the past 1000 yr

    USGS Publications Warehouse

    Madole, R.F.

    1994-01-01

    Stratigraphic and geomorphic relations, archaeological data, and eight radiocarbon ages at five widely scattered localities in northeastern Colorado indicate that eolian sand was mobilized over broad areas within the past 1000 yr. The mobilization began after 1 ka, was episodic, and ended at some as yet undetermined time prior to the latter part of the 19th century. Given that climate-model simulations suggest only slight variation in average surface temperature and annual precipitation in this region during the past 1000 yr, this part of the Great Plains evidently is near the threshold of widespread eolian sand transport under the present climate. -Author

  14. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    NASA Astrophysics Data System (ADS)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  15. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  16. The Younger Dryas phase of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  17. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.

  18. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities.

    PubMed

    Worthington, Thomas A; Brewer, Shannon K; Grabowski, Timothy B; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375-780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery. PMID:23873736

  19. Interpretation and compendium of historical fire accounts in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.

    1986-01-01

    This interpretation and compendium of historical fire accounts in the northern Great Plains provides resource managers with background information to justify the study or use of fire in management and provides a reference of historic fire accounts for those without ready access to major library collections. Historical accounts of fire are critiqued to aid interpreting the compendium accounts. An interpretation is included by the author.Lightning-set fires were recorded in the literature far less frequently than were Indian-set fires. The kinds of fire most frequently reported were scattered, single events of short duration and small extent. Although fires occurred in wetlands, wetlands as well as sandy soil sites usually were good areas for escape from the effects of fire. Both Indians and wild animals were reportedly injured or killed during prairie fires. The frequency of historic fires was less evident in the literature than the descriptions of fire distribution in time and space. Indian-set fires were reported in every month except January. Fires occurred mainly in two periods, March through May with a peak in April, and July to early November with a peak in October. Grassland fuels burned readily within a few hours or days after rain and even during light snowfall.I agree with arguments that support the concept that Indians of the northern Great Plains generally did not subscribe to annual wholesale or promiscuous burning practices, but that they did purposely use fire as a tool to aid hunting and gathering of food and materials. Apparently, the northern plains Indians did not pattern their use of fire with the seasonal patterns of lightning fires. More likely they developed seasonal patterns of burning the prairies in harmony with bison (Bison bison) herd movements because the hunter-gatherer economy of these nomadic tribes was centrally focused and largely dependent on bison and bison ecology.

  20. Evaluation of herbacceous biomass crops in the northern Great Plains. Final report

    SciTech Connect

    Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G.

    1994-08-01

    Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

  1. Magnitude, Duration, and Geographic Coherence of Interannual Anomalies of the Great Plains Low-Level Jet

    NASA Technical Reports Server (NTRS)

    Helfand, H. Mark; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Great Plains region of the United States is characterized by some of the world's most frequent and regular occurrences of a nocturnal low-level jet (LLJ). While this southerly jet is generally confined to the lowest kilometer of the atmosphere, it may cover a substantial region of the Great Plains and reach wind speed maxima of 20 m/s or more. The temporal and spatial structure of this jet has been well captured by the GEOS-1 15-year reanalysis. The jet is most evident during the warm season, May through August. The year-to-year variability of the seasonally-averaged jet structure is small relative to its diurnal or its intraseasonal variability and is comparable in magnitude to the seasonal variability for the mean climatology. The interannual variance maximum is located to the east of both the jet maximum and the seasonal variance maximum and seems to be related to a biennial oscillation which occurs for the first six years of the reanalysis period. There is a second maximum which is free of this oscillation, which is located at the same latitude but further south in the Gulf of Mexico. Interannual anomalies seem to have a duration of about three weeks and spatial coherences about ten degrees wide. Meridional velocity anomalies for the drought year 1988 and the flood year 1993 are large, but their impacts on the hydrological cycle may be as sensitive to their eastward location as to their magnitudes.

  2. Potential effects of anthropogenic greenhouse gases on avian habitas and populations in the northern Great Plains

    SciTech Connect

    Larson, D.L. )

    1994-04-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect CO[sub 2] has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains. Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled CO[sub 2] scenarios will require substantial basic research to clarify. 113 refs., 1 fig.

  3. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  4. Projected intensification of subseasonal temperature variability and heat waves in the Great Plains

    NASA Astrophysics Data System (ADS)

    Teng, Haiyan; Branstator, Grant; Meehl, Gerald A.; Washington, Warren M.

    2016-03-01

    Compared to changes in the climatological mean temperature, we have less confidence in how much and by what mechanisms temperature variability may be affected by anthropogenic climate change. Here based on a 30-member climate change projection from an earth system model, we find that summertime subseasonal temperature variability in the U.S. Great Plains is enhanced by approximately 20% in 2070-2100 relative to 1980-2010. In particular, daily temperature departures from the new climatologies during future heat waves are on average 0.6°C warmer than are the corresponding departures under present-day conditions. Although in both periods heat waves in the Great Plains tend to be associated with planetary wave events, the amplification of future heat waves does not appear to be induced by changes in planetary wave variability in the midlatitudes. Instead, in this experiment the strengthening appears to be primarily caused by enhanced local land-atmosphere feedbacks resulting from a warmer/drier future climate.

  5. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes

    PubMed Central

    Osborne, Megan J; Perkin, Joshuah S.; Gido, Keith B.; Turner, Thomas F.

    2014-01-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits, and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model, and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

  6. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  7. Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates

    USGS Publications Warehouse

    Guo, Q.; Brandle, J.R.; Schoeneberger, M.M.; Buettner, D.

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers) where such forests are a minor but ecologically important component of the land mosaics. This study used SEEDSCAPE, a recently modified gap model designed for cultivated land mosaics in the Great Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths (light changes as the selected resulting factor) using current climate data and nested regional circulation models (RegCMs). Results indicated that (1) it took 70-80 simulation years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (2) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass but increase dominance in the linear forests, especially in the upland forests; (3) linear forests with higher planting species richness and smaller width produced higher aboveground tree biomass per unit area; and (4) same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements (e.g., the effects of understory species should be included), the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems.

  8. Simulating the dynamics of linear forests in Great Plains agroecosystems under changing climates

    USGS Publications Warehouse

    Guo, Q.; Brandle, J.; Schoeneberger, M.; Buettner, D.

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEDSCAPE, a recently modified gap model designed for cultivated land mosaics in the Great Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths (light changes as the selected resulting factor) using current climate data and nested regional circulation models (RegCMs). Results indicated that (i) it took 70-80 simulation years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (ii) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass, but increase dominance in the linear forests, especially in the upland forests; (iii) linear forests with higher planting species richness and smaller width produced higher aboveground tree biomass per unit area; and (iv) the same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements (e.g., the effects of understory species should be included), the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems. ?? 2004 NRC Canada.

  9. Land Use and Family Formation in the Settlement of the U.S. Great Plains

    PubMed Central

    Gutmann, Myron P.; Pullum-Piñón, Sara M.; Witkowski, Kristine; Deane, Glenn D.; Merchant, Emily

    2014-01-01

    In agricultural settings, environment shapes patterns of settlement and land use. Using the Great Plains of the United States during the period of its initial Euro-American settlement (1880–1940) as an analytical lens, this article explores whether the same environmental factors that determine settlement timing and land use—those that indicate suitability for crop-based agriculture—also shape initial family formation, resulting in fewer and smaller families in areas that are more conducive to livestock raising than to cropping. The connection between family size and agricultural land availability is now well known, but the role of the environment has not previously been explicitly tested. Descriptive analysis offers initial support for a distinctive pattern of family formation in the western Great Plains, where precipitation is too low to support intensive cropping. However, multivariate analysis using county-level data at 10-year intervals offers only partial support to the hypothesis that environmental characteristics produce these differences. Rather, this analysis has found that the region was also subject to the same long-term social and demographic changes sweeping the rest of the country during this period. PMID:24634550

  10. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  11. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  12. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.

    PubMed

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  13. Intermittent Elevated Radium Concentrations in Coastal Plain Groundwater of South Carolina, U.S.A.

    SciTech Connect

    Denham, Miles; Millings, Margaret; Noonkester, Jay

    2005-09-22

    To learn the cause of intermittent radium concentrations in groundwater of Coastal Plain aquifers, 31 groundwater wells in South Carolina, U.S.A. were sampled for radium and other geochemical parameters. Sediments cored from near the well screens were also sampled to examine any relationship between sediment properties and radium concentration in the groundwater. Elevated radium concentrations only occurred in groundwater with low electrical conductivity and pH values below 6.3. The adsorption edge for radium on hematite--a major surface active mineral in these aquifers--is at a pH value of about 6. Near this value, small changes in pH can result in significant adsorption or desorption of radium. In groundwater with initially low alkalinity, small intermittent decreases in partial pressure of carbon dioxide in groundwater cause decreases in pH and desorption of radium. The result is intermittent elevated radium concentrations.

  14. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  15. Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cemented subsurface layers restrict root growth in many southeastern USA Coastal Plain soils. Though cementation is usually reduced by tillage, soil amendments can offer a more permanent solution if they develop aggregation. To increase aggregation, we amended 450 g of a Norfolk soil blend of 90% E ...

  16. Ameliorating soil chemical properties of a hard setting subsoil layer in coastal plain USA with different designer biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Norfolk soils in the southeastern United States of America (USA) Coastal Plain region have meager soil fertility characteristics because of their sandy textures, acidic pH values, kaolinitic clays and with depleted organic carbon contents. Extensive clay mineral weathering and clay eluviation along ...

  17. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  18. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    USGS Publications Warehouse

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  19. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-01-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  20. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-07-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  1. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  2. Ps Reciever Function Analysis of the Crustal Structure Beneath the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Thurner, S.; Levander, A.; Niu, F.

    2013-12-01

    The North American Great Plains, located directly east of the Rocky Mountain deformation front, were initially formed in the Precambrian through a series of island arc accretion events, and they have since been affected by multiple phases of both compression and extension. Understanding both the past and present tectonic deformation occurring throughout the Great Plains region can, therefore, provide valuable information regarding the assembly of southern North America. We use Ps teleseismic receiver functions to investigate the crustal and lithospheric structure throughout this region. Using over 250 M > 6.0 events recorded at ~450 USArray Transportable Array seismic located in the Great Plains, we calculated .5 Hz, 1Hz, and 2 Hz receiver functions. Both CCP stacking and H-k analysis were applied to the dataset in order to determine the crustal thickness structure of the region. The Ps receiver functions indicate an average crustal thickness of ~ 45 km in the central portion of the study region with variations up to +/- 10 km. We observe NE-SW trending zones of increased crustal thickness (up to ~53 km) associated with the NE-SW trending boundaries between accreted Proterozoic terrains. We also observe a sharp increase in crustal thickness from ~35 km just west of the Rio Grande Rift to ~50 km just east of the Rio Grande Rift. Finally, we observe a very complicated crustal structure in the north-central portion of the study region. Here we see a thrust system that appears to affect much of the crust north of 40° latitude between -104° to - 98° longitude. This structure appears to reach Moho depths in some places and is likely associated with the original suturing of the Wyoming and Superior Archean provinces at the Trans Hudson Orogen as well as subsequent Proterozoic accretion events that occurred during continent formation. Similar Moho penetrating features have been observed in the Lithoprobe studies further north (Winardhi et al, 1997; Clowes et al.,2002

  3. Road crossing designs and their impact on fish assemblages of Great Plains streams

    USGS Publications Warehouse

    Bouska, Wesley W.; Paukert, Craig P.

    2010-01-01

    A mark-recapture field study was conducted to determine fish passage at 5 concrete box culverts and 5 low-water crossings (concrete slabs vented by culverts) as well as 10 control sites (below a natural riffle) in Flint Hills streams of northeastern Kansas. Additionally, we tested the upstream passage of four fish species native to Great Plains streams (Topeka shiner Notropis topeka, green sunfish Lepomis cyanellus, red shiner Cyprinella lutrensis, and southern redbelly dace Phoxinus erythrogaster) through three simulated crossing designs (box culverts, round corrugated culverts, and natural rock riffles) at water velocities of 0.1 to 1.1 m/s in an experimental stream. The field study indicated that cyprinids were twice as likely to move upstream of box culverts than low-water crossings and 1.4 times as likely to move upstream of control reaches than any crossing type. The best models indicated that the proportion of cyprinids that moved upstream increased with decreased culvert slope and length, perching, and increased culvert width. Our controlled experiment indicated that fish can move through velocities up to 1.1 m/s in a 1.86-m simulated stream and that the proportion of fish that moved upstream did not differ among crossing designs for southern redbelly dace, green sunfish, or Topeka shiner; however, natural rock riffles had lower proportional movements (mean = 0.19) than the box (0.38) or corrugated culvert designs (0.43) for red shiners. Water velocity did not affect the proportional upstream movement of any species except that of Topeka shiners, which increased with water velocity. Crossing design alone may not determine fish passage, and water velocities up to 1.1 m/s may not affect the passage of many Great Plains fishes. Barriers to fish movement may be the result of other factors (e.g., perching, slope, and crossing length). The use of properly designed and installed crossings has promise in conserving Great Plains stream fishes.

  4. Geohydrologic systems in Kansas physical framework of the Great Plains aquifer system

    USGS Publications Warehouse

    Spinazola, Joseph M.; McGovern, Harold E.; Wolf, R.J.

    1992-01-01

    The purpose of this map report is to provide a description of one of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. The report is the result of an investigation made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifer and confining systems in Kansas. Chapter B describes the physical framework of the Great Plains aquifer system and presents maps and a geohydrologic cross section that show the thickness, the areal extent, and the altitude and configuration of the top of the Lower Cretaceous rocks that compose the Great Plains aquifer system. The maps are based on data from selected geophysical and lithologic logs and from published maps of stratigraphically equivalent units. Maps that show the thickness and the altitude and configuration of the top of the Great Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian surface through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic system are consistent with maps of underlying and overlying systems; modifications were made where necessary. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of geohydrologic systems in

  5. Biological Conditions and Economic Development: Nineteenth-Century Stature on the U.S. Great Plains.

    PubMed

    Carson, Scott Alan

    2015-06-01

    Average stature is now a well-accepted measure of material and economic well-being in development studies when traditional measures are sparse or unreliable, but little work has been done on the biological conditions for individuals on the nineteenth-century U.S. Great Plains. Records of 14,427 inmates from the Nebraska state prison are used to examine the relationship between stature and economic conditions. Statures of both black and white prisoners in Nebraska increased through time, indicating that biological conditions improved as Nebraska's output market and agricultural sectors developed. The effect of rural environments on stature is illustrated by the fact that farm laborers were taller than common laborers. Urbanization and industrialization had significant impacts on stature, and proximity to trade routes and waterways was inversely related to stature. PMID:26040245

  6. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  7. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  8. Clear Sky Identification Using Data From Remote Sensing Systems at ARM's Southern Great Plains Site

    SciTech Connect

    Delle Monache, L.; Rodriguez, D.; Cederwall, R.

    2000-06-27

    Clouds profoundly affect our weather and climate due, in large part, to their interactions with radiation. Unfortunately, our understanding of these interactions is, at best, incomplete, making it difficult to improve the treatment of atmospheric radiation in climate models. The improved treatment of clouds and radiation, and a better understanding of their interaction, in climate models is one of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program's major goals. To learn more about the distribution of water and ice, i.e., clouds, within an atmospheric column, ARM has chosen to use the remote sensing of clouds, water vapor and aerosols at its three climatologically-diverse sites as its primary observational method. ARM's most heavily instrumented site, which has operated continuously for more than a decade, is its Southern Great Plains (SGP) Central Facility, located near Lamont, OK. Cloud-observing instruments at the Central Facility include the Whole Sky Imager, ceilometers, lidar, millimeter cloud radar, microwave radiometers and radiosondes.

  9. The Saga of Leafy Spurge (Euphorbia esula) in the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.

    2009-01-01

    Leafy spurge (Euphorbia esula L.) is an invasive Eurasian perennial introduced into the United States as a contaminant of crop seed in the 1880s and 1890s. It typically forms monocultures in rangeland and natural areas of the northern Great Plains where, because of the latex that occurs in all parts of the plant, it is not consumed by naturally occurring herbivores. U.S. Geological Survey (USGS) scientists and their collaborators have been studying leafy spurge at Theodore Roosevelt National Park (TRNP) and at Arrowwood and Tewaukon National Wildlife Refuges in North Dakota since 1998. Study findings have been published in Larson and Grace (2004), Larson and others (2006), Larson and others (2007), Jordan and others (2008), and Larson and others (2008). This fact sheet summarizes that body of research.

  10. A one-year climatology using data from the Southern Great Plains (SGP) site micropulse lidar

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; Spinhirne, J.; Scott, S.

    1996-04-01

    The micropulse lidar (MPL) has been operational at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement Program for the past 15 months. The compact MPL is unique among research lidar systems in that it is eye-safe and operates continuously, except during precipitation. The MPL is capable of detecting cloud base throughout the entire depth of the troposphere. The MPL data set is an unprecedented time series of cloud heights. It is a vital resource for understanding the frequency of cloud ocurrence and the impact of clouds on the surface radiation budget, as well as for large-scale model validation and satellite retrieval verification. The raw lidar data are processed for cloud base height at a temporal frequency of one minute and a vertical resolution of 270 m. The resultant time series of cloud base is used to generate histograms as a function of month and time of day. Sample results are described.

  11. Selected drill-stem-test data from the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1981-01-01

    Selected drill-stem-test data were collected for use in the hydrologic analysis of aquifers in the northern Great Plains area of Montana. To supplement existing data defining the potentiometric surface of various aquifers, shut-in pressures recorded during drill-stem tests of oil and gas test wells were used to calculate the altitude of the potentiometric surface. The transmissivity of the aquifers also was calculated if sufficient data existed. Records for 627 drill-stem tests from 523 wells are tabulated in this report. Data include well location, well name, formation tested, well epth, tested interval, date tested, test number, flow period, transmissivity, shut-in pressure, and altitude of water surface. Locations of the wells are shown on a map at a scale of 1:1,000,000. (USGS)

  12. Water assessment report: Section 13 (c); Great Plains gasification project, Mercer County, ND

    SciTech Connect

    1980-12-01

    The Water Resources Council is completing a water assessment of synfuels development in the Upper Missouri River Basin. This is being done under Section 13(a) of the Federal Nonnuclear Energy Research and Development Act. The assessment area includes the coal deposits in the Mercer County project site. Levels of North Dakota coal gasification development that are several times the production level of the Great Plains gasification project are being examined. This report assesses: (1) the availability of adequate water supplies to meet the water requirements of the project, supporting activities, and other development induced by the project; and (2) the changes in the water resources that will result from the project. Findings of the 13(a) assessment show that water supplies are physically available within the mainstem of the Missouri River in North Dakota to supply the requirements of the gasification facilities and the supporting activities - mining and reclamation, electricity, and project-induced population increases.

  13. Stratum variance estimation for sample allocation in crop surveys. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Perry, C. R., Jr.; Chhikara, R. S. (Principal Investigator)

    1980-01-01

    The problem of determining stratum variances needed in achieving an optimum sample allocation for crop surveys by remote sensing is investigated by considering an approach based on the concept of stratum variance as a function of the sampling unit size. A methodology using the existing and easily available information of historical crop statistics is developed for obtaining initial estimates of tratum variances. The procedure is applied to estimate stratum variances for wheat in the U.S. Great Plains and is evaluated based on the numerical results thus obtained. It is shown that the proposed technique is viable and performs satisfactorily, with the use of a conservative value for the field size and the crop statistics from the small political subdivision level, when the estimated stratum variances were compared to those obtained using the LANDSAT data.

  14. Grassland bird use of Conservation Reserve Program Fields in the Great Plains

    USGS Publications Warehouse

    Johnson, D.H.

    2000-01-01

    The area enrolled in the Conservation Reserve Program in the Great Plains is enormous: nearly 18 million acres, or more than 7 million hectares, in Montana, North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, and Texas. This change in land use has had a huge influence on grassland bird populations. Many, but certainly not all, grassland species flourish in CRP habitats. Responses to the program vary not only by species, but by region, year, vegetation composition in a field, and whether or not a field was hayed or grazed. Further, the large scale of CRP has allowed researchers to begin to address other important conservation questions, such as the effect of the size of habitat patch and the influences of landscape features. Although the CRP provisions of farm bills have been beneficial to grassland birds, it is critical that gains in grassland habitat induced by the program not be offset by losses due to sodbusting.

  15. Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Kanemasu, E. T.; Bagley, J. O.; Rasmussen, V. P.

    1977-01-01

    Locating areas where soil moisture is limiting to crop growth is important for estimating winter-wheat yields on a regional basis. In the 1975-76 growing season, we evaluated soil-moisture conditions and winter-wheat yields for a five-state region of the Great Plains using Landsat estimates of leaf area index (LAI) and an evapotranspiration (ET) model described by Kanemasu et al (1977). Because LAI was used as an input, the ET model responded to changes in crop growth. Estimated soil-water depletions were high for the Nebraska Panhandle, southwestern Kansas, southeastern Colorado, and the Texas Panhandle. Estimated yields in five-state region ranged from 1.0 to 2.9 metric ton/ha.

  16. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  17. Geohydrologic systems in Kansas, geohydrology of the Great Plains aquifer system

    USGS Publications Warehouse

    McGovern, Harold E.; Wolf, R.J.

    1993-01-01

    Sedimentary rocks of Late Cambrian through Early Cretaceous age in Kansas are part of a regional flow system of hydraulically connected aquifers and confining units. Future demands for water require that these deeply buried rocks be studied to describe hydrologic properties and ground-water-flow conditions and to provide information that will serve as the basis for decisions concerning the protection and the management of the water resources contained therein, Toward this end, the U.S. Geological Survey, as a part of its Central Midwest Regional Aquifer-System Analysis (CMRASA), began a 5-year hydrologic investigation of this regional flow system in Arkansas, Colorado, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, South Dakota, and Texas (Jorgensen and Signor, 1981).This chapter is one of nine contained in Hydrologic Investigations Atlas HA-722, which present a description of the physical framework (Chapters B-F) and the geohydrology (Chapters G-I} of principal aquifers and confining systems in Upper Cambrian through Lower Cretaceous rocks in Kansas; the stratigraphic relations of these geohydrologic systems are discussed in detail in Chapter A (Wolf and others, 1990). This chapter (G) describes the geohydrology of the Great Plains aquifer system; the physical framework of the Great Plains aquifer system is presented in Chapter B (Spinazola and others, 1992).The maps in this chapter are based on existing data from selected geophysical and lithologic logs, drill-stem tests, water-level measurements, water-quality analyses, and published maps of stratigraphically equivalent units. An index to the geohydrologic data compiled for the CMRASA in Kansas is presented in Spinazola and others (1987). For the most part, data used to construct the maps were collected over many years and do not reflect aquifer conditions for any specific time period.

  18. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, A.J.; Jonas, J.L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity. ?? Society for Range

  19. Tropospheric chemistry over the lower Great Plains of the United States. I. Meteorology

    SciTech Connect

    Ryan, W.F.; Dickerson, R.R.; Huffman, G.J.; Luke, W.T. )

    1992-11-20

    Convective clouds and thunderstorms inject planetary boundary layer air with high concentrations of ozone (0[sub 3]) and 0[sub 3] precursors into the free troposphere; these local actions can have global consequences. We have devised a method to identify weather patterns conducive to convection in the southern or lower Great Plains in early summer and applied this method to meteorological and chemical data from a series of research flights carried out in June 1985. Previous studies have noted that weather patterns in the lower Great Plains in this season are characterized by alternating pulses of polar and maritime air masses and very frequent episodes of violent convection. In this study, a set of selection criteria is applied to surface and upper air meteorological data from central Oklahoma to distinguish the two meridional phases characteristic of this region: maritime and polar. A deep layer of moist, southerly flow and convective instability is encountered in the maritime regime, while the polar phase is connectively stable throughout the midtroposphere and much less conducive to convection. For the period 1980-1985 both maritime and polar regimes occur with a frequency of about 35% in May, while the maritime phase becomes dominant in June (53% maritime versus 20% polar). Within the maritime regime, conditions conducive to the development of severe storms are characterized by the presence of a dry, low-level inversion that tends to inhibit scattered midday convection over a wide region while simultaneously enhancing the probability of larger thunderstorms and mesoscale convective systems. Profiles from the surface to 200 mbar, made on 18 flights in the 1985 PRESTORM project, are categorized according to the selection criteria. Part 2 of this study presents concentrations of ozone, carbon monoxide, and reactive nitrogen compounds as a function of altitude (0-12 km) for each category and discusses the implications of these findings. 109 refs., 14 figs., 9 tabs.

  20. Late quaternary temperature record from buried soils of the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.

    2007-01-01

    We present the first comprehensive late Quaternary record of North American Great Plains temperature by assessing the behavior of the stable isotopic composition (??13C) of buried soils. After examining the relationship between the ??13C of topsoil organic matter and July temperature from 61 native prairies within a latitudinal range of 46??-38??N, we applied the resulting regression equation to 64 published ??13C values from buried soils of the same region to construct a temperature curve for the past 12 k.y. Estimated temperatures from 12 to 10 ka (1 k.y. = 1000 14C yr B.P.) fluctuated with a periodicity of ???1 k.y. with two cool excursions between -4.5 and -3.5 ??C and two warmer excursions between -1 and 0 ??C, relative to modern. Early Holocene temperatures from ca. 10-7.5 ka were -1.0 to -2.0 ??C before rising to +1.0 ??C in the middle Holocene between 6.0 and 4.5 ka. After a cool interlude from 4.2 to 2.6 ka, when temperatures dropped to slightly below modern, another warm interval ensued from 2.6 to 1 ka as temperatures increased to ???+0.5 ??C. A final decline in temperature to below modern occurred beginning ca. 0.5 ka. Cooler than present temperatures in the Great Plains indicate telecommunications with cool-water episodes in the Gulf of Mexico and North Atlantic potentially governed by a combination of glacial meltwater pulses and low solar irradiance. ?? 2007 Geological Society of America.

  1. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  2. Urban influences on land surface phenologies in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Walker, J.; de Beurs, K.; Henebry, G. M.

    2013-12-01

    Global populations are increasingly found in urban environments. The associated transformation of rural landscapes into regions of highly concentrated human activity drives broad climatic and environmental changes at multiple scales. The elevated surface and air temperatures of urban areas compared to surrounding rural environments (the urban heat island [UHI] effect) can influence the timing of vegetation growth dynamics within and outside the urban boundary, thereby affecting regional surface radiation and energy budgets. We examined patterns of land surface phenology (LSP) across the U.S. Great Plains region, which contains a range of metropolitan areas within herbaceous-dominated landscapes. We assembled a time series (2002-2012) of MODIS surface reflectance data (MCD43A4) and land surface temperature data (MOD11A2) at 500m and 1000m spatial resolution, respectively. We derived measures of the vegetated land surface and the thermal regime of the growing season at 8-day intervals using the Normalized Difference Vegetation Index (NDVI) and Accumulated Growing Degree-Days (AGDD). Fitting the convex quadratic LSP model of NDVI as a function of AGDD yielded several model parameter coefficients and phenometrics for each growing season: start, end, and length of growing season; thermal time at start of season; thermal time to peak NDVI; peak NDVI; and coefficients of determination for the LSP model. We linked the phenometrics with impervious surface area measures extracted from the National Land Cover Database (NLCD) and urban characteristics to (1) determine the UHI impacts across the Great Plains under a variety of climatic conditions, and (2) explore scaling relationships between the phenometrics and the extent of each urbanized area.

  3. Brown-headed cowbird, Molothrus ater, parasitism and abundance in the northern Great Plains

    USGS Publications Warehouse

    Igl, L.D.; Johnson, D.H.

    2007-01-01

    The Brown-headed Cowbird (Molothrus ater) reaches its highest abundance in the northern Great Plains, but much of our understanding of cowbird ecology and host-parasite interactions comes from areas outside of this region. We examine cowbird brood parasitism and densities during two studies of breeding birds in the northern Great Plains during 1990-2006. We found 2649 active nests of 75 species, including 746 nonpasserine nests and 1902 passerine nests. Overall, <1% of non-passerine nests and 25% of passerine nests were parasitized by Brown-headed Cowbirds. Although the overall frequency of cowbird parasitism in passerine nests in these two studies is considered moderate, the frequency of multiple parasitism among parasitized nests was heavy (nearly 50%). The mean number of cowbird eggs per parasitized passerine nest was 1.9 ?? 1.2 (SD; range = 1-8 cowbird eggs). The parasitism rates were 9.5% for passerines that typically nest in habitats characterized by woody vegetation, 16.4% for grassland-nesting passerines, 4.7% for passerines known to consistently eject cowbird eggs, and 28.2% for passerines that usually accept cowbird eggs. The Red-winged Blackbird (Agelaius phoeniceus) was the most commonly parasitized species (43.1 % parasitism, 49.6% multiple parasitism, 71.2% of all cases of parasitism). Passerine nests found within areas of higher female cowbird abundance experienced higher frequencies of cowbird parasitism than those found in areas of lower female cowbird abundance. Densities of female cowbirds were positively related to densities and richness of other birds in the breeding bird community.

  4. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  5. Grassland bird use of Conservation Reserve Program fields in the Great Plains

    USGS Publications Warehouse

    Johnson, Douglas H.

    2005-01-01

    An enormous area in the Great Plains is currently enrolled in the Conservation Reserve Program (CRP): 19.5 million acres (nearly 8 million ha) in Montana, North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, and Texas. This change in land use from cropland to grassland since 1985 has markedly influenced grassland bird populations. Many, but certainly not all, grassland species do well in CRP fields. The responses by birds to the program differ not only by species but also by region, year, the vegetation composition in a field, and whether or not a field has been hayed or grazed. The large scale and extent of the program has allowed researchers to address important conservation questions, such as the effect of the size of habitat patch and the influence of landscape features on bird use. However, most studies on nongame bird use of CRP in or near the Great Plains have been short-lived; 83% lasted only 1-3 years. Further, attention to the topic seems to have waned in recent years; the number of active studies peaked in the early 1990s and dramatically declined after 1995. Because breeding-bird use of CRP fields varies dramatically in response both to vegetational succession and to climatic variation, long-term studies are important. What was learned about CRP in its early stages may no longer be applicable. Finally, although the CRP provisions of the Farm Bill have been beneficial to many grassland birds, it is critical that gains in grassland habitat produced by the program not be off set by losses of native prairie.

  6. Centennial-to-millennial climate variability over the Great Plains in transient simulations of the Holocene with a coupled GCM

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Schwalb, A.; Zorita, E.

    2010-12-01

    Two simulations with the coupled Atmosphere-Ocean general circulation model ECHO-G for the period 7,000 years BP until present are investigated related to climatic variability over the central Great Plains. The first simulation is driven with changes in orbital forcing, the second simulation with additional variable solar and greenhouse gas forcing. The simulations have not been forced with an acceleration technique in order to take into account ocean-atmosphere interactions on longer time scales. The solar forced simulation has been used to investigate connections between changes in solar activity and the North America summer monsoon. The composite pattern between zonal winds at 850 hPa and changes in solar activity clearly shows that during periods with increased solar activity the northward flow and hence the North American monsoon is increased. The correlation pattern between the Pacific Decadal Oscillation (PDO) and summer precipitation over the Great Plains show significant correlations from inter-annual to multi-decadal time scales. Oceanic fingerprints between precipitation over the Great Plains and the North Atlantic and North Pacific Ocean, respectively, show distinct differences between winter and summer season. During northern winter the well known tripole pattern over the North Atlantic Ocean is evident while over the northeastern Pacific a negative SST anomaly is evident. During northern summer, precipitation variability over the Great Plains is strongly connected with tropical Pacific SSTs related to an El-Nino pattern. Our results therefore suggest that changes in solar activity are linked via indirect atmosphere-ocean coupling to climate variability over the Great Plains on longer time scales, mostly pronounced during northern summer. These changes occur on top of internal climate variability and therefore can exert amplifying and/or dampening effects on precipitation dynamics over the North America Great Plains.

  7. Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA

    USGS Publications Warehouse

    Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.

    2007-01-01

    Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.

  8. Modeled summer background concentration nutrients and suspended sediment in the mid-continent (USA) great rivers

    EPA Science Inventory

    We used regression models to predict background concentration of four water quality indictors: total nitrogen (N), total phosphorus (P), chloride, and total suspended solids (TSS), in the mid-continent (USA) great rivers, the Upper Mississippi, the Lower Missouri, and the Ohio. F...

  9. Challenges and limitations to native species restoration in the Great Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Basin of the western USA is an arid region characterized by high spatial and temporal variability. The region experienced high levels of ecological disturbance during the early period of Euro-American settlement, especially from about 1870 to 1935. The principal plant communities of the ...

  10. The influence of woodland encroachment on runoff and erosion in sagebrush steppe systems, Great Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinyon and juniper woodlands have expanded 10 to 30% in the past 30 years and now occupy nearly 20 million hectares of sagebrush shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlands has been linked to changes in plant co...

  11. The Hadeninae (Lepidoptera: Noctuidae) of Great Smoky Mountains National Park, U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifty-one species of Hadeninae are recorded from Great Smoky Mountains National Park, Tennessee and North Carolina, U.S.A. Of the six hadenine tribes, five are present in the Park. They include 12 species of Orthosiini, one species of Tholerini, eight species of Hadenini, nine species of Leucaniini,...

  12. Simulated responses of soil organic carbon stock to tillage management scenarios in the Northwest Great Plains

    PubMed Central

    Tan, Zhengxi; Liu, Shuguang; Li, Zhengpeng; Loveland, Thomas R

    2007-01-01

    Background Tillage practices greatly affect carbon (C) stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC) in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS). Tillage management scenarios included actual tillage management (ATM), conventional tillage (CT), and no-till (NT). Results Model simulations show that the average amount of C (kg C ha-1yr-1) released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. Conclusion For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale. PMID:17650336

  13. Prairie dog poisoning in northern Great Plains: An analysis of programs and policies

    NASA Astrophysics Data System (ADS)

    Roemer, David M.; Forrest, Steven C.

    1996-05-01

    This paper describes the programs and policies regarding prairie dog control in the northern Great Plains states of Montana, South Dakota, and Wyoming. The poisoning programs of federal and state agencies are described, along with the statutes and legal mandates that shape agency management of prairie dogs. Current policies on National Grasslands and other federal lands typically limit prairie dogs to small percentages of available potential habitat, to the detriment of prairie dogs and associated species. State programs to assist landowners in prairie dog control differ greatly, employing cost-share incentives (Wyoming) and regulatory fines (South Dakota) to encourage the poisoning of prairie dogs. Prairie dog control is not actively funded or practiced by state or county agencies in Montana. We document federal and state involvement in more than 1 million acres of prairie dog poisoning in the study area during 1978 1992. In combination with undocumented poisoning by private landowners, plague, and shooting, prairie dogs may be experiencing net regional declines, contributing to the disintegration of the prairie dog ecosystem. We recommend that Animal Damage Control operations concerning prairie dogs be terminated, on the basis that they duplicate state programs and are at cross purposes with federal wildlife management programs that seek to perpetuate and/or recover wildlife species that depend on the prairie dog ecosystem. We further recommend that federal range improvement funds be offered as subsidies for the integration of prairie dogs in range management, as opposed to funding prairie dog eradication programs.

  14. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  15. Control of one invasive plant species allows exotic grasses to become dominant in northern Great Plains grasslands

    USGS Publications Warehouse

    Larson, D.L.; Larson, J.L.

    2010-01-01

    Decline of leafy spurge (Euphorbia esula) in the northern Great Plains of the US is generally viewed as a success story for biological control, but quality of the vegetation that survived the infestation is key to recovery of ecosystem function. In addition, effects of other invasive species, notably cool-season exotic grasses, must be taken into account. Objectives of this study were (1) to evaluate direction and significance of changes in biomass of native and exotic grasses, forbs, and leafy spurge and in plant species composition following control of leafy spurge by flea beetles and (2) to evaluate the relative effects of leafy spurge and exotic grasses on biomass of native grasses, biomass of forbs, and richness of native species. We monitored species composition (1998-2003 and 2008) and biomass (2000, 2002, 2003 and 2008) of these groups on spurge-infested and noninfested permanent plots at three sites with unbroken prairie sod in North Dakota, USA. We found little evidence, in terms of species richness or biomass of native grasses or forbs, that leafy spurge was being replaced by desirable native species, although desirable as well as weedy and exotic species were characteristic of 2008 vegetation at all three sites. Structural equation models revealed that leafy spurge had temporally intermittent negative effects on forb biomass and species richness, but no effects on native grasses. In contrast, exotic grass had consistently strong, negative effects on native grass biomass, as well as stronger negative effects than leafy spurge on native species richness. Although substantial native plant diversity remains at these sites, exotic grasses pose an important threat to these crucial building blocks of native prairie ecosystems. ?? 2010.

  16. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    SciTech Connect

    Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito; Ansley, R J; Boutton, Thomas W

    2010-01-01

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

  17. Optical dating of geoarchaeologically significant sites from the Southern High Plains and South Texas, USA

    NASA Astrophysics Data System (ADS)

    Rich, J.; Stokes, S.

    2001-12-01

    The Southern High Plains of the United States is a key region for the investigation of early human occupation of North America. This area, including selected archaeological sites located in southern Texas, contains a range of aeolian, fluvial and playa deposits. Such deposits may be suited to luminescence-based methods of age assessment. In this paper we describe a combination of multiple and single-aliquot optical dating results for a selection of sites with some independent age control. We find generally good agreement between multiple- and single-aliquot equivalent dose ( De) estimates for the 20 samples compared, but note that the single-aliquot approach results in errors in mean De's to be less by an order of magnitude. Our results suggest that at least some of the single-aliquot methods are of great utility for low-latitude geoarchaeological sites.

  18. Configuration and Intraseasonal Duration of Interannual Anomalies of the Great Plains Low-Level Jet

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    2002-01-01

    Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable climatological features of the low-level continental flow during the warm-season months, May through August. We have used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine its climatology and mean diurnal cycle and to study its interannual variability. Interannual anomalies of the meridional flow associated with the GPLLJ are much smaller than the mean diurnal fluctuations, than random intraseasonal anomalies, and than the mean wind itself. There are three maxima of low-level meridional flow variance over the Great Plains and the Gulf of Mexico: a 1.2 m2 s-2 peak over the southeast Texas, to the east and south of the mean velocity peak, a 1.0 m2 s-2 peak over the western Gulf of Mexico, and a .8 m2 s-2 peak over the upper Great Plains (UGP), near the Nebraska/South Dakota border. Each of the three variance maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are also three dominant modes of interannual variability corresponding to the three variance maxima, but not in a simple one-to-one relationship. Cross-sectional profiles of mean southerly wind over Texas remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six to seven years of the reanalysis period and only then. This intermittent biennial oscillation (IBO, one of the three modes discussed in the previous paragraph) in the lowlevel flow is restricted to the region surrounding eastern

  19. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal

    2002-01-01

    The United States Great Plains (USGP) experienced a number of multi-year droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multi-year) variations in the USGP precipitation that are similar to those observed. A correlative analysis suggests that the ensemble mean low frequency (time scales longer than about 6 years) rainfall variations in the USGP are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the 2 polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influence the USGP. As such, the USGP tend to have above normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally-symmetric component in which USGP pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extra-tropics. The potential predictability of rainfall in the USGP associated with SSTs is rather modest, with on average about 1/3 of the total low frequency rainfall variance forced by SST anomalies. Further idealized experiments with climatological SST, suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil

  20. Soil water distribution and water use efficiency of forage and grain soybeans in the southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing legumes during summer fallow periods between wheat crops in the southern Great Plains (SGP) can reduce soil erosion and add nitrogen to the soil. However, information on water use by legumes and effects on water availability for subsequent wheat crops is limited. We described soil water patt...

  1. Casting the Buffalo Commons: A Rhetorical Analysis of Print Media Coverage of the Buffalo Commons Proposal for the Great Plains

    ERIC Educational Resources Information Center

    Umberger, Mary L.

    2002-01-01

    In 1987, Frank and Deborah Popper, a planner/geographer team from Rutgers University, proposed the Buffalo Commons. If implemented, the Buffalo Commons would have preserved a large area of the Great Plains, including land in ten states, in a national park to be used by exiting Native American reservations, and for the reintroduction of buffalo.

  2. The Cups of Blood Are Emptied: Pietism and Cultural Heritage in Two Danish Immigrant Schools on the Great Plains.

    ERIC Educational Resources Information Center

    Nielsen, John Mark

    2003-01-01

    Histories of two church-related folk schools established by Lutheran Danish immigrants to the Great Plains reveal different underlying philosophies. Influenced by pietism, one stressed disciplined reading of the scriptures, active participation in the church, and missionary work. The other emphasized the importance of the living church community…

  3. Farming systems with improved returns to inputs of energy and water in the Northern Great Plains of North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming systems which are environmentally responsible, economically robust and energy reduced [refers to a term of(ER)] are in various stages of development and implementation in the Northern Great Plains. Improving the energy use energy (EUE) or net energy balance of farming systems in a sustainabl...

  4. From Mothers' Pensions to Aid to Dependent Children in the Great Plains: The Course from Charity to Entitlement

    ERIC Educational Resources Information Center

    Lee, R. Alton

    2012-01-01

    The most important third-party movement in American history emerged out of the social and economic chaos brewing in the Great Plains in the last two decades of the nineteenth century. The maelstrom, labeled Populism, contained a powerful, indeed a truly revolutionary message--that man was his brother's keeper. This concept proved to have…

  5. Ammonia and hydrogen sulfide concentration and emission patterns for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mono-slope buildings are one type of roofed and confined cattle feeding facility that is becoming increasingly popular in the Northern Great Plains. In response to questions and concerns about the barn environment and air quality regulations, the objectives of this study were to determine gas concen...

  6. DROUGHT MANAGEMENT IN THE NORTHERN GREAT PLAINS. II. EVALUATION OF ALTERNATIVE STRATEGIES FOR COW-CALF ENTERPRISES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to evaluate alternative drought management strategies for their effects on beef cow-calf enterprise profitability based on early detection of drought. A bio-economic model was parameterized to represent a range-based cow-calf production system in the Northern Great Plains. The ba...

  7. Can subsurface drip irrigation (SDI) be a competitive irrigation system in the Great Plains region for commodity crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) as with all microirrigation systems is typically only used on crops with greater value. In the U.S. Great Plains region, the typical irrigated crops are the cereal and oil seed crops and cotton. These crops have less economic revenue than typical microirrigated cro...

  8. The water conundrum of planting cover crops in the great plains: when is an inch not an inch?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop use is being widely promoted throughout the entire United States because of the potential benefits related to protecting and improving the soil. However, the semi-arid environment of the western and central Great Plains has a much different environment from areas where cover cropping has ...

  9. Perennial biomass grasses and the Mason-Dixon Line: Comparative productivity across latitudes in the southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding latitudinal adaptation of switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus J. M. Greef & Deuter ex Hodk. & Renvoize) to the southern Great Plains is key to maximizing productivity by matching each grass variety to its ideal production environment. Objectives of...

  10. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Southern Great Plains are characterized by a fine-scale mixture of different land cover types, predominantly winter-wheat and pasture lands, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought (especially during the s...

  11. Stable-Carbon Isotopes of U.S. Great Plains Soils and Climate Events during the Holocene.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A suite of 12 soil profiles from the U.S. Great Plains and western Corn Belt were sampled to a depth of 2 m and radiocarbon dating control was established to investigate possible changes in stable-carbon isotope composition of SOC over space and time associated with major Holocene climate events. T...

  12. The taming of the prairie: A century of agricultural research at the Northern Great Plains Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly a century after Congress authorized the Northern Great Plains Research Laboratory, it had approximately 35 employees and an annual budget of 3.4 million dollars. The long history of research accomplishments from the Laboratory have been well accepted by the agricultural community and have ide...

  13. Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region of the United States and Canada is an area of widespread dryland crop production, with wheat being the dominant crop. Precipitation in the region ranges from 300 to 500 mm annually, with the majority of precipitatioCPRLn falling during hot summer months. The prevailing croppi...

  14. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  15. A Use of Skip-Row Planting as a Strategy for Drought Mitigation in the West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For dryland farmers in the Central Great Plains region (CGPR) mitigating the deleterious effects of drought on crop production continues to be their greatest challenge. Skip-row planting of corn and sorghum has recently developed as a strategy for mitigating drought in the dryland regions of the CGP...

  16. Long-term tillage impacts on soil aggregation and carbon dynamics under wheat-fallow in the central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional tillage (CT) winter wheat (Tritucum aestivum L.) with summer fallow (WF) is the predominant cropping system in the central Great Plains. We investigated the effect of 39 yr of different tillage intensities, conventional tillage (CT); moldboard plow (MP); no-tillage (NT); and reduced ti...

  17. Late Paleogene topography of the Central Rocky Mountains and western Great Plains region using hydrogen isotope ratios in volcanic glass

    NASA Astrophysics Data System (ADS)

    Rossetto, G.; Fricke, H. C.; Cassel, E. J.; Evanoff, E.

    2015-12-01

    The Central Rocky Mountains (CRM), located in southern Wyoming, Colorado, and northern New Mexico, are characterized by the highest elevation basins (up to 2500 m) and mountains (over 4000 m) in the North American Cordillera. The timing and drivers for surface uplift of the CRM have not been conclusively determined. The goal of this study is to constrain the timing of surface uplift of the CRM by comparing hydrogen isotope ratios of hydration waters (δDglass) in late Paleogene volcanic glasses preserved in felsic tuffs deposited in CRM basins to δDglass values from glasses of similar age (34.9 to 32.2 Ma) preserved in tuffs from the surrounding Great Plains. The tuffs deposited in the Great Plains, to the north and east of the CRM, are currently at elevations of 1100-1600 m. Volcanic glass hydrates shortly after deposition, preserving the δD of ancient meteoric water on geologic timescales, and can thus be used as a proxy for ancient precipitation δD values. Volcanic glasses from the CRM have δDglass values that are an average of ~31‰ higher than δDglass values from the Great Plains, while modern day precipitation δD values in the CRM are ~25‰ lower than δD values in the Great Plains. These results suggest that the uplift of the CRM relative to the surrounding Great Plains occurred after ~32 Ma. This requires a mechanism such as mantle upwelling or differential crustal hydration, not solely Laramide tectonism, to uplift the CRM to current elevations. Elevation, however, may not have been the only control on the spatial distribution of precipitation δD values across the western US. Similar to the modern, mixing of Pacific and Gulf coast air masses likely occurred during the latest Paleogene, driving regional variability in δD values of precipitation.

  18. A prototype physical database for passive microwave retrievals of precipitation over the US Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-10-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10 GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  19. Potential Effects of Climate Change on Aquatic Ecosystems of the Great Plains of North America

    NASA Astrophysics Data System (ADS)

    Covich, A. P.; Fritz, S. C.; Lamb, P. J.; Marzolf, R. D.; Matthews, W. J.; Poiani, K. A.; Prepas, E. E.; Richman, M. B.; Winter, T. C.

    1997-06-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research.

  20. Site scientific mission plan for the Southern Great Plains CART site: July--December 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. The primary objectives of the ARM program are: to describe the radiative energy flux profile of the clear and cloudy atmosphere; to understand the processes determining the flux profile; and to parameterize the processes determining the flux profile for incorporation into general circulation models.

  1. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

    2011-01-08

    Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

  2. Hydrology of Area 61, Northern Great Plains and Rocky Mountain Coal Provinces, Colorado and New Mexico

    USGS Publications Warehouse

    Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick

    1983-01-01

    Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation.

  3. Analysis of ecosystem controls on soil carbon source-sink relationships in the northwest Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Liu, J.; Tieszen, L.L.

    2006-01-01

    Our ability to forecast the role of ecosystem processes in mitigating global greenhouse effects relies on understanding the driving forces on terrestrial C dynamics. This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in the northwest Great Plains. SOC source-sink relationships were quantified using the General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly located 10 ?? 10 km2 sample blocks. These sample blocks were aggregated into cropland, grassland, and forestland groups based on land cover composition within each sample block. Canonical correlation analysis indicated that SOC source-sink relationship from 1973 to 2000 was significantly related to the land cover type while the change rates mainly depended on the baseline SOC level and annual precipitation. Of all selected driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for the forestland and cropland groups, while annual precipitation determined the C source-sink relationship for the grassland group in which noticeable SOC sink strength was attributed to the conversion from cropped area to grass cover. Canonical correlation analysis also showed that grassland ecosystems are more complicated than others in the ecoregion, which may be difficult to identify on a field scale. Current model simulations need finther adjustments to the model input variables for the grass cover-dominated ecosystems in the ecoregion. Copyright 2006 by the American Geophysical Union.

  4. Soil organic carbon dynamics as related to land use history in the northwestern Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Loveland, T.R.; Tieszen, L.L.; Liu, J.; Kurtz, R.

    2005-01-01

    Strategies for mitigating the global greenhouse effect must account for soil organic carbon (SOC) dynamics at both spatial and temporal scales, which is usually challenging owing to limitations in data and approach. This study was conducted to characterize the SOC dynamics associated with land use change history in the northwestern Great Plains ecoregion. A sampling framework (40 sample blocks of 10 ?? 10 km2 randomly located in the ecoregion) and the General Ensemble Biogeochemical Modeling System (GEMS) were used to quantify the spatial and temporal variability in the SOC stock from 1972 to 2001. Results indicate that C source and sink areas coexisted within the ecoregion, and the SOC stock in the upper 20-cm depth increased by 3.93 Mg ha-1 over the 29 years. About 17.5% of the area was evaluated as a C source at 122 kg C ha-1 yr-1. The spatial variability of SOC stock was attributed to the dynamics of both slow and passive fractions, while the temporal variation depended on the slow fraction only. The SOC change at the block scale was positively related to either grassland proportion or negatively related to cropland proportion. We concluded that the slow C pool determined whether soils behaved as sources or sinks of atmospheric CO2, but the strength depended on antecedent SOC contents, land cover type, and land use change history in the ecoregion. Copyright 2005 by the American Geophysical Union.

  5. Fish assemblages and habitat relationships in a small northern Great Plains stream

    USGS Publications Warehouse

    Barfoot, C.A.; White, R.G.

    1999-01-01

    We examined fish populations and environmental characteristics of pool and riffle habitats of Little Beaver Creek, Montana, a small northern Great Plains stream. We collected 4,980 fishes representing 20 species in eight families. The most abundant and species-rich family was Cyprinidae. Nearly 88% (4,369) of all fishes were collected in pools. Pools also supported greater numbers ofspecies (x = 6.3, SO = 2.6, n = 58) than did riffles ( x = 2.2, SO = 1.9, n = 47). Most species showed distinct patterns of relative abundance along the stream gradient. Community changes were primarily reflected by the downstream addition of species; species replacement was of less importance. A multivariate analysis of fish relative abundance identified two relatively well-defined pool fish assemblages: a downstream assemblage comprised largely of native fluvial cyprinids, and a more diverse midstream-upstream assemblage comprised of fishes from several families. No well-defined assemblages were identified in riffle habitats. Environmental measures of stream size, substrate characteristics, water clarity, and banks ide conditions appeared to be associated with differences in fish assemblage structure. However, correlations between habitat conditions and fish assemblages were weak, possibly because a complex of factors act conculTently to shape assemblages.

  6. The role of the US Great Plains low-level jet in nocturnal migrant behavior

    NASA Astrophysics Data System (ADS)

    Wainwright, Charlotte E.; Stepanian, Phillip M.; Horton, Kyle G.

    2016-02-01

    The movements of aerial animals are under the constant influence of atmospheric flows spanning a range of spatiotemporal scales. The Great Plains nocturnal low-level jet is a large-scale atmospheric phenomenon that provides frequent strong southerly winds through a shallow layer of the airspace. The jet can provide substantial tailwind assistance to spring migrants moving northward, while hindering southward migration during autumn. This atmospheric feature has been suspected to play a prominent role in defining migratory routes, but the flight strategies used with respect to these winds are yet to be examined. Using collocated vertically pointing radar and lidar, we investigate the altitudinal selection behavior of migrants over Oklahoma during two spring and two autumn migration seasons. In general, migrants choose to fly within the jet in spring, often concentrating in the favorable wind speed maximum. Autumn migrants typically fly below the jet, although some will rapidly climb to reach altitudes above the inhibiting winds. The intensity of migration was relatively constant throughout the spring due to the predominantly favorable southerly jet winds. Conversely, autumn migrants were more apt to delay departure to wait for the relatively infrequent northerly winds.

  7. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.; Smith, E. )

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes the stream assessment. 6 refs., 3 figs., 3 tabs.

  8. Evaluation of the Empirical Piecewise Regression Model in Simulating GPP in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wylie, B. K.; Fosnight, E. A.

    2005-12-01

    For better understanding the carbon fluxes in the grassland ecosystems, an empirical piecewise regression (PWR) model was developed to estimate gross primary production (GPP) for the grassland ecosystems in the Northern Great Plains and Northern Kazakhstan. The PWR model spatially scales up the localized flux tower measurements across an ecoregion at 1-km resolution. In this study, we compared the PWR GPP and the MODIS GPP with five grassland flux tower measurements. Then we employed cross-validation to evaluate the PWR GPP values. We also compared PWR GPP and MODIS GPP for grasslands for the entire study area. Factors that may explain the spatial pattern of the GPP differences between the two models were explored using decision tree technique. The results indicated that the PWR modeling approach was robust with a good agreement (agreement coefficient d=0.71-0.97) between PWR model and tower measurements. Cross-validation showed a relatively low agreement (d=0.71-0.78) at two influential flux tower sites. We also observed that the PWR GPP was lower than or similar to the MODIS GPP in the east and higher in the west and south. Further analysis suggested that percentage of C4 grasses, soil water holding capacity, percentage of clay, and percentage of crop mixed in the grassland contributed to the GPP difference of the PWR and MODIS models.

  9. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.

    2003-01-01

    This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.

  10. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.; Sisterson, D.L.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  11. Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.; Larson, Jennifer L.

    2010-01-01

    Yellow sweetclover is an exotic herbaceous legume common in the Great Plains of the US. Although woody legumes have been shown to affect ecosystem processes through nitrogen (N) fixation (i.e., they can be considered "transformers" sensu Richardson et al. (2000)), the same has not been shown for short-lived herbaceous species. The objectives of this study were to (1) quantify the effects of yellow sweetclover on N mineralization and nitrification and (2) assess the effects of N fertilization on two plant communities, badlands sparse vegetation and western wheatgrass prairie. We used in situ (in wheatgrass prairie) and laboratory incubations (for both plant communities) to assess N dynamics at sites with high and low sweetclover cover in the two plant communities. We found that both N mineralization and nitrification were higher in the high sweetclover plots in the sparse plant community, but not in the wheatgrass prairie. To assess fertilization effects and determine if nutrients or water were limiting at our sites, we conducted a field experiment with five resource addition treatments, (1) N, (2) N + water, (3) water, (4) phosphorus, and (5) no addition. Water was limiting in the wheatgrass prairie but contrary to expectation, N was not. In contrast, N was limiting in the sparse community, where a fertilization effect was seen in exotic forbs, especially the toxic invader Halogeton glomeratus. Our results emphasize the contingent nature of plant invasion in which effects are largely dependent on attributes of the recipient vegetation.

  12. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  13. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  14. A study of Quaternary landforms and materials in the Midwest and Great Plains

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Hallberg, G. R. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Measurements made from prints of ERTS-1, MSS 5 images, show practical limits of detectability for this imagery in the Midwest. The smallest high contrast object detectable has an approximate measured diameter of 150 feet. The smallest clearly identifiable cultural feature is roughly 300 feet for high contrast, and 400 to 500 feet for low contrast objects. Rural roadways, with an average width of 75 feet, are clearly defined due to high reflectivity, linearity, and the instantaneous field of view of the scanner. On the infrared a farm pond slightly greater than one acre is detectable. Crop and natural foliage cover in the Midwest during summar months obscures geologic and soils information and hinders detailed mapping. In the western Great Plains large-scale mapping of this kind may be possible, even at this time of year. In southwestern Iowa, topographic and drainage system anomalies, revealed by the imagery, are related to the slope of and depth to the buried bedrock surface. In eastern Iowa land use classification can be done from ERTS-1 imagery.

  15. The Pierre Shale, northern Great Plains: a potential isolation medium for radioactive waste

    USGS Publications Warehouse

    Shurr, George W.

    1977-01-01

    The purpose of this reconnaissance is to assess the potential of the Pierre Shale, of Late Cretaceous age, as a possible isolation medium for radioactive wastes. The regional stratigraphic and structural setting of the Pierre Shale in the northern Great Plains is summarized from subsurface data. Geologic attributes mapped and employed in the identification of areas warranting further evaluation are: depth to the base of the Pierre Shale, shale thickness, overburden thickness, lithology and mineralogy of the shale, and penetrations by oil and gas wells. Three areas emerge as most favorable; each may contain many potential disposal sites. These large geologic study areas are further described on the basis of general structural and seismic considerations and are compared with respect to topography and mineral and water resources. A large area in west-central South Dakota is recommended for extensive further study. A smaller area in northeastern Colorado also may warrant additional investigation. A relatively small area in north-central North Dakota is also delineated, but currently is not proposed for further studies.

  16. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Rindt, J.R.; Smith, E. )

    1988-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report contains information on oxygenate analysis of jet fuels.

  17. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    USGS Publications Warehouse

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  18. Quantifying Uncertainty in Cloud Fraction Observations over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Wu, W.; Liu, Y.; Jensen, M. P.; Toto, T.

    2010-12-01

    Different methods have been used to measure cloud fraction, and there is an increasing need to quantify the range of uncertainty associated with these observations to facilitate evaluation of model results against observations. Here we use the most recent decade-long surface- and satellite- based observations over the Southern Great Plains (SGP) region of the United States to investigate uncertainties in estimates of cloud fraction. Our results show that non-negligible differences exist between these SGP cloud fraction estimates. The major sources of these differences are examined including variations in the measurement methods and/or retrieval algorithms. Observational data examined in this study include the three cloud fraction estimates from the Atmospheric Radiation Measurement (ARM) programs’ Climate Modeling Best Estimate (CMBE) value added products: (1) From surface-based, vertically pointing remote sensing observations (ARSCL: Active Remote Sensing of Clouds), (2) From a surface-based hemispheric imager (TSI - Total Sky Imager), and (3) from geostationary satellite observations (GOES - Geostationary Operational Environmental Satellite). We also employ cloud fraction estimates from hemispheric radiometer observations (SIRS - the Solar Infrared Radiation Station) and the two different satellite-based cloud fraction products: ISCCP - the International Satellite Cloud Climatology Project, and PATMOS-x - Pathfinder Atmospheres Extended. These results will be useful for evaluating and improving cloud parameterizations in climate models.

  19. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    SciTech Connect

    DeSutter, T.M.; Cihacek, L.J.

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  20. American-Indian diabetes mortality in the Great Plains Region 2002–2010

    PubMed Central

    Kelley, Allyson; Giroux, Jennifer; Schulz, Mark; Aronson, Bob; Wallace, Debra; Bell, Ronny; Morrison, Sharon

    2015-01-01

    Objective To compare American-Indian and Caucasian mortality rates from diabetes among tribal Contract Health Service Delivery Areas (CHSDAs) in the Great Plains Region (GPR) and describe the disparities observed. Research design and methods Mortality data from the National Center for Vital Statistics and Seer*STAT were used to identify diabetes as the underlying cause of death for each decedent in the GPR from 2002 to 2010. Mortality data were abstracted and aggregated for American-Indians and Caucasians for 25 reservation CHSDAs in the GPR. Rate ratios (RR) with 95% CIs were used and SEER*Stat V.8.0.4 software calculated age-adjusted diabetes mortality rates. Results Age-adjusted mortality rates for American-Indians were significantly higher than those for Caucasians during the 8-year period. In the GPR, American-Indians were 3.44 times more likely to die from diabetes than Caucasians. South Dakota had the highest RR (5.47 times that of Caucasians), and Iowa had the lowest RR, (1.1). Reservation CHSDA RR ranged from 1.78 to 10.25. Conclusions American-Indians in the GPR have higher diabetes mortality rates than Caucasians in the GPR. Mortality rates among American-Indians persist despite special programs and initiatives aimed at reducing diabetes in these populations. Effective and immediate efforts are needed to address premature diabetes mortality among American-Indians in the GPR. PMID:25926992

  1. Grassland vegetation and bird communities in the southern Great Plains of North America

    USGS Publications Warehouse

    Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M., Jr.

    2004-01-01

    Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.

  2. Climate Change across the United States Northern Great Plains Influencing the Snowpack and the Energy Balance

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Cherry, M. L.

    2014-12-01

    On average, global temperatures have warmed at a greater rate in the past 50 years than in any preceding period. A warmer climate has been shown to yield less snowfall, a shallower snowpack and an earlier onset of snowmelt. Several studies have examined changes to the ratio of snow to rain throughout the United States, and found that there has not been a change in the amount of precipitation but at many locations there has been a decrease in the amount of snowfall. Across the Northern Great Plains of the central United States, snow accumulation is shallow but persistent for most of the winter. Here, 20 meteorological stations are used to examined climate change across this region over the past 60 years. In general, the amounts of precipitation (and snowfall) are not changing, but the number of days with snow has been decreasing, as the annual maximum and minimum temperatures have been warming. However, there is substantial spatial variability in the trends across this region. Since winter precipitation in solid phase will add fresh snow to the pack and increase its albedo, which alters the energy balance at the surface, albedo is modeled for all stations. Two adjacent stations are explored in further detail to highlight opposite trends.

  3. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  4. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    SciTech Connect

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W.

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  5. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    USGS Publications Warehouse

    Gu, Y.; Howard, D.M.; Wylie, B.K.; Zhang, L.

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  6. Site scientific mission plan for the Southern Great Plains CART site January--June 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed Intensive Observation Periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  7. Modeling Prairie Wetland Weather and Climate Feedbacks in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Capehart, W. J.; Taylor, J. A.

    2005-05-01

    Storm-scale simulations of the Northern Great Plains have shown that the prairie wetland systems in the region influence warm-season convective systems even under synoptic-scale forcings. These complex surface water systems, in turn, swell in surface area during wet cycles and contract (and in some cases completely disappear into the cropland/pastureland land cover matrix) during dry cycles. Since the early-to-mid 1990s, these wetland systems have expanded to their historical maximum. The resulting expansions have had an impact on surface hydrology, and agricultural practices (including new crop rotation regimes in the affected areas) and may impact regional climate feedbacks. To examine the potential for these feedbacks, we shall present results of regional climate simulations of the recent decadal period featuring comparisons of precipitation and evaporation patterns with the ambient land cover regimes currently used in mesoscale and regional climate models (which do not include any reference to the larger wetland system in the region), and approximations of the pre-expansion and current wetland states using modified land cover and soil moisture patterns as a proxy. These latter simulations represent a first step in developing a companion wetland parameterization which could facilitate not only coupled hydroclimatological studies of the region, but ecological and biogeochemical studies as well.

  8. Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis.

    PubMed

    Wang, Xiaoyu; McConkey, Brian G; VandenBygaart, A J; Fan, Jianling; Iwaasa, Alan; Schellenberg, Mike

    2016-01-01

    Grazing potentially alters grassland ecosystem carbon (C) and nitrogen (N) storage and cycles, however, the overall direction and magnitude of such alterations are poorly understood on the Northern Great Plains (NGP). By synthesizing data from multiple studies on grazed NGP ecosystems, we quantified the response of 30 variables to C and N pools and fluxes to grazing using a comprehensive meta-analysis method. Results showed that grazing enhanced soil C (5.2 ± 4.6% relative) and N (11.3 ± 9.1%) pools in the top layer, stimulated litter decomposition (26.8 ± 18.4%) and soil N mineralization (22.3 ± 18.4%) and enhanced soil NH4(+) (51.5 ± 42.9%) and NO3(-) (47.5 ± 20.7%) concentrations. Our results indicate that the NGP grasslands have sequestered C and N in the past 70 to 80 years, recovering C and N lost during a period of widespread grassland deterioration that occurred in the first half of the 20(th) century. Sustainable grazing management employed after this deterioration has acted as a critical factor for C and N amelioration of degraded NGP grasslands and about 5.84 Mg C ha(-1) CO2-equivalent of anthropogenic CO2 emissions has been offset by these grassland soils. PMID:27616184

  9. Estimation of Regional Net CO2 Exchange over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.

    2004-12-01

    Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.

  10. Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available

    SciTech Connect

    Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R.

    1998-12-31

    The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

  11. Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains

    USGS Publications Warehouse

    Macfarlane, P.A.; Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Whittemore, D.O.

    2000-01-01

    An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much older Pleistocene groups. Paleorecharge rates calculated from the Cl concentration in the samples show that recharge rates were at least twice the late Holocene rate during late Pleistocene-early Holocene time, which is consistent with their relative depletion in 16O and D. Noble gas (Ne, Ar, Kr, Xe) temperature calculations confirm that these older samples represent a recharge environment approximately 5??C cooler than late Holocene values. These results are consistent with the global climate models that show a trend toward a warmer, more arid climate during the Holocene. (C) 2000 University of Washington.

  12. Land Surface Product Validation Using the DOE ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Knuteson, R.; Revercomb, H.; Tobin, D.; Osborne, B.

    2003-12-01

    The University of Wisconsin Space Science and Engineering Center (UW-SSEC) is making use of the U.S. Department of Energy Atmospheric Radiation Measurement (DOE ARM) program Southern Great Plains (SGP) site for validation of NASA EOS land surface products. The DOE ARM site covers a 250 km square region that includes most of Oklahoma and southern Kansas. The site is dominated by a mixture of vegetation and bare soil with a vegetation fraction that changes with the growing season. The land use is divided between cattle ranching (permanent pasture) and wheat farming (seasonal). The DOE ARM site provides routine state-of-the-art vertical profile measurements of the atmospheric state. Special radiosonde launches have been conducted by DOE ARM to coincide with overpasses of the NASA Aqua platform. The UW-SSEC has provided ground truth measurements of surface characteristics using a mobile research vehicle (the AERIbago) during several aircraft field campaigns. The UW-SSEC Scanning High-resolution Interferometer Sounder (S-HIS) has provided high altitude observations of the thermal infrared spectrum for comparison to satellite observations. Coincident measurements of ground-based and aircraft observations with AIRS and MODIS satellite observations have been obtained during TX-2001, TX-2002, and IHOP. Preliminary land surface products from AIRS will be compared with MODIS land products and the validation measurements obtained from aircraft and ground-based sensors.

  13. Culture-independent analysis of the soil bacterial assemblage at the Great Salt Plains of Oklahoma

    PubMed Central

    Caton, Ingrid R.; Schneegurt, Mark A.

    2013-01-01

    The Great Salt Plains (GSP) of Oklahoma is a natural inland terrestrial hypersaline environment that forms evaporite crusts of mainly NaCl. Previous work described GSP bacterial assemblages through the phylogenetic and phenetic characterization of 105 isolates from 46 phylotypes. The current report describes the same bacterial assemblages through culture-independent 16S rRNA gene clone libraries. Although from similar hypersaline mud flats, the bacterial libraries from two sites, WP3 and WP6, were quite different. The WP3 library was dominated by cyanobacteria, mainly Cyanothece and Euhalothece. The WP6 library was rich in anaerobic sulfur-cycle organisms, including abundant Desulfuromonas. This pattern likely reflects differences in abiotic factors, such as frequency of flooding and hydrologic push. While more than 100 OTUs were identified, the assemblages were not as diverse, based on Shannon indexes, as bacterial communities from oligohaline soils. Since natural inland hypersaline soils are relatively unstudied, it was not clear what kind of bacteria would be present. The bacterial assemblage is predominantly genera typically found in hypersaline systems, although some were relatives of microbes common in oligohaline and marine environments. The bacterial clones did not reflect wide functional diversity, beyond phototrophs, sulfur metabolizers, and numerous heterotrophs. PMID:21953014

  14. Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development

    PubMed Central

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M. Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world’s best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas. PMID:22848505

  15. Subtask 7.3 - The Socioeconomic Impact of Climate Shifts in the Northern Great Plains

    SciTech Connect

    Jaroslav Solc; Tera Buckley; Troy Simonsen

    2007-12-31

    The Energy & Environmental Research Center (EERC) evaluated the water demand response/vulnerability to climate change factors of regional economic sectors in the northern Great Plains. Regardless of the cause of climatic trends currently observed, the research focused on practical evaluation of climate change impact, using water availability as a primary factor controlling long-term regional economic sustainability. Project results suggest that the Upper Missouri, Red River, and Upper Mississippi Watersheds exhibit analogous response to climate change, i.e., extended drought influences water availability in the entire region. The modified trend suggests that the next period for which the Red River Basin can expect a high probability of below normal precipitation will occur before 2050. Agriculture is the most sensitive economic sector in the region; however, analyses confirmed relative adaptability to changing conditions. The price of agricultural commodities is not a good indicator of the economic impact of climate change because production and price do not correlate and are subject to frequent and irregular government intervention. Project results confirm that high water demand in the primary economic sectors makes the regional economy extremely vulnerable to climatic extremes, with a similar response over the entire region. Without conservation-based water management policies, long-term periods of drought will limit socioeconomic development in the region and may threaten even the sustainability of current conditions.

  16. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  17. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

  18. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  19. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Team [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  20. Site scientific mission plan for the southern great plains CART site, July--December 1995

    SciTech Connect

    Splitt, M.E.; Lamb, P.J.; Sisterson, D.L.

    1995-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs Of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific Priorities for site activities during the six months beginning on July 1, 1995, and looks forward in lesser detail to subsequent six-month periods. The Primary Purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisioned site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as Priorities are adjusted in response to developments in scientific planning and understanding.

  1. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  2. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    SciTech Connect

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  3. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  4. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    SciTech Connect

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  5. Site Scientific Mission Plan for the Southern Great Plains CART site, July--December 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  6. High concentrations of regional dust from deserts to plains across the central Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Munson, S. M.; Fernandez, D. P.; Neff, J. C.

    2015-12-01

    Regional mineral dust in the American Southwest affects snow-melt rates, biogeochemical cycling, visibility, and public health. We measured total suspended particulates (TSP) across a 500-km-long sampling network of five remote sites in Utah and Colorado, USA, forming a gradient in distance from major dust emitting areas. The two westernmost sites on the Colorado Plateau desert had similar TSP concentrations (2008-2012, daily average=126 μg m-3; max. daily average over a two-week period=700 μg m-3 at Canyonlands National Park, Utah), while the easternmost High Plains site, close to cropped and grazed areas in northeastern Colorado, had an average concentration of 143 μg m-3 in 2011-2012 (max. daily average=656 μg m-3). Such concentrations rank comparably with those of TSP in several African and Asian cities in the paths of frequent dust storms. Dust loadings at the two intervening montane sites decreased from the western slope of the Rocky Mountains (Telluride, daily average=68 μg m-3) to an eastern site (Niwot Ridge, daily average=58 μg m-3). Back-trajectory analyses and satellite retrievals indicated that the three westernmost sites received most dust from large desert-source regions as far as 300 km to their southwest. These sources also sometimes sent dust to the two easternmost sites, which additionally captured dust from sources north and northwest of the central Rocky Mountains as well as locally at the Plains site. The PM10 fraction accounted for <15% of TSP, but most TSP is only slightly larger (typical median size, 15-20 μm) after about 100-800 km transport distances. Correlations between TSP and PM10 values indicate increases in both fractions during regional wind storms, especially related to Pacific frontal systems during late winter to late spring. These measurements and observations indicate that most dust deposition and associated air-quality problems in the interior American West are connected to regional dust sources and not to those in

  7. Diversity, seasonality, and context of mammalian roadkills in the southern Great Plains.

    PubMed

    Smith-Patten, Brenda D; Patten, Michael A

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and > 16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50/100 km. Four species were prone to collisions: the Virginia opossum (Didelphis virginiana), nine-banded armadillo (Dasypus novemcinctus), striped skunk (Mephitis mephitis), and northern raccoon (Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79/100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65/100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5 x), winter (1.4x), or summer (1.3x). The spring peak (in kills/100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should focus on

  8. Diversity, Seasonality, and Context of Mammalian Roadkills in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Smith-Patten, Brenda D.; Patten, Michael A.

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum ( Didelphis virginiana), nine-banded armadillo ( Dasypus novemcinctus), striped skunk ( Mephitis mephitis), and northern raccoon ( Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should

  9. Microbial Responses to Forest Management in the Western Gulf Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Foote, J. A.; Boutton, T. W.; Scott, D. A.

    2013-12-01

    Microbial communities are integral components of the biogeochemistry, fertility, and structure of forest soils, and land management practices that alter the microbial environment may influence the long-term sustainability and productivity of forestlands. In 1989 the Long-term Soil Productivity (LTSP) program was initiated to address the National Forest Management Act's concerns over possible losses in soil productivity due to soil disturbance from forest management on National Forest lands. The LTSP program is a network of 62 sites across the USA and Canada that employs the same 3X3 replicated (X3) factorial experimental design consisting of three harvest intensities (bole only, whole tree, whole tree + forest floor removal) with three soil compaction intensities (none, intermediate, severe) and plots that were split for herbicide when the experiment was initiated. Our purpose was to determine the impact of forest harvest intensity, soil compaction, and their interaction on soil microbial biomass C and N (SMB-C, -N) and soil total nitrogen (TN) and soil organic carbon (SOC) storage in a Pinus taeda L. forest 15-years post-treatment at the Davy Crockett National Forest LTSP site in eastern Texas, USA. We quantified SMB-C and -N using the chloroform fumigation extraction method, and TN and SOC by dry combustion. Soils are loamy sand and were sampled 5X during 2011-2012. In each split-plot, five samples were obtained between two living P. taeda stems to a depth of 10-cm and pooled in the field. Because soil compaction, harvest by soil compaction interaction, and herbicide had no effect on the measured soil properties, results are based on repeated measures ANOVA using harvest and time. Both SMB-C and -N were impacted by harvest and varied with time, and SMB-C had a harvest by time interaction. Generally, both microbial indices decreased in the order: bole only >whole tree > whole tree + forest floor. Soil TN and SOC were both higher in the bole only treatment compared

  10. Modeling Irrigation Pumping and Groundwater Depletion in the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Koirala, S.; Yamada, T.; Hanasaki, N.; Yeh, P. J.; Yoshimura, K.; Kanae, S.; Oki, T.

    2011-12-01

    model captures the observed groundwater withdrawals in the highly-monitored principal aquifers in the USA. In the High Plains Aquifer (HPA), which is a major source of groundwater irrigation in the USA, simulated groundwater withdrawal of ~25 km3/yr closely corresponds with the observational record of ~24 km3/yr for the year 2000. Simulated groundwater depletion in the HPA agrees fairly well with the observations from GRACE satellite mission. Closely matching with the observations by the United States Geological Survey (USGS), results indicate that the groundwater levels averaged over the HPA declined by 1.2 m from 2002 to 2007. Moreover, country-based simulated irrigation water requirements and total groundwater withdrawals agree well with the reported country statistics.

  11. Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX, USA

    USGS Publications Warehouse

    Mehta, S.; Fryar, A.E.; Brady, R.M.; Morin, R.H.

    2000-01-01

    Two extensive plumes (combined area > 1000 km2) have been delineated within the Ogallala aquifer in the Southern High Plains, TX, USA. Salinity varies within the plumes spatially and increases with depth; Cl ranges from 50 to >500 mg 1-1. Variable-density flow modeling using SUTRA has identified three broad regions of upward cross-formational flow from the underlying evaporite units. The upward discharge within the modeled plume area is in the range of 10-4-10-5 m3 day-1, and the TDS concentrations are typically >3000 mg 1-1. Regions of increased salinity, identified within the Whitehorse Group (evaporite unit) underlying the Ogallala aquifer, are controlled by the structure and thickness variations relative to the recharge areas. Distinct flow paths, on the order of tens of km to >100 km in length, and varying flow velocities indicate that the salinization of the Ogallala aquifer has been a slow, ongoing process and may represent circulation of waters recharged during Pleistocene or earlier times. On-going pumping has had negligible impact on the salinity distribution in the Ogallala aquifer, although simulations indicate that the velocity distribution in the underlying units may have been affected to depths of 150 m after 30 years of pumping. Because the distribution of saline ground water in this region of the Ogallala aquifer is heterogeneous, careful areal and vertical characterization is warranted prior to any well-field development. (C) 2000 Elsevier Science B.V.Two extensive plumes (combined area >1000 km2) have been delineated within the Ogallala aquifer in the Southern High Plains, TX, USA. Salinity varies within the plumes spatially and increases with depth; Cl ranges from 50 to >500 mg l-1. Variable-density flow modeling using SUTRA has identified three broad regions of upward cross-formational flow from the underlying evaporite units. The upward discharge within the modeled plume area is in the range of 10-4-10-5 m3 day-1, and the TDS concentrations

  12. Behavior of boundary layer ozone and its precursors over a great alluvial plain of the world: Indo-Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Beig, G.; Ali, K.

    2006-12-01

    We investigate the special behavior in the distribution of boundary layer ozone and its precursors over world's most extensive tract of uninterrupted alluvium and intensively farmed zones situated in the foothills of Himalayas as major river basin, known as Indo-Gangetic Plains (IGP). The study makes use of a Chemistry-Transport Model forced with dynamical fields and new emission inventories of pollutants established for 2001. It is found that the IGP region is highly vulnerable to human induced pollutant emissions due to conducive synoptic weather pattern which make it a source regions of ozone precursors within which these tracers remain confined and reinforce photochemical production of ozone. In addition, the continental tropical convergence zone and long range transport play a vital role. As a result, elevated levels of ozone concentration (maximum up to 80 ppbv) and its precursors with cellular structure of spatial variation with large seasonality are noticed.

  13. Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.

    NASA Astrophysics Data System (ADS)

    Chang, Fong-Chiau; Smith, Eric A.

    2001-05-01

    A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the

  14. Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.; Tubbs, J.

    2008-01-01

    Evolution of the mixed and shortgrass prairie of the North American Great Plains is poorly understood because of limited proxies available for environmental interpretations. Buried soils in the Great Plains provide a solution to the problem because they are widespread both spatially and temporally with their organic reservoirs serving as a link to the plants than once grew on them. Through stable carbon isotopic analysis of soil organic carbon (??13C), the percent carbon from C4 plants (%C4) can be ascertained. Because C4 plants are primarily warm season grasses responding positively to summer temperature, their representation has the added advantage of serving as a climate indicator. To better understand grassland and climate dynamics in the Great Plains during the last 12 ka (ka=1000 radiocarbon years) we developed an isotopic standardization technique by: determining the difference in buried soil ??13C and modern soil ??13C expected for that latitude (????13C), and transferring the ????13C to ??%C4 (% C4) using mass balance calculations. Our analysis reveals two isotopic stages in the mixed and shortgrass prairie of the Great Plains based on trends in ??%C4. In response to orbital forcing mechanisms, ??%C4 was persistently below modern in the Great Plains between 12 and 6.7 ka (isotopic stage II) evidently because of the cooling effect of the Laurentide ice sheet and proglacial lakes in northern latitudes, and glacial meltwater pulses cooling the Gulf of Mexico and North Atlantic Ocean. The ??%C4 after 6.7 ka (isotopic stage I) increased to modern levels as conditioned by the outflow of warm, moist air from the Gulf of Mexico and dry incursions from the west that produced periodic drought. At the millennial-scale, time series analysis demonstrates that ??%C4 oscillated with 0.6 and 1.8 ka periodicities, possibly governed by variations in solar irradiance. Our buried soil isotopic record correlates well with other environmental proxy from the Great Plains and

  15. Buteo Nesting Ecology: Evaluating Nesting of Swainson’s Hawks in the Northern Great Plains

    PubMed Central

    Inselman, Will M.; Datta, Shubham; Jenks, Jonathan A.; Jensen, Kent C.; Grovenburg, Troy W.

    2015-01-01

    Swainson’s hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson’s hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson’s hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%–42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson’s hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson’s hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson’s hawks arriving to the breeding grounds. PMID:26327440

  16. Energy and Water Fluxes across a Heterogeneous Landscape in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bagley, J. E.; Williams, I. N.; Kueppers, L. M.; Lu, Y.; Torn, M. S.; Biraud, S.

    2015-12-01

    Fluxes of energy and water between the atmosphere and the land surface influence weather and climate. These fluxes depend on the state of the landscape, which contributes to differences in land-atmosphere coupling strength over space and time. One region with potentially strong land-atmosphere coupling is the Southern Great Plains (SGP) in North America. In this region, managed vegetation plays a key role in moderating the surface energy through effects on surface albedo, transpiration, precipitation interception, and other surface properties. However accurately modeling these effects is challenging because the vegetation in this region is very heterogeneous. Winter wheat is the dominant crop, but pasture, hayfields, corn, and recently introduced crops such as canola cover significant portions of the landscape as well. Winter wheat has a unique phenology with fall planting, maximum leaf area in late spring, and harvest in early summer. This phenology contrasts significantly with most other crops and with pastures and hayfields in the region, which have more typical spring-fall growing seasons. Therefore, to sufficiently model and assess land-atmosphere interactions in this region accurate characterization of differences in the seasonality of water and energy fluxes between vegetation types are necessary. We used observations including eddy covariance flux estimates, soil moisture data, state-of-the-art longwave and shortwave radiation measurements, and other observations available for several facilities within the SGP Atmospheric Radiation Measurement (ARM) site in north-central Oklahoma and southern Kansas. We compared the timing and variations in fluxes of water and energy between winter wheat and other land cover types, focusing on vegetation influences on rates of soil dry-down following precipitation events. We found distinct differences in fluxes between winter wheat and other land types. These flux differences had a nonlinear dependency on disparities in

  17. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    PubMed

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds. PMID:26327440

  18. Efficacy of Aerosol-Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes

    SciTech Connect

    Dunn, M.; Schwartz, S.; Kim, B.-G.; Miller, M.; Liu, Y.; Min, Q.

    2008-03-10

    Several studies have demonstrated that cloud dynamical processes such as entrainment mixing may be the primary modulator of cloud optical properties in certain situations. For example, entrainment of dry air alters the cloud drop size distribution by enhancing drop evaporation. However, the effect of entrainment mixing and other forms or turbulence is still quite uncertain. Although these factors and aerosol-cloud interactions should be considered together when evaluating the efficacy of aerosol indirect effects, the underlying mechanisms appear to be dependent upon each other. In addition, accounting for them is impossible with the current understanding of aerosol indirect effect. Therefore, careful objective screening and analysis of observations are needed to determine the extent to which mixing related properties affect cloud optical properties, apart from the aerosol first indirect effect. This study addresses the role of aerosol-cloud interactions in the context of varying meteorological conditions based on ARM data obtained at the Southern Great Plains (SGP) site in Oklahoma and at Pt. Reyes, California. Previous analyses of the continental stratiform clouds at the SGP site have shown that the thicker clouds of high liquid water path (LWP) tend to contain sub adiabatic LWPs. These sub adiabatic LWPs, which result from active mixing processes, correspond to a lower susceptibility of the clouds to aerosol-cloud interactions, and, hence, to reduced aerosol indirect effects. In contrast, the consistently steady and thin maritime stratus clouds observed at Pt. Reyes are much closer to adiabatic. These clouds provide an excellent benchmark for the study of the aerosol influence on modified marine clouds relative to continental clouds, since they form in a much more homogeneous meteorological environment than those at the continental site.

  19. Eco-Efficiency Model for Evaluating Feedlot Rations in the Great Plains, United States.

    PubMed

    Hengen, Tyler J; Sieverding, Heidi L; Cole, Noel A; Ham, Jay M; Stone, James J

    2016-07-01

    Environmental impacts attributable to beef feedlot production provide an opportunity for economically linked efficiency optimization. Eco-efficiency models are used to optimize production and processes by connecting and quantifying environmental and economic impacts. An adaptable, objective eco-efficiency model was developed to assess the impacts of dietary rations on beef feedlot environmental and fiscal cost. The hybridized model used California Net Energy System modeling, life cycle assessment, principal component analyses (PCA), and economic analyses. The model approach was based on 38 potential feedlot rations and four transportation scenarios for the US Great Plains for each ration to determine the appropriate weight of each impact. All 152 scenarios were then assessed through a nested PCA to determine the relative contributing weight of each impact and environmental category to the overall system. The PCA output was evaluated using an eco-efficiency model. Results suggest that water, ecosystem, and human health emissions were the primary impact category drivers for feedlot eco-efficiency scoring. Enteric CH emissions were the greatest individual contributor to environmental performance (5.7% of the overall assessment), whereas terrestrial ecotoxicity had the lowest overall contribution (0.2% of the overall assessment). A well-balanced ration with mid-range dietary and processing energy requirements yielded the most eco- and environmentally efficient system. Using these results, it is possible to design a beef feed ration that is more economical and environmentally friendly. This methodology can be used to evaluate eco-efficiency and to reduce researcher bias of other complex systems. PMID:27380071

  20. Grassland and Cropland Net Ecosystem Production of the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Howard, D. M.; Wylie, B. K.; Ji, L.; Gilmanov, T. G.; Zhang, L.

    2014-12-01

    At observation sites throughout the world, carbon dioxide (CO2) levels and other ecosystem resources are measured by instruments known as flux towers. Although flux towers only measure the surrounding vicinity or spatial footprint of their placement ecosystem, the data recorded at these towers can be up-scaled to much greater levels through the use of comprehensive remote sensing data and advanced computer modeling. The purpose of this study was to develop ecological net ecosystem production (NEP) models capable of producing weekly cropland and grassland NEP maps of the U.S. Great Plains at 250 meter resolution for 2000 - 2008. Separate NEP regression tree models were developed for each land cover type (cropland and grassland) with 15 flux towers supporting the grassland model and 13 towers supporting the cropland model. The NEP regression tree models were established through training based on data from the supporting flux towers, remote sensing data, and other biogeophysical inputs. Map results of this study indicate, as anticipated, grassland ecosystems generally perform as net carbon (C) sinks, absorbing and storing C from the atmosphere, and conversely, croplands generally as net C sources (crop yields were not taken into account), releasing C, in the form of CO2, into the atmosphere. The models were evaluated by implementing a leave-one-out cross validation method, which withholds data form one particular year or site for testing a model developed with the remaining data. The cropland model validation analysis received an average Pearson's correlation coefficient (r) of 0.85 for the yearly validation and an average r = 0.73 for the site withholding. The grassland model validation analysis received an average r = 0.86 for the yearly validation and an average r = 0.83 for the site withholding.

  1. Soil moisture anomalies and convection: investigation using ground-based measurements at US Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    Soil moisture is one of the key factors modulating the atmospheric boundary layer and thus the climate system. In this study, we use ground-based measurements to investigate the mechanism by which soil moisture anomalies affect clouds and precipitation. From decade-long warm season observation by Department of Energy Atmospheric Radiation Measurement at Southern Great Plains, we carefully select daytime weather regimes that are strongly coupled with land-surface processes such as clear-sky dry convection days, forced and active non-precipitating shallow cumuli days, and late-afternoon deep convective raining days (Zhang and Klein, 2010 and 2013). Based on this framework, we statistically assess: 1) the differences in soil moisture and surface heterogeneity between different convective regimes; and 2) the variances of the associated effects on surface and boundary layer meteorological conditions inside each convective regime. A specific question will be: under different soil moisture conditions, e.g. wet/dry, which convective weather regime will be favored and how this is related to large-scale environmental factors, such as free-troposphere stability and humidity? The answer to this question will improve our understanding of how soil moisture impacts boundary layer turbulence and thermodynamics, and influences the convection triggering and maintenance and their feedbacks on soil moisture, thus establish a link between soil moisture and convection at the process level. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675737

  2. Land Surface Phenologies in the North American Great Plains: Detecting Climate Change Amidst Climate Variation

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Goodin, D. G.

    2004-12-01

    The continental climate of the North American Great Plains is characterized by high interannual variability in growing season weather. Local averages of temperature and precipitation are not very helpful for predicting expected growing season conditions for vegetation production. We examined the temperature and precipitation records from a network of 'sentinel' weather stations across Kansas, Nebraska, and South Dakota. We assigned these stations into one or more of Wendland and Bryson's airstream regions (ASRs). For each station for each year, we calculated the day of year that the accumulated growing degree-days using a base of 0 oC reaches particular thermal thresholds. We call these Threshold Arrival Dates (TADs). Within each ASR we analyzed the station time series of TADs for two thermal thresholds--at the beginning and at the middle of the growing season for C4 grasses--using 30 year moving averages and Mann-Kendall trend tests. We found that the interannual variation of the onset of the growing season for C4 has increased over the period of record and especially in the last 30 years. At the same time, the central tendencies of the TADs have not changed significantly over the period of record. We also analyzed the TAD series using frequency domain analyses to identify characteristic periodicities. The spectral densities of the TADs point to possible linkages with climate modes. Finally, using the NASA Pathfinder AVHRR Land NDVI dataset, we demonstrate how to interpret the land surface phenologies revealed by synoptic sensors within the broader context of the regions' climatic envelopes.

  3. Meteorological contribution to the mitigation and adaptation of the 'extreme water events' of Hungarian Great Plain

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Vincze, E.; Moring, A.

    2012-04-01

    The lack of water is a traditional problem of Hungarian agriculture. Two big rivers cross the territory of Hungary and times to times they produce huge floods. In the Carpathian basin a flood and a drought can occur in the same year. The general problem of Hungarian agriculture is the 'water' in two contexts, in lack of water and in surplus. Not only of the next year but of the next decades the basic question of the Hungarian planning is how the national economy can handle the increasing numbers of unexpected negative events of climate change because the growing numbers of sometimes catastrophic floods and droughts seems to be connected with global warming. Beside the 'normal floods' in the last few years the numbers of so called flash floods show increasing tendency too. The presentation summarises the 'extreme water events' of Hungarian Great Plain, and the forecast problems of Hungarian meteorology together with the National strategy in mitigation and adaptation in connection with climate change. From meteorological point of view the handling of flood and drought problem is totally different. In case of flood the stress is on the forecast, in case of drought mainly of the evaluation of the historical data mainly the short and long term evaluation of drought indices. Drought indices seem to be the simplest tools in drought analysis. The more or less well known and popular indices have been collected and compared not only with the well known simple but more complicated water balance and so called 'recursive' indices beside few ones use remotely sensed data, mainly satellite born information. The indices are classified into five groups, namely 'precipitation', 'water balance', 'soil moisture', 'recursive' and 'remote sensing' indices. For every group typical expressions are given and the possible use in the decision making and hazard risk evaluation and compensation of the farmers after the events. The meteorological elements of new Hungarian agricultural risk

  4. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  5. Implications of invasion by Juniperus virginiana on small mammals in the southern Great Plains

    USGS Publications Warehouse

    Horncastle, V.J.; Hellgren, E.C.; Mayer, P.M.; Ganguli, A.C.; Engle, David M.; Leslie, David M., Jr.

    2005-01-01

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examined effects of invasion by eastern red cedar on small mammals in 3 plant communities (tallgrass prairie, old field, and cross-timbers forest) in the cross-timbers ecoregion in Oklahoma. We sampled small mammals seasonally from May 2001 to August 2002 by using Sherman live traps and mark-recapture techniques on 3.24-ha, 450-trap grids in each plant community. We sampled vegetation in two hundred twenty-five 12 x 12-m cells within each grid. The structure of the small-mammal community differed among the 3 habitat types, with higher species diversity and richness in the tallgrass-prairie and old-field sites. Overall, the small-mammal community shifted along a gradient of increasing eastern red cedar. In the old-field and tallgrass-prairie plots, occurrence of grassland mammals decreased with increasing red cedar, whereas only 1 woodland mammal species increased. In the cross-timbers forest site, percent woody cover (<1 m in height), rather than cover of red cedar, was the most important factor affecting woodland mammal species. Examination of our data suggests that an increase in overstory cover from 0% to 30% red cedar can change a species-rich prairie community to a depauperate community dominated by 1 species, Peromyscus leucopus. Losses in species diversity and changes in mammal distribution paralleled those seen in avian communities invaded by eastern red cedar. Our results highlight ecological effects of invasion by eastern red cedar on diversity and function at multiple trophic levels. ?? 2005 American Society of Mammalogists.

  6. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even

  7. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  8. Investigating Compositional Variation of Ceramic Materials during the Late Neolithic on the Great Hungarian Plain - Preliminary LA-ICP-MS Results

    NASA Astrophysics Data System (ADS)

    Riebe, Danielle J.; Niziolek, Lisa C.

    2015-10-01

    Investigations have been undertaken to assess the extent to which compositional analysis can be used to determine trade and interaction on the Great Hungarian Plain during the Late Neolithic. Ceramic and clay samples in the Körös and Berettyó River Basins were analyzed at the Elemental Analysis Facilities (EAF) at The Field Museum of Natural History in Chicago, IL, USA. With the use of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), the aim of the project was to ascertain if micro-regional or site-specific compositional signatures could be determined in a region that is typically characterized as highly geologically homogenous. Identifying site-specific signatures enables archaeologists to model prehistoric interactions and, in turn, determine the relationship between interaction and various socio-cultural changes. This paper focuses on the preliminary compositional results of materials analyzed from three different sites across the Plain and the methodological implications for future anthropological research in the region.

  9. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains.

    PubMed

    Vogel, Jason R; Moore, Trisha L; Coffman, Reid R; Rodie, Steven N; Hutchinson, Stacy L; McDonough, Kelsey R; McLemore, Alex J; McMaine, John T

    2015-09-01

    Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management. PMID:26961478

  10. Applied regional monitoring of the vernal advancement and retrogradation (Green wave effect) of natural vegetation in the Great Plains corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Deering, D. W.; Haas, R. H.; Welch, R. I.; Harlan, J. C.; Whitney, P. R.

    1977-01-01

    The author has identified the following significant results. LANDSAT 2 has shown that digital data products can be effectively employed on a regional basis to monitor changes in vegetation conditions. The TV16 was successfully applied to an extended test site and the Great Plains Corridor in tests of the ability to assess green forage biomass on rangelands as an index to vegetation condition. A strategy for using TV16 on a regional basis was developed and tested. These studies have shown that: (1) for rangelands with good vegetative cover, such as most of the Great Plains, and which are not heavily infested with brush or undesirable weed species, the LANDSAT digital data can provide a good estimate (within 250 kg/ha) of the quantity of green forage biomass, and (2) at least five levels of pasture and range feed conditions can be adequately mapped for extended regions.

  11. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; and others

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  12. Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Wagner, Lara S.; Long, Maureen D.

    2013-10-01

    The Pacific Northwest (PNW) has experienced voluminous intraplate volcanism over the past ˜17 Ma, beginning with the Steens/Columbia River flood basalts and continuing with the still-ongoing volcanism in the High Lava Plains (HLP) and eastern Snake River Plain (SRP). Here we present two complementary datasets (SKS splitting and Rayleigh wave phase velocity anisotropy) that place constraints on the anisotropic structure of the upper mantle beneath the HLP and SRP regions. Beneath the HLP, SKS phases reveal dominantly E-W fast splitting directions and large (up to ˜2.7 s) delay times, with pronounced lateral variations in δt. Lateral and depth variability in the strength of anisotropy beneath the HLP is also evident from Rayleigh wave dispersion. Beneath the SRP, SKS splitting delay times are much smaller (˜0.5 s), and surface wave observations suggest a region of upper mantle anisotropy (˜50-150 km depth) with a geometry that deviates significantly from the generally plate motion parallel fast directions observed just outside of the SRP. Beneath the HLP, the geometry of the anomalously strong anisotropy is similar to the anisotropy in the deeper parts of the upper mantle, resulting in constructive interference and large SKS splitting delay times. Beneath the SRP, the geometry of the anomalous anisotropic region in the shallow mantle is different, resulting in destructive interference and reduced SKS splitting delay times. We discuss several possible explanations for these observations, including variations in olivine lattice-preferred orientation (LPO) strength, transitions in olivine fabric type, and a contribution from aligned partial melt.

  13. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  14. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative

  15. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    NASA Astrophysics Data System (ADS)

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; McMurry, Peter H.; Smith, James N.; Pierce, Jeffery R.

    2016-07-01

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters ˜ 1 to 30-100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid-base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth

  16. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands

    USGS Publications Warehouse

    Zhang, L.; Wylie, B.; Loveland, T.; Fosnight, E.; Tieszen, L.L.; Ji, L.; Gilmanov, T.

    2007-01-01

    Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results. In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub

  17. EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

    SciTech Connect

    Joseph H. Hartman

    1999-09-01

    This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern

  18. Radioactivity and uranium content of some Cretaceous shales, central Great Plains

    USGS Publications Warehouse

    Tourtelot, Harry A.

    1955-01-01

    The Sharon Springs member of the Pierre shale of Cretaceous age, a hard black organic-rich shale similar to the Chattanooga shale, is radioactive throughout central and western South Dakota, most of Nebraska, northern Kansas, and northeastern Colorado. In the Missouri River valley, thin beds of the shale contain as much as 0.01 percent uranium. Beds as much as 20 feet thick or more have a radioactivity of about 0.01 percent equivalent uranium in southwestern Nebraska according to interpretation of gamma-ray well logs. The radioactivity and uranium content is highest in the Missouri River valley in South Dakota and in southwestern Nebraska where the shale rests disconformably on the underlying Niobrara formation of Cretaceous age. Near the Black Hills, and in the area to the north, the shale of the Sharon Springs member rests on a wedge of the Gammon ferruginous member of the Pierre, which is represented by a disonformity to the east and south, and the radioactivity of the shale is low although greater than that of over-lying strata. The shale also contains a suite of trace elements in which arsenic, boron, chromium, copper, molybdenum, nickel, selenium, and vanadium are conspicuous. Molybdenum and tin are less abundant in the Sharon Springs than in similar shales of Palezoic age and silver and selenium are more abundant. In the Great Plains region, the upper 30-50 feet of Cretaceous shales overlain unconformably by the White River group of Oligocene age has been altered to bright-colored material. This altered zone is chiefly the result of pre-Oligocene weathering although post-Oligocene ground water conditions also have affected the zone. The greatest radioactivity occurs in masses of unaltered shale measuring about 1 x 4 feet in cross section included in the lower part of the altered zone. Where the zone is developed on shale and marl of the Niobrara formation, parts of the included unaltered shale contains as much as 0.1 percent equivalent uranium and 0

  19. Observational Evaluation of Simulated Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.

    2014-12-01

    In a recent study of observed features of land-atmosphere coupling (LAC) at the ARM Southern Great Plains (ARM SGP) site in northern Oklahoma (Phillips and Klein, 2014 Journal of Geophysical Research), we identified statistically significant interactions between 1997-2008 summertime daily averages of soil moisture (at 10 cm depth) and a number of surface atmospheric variables, such as surface evaporation, relative humidity, and temperature. Here we will report on an evaluation of similar features of LAC simulated by version 5 of the global Community Atmosphere Model (CAM5), coupled to its native CLM4 land model, and downscaled to the vicinity of the ARM SGP site. In these case studies, the CAM5 was initialized from a 6-hourly atmospheric reanalysis for each day of the years 2008 and 2009 (where the CLM4 land state was equilibrated to the atmospheric model state), thus permitting a close comparison of the modeled and observed summer daily average features of the LAC in these years. Correlation coefficients R and "sensitivity indices" I (a measure of the comparative change of an atmospheric variable for a one-standard-deviation change in soil moisture) provided quantitative measures of the respective coupling strengths. Such a comparison of observed versus modeled LAC is complicated by differences in atmospheric forcings of the land; for example, the CAM5's summertime precipitation is too scant, and thus the model's upper soil layer often is drier than observed. The modeled daily average covariations of soil moisture with lower atmospheric variables also display less coherence (lower R values), but sometimes greater "sensitivity" (higher I values) than are observed at the ARM SGP site. Since the observational estimate of LAC may itself be sensitive to soil moisture measurement biases, we also will report on a planned investigation of the dependence of LAC on several alternative choices of soil moisture data sets local to the ARM SGP site. AcknowledgmentsThis work was

  20. Linking suspended sediment transport metrics with fish functional traits in the Northwestern Great Plains (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.; Simon, A.; Klimetz, L.

    2009-12-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning

  1. Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Riskin, M.L.; Szabo, Z.; Reilly, P.A.; Rosman, R.; Bonin, J.L.; Fischer, J.M.; Heckathorn, H.A.

    2010-01-01

    The upper Great Egg Harbor River watershed in New Jersey's Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006-2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river's flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils. ?? 2010 US Government.

  2. Large-eddy simulation of the nighttime boundary layer over the US Great Plains for wind energy applications

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Chow, F. K.

    2011-12-01

    The Great Plains in the central part of the United States hosts enormous wind resources. Low-level jets (LLJ) frequently occur at nighttime over the Great Plains within 300 m above the surface, often lower. The enhanced near-surface winds due to the LLJ provide great opportunities for wind energy capture, however, the nighttime stable boundary layer (SBL) is associated with various atmospheric processes including internal gravity waves, Kelvin-Helmholtz (KH) shear instabilities and turbulence events. Those processes can often disrupt wind turbine operations, lead to blade fatigues, and shorten turbine lifetime. Therefore, the ability to forecast nighttime boundary layer flow is useful for wind farm operators. In this study, nested large eddy-simulations (LES) are performed over the site where the Cooperative Atmospheric-Surface Exchange Study (CASES-99) field experiment took place, near Leon, Kansas. The night of Oct 5-6 (IOP2 of CASES-99) is chosen to represent a typical intermittently turbulent night over the Great Plains. Two turbulent bursting events in the SBL are identified. The former is associated with an easterly propagating density current. The latter is caused by shear induced KH instability. Simulations are initialized with North American Regional Reanalysis (NARR) on 32 km grids, and one-way nested to a very fine grid with 16 m horizontal spacing. The conventional TKE-1.5 and dynamic reconstruction turbulence models are used to compare the quality of simulations. While both closures predict the first event with great precision at 16 m scale, only the dynamic reconstruction model (DRM) is able to sustain intermittent turbulence and predict the second bursting event.

  3. Refining Rural Spaces: Women and Vernacular Gentility in the Great Plains, 1880-1920

    ERIC Educational Resources Information Center

    Radke, Andrea G.

    2004-01-01

    In 1887 the Plains photographer Solomon Butcher met the David Hilton family in Custer County, Nebraska. Mrs. Hilton desired a photograph to send to relatives back East, but felt embarrassed by the family's sod dwelling. She insisted that Butcher not take a photo of the house, but asked the men to drag the Hiltons' beautiful new pump organ out into…

  4. Yield and Agronomic Traits of Waxy Proso in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proso millet (Panicum miliaceum L.) is a summer annual grass that is capable of producing grain in 60 to 90 days. This characteristic, and its efficient use of water, makes it well suited short, and often hot and dry, growing season in the high plains of Kansas, Nebraska, Colorado, Wyoming, and the ...

  5. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess primary productivity responses to increases in precipitation amount and altered rainfall patterns, we conducted an experiment in 2011 and 2012 in shortgrass prairie (SGP; C4 dominated; Central Plains Experimental Grassland), northern mixed grass prairie (NMP; C3 dominated; Fort Keogh Lives...

  6. Dynamic topography of the western Great Plains: landscape evidence for mantle-driven uplift associated with the Jemez lineament of NE New Mexico and SE Colorado

    NASA Astrophysics Data System (ADS)

    Nereson, A. L.; Karlstrom, K. E.; McIntosh, W. C.; Heizler, M. T.; Kelley, S. A.; Brown, S. W.

    2011-12-01

    Dynamic topography results when viscous stresses created by flow within the mantle are transmitted through the lithosphere and interact with, and deform, the Earth's surface. Because dynamic topography is characterized by low amplitudes and long wavelengths, its subtle effects may be best recorded in low-relief areas such as the Great Plains of the USA where they can be readily observed and measured. We apply this concept to a unique region of the western Great Plains in New Mexico and Colorado where basalt flows of the Jemez lineament (Raton-Clayton and Ocate fields) form mesas (inverted topography) that record the evolution of the Great Plains surface through time. This study uses multiple datasets to evaluate the mechanisms which have driven the evolution of this landscape. Normalized channel steepness index (ksn) analysis identifies anomalously steep river gradients across broad (50-100 km) convexities within a NE- trending zone of differential river incision where higher downstream incision rates in the last 1.5 Ma suggest headwater uplift. At 2-8 Ma timescales, 40Ar/39Ar ages of basalt-capped paleosurfaces in the Raton-Clayton and Ocate volcanic fields indicate that rates of denudation increase systematically towards the NW from a NE-trending zone of approximately zero denudation (that approximately coincides with the high ksn zone), also suggestive of regional warping above the Jemez lineament. Onset of more rapid denudation is observed in the Raton-Clayton field beginning at ca. 3.6 Ma. Furthermore, two 300-400-m-high NE-trending erosional escarpments impart a staircase-like topographic profile to the region. Tomographic images from the EarthScope experiment show that NE-trending topographic features of this region correspond to an ~8 % P-wave velocity gradient of similar trend at the margin of the low-velocity Jemez mantle anomaly. We propose that the erosional landscapes of this unique area are, in large part, the surface expression of dynamic mantle

  7. Management Practices Impact on Soil Nitrous Oxide Emission in the Northern Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices may influence soil N2O emission, a greenhouse gas responsible for global warming. The effects of irrigation, tillage, crop rotation, and N fertilization were evaluated on soil surface N2O flux and soil temperature and water content at the 0- to 15-cm depth from April to November...

  8. The Economic Impact of Universities in Non-Metropolitan Areas of the Great Plains, USA

    ERIC Educational Resources Information Center

    Falconer, John

    2007-01-01

    Public universities cite their economic impact to help justify state financial support, but the literature offers no comprehensive theory that can guide analysis of such claims. This research used qualitative methodology to complement the ubiquitous economic impact studies, and showed that mission, leadership and geography determine how public…

  9. Double- and relay-cropping of energy crops in the northern Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a growing developing world, innovative cropping systems are necessary to obtain continuous and sustainable supplies of food, feed, fuel, and bio-based products. Double- and relay- cropping systems are an option to produce biofuels, food, and biomass feedstock in a single season on the same land w...

  10. Climate change impacts on dryland cropping systems in the central Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...

  11. Importance of agricultural landscapes to nesting burrowing owls in the Northern Great Plains, USA

    USGS Publications Warehouse

    Restani, M.; Davies, J.M.; Newton, W.E.

    2008-01-01

    Anthropogenic habitat loss and fragmentation are the principle factors causing declines of grassland birds. Declines in burrowing owl (Athene cunicularia) populations have been extensive and have been linked to habitat loss, primarily the decline of black-tailed prairie dog (Cynomys ludovicianus) colonies. Development of habitat use models is a research priority and will aid conservation of owls inhabiting human-altered landscapes. From 2001 to 2004 we located 160 burrowing owl nests on prairie dog colonies on the Little Missouri National Grassland in North Dakota. We used multiple linear regression and Akaike's Information Criterion to estimate the relationship between cover type characteristics surrounding prairie dog colonies and (1) number of owl pairs per colony and (2) reproductive success. Models were developed for two spatial scales, within 600 m and 2,000 m radii of nests for cropland, crested wheatgrass (Agropyron cristatum), grassland, and prairie dog colonies. We also included number of patches as a metric of landscape fragmentation. Annually, fewer than 30% of prairie dog colonies were occupied by owls. None of the models at the 600 m scale explained variation in number of owl pairs or reproductive success. However, models at the 2,000 m scale did explain number of owl pairs and reproductive success. Models included cropland, crested wheatgrass, and prairie dog colonies. Grasslands were not included in any of the models and had low importance values, although percentage grassland surrounding colonies was high. Management that protects prairie dog colonies bordering cropland and crested wheatgrass should be implemented to maintain nesting habitat of burrowing owls. ?? 2008 Springer Science+Business Media B.V.

  12. Sudden Extinction of the Dinosaurs: Latest Cretaceous, Upper Great Plains, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sheehan, Peter M.; Fastovsky, David E.; Hoffmann, Raymond G.; Berghaus, Claudia B.; Gabriel, Diane L.

    1991-11-01

    Results of a three-year field study of family-level patterns of ecological diversity of dinosaurs in the Hell Creek Formation of Montana and North Dakota show no evidence (probability P < 0.05) of a gradual decline of dinosaurs at the end of the Cretaceous. Stratigraphic reliability was maintained through a tripartite division of the Hell Creek, and preservational biases were corrected for by comparison of results only from similar facies as well as through the use of large-scale, statistically rigorous survey and collection procedures. The findings are in agreement with an abrupt extinction event such as one caused by an asteroid impact.

  13. Sudden extinction of the dinosaurs: latest Cretaceous, upper Great Plains, USA.

    PubMed

    Sheehan, P M; Fastovsky, D E; Hoffmann, R G; Berghaus, C B; Gabriel, D L

    1991-11-01

    Results of a three-year field study of family-level patterns of ecological diversity of dinosaurs in the Hell Creek Formation of Montana and North Dakota show no evidence (probability P < 0.05) of a gradual decline of dinosaurs at the end of the Cretaceous. Stratigraphic reliability was maintained through a tripartite division of the Hell Creek, and preservational biases were corrected for by comparison of results only from similar fades as well as through the use of large-scale, statistically rigorous survey and collection procedures. The findings are in agreement with an abrupt extinction event such as one caused by an asteroid impact. PMID:11536489

  14. Toxicity of a glufosinate- and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA.

    PubMed

    Dinehart, Simon K; Smith, Loren M; McMurry, Scott T; Anderson, Todd A; Smith, Philip N; Haukos, David A

    2009-01-15

    Pesticide toxicity is often proposed as a contributing factor to the world-wide decline of amphibian populations. We assessed acute toxicity (48 h) of a glufosinate-based herbicide (Ignite 280 SL) and several glyphosate-based herbicide formulations (Roundup WeatherMAX, Roundup Weed and Grass Killer Super Concentrate, Roundup Weed and Grass Killer Ready-To-Use Plus on two species of amphibians housed on soil or moist paper towels. Survival of juvenile Great Plains toads (Bufo cognatus) and New Mexico spadefoots (Spea multiplicata) was reduced by exposure to Roundup Weed and Grass Killer Ready-To-Use Plus on both substrates. Great Plains toad survival was also reduced by exposure to Roundup Weed and Grass Killer Super Concentrate on paper towels. New Mexico spadefoot and Great Plains toad survival was not affected by exposure to the two agricultural herbicides (Roundup WeatherMAX and Ignite 280 SL) on either substrate, suggesting that these herbicides likely do not pose an immediate risk to these species under field conditions. PMID:19000631

  15. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    DOE PAGESBeta

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; et al

    2016-07-28

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid–base chemistrymore » in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  16. Coastal morphodynamics and Chenier-Plain evolution in southwestern Louisiana, USA: A geomorphic model

    NASA Astrophysics Data System (ADS)

    McBride, Randolph A.; Taylor, Matthew J.; Byrnes, Mark R.

    2007-08-01

    Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges ("cheniers") that have elevations of up to 4 m. In this study, the term "ridge" is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251-263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km 2) composed of three second-order features (30 to 300 km 2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach

  17. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  18. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  19. The role of upper tropospheric jet streaks and lee-side cyclogenesis in the development of low level jets in the great plains

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.

    1980-01-01

    A review of 15 cases of low level jets (LLJ) which developed in the Great Plains is presented. For 12 out of the 15 cases, a systematic upper level flow pattern was isolated which includes the existence of a trough over the southwest United States and the propagation of upper level jet streaks from the Rocky Mountains toward the Great Plains. This flow pattern is responsible for lee side cyclogenesis or lee side troughing that produces the pressure gradients needed for the development of the LLJ. For the other three cases, a blocking ridge existed over the Great Plains and the upper level flow is relatively weak. It is during these situations that the classic, diurnal oscillating LLJ was observed. A more detailed review of four cases indicates that the subsynoptic scale adjustments associated with the upper level jet streak's forcing of lee side cyclogenesis could be an important factor in the development of LLJ's in the Great Plains.

  20. Spatial and Temporal Effects on Switchgrass Stands and Yield in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is being developed into a perennial, herbaceous, cellulosic feedstock crop for use in temperate regions of the USA. Information on spatial and temporial variation for stands and biomass yield among and within fields in large agroecoregions is not available. Spatial...

  1. The Pearlette family ash beds in the Great Plains: Finding their identities and their roots in the Yellowstone country

    USGS Publications Warehouse

    Wilcox, R.E.; Naeser, C.W.

    1992-01-01

    For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.

  2. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    SciTech Connect

    Gill, Thomas E.; Stout, John E.; Peinado, Porfirio

    2009-03-10

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated during dust storms and in the coarse mode; sulfur dominated during anthropogenic pollution episodes and in the fine mode. A mixture of both aerosol types was present even during 'clear' conditions. The Al/Si ratio in dust events increases with wind speed. These data provide an initial assessment of aerosol chemistry in the West Texas plains.

  3. Associations of grassland bird communities with black-tailed prairie dogs in the North American Great Plains.

    PubMed

    Augustine, David J; Baker, Bruce W

    2013-04-01

    Colonial burrowing herbivores can modify vegetation structure, create belowground refugia, and generate landscape heterogeneity, thereby affecting the distribution and abundance of associated species. Black-tailed prairie dogs (Cynomys ludovicianus) are such a species, and they may strongly affect the abundance and composition of grassland bird communities. We examined how prairie dog colonies in the North American Great Plains affect bird species and community composition. Areas occupied by prairie dogs, characterized by low percent cover of grass, high percent cover of bare soil, and low vegetation height and density, supported a breeding bird community that differed substantially from surrounding areas that lacked prairie dogs. Bird communities on colony sites had significantly greater densities of large-bodied carnivores (Burrowing Owls [Athene cunicularia], Mountain Plovers, [Charadrius montanus], and Killdeer [Charadrius vociferus]) and omnivores consisting of Horned Larks (Eremophila alpestris) and McCown's Longspurs (Rhynchophanes mccownii) than bird communities off colony sites. Bird communities off colony sites were dominated by small-bodied insectivorous sparrows (Ammodramus spp.) and omnivorous Lark Buntings (Calamospiza melanocorys), Vesper Sparrows (Pooecetes gramineus), and Lark Sparrows (Chondestes grammacus). Densities of 3 species of conservation concern and 1 game species were significantly higher on colony sites than off colony sites, and the strength of prairie dog effects was consistent across the northern Great Plains. Vegetation modification by prairie dogs sustains a diverse suite of bird species in these grasslands. Collectively, our findings and those from previous studies show that areas in the North American Great Plains with prairie dog colonies support higher densities of at least 9 vertebrate species than sites without colonies. Prairie dogs affect habitat for these species through multiple pathways, including creation of belowground

  4. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang

    2012-01-01

    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.

  5. Impact of agroecosystems on groundwater resources in the Central High Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystems impact water resources by changing water partitioning at the land surface and by consuming most fresh water through irrigation. The study assesses impacts of agroecosystems on groundwater resources in the Texas High Plains (37,000 km2 area). Borehole samples beneath different agroecos...

  6. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated duri...

  7. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains.

    PubMed

    Grogan, Sarah M; Brown-Guedira, Gina; Haley, Scott D; McMaster, Gregory S; Reid, Scott D; Smith, Jared; Byrne, Patrick F

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011-2012 and 2012-2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  8. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  9. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus. PMID:15696379

  10. Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains

    NASA Astrophysics Data System (ADS)

    Nigam, Sumant; Guan, Bin; Ruiz-Barradas, Alfredo

    2011-08-01

    The Great Plains of North America are susceptible to multi-year droughts, such as the 1930s ‘Dust Bowl’. The droughts have been linked to SST variability in the Pacific and Atlantic basins. This observationally rooted analysis shows the SST influence in multi-year droughts and wet episodes over the Great Plains to be significantly more extensive than previously indicated. The remarkable statistical reconstruction of the major hydroclimate episodes attests to the extent of the SST influence in nature, and facilitated evaluation of the basin contributions. We find the Atlantic SSTs to be especially influential in forcing multi-year droughts; often, more than the Pacific ones. The Atlantic Multidecadal Oscillation (AMO), in particular, contributed the most in two of the four reconstructed episodes (Dust Bowl Spring, 1980s fall wetness), accounting for almost half the precipitation signal in each case. The AMO influence on continental precipitation was provided circulation context from analysis of NOAA's 20th Century Atmospheric Reanalysis. A hypothesis for how the AMO atmospheric circulation anomalies are generated from AMO SSTs is proposed to advance discussion of the influence pathways of the mid-to-high latitude SST anomalies. Our analysis suggests that the La Nina-US Drought paradigm, operative on interannual time scales, has been conferred excessive relevance on decadal time scales in the recent literature.

  11. Population change and farm dependence: temporal and spatial variation in the U.S. Great Plains, 1900-2000.

    PubMed

    White, Katherine J Curtis

    2008-05-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  12. Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains

    NASA Astrophysics Data System (ADS)

    Simon Wang, S.-Y.; Huang, Wan-Ru; Hsu, Huang-Hsiung; Gillies, Robert R.

    2015-10-01

    The climate anomalies leading to the May 2015 floods in Texas and Oklahoma were analyzed in the context of El Niño teleconnection in a warmer climate. A developing El Niño tends to increase late-spring precipitation in the southern Great Plains, and this effect has intensified since 1980. Anthropogenic global warming contributed to the physical processes that caused the persistent precipitation in May 2015: Warming in the tropical Pacific acted to strengthen the teleconnection toward North America, modification of zonal wave 5 circulation that deepened the stationary trough west of Texas, and enhanced Great Plains low-level southerlies increasing moisture supply from the Gulf of Mexico. Attribution analysis using the Coupled Model Intercomparison Project Phase 5 single-forcing experiments and the Community Earth System Model Large Ensemble Project indicated a significant increase in the El Niño-induced precipitation anomalies over Texas and Oklahoma when increases in the anthropogenic greenhouse gases were taken into account.

  13. Simulating the impact of human land use change on forest composition in the Great Plains agroecosystems with the Seedscape model

    USGS Publications Warehouse

    Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.

    2001-01-01

    The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.

  14. Population Change and Farm Dependence: Temporal and Spatial Variation in the U.S. Great Plains, 1900–2000

    PubMed Central

    CURTIS WHITE, KATHERINE J.

    2008-01-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  15. Evaluation of amendments to decrease high strength in southeastern USA Coastal Plain soils using fuzzy multi-attributive comparison of alternatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Productivity of many southeastern USA Coastal Plain soils is reduced by cemented subsurface layers that restrict root growth. Though tillage is the usual way to reduce cementation, if soil amendments can develop aggregation, they offer a more permanent solution. To improve soil physical properties a...

  16. Effect of conservation practices on soil carbon and nitrogen accretion and crop yield in a corn production system in the southeastern coastal plain, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We implemented conservation farming practices (winter cover cropping plus strip tillage) for a non-irrigated corn production system in the southern coastal plain of Georgia, USA that had been previously been managed under a plow and harrow tillage regime. Total soil carbon and nitrogen were measure...

  17. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region’s water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little publishe...

  18. Groundwater Management Innovations in the High Plains Aquifer, USA: A possible path towards sustainability? (Invited)

    NASA Astrophysics Data System (ADS)

    Sophocleous, M. A.

    2009-12-01

    The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins

  19. Buried paleoindian-age landscapes in stream valleys of the central plains, USA

    USGS Publications Warehouse

    Mandel, R.D.

    2008-01-01

    A systematic study of late-Quaternary landscape evolution in the Central Plains documented widespread, deeply buried paleosols that represent Paleoindian-age landscapes in terrace fills of large streams (> 5th order), in alluvial fans, and in draws in areas of western Kansas with a thick loess mantle. Alluvial stratigraphic sections were investigated along a steep bio-climatic gradient extending from the moist-subhumid forest-prairie border of the east-central Plains to the dry-subhumid and semi-arid shortgrass prairie of the west-central Plains. Radiocarbon ages indicate that most large streams were characterized by slow aggradation accompanied by cumulic soil development from ca. 11,500 to 10,000??14C yr B.P. In the valleys of some large streams, such as the Ninnescah and Saline rivers, these processes continued into the early Holocene. The soil-stratigraphic record in the draws of western Kansas indicates slow aggradation punctuated by episodes of landscape stability and pedogenesis beginning as early as ca. 13,300??14C yr B.P. and spanning the Pleistocene-Holocene boundary. The development record of alluvial fans in western Kansas is similar to the record in the draws; slow aggradation was punctuated by multiple episodes of soil development between ca. 13,000 and 9000??14C yr B.P. In eastern Kansas and Nebraska, development of alluvial fans was common during the early and middle Holocene, but evidence shows fan development as early as ca. 11,300??14C yr B.P. Buried soils dating between ca. 12,600 and 9000??14C yr B.P. were documented in fans throughout the region. In stream valleys across the Central Plains, rapid alluviation after ca. 9000??14C yr B.P. resulted in deeply buried soils that may harbor Paleoindian cultural deposits. Hence, the paucity of recorded stratified Paleoindian sites in the Central Plains is probably related to poor visibility (i.e., deep burial in alluvial deposits) instead of limited human occupation in the region during the terminal

  20. Field and laboratory dissipation of the herbicide fomesafen in the southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To control weeds with evolved resistance to glyphosate, cotton farmers in the Southeastern USA have rapidly increased fomesafen (5-(2-chloro-a, a, a-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. Its properties suggest potential for soil persistence, runoff, and leaching that may contribute to...

  1. Field and laboratory fomesafen dissipation in the southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth (Amaranthus palmeri) was discovered in central Georgia (USA) in 2006. Subsequent spread of this highly problematic weed throughout the region prompted growers and registrants to seek labels for herbicides that can provide cost-effective control. To this end, the...

  2. Five millennia of paleotemperature from tree-rings in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Salzer, Matthew W.; Bunn, Andrew G.; Graham, Nicholas E.; Hughes, Malcolm K.

    2014-03-01

    The instrumental temperature record is of insufficient length to fully express the natural variability of past temperature. High elevation tree-ring widths from Great Basin bristlecone pine ( Pinus longaeva) are a particularly useful proxy to infer temperatures prior to the instrumental record in that the tree-rings are annually dated and extend for millennia. From ring-width measurements integrated with past treeline elevation data we infer decadal- to millennial-scale temperature variability over the past 4,500 years for the Great Basin, USA. We find that twentieth century treeline advances are greater than in at least 4,000 years. There is also evidence for substantial volcanic forcing of climate in the preindustrial record and considerable covariation between high elevation tree-ring widths and temperature estimates from an atmosphere-ocean general circulation model over much of the last millennium. A long-term temperature decline of ~-1.1 °C since the mid-Holocene underlies substantial volcanic forcing of climate in the preindustrial record.

  3. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  4. Geothermal GIS coverage of the Great Basin, USA: Defining regional controls and favorable exploration terrains

    USGS Publications Warehouse

    Coolbaugh, M.F.; Sawatzky, D.L.; Oppliger, G.L.; Minor, T.B.; Raines, G.L.; Shevenell, L.; Blewitt, G.; Louie, J.N.

    2003-01-01

    A geographic information system (GIS) of geothermal resources, built last year for the state of Nevada, is being expanded to cover the Great Basin, USA. Data from that GIS is being made available to industry, other researchers, and the public via a web site at the Great Basin Center for Geothermal Energy, Reno, Nevada. That web site features a search engine, supports ArcExplorer?? for on-line map construction, and provides downloadable data layers in several formats. Though data collection continues, preliminary analysis has begun. Contour maps of geothermal temperatures, constructed using geothermometer temperatures calculated from a Great Basin geochemical database compiled by the Geo-Heat Center, reveal distinctive trends and patterns. As expected, magmatic-type and extensional-type geothermal systems have profoundly different associations, with magmatic-type systems following major tectonic boundaries, and extensional-type systems associating with regionally high heat flow, thin crust, active faulting, and high extensional strain rates. As described by earlier researchers, including Rowen and Wetlaufer (1981) and Koenig and McNitt (1983), high-temperature (> 100??C) geothermal systems appear to follow regional northeast trends, most conspicuously including the Humboldt structural zone in Nevada, the "Black Rock-Alvord Desert" trend in Oregon and Nevada, and the "Newcastle-Roosevelt" trend in Utah and Nevada. Weights-of-evidence analyses confirm a preference of high-temperature geothermal systems for young northeast-trending faults, but the distribution of geothermal systems correlates even better with high rates of crustal extension, as measured from global positioning system (GPS) stations in Nevada. A predictive map of geothermal potential based only on areas of high extensional strain rates and high heat flux does an excellent job of regionally predicting the location of most known geothermal systems in Nevada, and may prove useful in identifying blind

  5. Low Elevation Riparian Environments: Warm-Climate Refugia for Conifers in the Great Basin, USA?

    NASA Astrophysics Data System (ADS)

    Millar, C.; Charlet, D. A.; Westfall, R. D.; Delany, D.

    2015-12-01

    The Great Basin, USA, contains hundreds of small to large mountain ranges. Many reach alpine elevations, which are separated from each other by low-elevation basins currently inhospitable to conifer growth. Many of these ranges support montane and subalpine conifer species that have affinities to the Sierra Nevada or Rocky Mountains, and from which these conifers migrated during cool periods of the Pleistocene. Under Holocene climates, the Great Basin geography became a terrestrial island-archipelago, wherein conifer populations are isolated among ranges, and inter-range migration is highly limited. During warm intervals of the Holocene, conifers would be expected to have migrated upslope following favorable conditions, and extirpation would be assumed to result from continued warming. Independent patterns, repeating across multiple species' distributions, however, suggest that refugia were present in these ranges during warm periods, and that low elevation environments below the current main distributions acted as climatic refugia. We hypothesize that cool, narrow, and north-aspect ravines, which during cool climates support persistent or seasonal creeks and deciduous riparian communities, become available as conifer habitat when warming climates desiccate creeks and deplete riparian species. We further speculate that cold-air drainage, reduced solar insolation, lower wind exposure, and higher water tables in these topographic positions support populations of montane and subalpine conifers even during warm climate intervals when high elevations are unfavorable for conifer persistence. On return to cool climates, low elevation refugia become sources for recolonizing higher slopes, and/or continue to persist as relictual populations. We present several lines of evidence supporting this hypothesis, and speculate that low-elevation, extramarginal riparian environments might act as climate refugia for Great Basin conifers in the future as well.

  6. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA

    USGS Publications Warehouse

    Sophocleous, M.

    2005-01-01

    Sustainable use of groundwater must ensure not only that the future resource is not threatened by overuse, but also that natural environments that depend on the resource, such as stream baseflows, riparian vegetation, aquatic ecosystems, and wetlands are protected. To properly manage groundwater resources, accurate information about the inputs (recharge) and outputs (pumpage and natural discharge) within each groundwater basin is needed so that the long-term behavior of the aquifer and its sustainable yield can be estimated or reassessed. As a first step towards this effort, this work highlights some key groundwater recharge studies in the Kansas High Plains at different scales, such as regional soil-water budget and groundwater modeling studies, county-scale groundwater recharge studies, as well as field-experimental local studies, including some original new findings, with an emphasis on assumptions and limitations as well as on environmental factors affecting recharge processes. The general impact of irrigation and cultivation on recharge is to appreciably increase the amount of recharge, and in many cases to exceed precipitation as the predominant source of recharge. The imbalance between the water input (recharge) to the High Plains aquifer and the output (pumpage and stream baseflows primarily) is shown to be severe, and responses to stabilize the system by reducing water use, increasing irrigation efficiency, adopting water-saving land-use practices, and other measures are outlined. Finally, the basic steps necessary to move towards sustainable use of groundwater in the High Plains are delineated, such as improving the knowledge base, reporting and providing access to information, furthering public education, as well as promoting better understanding of the public's attitudinal motivations; adopting the ecosystem and adaptive management approaches to managing groundwater; further improving water efficiency; exploiting the full potential of dryland and

  7. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Schmitt, D. R.; Nielson, D.; Evans, J. P.; Christiansen, E. H.; Morgan, L.; Shanks, W. C. Pat; Prokopenko, A. A.; Lachmar, T.; Liberty, L. M.; Blackwell, D. D.; Glen, J. M.; Champion, L. D.; Potter, K. E.; Kessler, J. A.

    2013-03-01

    HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP). The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. The primary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho. Project HOTSPOT has completed three drill holes. (1) The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2) The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperature rhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3) The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments. We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project. doi:10.2204/iodp.sd.15.06.2013

  8. Characterization and mapping of the Browns Creek rhyolite: Western Snake River Plain, ID, USA

    NASA Astrophysics Data System (ADS)

    Clippinger, D. T.; Boroughs, S.; Bonnichsen, B.

    2012-12-01

    The purpose of this study is to map and characterize the geologic units that comprise the Brown's Creek region of the western Snake River Plain, with a focus on the eruptive behavior and physical characteristics of the exposed rhyolite. Located near Oreana ID, southeast of the Owyhee Front, the rhyolite in Browns Creek and adjacent rocks has never been mapped in detail. The volcanics in the Browns Creek area are predominantly comprised of low to high silica rhyolite (73%-78% SiO2), and a previously published 40Ar/39Ar date returned an age of 11.20 ± .02 Ma. The rhyolites have phenocryst assemblages of Na-plagioclase, quartz, K-feldspar, pyroxene, oxides, and zircon. Both phenocryst content and crystal size vary widely from approximately 15-50% and 1-10 mm respectively. The rhyolite in the Browns Creek region has a δ18O value of 8.5‰ and marks a very sharp boundary (<10 km) between normal δ18O rhyolites of the Western Snake River plain to the northwest, and the roughly contemporaneous and much more voluminous low-δ18O rhyolites of the Central Snake River Plain to the southeast. The earliest, large scale mapping suggested that the rhyolite in the Browns Creek region was a rheomorphic ignimbrite, sourced from the North, while later workers proposed that the unit was composed of an early, small, non-welded ignimbrite, followed by two separate lava flows. Detailed field work and sample collection from this study indicates that the outcrops of rhyolite lava display a continuum of phenocryst contents and structural features, consistent with a single evolving magma which effused from multiple vent areas. Steeply dipping flow features are pervasive, basal and marginal breccias are common, and the unit rarely displays the lower aspect ratio outcrops typical of other large lava flows in the region. Currently, our preferred explanation for these observations is that of a single magma showing an evolutionary trend of crystallization and fractionation, with periodic

  9. An environmental problem hidden in plain sight? Small human-made ponds, emergent insects, and mercury contamination of biota in the Great Plains.

    PubMed

    Chumchal, Matthew M; Drenner, Ray W

    2015-06-01

    Mercury (Hg) contamination of small human-made ponds and surrounding terrestrial communities may be 1 of the largest unstudied Hg-pollution problems in the United States. Humans have built millions of small ponds in the Great Plains of the United States, and these ponds have become contaminated with atmospherically deposited mercury. In aquatic ecosystems, less toxic forms of Hg deposited from the atmosphere are converted to highly toxic methylmercury (MeHg). Methylmercury is incorporated into the aquatic food web and then can be transferred to terrestrial food webs via emergent aquatic insects. The authors present a conceptual model that describes the movement of MeHg produced in aquatic ecosystems to terrestrial consumers via insects emerging from small human-made ponds. The authors hypothesize that pond permanence and the level of Hg contamination of the food web control this emergent insect-mediated flux of MeHg. The highest insect-mediated flux of MeHg is predicted to be from fishless semipermanent ponds with food webs that are highly contaminated with MeHg. Further development and testing of the conceptual model presented in the present column, particularly in the context of a changing climate, will require research at the regional, watershed, and pond scales. PMID:26013117

  10. Effects of soils and grazing on breeding birds of uncultivated upland grasslands of the Northern Great Plains

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1982-01-01

    The principal use of uncultivated upland grasslands in the northern Great Plains is for livestock production. However, on lands set aside for wildlife or for scientific or recreational use, grazing by livestock may be used as a management measure to enhance populations of game species or to create conditions that increase the diversity of plant or animal species. To determine the effects of grazing on the avifauna of various types of Great Plains grasslands, we conducted bird censuses and plant surveys during 1974-78 on 615 plots of lightly, moderately, or heavily grazed native rangeland.Numbers of horned lark (Eremophila alpestris), western meadowlark (Sturnella neglecta), lark bunting (Calamospiza melanocorys), and chestnut-collared longspur (Calcarius ornatus) accounted for 65-75% of the total bird population, regardless of grazing intensity. For the entire area sampled (600,000 km2), horned lark, western meadowlark, and chestnut-collared longspur were the dominant birds. Major differences in composition of the dominant species and species richness occurred among the major soils. Increased mean annual soil temperature seemingly had a greater negative influence on avian species richness than did decreased soil moisture or organic matter content. Differences in total bird density were not significant among soils and among grazing intensities within most soils. For the area as a whole, light or moderate grazing resulted in increased species richness. Of the 29 species studied, 2 responded significantly to grazing for the area as a whole and 6 others to grazing on the soil in which peak densities occurred. Response of several other species to grazing effects evidently varied among strata.A list of plants with mean cover values of more than 1% in any of the 18 combinations of soils and grazing intensities contained less than 25 species, attesting to the relative simplicity of the grassland vegetation in the northern Great Plains. Agropyron spp. and Bouteloua gracilis

  11. Rainfed farming systems in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter on rainfed farming systems in the USA describes characteristics of four major rainfed farming regions in the USA: Great Plains wheat-sorghum-cattle region, midwestern corn-soybean-hogs region, southern cotton-peanut-poultry region, and coastal diversified crops-dairy region. Rainfed fa...

  12. The effect of the "Great Flood of 1993" on subsequent suspended sediment concentrations and fluxes in the Mississippi River Basin, USA

    USGS Publications Warehouse

    Horowitz, A.J.

    2006-01-01

    During the spring/summer of 1993, the upper Midwestern USA experienced unusually heavy precipitation (200-350% above normal). More than 500 gauging stations in the region were simultaneously above flood stage, and nearly 150 major rivers and tributaries over-topped their banks. This was one of the costliest floods in the history of the USA, and came to be known as the "Great Flood of 1993". An examination of the long-term daily sediment record for the Mississippi River at Thebes, Illinois (representing the middle, or lower part of the upper basin), indicates that the flood had a severe and long-lasting impact on subsequent suspended sediment concentrations (SSC) and annual suspended sediment fluxes in the basin. At Thebes, pre1993 (1981-1992) median discharge and SSC were about 5400 m3 s-1 and 304 mg L-1, respectively; whereas, post-1993 (1994-2004) median discharge and SSC were about 5200 m3 s-1 and 189 mg L-1, respectively. Clearly, the 1993 flood removed substantial amounts of "stored" bed sediment and/or readily erodible flood plain deposits, eliminating a major source of SSC for the Thebes site. Examination of additional, but discontinuous sediment records (covering the period from 1981-2004) for other sites in the basin indicates that current post-flood declines in SSC and suspended sediment fluxes range from a low of about 10% to a high of about 36%.

  13. Improving soybean performance in the Northern Great Plains through the use of cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are capable of providing “multiple services” for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of...

  14. Estimating contributions of nitrate and herbicides from groundwater to headwater streams, northern Atlantic Coastal Plain, USA

    USGS Publications Warehouse

    Ator, Scott; Denver, Judith

    2012-01-01

    Groundwater transport often complicates understanding of surface-water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late-winter or spring base-flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base-flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base-flow flux of alachlor and metolachlor is <3% of the total base-flow flux of those compounds plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications is typically highest in well-drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base-flow nitrate flux represents 70% of total nitrogen flux in headwater streams.

  15. Quantifying the Impacts of Irrigation Technology Adoption on Water Resources in the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Kendall, Anthony; Cotterman, Kayla; Hyndman, David

    2016-04-01

    Producers in key agricultural regions worldwide are contending with increasing demand while simultaneously managing declining water resources. The High Plains Aquifer (HPA) is the largest aquifer system in the United States, and supplied most of the water to irrigate 6 million hectares in 2012. Water levels in the central and southern sections of the aquifer have steadily declined, as groundwater recharge in this semi-arid region is insufficient to meet water demands. Individual irrigators have responded to these declines by moving from less efficient irrigation technologies to those that apply water more precisely. Yet, these newer technologies have also allowed for water to be pumped from lower-yielding wells, thus extending the life of any given well and allowing drawdown to continue. Here we use a dataset of the annual irrigation technology choices from every irrigator in the state of Kansas, located in the Central High Plains. This irrigation data, along with remotely-sensed Leaf Area Index, crop choice, and irrigated area, drives a coupled surface/groundwater simulation created using the Landscape Hydrology Model (LHM) to examine the impacts of changing irrigation technology on the regional water cycle, and water levels in the HPA. The model is applied to simulate cases in which no irrigation technology change had occurred, and complete adoption of newer technologies to better understand impacts of management choices on regional water resources.

  16. Diversity and Life Histories in Freshwater Mussel Communities of the Gulf Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Haag, W. R.; Warren, M. L.

    2005-05-01

    The Gulf Coastal Plain supports a diverse mussel fauna including many endemic species. Richness among drainages was associated strongly and positively with watershed size. Assemblage similarity among drainages identified three major faunal groupings: Pontchartrain-Pearl-Pascagoula-Mobile; Escambia-Choctawhatchee; and Apalachicola-Ochlockonee-Suwannee. The Escambia-Choctawhatchee showed greater affinity to the Apalachicola than to the Mobile Basin. Patterns of mussel assemblages among drainages were associated strongly with fish assemblages suggesting two non-mutually exclusive hypotheses: 1) biogeographic history affected both groups similarly, and 2) the fish host relationship was important in shaping mussel communities. Based on interspecific variation in life history traits including host use, longevity, offspring size, and fecundity, we established seven guilds to represent regional diversity in life history strategies. The number of guilds decreased from west to east indicating reduced ecological complexity. For widely represented guilds, drainages showed either 1) similar guild composition because of replacement by ecologically similar species, or 2) a shift in dominance among guilds along a west-east continuum. This dichotomy cannot be reconciled currently because data are lacking for numerous species of Elliptio, a dominant genus in eastern Gulf Coastal Plain mussel communities. This information gap illustrates the abundant opportunities for ecological research in the region.

  17. Investigation of evaporate deposits in the “Great Ear” area of Lop Nor salt plain, Xinjiang Province, China

    NASA Astrophysics Data System (ADS)

    Ma, L.; Li, B.; Jiang, P.; Lowenstein, T. K.; Zhong, J.; Sheng, J.; Wu, H.

    2009-12-01

    In arid regions of the world, salt pans are common features occupying the lowest areas of closed interior basin. The Lop Nor salt plain is located at the east end of the Tarim Basin, Xinjiang Province, China. Widespread Holocene salt deposits were known to cover thousands of square kilometers and up to hundreds of meters thick. However, the salt pans in the central-eastern sector of the Lop Nor salt plain is unusually represented by successive concentric black-and-white rings that closely resembled a big human ear in satellite images. The total area of the “Great Ear” is approximately 5,500 km2, and the internal morphology is considered essentially flat with an elevation of 800 m. A series of detailed field investigations on the “Great Ear” salt pans involved describing evaporates and surface morphologies, measuring chemical compositions, and groundwater depths. The deposits show clear lateral variations in salt content, water content, evaporate mineralogy, as well as the microrelief of salt crust in the “Great Ear” area. Spatially, spectral imaging variation corresponds to color variation in the “Great Ear”, which suggests surface moist conditions of a salt pan: dark-toned areas are wet and the bright-toned areas are dry. In the wet zone, capillary fringing of groundwater brines control the precipitation of evaporites and microrelief genesis. The salt pans are marked by pressure-ridge and well-developed hexagonal honeycomb polygons structures, where the microrelief of salt crust ranges from 30 to 80 cm. In the dry salt pans zone, groundwater discharge was not observed on the surface and the salt crust is characterized by low relief, low salinity, a lack of efflorescences crusts, and significant amounts of detrital sediments. This zone shows bright-tone in the satellite images due to higher reflectance of dry salt-encrusted pans surface. Though, the sediment beneath the surface typically is saturated with concentrated brines and displacive

  18. Psychological-Mindedness and American Indian Historical Trauma: Interviews with Service Providers from a Great Plains Reservation.

    PubMed

    Hartmann, William E; Gone, Joseph P

    2016-03-01

    The concept of historical trauma (HT) was developed to explain clinical distress among descendants of Jewish Holocaust survivors and has since been ascribed new meanings to account for suffering in diverse contexts. In American Indian (AI) communities, the concept of AI HT has been tailored and promoted as an expanded notion of trauma that combines psychological injury with historical oppression to causally connect experiences with Euro-American colonization to contemporary behavioral health disparities. However, rather than clinical formulations emphasizing psychological injury, a focused content analysis of interviews with 23 AI health and human service providers (SPs) on a Great Plains reservation demonstrated strong preferences for socio-cultural accounts of oppression. Reflective of a local worldview associated with minimal psychological-mindedness, this study illustrates how cultural assumptions embedded within health discourses like HT can conflict with diverse cultural forms and promote "psychologized" perspectives on suffering that may limit attention to social, economic, and political determinants of health. PMID:27217325

  19. Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    1995-01-01

    Dune fields are found in several areas of the Great Plains, and though mostly stabilised today, the accounts of early explorers show that they were more mobile in the last century. Using an index of dune mobility and tree ring data, it is found that these periods of mobility were related to temperature-induced drought, the high temperatures increasing evapotranspiration. Explorers also record that rivers upwind of these dune fields had shallow braided channels in the 19th century, and these would have supplied further aeolian sand. It is concluded that these dunes are extremely susceptible to climate change and that it may not need global warming to increase their mobility again. -K.Clayton

  20. 1999 resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Fort Union Coal Assessment Team

    1999-01-01

    The USGS has assessed resources of selected coal of the Fort Union Formation and equivalent units in the Northern Rocky Mountains and Great Plains region. The assessment focused on coal in the Powder River, Williston, Hanna-Carbon, and Greater Green River basins most likely to be utilized in the next few decades. In other basins in the region Tertiary coal resources are summarized but not assessed. Disc 1, in PDF files, includes results of the assessment and chapters on coal geology, quantity and quality, and land use and ownership. Disc 2 provides GIS files for land use and ownership maps and geologic maps, and basic GIS data for the assessed basins. ArcView shapefiles, PDF files for cross sections and TIFF files are included along with ArcView Datapublisher software for Windows-based computer systems.

  1. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    USGS Publications Warehouse

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  2. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  3. Climatological relationships of severe duststorms in the Great Plains to synoptic weather patterns: A potential for predictability

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Henz, J. F.

    1980-01-01

    A data base provided by 35 severe duststorms that occurred between 1968 and 1977 in the central and southern Great Plains allowed construction of a classification scheme of meteorological causes of duststorms, and a telescopic forecast technique for medium range (6 to 48 hour) prediction of severe cyclogenic duststorms. In addition, areal coverage definitions for duststorms based on characteristics of the storms, and a hierarchy of weather causes of severe duststorms were developed. The man machine mix forecast correctly predicted six of seven duststorms observed during the 1976-77 winter, with one overforecast; the machine-only forecast correctly predicted four of the seven duststorms, with one overforecast. Both techniques had problems correctly predicting the duration of severe duststorms.

  4. Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Homeyer, C. R.; Ryerson, T. B.; Aikin, K. C.; Peischl, J.; Apel, E. C.; Campos, T.; Flocke, F.; Hornbrook, R. S.; Knapp, D. J.; Montzka, D. D.; Weinheimer, A. J.; Riemer, D.; Diskin, G.; Sachse, G.; Mikoviny, T.; Wisthaler, A.; Bruning, E.; MacGorman, D.; Cummings, K. A.; Pickering, K. E.; Huntrieser, H.; Lichtenstern, M.; Schlager, H.; Barth, M. C.

    2016-02-01

    The reported range for global production of nitrogen oxides (NOx = NO + NO2) by lightning remains large (e.g., 32 to 664 mol NOx flash-1), despite incorporating results from over 30 individual laboratory, theoretical, and field studies since the 1970s. Airborne and ground-based observations from the Deep Convective Clouds and Chemistry experiment in May and June 2012 provide a new data set for calculating moles of NOx produced per lightning flash, P(NOx), in thunderstorms over the United States Great Plains. This analysis utilizes a combination of in situ observations of storm inflow and outflow from three instrumented aircraft, three-dimensional spatial information from ground-based radars and satellite observations, and spatial and temporal information for intracloud and cloud-to-ground lightning flashes from ground-based lightning mapping arrays. Evaluation of two analysis methods (e.g., a volume-based approach and a flux-based approach) for converting enhancements in lightning-produced NOx from volume-based mixing ratios to moles NOx flash-1 suggests that both methods equally approximate P(NOx) for storms with elongated anvils, while the volume-based approach better approximates P(NOx) for storms with circular-shaped anvils. Results from the more robust volume-based approach for three storms sampled over Oklahoma and Colorado during DC3 suggest a range of 142 to 291 (average of 194) moles NOx flash-1 (or 117-332 mol NOx flash-1 including uncertainties). Although not vastly different from the previously reported range for storms occurring in the Great Plains (e.g., 21-465 mol NOx flash-1), results from this analysis of DC3 storms offer more constrained upper and lower limits for P(NOx) in this geographical region.

  5. Are high-resolution NASA Unified WRF simulations credible tools for predicting extreme precipitation over the Great Plains?

    NASA Astrophysics Data System (ADS)

    Lee, H.; Waliser, D. E.; Case, J.; Iguchi, T.; Wang, W.

    2015-12-01

    Accurate simulation of extreme weather events remains a challenge in climate models. Previous studies indicate that regional climate models better reproduce extreme precipitation with their higher spatial resolution than coarser resolution global climate models. This study utilized radar-based hourly precipitation data with a resolution of 4 km to evaluate rainfall characteristics simulated with NASA Unified Weather Research and Forecasting (NU-WRF) model at horizontal resolutions of 24, 12 and 4 km. We also examined the impact of spectral nudging on the performance of NU-WRF. The rainfall characteristics in the observations and simulations were defined as a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. The Regional Climate Model Evaluation System (RCMES) is an open source software suite developed jointly by NASA's Jet Propulsion Laboratory and the University of California, Los Angeles. RCMES facilitates evaluation of NU-WRF evaluations by providing tools to process a vast amount of observational and model datasets with high resolutions. Using RCMES, we calculated JPDF for each dataset and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. The performance of NU-WRF simulations based on the precipitation JPDF is strongly dependent on their resolutions. The simulation with the highest resolution of 4 km shows the best agreement with the observations with the same resolution in simulating short-duration downpour events over the Great Plains. Our analysis indicates that even the regridded high-resolution simulation on low-resolution grids shows better performance than low-resolution simulations. The simulations with lower resolutions of 12 and 24 km show reasonable agreement only with the observational data whose resolutions are similar to the simulations.

  6. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    SciTech Connect

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.

  7. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    DOE PAGESBeta

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturermore » specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.« less

  8. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-01

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3-8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.

  9. Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.

  10. Urbanization in a great plains river: Effects on fishes and food webs

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    Spatial variation of habitat and food web structure of the fish community was investigated at three reaches in the Kansas River, USA to determine if ??13C variability and ??15N values differ longitudinally and are related to urbanization and instream habitat. Fish and macroinvertebrates were collected at three river reaches in the Kansas River classified as the less urbanized reach (no urban in riparian zone; 40% grass islands and sand bars, braided channel), intermediate (14% riparian zone as urban; 22% grass islands and sand bars) and urbanized (59% of riparian zone as urban; 6% grass islands and sand bars, highly channelized) reaches in June 2006. The less urbanized reach had higher variability in ??13C than the intermediate and urbanized reaches, suggesting fish from these reaches utilized a variety of carbon sources. The ??15N also indicated that omnivorous and detritivorous fish species tended to consume prey at higher trophic levels in the less urbanized reach. Channelization and reduction of habitat related to urbanization may be linked to homogenization of instream habitat, which was related to river food webs. ?? 2009.

  11. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Jensen, Michael P.; Holdridge, Donna J.; Survo, Petteri; Lehtinen, Raisa; Baxter, Shannon; Toto, Tami; Johnson, Karen L.

    2016-07-01

    In the fall of 2013, the Vaisala RS41 (fourth generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity, and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility site in north-central Oklahoma, USA. During 3-8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results show that for most of the observed conditions the RS92 and RS41 measurements agree much better than the manufacturer-specified combined uncertainties with notable exceptions when exiting liquid cloud layers where the "wet-bulbing" effect appears to be mitigated for several cases in the RS41 observations. The RS41 measurements of temperature and humidity, with applied correction algorithms, also appear to show less sensitivity to solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions. For many science applications - such as atmospheric process studies, retrieval development, and weather forecasting and climate modeling - the differences between the RS92 and RS41 measurements should have little impact. However, for long-term trend analysis and other climate applications, additional characterization of the RS41 measurements and their relation to the long-term observational records will be required.

  12. Hydrologic vulnerability and risk assessment associated with the increased role of fire on western landscapes, Great Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natu...

  13. Mapping and monitoring cheatgrass dieoff in rangelands of the Northern Great Basin, USA

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2015-01-01

    Understanding cheatgrass (Bromus tectorum) dynamics in the Northern Great Basin rangelands, USA, is necessary to effectively manage the region’s lands. This study’s goal was to map and monitor cheatgrass performance to identify where and when cheatgrass dieoff occurred in the Northern Great Basin and to discover how this phenomenon was affected by climatic, topographic, and edaphic variables. We also examined how fire affected cheatgrass performance. Land managers and scientists are concerned by cheatgrass dieoff because it can increase land degradation, and its causes and effects are not fully known. To better understand the scope of cheatgrass dieoff, we developed multiple ecological models that integrated remote sensing data with geophysical and biophysical data. The models’ R2 ranged from 0.71 to 0.88, and their root mean squared errors (RMSEs) ranged from 3.07 to 6.95. Validation of dieoff data showed that 41% of pixels within independently developed dieoff polygons were accurately classified as dieoff, whereas 2% of pixels outside of dieoff polygons were classified as dieoff. Site potential, a long-term spatial average of cheatgrass cover, dominated the development of the cheatgrass performance model. Fire negatively affected cheatgrass performance 1 year postfire, but by the second year postfire performance exceeded prefire levels. The landscape-scale monitoring study presented in this paper helps increase knowledge about recent rangeland dynamics, including where cheatgrass dieoffs occurred and how cheatgrass responded to fire. This knowledge can help direct further investigation and/or guide land management activities that can capitalize on, or mitigate the effects of, cheatgrass dieoff.

  14. Impacts of harvesting on brine shrimp (Artemia franciscana) in Great Salt Lake, Utah, USA.

    PubMed

    Sura, Shayna A; Belovsky, Gary E

    2016-03-01

    Selective harvesting can cause evolutionary responses in populations via shifts in phenotypic characteristics, especially those affecting life history. Brine shrimp (Artemia franciscana) cysts in Great Salt Lake (GSL), Utah, USA are commercially harvested with techniques that select against floating cysts. This selective pressure could cause evolutionary changes over time. Our objectives are to (1) determine if there is a genetic basis to cyst buoyancy, (2) determine if cyst buoyancy and nauplii mortality have changed over time, and (3) to examine GSL environmental conditions over time to distinguish whether selective harvesting pressure or a trend in environmental conditions caused changes in cyst buoyancy and nauplii mortality. Mating crosses between floating and sinking parental phenotypes with two food concentrations (low and high) indicated there is a genetic basis to cyst buoyancy. Using cysts harvested from 1991-2011, we found cyst buoyancy decreased and nauplii mortality increased over time. Data on water temperature, salinity, and chlorophyll a concentration in GSL from 1994 to 2011 indicated that although water temperature has increased over time and chlorophyll a concentration has decreased over time, the selective harvesting pressure against floating cysts is a better predictor of changes in cyst buoyancy and nauplii mortality over time than trends in environmental conditions. Harvesting of GSL A. franciscana cysts is causing evolutionary changes, which has implications for the sustainable management and harvesting of these cysts. Monitoring phenotypic characteristics and life-history traits of the population should be implemented and appropriate responses taken to reduce the impacts of the selective harvesting. PMID:27209783

  15. Short-Term Bluff Recession Behavior Along Pennsylvania's Great Lakes Coastline, USA

    NASA Astrophysics Data System (ADS)

    Foyle, A. M.; Naber, M. D.; Pluta, M. J.

    2011-12-01

    Coastal bluff retreat is a common problem along the world's unconsolidated coastlines. On the Great Lakes coast of Pennsylvania, Quaternary clay-rich glacial till, paleo-lake plain, and sandy strandplain sequences overlie Devonian bedrock. These Quaternary strata are subject to subaerial and lacustrine erosional processes that cause permanent coastal land loss at spatially variable rates, with the former (runoff, slumping, groundwater focusing, etc) dominating over the latter (wave and current scour, abrasion, etc). Land loss is of concern to environmental agencies because land-use planning should account for spatial and temporal variability in land-loss rates, and because bluff erosion contributes to a temporary degradation in coastal water quality. The goal of this study is to evaluate spatial variability in bluff retreat rates along a 20 km sector of Pennsylvania's short Great Lakes coast. High resolution LiDAR data covering a one-decade time frame (1998-2007) permit bluff-crest mapping on two comparable data sets that captures change within a timeframe similar to CZM planning intervals. Short-term recession data can be more useful, cost-effective, and accurate than long-term analyses that use lower-resolution field measurements, T-sheets, and historical aerial photography. Bluffs along the 20 km coastal study site consist of up to 26 m of unlithified Quaternary sediments overlying a 1-4 m ledge of sub-horizontal Devonian shale and sandstone. Bluff slopes range from 20-90 degrees, beaches are narrow (<8 m wide) or absent, and the bluffs are seasonally shielded by ground-freeze and lake ice. DEMs, hillshades, and slope and contour maps were generated from bare-earth 1998 and 2007 LiDAR data, and checked against 2005 aerial ortho-photography. Maps were analyzed at a scale of 1:120 in ArcGIS and the bluff crest was identified primarily by the visual-break-in-slope method. Rates of bluff retreat derived using DSAS vary from unresolvable to as much as 2.2 m

  16. Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA.

    PubMed

    Jacob, Donna L; Yellick, Alex H; Kissoon, La Toya T; Asgary, Aida; Wijeyaratne, Dimuthu N; Saini-Eidukat, Bernhardt; Otte, Marinus L

    2013-07-01

    Cadmium, present locally in naturally high concentrations in the Northern Plains of the United States, is of concern because of its toxicity, carcinogenic properties, and potential for trophic transfer. Reports of natural concentrations in soils are dominated by dryland soils with agricultural land uses, but much less is known about cadmium in wetlands. Four wetland categories - prairie potholes, shallow lakes, riparian wetlands, and river sediments - were sampled comprising more than 300 wetlands across four states, the majority in North Dakota. Cd, Zn, P, and other elements were analyzed by ICP-MS, in addition to pH and organic matter (as loss-on-ignition). The overall cadmium content was similar to the general concentrations in the area's soils, but distinct patterns occurred within categories. Cd in wetland soils is associated with underlying geology and hydrology, but also strongly with concentrations of P and Zn, suggesting a link with agricultural land use surrounding the wetlands. PMID:23583941

  17. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    USGS Publications Warehouse

    Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.

    1996-01-01

    In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.

  18. Upper Maastrichtian ammonite biostratigraphy of the Gulf Coastal Plain (Mississippi Embayment, southern USA)

    USGS Publications Warehouse

    Larina, Ekaterina; Garb, Matthew P.; Landman, Neil H.; Dastas, Natalie; Thibault, Nicolas; Edwards, Lucy E.; Phillips, George; Rovelli, Remy; Myers, Corinne; Naujokaityte, Jone

    2016-01-01

    The Cretaceous outcrop belt of the Mississippi Embayment in the Gulf Coastal Plain (GCP) spans the Cretaceous/Paleogene (K/Pg) boundary. A detailed reconstruction of this time interval is critical for understanding the nature of biotic and environmental changes preceding the end-Cretaceous Mass Extinction event and for deciphering the likely extinction mechanism (i.e., bolide impact versus volcanism). Eight sections encompassing the K/Pg succession across the Mississippi Embayment were analyzed using biostratigraphic sampling of ammonites, dinoflagellates, and nannofossils. An upper Maastrichtian ammonite zonation is proposed as follows, from oldest to youngest:Discoscaphites conradi Zone, D. minardi Zone, and D. iris Zone. Our study documents that the ammonite zonation established in the Atlantic Coastal Plain (ACP) extends to the GCP. This zonation is integrated with nannofossil and dinoflagellate biostratigraphy to provide a framework to more accurately determine the age relationships in this region. We demonstrate that ammonites and dinoflagellates are more reliable stratigraphic indicators in this area than nannofossils because age-diagnostic nannofossils are not consistently present within the upper Maastrichtian in the GCP. This biostratigraphic framework has the potential to become a useful tool for correlation of strata both within the GCP and between the GCP, Western Interior, and ACP. The presence of the uppermost Maastrichtian ammonite D. iris, calcareous nannofossil Micula prinsii, and dinoflagellates Palynodinium grallator and Disphaerogena carposphaeropsis suggests that the K/Pg succession in the GCP is nearly complete. Consequently, the GCP is an excellent setting for investigating fine scale temporal changes across the K/Pg boundary and ultimately elucidating the mechanisms causing extinction.

  19. Role of eastward propagating convection systems in the diurnal cycle and seasonal mean summertime rainfall over the U. S. Great Plains

    SciTech Connect

    Jiang, X; Lau, N C; Klein, S A

    2006-06-07

    By diagnosing the 3-hourly North American Regional Reanalysis rainfall dataset for the 1979-2003 period, it is illustrated that the eastward propagation of convection systems from the Rockies to the Great Plains plays an essential role for the warm season climate over the central U.S. This eastward propagating mode could be the deciding factor for the observed nocturnal rainfall peak over the Great Plains. The results also suggest that nearly half of the total summer mean rainfall over this region is associated with these propagating convection systems. For instance, the extreme wet condition of the 1993 summer may be attributed to the frequent occurrence of propagating convection events and enhanced diurnal rainfall amplitude over the Great Plains. Thus, proper representation of this important propagating component in GCMs is essential for simulating the diurnal and seasonal mean characteristics of summertime rainfall over the central US.

  20. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  1. Mercury in the Air, Water and Biota at the Great Salt Lake (Utah, USA)

    NASA Astrophysics Data System (ADS)

    Peterson, C.; Gustin, M. S.

    2008-12-01

    The Great Salt Lake, Utah (USA), is the fourth largest terminal lake on Earth and a stop-over location for 35 million birds on the Pacific Flyway. Recently, the Utah Department of Health and Utah Division of Wildlife Resources issued tissue mercury (Hg) consumption advisories for several species of birds that consume the lake's brine shrimp. Sources of Hg to the lake are the watershed and the atmosphere, and we hypothesized that the chemistry of the air above the Great Salt Lake would facilitate atmospheric deposition of Hg to the water. Because little information was available on Hg at the Great Salt Lake, and to begin to test this hypothesis, we measured atmospheric elemental (Hg0) and reactive gaseous mercury (RGM) concentrations as well as Hg concentrations in water and brine shrimp five times over a year. Surrogate surfaces and a dry deposition model were applied to estimate the amount of Hg that could be input to the lake surface. We found that atmospheric Hg0 and RGM concentrations were comparable to global ambient background values and those measured in rural areas (respectively). Both Hg0 and RGM exhibited regular diel variability, and no consistent seasonal periods of depleted or elevated values were observed. Based on these findings, local factors are thought to be important in generating elevated RGM concentrations that could be deposited to the lake. Model estimated deposition velocities for RGM to the lake ranged from 0.9 to 3.0 cm sec-1, with an estimated 19 kg of Hg deposited annually. Total Hg and methyl Hg concentrations in surface waters of the lake were consistent throughout the year (3.8 ± 0.8 ng L- 1 and 0.93 ± 0.59 ng L-1, respectively) and not significantly elevated relative to natural waters; however, the percent methyl Hg to total Hg was high (25 to 50%). Brine shrimp Hg concentrations were 384 ppb and had a statistically significant increase from early summer to fall. Based on modeled dry deposition and estimated wet deposition, the

  2. Arsenic Concentrations and Speciation in Blackwaters of the Great Dismal Swamp, Southeastern Virginia, USA

    NASA Astrophysics Data System (ADS)

    Batista, F.; Cutter, G. A.; Cutter, L. S.; Johannesson, K. H.

    2001-12-01

    Arsenic concentrations and speciation were measured in surface water samples collected from the Great Dismal Swamp in southeastern Virginia, USA using, selective hydride generation and atomic adsorption spectroscopy. Phosphate concentrations were also determined in these surface waters using the molybdate blue spectrophotometric method. Great Dismal Swamp waters are characterized as blackwaters, having high dissolved organic carbon (DOC) concentrations that range from 445 iM to 6304 iM, with a mean (n = 12) of 3282+/-2165 iM. pH ranged from 4.30 to 6.42, with a mean (n = 12) of 5.14+/-1.04. The inflow waters (Cypress and Pocosin Swamps) have higher pH's (mean of 6.32+/- 0.10 for n = 5) than waters from Lake Drummond and its immediate inflow and outflow ditches, where the mean pH (n = 7) is 4.30+/-0.04. Total arsenic concentrations in Great Dismal Swamp waters range from 2.18 nM up to 21.42 nM. Phosphate concentrations range from 0.18 iM to 1.42 iM, but are not correlated with arsenate concentrations (r 2 = 0.004). Arsenate typically predominates in oxic, surface waters. However, As(III) was detected at higher concentrations (1 - 17.72 nM, mean value of 8.00+/-5.80 nM for all samples, n = 10) in half of the samples from the lower part of the watershed (i.e., mainly in Lake Drummond and its outflow, the Feeder Ditch; mean of 12.89+/-2.89 nM, n = 5). No methylated species were detected in the selected samples analyzed for organoarsenical forms (monomethyl and dimethyl arsenicals) A strong correlation exists between dissolved As(III) concentrations and dissolved organic carbon concentrations (r2 = 0.88), and this correlation is significant at greater than the 99% confidence level. The high abundance of As(III) in comparison to both thermodynamic predictions, and other surface waters, suggests that either there is a strong anoxic source of this form, or that the high DOC concentrations stabilize it via complexation and slower rate of oxidation.

  3. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface

  4. Machine-readable data files from the Madison Limestone and northern Great Plains regional aquifer system analysis projects, Montana, Nebraska, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Downey, J.S.

    1982-01-01

    Lists of machine-readable data files were developed for the Madison Limestone and Northern Great Plains Regional Aquifer System Analysis (RASA) projects. They are stored on magnetic tape and available from the U.S. Geological Survey. Record format, file content, and size are given for: (1) Drill-stem-test data for Paleozoic and Mesozoic formations, (2) geologic data from the Madison Limestone project, (3) data sets used in the regional simulation model, (4) head data for the Lower and Upper Cretaceous aquifers, and (5) geologic data for Mesozoic formations of the Northern Great Plains. (USGS)

  5. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    SciTech Connect

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  6. Isotope paleoecology of episodic mid-to-late Holocene bison population expansions in the Southern Plains, U.S.A.

    NASA Astrophysics Data System (ADS)

    Lohse, Jon C.; Madsen, David B.; Culleton, Brendan J.; Kennett, Douglas J.

    2014-10-01

    We used a XAD-purified AMS radiocarbon method to date 62 bison specimens from different contexts on the very southern extent of the Great Plains of North America to produce a precise chronology of bison population expansions spanning the last 6000 years. Sixty-one of these samples provide stable carbon and nitrogen isotope data indicating relative temperature and moisture conditions during intervals defined by the presence of bison within this time span. This chronology indicates climatic conditions favorable to bison were present in the greater central Texas area, including the uplifted Edwards Plateau and extending to the Coastal Plain during periods from ˜5955 to 5815, ˜3290 to 3130, 2700 to 2150, and 650 to 530 cal BP. However, isotope results suggest climatic conditions differed for each period. The earliest “Calf Creek” period was characterized by cool but dry conditions, the later “Late Archaic 1 & 2” periods were increasingly warmer and wetter, and the latest “Toyah” period was cooler and drier than the Late Archaic periods, but warmer and wetter than Calf Creek. Both the Calf Creek and Toyah periods had higher variability within these overall trends. Comparison with regional records suggests that these periods represent variation within generally cool-dry climates. Human adaptive response to increased bison availability resulted in significant cultural changes across all four periods.

  7. Develop an early warning climate indicator to support the Nation's resilience to 'flash' droughts over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, D. N.; YANG, Z.; Solis, R.

    2013-12-01

    'Flash' droughts refer to those droughts that intensify rapidly in spring and summer, coupled with a strong increase of summer extreme temperatures, such as those that occurred over Texas in 2011 and the Great Plains in 2012. These droughts represent a great threat to North American water security. Climate models have failed to predict these 'flash' droughts and are ambiguous in projecting their future changes largely because of models' weaknesses in predicting summer rainfall and soil moisture feedbacks. By contrast, climate models are more reliable in simulating changes of large-scale circulation and warming of temperatures during the winter and spring seasons. We present a prototype of an early warning indicator for the risk of 'flash' droughts in summer by using the large-scale circulation and land surface conditions in winter and spring based on observed relationships between these conditions and their underlying physical mechanisms established by previous observations and numerical model simulations. This prototype 'flash' drought indicator (IFDW) currently uses global and regional reanalysis products (e.g., CFSR, MERRA, NLDAS products) in winter and spring to provide an assessment of summer drought severity similar to drought severity indices like PDSI (Palmer Drought Severity Index), SPI (Standard Precipitation Index) etc., provided by the National Integrated Drought Information Center (NIDIS) with additional information about uncertainty and past probability distributions of IFDW. Preliminary evaluation of hindcasts suggests that the indicator captures the occurrences of all the regional severe to extreme summer droughts during the past 63 years (1949-2011) over the US Great Plains, and 95% of the drought ending. This prototype IFDW has several advantages over the available drought indices that simply track local drought conditions in the past, present and future: 1) It mitigates the weakness of current climate models in predicting future summer droughts

  8. Types of phreatomagmatic volcanoes in the western Snake River Plain, Idaho, USA

    USGS Publications Warehouse

    Godchaux, M.M.; Bonnichsen, B.; Jenks, M.D.

    1992-01-01

    The western Snake River Plain graben in southwestern Idaho includes a large hydrovolcanic field which was produced in late Miocene to Pleistocene time by the interaction of rising basaltic magmas with the waters and water-saturated deposits of an enormous freshwater lake, Lake Idaho. The phreatomagmatic volcanoes in this field may be grouped into three types: emergent, subaqueous and subaerial. Emergent volcanoes, which began erupting under water and built up above the lake level, are relatively large and symmetrical, are dominated by bedded tuffs and late magmatic deposits, and are excellent indicators of water depth at the time of the eruption. Subaqueous volcanoes, which never built up above the lake level, are relatively small and asymmetrical, are dominated by basal massive deposits, and are potentially useful in discriminating between deep- and very-deep-water settings. Subaerial volcanoes, which were formed when magmas intercepted buried aquifers and interacted explosively with water, are small tuff rings and maars with variable shapes, are composed of subequal (although variable) proportions of basal massive deposits, bedded tuffs and late magmatic deposits, and are useful in determining the stratigraphic successions underlying them. ?? 1992.

  9. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.

    2010-11-01

    The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.

  10. Holocene chronology for lunette dune deposition on the Southern High Plains, USA

    USGS Publications Warehouse

    Rich, J.; Stokes, S.; Wood, W.W.

    1999-01-01

    Lunettes flank the margins of numerous ephemeral lakes that occur across the Southern High Plains of the United States. While their genesis is closely associated with the hydrology of the adjacent lake systems, the detailed inter-relationships between climate changes and geomorphological and hydrological changes upon the lake-lunette system has been hindered by an absence of reliable age control. In order to develop a chronology of lunette deposition, a luminescence dating programme was undertaken on surface collected and core sections from sets of lunettes which flank the southeast margins of three lake basins near Lubbock, Texas. In contrast to the preconception that the formation of lunettes occurred primarily during the last glacial maximum (18-12 ka), the inner two lunette ridges were observed to be emplaced in a punctuated manner during the middle and late Holocene from 5.6??0.5 to 0.7??0.02 ka. The chronostratigraphy developed in the context of the complex hydrogeological processes associated with the Lubbock lake basins demonstrates that the records of activity preserved within the lunettes provides a useful resolution record of climate change and landscape response.

  11. Episodic bedrock erosion by gully-head migration, Colorado High Plains, USA

    USGS Publications Warehouse

    Rengers, Francis; Tucker, G.E.; Mahan, Shannon

    2016-01-01

    This study explores the frequency of bedrock exposure in a soil-mantled low-relief (i.e. non-mountainous) landscape. In the High Plains of eastern Colorado, gully headcuts are among the few erosional features that will incise through the soil mantle to expose bedrock. We measured the last time of bedrock exposure using optically stimulated luminescence dating of alluvial sediment overlying bedrock in gully headcuts. Our dating suggests that headcuts in adjacent gullies expose bedrock asynchronously, and therefore, the headcuts are unlikely to have been triggered by a base-level drop in the trunk stream. This finding supports the hypothesis that headcuts can develop locally in gullies as a result of focused scour in locations where hydraulic stress during a flash flood is sufficiently high, and/or ground cover is sufficiently weak, to generate a scour hole that undermines vegetation. Alluvium dating also reveals that gullies have been a persistent part of this landscape since the early Holocene. 

  12. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    USGS Publications Warehouse

    Hupp, C.R.; Pierce, A.R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  13. Enhanced development of lacustrine microbialites on gravity flow deposits, Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bouton, Anthony; Vennin, Emmanuelle; Mulder, Thierry; Pace, Aurélie; Bourillot, Raphaël; Thomazo, Christophe; Brayard, Arnaud; Goslar, Tomasz; Buoncristiani, Jean-François; Désaubliaux, Guy; Visscher, Pieter T.

    2016-07-01

    The Great Salt Lake, Utah, USA is a shallow, hypersaline, intracontinental lake hosting extensive microbial deposits. At a large spatial scale, the distribution of these deposits is driven by environmental and geodynamical factors (i.e. water-level fluctuations and a fault-related framework). A detailed mapping of the Buffalo Point area, in the north-western part of Antelope Island, indicates the presence of an anomalous concentration of microbial deposits dated ca. 5.8 ka BP and distributed along a lobe-shaped geometry. This uncommon microbial deposit geometry results from an extensive colonization of a conglomerate substrate exhibiting an accumulation of m-sized rounded Cambrian quartzite boulders. We suggest that this conglomerate substrate provides a stable nucleation point that promotes the development and preservation of the lobe-shaped microbial deposits. Microbial deposits may also have protected the conglomerate substrate from erosional processes and thereby increased the preservation potential of the lobe-shaped structure. Based on the characteristics of the conglomerate (e.g. grain size, texture) and its location (i.e. 200 m beyond the average shoreline), this lobe-shaped structure likely results from subaqueous debris or a hyperconcentrated density flow that transports sedimentary material from the Buffalo Point slopes downward to the shore. We estimate the age of the conglomerate deposition to be between 21 and 12 ka BP. The initiation of the flow may have been triggered by various mechanisms, but the existence of a major active normal fault in the vicinity of these deposits suggests that an earthquake could have destabilized the accumulated sediments and resulted in conglomerate emplacement. The catastrophic 15 ka BP Bonneville Flood, which led to a drop in the lake level (approximately 110 m), may also provide an explanation for the initiation of the flow.

  14. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    PubMed

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  15. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA

    PubMed Central

    Arkle, Robert S; Pilliod, David S

    2015-01-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  16. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA)

    PubMed Central

    Zhang, Chuanlun L.; Wang, Jinxiang; Dodsworth, Jeremy A.; Williams, Amanda J.; Zhu, Chun; Hinrichs, Kai-Uwe; Zheng, Fengfeng; Hedlund, Brian P.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are predominantly found in soils and peat bogs. In this study, we analyzed core (C)-bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE) without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62–86°C) in the Great Basin (USA). First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”). These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear. PMID:23847605

  17. Unusually abundant and large ciliate xenomas in oysters, Crassostrea virginica, from Great Bay, New Hampshire, USA.

    PubMed

    McGurk, Emily Scarpa; Ford, Susan; Bushek, David

    2016-06-01

    During routine histological examination of oysters (Crassostrea virginica) from Great Bay, New Hampshire, USA, a high prevalence and intensity of ciliate xenomas has been noted since sampling began in 1997. Xenomas are hypertrophic lesions on the gills of bivalve molluscs caused by intracellular ciliates, likely Sphenophrya sp. Although not known to cause mortality in oysters, xenomas have not previously been reported at this high abundance. The objectives of this study were to characterize the xenomas, describe the ciliates, and gather baseline epizootiological data with correlations to environmental and biological parameters. Upon gross examination, xenomas appeared as white nodules, up to 3mm in diameter, located in the gill tissue and occasionally fusing into large masses along the gill filaments. Light microscopy of histological sections revealed xenomas located in the gill water tubes, which they often completely blocked. Higher magnification revealed dual nuclei, eight kineties, and conjugation of the ciliates. Transmission electron microscopy revealed dual nuclei that varied in density, a maximum of twenty cilia in each kinety radiating from the oral apparatus to the posterior, and a 9+2 axoneme structure within the cilia. These traits place the ciliates into the Order Rhynchodida, but insufficient molecular data exist to confirm classification of this ciliate to the Genus Sphenophrya. Since 1997, xenoma prevalence has fluctuated with peaks in 2000, 2004, and 2011. Infected oysters generally contained <30 xenomas, but 2.1% contained >100, sharply contrasting the rare prevalence and low intensity reported elsewhere. Prevalence increased with oyster size, leveling off near 50% in oysters >60mm. Infection intensity peaked in 70-90mm oysters and declined in larger oysters. Individual oyster condition was not associated with xenoma intensity, but sites with oysters in higher condition generally had a greater prevalence and intensity of xenoma infections

  18. The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate

    NASA Astrophysics Data System (ADS)

    Maughan, Larissa L.; Christiansen, Eric H.; Best, Myron G.; Grommé, C. Sherman; Deino, Alan L.; Tingey, David G.

    2002-03-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km 3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km 3. It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe-Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO 2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that

  19. Optical dating of tufa via in situ aeolian sand grains: A case example from the Southern High Plains, USA

    USGS Publications Warehouse

    Rich, J.; Stokes, S.; Wood, W.; Bailey, R.

    2003-01-01

    Precipitated carbonates (commonly termed tufas or travertines) maybe of considerable utility for palaeoenvironmental reconstruction. Their potential, however, for such reconstruction is commonly limited by difficulties associated with their absolute age control. Attempts to date such deposits via uranium series techniques have been complicated by their chemically open behaviour. Here we describe an alternative approach to date tufa deposits associated with ephemeral saline lake basins from the Southern High Plains, USA. We have optically dated sand grains of a mixed aeolian/fluvial (spring fed) origin as the integrating dosimeter. We assume that the grains are fully resetting prior to their incorporation into the tufa deposits and employ a time-dependent disequilibrium dosimetric model to account for the build-up of uranium series daughter products. The approach was applied to a set of four samples with known stratigraphic association. We obtained stratigraphically sensible optical ages ranging from 78??8 to 56??4ka. These data are consistent with existing palaeoenvironmental models of regional recharge. ?? 2003 Elsevier Science Ltd. All rights reserved.

  20. Predicting levels of stress from biological assessment data: empirical models from the Eastern Corn Belt Plains, Ohio, USA.

    PubMed

    Norton, Susan B; Cormier, Susan M; Smith, Marc; Jones, R Christian; Schubauer-Berigan, Mary

    2002-06-01

    Interest is increasing in using biological community data to provide information on the specific types of anthropogenic influences impacting streams. We built empirical models that predict the level of six different types of stress with fish and benthic macroinvertebrate data as explanatory variables. Significant models were found for six stressor factors: stream corridor structure; siltation; total suspended solids (TSS), biochemical oxygen demand (BOD), and iron (Fe); chemical oxygen demand (COD) and BOD; zinc (Zn) and lead (Pb); and nitrate and nitrite (NOx) and phosphorus (P). Model R2 values were lowest for the siltation factor and highest for TSS, BOD, and Fe. Model R2 values increased when spatial relationships were incorporated into the model. The models generally performed well when applied to a random subset of the data. Performance was more mixed when models were applied to data collected from a previous time period, perhaps because of a change in the spatial structure of these systems. These models may provide a useful indication of the levels of different stresses impacting stream reaches in the Eastern Corn Belt Plains ecoregion of Ohio, USA. More generally, the models provide additional evidence that biological communities can serve as useful indicators of the types of anthropogenic stress impacting aquatic systems. PMID:12069299

  1. New Iinsights Iinto Great Plains C4 Grassland Evolution and Paleoenvironmental Change From Paleosol Sedimentary Organic Matter d13C Records Over the Past 5 Myr

    NASA Astrophysics Data System (ADS)

    Chambers, K. L.; Fox-Dobbs, K.; Fox, D. L.; Haveles, A. W.; Snell, K. E.; Uno, K. T.; Polissar, P. J.; Martin, R.

    2015-12-01

    The Meade Basin (MB) of Southwestern Kansas, USA, contains abundant paleosols and mammalian fossil deposits that span the past 5 Myr. Geochemical records derived from paleosols provide insights into paleoenvironmental conditions in MB during the evolution of the Great Plains C4 grassland ecosystem. We measured carbon isotopes in pedogenic carbonates, plant waxes, and bulk sedimentary organic matter (OM) from the same stratigraphic level to directly compare the paleovegetation signal recorded in each proxy; to further understand carbon isotope systematics; and to estimate the relative proportions of C3 plant versus C4 grass biomass. Carbon isotope (δ13C) records were derived from OM preserved in the paleosol matrix and occluded in large carbonate nodules, and used to estimate %C3 plant versus %C4 grass biomass on the landscape. Carbonate δ13C records show a steady increase in C4 grass dominance in MB from <10% C4 biomass in the Miocene to near modern (~80%) levels by the mid Pleistocene. Leaf wax %C4 estimates were more variable, and also generally higher than the carbonate estimates. Our δ13C records of OM occluded in carbonate nodules are highly variable; much more so than the carbonate record generated from the same nodules, and the OM record does not show a clear increase in C4 grass dominance over time. We are able to rule out incomplete removal of carbonate as the source of high variability in OM δ13C values. A potential explanation is that OM occluded in nodules provides a spatial and temporal "snapshot" of aboveground biomass, while nodule carbonate reflects an integrated signal of paleovegetation. When combined, these proxies yield a more comprehensive landscape reconstruction. Specifically, the OM dataset gives insight into changes in paleovegetation heterogeneity over time. Our new understanding of the paleovegetation history in MB is being paired with paleoclimate records such as MAP (from elemental and magnetic proxies) and temperature (from clumped

  2. Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA

    USGS Publications Warehouse

    Morgan, L.A.; McIntosh, W.C.

    2005-01-01

    The Snake River Plain (SRP) developed over the last 16 Ma as a bimodal volcanic province in response to the southwest movement of the North American plate over a fixed melting anomaly. Volcanism along the SRP is dominated by eruptions of explosive high-silica rhyolites and represents some of the largest eruptions known. Basaltic eruptions represent the final stages of volcanism, forming a thin cap above voluminous rhyolitic deposits. Volcanism progressed, generally from west to east, along the plain episodically in successive volcanic fields comprised of nested caldera complexes with major caldera-forming eruptions within a particular field separated by ca. 0.5-1 Ma, similar to, and in continuation with, the present-day Yellowstone Plateau volcanic field. Passage of the North American plate over the melting anomaly at a particular point in time and space was accompanied by uplift, regional tectonism, massive explosive eruptions, and caldera subsidence, and followed by basaltic volcanism and general subsidence. The Heise volcan ic field in the eastern SRP, Idaho, represents an adjacent and slightly older field immediately to the southwest of the Yellowstone Plateau volcanic field. Five large-volume (>0.5 km3) rhyolitic ignimbrites constitute a time-stratigraphic framework of late Miocene to early Pliocene volcanism for the study region. Field relations and high-precision 40Ar/39Ar age determinations establish that four of these regional ignimbrites were erupted from the Heise volcanic field and form the framework of the Heise Group. These are the Blacktail Creek Tuff (6.62 ?? 0.03 Ma), Walcott Tuff (6.27 ?? 0.04 Ma), Conant Creek Tuff (5.51 ?? 0.13 Ma), and Kilgore Tuff (4.45 ?? 0.05 Ma; all errors reported at ?? 2??). The fifth widespread ignimbrite in the regions is the Arbon Valley Tuff Member of the Starlight Formation (10.21 ?? 0.03 Ma), which erupted from a caldera source outside of the Heise volcanic field. These results establish the Conant Creek Tuff as a

  3. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA

    NASA Astrophysics Data System (ADS)

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  4. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA.

    PubMed

    Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory. PMID:26163198

  5. Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick J.; Shedlock, Robert J.

    1993-01-01

    The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 μg 1 -1), and low bicarbonate concentrations (2 mg l 4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system.

  6. Assessing landscape change and processes of recurrence, replacement, and recovery in the Southeastern Coastal Plains, USA

    USGS Publications Warehouse

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-01-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  7. Sources of groundwater pumpage in a layered aquifer system in the Upper Gulf Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Scanlon, Bridget R.; Nicot, Jean-Philippe; Reedy, Robert C.; Dutton, Alan R.; Kelley, Van A.; Deeds, Neil E.

    2012-06-01

    Understanding groundwater-pumpage sources is essential for assessing impacts on water resources and sustainability. The objective of this study was to quantify pumping impacts and sources in dipping, unconfined/confined aquifers in the Gulf Coast (USA) using the Texas Carrizo-Wilcox aquifer. Potentiometric-surface and streamflow data and groundwater modeling were used to evaluate sources and impacts of pumpage. Estimated groundwater storage is much greater in the confined aquifer (2,200 km3) than in the unconfined aquifer (170 km3); however, feasibility of abstraction depends on pumpage impacts on the flow system. Simulated pre-development recharge (0.96 km3/yr) discharged through evapotranspiration (ET, ˜37%), baseflow to streams (˜57%), and to the confined aquifer (˜6%). Transient simulations (1980-1999) show that pumpage changed three out of ten streams from gaining to losing in the semiarid south and reversed regional vertical flow gradients in ˜40% of the entire aquifer area. Simulations of predictive pumpage to 2050 indicate continued storage depletion (41% from storage, 32% from local discharge, and 25% from regional discharge capture). It takes ˜100 yrs to recover 40% of storage after pumpage ceases in the south. This study underscores the importance of considering capture mechanism and long-term system response in developing water-management strategies.

  8. Field and Laboratory Dissipation of the Herbicide Fomesafen in the Southern Atlantic Coastal Plain (USA).

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2016-06-29

    To control weeds with evolved resistance to glyphosate, Southeastern (USA) cotton farmers have increased fomesafen (5-(2-chloro-α,α,α-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. To refine fomesafen risk assessments, data are needed that describe its dissipation following application to farm fields. In our study, relatively low runoff rates and transport by lateral subsurface flow, <1.0 and 0.15% of applied respectively, were observed. The low runoff rate was linked to postapplication irrigation incorporation and implementation of a common conservation tillage practice. Moderate soil persistence (t1/2 = 100 days) was indicated in laboratory incubations with surface soil, however, analysis of soil cores from treated plots showed that ≈3% of fomesafen applied persisted in subsoil >3 years after application. Findings suggest low potential for fomesafen movement from treated fields, however, the fate of fomesafen that accumulated in subsoil and the identity of degradates are uncertain. Soil and water samples were screened for degradates, but, none were detected. PMID:27268304

  9. Groundwater uptake by forest and herbaceous vegetation in the context of salt accumulation in the Hungarian Great Plain

    NASA Astrophysics Data System (ADS)

    Gribovszki, Zoltán; Kalicz, Péter; Balog, Kitti; Szabó, András; Fodor, Nándor; Tóth, Tibor

    2013-04-01

    In Hungarian Great Plain forested areas has significantly increased during the last century. Hydrological effects of trees differ from that of crops or grasses in that, due to their deep roots, they extract water from much deeper soil layers. It has been demonstrated that forest cover causes water table depression and subsurface salt accumulation above shallow saline water table in areas with a negative water balance. The above mentioned situation caused by the afforestation in the Hungarian Great Plain is examined in the frame of a systematic study, which analyzed all affecting factors, like climatic water balance, water table depth and salinity, three species, subsoil layering and stand age. At the regional scale altogether 108 forested and neighbouring non forested plots are sampled. At the stand scale 18 representative forested and accompanying non forested plots (from the 108) are monitored intensively. In this paper dataset of two neighbouring plots (common oak forest and herbaceous vegetation) was compared (as first results of this complex investigation). On the basis of the analysis it could be summarized that under forest the water table was lower, and the amplitude of diel fluctuation of water table was significantly larger as under the herbaceous vegetation. Both results demonstrate greater groundwater use of forest vegetation. Groundwater uptake of the forest (which was calculated by diel based method) was almost same as potential reference evapotranspiration (calculated by Penman-Monteith equation with locally measured meteorological dataset) along the very dry summer of 2012. Larger amount of forest groundwater use is not parallel with salt uptake, therefore salt accumulates in soil and also in groundwater as can be measured of the representative monitoring sites as well. In the long run this process can result in the decline of biological production or even the dry out of some part of the forest. Greater groundwater uptake and salt accumulation

  10. Geochemistry of water in aquifers and confining units of the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Busby, J.F.; Kimball, B.A.; Downey, J.S.; Peter, K.D.

    1995-01-01

    The geochemistry of water in five aquifers and two confining units in the Williston Basin of the Northern Great Plains is similar and is controlled by halite dissolution. In areas outside the Williston Basin ground-water is fresh and controlled by the solution chemistry of carbonate and sulfate minerals.

  11. Open to Horror: The Great Plains Situation in Contemporary Thrillers by E. E. Knight and by Douglas Preston and Lincoln Child

    ERIC Educational Resources Information Center

    Emrys, A. B.

    2009-01-01

    From the agoraphobic prairie where the father of Willa Cather's Antonia kills himself, to the claustrophobic North Dakota town of Argus devastated by storm in Louise Erdrich's "Fleur," to Lightning Flat, the grim home of Jack Twist in Annie Proulx's "Brokeback Mountain," much Great Plains literature is situational, placing human drama in the…

  12. Effects of Climate Change on soil carbon and nitrogen storage in the US Great Plains. Special Issue "Mitigation of Climate Change"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils of the US Great Plains are strongly affected by climate and contain enormous soil organic carbon (SOC) and soil organic nitrogen stocks (SON) that are likely vulnerable to predicted climate and land-use change. Climate change scenarios predict a 2.2-3.6°C (4-6.5°F) increase in temperature acro...

  13. Reduction of soluble nitrogen and mobilization of plant nutrients in soils from U.S. northern Great Plains agroecosystems by phenolic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic plant secondary metabolites actively participate in a broad range of important reactions that affect livestock, plants and soil. In soil, phenolic compounds can affect nutrient dynamics and mobility of metals but their role in northern Great Plains agroecosystems is largely unknown. We eval...

  14. Effects of supplemental flaxseed or corn on site and extent of digestion in beef heifers grazing summer rangelands in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six Angus heifers (367 ± 8.0 kg) fitted with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of ground flaxseed or corn and advancing season on site and extent of digestion when beef heifers grazed summer range in the northern Great Plains. Starti...

  15. Effects of supplemental flaxseed on site and extent of digestion in beef heifers grazing summer native pasture in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six Angus heifers (367 ± 8.0 kg) fitted with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of ground flaxseed or corn and advancing season on site and extent of digestion when beef heifers grazed summer range in the northern Great Plains. Start...

  16. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat-fallow (W-F) rotation is the predominant cropping system in the Central Great Plains. However, other cropping systems are being suggested because reduced tillage and fallow can provide more residues that can increase soil organic carbon (SOC) content and other parameters related to soi...

  17. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  18. AGRONOMIC FEASIBILITY OF A CONTINUOUS DOUBLE CROP OF WINTER WHEAT AND SOYBEAN GROWN SOLELY FOR FORAGE IN THE SOUTHERN GREAT PLAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southern Great Plains winter wheat is grown for grain-crop and used extensively for forage. During summer, wheat fields are normally fallow and summer forage is mostly native and improved warm-season perennial grass that decline in quality as they mature. Dry-land double cropping soybean behi...

  19. Imaging the Great Plains of the Central U.S. using Finite-Frequency Rayleigh Wave Tomography and Implications for Asthenosphere-Driven Uplift

    NASA Astrophysics Data System (ADS)

    Margolis, R. E.; Thurner, S.; Levander, A.

    2014-12-01

    Here we present a 3D shear velocity model for the lower crust and upper mantle beneath the Great Plains region in the central United States using finite frequency Rayleigh wave travel time tomography. We use USArray Transportable Array (TA) vertical component recording of teleseismic Rayleigh waves that we first invert for phase velocity using the modified two-plane wave method with finite frequency kernels. We then invert the resulting dispersion curves for shear velocity structure. Our analysis includes a characterization of the lithospheric structure in this tectonically transitional regime to illuminate the differences between the actively deforming western US and the stable continental interior of the northeastern Great Plains. The west is defined by slow velocities and thin lithosphere, whereas the east has fast velocities and thick lithosphere, with the thickest lithosphere in the northeast, representing the southwestern keel of the Superior craton. The Great Plains, which abut the Rocky Mountain Front, have an unusual elevation profile that possesses a much broader region of uplifted elevation and lower relief than other orogenic systems (Eaton 2009). From our tomography and regional heat flow data, we infer warm temperatures in the west and suggest that the asthenospheric mantle contributes to anomalously high elevation of the westernmost Great Plains with some secondary contribution due to crustal effects.

  20. Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Smith, Matthew

    Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of

  1. Preliminary projections of the effects of chloride-control structures on the Quaternary aquifer at Great Salt Plains, Oklahoma

    USGS Publications Warehouse

    Reed, J.E.

    1982-01-01

    About 1,200 tons of chloride per day are added to the salt load of the Salt Fork of the Arkansas River at Great Salt Plains Lake from natural sources. The source of this chloride is brine discharge from the rocks of Permian age in the vicinity of the lake. The U.S. Army Corps of Engineers has planned a chloride-control project. The Corps requested that the U.S. Geological Survey use a digital model to project the effects of the chloride-control plan on ground water. Ground-water flow and ground-water transport models were calibrated to represent the Quaternary aquifer that is the near-surface part of the flow system. The models were used to project the effects of planned chloride-control structures. Based on model results, ground-water levels are projected to rise as much as 19 feet. However, these water-level rises will occur only in areas near three reservoirs. Changes in ground-water level caused by the project will be small throughout most of the area. Chloride concentration of ground water is projected to increase by more than 90,000 milligrams per liter at one location. However, significant increases in chloride concentration during the 50-year period simulated are projected to be limited to areas where the ground water already contains excessive chloride concentrations.

  2. Medieval Loess Constraints On the Climate Effect of Dust Aerosols In the Great Plains of North America

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Cook, B. I.; Seager, R.; Mason, J. A.

    2011-12-01

    Loess deposits in the Great Plains of North America, together with tree ring records, suggest the occurrence of medieval megadroughts within the past millenium when rainfall was below average over several decades. Loess results from the deposition of dust aerosols, created by wind erosion, perhaps following vegetation loss after extended drought. Dust aerosols have been previously shown to exacerbate the absence of rainfall during the twentieth century Dust Bowl, reinforcing the drought and loss of vegetation. Ocean temperatures in the equatorial Pacific make the predominant contribution to hydroclimate variability in this region, but dust may have had an amplifying effect during the medieval drought once the vegetation loss was sufficiently extensive. Here, we describe GCM experiments with dust aerosols created by wind erosion over medieval sources within North America. Our goal is twofold: first, to calculate the climate effect of dust, which is believed to reduce precipitation during the Dust Bowl. Second, we calculate dust deposition for comparison to the observed thickness of loess deposits. This comparison serves as a constraint upon the total dust mobilization and the aerosol effect upon precipitation, both of which depend upon the incompletely known source extent and its productivity.

  3. Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains

    SciTech Connect

    JW Monroe; MT Ritsche; M Franklin; KE Kehoe

    2008-02-28

    The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2008) Program’s Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS (~ 70 km) and the OKM (~ 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models.

  4. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    SciTech Connect

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  5. Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Downey, J.S.

    1986-01-01

    Rocks of Paleozoic and Mesozoic age underlie the entire northern Great Plains of the United States. These rocks form 5 artesian aquifer systems that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming and extend more than 600 miles to discharge areas in the northeastern part of North Dakota and in the Canadian Province of Manitoba. Generally, the principal direction of flow in each aquifer is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of geologic structure, and decreased permeability of rocks in the deeper parts of the basin. Major fracture systems or lineaments traverse the geologic section and are either vertical or horizontal conduits, or barriers to, groundwater flow. Vertical leakage from the aquifers is restricted by shale of minimal permeability, halite beds, and stratigraphic traps or minimal-permeability zones associated with petroleum accumulations. Interaquifer leakage appears to occur through and along some of the major lineaments. During the Pleistocene Epoch, thick ice sheets completely covered the discharge areas of the bedrock aquifers. This effectively blocked flow northeastward from the system and, at some locations, it may have caused a reversal of flow. The existing flow, system therefore, may not have reached hydrologic equilibrium with the stress of the last glacial period. (USGS)

  6. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains.

    PubMed

    Otto, Clint R V; Roth, Cali L; Carlson, Benjamin L; Smart, Matthew D

    2016-09-13

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes. PMID:27573824

  7. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    USGS Publications Warehouse

    Otto, Clint R.; Roth, Cali; Carlson, Benjamin; Smart, Matthew

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes.

  8. Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

    SciTech Connect

    Phillips, Thomas J.; Klein, Stephen A.

    2014-01-28

    This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scale atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, of the local land feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary-layer clouds are influenced by thermal updrafts known to be associated with convection originating at the surface. Finally, we also discuss potential implications of these results for climate-model representation of regional land-atmosphere coupling.

  9. Carbon storage assessment of U.S. Great Plains relies on data from Landsat and other sources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    A new assessment of carbon storage in the U.S. Great Plains region helps to improve the understanding of carbon and greenhouse gas fluxes in parts of 14 states. It is the first of a series of such assessments, with the entire national assessment set for completion around 2013, the U.S. Geological Survey (USGS) announced at a 6 December press briefing at the AGU Fall Meeting in San Francisco, Calif. The assessment, based on measured and observed data collected by USGS from Landsat and other sources, also indicates the value of the troubled Landsat satellites, according to USGS director Marcia McNutt. The assessment of the 2.17-million-square-kilometer region of the country, which contains a number of different ecosystems, examines carbon storage as well as carbon, methane, and nitrous oxide fluxes in all terrestrial ecosystems in the region during a baseline period. Projections of these fluxes also were extended to 2050. The report was carried out to fulfill a section of the Energy Independence and Security Act of 2007.

  10. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  11. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Haines, Dustin F.; Larson, Jennifer L.

    2013-01-01

    Exotic plants have the ability to modify soil seed banks in habitats they invade, but little is known about the legacy of invasion on seed banks once an exotic plant has successfully been controlled. Natural areas previously invaded by leafy spurge in the northern Great Plains typically have one of two fates following its removal: a return of native plants, or a secondary invasion of other exotic plants. It is unknown, however, if this difference in plant communities following leafy spurge control is due to seed bank differences. To answer this question, we monitored seed banks and standing vegetation for 2 yr in mixed-grass prairies that were previously invaded by leafy spurge but controlled within 5 yr of our study. We found that native plant seed banks were largely intact in areas previously invaded by leafy spurge, regardless of the current living plant community, and leafy spurge invasion history had a larger impact on cover and diversity of the vegetation than on the seed banks. Differences in plant communities following leafy spurge control do not appear to be related to the seed banks, and soil conditions may be more important in determining trajectories of these postinvasion communities.

  12. A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.

  13. Radon and thoron levels, their spatial and seasonal variations in adobe dwellings - a case study at the great Hungarian plain.

    PubMed

    Szabó, Zsuzsanna; Jordan, Gyozo; Szabó, Csaba; Horváth, Ákos; Holm, Óskar; Kocsy, Gábor; Csige, István; Szabó, Péter; Homoki, Zsolt

    2014-06-01

    Radon and thoron isotopes are responsible for approximately half of the average annual effective dose to humans. Although the half-life of thoron is short, it can potentially enter indoor air from adobe walls. Adobe was a traditional construction material in the Great Hungarian Plain. Its major raw materials are the alluvial sediments of the area. Here, seasonal radon and thoron activity concentrations were measured in 53 adobe dwellings in 7 settlements by pairs of etched track detectors. The results show that the annual average radon and thoron activity concentrations are elevated in these dwellings and that the proportions with values higher than 300 Bq m(-3) are 14-17 and 29-32% for radon and thoron, respectively. The calculated radon inhalation dose is significantly higher than the world average value, exceeding 10 mSv y(-1) in 7% of the dwellings of this study. Thoron also can be a significant contributor to the inhalation dose with about 30% in the total inhalation dose. The changes of weather conditions seem to be more relevant in the variation of measurement results than the differences in the local sedimentary geology. Still, the highest values were detected on clay. Through the year, radon follows the average temperature changes and is affected by the ventilation, whereas thoron rather seems to follow the amount of precipitation. PMID:24437932

  14. Investigation of the Impact of Aerosols on Clouds During May 2003 Intensive Operational Period at the Southern Great Plains

    SciTech Connect

    Guo, H.; Penner, J.E.; Herzog, M.

    2005-03-18

    The effect of aerosols on the clouds, or the so-called aerosol indirect effect (AIE), is highly uncertain (Penner et al. 2001). The estimation of the AIE can vary from 0.0 to -4.8 W/m2 in Global Climate Models (GCM). Therefore, it is very important to investigate these interactions and cloud-related physical processes further. The Aerosol Intensive Operation Period (AIOP) at the Southern Great Plains (SGP) site in May 2003 dedicated some effort towards the measurement of the Cloud Condensation Nucleus concentration (CCN) as a function of super-saturation and in relating CCN concentration to aerosol composition and size distribution. Furthermore, airborn measurement for the cloud droplet concentration was also available. Therefore this AIOP provides a good opportunity to examine the AIE. In this study, we use a Cloud Resolving Model (CRM), i.e., Active Tracer High-resolution Atmospheric Model (ATHAM), to discuss the effect of aerosol loadings on cloud droplet effective radius (Re) and concentration. The case we examine is a stratiform cloud that occurred on May 17, 2003.

  15. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  16. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  17. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  18. Drought effect on selection of conservation reserve program grasslands by white-tailed deer on the Northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2011-01-01

    Limited information exists regarding summer resource selection of white-tailed deer (Odocoileus virginianus) in grassland regions of the Northern Great Plains. During summers 2005-2006, we analyzed habitat selection of adult female white-tailed deer in north-central South Dakota. We collected 1905 summer locations and used 21 and 30 home ranges during 2005 and 2006, respectively, to estimate habitat selection. Results indicated that selection occurred at the population (P < 0.001) and home range (P < 0.001) levels. Deer selected for Conservation Reserve Program grasslands and corn during both summers and shifted selection temporally within summer. Use of CRP grasslands occurred during early summer; 73.1 and 88.9% of locations in CRP were documented prior to 1 Jul. during 2005 and 2006, respectively. Conversely, selection for corn occurred during late summer; 86.0 and 68.4% of locations in corn were documented after 1 Jul. during 2005 and 2006, respectively. Additionally, deer selected for forested cover and rural development areas containing permanent water sources during extreme drought conditions during 2006. Deer likely selected for fields of CRP grasslands during early summer for cover and natural forages, such as clover (Trifolium sp.), prior to the period when agricultural crops become available. Drought conditions occurring in semiarid prairie grassland regions may reduce food and water availability and contribute to subsequent changes in deer habitat selection across the range of the species.

  19. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We

  20. Total Mercury and Methylmercury in the Great Egg Harbor River Watershed, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Barringer, J. L.; Riskin, M. L.; Szabo, Z.; Fischer, J. M.; Reilly, P. A.; Rosman, R.; Bonin, J. L.; Heckathorn, H. A.

    2007-12-01

    Hydrologic and biogeochemical conditions are important factors in the transport and distribution of mercury (Hg) in New Jersey Coastal Plain watersheds that contain extensive freshwater wetlands and where Hg bioaccumulation is of concern. U.S. Geological Survey studies found Hg concentrations in top predator fish from the Great Egg Harbor River mainstem that ranged from 2.9 to 4.5 mg/kg (dry wt.) and exceeded 10 ng/L in the watershed's acidic streams. An ongoing study with the N.J. Department of Environmental Protection indicates that atmospheric deposition of Hg to the wetlands and streams may be augmented by substantial contributions of Hg from ground water. Although background levels of Hg in water from the underlying aquifer typically are less than 10 ng/L, concentrations in water from more than 600 domestic wells in southern New Jersey have been shown to exceed the drinking-water maximum contaminant level of 2,000 ng/L. Therefore, to determine ground-water inputs to the streams, samples of ground water discharging to the tributaries and mainstem as well as streamwater samples collected during various flow conditions were analyzed for total Hg and methylmercury (MeHg). Total Hg concentrations in ground water discharging to the tributaries and mainstem were low to moderate (0.29-22 ng/L) in relatively undeveloped areas (including wetlands), but higher (36 and 177 ng/L) in two urban/suburban areas where much of the Hg was in particulate form. In recent and ongoing studies, total Hg concentrations in unfiltered samples of surface water, except those for one suburban tributary, have ranged from 2.13 to 37.7 ng/L. Concentrations in the suburban tributary have ranged from 50 ng/L during a dry period to 250 ng/L during a wet period. Hg concentrations in samples from a wetlands-embedded reach of the mainstem varied markedly with flow. In addition to increases in concentrations of total Hg, UV absorbance and concentrations of dissolved organic carbon also increased with