Sample records for green algae diatoms

  1. Green Algae

    NSDL National Science Digital Library

    Wim van Egmond

    2010-01-01

    Color photomicrographs of several species of green algae with brief descriptions of their chief characteristics and habitat. Scroll to the bottom of the page to links to bacteria, and more protists including diatoms, desmids and rotifers.

  2. Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine.

    PubMed

    Brain, Richard A; Arnie, Joshua R; Porch, John R; Hosmer, Alan J

    2012-11-01

    We evaluated the recovery of photosynthesis and growth rate in green (Pseudokirchneriella subcapitata), blue-green (Anabaena flos-aquae), and diatom (Navicula pelliculosa) algae after pulsed exposure to atrazine. Subsequent to a grow-up period of 24 to 72 h to establish requisite cell density for adequate signal strength to measure photosystem II (PSII) quantum yield, algae were exposed to a pulse of atrazine for 48 h followed by a 48-h recovery period in control media. Photosynthesis was measured at 0, 3, 6, 12, 24, and 48 h of the exposure and recovery phases using pulse amplitude modulation fluorometry; growth rate and cell density were also concomitantly measured at these time points. Exposure to atrazine resulted in immediate, but temporary, inhibition of photosynthesis and growth; however, these effects were transient and fully reversible in the tested species of algae. For all three algal species, no statistically significant reductions (p ? 0.05) in growth rate or PSII quantum yield were detected at any of the treatment concentrations 48 h after atrazine was removed from the test system. Effects at test levels up to the highest tested exposure levels were consequently determined to be algistatic (reversible). Both biochemically and physiologically, recovery of photosynthesis and growth rate occur immediately, reaching control levels within hours following exposure. Therefore, pulsed exposure profiles of atrazine typically measured in Midwestern U.S. streams are unlikely to result in biologically meaningful changes in primary production given that the effects of atrazine are temporary and fully reversible in species representative of native populations. PMID:22903862

  3. Blue-green algae

    MedlinePLUS

    ... Lac Klamath, Anabaena, Aphanizomenon flos-aquae, Arthrospira maxima, Arthrospira platensis, BGA, Blue Green Algae, Blue-Green Micro-Algae, Cyanobacteria, Cyanobactérie, Cyanophycée, Dihe, Espirulina, Hawaiian Spirulina, Klamath, Klamath Lake Algae, Lyngbya wollei, Microcystis aeruginosa, ...

  4. The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures.

    PubMed

    Hunt, Ryan W; Chinnasamy, Senthil; Das, K C

    2011-08-01

    The application of biochemical stimulants to enhance biomass and metabolite productivity is being investigated here and may be a simpler approach to achieve our goals of higher productivity and lower costs than methods such as genetic modification. The research builds on prior work of screening various biochemical stimulants representing different types of plant growth regulators with the green alga, Chlorella sorokiniana. Here, we report the impact on biomass and chlorophyll productivity by comparing the delivery method of a previously identified superior stimulant, the synthetic auxin naphthalene-acetic acid (NAA), solubilized in ethanol or methanol. Algae evaluated included the green alga, C. sorokiniana, as well as a mixed consortium that includes C. sorokiniana along with two other wild-isolated green algae, Scenedesmus bijuga and Chlorella minutissima. It was found that NAA dissolved in ethanol was more effective in enhancing biomass productivity of C. sorokiniana. However, no differences were observed with the mixed consortia. The most effective treatment from this step, EtOH(500ppm)?+?NAA(5ppm), along with two other NAA concentrations (EtOH(500ppm)?+?NAA(2.5ppm) and EtOH(500ppm)?+?NAA(10ppm)), was then applied to six diverse species of microalgae to determine if the treatment dosage was effective for other freshwater and marine green algae, cyanobacteria, coccolithophore, and diatoms. It was found that three of the species bioassayed, Pleurochrysis carterae, C. sorokiniana, and Haematococcus pluvialis exhibited a substantial boost in biomass productivity over the 10-day growth period. The use of ethanol and NAA at a combined dosage of EtOH(500ppm)?+?NAA(5ppm) was found to generate the highest biomass productivity for each of the species that responded positively to the treatments. If scalable, NAA and ethanol may have the potential to lower production costs by increasing biomass yields for commercial microalgae cultivation. PMID:21431321

  5. The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation Is Different from That of Green Algae and Higher Plants1[W

    PubMed Central

    Hockin, Nicola Louise; Mock, Thomas; Mulholland, Francis; Kopriva, Stanislav; Malin, Gill

    2012-01-01

    The availability of nitrogen varies greatly in the ocean and limits primary productivity over large areas. Diatoms, a group of phytoplankton that are responsible for about 20% of global carbon fixation, respond rapidly to influxes of nitrate and are highly successful in upwelling regions. Although recent diatom genome projects have highlighted clues to the success of this group, very little is known about their adaptive response to changing environmental conditions. Here, we compare the proteome of the marine diatom Thalassiosira pseudonana (CCMP 1335) at the onset of nitrogen starvation with that of nitrogen-replete cells using two-dimensional gel electrophoresis. In total, 3,310 protein spots were distinguishable, and we identified 42 proteins increasing and 23 decreasing in abundance (greater than 1.5-fold change; P < 0.005). Proteins involved in the metabolism of nitrogen, amino acids, proteins, and carbohydrates, photosynthesis, and chlorophyll biosynthesis were represented. Comparison of our proteomics data with the transcriptome response of this species under similar growth conditions showed good correlation and provided insight into different levels of response. The T. pseudonana response to nitrogen starvation was also compared with that of the higher plant Arabidopsis (Arabidopsis thaliana), the green alga Chlamydomonas reinhardtii, and the cyanobacterium Prochlorococcus marinus. We have found that the response of diatom carbon metabolism to nitrogen starvation is different from that of other photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria. PMID:22065419

  6. Marine Diatom, Navicula sp. Strain JPCC DA0580 and Marine Green Alga, Chlorella sp. Strain NKG400014 as Potential Sources for Biodiesel Production

    Microsoft Academic Search

    Mitsufumi Matsumoto; Hiroshi Sugiyama; Yoshiaki Maeda; Reiko Sato; Tsuyoshi Tanaka; Tadashi Matsunaga

    2010-01-01

    Marine diatom, strain JPCC DA0580, and marine green microalga strain NKG400014 were selected as high neutral lipid-producers\\u000a from marine microalgal culture collection toward biodiesel production. These strains were tentatively identified as Navicula sp. and Chlorella sp., respectively, by 18S rDNA analysis. Growth and lipid accumulation conditions of both strains were analyzed by changing\\u000a nutrient concentrations in growth media and initial

  7. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    PubMed

    Chan, Cheong Xin; Reyes-Prieto, Adrian; Bhattacharya, Debashish

    2011-01-01

    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ?70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments. PMID:22195008

  8. Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

    E-print Network

    Buehler, Markus J.

    Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We

  9. Halophilic-blue-green algae

    Microsoft Academic Search

    Thomas D. Brock

    1976-01-01

    The isolation of a halophilic blue-green alga, Aphanothece halophytica, from Great Salt Lake is described. The organism was cultured from waters with salinities up to saturated NaCl (about 30% w\\/v). It has an optimum salinity for growth of about 16% NaCl, but can grow very slowly even in saturated NaCl. Based on the study of the Great Salt Lake organism,

  10. Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal by-product meals from the Hawaiian biofuels industry were evaluated as protein ingredients in diets for juveniles of Nile tilapia (Oreochromis niloticus). Four experimental diets were formulated to contain 40% protein and were made with fish meal, soybean meal, whole diatom (Nanofrustulum sp.)...

  11. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga

    Microsoft Academic Search

    Joseph W. Pardue; Richard S. Scalan; Chase van Baalen; Patrick L. Parker

    1976-01-01

    The maximum carbon isotope fractionation occurring in photosynthetic fixation of carbon dioxide in pure cultures of blue-green algae was -23.9%. and for a green alga was -22.6%., Maximum fractionations were obtained where cell densities were low and carbon dioxide concentrations were greater than 0.5%. Fractionation was reduced at higher temperatures using a thermophilic blue-green alga. For filamentous blue-green algae wherein

  12. Common benthic algae and cyanobacteria in southern California tidal wetlands

    E-print Network

    Janousek, Christopher N

    2011-01-01

    Algae and cyanobacteria of southern California marine wetlands. Oscillatoria sp. 1 Filamentous,filamentous genera. A phylogenetically- diverse assemblage of pennate and centric diatoms, euglenoids, green algae,

  13. Hydrocarbons in green and blue-green algae

    Microsoft Academic Search

    T. ?ezanka; J. Zahradník; M. Podojil

    1982-01-01

    Liquid column chromatography and thin-layer chromatography were used to determine the total content of hydrocarbons and gas\\u000a chromatography was used to evaluate composition of hydrocarbons in green algae (Chlorella kessleri, C. vulgaris, Chlorella sp.,Scenedesmus acutus, S. acuminatus, S. obliquus) and the blue-green alga (Spirulina platensis) cultivated under autotrophic or heterotrophic conditions. InC. kessleri cultivated under heterotrophic conditions the content of

  14. Characterization of the Lhc SR Gene Under Light and Temperature Stress in the Green Alga Ulva linza

    Microsoft Academic Search

    Meitao Dong; Xiaowen Zhang; Zhimeng Zhuang; Jian Zou; Naihao Ye; Dong Xu; Shanli Mou; Chengwei Liang; Wenqi Wang

    As a green-tide-forming macroalga, Ulva linza is distributed worldwide and therefore subject to various environmental stresses. The LHCSR (also known as LI818 in green\\u000a alga and LHCX in diatoms) protein is a stress-related member of the LHC family that plays an important role in photo-protective\\u000a mechanism, which has been only found in algae. In this study, we cloned full-length cDNA

  15. The taxonomy of blue-green algae

    Microsoft Academic Search

    B. A. Whitton

    1969-01-01

    The conventions at present used in the classification of blue-green algae frequently prove unsatisfactory. A solution is suggested which requires the simultaneous use of two different approaches. When a binomial is essential the flora of Geitler (1932) should be adequate for most purposes, but any long term attempt to sort out the present chaos will require the use of numerical

  16. Intracellular invasion of green algae in a salamander host

    E-print Network

    Intracellular invasion of green algae in a salamander host Ryan Kerneya,1 , Eunsoo Kimb , Roger P) and green algae ("Oophila amblystomatis" Lamber ex Printz) has been considered an ectosymbiotic mutu- alism tracts, consistent with oviductal transmission of algae from one salamander generation to the next

  17. Ammonia assimilation in blue-green algae

    Microsoft Academic Search

    A. H. Neilson; M. Doudoroff

    1973-01-01

    The occurrence of alanine dehydrogenase (AlaDH), glutamate dehydrogenase (GDH), and 2-ketoglutarate: glutamine amidotransferase (GGAT), has been surveyed in a number of blue-green algae. Among nine unicellular strains grown with nitrate, and belonging to five of the major typological groups, AlaDH was present in seven, and GDH in all eight that were assayed. In ten filamentous strains grown with nitrate, and

  18. Heterotrimeric G-proteins in green algae

    PubMed Central

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1–1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions. PMID:24614119

  19. Photoreversible Pigment: Occurrence in a Blue-Green Alga

    Microsoft Academic Search

    Joseph Scheibe

    1972-01-01

    A new photoreversible pigment has been isolated from the blue-green alga Tolypothrix tenuis. This pigment bears certain resemblances to phytochrome, except that absorption maxima for the two forms are in the green and red portions of the spectrum instead of the red and far-red. The pigment may control diverse differentiative processes in blue-green algae.

  20. Flotation of blue-green algae using methylated egg ovalbumin

    Microsoft Academic Search

    Hideo Maruyama; Hideshi Seki; Akira Suzuki

    2009-01-01

    The removal of blue-green algae by dispersed gas flotation was conducted. Methylated ovalbumin (MeOA) was used as frother and flocculant, which is a biodegradable substance. The continuous flotation experiments were conducted at different feed mass flow rate of the blue-green algae cells and MeOA. The operating variables were the mass flow rate of blue-green algae cell and MeOA, the initial

  1. Glycolate Pathway in Green Algae 1

    PubMed Central

    Bruin, W. J.; Nelson, Edward B.; Tolbert, N. E.

    1970-01-01

    By three criteria, the glycolate pathway of metabolism is present in unicellular green algae. Exogenous glycolate-1-14C was assimilated and metabolized to glycine-1-14C and serine-1-14C. During photosynthetic 14CO2 fixation the distributions of 14C in glycolate and glycine were similar enough to suggest a product-precursor relationship. Five enzymes associated with the glycolate pathway were present in algae grown on air. These were P-glycolate phosphatase, glycolate dehydrogenase (glycolate:dichloroindophenol oxidoreductase), l-glutamate:glyoxylate aminotransferase, serine hydroxymethylase, and glycerate dehydrogenase. Properties of glycerate dehydrogenase and the aminotransferase were similar to those from leaf peroxisomes. The specific activity of glycolate dehydrogenase and serine hydroxymethylase in algae was 1/5 to 1/10 that of the other enzymes, and both these enzymes appear ratelimiting for the glycolate pathway. Labeling patterns for products of the glycolate pathway during 14CO2 fixation are not the same as those obtained with higher plants. In higher plants glycolate, glycine, and serine are uniformly labeled at shortest time periods. In algae, serine was predominately carboxyl-labeled, similarly to 3-phosphoglycerate. This result, plus the lower specific activity of serine hydroxymethylase, indicates that the glycine-serine interconversin in algae is slower than in plants. Initially (2 to 4 seconds) glycolate and glycine were more C-2 labeled. They rapidly became uniformly labeled, with glycine becoming uniformly labeled first. In the presence of isonicotinylhydrazide, labeled glycolate and glycine accumulated, and only a trace of serine-14C was detected. Then glycolate and glycine were initially carboxyl-labeled, and glycolate became uniformly labeled almost immediately and before glycine. These results suggest rapid metabolism of glycolate and glycine, in addition to the glycolate pathway. PMID:16657472

  2. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms

    E-print Network

    Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial the Parachloroidium strains from other similar green algae. However, ultrastructural characteristics and molecular

  3. ELECTRON MICROSCOPE STUDIES ON BLUE-GREEN ALGAE

    Microsoft Academic Search

    HANS RIS; R. N. SINGH

    1961-01-01

    Several species of blue-green algae were studied in thin sections with the electron microscope. Our electron micrographs confirm the view that the cell of blue-green algae is different and simpler in organization than the typical plant or animal cell. On the other hand, the general pattern of ultrastructure is the same as that found in bacteria and Streptomyces. The cell

  4. Effect of pesticides on blue-green algae

    Microsoft Academic Search

    P. K. Singh

    1973-01-01

    Effect of pesticides, i.e., Benzene Hexachloride, Lindane, Diazinon and Endrin that are often used in India was observed on nitrogen-fixing blue-green algae Cylindrospermum sp., Aulosira fertilissima Ghose and aerobically non-nitrogen-fixing blue-green alga Plectonema boryanum strain 594. These algae were sensitive for BHC in comparison to other pesticides. A. fertilissima and P. boryanum were more resistant than Cylindrospermum sp.

  5. Antimutagenic properties of fresh-water blue-green algae

    Microsoft Academic Search

    N. Lahitová; M. Doupovcová; J. Zvonár; J. Chandoga; G. Hocman

    1994-01-01

    The antimutagenic properties of whole fresh-water blue-green algaeAphanisomenon flos-aquae, marketed under the commercial name “Alpha Sun” were tested using the Ames test. Simultaneous addition of both algae and\\u000a Nitrovin (a mutagen) to the test medium did not reduce the mutagenic activity. On the other hand, addition of freeze-dried\\u000a blue-green algae to the test medium 2–24 h before the application of

  6. Taxonomy of blue-green algae-problems and prospects

    Microsoft Academic Search

    T. V. Desikachary

    1970-01-01

    Summary  Only in the past 10 years has attention again been focused on the blue-green algae. Physiological problems are doubtless the\\u000a main point of interest. However, aside from this, several specialists are studying the taxonomy of this group of algae; they\\u000a are unanimous in their conviction that the systematic of the blue-green algae must be revised with due consideration given\\u000a to

  7. Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis

    Microsoft Academic Search

    Claire Berkaloff; Lise Caron; Bernard Rousseau

    1990-01-01

    P700 enriched fractions were isolated from two brown algae and one diatom using sucrose density centrifugation after digitinin solubilization. They had a Chl a\\/P700 ratio of about 250 to 375 according to the species, they were enriched in long-wavelength absorbing Chl a and exhibited a fluorescence emission maximum at 77 K near 720 nm. They all presented a major polypeptide

  8. Blue-Green Algae and Freshwater Carbonate Deposits

    Microsoft Academic Search

    A. Pentecost

    1978-01-01

    Twenty-seven contemporary freshwater carbonate deposits were investigated (26 in the British Isles and 1 in S. Australia). The blue-green algae Schizothrix calcicola and Microcoleus vaginatus occurred at 23 of the sites. The remaining sites represented areas where deposition had ceased. About 1% of the dry mass of the deposits consisted of Cyanophyta. The assimilation rates of these algae, measured by

  9. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage

    PubMed Central

    Gruber, Ansgar; Rocap, Gabrielle; Kroth, Peter G; Armbrust, E Virginia; Mock, Thomas

    2015-01-01

    The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear-encoded plastid-localized proteins contain N-terminal bipartite targeting peptides with the conserved amino acid sequence motif ‘ASAFAP’. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear-encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved ‘ASAFAP’ motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid-localized proteins with both high sensitivity and high specificity. To identify nucleus-encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full-length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae. PMID:25438865

  10. Identification of cytokinin in a green algae extract

    NASA Astrophysics Data System (ADS)

    de-Lin, Duan; Feng, Pan; Li, Shuai; Jun-Shun, Zhang; Xin-Tong, Liu; Xiu-Geng, Fei

    1996-06-01

    Isopentenyladenosine (i6Ado) was identified, and trans-zeatin (trans-Z) and trans-zeatin riboside (trans-ZR) were detected by high pressure liquid chromatography (HPLC) but not verified with chromatography—mass spectrometry (GC-MS) analysis of cytokinin from the extracts of green algae ( Ulva pertusa (Kjellm), Enteromopha compressa and Monostroma sp.). This indicated that the green algae mixture contained cytokinin—like substances.

  11. Photosynthetic H 2 metabolism in Chlamydomonas reinhardtii (unicellular green algae)

    Microsoft Academic Search

    Anastasios Melis

    2007-01-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and\\u000a to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate

  12. Nitrogen fixation by unicellular blue-green algae

    Microsoft Academic Search

    Rosmarie Rippka; Alasdair Neilson; Riyo Kunisawa; Germaine Cohen-Bazire

    1971-01-01

    The ability of some unicellular blue-green algae to grow at the expense of N2 under aerobic conditions has been confirmed and the distribution of this property in the Chroococcaceae has been investigated. It appears to be confined to strains with spherical cells enclosed by the multilaminate sheaths characteristic of the genus Gloeocapsa. Only two unicellular blue-green algae of this type

  13. Ribonucleotide Reductase in Blue-Green Algae: Dependence on Adenosylcobalamin

    Microsoft Academic Search

    F. K. Gleason; J. M. Wood

    1976-01-01

    Ten species of freshwater blue-green algae exhibit an adenosylcobalamin-dependent ribonucleotide reductase, thus explaining the requirement for cobalt by these organisms. The evidence suggests a phylogenetic affinity between the cyanophytes and bacteria, such as Clostridium and Rhizobium, and the euglenoid flagellates, which also use the cofactor-dependent reductase. In contrast, the ribonucleotide reductase reaction in the few green algae surveyed shows no

  14. Viable Cyanobacteria and Green Algae from the Permafrost Darkness

    Microsoft Academic Search

    Tatiana A. Vishnivetskaya; Tatiana A

    2009-01-01

    This review represents an overview of the existence, distribution and abundance of the photoautotrophic microorganisms in\\u000a the deep subsurface permafrost of the Northeast Russia and McMurdo Dry Valleys, Antarctica. The morphology, growth rate, spectral\\u000a properties, phylogenetic position of the viable permafrost green algae and cyanobacteria have been studied. Viable photoautotrophs\\u000a were represented by unicellular green algae and filamentous cyanobacteria with

  15. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  16. RESEARCH ARTICLE Open Access Origin of land plants: Do conjugating green algae

    E-print Network

    RESEARCH ARTICLE Open Access Origin of land plants: Do conjugating green algae hold the key? Sabina (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms

  17. Factors influencing the distribution of diatoms and other algae in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Leventer, Amy; Dunbar, Robert B.

    1996-08-01

    Quantitative microscopic analyses of sediment trap samples collected in the Ross Sea between January 1990 and February 1992 reveal striking temporal and spatial differences in algal bloom composition and size. Trap samples from the southwestern Ross Sea (site A, 76°30'S, 167°30'E) were dominated by the diatom Fragilariopsis curia (maximum of 92%), a species associated with both sea ice and the retreating ice edge in the Ross Sea. This species was probably seeded by melting congelation ice. Highest flux of diatom valves to both upper and lower traps in the 1991-1992 season occurred as a distinct event in mid-February 1991, after which flux decreased by 1 to 3 orders of magnitude. As overall flux decreased, an increase in relative abundance of Chaetoceros resting spores and the open water species Thalassiosira antarctica was observed in the lower trap, suggesting some localized lateral advection. In the south central Ross Sea (site B, 76°30', S 175°W), algal diversity was much higher, with a greater contribution of nondiatom material. The prymnesiophyte Phaeocystis antarctica, dinoflagellates, and cysts of unknown affinity were much more common than at site A, as were the diatoms Fragilariopsis cylindrus, Fragilariopsis kerguelensis, and Thalassiosira gracilis. Highest diatom flux occurred later (February 20 to March 6,1991) at this site and was an order of magnitude lower as compared to maximum flux at site A. Distinct differences in bloom size and composition between sites A and B may be a function of upper water column structure, differences in the amount of sea ice melting, and the type of sea ice present at the time of ice breakout (congelation versus pack ice). Despite rich surface productivities, lower silica flux to the seafloor at site B results from the higher proportion of nonsiliceous algae. At site C (72°30'S, 172°30'E), in the northwestern Ross Sea, diatoms again dominated algal flux; however, assemblage composition differed from that observed at both sites A and B. Relative abundance of F. curta was lower, averaging 60-70%, while the remainder of the assemblage was made up of F. cylindrus, other more robust species of Fragilariopsis, and Chaetoceros resting spores. Algal flux at site C is intermediate in style between sites A and B. Significantly, spatial differences in diatom assemblages noted above appear to be reflected in seafloor surface sediments, suggesting that downcore diatom data provide an interpretable record of paleoproductivity in the Ross Sea.

  18. Sonic cracking of blue-green algae

    Microsoft Academic Search

    Spiros Kotopoulis; Antje Schommartz; Michiel Postema

    2009-01-01

    Algae are aquatic organisms classified separately from plants. They are known to cause many hazards to humans and the environment. Algae strands contain nitrogen-producing cells that help them float (heterocysts). It is hypothesized that if the membranes of these cells are disrupted by means of ultrasound, the gas may be released analogous to sonic cracking, causing the strands to sink.

  19. Penicillinase (?-lactamase) formation by blue-green algae

    Microsoft Academic Search

    D. J. Kushner; Colette Breuil

    1977-01-01

    ß-Lactamase (penicillinase) activity was found in a number of strains of blue-green algae. In some cases, this enzyme permitted algae to overcome the inhibitory effects of penicillin. Production and localization of ß-lactamase were studied in a unicellular species, Coccochloris elabens (strain 7003), and in a filamentous, nitrogen-fixing Anabaena species (strain 7120). When cells were grown in a neutral medium with

  20. Photobiological hydrogen production in green algae and photosynthetic bacteria

    Microsoft Academic Search

    Greenbaum

    1986-01-01

    We have shown that, under appropriate physiological conditions, certain freshwater and marine green algae are capable of splitting water to molecular hydrogen and oxygen in a sustained steady-state reaction. In these algae, the gaseous-fuel-producing reaction can be driven by light throughout the visible portion of the solar emission spectrum, including the long wavelength (red) 700-nm region. No external energy sources

  1. Studies on nitrogen fixation by blue-green algae

    Microsoft Academic Search

    P. Fay; G. E. Fogg

    1962-01-01

    1.The unicellular blue-green alga Chlorogloea fritschii Mitra has been isolated in pure bacteria-free culture.2.Evidence showing that this alga is able to fix elementary nitrogen has been obtained by determinations by the micro-Kjeldahl method of increases in total combined nitrogen in culture and also by demonstration of the uptake of elementary nitrogen in a closed culture system by measurement of nitrogen\\/argon

  2. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae. PMID:24369344

  3. Carbon Partitioning in Green Algae (Chlorophyta) and the Enolase Enzyme

    PubMed Central

    Polle, Jürgen E. W.; Neofotis, Peter; Huang, Andy; Chang, William; Sury, Kiran; Wiech, Eliza M.

    2014-01-01

    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae. PMID:25093929

  4. The Future is Green: On the Biotechnological Potential of Green Algae

    Microsoft Academic Search

    Werner Reisser

    \\u000a There are two main players that form the basis of nearly all global ecosystems in converting solar energy to biomass: algae\\u000a and plants. While plants are omnipresent in public discussions dealing with such topics as climate change, bioreactors, biofuels\\u000a and green biotechnology, the role and potential of algae is usually known only to experts. However, algae are present as primary

  5. FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model

    E-print Network

    Goldstein, Raymond E.

    FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model Organisms for Biological Fluid green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model of flagellar synchronization. Green algae are well suited to the study of such problems because of their range

  6. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga

    E-print Network

    green alga JIR I´ NEUSTUPA 1 *, MAREK ELIA´ S1 , PAVEL SKALOUD 1 , YVONNE NE MCOVA´ 1 AND LENKA irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia 50: 57­66. DOI: 10.2216/08-64.1 The phylogenetic diversity of subaerial coccoid green algae remains

  7. YSI Blue-Green Algae (BGA) Sensors Spatial Water Quality Mapping of the Potomac River Estuary

    E-print Network

    Boynton, Walter R.

    YSI Blue-Green Algae (BGA) Sensors Spatial Water Quality Mapping of the Potomac River Estuary Visit integrated Yellow Spring Instruments (YSI) blue- green algae (BGA) sensors into our system to evaluate of blue-green algae ·Observed phycocyanin containing organisms were mainly colony forming (e

  8. Automated object recognition of blue-green algae for measuring water quality—A preliminary study

    Microsoft Academic Search

    Stefan U. Thiel; Ron J. Wiltshire; Lance J. Davies

    1995-01-01

    In this paper a computer algorithm for the automated detection of blue-green algae is presented. Samples of seven species of blue-green algae and two species of green algae were examined under a microscope and transferred to a computer. The microscope pictures were stored as digital images. In order to locate the organisms Image Segmentation routines were applied. Image Enhancement improved

  9. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves

    Microsoft Academic Search

    J. C. Goedheer

    1969-01-01

    From fluorescence action spectra, fluorescence spectra and absorption spectra measured at room temperature and at 77 °K of light petroleum (b.p. 40–60°)-treated and normal chloroplasts, it is concluded that: \\u000a\\u000a1. 1. In blue-green and red algae energy transfer from ?-carotene to chlorophyll occurs in Photosystem I exclusively.\\u000a\\u000a2. 2. In green algae and greening bean leaves energy transfer from ?-carotene

  10. Are the green algae (phylum Viridiplantae) two billion years old?

    Microsoft Academic Search

    Bernard TEYSSČDRE

    2006-01-01

    In his book, Life on a young planet, A.H. KNOLL states that the first documented fossils of green algae date back 750 Ma. However, according to B. TEYSSČDRE's book, La vie invisible, they are much older. Using a method which combines paleontology and molecular phylogeny, this paper is an inquiry into the Precambrian fossils of some \\

  11. Biosorption of reactive dyes on the green alga Chlorella vulgaris

    Microsoft Academic Search

    Zümriye Aksu; Sevilay Tezer

    2005-01-01

    Biosorption of three vinyl sulphone type reactive dyes (Remazol Black B (RB), Remazol Red RR (RR) and Remazol Golden Yellow RNL (RGY)) onto dried Chlorella vulgaris, a green alga was investigated in a batch system. The algal biomass exhibited the highest dye uptake capacity at the initial pH value of 2.0 for all dyes. The effect of temperature on equilibrium

  12. Application of spaceborne SAR imagery in monitoring green algae

    Microsoft Academic Search

    Yuan Xinzhe; Liu Jianqiang; Xie Chunhua; Zeng Tao; Song Xingai

    2009-01-01

    Synthetic Aperture Radar (SAR) satellite image is first used to monitor dramatically growing green algae near Qingdao coastal in 2008. The system played important role in ensuring Qingdao 2008 Olympic Sailing Competition. Based on imagery statistic analysis, the influences of radar parameter on detection performance are evaluated. A processing method which used in practice is presented. Processing results consist with

  13. Photosynthetic hydrogen and oxygen production by green algae

    Microsoft Academic Search

    E. Greenbaum; J. W. Lee

    1997-01-01

    An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective.

  14. Photometrical analysis with photosensory domains of photoreceptors in green algae

    Microsoft Academic Search

    Takatoshi Kagawa; Noriyuki Suetsugu

    2007-01-01

    Chloroplast photoorientation in the green alga Mougeotia scalaris is controlled by blue and red light. The properties of the LOV domains of phototropin A and B were consistent with previous data of action spectra and photoreceptor lifetime for blue light-mediated photoorientation. The LOV domains of the neochromes did not bind flavin, while the domains of neochrome 2 contributed to multimer

  15. Marine blue-green algae have a unique osmoregulatory system

    Microsoft Academic Search

    M. A. Mackay; R. S. Norton; L. J. Borowitzka

    1983-01-01

    Currently, blue-green algae are classified as either freshwater or marine depending on the ionic requirements of the strain, not on the type of habitat from which the strain was isolated. As a result many strains isolated from saline environments are classified as freshwater strains. New parameters were sought which might correlate better the physiology of marine strains with their habitat.

  16. Mucilage secretion and the movements of blue-green algae

    Microsoft Academic Search

    A. E. Walsby

    1968-01-01

    Summary Recent discoveries of ultrastructures which might be involved in the gliding movements of blue-green algae have been reviewed, and in the light of these discoveries the role of mucilage secretion in movement has been reconsidered. The formation and behaviour of mucilage rings in filaments ofAnabaena cylindrica is described. The behaviour of the mucilage rings indicates that each cell has

  17. Gas Vacuole Development in a Blue-Green Alga

    Microsoft Academic Search

    J. Robert Waaland; Daniel Branton

    1969-01-01

    De novo production of gas vacuoles can be induced in the blue-green alga Nostoc muscorum by transferring the cells from a defined medium to distilled water. The unusual ultrastructure of the gas vacuole membranes permits their easy recognition when specimens are prepared for electron microscopy by freeze-etching. The youngest gas vacuoles are biconical organelles; 48 hours after induction the gas

  18. Bioactive natural products from blue-green algae

    Microsoft Academic Search

    Gregory M. L. Patterson; Linda K. Larsen; Richard E. Moore

    1994-01-01

    Since 1981 we have cultured and prepared lipophilic and hydrophilic extracts from more than 1500 strains representing some 400 species of blue-green algae. Screening for a wide variety of potentially useful bioactivities, including cytotoxic, multi-drug-resistance reversal, antifungal, and antiviral effects, has led to the discovery and identification of numerous novel bioactive metabolites including peptides, macrolides and glycosides.

  19. Toxins of a Blue-Green Alga: Similarity to Saxitoxin

    Microsoft Academic Search

    Eugene Jackim; John Gentile

    1968-01-01

    Toxins were isolated from the freshwater blue-green alga Aphanizomenon flos-aquae. The toxic fractions were characterized by paper and thin-layer chromatography, isolation characteristics, infrared spectra, physiological activity, and reactivity with specific color reagents. The toxic fractions appear to be similar, if not identical, to saxitoxin (paralytic shellfish toxin), which is produced by the marine dinoflagellate Gonyaulax catenella.

  20. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  1. Higher plant origins and the phylogeny of green algae.

    PubMed

    Devereux, R; Loeblich, A R; Fox, G E

    1990-07-01

    5S rRNA sequences from six additional green algae lend strong molecular support for the major outlines of higher plant and green algae phylogeny that have been proposed under varying naming conventions by several authors. In particular, the molecular evidence now available unequivocally supports the existence of at least two well-separated divisions of the Chlorobionta: the Chlorophyta and the Streptophyta (i.e., charophytes) (according to the nomenclature of Bremer). The chlamydomonad 5S rRNAs are, however, sufficiently distinct from both clusters that it may ultimately prove preferable to establish a third taxon for them. In support of these conclusions 5S rRNA sequence data now exist for members of four diverse classes of chlorophytes. These sequences all exhibit considerably more phylogenetic affinity to one another than any of them show toward members of the other cluster, the Streptophyta, or the two Chlamydomonas strains. Among the Charophyceae, new 5S rRNA sequences are provided herein for three genera, Spirogyra, Klebsormidium, and Coleochaete. All of these sequences and the previously published Nitella sequence show greater resemblance among themselves and to the higher plants than they do to any of the other green algae examined to date. These results demonstrate that an appropriately named taxon that includes these green algae and the higher plants is strongly justified. The 5S rRNA data lack the resolution needed, however, to unequivocally determine which of several subdivisions of the charophytes is the sister group of the land plants. The evolutionary diversity of Chlamydomonas relative to the other green algae was recognized in earlier 5S rRNA studies but was unanticipated by ultrastructural work.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2116527

  2. Fact Sheet on Toxic Blue-green Algae Carole A. Lembi Department of Botany and Plant Pathology

    E-print Network

    Fact Sheet on Toxic Blue-green Algae Carole A. Lembi Department of Botany and Plant Pathology Purdue University What are blue-green algae? Blue-greens are very primitive organisms that are not really that these organisms often appear blue-green in color. Where do the blue-green algae live? The blue-greens split

  3. Carnets de Gologie / Notebooks on Geology -Article 2006/03 (CG2006_A03) Are the green algae (phylum Viridiplantae)

    E-print Network

    Paris-Sud XI, Université de

    Carnets de Géologie / Notebooks on Geology - Article 2006/03 (CG2006_A03) 1 Are the green algae planet, A.H. KNOLL states that the first documented fossils of green algae date back 750 Ma. However" and of a primitive clade of green algae, the Pyramimonadales. A paraphyletic group of unicellular green algae, named

  4. Growth interactions among blue-green (Anabaena Oscillarioides, Microcystis aeruginosa) and green (Chlorella sp.) algae

    Microsoft Academic Search

    Catherine W. Y. Lam; Warwick B. Silvester

    1979-01-01

    The growth interactions amongst the blue-green algal species Anabaena oscillarioides, Microcystis aeruginosa and the green alga, Chlorella sp. were studied both in mixed cultures and in filter cultures separated by a membrane filter in the two arms of an interaction U-tube. The role of nutrients especially phosphate upon the interaction has also been studied.

  5. Use of fungicides to control blue-green algae on Bermuda grass putting-green surfaces

    Microsoft Academic Search

    M. L. Elliott

    1998-01-01

    Cyanobacteria, commonly called blue-green algae, are a pest on Bermuda grass (Cynodon spp.) golf course putting-greens in Florida when excessive water is present. Four fungicide active ingredients: mancozeb, maneb, chlorothalonil and quaternary ammonium salts, were evaluated for control of this pest as preventive and curative treatments. All formulations of mancozeb, maneb and chlorothalonil were effective as preventive applications, but not

  6. GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION1

    E-print Network

    Teixeira, Sara

    NOTE GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE A method for isolating high-quality DNA is pre- sented for the green algae Caulerpa sp. (C. racemosa, C. prolifera, and C. taxifolia) and the brown alga Sargassum muticum. These are introduced, and in- vasive

  7. Integrating filamentous ‘green tide’ algae into tropical pond-based aquaculture

    Microsoft Academic Search

    Pedro H. de Paula Silva; Shannon McBride; Rocky de Nys; Nicholas A. Paul

    2008-01-01

    Green tide’ algae bloom in eutrophic environments with fast growth rates and efficient nutrient uptake. These same characteristics are sought after for algae in integrated aquaculture systems. We examined the effect of two key variables, salinity and total ammonia nitrogen (TAN), on the growth of three filamentous ‘green tide’ algae, Cladophora coelothrix, Chaetomorpha indica and Ulva sp. Survival and growth

  8. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-print Network

    Goldstein, Raymond E

    2014-01-01

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...

  9. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-print Network

    Raymond E. Goldstein

    2014-09-08

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  10. Toxic Effect of Certain Metals Mixture on Some Physiological and Morphological Characteristics of Freshwater Algae

    Microsoft Academic Search

    Salwa A. Shehata; Mohamed R. Lasheen; Gamila H. Ali; Imam A. Kobbia

    1999-01-01

    The toxic effect of multi metals mixture which exist simultaneously in aquatic ecosystem on natural phytoplankton assemblages (green algae, blue-green algae and diatoms) was studied. For this purpose a laboratory scale unit was designed to evaluate the effect of continuous flow metals mixture in forms if triple and penta metals in Nile water algae. Clear changes in algal biomass in

  11. Fitness and Complexity in Volvocalean Green Algae

    Microsoft Academic Search

    Cristian A. Solari; Aurora M. Nedelcu; Richard E. Michod

    As a means to understand the emergence of individuality at a new higher level, a model about the transition from undifferentiated cell-groups to multicellular organisms with germ-soma separation is developed . We argue that the increase in complexity is a consequence of the trade-offs between the two basic fitness components -fecundity and viability- as size increases. We use volvocalean green

  12. How the green alga Chlamydomonas reinhardtii keeps time

    Microsoft Academic Search

    Thomas Schulze; Katja Prager; Hannes Dathe; Juliane Kelm; Peter Kießling; Maria Mittag

    2010-01-01

    The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years\\u000a ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as\\u000a chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability

  13. Toxicity of 40 Herbicides to the Green Alga Chlorella vulgaris

    Microsoft Academic Search

    Jianyi Ma; Ligen Xu; Shufeng Wang; Rongquan Zheng; Shuihu Jin; Songqi Huang; Youjun Huang

    2002-01-01

    The effects on the green alga Chlorella vulgaris of 40 herbicides in 19 different chemical structure classes and with 11 dissimilar modes of action were studied through 96-h acute toxicity tests. Experimental results indicated that the average acute toxicity of acetolactate synthase (ALS)-inhibiting herbicides to C. vulgaris was close to those of the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides and the lipid

  14. Green algae and the origin of land plants

    Microsoft Academic Search

    LOUISE A. LEWIS; RICHARD M. MCCOURT

    2004-01-01

    Over the past two decades, molecular phylogenetic data have allowed evaluations of hypotheses on the evolution of green algae based on vegetative morphological and ultrastructural characters. Higher taxa are now generally recognized on the basis of ultrastruc- tural characters. Molecular analyses have mostly employed primarily nuclear small subunit rDNA (18S) and plastid rbcL data, as well as data on intron

  15. Sustainability and cyanobacteria (blue-green algae): facts and challenges

    Microsoft Academic Search

    Naveen K. Sharma; Sri Prakash Tiwari; Keshwanand Tripathi; Ashwani K. Rai

    Cyanobacteria (blue-green algae) are widely distributed Gram-negative oxygenic photosynthetic prokaryotes with a long evolutionary\\u000a history. They have potential applications such as nutrition (food supplements and fine chemicals), in agriculture (as biofertilizer\\u000a and in reclamation of saline USAR soils) and in wastewater treatment (production of exopolysaccharides and flocculants). In\\u000a addition, they also produce wide variety of chemicals not needed for their

  16. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  17. Dynamics of photosystem II heterogeneity in Dunaliella salina (green algae)

    Microsoft Academic Search

    Jeanne E. Guenther; Anastasios Melis

    1990-01-01

    Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA

  18. Blue-Green Algae: Fine Structure of the Gas Vacuoles

    Microsoft Academic Search

    C. C. Bowen; T. E. Jensen

    1965-01-01

    The gas vacuoles seen in several species of blue-green algae under the light microscope are shown by electron microscopy to correspond to packed arrays of cylindrical, electron-transparent vesicles. Single vesicles average 75 millimicrons in diameter, range from 0.2 micron to 1.0 micron in length, have conical ends, and are bounded by a single membrane 2 millimicrons wide. The reversible disappearance

  19. Mathematical simulation of photophobic responses in blue-green algae

    SciTech Connect

    Hader, D.P.; Burkart, U.

    1982-01-01

    A computer model is described to simulate photophobic reversal of blue-green algae. The model is based on electrical potential changes within the cells, which are treated as separate compartments. The updating of potentials is accomplished through iterative calculation of recurrence equations, permitting easy programming for computer calculation. The influence of a number of conditions on photophobic reversal has been studied, and the predictions of the model have been verified by experiments with the living organisms.

  20. Respiration of blue-green algae in the light

    Microsoft Academic Search

    Siegfried Scherer; Peter Böger

    1982-01-01

    The CO2 evolution in the light of Anabaena as well as several other blue-green algae is below 10% of the dark control. Addition of DCMU restores CO2 evolution in the light almost to the dark level. Furthermore, by adding unlabeled NaHCO3, a 14CO2 release is observed with prelabeled algal cells attaining 15 to 100% of dark control. Analysis by double-reciprocal

  1. Blue-green algae (cyanobacteria): prospects and perspectives

    Microsoft Academic Search

    R. H. Reed; S. R. C. Warr; D. L. Richardson; D. J. Moore; W. D. P. Stewart

    1985-01-01

    Summary Photosynthetic, prokaryotic blue-green algae (cyanobacteria) occur in a wide range of natural habitats of diverse ionic composition and as such, represent an important source of biological material for biosolar energy conversion programs using saline water. The gasvacuolate, filamentous Spirulina is grown in ‘seminatural’ culture in Lake Texcoco, Mexico, as a major source of single-cell protein for animal nutrition. Pilot-scale

  2. Copper complexation by siderophores from filamentous blue-green algae

    Microsoft Academic Search

    DIANE M. MCKNIGHT; FRANCOIS M. M. MOREL

    1980-01-01

    From our experimental evidence that iron lirnitation greatly increases the extracellular concentration of strong copper-complexing agents in cultures of Anabaena flos-aquae and Anabaena cyhdrica, and that the iron-algal exudate complex is much more stable than the copper complex, we conclude that strong copper-complexing agents released by filamentous blue-green algae are siderophores. Further experiments demonstrate that siderophore excre- tion is not

  3. Multicellularity in green algae: upsizing in a walled complex.

    PubMed

    Domozych, David S; Domozych, Catherine E

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  4. Bioaccumulation and catabolism of prometryne in green algae.

    PubMed

    Jin, Zhen Peng; Luo, Kai; Zhang, Shuang; Zheng, Qi; Yang, Hong

    2012-04-01

    Investigation on organic xenobiotics bioaccumulation/biodegradation in green algae is of great importance from environmental point of view because widespread distribution of these compounds in agricultural areas has become one of the major problems in aquatic ecosystem. Also, new technology needs to be developed for environmental detection and re-usage of the compounds as bioresources. Prometryne as a herbicide is widely used for killing annual grasses in China and other developing countries. However, overuse of the pesticide results in high risks to contamination to aquatic environments. In this study, we focused on analysis of bioaccumulation and degradation of prometryne in Chlamydomonas reinhardtii, a green alga, along with its adaptive response to prometryne toxicity. C. reinhardtii treated with prometryne at 2.5-12.5 ?g L(-1) for 4 d or 7.5 ?g L(-1) for 1-6 d accumulated a large quantity of prometryne, with more than 2 mg kg(-1) fresh weight in cells exposed to 10 ?g L(-1) prometryne. Moreover, it showed a great ability to degrade simultaneously the cell-accumulated prometryne. Such uptake and catabolism of prometryne led to the rapid removal of prometryne from media. Physiological and molecular analysis revealed that toxicology was associated with accumulation of prometryne in the cells. The biological processes of degradation can be interpreted as an internal tolerance mechanism. These results suggest that the green alga is useful in bioremediation of prometryne-contaminated aquatic ecosystems. PMID:22273183

  5. Multicellularity in green algae: upsizing in a walled complex

    PubMed Central

    Domozych, David S.; Domozych, Catherine E.

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes,” uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  6. Intracellular invasion of green algae in a salamander host

    PubMed Central

    Kerney, Ryan; Kim, Eunsoo; Hangarter, Roger P.; Heiss, Aaron A.; Bishop, Cory D.; Hall, Brian K.

    2011-01-01

    The association between embryos of the spotted salamander (Ambystoma maculatum) and green algae (“Oophila amblystomatis” Lamber ex Printz) has been considered an ectosymbiotic mutualism. We show here, however, that this symbiosis is more intimate than previously reported. A combination of imaging and algal 18S rDNA amplification reveals algal invasion of embryonic salamander tissues and cells during development. Algal cells are detectable from embryonic and larval Stages 26–44 through chlorophyll autofluorescence and algal 18S rDNA amplification. Algal cell ultrastructure indicates both degradation and putative encystment during the process of tissue and cellular invasion. Fewer algal cells were detected in later-stage larvae through FISH, suggesting that the decline in autofluorescent cells is primarily due to algal cell death within the host. However, early embryonic egg capsules also contained encysted algal cells on the inner capsule wall, and algal 18S rDNA was amplified from adult reproductive tracts, consistent with oviductal transmission of algae from one salamander generation to the next. The invasion of algae into salamander host tissues and cells represents a unique association between a vertebrate and a eukaryotic alga, with implications for research into cell–cell recognition, possible exchange of metabolites or DNA, and potential congruence between host and symbiont population structures. PMID:21464324

  7. Effect of green manuring, blue-green algae and neem-cake-coated urea on wetland rice ( Oryza sativa L.)

    Microsoft Academic Search

    S. Singh; R. Prasad; B. V. Singh; S. K. Goyal; S. N. Sharma

    1990-01-01

    A field trial was set up to examine the effect of green manuring, blue-green algae, and neem-cake-coated urea on a rice crop. Summer green manuring using Sesbania aculeata increased the crop yield. Inoculation of blue-green algae increased the rice grain yield when 60 kg N ha-1 was applied as prilled urea, but the increase in grain yield was greater when

  8. Photometrical analysis with photosensory domains of photoreceptors in green algae.

    PubMed

    Kagawa, Takatoshi; Suetsugu, Noriyuki

    2007-02-01

    Chloroplast photoorientation in the green alga Mougeotia scalaris is controlled by blue and red light. The properties of the LOV domains of phototropin A and B were consistent with previous data of action spectra and photoreceptor lifetime for blue light-mediated photoorientation. The LOV domains of the neochromes did not bind flavin, while the domains of neochrome 2 contributed to multimer formation. The absorption spectra of the neochrome phytochrome photosensory domain with phytochromobilin were very similar to the action spectra for red light-induced photoorientation. These results indicate that phototropin and neochrome work as the blue and red photoreceptors involved in photoorientation. PMID:17222409

  9. Facts about Cyanobacteria (Blue-green Algae) and Cyanobacterial Harmful Algal Blooms

    E-print Network

    ) and Cyanobacterial Harmful Algal Blooms (CyanoHABs) Cyanobacteria (blue-green algae) Cyanobacteria are bacteria smell bad. #12;2 Cyanobacterial harmful algal blooms (CyanoHABs) CyanoHABs are algae blooms and how they form Cyanobacterial blooms occur when algae that are normally present grow exuberantly

  10. Origin of land plants: Do conjugating green algae hold the key?

    Microsoft Academic Search

    Sabina Wodniok; Henner Brinkmann; Gernot Glöckner; Andrew J Heidel; Hervé Philippe; Michael Melkonian; Burkhard Becker

    2011-01-01

    Background  The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it\\u000a is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae.\\u000a The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex\\u000a forms such as the stoneworts

  11. Solar-driven hydrogen production in green algae.

    PubMed

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept. PMID:21807246

  12. Photosynthetic Hydrogen and Oxygen Production by Green Algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1999-08-22

    Photosynthesis research at Oak Ridge National Laboratory is focused on hydrogen and oxygen production by green algae in the context of its potential as a renewable fuel and chemical feed stock. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are: (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of hotosynthesis throughout the entire range of terrestrial solar irradiance-including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transpor;t and (3) constructing real-world bioreactors, including the generation of hydrogen and oxygen against workable back pressures of the photoproduced gases.

  13. Photosynthetic hydrogen and oxygen production by green algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of photosynthesis throughout the entire range of terrestrial solar irradiance--including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transport and (3) the minimum number of light reactions that are required to split water to elemental hydrogen and oxygen. Each of these research topics is being actively addressed by the photobiological hydrogen research community.

  14. Fitness and Complexity in Volvocalean Green Algae Cristian A. Solari1

    E-print Network

    Nedelcu, Aurora M.

    Fitness and Complexity in Volvocalean Green Algae Cristian A. Solari1 , Aurora M. Nedelcu2 undifferentiated cell-groups to multicellular organisms with germ-soma separation is developed. We argue ­fecundity and viability­ as size increases. We use volvocalean green algae as a model system to compare

  15. EFFECT OF FURADAN ON THE GROWTH AND NITROGEN FIXATION BY BLUE GREEN ALGAE

    Microsoft Academic Search

    M Z Islam; S Begum; H Ara; T M Waliullah

    2007-01-01

    The study was carried out to determine the effects of pesticide on the growth and nitrogen fixation by blue green algae (BGA) that isolated from three different soils of Bangladesh viz., saline soil, calcareous soil and red soil. Furadan 5G, one of the most commonly used pesticides was selected for the study of eighteen taxa of b lue green algae

  16. The measurement and significance of ATP pools in filamentous blue-green algae

    Microsoft Academic Search

    P. J. Bottomley; W. D. P. Stewart

    1976-01-01

    A modified luciferin-luciferase assay has been developed for measuring ATP pools in filamentous blue-green algae. The assay, which should be applicable to studies on algae in general, is simple, reliable, inexpensive, sensitive at the pmole level and can be used in any laboratory with a suitable liquid scintillation counter. Studies using the two blue-green algae, Anabaena cylindrica and Anabaenopsis circularis

  17. Accumulation of uranium by filamentous green algae under natural environmental conditions

    Microsoft Academic Search

    Khalid A. Aleissa; El-Said I. Shabana; Fahad I. S. Al-Masoud

    2004-01-01

    The capacity of algae to concentrate uranium under natural environmental conditions is measured by a-spectrometry. Spirogyra, a filamentous green fresh-water alga, has concentrated uranium from a surface concrete ponds with elevated uranium levels\\u000a (140-1140 ppb). The concentration factors (CFs) ranged from 8.9-67 with an average value of 22.Cladophora spp, a filamentous green marine alga has concentrated uranium from the marine

  18. Cultivation of nitrogen-fixing blue-green algae on ammonia-depleted effluents from sewage oxidation ponds

    Microsoft Academic Search

    J. C. Weissman; D. M. Eisenberg; J. R. Benemann

    1978-01-01

    The data presented represent an initial, limited attempt on a small scale to cultivate nitrogen-fixing blue-green algae on both chemically defined media and low nitrogen sewage pond effluents. The rates of blue-green algal biomass production were low compared to those of green algae. Nevertheless, it appears that cultivation of nitrogen-fixing blue-green algae is possible on sewage effluents where these algae

  19. Temporal variance in lake communities: blue-green algae and the trophic cascade

    Microsoft Academic Search

    Stephen R. Carpenter

    1989-01-01

    Two examples, blue-green algal blooms and the fish-driven trophic cascade, illustrate important consequences of time scale dependency in lakes. Blue-green algae and fish populations are notably variable components of lake communities. The timing of colonization of the water column by blue-green algae, relative to population oscillations of grazers and other algal groups, determines the magnitude of subsequent blooms. Variability in

  20. Flow cytometric studies of the host-regulated cell cycle in algae symbiotic with green paramecium

    Microsoft Academic Search

    T. Kadono; T. Kawano; H. Hosoya; T. Kosaka

    2004-01-01

    Summary. Paramecium bursaria (green paramecium) possesses endosymbiotically growing chlorella-like green algae. An aposymbiotic cell line of P. bursaria (MBw-1) was prepared from the green MB-1 strain with the herbicide paraquat. The SA-2 clone of symbiotic algae was employed to reinfect MBw-1 cells and thus a regreened cell line (MBr-1) was obtained. The regreened paramecia were used to study the impact

  1. Monitoring experiment and analysis of blue-green algae waterbloom in Chaohu Lake by NOAA satellite

    NASA Astrophysics Data System (ADS)

    Hu, Wen; Yang, Shizhi; Zhai, Wuquan; Zhou, Kun; Huang, Yong

    2003-05-01

    Algal chlorophyll measurement is usually used to assess trophic status of lakes. The development of satellite remote sensing technology make it possible to detect spectral features of algal chlorophyll and to map the spatial distribution of algae in large lakes. In this paper, NOAA satellite data were utilized to monitor the blue-green algae waterbloom in Chaohu Lake, together with the water sampling for concentrations of chlorophhyll-a analysis and spectral measuring simultaneously. The result indicates that: if there are chlorophylls of blue-green algae, the water reflectance in the near infrared band will obviously increase. Based on this spectral characteristic and the features of blue-green algae' float, meteorological satellite NOAA/AVHRR data can be used to monitor the blue-green algae waterbloom in large badly contaminated inland lakes.

  2. Antiprotozoal, antimycobacterial and cytotoxic potential of some british green algae.

    PubMed

    Spavieri, Jasmine; Kaiser, Marcel; Casey, Rosalyn; Hingley-Wilson, Suzie; Lalvani, Ajit; Blunden, Gerald; Tasdemir, Deniz

    2010-07-01

    In the continuation of our search for natural sources for antiprotozoal and antitubercular molecules, we have screened the crude extracts of four green marine algae (Cladophora rupestris, Codium fragile ssp. tomentosoides, Ulva intestinalis and Ulva lactuca) collected from the Dorset area of England. Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Mycobacterium tuberculosis were used as test organisms in the in vitro assays. The selective toxicity of the extracts was also determined toward mammalian skeletal myoblast (L6) cells. The crude seaweed extracts had no activity against M. tuberculosis, but showed antiprotozoal activity against at least two protozoan species. All algal extracts were active against T. brucei rhodesiense, with C. rupestris being the most potent one (IC(50) value 3.7 microg/ml), whilst only C. rupestris and U. lactuca had moderate trypanocidal activity against T. cruzi (IC(50) values 80.8 and 34.9 microg/ml). Again, all four extracts showed leishmanicidal activity with IC(50) values ranging between 12.0 and 20.2 microg/ml. None of the extracts showed cytotoxicity toward L6 cells, indicating that their antiprotozoal activity is specific. This is the first study reporting antiprotozoal and antimycobacterial activity of British marine algae. PMID:19960429

  3. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the ?, ?, and ? subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  4. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.

    PubMed

    Nakazawa, A; Nishii, I

    2012-01-01

    A number of volvocalean green algae species were subjected to a two-step cryopreservation protocol with various cryoprotectants. Potential cryoprotectants were methanol (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylformamide, and hydroxyacetone (HA). We confirmed prior reports that MeOH was effective for cryopreserving Chlamydomonas, but did not work well for larger volvocaleans such as Volvox. In contrast, DMF and HA were effective for both unicellular and multicellular representatives. When we used a cold-inducible transposon to probe Southern blots of Volvox DNA samples taken before and after storage for one month in LN, we could detect no differences, indicating that the genome had remained relatively stable and that the transposon had not been induced by the cryopreservation procedure. We believe these methods will facilitate long-term storage of several volvocine algal species, including Volvox strains harboring transposon-induced mutations of developmental interest. PMID:22825787

  5. Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae

    PubMed Central

    Rasala, Beth A.; Chao, Syh-Shiuan; Pier, Matthew; Barrera, Daniel J.; Mayfield, Stephen P.

    2014-01-01

    Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization. PMID:24710110

  6. Horizontal distribution of planktonic diatoms in Green Bay, mid-July 1970

    Microsoft Academic Search

    RUTH E. HOLLAND; LARRY W. CLAFLIN

    1975-01-01

    A synoptic survey of Green Bay was undertaken in mid-July 1970 to dcterminc the hori- zontal distribution of major species of planktonic diatoms. Principal component analysts of R-correlation and covariance matrices, and four methods of factor analysis described a general bipolar axis which grouped MeZosiru grunulata, Steph- anodiscus spp., Cyclotella meneghiniana, and Stephanodiscus niagarae at one pole and Fragilaria crotonensis,

  7. Isolation and properties of fungi that lyse blue-green algae.

    PubMed

    Redhead, K; Wright, S J

    1978-05-01

    Of 70 pure microbial cultures isolated from aquatic habitats, soil, and air according to the ability to lyse live blue-green algae, 62 were fungi representing the genera Acremonium, Emericellopsis, and Verticillium. Algal-lysing fungi were isolated from all habitat types sampled. The remaining isolates comprised four bacteria and four streptomycetes. All isolates lysed Anabaena flos-aquae and, in most cases, several other filamentous and unicellular blue-green algae. The fungi generally showed greater activity than most other isolates towards a wider range of susceptible algae, including green algae in some cases. Acremonium and Emericellopsis isolates, but not Verticillium, also inhibited the growth of blue-green algae and gram-positive bacteria, but did not lyse the latter. Lysis of blue green algae by Acremonium and Emericellopsis spp. was associated with the formation of diffusible heat-stable extracellular factors which, evidence suggests, could be cephalosporin antibiotic(s). Blue-green algae were also lysed by pure cephalosporin C. The frequent isolation of lytic fungi from algal habitats suggests a possible natural algal-destroying role for such fungi, which might be exploitable for algal bloom control. PMID:418740

  8. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi

    Microsoft Academic Search

    Martin M. Kulik

    1995-01-01

    Cyanobacteria (blue-green algae) and eukaryote algae occur in freshwater, marine, and terrestrial (soil) habitats. In fact, these microorganisms comprise most of the world's biomass. Although the cyanobacteria are mostly photoautotrophic, some are facultative heterotrophs, capable of growing on certain substrates in darkness. Also, some are non-phototrophic and hence, are obligate heterotrophs. A number of cyanobacteria and eukaryote algae, particularly macroalgae,

  9. The Cell Walls of Green Algae: A Journey through Evolution and Diversity

    PubMed Central

    Domozych, David S.; Ciancia, Marina; Fangel, Jonatan U.; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G. T.

    2012-01-01

    The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean green algae possess cell walls containing assemblages of polymers with notable similarity to the cellulose, pectins, hemicelluloses, arabinogalactan proteins (AGPs), extensin, and lignin present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose most abundant fibrillar constituents may change from cellulose to ?-mannans to ?-xylans and during different life cycle phases. Likewise, these algae produce complex sulfated polysaccharides, AGPs, and extensin. Chlorophycean green algae produce a wide array of walls ranging from cellulose–pectin complexes to ones made of hydroxyproline-rich glycoproteins. Larger and more detailed surveys of the green algal taxa including incorporation of emerging genomic and transcriptomic data are required in order to more fully resolve evolutionary trends within the green algae and in relationship with higher plants as well as potential applications of wall components in the food and pharmaceutical industries. PMID:22639667

  10. Biosynthesis and Distribution of Chlorophyll among the Photosystems during Recovery of the Green Alga

    E-print Network

    Polle, Jürgen

    Alga Dunaliella salina from Irradiance Stress1 Tatsuru Masuda2 , Ju¨rgen E.W. Polle, and Anastasios of Dunaliella salina, we investigated the regulation of expression of the Chl a oxygenase (CAO) and light of the unicellular green alga Dunaliella salina Teod. under high irradiance (high light [HL]; 2,200 mol photons m 2

  11. Isotopic relationships between saponifiable lipids and cellulose nitrate prepared from red, brown and green algae

    Microsoft Academic Search

    L. Sternberg; M. J. Niro; H. O. Ajie

    1986-01-01

    Stable carbon and hydrogen isotope ratios were determined for the saponifiable lipid fraction as well as the cellulose fraction (the latter after nitration to remove exchangeable hydrogens) of several species of red, brown and green algae from three locations. A significant correlation was observed between the hydrogen isotope ratios of cellulose nitrate and saponifiable lipid for red algae, but not

  12. Selective production of glutamate by an immobilized marine blue-green alga, Synechococcus sp

    Microsoft Academic Search

    Tadashi Matsunaga; Noriyuki Nakamura; Naoko Tsuzaki; Hiroyuki Takeda

    1988-01-01

    Among 200 strains of marine bluegreen algae isolated from the coastal areas of Japan, the marine blue-green alga Synechococcus sp. NKBG 040607 excreted glutamate at the highest rate, 82.6% of total amino acids production being glutamate. Synechococcus sp. NKBG 40607 was immobilized in calcium alginate gel. Glutamate production by immobilized cells was double that of native cells. Maximal glutamate production

  13. Monitoring experiment and analysis of blue-green algae waterbloom in Chaohu Lake by NOAA satellite

    Microsoft Academic Search

    Wen Hu; Shizhi Yang; Wuquan Zhai; Kun Zhou; Yong Huang

    2003-01-01

    Algal chlorophyll measurement is usually used to assess trophic status of lakes. The development of satellite remote sensing technology make it possible to detect spectral features of algal chlorophyll and to map the spatial distribution of algae in large lakes. In this paper, NOAA satellite data were utilized to monitor the blue-green algae waterbloom in Chaohu Lake, together with the

  14. Subcellular structures of relevance to the origin of land plants (embryophytes) from green algae

    Microsoft Academic Search

    Karen Renzaglia

    1991-01-01

    During the past 2 decades, a substantial body of structural, biochemical, and molecular evidence has been amassed in support of the hypothesis that charophycean green algae are the closest extant protist relatives of the land plants (embryophytes). Charophycean algae include the filamentous and unicellular Zygnematales, represented by the familiar Spirogyra and desmids; the relatively large and complex Charales, such as

  15. Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana

    Microsoft Academic Search

    Kyung-sil Choo; Pauli Snoeijs; Marianne Pedersén

    2004-01-01

    Cladophora glomerata (L.) Kütz. and Enteromorpha ahlneriana Bliding are morphologically similar filamentous green algae that are dominants in the upper littoral zone of the brackish Baltic Sea. As these two species co-exist in a continuously fluctuating environment, we hypothesised that they may have different strategies to cope with oxidative stress. This was tested in laboratory experiments through stressing the algae

  16. Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae

    E-print Network

    Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae: Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen

  17. JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY RECORDED BY ENVIRONMENTAL SEQUENCING1

    E-print Network

    JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY of unicellular green algae from algal biofilms growing on tree bark in a Southeast Asian tropical rainforest: AU, approximately unbiased; BBM, Bold basal medium; CAUP, Culture Collection of algae at Charles

  18. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples.

    PubMed

    LeBlanc, Kelly L; Smith, Matthew S; Wallschläger, Dirk

    2012-06-01

    In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species. PMID:22455319

  19. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production

    Microsoft Academic Search

    Taras K. Antal; Tatyana E. Krendeleva; Andrew B. Rubin

    2011-01-01

    Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae\\u000a and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled\\u000a to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase.\\u000a However, this enzyme is highly sensitive

  20. Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata

    Microsoft Academic Search

    Jianyi Ma; Shufeng Wang; Pinwei Wang; Liangjin Ma; Xiling Chen; Ruifu Xu

    2006-01-01

    The effects of 40 herbicides with nine modes of action on the green alga Raphidocelis subcapitata were studied by 96-h acute toxicity tests. Results showed that the EC50 of the herbicides with respect to the photosynthetic processes of R. subcapitata ranged from 0.0007 to 4.2286mgL?1. Photosynthesis was the process of the green alga most sensitive to the tested herbicides. The

  1. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell

    Microsoft Academic Search

    Yong Yuan; Qing Chen; Shungui Zhou; Li Zhuang; Pei Hu

    2011-01-01

    Bioelectricity production from blue-green algae was examined in a single chamber tubular microbial fuel cell (MFC). The blue-green algae powered MFC produced a maximum power density of 114mW\\/m2 at a current density of 0.55mA\\/m2. Coupled with the bioenergy generation, high removal efficiencies of chemical oxygen demand (COD) and nitrogen were also achieved in MFCs. Over 78.9% of total chemical oxygen

  2. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type

    Microsoft Academic Search

    Shinichi Miyamura

    2010-01-01

    Cytological and genetic investigations of two major groups of green algae, chlorophyte and streptophyte green algae, show\\u000a a predominance of uniparental inheritance of the plastid and mitochondrial genomes in most species. However, in some crosses\\u000a of isogamous species of Ulva compressa, these genomes are transmitted from mt+, mt?, and both parents. In species with uniparental organelle inheritance, various mechanisms can

  3. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis

    Microsoft Academic Search

    Samy Boussiba; Amos E. Richmond

    1979-01-01

    Two main biliproteins c-phycocyanin and allophycocyanin were identified and characterized in the blue-green alga Spirulina platensis. The specific absorbance, fluorescence maxima, sub-unit make-up and amino acid composition of the biliproteins in Spirulina platensis resemble those reported for other blue-green algae. However, the minimum molecular weights (44,000 for c-phycocyanin and 38,000 for the allophycocyanin) and the specific extinction coefficients (73, and

  4. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations

    Microsoft Academic Search

    R. S. Fulton III; H. W. Paerl

    1988-01-01

    Field distribution patterns and laboratory feeding experiments have suggested that blooms of colonial blue-green algae strongly inhibit relatively large-bodied daphnid cladocerans. We conducted laboratory experiments to test the hypothesis that blooms of the colonial blue-green alga Microcystis aeruginosa would shift competitive dominance away from large-bodied daphnid cladocerans toward smaller-bodied cladocerans, copepods, and rotifers. In laboratory competition experiments, increasing the proportion

  5. Green algae as a structural element of phytoperiphyton communities in streams of NW Russia

    Microsoft Academic Search

    Sergey F. Komulaynen

    2008-01-01

    Observations were made on the development and distribution of phytoperiphyton communities in 66 lake-river systems in NW Russia\\u000a from Lake Ladoga to the Barents Sea. In total, 130 genera and 648 species were identified from different substrates, belonging\\u000a to Cyanophyta (19.1%), Bacillariophyta (59.6%), Chlorophyta (18.7%), and algae from other orders (2.6%). In all streams diatoms dominated by species richness, but

  6. Ultrasonic irradiation for blue-green algae bloom control.

    PubMed

    Lee, T J; Nakano, K; Matsumara, M

    2001-04-01

    A novel application of ultrasonic irradiation for rapid control of blue-green algae (BGA) bloom was investigated. Potassium iodide (KI) experiments demonstrated that frequency and input power are the major factors that affect the ultrasonic irradiation intensity. Short exposure (3 s) to ultrasonic irradiation (120 W input power, 28 kHz) effectively settled naturally growing BGA suspension. Electron microscopy reconfirmed that sedimentation was caused by the disruption and collapse of gas vacuoles after ultrasonic exposure. Moreover, even after 5 min of exposure to ultrasonic irradiation (1200 W input power, 28 kHz) the microcystin concentration in BGA suspensions did not increase. For the same input power (120 W), a lower frequency (28 kHz) was found to be more effective in decreasing the photosynthetic activity of BGA than a higher frequency (100 kHz). The sonicated cells did not proliferate when they were cultured in conditions that simulated the bottom of water bodies (i.e. with limited light (400 lx) or no light and non-aerated or aerated (1 l min-1)). Furthermore, ultrasonic irradiation did not only collapse gas vacuoles and precipitate BGA, but may have also inflicted damage on the photosynthetic system of the BGA. PMID:11329801

  7. Phylogenetic and molecular analysis of hydrogen-producing green algae

    PubMed Central

    Timmins, Matthew; Thomas-Hall, Skye R.; Darling, Aaron; Zhang, Eugene; Hankamer, Ben; Marx, Ute C.; Schenk, Peer M.

    2009-01-01

    A select set of microalgae are reported to be able to catalyse photobiological H2 production from water. Based on the model organism Chlamydomonas reinhardtii, a method was developed for the screening of naturally occurring H2-producing microalgae. By purging algal cultures with N2 in the dark and subsequent illumination, it is possible to rapidly induce photobiological H2 evolution. Using NMR spectroscopy for metabolic profiling in C. reinhardtii, acetate, formate, and ethanol were found to be key compounds contributing to metabolic variance during the assay. This procedure can be used to test algal species existing as axenic or mixed cultures for their ability to produce H2. Using this system, five algal isolates capable of H2 production were identified in various aquatic systems. A phylogenetic tree was constructed using ribosomal sequence data of green unicellular algae to determine if there were taxonomic patterns of H2 production. H2-producing algal species were seen to be dispersed amongst most clades, indicating an H2-producing capacity preceded evolution of the phylum Chlorophyta. PMID:19342428

  8. Penicillinase (beta-lactamase) formation by blue-green algae.

    PubMed

    Kushner, D J; Breuil, C

    1977-03-01

    Beta-Lactamase (penicillinase) activity was found in a number of strains of blue-green algea. In some cases, this enzyme permitted algae to overcome the inhibitory effects of penicillin. Production and localization of beta-lactamase were studied in a unicellular species, Coccochloris elabens (strain 7003), and in a filamentous, nitrogen-fixing Anabaena species (strain 7120). When cells were grown in a neutral medium with NaNO3 as N source, the pH rose during growth; at a pH of about 10, most of the enzyme was expressed equally well in intact or disrupted cells. If the pH was kept near neutrality during growth by gassing with CO2 in N2 or by growth under conditions of N2 fixation, the enzyme remained cell-bound and cryptic for most of the growth phase, being measurable only after cells were disrupted. The enzymes from strains 7003 and 7120 had greater activity on benzyl penicillin and other penicillins than on cephalosporins. Some differences were observed in the "substrate proliles" of penicillinases from the two strains against different penicillins. PMID:15530

  9. Calcium Transport in the Green Alga Mesotaenium caldariorum1

    PubMed Central

    Berkelman, Tom; Lagarias, J. Clark

    1990-01-01

    The subcellular localization and biochemical characterization of calcium transport were studied in the unicellular green alga Mesotaenium caldariorum. Membrane fractions prepared by osmotic lysis of Mesotaenium protoplasts exhibit high rates of ATP-dependent calcium uptake. Sucrose gradient centrifugation separates two pools of activity, which display specific activities for calcium transport as high as 15 nanomoles Ca2+ per minute per milligram of protein. Marker enzyme analysis shows that this dual distribution of calcium transport activity is similar to that of vanadate-insensitive ATPase and pyrophosphatase, activities considered to be associated with the tonoplast. Plasma membranes, endoplasmic reticulum vesicles, mitochondrial membranes, and thylakoids band at higher densities than either calcium transport fraction. Both pools of ATP-dependent calcium uptake contain two components which are not separable on sucrose gradients but can be distinguished on the basis of inhibitor sensitivity. One component is inhibited by nigericin or trimethyltin chloride (I50 values of 3 nanomolar and 4 micromolar, respectively), while the other component is vanadate sensitive (I50 of 25 micromolar). These results suggest that direct Ca2+ transport and Ca2+/H+ antiport activities are present in both sucrose gradient fractions. Images Figure 1 PMID:16667532

  10. Formation of Carbon Monoxide and Bile Pigment in Red and Blue-Green Algae 1

    PubMed Central

    Troxler, Robert F.; Dokos, Joy M.

    1973-01-01

    Five blue-green and one red algal species produced carbon monoxide during photosynthetic growth. The blue-green algae synthesized CO and phycocyanobilin in equimolar quantities at identical rates. The red alga, Porphyridium cruentum, incorporated ?-aminolevulinic acid-5-14C into phycoerythrobilin and CO. The ratio of the specific radioactivity of phycoerythrobilin to that of CO, and the kinetics and stoichiometry of phycocyanobilin and CO formation suggest that linear tetrapyrroles in plants are derived by the porphyrin pathway via the intermediate formation of heme. The similarity between bile pigment production in algae and in mammalian systems is discussed. PMID:16658300

  11. Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts

    Microsoft Academic Search

    L. Bonen; W. F. Doolittle

    1976-01-01

    Partial sequence analyses of 16S ribosomal RNAs of blue-green algae and chloroplasts reveal that blue-green algae are typically prokaryotic and related to the bacilli, that red algal chloroplasts are probably of blue-green algal origin, and that euglenoid and red algal chloroplasts may have arisen independently.

  12. Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling

    Microsoft Academic Search

    K. Vasanth Kumar; S. Sivanesan; V. Ramamurthi

    2005-01-01

    Batch biosorption experiments were carried out for the removal of malachite green a cationic dye from its aqueous solution using raw and thermally activated Pithophora sp., a fresh water algae as biosorbent. The operating variables studied are initial malachite green concentration, biomass concentration and solution pH. Pithophora sp. activated at 300°C for 50min posses a maximum sorption capacity for the

  13. Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae

    Microsoft Academic Search

    K. Vasanth Kumar; V. Ramamurthi; S. Sivanesan

    2006-01-01

    Batch sorption experiments were carried out for the removal of malachite green from its aqueous solution using Pithophora sp., a fresh water algae as biosorbent. Dye uptake was found to increase with contact time and initial malachite green concentration. Equilibrium uptake was found to be pH dependent and maximum uptake was observed at a pH of 6. The effect of

  14. Trails of green alga hydrogen research - from hans gaffron to new frontiers.

    PubMed

    Melis, Anastasios; Happe, Thomas

    2004-01-01

    This paper summarizes aspects of the history of photosynthetic hydrogen research, from the pioneering discovery of Hans Gaffron over 60 years ago to the potential exploitation of green algae in commercial H(2)-production. The trail started as a mere scientific curiosity, but promises to be a most important discovery, one that leads photosynthesis research to important commercial applications. Progress achieved in the field of photosynthetic hydrogen production by green algae includes elucidation of the mechanism, the ability to modify photosynthesis by physiological means and to produce bulk amounts of H(2) gas, and cloning of the [Fe]-hydrogenase genes in several green algal species. PMID:16328836

  15. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae.

    PubMed

    Ferreira-Camargo, Livia S; Tran, Miller; Beld, Joris; Burkart, Michael D; Mayfield, Stephen P

    2015-12-01

    Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly, little has been done to determine which processes serve as rate-limiting steps for protein accumulation. In other expression systems, as Escherichia coli, Chinese hamster ovary cells, and insect cells, recombinant protein accumulation can be hampered by cell's inability to fold the target polypeptide into the native state, resulting in aggregation and degradation. To determine if chloroplasts' ability to oxidize proteins that require disulfide bonds into a stable conformation is a rate-limiting step of protein accumulation, three recombinant strains, each expressing a different recombinant protein, were analyzed. These recombinant proteins included fluorescent GFP, a reporter containing no disulfide bonds; Gaussia princeps luciferase, a luminescent reporter containing disulfide bonds; and an immunotoxin, an antibody-fusion protein containing disulfide bonds. Each strain was analyzed for its ability to accumulate proteins when supplemented with selenocystamine, a small molecule capable of catalyzing the formation of disulfide bonds. Selenocystamine supplementation led to an increase in luciferase and immunotoxin but not GFP accumulation. These results demonstrated that selenocystamine can increase the accumulation of proteins containing disulfide bonds and suggests that a rate-limiting step in chloroplast protein accumulation is the disulfide bonds formation in recombinant proteins native structure. PMID:26137911

  16. Toxicity of propargylic alcohols on green alga--Pseudokirchneriella subcapitata.

    PubMed

    Chen, Chung Yuan; Kuo, Kwan-Liang; Fan, Je-Wei

    2012-01-01

    The present study evaluates the toxicity of 34 propargylic alcohols, including primary, primary homo-, secondary, and tertiary alcohols, based on their effects on phytoplankton. A closed-system algal toxicity test was applied because the closed-system technique presents more realistic concentration-response relationships for the above compounds than the conventional batch tests. The green alga, Pseudokirchneriella subcapitata, was the test organism and final yield and growth rate were chosen as the test endpoints. Among all the propargylic alcohols tested, 1-pentyn-3-ol is the most toxic compound with its EC50 equal to 0.50 mg L(-1), which can be classified as a "R50" compound (very toxic to aquatic organisms, EC50/LC50 < 1 mg L(-1)), following the current practice for classification of chemicals in the European Union (EU). There are several other compounds including 2-decyn-1-ol, 3-decyn-1-ol, 1-hexyn-3-ol, 3-butyn-2-ol, and 3-hexyne-2,5-diol, which deserve more attention for their possible adverse impact on the aquatic environment, because these alcohols can be classified as "R51" compounds (toxic to aquatic organisms, EC50/LC50 between 1 and 10 mg L(-1)). Compared to the base-line toxicity relationship (narcosis QSAR) derived previously, tertiary propargylic alcohols can be identified as nonpolar narcotic chemicals, while secondary alcohols and primary alcohols with low molecular weight generally exhibit obvious excess toxicity in relation to the base-line toxicity. Finally, quantitative structure-activity relationships were established for deriving a preliminary estimation of the toxicity of other propargylic alcohols. PMID:22105539

  17. Effect of temperature on blue-green algae (cyanobacteria) in lake mendota.

    PubMed

    Konopka, A; Brock, T D

    1978-10-01

    The temperature optimum for photosynthesis of natural populations of blue-green algae (cyanobacteria) from Lake Mendota was determined during the period of June to November 1976. In the spring, when temperatures ranged from 0 to 20 degrees C, there were insignificant amounts of blue-green algae in the lake (less than 1% of the biomass). During the summer and fall, when the dominant phytoplankton was blue-green algae, the optimum temperature for photosynthesis was usually between 20 and 30 degrees C, whereas the environmental temperatures during this period ranged from 24 degrees C in August to 12 degrees C in November. In general, the optimum temperature for photosynthesis was higher than the environmental temperature. More importantly, significant photosynthesis also occurred at low temperature in these samples, which suggests that the low temperature alone is not responsible for the absence of blue-green algae in Lake Mendota during the spring. Temperature optima for growth and photosynthesis of laboratory cultures of the three dominant blue-green algae in Lake Mendota were determined. The responses of the two parameters to changes in temperature were similar; thus, photosynthesis appears to be a valid index of growth. However, there was little photosynthesis by laboratory cultures at low temperatures, in contrast to the natural samples. Evidence for an interaction between temperature and low light intensities in their effect on photosynthesis of natural samples is presented. PMID:16345318

  18. Indicative value of Pediastrum and other coccal green algae in palaeoecology

    Microsoft Academic Search

    Vlasta Jankovská; Ji?í Komárek

    2000-01-01

    Sporopollenin layers in the cell wall of coccal green algae are responsible for the resistance of cell walls to destructive\\u000a processes during fossilization as well as during chemical preparation of samples for pollen-analysis. Pollen slides of samples\\u000a from limnic sediments thus also contain some algal cell walls. Although some pollen-analysts tried to stress this fact, the\\u000a finds of algae in

  19. Algicidal effect of 2,4-dichlorophenoxy acetic acid on blue-green alga Cylindrospermum sp

    Microsoft Academic Search

    P. K. Singh

    1974-01-01

    The effect of the herbicide 2,4-Dichlorophenoxy acetic acid generally used in agriculture was studied on the nitrogen fixing blue-green alga Cylindrospermum sp. The alga could tolerate up to 150 µg per ml in liquid culture and 100 µg per ml on agar plates without any inhibitory effect on growth and survival. The maximum tolerance was up to 800 µg per

  20. Radioactive contamination of filamentous green algae in the Hungarian reach of the River Danube

    Microsoft Academic Search

    É. Holland; L. B. Sztanyik; L. Vanicsek

    1982-01-01

    In connection with the national nuclear power station programme a series of measurements was initiated to detect radionuclides\\u000a in the River Danube. Examinations started in Spring 1978 at six sampling points along the Hungarian reach of the Danube. From\\u000a among algae of various species of the Danube the localized and well-propagating filamentous green algae (Cladophora sp., Vaucheria\\u000a sp.) were investigated.

  1. Effect of wide temperature fluctuation on the blue-green algae of Bead Geyser, Yellowstone National Park

    Microsoft Academic Search

    J. L. Mosser; THOMAS D. BROCK

    1971-01-01

    Optimal temperatures for photosynthesis and growth were determined for thermal blue- green algae inhabiting the drainway of a small geyser in Yellowstone National Park. The sparse algal mat was exposed to high temperatures only during the brief, highly periodic eruptions of the geyser. Optimal temperatures for the algae were higher than the mean environmental temperatures; as a consequence the algae

  2. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell.

    PubMed

    Yuan, Yong; Chen, Qing; Zhou, Shungui; Zhuang, Li; Hu, Pei

    2011-03-15

    Bioelectricity production from blue-green algae was examined in a single chamber tubular microbial fuel cell (MFC). The blue-green algae powered MFC produced a maximum power density of 11 4 mW/m(2) at a current density of 0.55 mA/m(2). Coupled with the bioenergy generation, high removal efficiencies of chemical oxygen demand (COD) and nitrogen were also achieved in MFCs. Over 78.9% of total chemical oxygen demand (TCOD), 80.0% of soluble chemical oxygen demand (SCOD), 91.0% of total nitrogen (total-N) and 96.8% ammonium-nitrogen (NH(3)-N) were removed under closed circuit conditions in 12 days, which were much more effective than those under open circuit and anaerobic reactor conditions. Most importantly, the MFC showed great ability to remove microcystins released from blue-green algae. Over 90.7% of MC-RR and 91.1% of MC-LR were removed under closed circuit conditions (500?). This study showed that the MFC could provide a potential means for electricity production from blue-green algae coupling algae toxins removal. PMID:21295401

  3. Isolation of plasmid from the blue-green alga Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  4. Research on Inactivation of Blue-Green Algae Using Water Hammer Pressure

    Microsoft Academic Search

    Tatsuhisa Hamada; Yasumasa Yamada; Shigekatsu Endo; Hajime Ogawa

    \\u000a If a fresh water region becomes eutrophic, the phenomenon that is called “water-bloom” is generated. It has been a serious\\u000a social problem that water-bloom mingle with drinking water and be rotten an cause offensive odor. However, measures against\\u000a water-bloom damage have not been established. Blue-green-algae produces photosynthesis while alive and floating on the water.\\u000a Also, blue-green-algae has the gas vacuoles

  5. Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch Culture Systems

    SciTech Connect

    Watts, J.R.

    2003-02-18

    Since routine monitoring data show that blue-green algae concentrate radioactivity from water by factors as great as 10,000, this study was initiated to investigate the uptake and retention patterns of specific radionuclides by the dominant genera of blue-green algae in the reactor effluents. Plectonema purpureum was selected for this study.

  6. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    EPA Science Inventory

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  7. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  8. The effect of chloramphenicol on the production of cyanophycin granule polypeptide in the blue-green alga Anabaena cylindrica

    Microsoft Academic Search

    Robert D. Simon

    1973-01-01

    The cyanophycin or structured granule of the blue-green algae is composed of polypeptides which are copolymers of aspartic acid and arginine. The addition of chloramphenicol to an exponentially growing culture of the blue-green alga Anabaena cylindrica at concentrations which completely inhibit protein synthesis results both in the inhibition of growth and in the accumulation of the cyanophycin granule polypeptide (CGP).

  9. Lower pH Limit for the Existence of Blue-Green Algae: Evolutionary and Ecological Implications

    Microsoft Academic Search

    Thomas D. Brock

    1973-01-01

    Observations on a wide variety of acidic environments, both natural and man-made, reveal that blue-green algae (Cyanophyta) are completely absent from habitats in which the pH is less than 4 or 5, whereas eukaryotic algae flourish. By using enrichment cultures with inocula from habitats of various pH values, the absence of blue-green algae at low pH was confirmed.

  10. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa, to 12 pesticides.

    PubMed

    Ma, Jianyi; Zheng, Rongquan; Xu, Ligen; Wang, Shufeng

    2002-05-01

    Growth-inhibiting tests were carried out for 12 pesticides (including 11 fungicides: fosetyl-aluminum, benomyl, metalaxyl, iprodione, dimetachlone, carbendazim, thiophanate-methyl, bismerthiazol, procymidone, zineb, chlorothalonil, and the acaricide abamectin) in the green algae Chlorella pyrenoidosa and Scenedesmus obliqnus and the differential sensitivities of the two green algae to those pesticides were compared. The results indicate that the acute toxicity of benomyl to C. pyrenoidosa and S. obliqnus is the highest among all of the pesticides tested and is close to that of the photosynthesis-inhibiting herbicides atrazine, simazine, and chlorotoluron. Meanwhile, algal species vary widely in their response to the pesticides. The results demonstrated that there was a differential response to various pesticides by the two species of algae and that the sensitivity of various species of algae exposed to chlorothalonil varied by nearly two orders of magnitude; sensitivity to thiophanate-methyl varied by more than one order. Investigations using different algal species as test organisms have demonstrated that algae vary greatly in their response to chemicals. Differential sensitivity of green species to the compounds could induce species shifts within communities. PMID:12051808

  11. Genome-wide analysis of tandem repeats in plants and green algae.

    PubMed

    Zhao, Zhixin; Guo, Cheng; Sutharzan, Sreeskandarajan; Li, Pei; Echt, Craig S; Zhang, Jie; Liang, Chun

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5'-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron-exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5' and 3' ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae. PMID:24192840

  12. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review. PMID:23986769

  13. Isolation and Purification of Intact Gas Vesicles from a Blue-Green Alga

    Microsoft Academic Search

    A. E. Walsby; Barbara Buckland

    1969-01-01

    THE gas vesicles which make up the gas vacuoles of blue-green algae collapse flat on application of a few atmospheres pressure1 and this frustrates attempts to isolate them intact by methods of cell rupture and centrifugation used in obtaining preparations of other subcellular organelles2. We describe here a novel method of lysing blue-green algal cells, the isolation of their intact

  14. Solar energy conversion with hydrogen-producing cultures of the blue-green alga, Anabaena cylindrica

    Microsoft Academic Search

    P. C. Hallenbeck; L. V. Kochian; J. C. Weissman; J. R. Benemann

    1978-01-01

    It was demonstrated that a catalytic, sustained production of hydrogen from water can be carried out under outdoor conditions using a simple glass converter and a stationary blue-green algal culture. This process meets the basic technical requirements of biophotolysis. Improvement in rates of hydrogen production by this system could be achieved by selecting wild-type blue-green algae better suited to hydrogen

  15. Hydrogen production by a thermophilic blue-green alga Mastigocladus laminosus

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Yokoyama, H.; Miyamoto, K.; Okazaki, M.; Komemushi, S.

    Light-driven hydrogen evolution by a thermophilic blue-green alga, Mastigocladus laminosus, was demonstrated and characterized under nitrogen-starved conditions. Air-grown cultures of this alga evolved hydrogen under Ar/CO2 at rates up to 2.2 ml/mg chl/hr. The optimum temperature and pH for the hydrogen evolution were 44-49 C and pH 7.0-7.5, respectively. Evolution in light was depressed by N2 gas and inhibited by salicylaldoxime or 2,4-dinitrophenol, indicating that nitrogenase was mainly responsible for the hydrogen evolution. The evolution rate was improved by adding carbon monoxide and acetylene to the gas phase of Ar/CO2. In addition, photobiological production of hydrogen (biophotolysis) by various blue-green algae is briefly reviewed and discussed.

  16. The microtubule cytoskeleton in developing cysts of the green alga Acetabularia : Involvement in cell wall differentiation

    Microsoft Academic Search

    D. Menzel; Christine Elsner-Menzel

    1990-01-01

    Summary Cysts of the green algaAcetabularia develop a unique lid structure to enable the release of gametes. This lid is separated from the rest of the thick cellulose cell wall by a circular fault line formed within the fibrillar texture of the wall. By immunofluorescence microscopy, we show that, prior to the first division of the single cyst nucleus, the

  17. Cytoskeleton-dependent polarized secretion of arylsulfatase in the unicellular green alga, Chlamydomonas reinhardtii

    Microsoft Academic Search

    Satoshi Kagiwada; Ikuko Nakamae; Mami Kayukawa; Sachiko Kato

    2004-01-01

    In the green alga Chlamydomonas reinhardtii, protein secretion has not been well investigated at the molecular level although the process plays important roles in cell wall biogenesis, the mating process, and stress response. Here, we studied the cytoskeleton dependence of Chlamydomonas protein secretion by examining the effects of cytoskeleton-disrupting reagents. Protein transport activity was monitored by the secretion of arylsulfatase

  18. Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris

    Microsoft Academic Search

    Takashi Morimoto; Akito Nagatsu; Nobutoshi Murakami; Jinsaku Sakakibara; Harukuni Tokuda; Hoyoku Nishino; Akio Iwashima

    1995-01-01

    Two new monogalactosyl diacylglycerols were isolated from the freshwater green alga, Chlorella vulgaris, as anti-tumour promoters, together with three monogalactosyl diacylglycerols and two digalactosyl diacylglycerols. The new monogalactosyl diacylglycerol containing (7Z,10Z)-hexadecadienoic acid showed a more potent inhibitory effect toward tumour promotion than the other glycerolipids isolated.

  19. Kinetic and equilibrium studies on biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis

    Microsoft Academic Search

    Rathinam Aravindhan; Jonnalagadda Raghava Rao; Balachandran Unni Nair

    2007-01-01

    Dynamic batch experiments were carried out for the biosorption of basic blue dye on to the green macro algae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye, pH of the solution, the adsorbent dosage and the time of contact were studied. It has been observed that the sorption process was significantly affected

  20. Application of a chemically modified green macro alga as a biosorbent for phenol removal

    Microsoft Academic Search

    Rathinam Aravindhan; Jonnalagadda Raghava Rao; Balachandran Unni Nair

    2009-01-01

    Phenol and substituted phenols are toxic organic pollutants present in tannery waste streams. Environmental legislation defines the maximum discharge limit to be 5–50 ppm of total phenols in sewers. Thus the efforts to develop new efficient methods to remove phenolic compounds from wastewater are of primary concern. The present work aims at the use of a modified green macro alga (Caulerpa

  1. Environmentally Modulated Phosphoproteome of Photosynthetic Membranes in the Green Alga Chlamydomonas reinhardtii

    Microsoft Academic Search

    Maria V. Turkina; Joanna Kargul; Amaya Blanco-Rivero; Arsenio Villarejo; James Barber; Alexander V. Vener

    2006-01-01

    Mapping of in vivo protein phosphorylation sites in pho- tosynthetic membranes of the green alga Chlamydomo- nas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells ex- posed to four distinct environmental conditions

  2. Morphological changes in the life cycle of the green alga Haematococcus pluvialis

    Microsoft Academic Search

    Makio Kobayashi; Yoshiro Kurimura; Toshihide Kakizono; Naomichi Nishio; Yasunobu Tsuji

    1997-01-01

    A 2-week model life cycle of the green alga Haematococcus pluvialis was constructed, consisting of four cell stages: vegetative cell growth, encystment, maturation, and germination. Each algal cell stage could be distinguished by the ratio of pigments (carotenoid\\/chlorophyll) and the intracellular protein content. Using the culture system developed, light was shown to be essential for both carotenogenesis and cell differentiation

  3. Effects of p-Cresol on photosynthetic and respiration rates of a filamentous green alga (spirogyra)

    SciTech Connect

    Stout, J. (Michigan State Univ., East Lansing); Kilham, S.S.

    1983-01-01

    The effects of spilled phenols and cresols from coal gasification plants on the green alga SPIROYRA was investigated in experimental streams built by the US EPA near Monticello, Minnesota. P-Cresol at low concentrations inhibited photosynthesis and increased algal respiration rates. (JMT)

  4. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies

    Microsoft Academic Search

    V. K. Gupta; A. Rastogi

    2008-01-01

    Biosorption is the effective method for the removal of heavy metal ions from wastewaters. Results are presented showing the sorption of Pb(II) from solutions by biomass of commonly available, filamentous green algae Spirogyra sp. Batch experiments were conducted to determine the biosorption properties of the biomass and it was observed that the maximum adsorption capacity of Pb(II) ion was around

  5. A STATUS REPORT ON PLANKTONIC CYANOBACTERIA (BLUE-GREEN ALGAE) AND THEIR TOXINS

    EPA Science Inventory

    Toxic blue-green algae (cyanobacteria) continue to be agents of certain waterbased toxicoses. heir presence is now being acknowledged in many of the world's fresh and brackish waters with eutrophication status of meso to hypereutrophic. ense surface scums called waterblooms will ...

  6. Original article Fermentation of green alga sea-lettuce (Ulva sp)

    E-print Network

    Paris-Sud XI, Université de

    Original article Fermentation of green alga sea-lettuce (Ulva sp) and metabolism of its sulphate). The purpose of this study was to assess the fermentation characteristics and sulphate metabolism of Ulva and ulvan by human faecal bacteria fermentation system using a semi-continu- ous fermenter. Ulva and ulvan

  7. The cytoskeleton of the giant coenocytic green alga Caulerpa visualized by immunocytochemistry

    Microsoft Academic Search

    D. Menzel

    1987-01-01

    Summary A microdissection technique is described allowing immunocytochemical procedures in the giant coenocytic green algaCaulerpa without the necessity to enzymatically digest the cell wall. In this way, a plant cell famous for its fast, large scale organelle transport becomes available for cytoskeletal research. Using antibodies against tubulin and actin three cytoplasmic levels can be identified in the cell area of

  8. Fine structure of developing polyphosphate bodies in a blue-green alga, Plectonema boryanum

    Microsoft Academic Search

    Thomas E. Jensen

    1969-01-01

    Stages in the development of polyphosphate bodies in the blue-green alga, Plectonema boryanum, grown under continuous illumination in the presence of excess phosphate, are reported. During the first stage, an electronlucent area appears near the nucleoplasm or cross walls; it gradually increases to a size approximately equal to that of the final polyphosphate body. In this area a porous structure

  9. The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica

    Microsoft Academic Search

    H. Bothe; J. Tennigkeit; G. Eisbrenner

    1977-01-01

    The blue-green alga Anabaena cylindrica is found to consume molecular hydrogen in a hydrogenase dependent reaction. This hydrogen uptake proceeds in the dark and is strictly dependent on oxygen, thus representing a Knallgas reactions. Its rate is almost as high as that of the endogenous respiration in Anabaena. Studies with inhibitors reveal that hydrogen is utilized via the complete respiratory

  10. Toxicity and binding of copper, zinc, and cadmium by the blue-green alga, Chroococcus paris

    Microsoft Academic Search

    Albin Les; Robert W. Walker

    1984-01-01

    The toxic effects and accumulation of the heavy metals, Cd, Cu, and Zn by the sheath forming blue-green alga Chroococcus paris were investigated. All three of the metals were bound rapidly. Approximately 90% of the total amount of the added metal was bound within 1 min. Further significant binding occurred at a slower rate. The maximum metal binding capacity, as

  11. Influence of light on chlorophyll. A content of blue-green algae treated with heavy metals

    SciTech Connect

    Azeez, P.A.; Banerjee, D.K.

    1987-06-01

    The toxicity of heavy metals is manifested in multifarious forms. Factors like illumination influence the inhibitory effect of heavy metals on chlorophyll metabolism and photosynthetic activities. The present study was undertaken to explore the effect of light on the chlorophyll A (Chl A) content of blue green algae. This is in continuation of heavy metal toxicity and accumulation studies on cyanobacteria reported earlier.

  12. Endolithic Blue-Green Algae in the Dry Valleys: Primary Producers in the Antarctic Desert Ecosystem

    Microsoft Academic Search

    E. Imre Friedmann; Roseli Ocampo

    1976-01-01

    Endolithic unicellular blue-green algae occur under the surface of orthoquartzite rocks in the dry valleys of southern Victoria Land, Antarctica. This report of primary producers in the Antarctic desert ecosystem suggests that, in future efforts to detect life in extraterrestrial (for example, martian) environments, scientists should consider the possible existence of endolithic life forms.

  13. Fatty acid composition and physiological properties of some filamentous blue-green algae

    Microsoft Academic Search

    C. N. Kenyon; R. Rippka; R. Y. Stanier

    1972-01-01

    The fatty acids of 32 axenic strains of filamentous blue-green algae have been analyzed. As an aid to the interpretation of the results, the strains have been assigned to provisional typological groups based upon their morphology and certain physiological characters. The latter are the ability to grow heterotrophically in the dark with glucose as carbon and energy source, the ability

  14. Evidence for genetic transformation in blue-green alga Anacystis nidulans

    Microsoft Academic Search

    S. V. Shestakov; Nguyen Than Khyen

    1970-01-01

    Evidence has been presented that blue-green alga Anacystic nidulans can undergo genetic transformation. DNA from erythromycin-, streptomycin-resistant of filamentous strains has been found to transform appropriate markers to a wild type or some other recipients. Favourable conditions for transformation have been described with respect to the revealing of transformants, the concentration of DNA and the competence of cells.

  15. THE FINE STRUCTURE OF THE NUCLEAR MATERIAL OF A BLUE-GREEN ALGA, ANABAENA CYLINDRICA LEMM

    Microsoft Academic Search

    DAVID A. HOPWOOD; AUDREY M. GLAUERT

    1960-01-01

    The chromatinic material of the blue-green alga Anabaena cylindrica has complex configura- tions in the central regions of the cells. The distribution of the chromatin within the cells varies in different filaments, probably in response to variations in the disposition of other cellular components. In electron micrographs of thin sections of organisms fixed by the method of Kellenberger, Ryter, and

  16. The Photoassimilation of Organic Compounds by Autotrophic Blue-green Algae

    Microsoft Academic Search

    D. S. Hoare; S. L. Hoare; R. B. Moore

    1967-01-01

    SUMMARY Four obligately photoautotrophic blue-green algae were shown to assimi- late acetate. This reaction was light dependent and was greatly decreased in the absence of carbon dioxide. Acetate was incorporated mainly into the ethanol extractable (lipid) fraction of the organisms and into the protein fraction. Only four amino acids (glutamate, proline, arginine, leucine) were significantly radioactive as a result of

  17. GUIDE TO THE IDENTIFICATION, ENVIRONMENTAL REQUIREMENTS AND POLLUTION TOLERANCE OF FRESHWATER BLUE-GREEN ALGAE (CYANOPHYTA)

    EPA Science Inventory

    An illustrated key to 42 genera and 161 species of Blue-green algae is provided. Information on the environmental requirements and pollution tolerance of these species was compiled from 430 references and summarized on profile sheets. It is suggested that this information be empl...

  18. Effects of Extracts of Blue-Green Algae on Pigment Production by Serratia marcescens

    Microsoft Academic Search

    F. F. DAVIDSON

    1959-01-01

    SUMMARY: Two extract preparations from each of twelve species of blue-green algae were tested for possible anti-pigmentation activities when applied to unpig- mented cultures of Serratia rnarcescens. Extracts from eight of these species inhibited pigment formation, two of them completely. The two extraction methods gave similar results and there appears to be no difference in the effects produced by extracts

  19. Nitrate and nitrite as ‘in vivo’ quenchers of chlorophyll fluorescence in blue-green algae

    Microsoft Academic Search

    A. Serrano; J. Rivas; M. Losada

    1981-01-01

    The effect of nitrate and nitrite on long-term chlorophyll fluorescence has been studied in filamentous blue-green algae. Cells grown autotrophically with nitrate as nitrogen source show, under argon atmosphere, a high level of fluorescence. The addition of either nitrete or nitrite induces a significant fluorescence quenching, but, whereas in the case of nitrite no previous treatment is required, in the

  20. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks

    Microsoft Academic Search

    H. R. Maier; G. C. Dandy

    1997-01-01

    In recent times, an apparent increase in the frequency and intensity of blooms of cyanobacteria (blue-green algae) in the River Murray (Australia) has caused widespread concern. When present in large numbers, they can cause serious problems for domestic, industrial, agricultural and recreational users of water, as they can produce toxins and impart undesirable tastes and odours to water. It is

  1. Oleosin of Subcellular Lipid Droplets Evolved in Green Algae1[W][OA

    PubMed Central

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L.; Huang, Anthony H.C.

    2013-01-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  2. The effect of surface growth of blue-green algae and bryophytes on some microbiological, biochemical, and physical soil properties

    Microsoft Academic Search

    D. L. N. Rao; R. G. Burns

    1990-01-01

    The influence of surface growth of inoculated cyanobacteria (blue-green algae) on subsurface properties of a brown earth, silt loam soil was studied in reconstituted flooded soil columns. One blue-green algae species, Nostoc muscorum, become dominant within the first 7 days of inoculation. In light control columns (not inoculated) a bryophyte, Barbula recurvirostra, was dominant although significant growth of indigenous blue-green

  3. Endosymbiotic alga from green hydra under the influence of cinoxacin

    Microsoft Academic Search

    G. Kova?evi?; M. Kalafati?; N. Ljubeši?

    2005-01-01

    Cinoxacin (Cxn) showed a strong effect on the endosymbiotic algaChlorella; it was significantly damaged. Changes in algal color, position, structure and ultrastructure were found. In some algal cells\\u000a ultrastructures were completely destroyed. The antichloroplastal and antimitochondrial effect was especially expressed. Damage\\u000a to the thylakoid system of chloroplasts was more pronounced with increasing Cxn concentration. Some of the mitochondria were\\u000a swollen

  4. Origin of land plants: Do conjugating green algae hold the key?

    PubMed Central

    2011-01-01

    Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa (Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the conquest of land. Clearly, the biology of the Zygnematales will receive renewed interest in the future. PMID:21501468

  5. Thermotropic Properties of Thermophilic, Mesophilic, and Psychrophilic Blue-green Algae.

    PubMed

    Chen, C H; Berns, D S

    1980-10-01

    Thermotropic properties of blue-green algae grown at high, room, and low temperatures in H(2)O and D(2)O media were studied by highly sensitive differential scanning microcalorimetry. The thermograms of these organisms contain an endothermal peak in the temperature range of 50 to 70 C with an endothermal heat ranging from 0.14 to 1.91 joules per gram organism. The temperature at which the endothermal peak occurs is comparable with the thermal denaturation temperature of phycocyanin, the major biliprotein isolated from these algae. A good correlation can be found for the relative thermal stability of various organisms with that of the isolated biliproteins. The ability of these algae to resist thermal disruption is correlated with the thermal environments in which these algal cells grow. The thermal stability of normal algae is in the order of thermophile > mesophile > psychrophile. It was found that the deuterated mesophilic algae were less able to resist thermal disruption than ordinary mesophilic algae. PMID:16661485

  6. [Evolutional relationships of endemic green algae Draparnaldioides simplex from Lake Baikal with nonbaicalian taxa of family Chaetoforaceae (Chlorophyta)].

    PubMed

    Mincheva, E V; Peretolchina, T E; Izhboldina, L A; Kravtsova, L S; Shcherbakov, D Iu

    2013-01-01

    Phylogenetic relationships between the endemic baicalian green algae Draparnaldioides simplex C. meyer et Skabitsch, 1976 and holarctic taxa of green algae were studied using the fragment of 18S rDNA and internal transcribed spacers ITS1 and ITS2 of nuclear DNA. We showed that the baicalian genus Draparnaldioides is a separate taxon. The genetic difference between Draparnaldioides and nonbaicalian taxa of the sister groups of the green algae are small enough to indicate relative youth of the genus Draparnaldioides and its recent radiation from a common ancestor with Draparnaldia and Chaetophora. PMID:23705507

  7. Chemical composition, protein digestibility and heat of combustion of filamentous green algae

    Microsoft Academic Search

    F. Hindák; S. P?ibil

    1968-01-01

    The filamentous green algae investigated (Hormidium sp. strainHindák 1963\\/21,Ulothrix sp. strainHindák 1964\\/2,Uronema gigas\\u000a Visch. strainVischer\\/Bloom. 174,Uronema sp. strainHindák 1963\\/25 andStigeoclonium sp. strainHindák 1964\\/1), contain similar amounts of proteins, lipids, cellulose and ash as the hitherto used production strains of the generaChlorella andScenedesmus. The digestibility of proteins in vitro is about one-third higher in the filamentous algae than in the employed

  8. Endosymbiotic alga from green hydra under the influence of cinoxacin.

    PubMed

    Kovacevi?, G; Kalafati?, M; Ljubesi?, N

    2005-01-01

    Cinoxacin (Cxn) showed a strong effect on the endosymbiotic alga Chlorella; it was significantly damaged. Changes in algal color, position, structure and ultrastructure were found. In some algal cells ultrastructures were completely destroyed. The antichloroplastal and antimitochondrial effect was especially expressed. Damage to the thylakoid system of chloroplasts was more pronounced with increasing Cxn concentration. Some of the mitochondria were swollen and some of them were completely destroyed. From the evolutionary point of view, the correlation between antibacterial, and antichloroplastal and antimitochondrial effect of Cxn points to the evolutionary connection of chloroplasts and mitochondria with eubacteria. PMID:16295658

  9. Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the North and South Atlantic oceans.

    PubMed

    Rodríguez, Francisco; Feist, Stephen W; Guillou, Laure; Harkestad, Lisbeth S; Bateman, Kelly; Renault, Tristan; Mortensen, Stein

    2008-09-24

    Blue mussels Mytilus edulis with shell deformations and green pustules containing parasitic algae were collected at 3 coastal sites (Burřy, Norway; Bockholm, Denmark; Goose Green, Falkland Islands). A comparative study, including mussel histopathology, algal morphology, ultrastructure and phylogenetic position was performed. Green pustules were mainly located in the posterior portion of the mantle and gonad tissues and the posterior adductor muscle. Electron microscopy confirmed the presence of algal cells with similar morphology to Coccomyxa parasitica. Algae were oval shaped with a single nucleus and chloroplast, 1 or 2 mitochondria and a dense granular cytoplasm with a lipid inclusion body, Golgi apparatus and small vesicles. Partial small subunit (SSU) rRNA phylogeny confirmed the inclusion of parasitic algae into the Coccomyxa clade. However, the sequence identity between almost full SSU rRNA sequences of parasitic algae and others in this clade yielded an unexpected result. Green algae from mussels were distant from C. parasitica Culture Collection of Algae and Protozoa (CCAP) strain 216/18 (94% identity), but very similar (99% identity) to C. glaronensis (a lichen endosymbiont) and green endophytes from the tree Ginkgo biloba. The CCAP strain 216/18 was a sister sequence to Nannochloris algae, far from the Coccomyxa clade. These results suggest a misidentification or outgrowth of the original CCAP strain 216/18 by a different 'Nannochloris-like' trebouxiophycean organism. In contrast, our sequences directly obtained from infested mussels could represent the true C. parasitica responsible for the green pustules in blue mussels. PMID:18998587

  10. Application of a chemically modified green macro alga as a biosorbent for phenol removal.

    PubMed

    Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2009-04-01

    Phenol and substituted phenols are toxic organic pollutants present in tannery waste streams. Environmental legislation defines the maximum discharge limit to be 5-50 ppm of total phenols in sewers. Thus the efforts to develop new efficient methods to remove phenolic compounds from wastewater are of primary concern. The present work aims at the use of a modified green macro alga (Caulerpa scalpelliformis) as a biosorbent for the removal of phenolic compounds from the post-tanning sectional stream. The effects of initial phenol concentration, contact time, temperature and initial pH of the solution on the biosorption potential of macro algal biomass have been investigated. Biosorption of phenol by modified green macro algae is best described by the Langmuir adsorption isotherm model. Biosorption kinetics of phenol onto modified green macro algal biomass were best described by a pseudo second order model. The maximum uptake capacity was found to be 20 mg of phenol per gram of green macro algae. A Boyd plot confirmed the external mass transfer as the slowest step involved in the biosorption process. The average effective diffusion coefficient was found to be 1.44 x 10(-9) cm(2)/s. Thermodynamic studies confirmed the biosorption process to be exothermic. PMID:19138816

  11. The effect of low temperature on Antarctic endolithic green algae

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Morris, G. J.; Friedmann, E. I.

    1988-01-01

    Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.

  12. Stress-related differential expression of multiple ?-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis

    Microsoft Academic Search

    Jun-Chao Huang; Feng Chen; Gerhard Sandmann

    2006-01-01

    The unicellular green alga Haematococcus pluvialis is used as a biological production system for astaxanthin. It accumulates large amounts of this commercially interesting ketocarotenoid under a variety of environmental stresses. Here we report the identification and expression of three different ?-carotene ketolase genes (bkt) that are involved in the biosynthesis of astaxanthin in a single strain of the alga. Bkt1

  13. Evaluation of Factors Promoting Astaxanthin Production by a Unicellular Green Alga, Haematococcus pluvialis, with Fractional Factorial Design

    Microsoft Academic Search

    Y. E. Choi; Y.-S. Yun; J. M. Park

    2002-01-01

    Factors affecting the astaxanthin production by a unicellular green alga, Haemato- coccus pluvialis UTEX 16, were evaluated with sequential fractional factorial design. To simulate an actual production mode, a two-stage process was adapted for astaxanthin production: the alga was first cultivated under vegetative growth conditions, and then astaxanthin production was induced by applying various induction methods. A high dose of

  14. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    Microsoft Academic Search

    I. Morales; F. F. de La Rosa

    1992-01-01

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of

  15. Simple methods for plating single vegetative cells of, and for replica-plating, filamentous blue-green algae

    Microsoft Academic Search

    C. Peter Wolk; Elizabeth Wojciuch

    1973-01-01

    Heterocyst-forming, filamentous blue-green algae may be broken into fragments having an average length as close to one cell as desired, by cavitation in an ultrasonic cleaner. The resulting fragments from six algae give rise to clones, with high plating efficiency. Sporulated clones of Anabeana flos-aquae may be replica-plated with velveteen.

  16. Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians.

    PubMed

    Cannell, R J; Farmer, P; Walker, J M

    1988-11-01

    An alpha-glucosidase inhibitor/antibiotic was purified from the freshwater green alga Spirogyra varians and was determined to be the pentagalloylglucose 3-O-digalloyl-1,2,6-trigalloylglucose. PMID:3145739

  17. IDENTIFICATION OF A PSYCHROPHILIC GREEN ALGA FROM LAKE BONNEY ANTARCTICA: CHLAMYDOMONAS RAUDENSIS ETTL. (UWO 241) CHLOROPHYCEAE1

    E-print Network

    Priscu, John C.

    IDENTIFICATION OF A PSYCHROPHILIC GREEN ALGA FROM LAKE BONNEY ANTARCTICA: CHLAMYDOMONAS RAUDENSIS: Antarctica; Chlamydomonas; Chla- mydomonas hedleyi; Chlamydomonas noctigama; Chlamydomonas raudensis Abbreviations: ITS, internal transcribed spacer; SSU, ribosomal small subunit Antarctica consists of many harsh

  18. Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians.

    PubMed Central

    Cannell, R J; Farmer, P; Walker, J M

    1988-01-01

    An alpha-glucosidase inhibitor/antibiotic was purified from the freshwater green alga Spirogyra varians and was determined to be the pentagalloylglucose 3-O-digalloyl-1,2,6-trigalloylglucose. PMID:3145739

  19. Sacrificial cell death and trichome breakage in an oscillatoriacean blue-green alga: the role of murein

    Microsoft Academic Search

    Hayes C. Lamont

    1969-01-01

    Trichomes of Microcoleus vaginatus, a motile blue-green alga of the family Oscillatoriaceae, were studied by light and electron microscopy in an effort to determine the sites of trichome breakage during production of hormogonia.

  20. Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata.

    PubMed

    Brander, Susanne M; Mosser, Christopher M; Geist, Juergen; Hladik, Michelle L; Werner, Inge

    2012-11-01

    The presence of phytoplankton, like other particulate organic matter, can interfere with the effects of hydrophobic contaminants such as pyrethroid pesticides. However, the reduction or elimination of toxicity by algae added as food during testing is not taken into account in standard US EPA whole effluent toxicity (WET) zooplankton tests. On the other hand, WET test conditions may overestimate toxicity of such compounds in highly productive surface waters with high concentrations of detritus and other particulate matter. In addition, WET tests do not measure impaired swimming ability or predator avoidance behavior as an indicator of increased mortality risk. This study used a modified version of the US EPA WET Ceriodaphnia dubia acute test to investigate the effects of phytoplankton on toxicity of the pyrethroid insecticide, esfenvalerate. Animals were exposed simultaneously to different concentrations of esfenvalerate and green algae (Pseudokirchneriella subcapitata). Mortality and predation risk were recorded after 4 and 24 h. Algae at or below concentrations specified in the WET protocol significantly reduced mortality. Regardless, organisms exposed to esfenvalerate were unable to avoid simulated predation in the presence of algae at any concentration. After 12 h, esfenvalerate adsorbed to algae represented 68-99 % of the total amount recovered. The proportion of algae-bound insecticide increased with algal concentration indicating that conclusions drawn from toxicity tests in which algae are added as food must be interpreted with caution as the dissolved fraction of such hydrophobic contaminants is reduced. Additionally, our results strongly suggest that the EPA should consider adding ecologically-relevant endpoints such as swimming behavior to standard WET protocols. PMID:22975895

  1. When the lights go out: the evolutionary fate of free-living colorless green algae.

    PubMed

    Figueroa-Martinez, Francisco; Nedelcu, Aurora M; Smith, David R; Adrian, Reyes-Prieto

    2015-05-01

    The endosymbiotic origin of plastids was a launching point for eukaryotic evolution. The autotrophic abilities bestowed by plastids are responsible for much of the eukaryotic diversity we observe today. But despite its many advantages, photosynthesis has been lost numerous times and in disparate lineages throughout eukaryote evolution. For example, among green algae, several groups have lost photosynthesis independently and in response to different selective pressures; these include the parasitic/pathogenic trebouxiophyte genera Helicosporidium and Prototheca, and the free-living chlamydomonadalean genera Polytomella and Polytoma. Here, we examine the published data on colorless green algae and argue that investigations into the different evolutionary routes leading to their current nonphotosynthetic lifestyles provide exceptional opportunities to understand the ecological and genomic factors involved in the loss of photosynthesis. PMID:26042246

  2. Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria)

    SciTech Connect

    Tison, D.L. (Rensselaer Polytechnic Inst., Troy, NY); Pope, D.H.; Cherry, W.B.; Fliermans, C.B.

    1980-02-01

    Legionella pneumophila (Legionnaires disease bacterium) of serogroup 1 was isolated from an algal-bacterial mat community growing at 45/sup 0/C in a man-made thermal effluent. This isolate was grown in mineral salts medium at 45/sup 0/C in association with the blue-green alga (cyanobacterium) Fischerella sp. over a pH range of 6.9 to 7.6. L. pneumophila was apparently using algal extracellular products as its carbon and energy sources. These observations indicate that the temperature, pH, and nutritional requirements of L. pneumophila are not as stringent as those previously observed when cultured on complex media. This association between L. pneumophila and certain blue-green algae suggests an explanation for the apparent widespread distribution of the bacterium in nature.

  3. ULTRASTRUCTURE OF MITOSIS AND CYTOKINESIS IN THE MULTINUCLEATE GREEN ALGA ACROSIPHONIA

    PubMed Central

    Hudson, Peggy R.; Waaland, J. Robert

    1974-01-01

    The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide. Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei. Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules. No other microtubules are associated with the furrow. Characteristics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae. PMID:4139161

  4. The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park

    Microsoft Academic Search

    Richard W. Castenholz

    1977-01-01

    In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS?, S2?) of over 1–2 mg\\/liter (30–60?M) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50‡C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North

  5. Changes in the abundance of blue-green algae related to nutrient loadings in the nearshore of Lake Michigan

    Microsoft Academic Search

    William Y. B. Chang; Ronald Rossmann

    1988-01-01

    Nutrient loadings to the nearshore of southeastern Lake Michigan have undergone a remarkable reduction. This reduction can affect the nutrient supply and result in biological changes. Changes in phytoplankton community, particularly the blue-green algae, can be related to nutrient changes. After thermal stratification, sudden increases in the blue-green algae population were significantly correlated to soluble reactive phosphorus concentrations. Phosphorus-stimulated low

  6. Low-CO 2 -inducible protein synthesis in the green alga Dunaliella tertiolecta

    Microsoft Academic Search

    Ziyadin Ramazanov; Pedro A. Sosa; Margaret C. Henk; Miguel Jiménez Rio; Juan Luis Gómez-Pinchetti; Guillermo García Reina

    1995-01-01

    In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO42-, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed

  7. EFFECT OF BLUE GREEN MICRO ALGAE (SPIRULINA) ON COCOON QUANTITATIVE PARAMETERS OF SILKWORM (Bombyx mori L.)

    Microsoft Academic Search

    Dhiraj Kumar; Ashutosh Kumar; S. S. Dhami

    Spirulina is blue-green micro algae. It contains 18 amino acids and vital vitamins like biotin, tocopherol, thiamine, riboflavin, niacin, folic acid, pyrodozoic acid, beta-carotene and vitamin B12 etc. These nutrients which are very easy to digest protein (biliprotein), carbohydrates (mucopolysaccharides, rhamnose and glycogen), 50 different minerals and trace minerals, beta-carotene, chlorophyll, GLA omega-3 fatty acid, and many other nutrients found

  8. Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii

    Microsoft Academic Search

    Anh Vu Nguyen; Skye R. Thomas-Hall; Alizee Malnoe; Matthew Timmins; Jan H. Mussgnug; Jens Rupprecht; Olaf Kruse; Ben Hankamer; Peer M. Schenk

    2008-01-01

    Received 15 November 2007\\/Accepted 5 August 2008 Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production.

  9. Assessment of blue-green algae in substantially reducing nitrogen fertilizer requirements for biomass fuel crops

    Microsoft Academic Search

    D. B. Anderson; P. M. Molten; B. Metting

    1981-01-01

    Laboratory, mass culture, and field studies are being undertaken in order to assess the potential of using blue-green algae (cyanobacteria) as nitrogen biofertilizers on irrigated ground. Of seven candidate strains, two were chosen for application to replicated field plots sown to field corn and the basis of laboratory-scale soil tray experiments and ease of semi-continuous 8000 l culture. Chosen were

  10. Molecular Genetics of Lipid Metabolism in the Model Green Alga Chlamydomonas reinhardtii

    Microsoft Academic Search

    Eric R. Moellering; Rachel Miller; Christoph Benning

    \\u000a Research focusing on microalgae is currently experiencing a renaissance due to the potential of microalgae for providing biofuels\\u000a without competing with food crops. Despite this potential, our knowledge of neutral and membrane lipid metabolism in microalgae\\u000a is very limited, and opportunities to explore lipid metabolism in microalgae and contrast it to plant lipid metabolism abound.\\u000a The unicellular green alga Chlamydomonas

  11. Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii

    Microsoft Academic Search

    S. J. Lee; S.-B. Kim; J.-E. Kim; G.-S. Kwon; B.-D. Yoon; H.-M. Oh

    1998-01-01

    S.J. LEE, S.-B. KIM, J.-E. KIM, G.-S. KWON, B.-D. YOON AND H.-M. OH. 1998.Flocculating activity was determined to evaluate the effective harvesting method and an optimal growth stage for the recovery of the green alga Botryococcus braunii growing in batch cultures. Flocculating activity was highest at 2 weeks of incubation, regardless of harvesting methods. The degree of flocculation was different

  12. Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast

    Microsoft Academic Search

    Heiko Sawitzky; Franz Grolig

    1995-01-01

    Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video-enhanced differential interference con- trast microscopy of

  13. Trails of Green Alga Hydrogen Research – from Hans Gaffron to New Frontiers

    Microsoft Academic Search

    Anastasios Melis; Thomas Happe

    2004-01-01

    This paper summarizes aspects of the history of photosynthetic hydrogen research, from the pioneering discovery of Hans Gaffron\\u000a over 60 years ago to the potential exploitation of green algae in commercial H2-production. The trail started as a mere scientific curiosity, but promises to be a most important discovery, one that leads\\u000a photosynthesis research to important commercial applications. Progress achieved in

  14. Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale

    Microsoft Academic Search

    Yoshiyuki Ueno; Norihide Kurano; Shigetoh Miyachi

    1999-01-01

    Hydrogenase from the marine green alga, Chlorococcum littorale, was purified 1485-fold, resulting in a specific activity for hydrogen evolution of 75.7 ?mol\\/min\\/mg of protein at 25°C, using reduced methyl viologen as an electron donor. The Km value for methyl viologen was 0.5 mM. The purity of the enzyme was judged by native PAGE. The molecular weight was estimated to be

  15. Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica

    Microsoft Academic Search

    Masayuki Ohmori; Kazuko Ohmori; Heinrich Strotmann

    1977-01-01

    Ammonia at concentrations above 1×10-5 M inhibits uptake of nitrate in the nitrogen-fixing blue-green alga, Anabaena cylindrica. This inhibition takes place both in the light and in the dark. The rate of nitrate uptake is stimulated by light. Addition of relatively high concentrations of nitrate (1–10 mM) reversibly inhibits ammonia uptake. FCCP, an uncoupler of phosphorylation, inhibits both nitrate and

  16. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae

    Microsoft Academic Search

    C. Romay; J. Armesto; D. Remirez; R. González; N. Ledon; I. García

    1998-01-01

    Objective: Phycocyanin is a pigment found in blue-green algae which contains open chain tetrapyrroles with possible scavenging properties. We have studied its antioxidant properties.¶Materials and methods: Phycocyanin was evaluated as a putative antioxidant in vitro by using: a) luminol-enhanced chemiluminescence (LCL) generated by three different radical species (Oф, OH”, RO”) and by zymosan activated human polymorphonuclear leukocytes (PMNLs), b) deoxyribose

  17. Metabolic Activities of Isolated Heterocysts of the Blue-green Alga Anabaena cylindrica

    Microsoft Academic Search

    P. Fay; A. E. Walsby

    1966-01-01

    KNOWLEDGE of the nature of the heterocysts of blue-green algae has been limited by the lack of suitable techniques for investigation of the physiology and biochemistry of these puzzling structures. The association of the presence of heterocysts with the ability to fix free nitrogen and the findings1,2 that ammonia suppresses both nitrogen fixation and heterocyst formation have led to the

  18. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica

    Microsoft Academic Search

    Donald M. Miller; Jay H. Jones; John H. Yopp; Donald R. Tindall; Walter E. Schmid

    1976-01-01

    The intracellular ion content of the halophilic blue-green alga, Aphanothece halophytica was studied as a function of age, external sodium and external potassium concentration. Intracellular Na+ was found to be about 0.38 millimoles\\/g dry mass. Intracellular K+ concentrations were as high as 1 M and varied directly with external salinity. Intracellular Ca++ and Mg++ were in the range previously reported

  19. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa

    Microsoft Academic Search

    Satoshi Nakai; Yutaka Inoue; Masaaki Hosomi; Akihiko Murakami

    2000-01-01

    A culture solution of macrophyte Myriophyllum spicatum was subjected to algal assay-directed fractionation on the basis of polarity and molecular weight. As the water-soluble fraction below molecular weight 1000 was the only fraction to inhibit the growth of blue-green algae Microcystis aeruginosa, it was analyzed by analytical high-performance liquid chromatography (HPLC) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS) in

  20. Pathways of glycollate metabolism in the blue-green alga Anabaena cylindrica

    Microsoft Academic Search

    G. A. Codd; W. D. P. Stewart

    1973-01-01

    1.Exogenous glycollate was assimilated by the blue-green alga Anabaena cylindrica.2.About 50% of the C-1 carbon of 14C-1-glycollate (i.e.25% of the total carbon) was released as 14CO2 in the dark and also in the light in the presence of DCMU. Most of the 14CO2 released in the light in the absence of DCMU was refixed.3.Assimilation was almost completely inhibited by a-hydroxy-2-pyridinemethane

  1. Nitrogenase activity, amino acid pool patterns and amination in blue-green algae

    Microsoft Academic Search

    M. W. N. Dharmawardene; W. D. P. Stewart; S. O. Stanley

    1972-01-01

    The free amino acid pools in the nitrogen-fixing blue-green algae Anabaena cylindrica, A. flos-aquae and Westiellopsis prolifica contain a variety of amino acids with aspartic acid, glutamic acid and the amide glutamine being present in much higher concentrations than the others. This pattern is characteristic of that found in organisms having glutamine synthetage\\/glutamate synthetase [glutamine amide-2-oxoglutarate amino transferase (oxido-reductase)] as

  2. The Metabolism of Acetate by the Blue-green Algae, Anabaena variabilis and Anacystis nidulans

    Microsoft Academic Search

    J. Pearce; N. G. Carr

    1967-01-01

    SUMMARY The utilization of acetate by blue-green algae was examined and the activities of enzymes involved in its metabolism measured. Although acetate did not stimulate the endogenous respiration of these organisms, the oxida- tion of acetate was followed by the rate of release of (14C) carbon dioxide from (I-~~CC) and (2-l4CC) sodium acetate. Similarly, sodium acetate did not alter the

  3. Growth inhibition of blue–green algae by allelopathic effects of macrophytes

    Microsoft Academic Search

    Satoshi Nakai; Yutaka Inoue; Masaaki Hosomi; Akihiko Murakami

    1999-01-01

    Inhibitory effects of macrophytes on the growth of blue-green algae (i.e. Microcystis oeruginosa, Anoboena flos-aquae, or Phormidium tenue) were evaluated in a coexistence culture system in which concentrations of different macrophyte species were varied (i.e. Egeria densa, Cabomba caroliniana. Myriophyllutn spicatum, Ceratophyllum demersum, Eleocharis acicularis, Potamogeton oxyphyllus, Potamogeton crispus, Limnophila sessilifloro, or Vallisneria denseserrulata). Coexistence assay results showed that only

  4. Heterotrophic Nitrogen Fixation by the Blue-Green Alga Anabaenopsis circularis

    Microsoft Academic Search

    Atsushi Watanabe; YOKO YAMAMOTO

    1967-01-01

    IT has been shown that the blue-green alga Tolypothrix tenuis can be grown heterotrophically in complete darkness if, as well as mineral nutrients, appropriate organic substances such as casamino-acid are supplied as sources of nitrogen and carbon1. The maximum values for the growth rate and final growth yield obtained in heterotrophic conditions, however, were found to be far less than

  5. Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme

    Microsoft Academic Search

    Thomas E. Jensen

    1968-01-01

    Preparations of the blue-green alga, Nostoc pruniforme, treated according to the lead-sulfide staining technique of Ebelet al. (1958b) were examined by light and electron microscopy. They were found to contain spherical, electron-dense bodies, generally in close association with the nucleoplasm and polyhedral bodies, and sometimes enclosed by a membrane. In preparations extracted with cold TCA prior to the application of

  6. Are blue-green algae a suitable food for zooplankton? An overview

    Microsoft Academic Search

    R. de Bernardi; G. Giussani

    1990-01-01

    One of the reasons suggested to explain the dominance of blue-greens in eutrophic lakes is that they are not used as food\\u000a by zooplankton; and even when ingested, they are poorly utilized.\\u000a \\u000a An increase in herbivores might be the expected result of biomanipulation of the aquatic food chain. This attempt at controlling\\u000a the algae population is, however, destined to fail

  7. Photosynthetic and dark carbon metabolism in unicellular blue-green algae

    Microsoft Academic Search

    R. A. Pelroy; J. A. Bassham

    1972-01-01

    0946 091.The kinetics of 14CO2 incorporation into cellular intermediates was used to determine the primary pathway of carbon fixation by four genetically diverse unicellular blue-green algae. In each case label was first detected in 3-phosphoglycerate and then in compounds of the reductive pentose cycle.2.A light to dark transition evoked the same response in all four strains: Immediate cessation of biosynthesis,

  8. Polyhedral bodies (carboxysomes) of nitrogen-fixing blue-green algae

    Microsoft Academic Search

    W. D. P. Stewart; G. A. Codd

    1975-01-01

    Blue-green algae possess polyhedral bodies which, under the electron microscope, resemble the carboxysomes containing ribulose-1-5-diphosphate carboxylase (RUDPCase) in the chemoautotrophic bacterium Thiobacillus. These bodies are present in vegetative cells but not the heterocysts of 15 strains of Anabaena, Nostoc, Plectonema and Westiellopsis, including material grown photoautotrophically, photoheterotrophically and dark heterotrophically. They are also present in spores (akinetes). Their absence from

  9. Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae

    Microsoft Academic Search

    A. Haystead; R. Robinson; W. D. P. Stewart

    1970-01-01

    Cell-free extracts capable of acetylene reduction and cyanide reduction have been prepared from heterocystous (Anabaena cylindrica) and non-heterocystous (Plectonema boryanum 594) blue-green algae. Extracts from Anabaena were obtained from cultures grown in blulk under aerobic conditions, while the Plectonema cultures were grown in bulk on nitrate-nitrogen, then washed free from nitrate and sparged with A\\/CO2 for 40 h after which

  10. Possible Evolutionary Significance of Polyunsaturated Fatty Acids in Blue-Green Algae

    Microsoft Academic Search

    Christine N. Kenyon; R. Y. Stanier

    1970-01-01

    AMONG eukaryotes, alpha-linolenic acid (18 : 3alpha) and certain related polyunsaturated fatty acids occur as major fatty acids only in photosynthetic organisms1, where they are concentrated in chloroplasts as components of the acyl lipids2. Photosynthetic bacteria, by contrast contain saturated and monounsaturated fatty acids exclusively, a character which they share with nearly all non-photosynthetic bacteria3-5. Blue-green algae are the only

  11. Comparative structure of the gas-vacuoles of blue-green algae

    Microsoft Academic Search

    Roger V. Smith; A. Peat

    1967-01-01

    An investigation was made of 5 species of blue-green algae reported to contain gas-vacuoles. All organisms were grown and harvested under standard conditions. Gas-vacuoles were characterised as reddish structures which are destroyed by applying pressure. Using a simple direct preparation technique gascylinders were observed with the transmission electron microscope in gas-vacuolate cells. Gas-vacuoles were present in the strains of Anabaena

  12. Isolation of plasmid from the blue-green alga Spirulina platensis

    Microsoft Academic Search

    Song Qin; Shun Tong; Peijun Zhang; C. K. Tseng

    1993-01-01

    CCC plasmid was isolated from an economically important blue-green alga —Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference\\u000a in the molecular weight of the CCC DNAs from the two strains differing in form suggests

  13. The influence of blue-green algae on the biological amelioration of alkali soils

    Microsoft Academic Search

    D. L. N. Rao; R. G. Burns

    1991-01-01

    Virgin alkali (sodic) soils have a high pH and high exchangeable Na and are often barren. Blue-green algae, however, tolerate excess Na and grow extensively on the soil surface in wet seasons. Experiments using a highly degraded alkali soil (silt loam, pH 10.3, electrical conductivity 3.5 dS m-1, 90% exchangeable Na) were conducted in soil columns, with or without gypsum,

  14. Recognition of blue-green algae in lakes using distributive genetic algorithm-based neural networks

    Microsoft Academic Search

    Zhihong Yao; Minrui Fei; Kang Li; Hainan Kong; Bo Zhao

    2007-01-01

    This paper proposes a distributive genetic algorithm for the learning of neural networks (DGANN). To tackle several well-known problems for conventional genetic algorithms (GAs), a synergetic multi-operator multi-population mechanism is developed, incorporating an ? transformation crossover operator and mixed-crossover operators. The proposed algorithm is applied to both benchmark numerical examples and pattern recognition of blue-green algae in lakes. Experimental results

  15. The electrophoretic characterization of ribosomes from the blue-green alga Anabaena flos-aquae

    Microsoft Academic Search

    John R. Carlton; Diane S. Herson

    1972-01-01

    0946 091.Ribosomes of the blue-green alga, Anabaena flos-aquae, were isolated using a rapid lysis method and by grinding with alumina.2.Analysis of ribosomes obtained by rapid lysis on sucrose gradients and electrophoretic gels indicated the presence of 30S, 50S, 70S, and 100S sibosomes as well as polysomes.3.Dissociation of algal 70S and 100S ribosomes into their 30S and 50S subunits was demonstrated

  16. Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria)

    Microsoft Academic Search

    D. L. Tison; D. H. Pope; W. B. Cherry; C. B. Fliermans

    1980-01-01

    Legionella pneumophila (Legionnaires disease bacterium) of serogroup 1 was isolated from an algal-bacterial mat community growing at 45°C in a man-made thermal effluent. This isolate was grown in mineral salts medium at 45°C in association with the blue-green alga (cyanobacterium) Fischerella sp. over a pH range of 6.9 to 7.6. L. pneumophila was apparently using algal extracellular products as its

  17. Formation of plastocyanin and cytochrome c-553 in different species of blue-green algae

    Microsoft Academic Search

    Gerhard Sandmann

    1986-01-01

    Fifteen species from different genera of blue-green algae have been examined for their formation of plastocyanin (PC) and cytochrome c-553 (cyt c-553) in high or low Cu media. In addition to species which contain only cyt c-553 and those which completely exchange their cyt c-553 by PC, a new regulatory type was detected in which this exchange was incomplete. By

  18. Structural Characterization of Toxic Cyclic Peptides from Blue-Green Algae by Tandem Mass Spectrometry

    Microsoft Academic Search

    Thaiya Krishnamurthy; Linda Szafraniec; Donald F. Hunt; Jeffrey Shabanowitz; John R. Yates; Charles R. Hauer; Wayne W. Carmichael; Olav Skulberg; Geoffrey A. Codd; Stephen Missler

    1989-01-01

    Combined use of chemical degradation, derivatization, and tandem mass spectrometry for rapid structural characterization of toxic cyclic peptides from blue-green algae at the nanomole level is described. Previously, all blue-green algal toxins were thought to belong to a family of seven-residue cyclic peptides, having the general structure cyclo-D-Ala-L-Xaa-erythro-beta -methyl-D-isoaspartic acid-L-Yaa-Adda-D-isoglutamic acid-N-methyldehydroalanine, where Xaa and Yaa represent variable amino acids of

  19. COMPLEMENTARY CHROMATIC ADAPTATION IN A FILAMENTOUS BLUE-GREEN ALGA

    PubMed Central

    Bennett, Allen; Bogorad, Lawrence

    1973-01-01

    Fluorescent and red light environments generate greatly different patterns of pigmentation and morphology in Fremyella diplosiphon. Most strikingly, red-illuminated cultures contain no measurable C-phycoerythrin and have a mean filament length about 10 times shorter than fluorescent-illuminated cultures. C-phycoerythrin behaves as a photoinducible constituent of this alga. Spectrophotometric and immunochemical procedures were devised so that C-phycoerythrin metabolism could be studied quantitatively with [14C]-phenylalanine pulse-chased cultures. Transfer of red-illuminated cultures to fluorescent light initiates C-phycoerythrin production by essentially de novo synthesis. C-phycoerythrin is not degraded to any significant extent in cultures continuously illuminated with fluorescent light. Transfer of fluorescent-illuminated cultures to red light causes an abrupt cessation of C-phycoerythrin synthesis. The C-phycoerythrin content of cultures adapting to red light decreases and subsequently becomes constant. Loss of C-phycoerythrin is not brought about by metabolic degradation, but rather by a decrease in mean filament length which is effected by transcellular breakage. In this experimental system, light influences intracellular C-phycoerythrin levels by regulating the rate of synthesis of the chromoprotein. PMID:4199659

  20. Complementary chromatic adaptation in a filamentous blue-green alga

    Microsoft Academic Search

    A Bennett; L Bogorad

    1973-01-01

    ABSTRACT Fluorescent,and,red,light,environments,generate,greatly,different,patterns,of pigmentation and morphology in Fremyella diplosiphon .Most strikingly, red-illuminated cultures contain no measurable,C-phycoerythrin,and,have,a mean,filament,length,about,10 times shorter than,fluorescent-illuminated,cultures . C-phycoerythrin behaves,as a,photoinducible,con- stituent,of this,alga . Spectrophotometric,and,immunochemical,procedures,were,devised so that,C-phycoerythrin,metabolism,could,be studied,quantitatively,with [14 C]-phenylala- nine,pulse-chased,cultures . Transfer,of red-illuminated cultures,to fluorescent,light,initiates C-phycoerythrin,production,by essentially de novo synthesis . C-phycoerythrin is not,de- graded,to any,significant,extent,in cultures,continuously,illuminated,with,fluorescent,light . Transfer,of fluorescent-illuminated,cultures,to red,light,causes,an abrupt,cessation,of C-phycoerythrin,synthesis . The C-phycoerythrin,content,of cultures,adapting,to

  1. The prospect function of terrestrial nitrogen-fixing blue-green algae on the fixation of desert

    NASA Astrophysics Data System (ADS)

    Yang, Yusuo; Lei, Jiaqiang

    2003-07-01

    The Terrestrial Nitrogen-fixing Blue-green Algae, which are possessed of both photosynthesis and nitrogen fixation, are the leading organisms in the adverse circumstances. With their typical cell structures and physiological abilities, they are strongly resistant to drought, infertility etc. The growth of Terrestrial Nitrogen-fixing Blue-green Algae can rich the soils in nitrogen and organic compounds, which are benefit to other microbes and plants. Terrestrial Nitrogen-fixing Blue-green Algae are widely distributed in Gurbantunggut Desert. It was estimated that about 40% of the surface of the desert are covered by the "Black Crust". "Black Crust" is mainly occupied by Terrestrial Nitrogen-fixing Blue-green Algae. It is Terrestrial Nitrogen-fixing Blue-green Algae that construct the mechanical crust with a little other algae and fungi through biological, chemical and physical actions. So Terrestrial Nitrogen-fixing Blue-green Algae play an important part in desert fixation. It was analyzed that there are three species of the blue-greens in the "Black Crust": Microcoleus vaginatus(Vauch)Gom.,Scytonema ocellatum Lynbye and Schizothrix mella Gardner. We had isolated Microcoleus vaginatus(Vauch)Gom. and Scytonema ocellatum Lynbye. Some tests had been made to prove the feasibility of the desert fixation of the Blue-greens. Under experiment conditions, the blue-greens grown on the surface of sand, covered the sand quickly after the inoculation, and formed a mechanical fixed surface layer (7 days for Microcoleus vaginatus, 15-21 days for Scytonema ocellatum).

  2. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa.

    PubMed

    Saito, Yasunori; Takano, Kengo; Kobayashi, Fumitoshi; Kobayashi, Kazuki; Park, Ho-Dong

    2014-10-20

    We developed a UV (355 nm) laser-induced fluorescence (LIF) lidar for monitoring the real-time status of blue-green algae. Since the fluorescence spectrum of blue-green algae excited by 355 nm showed the specific fluorescence at 650 nm, the lidar was designed to be able to detect the 650 nm fluorescence as a surveillance method for the algae. The usefulness was confirmed by observation at Lake Suwa over four years (2005-2008). The detection limit of the LIF lidar was 16.65 mg/L for the blue-green algae, which is the range of concentrations in the safe level set by the World Health Organization. PMID:25402791

  3. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-03-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000?cells?mL(-1), equivalent to a biovolume of 2-6?mm(3?)L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds. PMID:25204421

  4. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.

    PubMed

    Prochnik, Simon E; Umen, James; Nedelcu, Aurora M; Hallmann, Armin; Miller, Stephen M; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V; Schmitt, Rüdiger; Kirk, David; Rokhsar, Daniel S

    2010-07-01

    The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its approximately 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity. PMID:20616280

  5. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis)

    SciTech Connect

    Annusuyadevi, M.; Subbulakshmi, G.; Madhair'devi, K.; Venkalaramein, L.V.

    1981-05-01

    The characteristics of the protein of fresh-water, mass-cultured Spirulina platensis have been studied. The solubility of this algal protein in water and various aqueous solvents has been estimated. The total protein content of the blue-green algae was approximately 50-55% of which nearly 9.9% was nonprotein nitrogen. About 80% of the total protein nitrogen can be extracted by three successive extractions with water. Ths isoelectric point of this algal protein is found to be 3.0. The total proteins were characterized physicochemically by standard techniques. In the ultracentrifuge total proteins resolve into two major components with S20w values of 2.6 and 4.7 S. The polyacrylamide gel electrophoretic pattern of the total protein showed seven bands including three prominent ones. The in vitro digestibility of the total protein of fresh algae was found to be 85% when assayed with a pepsin-pancreatin system.

  6. Diurnal variation in n(2) fixation and photosynthesis by aquatic blue-green algae.

    PubMed

    Peterson, R B; Friberg, E E; Burris, R H

    1977-01-01

    Rates of (14)CO(2) fixation, O(2) evolution, and N(2) fixation (acetylene reduction) by natural populations of blue-green algae recovered from Lake Mendota were measured at frequent intervals between sunrise and sunset. Photosynthesis and N(2) fixation were depressed during midday when light intensity was greatest. As the light intensity rose, most of the algal population migrated to deeper, light-limited waters where radiation damage would be diminished. As the relative rate of N(2) fixation compared to CO(2) fixation increases with depth, it is suggested that the algae maintain balanced growth by migrating vertically via buoyancy regulation. High concentrations of dissolved O(2) in lake water may inhibit N(2) fixation by enhancing photorespiration. Several factors such as photosynthetic rate, light intensity, dissolved O(2), species composition, and vertical and horizontal migration all affect observed rates of in situ N(2) fixation. PMID:16659792

  7. A Lack of Parasitic Reduction in the Obligate Parasitic Green Alga Helicosporidium

    PubMed Central

    Pombert, Jean-François; Blouin, Nicolas Achille; Lane, Chris; Boucias, Drion; Keeling, Patrick J.

    2014-01-01

    The evolution of an obligate parasitic lifestyle is often associated with genomic reduction, in particular with the loss of functions associated with increasing host-dependence. This is evident in many parasites, but perhaps the most extreme transitions are from free-living autotrophic algae to obligate parasites. The best-known examples of this are the apicomplexans such as Plasmodium, which evolved from algae with red secondary plastids. However, an analogous transition also took place independently in the Helicosporidia, where an obligate parasite of animals with an intracellular infection mechanism evolved from algae with green primary plastids. We characterised the nuclear genome of Helicosporidium to compare its transition to parasitism with that of apicomplexans. The Helicosporidium genome is small and compact, even by comparison with the relatively small genomes of the closely related green algae Chlorella and Coccomyxa, but at the functional level we find almost no evidence for reduction. Nearly all ancestral metabolic functions are retained, with the single major exception of photosynthesis, and even here reduction is not complete. The great majority of genes for light-harvesting complexes, photosystems, and pigment biosynthesis have been lost, but those for other photosynthesis-related functions, such as Calvin cycle, are retained. Rather than loss of whole function categories, the predominant reductive force in the Helicosporidium genome is a contraction of gene family complexity, but even here most losses affect families associated with genome maintenance and expression, not functions associated with host-dependence. Other gene families appear to have expanded in response to parasitism, in particular chitinases, including those predicted to digest the chitinous barriers of the insect host or remodel the cell wall of Helicosporidium. Overall, the Helicosporidium genome presents a fascinating picture of the early stages of a transition from free-living autotroph to parasitic heterotroph where host-independence has been unexpectedly preserved. PMID:24809511

  8. [A review on algae ecology in wetland].

    PubMed

    Xiong, Li; Xie, Liqiang; Sheng, Xiumei; Wu, Zhenbin; Xia, Yicheng

    2003-06-01

    The research advance in algae ecology in wetland was introduced in this paper, which included the algae population structure and its function, and the algae productivity and its affecting factors. Almost all kinds of algae occurred in wetland, including four assemblages: epipelon, epiphyton, metaphyton and phytoplankton, among which, diatom, green and blue algae were the predominant species. Algae were the fundamental players in the physical, chemical and biological processes that characterized wetland ecosystems. Most obvious was their role as primary producers and their place in the wetland food web. Algae were an important food resource for herbivores, and contributed to wetland nutrient cycle as the sources of dissolved organic matter and N. They could also be used as biomarkers for monitoring environment pollution. The affecting factors on algae's productivity were hydraulic factor, nutrition, temperature, illumination, herbivores and some other animals, and so on. Because of their functions in wetland, future research on algae in wetland should expand our knowledge of the environmental controls on algal biomass, productivity, and species composition in wetlands with particular in areas for which knowledge was incomplete. Included among these, may be a detailed evaluation of the proportionate contributions by epipelon, epiphyton, metaphyton, and phytoplankton to food web dynamics in wetlands, and a further study of the genetic technique in controlling hazardous algae. PMID:12974016

  9. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure

    Microsoft Academic Search

    Joseph W. Rachlin

    1993-01-01

    Using the growth response of the green algaChlorella vulgaris as a model system, the effects of combinations of the environmentally active cations Cd, Co, and Cu were evaluated. The 96-h static EC50 for these cations toC. vulgaris were, respectively, 0.89 µM, 9.0 µM, and 2.8 µM, yielding a toxicity series such that Cd>Cu>Co. The cation combinations of Cd+Cu, and Cu+Co

  10. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. (Univ. of New Hampshire, Durham (United States))

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  11. Plastoquinone as a common link between photosynthesis and respiration in a blue-green alga

    Microsoft Academic Search

    Masahiko Hirano; Kazuhiko Satoh; Sakae Katoh

    1980-01-01

    The role of plastoquinone in a thermophilic blue-green alga, Shynechococcus sp., was studied by measuring reduction kinetics of cytochrome 553 which was oxidized with red flash preferentially exciting photosystem I. Sensitivity of the cytochrome reduction to DBMIBAbbreviations: DCMU = 3-(3,4-dichlorophenyl)-1,1-dimethylurea; DBMIB = 2,5-dib romo-3-methyl-6-isopropyl-p-benzoquinone; HOQNO = 2-n-heptyl-4-hydroxyquinoline-N-oxide indicates that cytochrome 553 accepts electrons from reduced plastoquinone. Plastoquinone is in turn

  12. Cloning and sequencing of the ferredoxin gene of blue-green alga Anabaena siamensis

    NASA Astrophysics Data System (ADS)

    Li, Shou-Dong; Song, Li-Rong; Liu, Yong-Ding; Zhao, Jin-Dong

    1998-03-01

    The structure gene for ferredoxin, petFI, from Anabaena siamensis has been amplified by polymerase chain reaction(PCR) and cloned into cloning vector pGEM-3zf(+). The nucleotide sequence of petFI has been determined with silver staining sequencing method. There is 96.8% homology between coding region of petFI from A. siamensis and that of petFI from A. sp. 7120. Amino acid sequences of seven strains of blue-green algae are compared.

  13. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae

    Microsoft Academic Search

    R. H. Foy; C. E. Gibson; R. V. Smith

    1976-01-01

    The in vitro growth rates under continuous light of the four dominant blue-green algae in Lough Neagh, Anabaena flos-aquae Bréb., Aphanizomenon flos-aquae Ralfs fa. gracile Lemm., Oscillatoria agardhii Gom. and Oscillatoria redekei van Goor were slower than in situ rates from Lough Neagh that had been corrected for hours of light received by the algae. However, by culturing on a

  14. In Vivo Characterization of the Electrochemical Proton Gradient Generated in Darkness in Green Algae and Its Kinetic Effects on Cytochrome b6f Turnover

    E-print Network

    Algae and Its Kinetic Effects on Cytochrome b6f Turnover Giovanni Finazzi*, and Fabrice Rappaport CNRSV) fits well with estimations based on the ATP/ADP ratio measured in green algae under the same conditions dark incubation of algae, the electrochemical transmembrane potential is determined only

  15. Molecular identification of green algae from the rafts based infrastructure of Porphyra yezoensis.

    PubMed

    Shen, Qi; Li, Hongye; Li, Yan; Wang, Zongling; Liu, Jiesheng; Yang, Weidong

    2012-10-01

    To provide more information on the origin of the Ulva prolifera bloom in Qingdao sea area in China from 2007 to 2011, the diversity of green algae growing on the rafts of Porphyra yezoensis on the coast in Jiangsu Province was investigated based on ITS, rbcL and 5S sequences. Eighty-four of green algal samples from various sites and cruises in 2010 and 2011 were collected. According to ITS and rbcL sequences, samples from the rafts of P. yezoensis fell into four clades: Ulva linza-procera-prolifera (LPP) complex, Ulva flexuosa, Blidingia sp. and Urospora spp. However, based on the 5S rDNA, a more resolved DNA marker, only one of the 84 samples belonged to U. prolifera. Combined with the previous reports, it is likely that U. prolifera bloom in Qingdao sea area might consist of more than one origin, and Porphyra cultivation rafts might be one of the causes. PMID:22858010

  16. Lytic organisms and photooxidative effects: influence on blue-green algae (cyanobacteria) in lake mendota, wisconsin.

    PubMed

    Fallon, R D; Brock, T D

    1979-09-01

    The effects of exposure to high light intensities on blue-green algal (cyanobacterial) populations were examined in Lake Mendota, Wis. The algal populations were shown to be susceptible to inhibition of photosynthetic activity and pigment bleaching as a result of exposure. These effects generally influence only a small percentage of the lake population and thus are probably not important in causing major declines in chlorophyll a. Lytic organisms were shown to increase in numbers in the lake in response to the seasonal development of blue-green algae, reaching values of greater than 1,000 plaque-forming units per ml in midsummer. Both bacteria and protozoa were observed in plaque zones, but it could not be determined whether these lytic organisms had a major role in algal biomass declines. PMID:16345436

  17. The charophycean green algae provide insights into the early origins of plant cell walls.

    PubMed

    Sřrensen, Iben; Pettolino, Filomena A; Bacic, Antony; Ralph, John; Lu, Fachuang; O'Neill, Malcolm A; Fei, Zhangzhun; Rose, Jocelyn K C; Domozych, David S; Willats, William G T

    2011-10-01

    Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events. PMID:21707800

  18. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    PubMed Central

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  19. Effect of Nitrogen and Phosphorus on the Dynamics of Blue-green Algae in the Mae Ngat Somboonchol Reservoir, Chiang Mai, Thailand

    Microsoft Academic Search

    Khajornkiat Saeton; Siripen Traichaiyaporn

    A study of the effect of nitrogen and phosphorus on the dynamics of blue-green algae in surface water at three stations in the Mae Ngat Somboonchol Reservoir was carried out from January to December 2001. Blue-green algae were composed of 2 orders, 3 families, 12 genera and 21 species, of which the dominant species were Lyngbya limnetica Lemmerman and Raphidiopsis

  20. The Multi-agent Simulation to Impacts of the Blue-Green Algae Event in Taihu Lake on Prices of the Bottled Water in Wuxi City

    Microsoft Academic Search

    Fuhua Sun; Juqin Shen; Jian Ji; Li Xu; Feng Zu

    2011-01-01

    In order to simulate the impact of the Blue-green Algae Event in Taihu Lake on Prices of the Bottled Water in Wuxi City, to understand their influence, for the measurement social influence of the Blue-green Algae Event in Taihu Lake lay a foundation, this paper built up a Multi-agent model to simulate the impacts of the Blue-algae incident in Taihu

  1. Rapid Mass Movement of Chloroplasts during Segment Formation of the Calcifying Siphonalean Green Alga, Halimeda macroloba

    PubMed Central

    Larkum, Anthony W. D.; Salih, Anya; Kühl, Michael

    2011-01-01

    Background The calcifying siphonalean green alga, Halimeda macroloba is abundant on coral reefs and is important in the production of calcium carbonate sediments. The process by which new green segments are formed over-night is revealed here for the first time. Methodology/Principal Findings Growth of new segments was visualised by epifluorescence and confocal microscopy and by pulse amplitude modulation (PAM) fluorimetry. Apical colourless proto-segments were initiated on day 1, and formed a loose network of non-calcified, non-septate filaments, containing no chloroplasts. Rapid greening was initiated at dusk by i) the mass movement of chloroplasts into these filaments from the parent segment and ii) the growth of new filaments containing chloroplasts. Greening was usually complete in 3–5 h and certainly before dawn on day 2 when the first signs of calcification were apparent. Mass chloroplast movement took place at a rate of ?0.65 µm/s. Photosynthetic yield and rate remained low for a period of 1 to several hours, indicating that the chloroplasts were made de novo. Use of the inhibitors colchicine and cytochalasin d indicated that the movement process is dependent on both microtubules and microfilaments. Significance This unusual process involves the mass movement of chloroplasts at a high rate into new segments during the night and rapid calcification on the following day and may be an adaptation to minimise the impact of herbivorous activity. PMID:21750703

  2. BROWN ALGAE Colpomenia sinuosa

    E-print Network

    Sullivan, Matthew B.

    added. BLUE-GREEN, BROWN, RED, AND GREEN The common names for marine algae sort them into color groups Valonia ventricosa Valonia utricularis BLUE-GREEN, BROWN, RED, AND GREEN The common names for marine algae: blue-green (Cyanobacteria), brown (Phaeophyta), red (Rhodophyta), and green (Chlorophyta). These names

  3. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kate?ina; Hlavová, Monika; ?ížková, Mária; Machát, Ji?í; Doucha, Ji?í; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  4. Foreign gene recruitment to the fatty acid biosynthesis pathway in diatoms

    PubMed Central

    Chan, Cheong Xin; Baglivi, Francesca L; Jenkins, Christina E; Bhattacharya, Debashish

    2013-01-01

    Diatoms are highly successful marine and freshwater algae that contribute up to 20% of global carbon fixation. These species are leading candidates for biofuel production owing to ease of culturing and high fatty acid content. To assist in strain improvement and downstream applications for potential use as a biofuel, it is important to understand the evolution of lipid biosynthesis in diatoms. The evolutionary history of diatoms is however complicated by likely multiple endosymbioses involving the capture of foreign cells and horizontal gene transfer into the host genome. Using a phylogenomic approach, we assessed the evolutionary history of 12 diatom genes putatively encoding functions related to lipid biosynthesis. We found evidence of gene transfer likely from a green algal source for seven of these genes, with the remaining showing either vertical inheritance or evolutionary histories too complicated to interpret given current genome data. The functions of horizontally transferred genes encompass all aspects of lipid biosynthesis (initiation, biosynthesis, and desaturation of fatty acids) as well as fatty acid elongation, and are not restricted to plastid-targeted proteins. Our findings demonstrate that the transfer, duplication, and subfunctionalization of genes were key steps in the evolution of lipid biosynthesis in diatoms and other photosynthetic eukaryotes. This target pathway for biofuel research is highly chimeric and surprisingly, our results suggest that research done on related genes in green algae may have application to diatom models. PMID:24404416

  5. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  6. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis : regulation by photosynthetic redox control

    Microsoft Academic Search

    Jens Steinbrenner; Hartmut Linden

    2003-01-01

    The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various stress situations such as salt stress and high light intensities. Here, the light regulation of Haematococcus carotenoid biosynthesis was examined. Isolation and characterization of the lycopene ß cyclase gene involved in carotenoid biosynthesis was carried out using a functional complementation approach. Subsequently,

  7. Spectral dependence of the inhibition of photosynthesis under simulated global radiation in the unicellular green alga Dunaliella salina

    Microsoft Academic Search

    F. Ghetti; H. Herrmann; D.-P. Häder; H. K. Seidlitz

    1999-01-01

    The inhibition of photosynthesis after exposure to simulated solar radiation has been investigated in the marine green alga Dunaliella salina by monitoring the chlorophyll fluorescence parameter, ?F\\/Fm?, and the maximum light utilization efficiency for oxygen production. 40 different irradiation regimes have been applied by combining two different levels of UV radiation with two different levels of photosynthetically active radiation (PAR),

  8. Novel Antibacterial Proteins from the Microbial Communities Associated with the Sponge Cymbastela concentrica and the Green Alga Ulva australis? †

    PubMed Central

    Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Kjelleberg, Staffan; Thomas, Torsten

    2011-01-01

    The functional metagenomic screening of the microbial communities associated with a temperate marine sponge and a green alga identified three novel hydrolytic enzymes with antibacterial activities. The results suggest that uncultured alpha- and gammaproteobacteria contain new classes of proteins that may be a source of antibacterial agents. PMID:21183639

  9. A Scoping and Consensus Building Model for Understanding the Dynamics of a Blue-Green Algae Bloom

    Microsoft Academic Search

    Steven Arquitt; Ron Johnstone

    So called nuisance blooms of Lyngbya majuscula have been occurring with increasing frequency in tropical coastal waters around the world. Outbreaks of this cyanobacterium (blue-green algae) threaten water quality, coastal ecosystems, and can be harmful in instances of human contact. While scientific and popular theories abound regarding lyngbya bloom initiation and growth, a clear research agenda has not emerged. In

  10. Deformation of isolated rat hepatocytes by a peptide hepatotoxin from the blue-green alga Microcystis aeruginosa

    Microsoft Academic Search

    M. T. Runnegar; I. R. Falconer; J. Silver

    1981-01-01

    The effect of the peptide hepatotoxin from the bloom-forming blue-green alga Microcystis aeruginosa was investigated on isolated rat hepatocytes. When toxin was added to hepatocyte suspensions it produced deformation of the cells, as shown by scanning electron microscopy. This was apparent within 5 min of addition of toxin to the cells and the response was dose dependent: 30 ng of

  11. Absence of the Pigments of Photosystem II of Photosynthesis in Heterocysts of a Blue-Green Alga

    Microsoft Academic Search

    Joseph Thomas

    1970-01-01

    ALL filamentous blue-green algae capable of fixing elementary nitrogen have heterocysts. Stewart et al.1 have strong evidence that these differentiated cells are the sites of nitrogen fixation. They did not, however, show that photosystem II, responsible for the evolution of molecular oxygen (O2), is not functional in heterocysts. Because high oxygen tension inhibits nitrogen fixation, heterocysts should not possess the

  12. A mathematical model of the effect of nitrogen and phosphorus on the growth of blue-green algae population

    Microsoft Academic Search

    Shanna Chen; Xiaolan Chen; Yan Peng; Kuangding Peng

    2009-01-01

    Some experimental studies have been done related to the prevention of blooms of blue-green algae (BGA), a major cause of water pollution. Adjustment of the content of nitrogen and phosphorus in water has been shown to be useful in the control of blooms. Here we present a mathematical model to describe how nitrogen and phosphorus affect the bloom, persistence, and

  13. Increase of nitrogenase activity in the blue-green alga Nostoc muscorum (Cyanobacterium).

    PubMed

    Scherer, S; Kerfin, W; Böger, P

    1980-12-01

    Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under hydrogen or argon (nongrowing conditions, neither CO(2) nor N(2) or bound nitrogen present) in the light resulted in a two- to fourfold increase of light-induced hydrogen evolution and a 30% increase of acetylene reduction. Preincubation under the same gases in the dark led to a decrease of both activities. Cultivation of algae under a hydrogen-containing atmosphere (N(2), H(2), CO(2)) increased neither hydrogen nor ethylene evolution by the cells. Formation of both ethylene and hydrogen is due to nitrogenase activity, which apparently was induced by the absence of N(2) or bound nitrogen and not by the presence of hydrogen. Inhibitors of protein biosynthesis prevented the increase of nitrogenase activity. Hydrogen uptake by the cells was almost unaffected under all of these conditions. With either ammonia or chloramphenicol present, nitrogenase activity decreased under growing conditions (i.e., an atmosphere of N(2) and CO(2)). The kinetics of decrease were the same with ammonia or chloramphenicol, which was interpreted as being due to rapid protein breakdown with a half-life of approximately 4 h. The decay of nitrogenase activity caused by chloramphenicol could be counteracted by nitrogenase-inducing conditions, i.e., by the absence of N(2) or bound nitrogen. A cell-free system from preconditioned algae with an adenosine 5'-triphosphate-generating system exhibited the same increase or decrease of nitrogenase activity as the intact cell filaments, indicating that this effect resided in the nitrogenase complex only. We tentatively assume that not the whole nitrogenase complex, but merely a subunit or a special protein with regulatory function, is susceptible to fast turnover. PMID:6777364

  14. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Adhikari, Sushil; Chattanathan, Shyamsundar Ayalur; Gupta, Ram B

    2012-08-01

    Microalgae are considered as an intriguing candidate for biofuel production due to their high biomass yield. Studies on bio-oil production through fast pyrolysis and upgrading to hydrocarbon fuels using algal biomass are limited as compared to other terrestrial biomass. Therefore, in this study, a fresh water green alga, Chlorella vulgaris, was taken for pyrolysis study. The average activation energy for pyrolysis zone was found to be 109.1 kJ/mol. Fixed-bed pyrolysis of algae gave a bio-oil yield of 52.7 wt.%, which accounts for 60.7 wt.% carbon yield. In addition, analytical pyrolysis of C. vulgaris was carried out in a Py/GC-MS to identify major compounds present in bio-oil with and without catalyst (H(+)ZSM-5). The study found that in catalytic-pyrolysis, as the catalyst loading increased from zero to nine times of the biomass, the carbon yield of aromatic hydrocarbons increased from 0.9 to 25.8 wt.%. PMID:22705518

  15. Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii.

    PubMed

    Jabusch, Thomas W; Swackhamer, Deborah L

    2004-12-01

    In this study, the subcellular accumulation of 13 polychlorinated biphenyl (PCB) congeners was investigated in the green alga Chlamydomonas reinhardtii. Two main arguments pertaining to the mechanism of bioaccumulation of persistent bioaccumulative toxic chemicals (PBTs) in phytoplankton were evaluated, including the controversy of whether the limitation of uptake of ultra-hydrophobic pollutants is kinetic or due to a physical barrier presented by the membrane that prevents transfer into the internal parts of the cell, and second, the role of surface adsorption for the bioaccumulation process. The first argument was addressed by studying the time-dependent subcellular uptake of PCBs into thylakoids (photosynthetic membranes) as representative internal membranes. The second issue was addressed by investigating the role of the algal cell wall as a potential extracellular sorbate. Accumulation of PCBs in thylakoids was found to be limited kinetically and slow compared to total accumulation in the alga. Super-hydrophobic PCBs with Kow > 6 were not restricted from entering the cell. Sorption to the cell wall was found to be less than 10% and insignificant compared to total bioaccumulation in C. reinhardtii. To our knowledge, this is the first study in which the subcellular uptake of a class of PBTs was investigated directly. The results offer a mechanistic framework for improving kinetic modeling of PBT bioaccumulation in phytoplankton. PMID:15648755

  16. Genotoxic effects of commercial formulations of Chlorpyrifos and Tebuconazole on green algae.

    PubMed

    Martinez, Ricardo Santiago; Di Marzio, Walter Darío; Sáenz, María Elena

    2015-01-01

    The alkaline single-cell gel electrophoresis assay (comet assay) was used for the study of the genotoxic effects of insecticide Chlorpyrifos and fungicide Tebuconazole (commercial formulations) on two freshwater green algae species, Pseudokirchneriella subcapitata and Nannocloris oculata, after 24 h of exposure. The percentage of DNA in tail of migrating nucleoids was taken as an endpoint of DNA impairment. Cell viability was measured by fluorometric detection of chlorophyll "a" in vivo and the determination of cell auto-fluorescence. Only the higher concentration of Chlorpyrifos tested resulted to affect significantly the cell viability of P. subcapitata, whereas cells of N. oculata were not affected. Tebuconazole assayed concentrations (3 and 6 mg/l) did not affect cell viability of both species. The results of comet assay on P. subcapitata showed that Chlorpyrifos concentration evaluated (0.8 mg/l) exerted a genotoxic effects; while for the other specie a concentration of 10 mg/l was needed. Tebuconazole was genotoxic at 3 and 6 mg/l for both species. The comet assay evidenced damage at the level of DNA simple strains molecule at pesticide concentrations were cytotoxicity was not evident, demonstrating that algae are models to take into account in ecological risk assessments for aquatic environments. PMID:25230876

  17. A diverse assemblage of indole-3-acetic acid producing bacteria associate with unicellular green algae.

    PubMed

    Bagwell, Christopher E; Piskorska, Magdalena; Soule, Tanya; Petelos, Angela; Yeager, Chris M

    2014-08-01

    Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal-bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels. PMID:24879600

  18. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies.

    PubMed

    Gupta, V K; Rastogi, A

    2008-03-21

    Biosorption is the effective method for the removal of heavy metal ions from wastewaters. Results are presented showing the sorption of Pb(II) from solutions by biomass of commonly available, filamentous green algae Spirogyra sp. Batch experiments were conducted to determine the biosorption properties of the biomass and it was observed that the maximum adsorption capacity of Pb(II) ion was around 140mgmetal/g of biomass at pH 5.0 in 100min with 200mg/L of initial concentration. Temperature change in the range 20-40 degrees C affected the adsorption capacity and the nature of the reaction was found to be endothermic in nature. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. Various properties of the algae, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, thermal analysis by TGA, surface area calculation by BET method, surface morphology with scanning electron microscope images and surface functionality by FTIR. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. The results indicated that the biomass of Spirogyra sp. is an efficient biosorbent for the removal of Pb(II) from aqueous solutions. PMID:17716814

  19. Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta.

    PubMed

    Hirata, K; Tsujimoto, Y; Namba, T; Ohta, T; Hirayanagi, N; Miyasaka, H; Zenk, M H; Miyamoto, K

    2001-01-01

    Synthesis of phytochelatins (PCs), heavy-metal-sequestering peptides, in the marine green alga, Dunaliella tertiolecta, was evaluated under various conditions of exposure to heavy metals. To investigate the effect of heavy metals on both PC synthesis and their upstream biosynthetic reactions, an ion-pair-HPLC system was developed in this study, by which PCs and their biosynthetic intermediates, cysteine (Cys), gamma-glutamylcysteine (gammaEC) and glutathione (GSH), could be determined simultaneously with high sensitivity. When the cells were exposed to Zn2+, the level of PCs was maximal at 200 microM and significantly higher than that obtained after exposure to 400 microM Cd2+, which is the strongest inducer of PC synthesis in higher plants in vivo and in vitro as well as in microalgae. The predominant PC subtype was PC4, followed by PC3 and PC5, whereas PC2, which is generally abundant in higher plants, has the lowest level among PC2 to PC5. These results suggest that the characteristics of PC synthase in D. tertiolecta including the requirement of heavy metals for its catalysis and substrate specificity towards GSH and PC(n) are considerably different from those in higher plants and other algae. While PC synthesis proceeded in the heavy-metal-treated cells, the level of GSH did not appreciably change. To maintain the same size of the GSH pool, GSH must be newly synthesized to balance the amount consumed for PC synthesis. PMID:16233052

  20. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    PubMed

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. PMID:21376011

  1. Toxic effects of organic solvents on the growth of blue-green algae

    SciTech Connect

    Stratton, G.W.

    1987-06-01

    Relatively few reports have been published on the comparative toxicity of solvents towards test organisms, and these deal primarily with fish and aquatic invertebrates. Information for microbial systems are more limited with some data available for algae and slightly more for fungi. Aside from direct toxic effects of their own, solvents can interact synergistically and antagonistically with the toxicant in solution. This problem has been well documented with pesticides, and a procedure has been developed to identify and eliminate these effects from bioassays. The first step in choosing a solvent for use in microbial bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study to choose the best concentration to use. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards five species of blue-green algae (cyanobacteria), in order to identify solvents with low toxicity for use in bioassays.

  2. Changes in photosynthetic rate and pigment content of blue-green algae in Lake Mendota.

    PubMed

    Konopka, A; Brock, T D

    1978-03-01

    Blue-green algal blooms were present in Lake Mendota (Dane County, Wis.) from June to November 1976. Concentrations of total algal biomass and of particular algal species were monitored and compared with the pigment contents (chlorophyll a and phycocyanin) and photosynthetic rate of the algal populations. The specific photosynthetic rate (micrograms of C fixed per microgram of chlorophyll a per hour) was a good measure of the physiological state of the algae because this quantity increased just before each population increase and decreased before algal densities diminished. Since the quantity of light in the epilimnion which was available for photosynthesis by algal cells decreased in summer when the high algal densities attenuated incoming radiation, we investigated the possibility that the organisms would utilize lower light intensities more efficiently by increasing their pigment contents. Although some evidence of enhanced utilization of low light levels was found in the period from July to October, this result was not due to increasing chlorophyll and phycocyanin contents. There was a decrease in the phycocyanin content of the algae during this period, perhaps related to the availability of inorganic nitrogen. PMID:416753

  3. Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    NASA Astrophysics Data System (ADS)

    Ambe, Shizuko

    1990-07-01

    Mössbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mössbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

  4. Kinetic and equilibrium studies on biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis.

    PubMed

    Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2007-04-01

    Dynamic batch experiments were carried out for the biosorption of basic blue dye on to the green macro algae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye, pH of the solution, the adsorbent dosage and the time of contact were studied. It has been observed that the sorption process was significantly affected by the pH of the initial dye solution. The sorption kinetics was found to follow the second-order kinetic model. The Boyd's plot confirmed the external mass transfer as the rate-limiting step. The average effective diffusion coefficient was found to be 1.652 x 10(- 5) cm(2)/s. Sorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Optimized parameters were used to treat the commercial effluent containing the dye. Complete color removal was observed in two stages of treatment with the seaweed. PMID:17454369

  5. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae.

    PubMed

    El-Rafie, H M; El-Rafie, M H; Zahran, M K

    2013-07-25

    Green synthesis of nanoparticles that have environmentally acceptable solvent systems and eco-friendly reducing agents is of great importance. The aim of this work was to synthesis of silver nanoparticles (AgNPs) using water soluble polysaccharides extracted from four marine macro-algae, namely, Pterocladia capillacae (Pc), Jania rubins (Jr), Ulva faciata (Uf), and Colpmenia sinusa (Cs) as reducing agents for silver ions as well as stabilizing agents for the synthesized AgNPs. The formed Ag-NPs have been confirmed by UV-Vis spectroscopy, FTIR analysis and TEM. The resultant Ag-NPs colloidal solutions were applied to cotton fabrics in presence and absence of citric acid (CA) or a binder (B). The antimicrobial activity of the treated fabrics was evaluated. The results revealed that the antimicrobial activity depends on type of the fabric treatment, size of the synthesized Ag-NPs and the algal species used for polysaccharides extraction. PMID:23768580

  6. Photoautotrophic cathodic oxygen reduction catalyzed by a green alga, Chlamydomonas reinhardtii.

    PubMed

    Liu, Xian-Wei; Sun, Xue-Fei; Huang, Yu-Xi; Li, Dao-Bo; Zeng, Raymond J; Xiong, Lu; Sheng, Guo-Ping; Li, Wen-Wei; Cheng, Yuan-Yuan; Wang, Shu-Guang; Yu, Han-Qing

    2013-01-01

    Biofuel cells (BFCs) use enzymes and microbial cells to produce energy from bioavailable substrates and treat various wastewaters, and cathodic oxygen reduction is a key factor governing the efficiency of BFCs. In this study, we demonstrated that a green alga, Chlamydomonas reinhardtii, could directly mediate oxygen reduction. Cyclic voltammogram analysis revealed that the C. reinhardtii biofilm formed on a solid electrode was responsible for oxygen reduction without dosing of electron mediator. Furthermore, 4-electron oxygen reduction pathway was found in this self-sustained, light-responded BFC. The results of this study could expand our understanding and viewpoints of biocathode catalysis, which is essential for novel catalyst design and development for BFCs. PMID:22886619

  7. Characteristics of Nitrate Reduction in a Mutant of the Blue-Green Alga Agmenellum quadruplicatum1

    PubMed Central

    Stevens, S. E.; Van Baalen, Chase

    1973-01-01

    Characteristics of nitrate reduction in terms of nitrite production in an N-methyl-N?-nitro-N-nitrosoguanidine-induced mutant of the blue-green alga Agmenellum quadruplicatum are described. Following induction of nitrate reduction a linear rate of nitrite production proportional to cell concentration was observed. Rate of nitrite production and growth rate showed similar responses to pH, temperature, and light intensity. If required, only trace amounts of carbon dioxide were necessary for nitrite production. Atmospheres of oxygen or nitrogen inhibited production of nitrite. In addition, a low but constant rate of nitrite production was observed in the dark. Nitrite production by mutant AQ-6 was studied in terms of photosynthesis. As nitrite production proceeded, rate of photosynthesis declined. Ultraviolet irradiation and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea poisoning did not prevent nitrite production. The action spectrum of nitrite production was chlorophyll a-like. PMID:16658328

  8. Mebamamides A and B, Cyclic Lipopeptides Isolated from the Green Alga Derbesia marina.

    PubMed

    Iwasaki, Arihiro; Ohno, Osamu; Sumimoto, Shinpei; Matsubara, Teruhiko; Shimada, Satoshi; Sato, Toshinori; Suenaga, Kiyotake

    2015-04-24

    Mebamamides A and B, new lipopeptides with four d-amino acid residues and a 3,8-dihydroxy-9-methyldecanoic acid residue, were isolated from the green alga Derbesia marina. Their gross structures were elucidated by spectroscopic and ESI-ITMS analyses. The absolute configurations except for the two leucines were revealed based on chiral-phase HPLC analyses of the acid hydrolysate and a modified Mosher's method. A distinction between d-Leu and l-Leu in the sequence was established by the application of a dansyl-Edman method to the partial acid hydrolysate. Mebamamide A did not exhibit any growth inhibitory activity against HeLa and HL60 cells at 10 ?M, and mebamamide B did not exhibit any growth inhibitory activity against those cells at 100 ?M. Additionally, it was suggested that mebamamide B induced the differentiation of HL60 cells into macrophage-like cells at 100 ?M. PMID:25768725

  9. Spirulan from blue-green algae inhibits fibrin and blood clots: its potent antithrombotic effects.

    PubMed

    Choi, Jun-Hui; Kim, Seung; Kim, Sung-Jun

    2015-05-01

    We investigated in vitro and in vivo fibrinolytic and antithrombotic activity of spirulan and analyzed its partial biochemical properties. Spirulan, a sulfated polysaccharide from the blue-green alga Arthrospira platensis, exhibits antithrombotic potency. Spirulan showed a strong fibrin zymogram lysis band corresponding to its molecular mass. It specifically cleaved A? and B?, the major chains of fibrinogen. Spirulan directly decreased the activity of thrombin and factor X activated (FXa), procoagulant proteins. In vitro assays using human fibrin and mouse blood clots showed fibrinolytic and hemolytic activities of spirulan. Spirulan (2 mg/kg) showed antithrombotic effects in the ferric chloride (FeCl3 )-induced carotid arterial thrombus model and collagen and epinephrine-induced pulmonary thromboembolism mouse model. These results may be attributable to the prevention of thrombus formation and partial lysis of thrombus. Therefore, we suggest that spirulan may be a potential antithrombotic agent for thrombosis-related diseases. PMID:25651404

  10. Assessment of blue-green algae in substantially reducing nitrogen fertilizer requirements for biomass fuel crops

    SciTech Connect

    Anderson, D.B.; Molten, P.M.; Metting, B.

    1981-07-01

    Laboratory, mass culture, and field studies are being undertaken in order to assess the potential of using blue-green algae (cyanobacteria) as nitrogen biofertilizers on irrigated ground. Of seven candidate strains, two were chosen for application to replicated field plots sown to field corn and the basis of laboratory-scale soil tray experiments and ease of semi-continuous 8000 l culture. Chosen were Anabaena BM-165, isolated from a local soil and Tolypothrix tenuis, imported from India. Using the acetylene reduction method, Anabaena is estimated from laboratory soil experiments to be able to fix from 30 to 62 kg N/ha/y, and has been mass cultured to a density of 1527 mg dry wt/l. T. tenuis is estimated from laboratory experiments to be able to fix from 27 to 65 kg N/ha/y, and has been mass cultured to a density of 1630 mg dry wt/l.

  11. Seawater-based methane production from blue-green algae biomass by marine bacteria coculture

    SciTech Connect

    Matsunaga, T.; Izumida, H.

    1984-01-01

    Marine-enriched culture NKM 004 produced methane from various carbohydrates, but methane production was inhibited by sulfate and acetate accumulated in the medium. On the other hand, marine methanogenic bacterium NKM 006 produced methane from acetate and methyltrophic substrates, and methane production was not inhibited by sulfate. The mixture of NKM 004 and NKM 006 continuously produced methane from marine blue-green algae Dermocarpa species NKBG 102B at 54 ..mu..mol/L medium/h for 200 h and the dry weight of the algal biomass was decreased to 25% of the initial weight in the natural seawater. Conversion of algal carbohydrate (glucose equivalent) to methane was 65%. Results indicate that this system is promising for methane production based on seawater and solar energy.

  12. Novel Shuttle Markers for Nuclear Transformation of the Green Alga Chlamydomonas reinhardtii?

    PubMed Central

    Meslet-Cladičre, Laurence; Vallon, Olivier

    2011-01-01

    The green alga Chlamydomonas reinhardtii today is a premier model organism for the study of green algae and plants. Yet the efficient engineering of its nuclear genome requires development of new antibiotic resistance markers. We have recoded, based on codon usage in the nuclear genome, the AadA marker that has been used previously for chloroplast transformation. The recoded AadA gene, placed under the control of the HSP70A-RBCS2 hybrid promoter and preceded by the RbcS2 chloroplast-targeting peptide, can be integrated into the nuclear genome by electroporation, conferring resistance to spectinomycin and streptomycin. Transformation efficiency is markedly increased when vector sequences are completely eliminated from the transforming DNA. Antibiotic resistance is stable for several months in the absence of selection pressure. Shuttle markers allowing selection in both Chlamydomonas and Escherichia coli would also be a useful asset. By placing an artificial bacterial promoter and Shine-Dalgarno sequence in frame within the AadA coding sequence, we generated such a shuttle marker. To our surprise, we found that the classical AphVIII construct already functions as a shuttle marker. Finally, we developed a method to introduce the AadA and AphVIII markers into the vector part of the bacterial artificial chromosomes (BACs) of the Chlamydomonas genomic DNA library. Our aim was to facilitate complementation studies whenever the test gene cannot be selected for directly. After transformation of a petC mutant with a modified BAC carrying the AphVIII marker along with the PETC gene in the insert, almost half of the paromomycin-resistant transformants obtained showed restoration of phototrophy, indicating successful integration of the unselected test gene. With AadA, cotransformation was also observed, but with a lower efficiency. PMID:22002656

  13. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis

    PubMed Central

    Burke, Catherine; Thomas, Torsten; Lewis, Matt; Steinberg, Peter; Kjelleberg, Staffan

    2011-01-01

    Green Ulvacean marine macroalgae are distributed worldwide in coastal tidal and subtidal ecosystems. As for many living surfaces in the marine environment, little is known concerning the epiphytic bacterial biofilm communities that inhabit algal surfaces. This study reports on the largest published libraries of near full-length 16S rRNA genes from a marine algal surface (5293 sequences from six samples) allowing for an in-depth assessment of the diversity and phylogenetic profile of the bacterial community on a green Ulvacean alga. Large 16S rRNA gene libraries of surrounding seawater were also used to determine the uniqueness of this bacterial community. The surface of Ulva australis is dominated by sequences of Alphaproteobacteria and the Bacteroidetes, especially within the Rhodobacteriaceae, Sphingomonadaceae, Flavobacteriaceae and Sapropiraceae families. Seawater libraries were also dominated by Alphaproteobacteria and Bacteroidetes sequences, but were shown to be clearly distinct from U. australis libraries through the clustering of sequences into operational taxonomic units and Bray–Curtis similarity analysis. Almost no similarity was observed between these two environments at the species level, and only minor similarity was observed at levels of sequence clustering representing clades of bacteria within family and genus taxonomic groups. Variability between libraries of U. australis was relatively high, and a consistent sub-population of bacterial species was not detected. The competitive lottery model, originally derived to explain diversity in coral reef fishes, may explain the pattern of colonization of this algal surface. PMID:21048801

  14. Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass ( Zostera marina ) leaves

    Microsoft Academic Search

    Paul G. Harrison; A. T. Chan

    1980-01-01

    The effects of the water-soluble fraction of dead leaves of the eelgrass Zostera marina L. on the growth of 8 species of micro-algae (pennate and centric diatoms, dinoflagellates, and a green flagellate) and a bacterium were studied on agar plates and in liquid culture. The extracts of leaves which had been dead from a few days to 2 wk inhibited

  15. Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy.

    PubMed

    Uragami, Chiasa; Galzerano, Denise; Gall, Andrew; Shigematsu, Yusuke; Meisterhans, Maďwen; Oka, Naohiro; Iha, Masahiko; Fujii, Ritsuko; Robert, Bruno; Hashimoto, Hideki

    2014-07-01

    Siphonous green algae, a type of deep-sea green algae, appear olive drab and utilize blue-green light for photosynthesis. A siphonous green alga, Codium (C.) intricatum, was isolated from Okinawa prefecture in Japan, and a clonal algal culture in filamentous form was established. The major light-harvesting antenna was analogous to the trimeric LHCII found in higher plants, but the C. intricatum complex contained an unusual carbonyl carotenoid siphonaxanthin. Culture conditions were optimized to achieve high siphonaxanthin content in intact lyophilized filamentous bodies. Interestingly, the carotenoid composition was different when cultured under high irradiance: all-trans neoxanthin was accumulated in addition to the normal 9'-cis form in whole cell extract. Resonance Raman spectra of intact filamentous bodies, cultured under high- and low-light conditions, confirmed the accumulation of all-trans neoxanthin under high irradiance conditions. A plausible function of the presence of all-trans neoxanthin will be discussed in relation to the regulation against high light stress. PMID:24861896

  16. Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers.

    PubMed

    Dal Grande, Francesco; Alors, David; Divakar, Pradeep K; Bálint, Miklós; Crespo, Ana; Schmitt, Imke

    2014-03-01

    Trebouxia decolorans is a widespread and common symbiotic green alga that is found in association with different species of lichen-forming fungi. By applying T. decolorans-specific microsatellite markers, we investigated the within-thallus diversity of T. decolorans in thalli of Xanthoria parietina and Anaptychia ciliaris. We found several algal strains in most of the thalli of both hosts. High genetic differentiation among thalli suggests that algal diversity is generated de novo via mutation in both fungal hosts. Rarefied allelic richness of the algae was higher in thalli of X. parietina. Our results indicate that in X. parietina intrathalline algal diversity is additionally created by environmental uptake of algae either at the start of the symbiotic association or during the lifetime of the thallus. This study indicates that promiscuous host-symbiont associations in lichen symbioses with Trebouxia spp. may be more common than currently recognized. PMID:24412431

  17. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  18. Uranium accumulation and toxicity in the green alga Chlamydomonas reinhardtii is modulated by pH.

    PubMed

    Lavoie, Michel; Sabatier, Sébastien; Garnier-Laplace, Jacqueline; Fortin, Claude

    2014-06-01

    The effects of pH on metal uptake and toxicity in aquatic organisms are currently poorly understood and remain an evolving topic in studies about the biotic ligand model (BLM). In the present study, the authors investigated how pH may influence long-term (4 d) uranium (U) accumulation and chronic toxicity in batch cultures of the freshwater green alga Chlamydomonas reinhardtii. The toxicity expressed as a function of the free uranyl ion was much greater at pH 7 (effective concentration, 50% [EC50]?=?1.8?×?10(-9) ?M UO2 (2+) ) than at pH 5 (EC50?=?1.2?×?10(-7) ?M UO2 (2+) ). The net accumulation rate of U in algal cells was much higher at pH 7 than at pH 5 for the same free [UO2 (2+) ], but the cells exposed at pH 5 were also more sensitive to intracellular U than the cells at pH 7 with EC50s of 4.0?×?10(-15) and 7.1?×?10(-13) ?mol of internalized U cell(-1) , respectively. The higher cellular sensitivity to U at pH 5 than at pH 7 could be explained partly by the increase in cytosolic U binding to algal soluble proteins or enzymes at pH 5 as observed by subcellular fractionation. To predict U accumulation and toxicity in algae accurately, the important modulating effects of pH on U accumulation and U cellular sensitivity should be considered in the BLM. PMID:24596137

  19. Evaluation of toxicity data to green algae and relationship with hydrophobicity.

    PubMed

    Fu, Ling; Li, Jin J; Wang, Yu; Wang, Xiao H; Wen, Yang; Qun, Wei C; Su, Li M; Zhao, Yuan H

    2015-02-01

    The quality of the biological activity data is of great importance for the development of algal quantitative structure-activity relationship (QSAR) models. However, a number of algal QSAR models in the literature were developed based on toxicity data without considering the response endpoints, exposure periods and species sensitivity. In this paper, 2323 algal toxicity data (log 1/EC50) in different toxicity response endpoints for 1081 compounds to 26 algal species within different exposure periods (14 and 15 min; 24, 48, 72, 96, 168 and 192 h) were used to evaluate the quality of the toxicity data to green algae. Analysis of 72 h toxicity to algae showed that the closed test had the same sensitivity as the open test for most of the test compounds, but a significant difference was observed for a few compounds. The overall average difference for all compounds ranges from 0.15 to 0.43 log units between toxicity endpoints (yield–growth rate). The relationships between exposure periods of 24, 48, 72 and 96 h indicated that 48 h exposure period is the most sensitive for algal growth inhibition test, and its sensitivity is 0.25 log units greater than 72 and 96 h exposure periods, respectively. Interspecies relationships showed that some algal species have very close sensitivity (e.g. Pseudokirchneriella subcapitata and Chlorella pyrenoidosa or Chlorella vulgaris and Scenedesmus obliquus, respectively), whereas some species have significantly different sensitivity (e.g. P. subcapitata and S. obliquus). Relationships between toxicity and hydrophobicity demonstrated that no difference was observed for non-polar narcotics within different exposure periods (24, 48, 72, and 96 h) or response variables (yield and growth rate). For polar narcotics, in contrast, algal toxicity is dependent on algal species and is related to the response variables and exposure period. We cannot expect significant QSAR models between algal toxicity and descriptors without considering species sensitivity, exposure periods and response endpoints. PMID:25462296

  20. The design and implementation of a surveillance and self-driven cleanup system for blue-green algae blooms on Lake Tai

    Microsoft Academic Search

    Dong Li; Ze Zhao; Li Cui; He Zhu; Le Zhang; ZhaoLiang Zhang; Yi Wang; Haiming Chen

    2010-01-01

    Nowadays, the harmful blue-green algae blooms on lakes or streams threaten the daily life of millions of people in China. In this paper, we demonstrate the sensor network system we built on Lake Tai for the surveillance and cleanup of the algae blooms which is at work in Wuxi City, Jiangsu Province. We designed the sensor device and algorithm to

  1. THE CELL CYCLE OF SYMBIOTIC CHLORELLA III. NUMBERS OF ALGAE IN GREEN HYDRA DIGESTIVE CELLS ARE REGULATED AT DIGESTIVE CELL DIVISION

    Microsoft Academic Search

    P. J. McAULEY

    1986-01-01

    SUMMARY Regression analysis of the relationship between the size of interphase and mitotic digestive cells of green hydra, and the numbers and total volume of the symbiotic Chlorella algae they contain showed a partial correlation only, suggesting that numbers of algae per cell are not regulated by limiting them to a specific proportion of the host cell, and that the

  2. Reclaimed Water and Secondary Wastewater as Alternative Growing Media for Green Algae for Biofuel Production

    Microsoft Academic Search

    Sara S. Kuwahara; Joel L. Cuello

    The microalga Botryococcus braunii is one of many photosynthtic algae species being investigated as renewable feedstocks for production of biofuels. One key advantage of algae as biofuel feedstock, in view of the growing scarcity of fresh water worldwide, is the potential of algae to grow in low-quality water, including in the nutrient-containing effluents from wastewater-treatment plants. Indeed, algae could also

  3. Nitrogen fixation (acetylene reduction) associated with communities of heterocystous and non-heterocystous blue-green algae in mangrove forests of Sinai

    Microsoft Academic Search

    M. Potts; Heinz Steinitz

    1979-01-01

    High rates of nitrogen fixation (acetylene reduction) are associated with communities of heterocystous and non-heterocystous blue-green algae, which are widespread and abundant in the coastal mangrove forests of the Sinai Peninsula.

  4. Nucleotide diversity of the colorless green alga Polytomella parva (Chlorophyceae, Chlorophyta): high for the mitochondrial telomeres, surprisingly low everywhere else.

    PubMed

    Smith, David Roy; Lee, Robert W

    2011-01-01

    Silent-site nucleotide diversity data (?(silent)) can provide insights into the forces driving genome evolution. Here we present ?(silent) statistics for the mitochondrial and nuclear DNAs of Polytomella parva, a nonphotosynthetic green alga with a highly reduced, linear fragmented mitochondrial genome. We show that this species harbors very little genetic diversity, with the exception of the mitochondrial telomeres, which have an excess of polymorphic sites. These data are compared with previously published ?(silent) values from the mitochondrial and nuclear genomes of the model species Chlamydomonas reinhardtii and Volvox carteri, which are close relatives of P. parva, and are used to understand the modes and tempos of genome evolution within green algae. PMID:21762422

  5. Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China

    NASA Astrophysics Data System (ADS)

    Deng, Yunyan; Tang, Xiaorong; Zhan, Zifeng; Teng, Linhong; Ding, Lanping; Huang, Bingxin

    2013-05-01

    The marine green alga Chaetomorpha valida fouls aquaculture ponds along the coastal cities of Dalian and Rongcheng, China. Unialgal cultures were observed under a microscope to determine the developmental morphological characters of C. valida. Results reveal that gametophytic filaments often produce lateral branches under laboratory culture conditions, suggesting an atypical heteromorphic life cycle of C. valida between unbranched sporophytes and branched gametophytes, which differs from typical isomorphic alternation of Chaetomorpha species. The shape of the basal attachment cell, an important taxonomic character within the genus, was found variable depending on environmental conditions. The 18S rDNA and 28S rDNA regions were used to explore the phylogenetic affinity of the taxa. Inferred trees from 18S rDNA sequences revealed a close relationship between C. valida and Chaetomorpha moniligera. These results would enrich information in general biology and morphological plasticity of C. valida and provided a basis for future identification of green tide forming algae.

  6. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions.

    PubMed

    Baxter, Leilan; Brain, Richard; Rodriguez-Gil, Jose Luis; Hosmer, Alan; Solomon, Keith; Hanson, Mark

    2014-08-01

    In a rare example of autotroph-vertebrate endosymbiosis, eggs of the yellow-spotted salamander (Ambystoma maculatum) are colonized by a green alga (Oophila sp.) that significantly enhances salamander development. Previous studies have demonstrated the potential for impacts to the salamander embryo when growth of the algae is impaired by exposure to herbicides. To further investigate this relationship, the authors characterized the response of the symbiotic algae (Oophila sp.) alone to the photosystem II (PSII) inhibitor atrazine under controlled laboratory conditions. After extraction of the alga from A. maculatum eggs and optimization of culturing conditions, 4 toxicity assays (96 h each) were conducted. Recovery of the algal population was also assessed after a further 96 h in untreated media. Average median effective concentration (EC50) values of 123 µg L(-1) (PSII yield), 169 µg L(-1) (optical density), and 299 µg L(-1) (growth rate) were obtained after the 96-h exposure. Full recovery of exposed algal populations after 96 h in untreated media was observed for all endpoints, except for optical density at the greatest concentration tested (300 µg L(-1) ). Our results show that, under laboratory conditions, Oophila sp. is generally less sensitive to atrazine than standard test species. Although conditions of growth in standard toxicity tests are not identical to those in the natural environment, these results provide an understanding of the tolerance of this alga to PSII inhibitors as compared with other species. PMID:24782078

  7. Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography

    Microsoft Academic Search

    James F Lawrence; Cathie Menard

    2001-01-01

    Anti-microcystin LR immunoaffinity cartridges were evaluated for their ability to selectively remove microcystins from extracts of blue-green algae, fish and water samples for subsequent analysis by liquid chromatography with UV absorbance detection at 238 nm. Blue-green algae and fish samples were extracted with 75% methanol in water. A portion of the extract was diluted and passed through an immunoaffinity cartridge.

  8. Effect of growth and subsequent decomposition of blue-green algae on the transformation of iron and manganese in submerged soils

    Microsoft Academic Search

    S. C. Das; Biswapati Mandal; L. N. Mandal

    1991-01-01

    N2-fixing blue-green algae (Cyanobacteria), besides enriching soils with N and organic carbon, may modify a number of chemical and electro-chemical properties of the soils resulting in a change in availability of some micronutrient elements. Keeping this in view, an experiment was conducted to study the effects of growth and subsequent decomposition of blue-green algae on changes in the different forms

  9. Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process.

    PubMed

    Matsumoto, Takaki; Yamamura, Hiroshi; Hayakawa, Jyunpei; Watanabe, Yoshimasa; Harayama, Shigeaki

    2014-01-01

    In the present study, two strains of green algae named S1 and S2, categorized as the same species of Pseudo-coccomyxa ellipsoidea but showing 99% homology, were cultivated under the same conditions and filtrated with a microfiltration membrane. On the basis of the results of the extracellular polysaccharides (EPS) characteristics of these two green algae and the degree of fouling, the influence of these characteristics on the performance of membrane filtration was investigated. There was no difference in the specific growth rate between the S1 and S2 strains; however, large differences were seen in the amount and quality of EPS between S1 and S2. When the S1 and S2 strains were filtered with a membrane, the trend in the increase in transmembrane pressure (TMP) was quite different. The filtration of the S1 strain showed a rapid increase in TMP, whereas the TMP of the filtration of the S2 strain did not increase at all during the operation. This clearly demonstrated that the characteristics of each strain affect the development of membrane fouling. On the basis of the detailed characterization of solved-EPS (s-EPS) and bound-EPS (b-EPS), it was clarified that s-EPS mainly contributed to irreversible fouling for both operations and the biopolymer-like organic matter contained in b-EPS mainly contributed to reversible fouling. PMID:24804668

  10. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Microsoft Academic Search

    H. Timourian; R. L. Ward; T. W. Jeffries

    1977-01-01

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m² ponds can be controlled to an average temperature of 45°C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth

  11. Ferric and cupric reductase activities in the green alga Chlamydomonas reinhardtii : experiments using iron-limited chemostats

    Microsoft Academic Search

    Harold G. Weger

    1999-01-01

    .   Cells of the green alga Chlamydomonas reinhardtii Dangeard were grown in Fe-limited chemostat culture over a range of growth rates (0.15–1.5?d?1). Greater cell densities and culture chlorophyll levels were achieved using an excess of chelator [ethylenediamine di-(o-hydroxyphenylacetic acid)] relative to FeCl3 (80:1), compared to growth using a 1:1 chelator:FeCl3 ratio. The C. reinhardtii cells reduced extracellular ferric chelates, and

  12. Photosystem II Reaction Center Damage and Repair in Dunaliella salina (Green Alga)' Analysis under Physiological and Irradiance-Stress Conditions

    Microsoft Academic Search

    Jeong Hee Kim; Jeff A. Nemson; Anastasios Melis

    Mechanistic aspects of the photosystem II (PSII) damage and repair cycle in chloroplasts were investigated. The D1\\/32-kD re- action center protein of PSll (known as the psbA chloroplast gene product) undergoes a frequent light-dependent damage and turn- over in the thylakoid membrane. In the model organism Dunaliella salina (green alga), growth under a limiting intensity of illumination (100 pmol of

  13. Production of cell wall polypeptides by different cell wall mutants of the unicellular green alga Chlamydomonas reinhardtii

    Microsoft Academic Search

    Jürgen Voigt; Bettina Hinkelmann; Elizabeth H. Harris

    1997-01-01

    Three classes of cell wall-defective mutants of the unicellular green alga Chlamydomonas reinhardtii have been described in the literature differing with respect to the amounts of cell wall material and its attachment to the plasma membrane, respectively. We have compared the production of the chaotrope-soluble cell wall polypeptides by the different mutants. These experiments have been performed by comparative Western-blot

  14. Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor

    Microsoft Academic Search

    Q. Hu; N. Kurano; M. Kawachi; I. Iwasaki; S. Miyachi

    1998-01-01

    To test the feasibility of CO2 remediation by microalgal photosynthesis, a modified type of flat-plate photobioreactor [Hu et al. (1996) Biotechnol Bioeng 51:51–60] has been designed for cultivation of a high-CO2-tolerant unicellular green alga Chlorococcum littorale. The modified reactor has a narrow light path in which intensive turbulent flow is provided by streaming compressed air through\\u000a perforated tubing into the

  15. Nitrogen-fixation associated with the marine blue-green alga, Trichodesmium , as measured by the acetylene-reduction technique

    Microsoft Academic Search

    Barrie F. Taylor; Chun C. Lee; John S. Bunt

    1973-01-01

    The marine blue-green alga, Trichodesmium, was collected from the Gulf Stream, near Miami, and occurred in two distinct colonial forms both of which reduced acetylene to ethylene. Trichodesmium was more abundant during the summer but its acetylene-reducing potential showed no obvious seasonal variation. Illuminated Trichodesmium reduced acetylene to ethylene equally well either anaerobically or aerobically (20% oxygen). Acetylene-reduction in the

  16. The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans

    Microsoft Academic Search

    Noboru Tomioka; Masahiro Sugiura

    1983-01-01

    The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans, has been determined. Its coding region is estimated to be 1,487 base pairs long, which is nearly identical to those reported for chloroplast 16 S rRNA genes and is about 4% shorter than that of the Escherichia coli gene. The 16S rRNA sequence of

  17. Photosynthetic characteristics of planktonic blue-green algae: The response of twenty strains grown under high and low light

    Microsoft Academic Search

    R. H. Foy; C. E. Gibson

    1982-01-01

    The relationship between photosynthetic rate and irradiance was measured for 20 strains of blue-green algae from the genera Anabaena, Aphanizomenon and Oscillatoria. Cells were grown at 20°C under 6:18 light-dark at 30 or 150 µE m s. Under high light the mean light saturated rate of photosynthesis (Pmax) of the Oscillatoria cultures was 14·8 mg O2 mg Chl a h,

  18. The abundance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields

    Microsoft Academic Search

    P. A. Roger; S. Santiago-Ardales; P. M. Reddy; I. Watanabe

    1987-01-01

    Algal populations were quantified (as colony-forming units [CFU] per square centimetre) in 102 samples of rice soils from the Philippines, India, Malaysia and Portugal, and in 22 samples of soil-based inocula from four countries. Heterocystous blue-green algae (BGA) were present in all samples. Nostoc was the dominant genus in most samples, followed by Anabaena and Calothrix. In soils, heterocystous BGA

  19. Comparative effects of Azolla and blue-green algae in combination with chemical N fertilizer on rice crop

    Microsoft Academic Search

    A L Singh; P K Singh

    1986-01-01

    FreshAzolla pinnata (Bangkok) and dry blue-green algae dominated byAulosira sp. andGloeotrichia sp. were inoculated separately at the rates of 500 and 10 kg\\/ha, 10 and 3 days after transplanting, respectively to evaluate\\u000a their effects in combination with chemical N fertilizer applied at different stages of rice crop. Split application of 30\\u000a kg N\\/ha urea (15 kg basal and 15 kg

  20. Isolation and characterization of rapidly-growing, marine, nitrogen-fixing strains of blue-green algae

    Microsoft Academic Search

    John W. Gotto; F. Robert Tabita; Chase Van Baalen

    1979-01-01

    Five strains of heterocystous blue-green algae capable of high rates of growth and nitrogenase activity were isolated from shallow coastal environments. Growth of the organisms was characterized with respect to temperature, NaCl concentration in the medium, and nitrogen source. The temperature optima ranged from 35–42°C, and all but one of the strains displayed a requirement for added NaCl. The generation

  1. Observations on nitrogen-fixation by some blue-green algae and remarks on its potentialities in rice culture

    Microsoft Academic Search

    R. Subrahmanyan; M. N. Sahay

    1964-01-01

    Summary  The results of experiments in connection with the estimation of nitrogen fixed by four species of blue-green algae are presented\\u000a and discussed. The species tested wereTolypothrix campylonemoides, Nostoc sphaericum, N. amplissimum andWestiella sp. Of these,Tolypothrix was the most efficient. The quantity of extra-cellular nitrogen liberated has also been estimated; this is only a fraction\\u000a of the whole. The potentialities of

  2. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    Microsoft Academic Search

    Victor J. Bierman Jr.; Jagjit Kaur; Joseph V. Depinto; Timothy J. Feist; David W. Dilks

    2005-01-01

    Between 1991 and 1993, Saginaw Bay experienced an invasion by zebra mussels, Dreissena polymorpha, which caused a significant perturbation to the ecosystem. Blooms of Microcystis, a toxin-producing blue-green alga, became re-established in the bay after the zebra mussel invasion. Microcystis blooms had all but been eliminated in the early 1980s with controls on external phosphorus loadings, but have re-occurred in

  3. Effects of pH and selected metals on growth of the filamentous green alga Mougeotia under acidic conditions

    Microsoft Academic Search

    James M. Graham; Patricia Arancibia-Avila; Linda E. Graham

    1996-01-01

    When acid precipitation impacts freshwater systems, littoral blooms of the filamentous green alga Mougeotia (Zygnematales, Charophyceae) frequently develop. Field observations of its development in Little Rock Lake, an experimentally acidified seepage lake in north-central Wisconsin, indicated that the species of Mougeotia present there may have an optimum pH for growth of -5.2. Because a number of metals increase in concentration

  4. The flagellar apparatus of the zoospore of the filamentous green alga Coleochaete pulvinata : Absolute configuration and phylogenetic significance

    Microsoft Academic Search

    H. J. Sluiman

    1983-01-01

    Summary A detailed description of the zoospore and its flagellar apparatus (including their absolute configuration) of the filamentous, branched green algaColeochaete pulvinata is given. It shares several features with the previously studied swarmers ofColeochaete scutata, such as the presence of a multi-layered structure (MLS) — associated microtubular root, and diamond-type body and flagellar scales. New observations include a T-shaped striated

  5. Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Peled, Ehud; Leu, Stefan; Zarka, Aliza; Weiss, Meira; Pick, Uri; Khozin-Goldberg, Inna; Boussiba, Sammy

    2011-09-01

    Cytoplasmic oil globules of Haematococcus pluvialis (Chlorophyceae) were isolated and analyzed for pigments, lipids and proteins. Astaxanthin appeared to be the only pigment deposited in the globules. Triacyglycerols were the main lipids (more than 90% of total fatty acids) in both the cell-free extract and in the oil globules. Lipid profile analysis of the oil globules showed that relative to the cell-free extract, they were enriched with extraplastidial lipids. A fatty acids profile revealed that the major fatty acids in the isolated globules were oleic acid (18:1) and linoleic acid (18:2). Protein extracts from the globules revealed seven enriched protein bands, all of which were possible globule-associated proteins. A major 33-kDa globule protein was partially sequenced by MS/MS analysis, and degenerate DNA primers were prepared and utilized to clone its encoding gene from cDNA extracted from cells grown in a nitrogen depleted medium under high light. The sequence of this 275-amino acid protein, termed the Haematococcus Oil Globule Protein (HOGP), revealed partial homology with a Chlamydomonas reinhardtii oil globule protein and with undefined proteins from other green algae. The HOGP transcript was barely detectable in vegetative cells, but its level increased by more than 100 fold within 12 h of exposure to nitrogen depletion/high light conditions, which induced oil accumulation. HOGP is the first oil-globule-associated protein to be identified in H. pluvialis, and it is a member of a novel gene family that may be unique to green microalgae. PMID:21732215

  6. The green algae Ulva fasciata Delile extract induces apoptotic cell death in human colon cancer cells.

    PubMed

    Ryu, Min Ju; Kim, Areum Daseul; Kang, Kyoung Ah; Chung, Ha Sook; Kim, Hye Sun; Suh, In Soo; Chang, Weon Young; Hyun, Jin Won

    2013-01-01

    This study investigated the mechanisms underlying the cytotoxicity of the green algae Ulva fasciata Delile. U. fasciata extract (UFE) inhibited the growth of HCT 116 human colon cancer cells by 50% at a concentration of 200 ?g/ml. In addition, UFE stimulated the production of intracellular reactive oxygen species, an effect that was abolished by pretreatment with N-acetyl cysteine, which also inhibited the cytotoxic effects of UFE. UFE also induced morphological changes indicative of apoptosis, such as the formation of apoptotic bodies, DNA fragmentation, an increase in the population of apoptotic sub-G(1) phase cells, and mitochondrial membrane depolarization. Concomitant activation of the mitochondria-dependent apoptotic pathway occurred via modulation of Bax and Bcl-2 expression, resulting in disruption of the mitochondrial membrane potential and activation of caspase-9 and caspase-3. This is the first report to demonstrate the cytotoxic effect of U. fasciata on human colon cancer cells and to provide a possible mechanism for this activity. PMID:23299316

  7. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii.

    PubMed

    Tanabe, Yuuhiko; Okazaki, Yusuke; Yoshida, Masaki; Matsuura, Hiroshi; Kai, Atsushi; Shiratori, Takashi; Ishida, Ken-Ichiro; Nakano, Shin-Ichi; Watanabe, Makoto M

    2015-01-01

    Botryococcus braunii is a colony-forming green alga that accumulates large amounts of liquid hydrocarbons within the colony. The utilization of B. braunii for biofuel production is however hindered by its low biomass productivity. Here we describe a novel bacterial ectosymbiont (BOTRYCO-2) that confers higher biomass productivity to B. braunii. 16S rDNA analysis indicated that the sequence of BOTRYCO-2 shows low similarity (<90%) to cultured bacterial species and located BOTRYCO-2 within a phylogenetic lineage consisting of uncultured alphaproteobacterial clones. Fluorescence in situ hybridization (FISH) studies and transmission electric microscopy indicated that BOTRYCO-2 is closely associated with B. braunii colonies. Interestingly, FISH analysis of a water bloom sample also found BOTRYCO-2 bacteria in close association with cyanobacterium Microcystis aeruginosa colonies, suggesting that BOTRYCO-2 relatives have high affinity to phytoplankton colonies. A PCR survey of algal bloom samples revealed that the BOTRYCO-2 lineage is commonly found in Microcystis associated blooms. Growth experiments indicated that B. braunii Ba10 can grow faster and has a higher biomass (1.8-fold) and hydrocarbon (1.5-fold) yield in the presence of BOTRYCO-2. Additionally, BOTRYCO-2 conferred a higher biomass yield to BOT-22, one of the fastest growing strains of B. braunii. We propose the species name 'Candidatus Phycosocius bacilliformis' for BOTRYCO-2. PMID:26130609

  8. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.

    PubMed

    Berger, Hanna; Blifernez-Klassen, Olga; Ballottari, Matteo; Bassi, Roberto; Wobbe, Lutz; Kruse, Olaf

    2014-10-01

    The unicellular green alga Chlamydomonas reinhardtii is capable of using organic and inorganic carbon sources simultaneously, which requires the adjustment of photosynthetic activity to the prevailing mode of carbon assimilation. We obtained novel insights into the regulation of light-harvesting at photosystem II (PSII) following altered carbon source availability. In C. reinhardtii, synthesis of PSII-associated light-harvesting proteins (LHCBMs) is controlled by the cytosolic RNA-binding protein NAB1, which represses translation of particular LHCBM isoform transcripts. This mechanism is fine-tuned via regulation of the nuclear NAB1 promoter, which is activated when linear photosynthetic electron flow is restricted by CO(2)-limitation in a photoheterotrophic context. In the wild-type, accumulation of NAB1 reduces the functional PSII antenna size, thus preventing a harmful overexcited state of PSII, as observed in a NAB1-less mutant. We further demonstrate that translation control as a newly identified long-term response to prolonged CO(2)-limitation replaces LHCII state transitions as a fast response to PSII over-excitation. Intriguingly, activation of the long-term response is perturbed in state transition mutant stt7, suggesting a regulatory link between the long- and short-term response. We depict a regulatory circuit operating on distinct timescales and in different cellular compartments to fine-tune light-harvesting in photoheterotrophic eukaryotes. PMID:25038233

  9. Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura.

    PubMed

    Van Alstyne, Kathryn L; Nelson, Amorah V; Vyvyan, James R; Cancilla, Devon A

    2006-06-01

    On northeastern Pacific coasts, Ulvaria obscura is a dominant component of subtidal "green tide" blooms, which can be harmful to marine communities, fisheries, and aquaculture facilities. U. obscura is avoided by herbivores relative to many other locally common macrophytes, which may contribute to its ability to form persistent blooms. We used a bioassay-guided fractionation method to experimentally determine the cause of reduced feeding on Ulvaria by echinoderms, molluscs, and arthropods. Our results indicated that dopamine, which constituted an average of 4.4% of the alga's dry mass, was responsible for decreased feeding by sea urchins (Strongylocentrotus droebachiensis). Subsequent experiments demonstrated that dopamine also reduced the feeding rates of snails (Littorina sitkana) and isopods (Idotea wosnesenskii). Dopamine is a catecholamine that is a common neurotransmitter in animals. The catecholamines dopamine, epinephrine (adrenaline), and norepinephrine also occur in at least 44 families of higher plants. The functions of catecholamines in plants are less well known than in animals but are likely to be diverse and include both physiological and ecological roles. Our results are the first experimental demonstration of a plant or algal catecholamine functioning as a feeding deterrent. This novel use of dopamine by Ulvaria may contribute to the formation and persistence of harmful Ulvaria blooms in northeastern Pacific coastal waters. PMID:16489461

  10. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata

    PubMed Central

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; Lütz-Meindl, Ursula

    2009-01-01

    Programmed cell death (PCD) is a key element in normal plant growth and development which may also be induced by various abiotic and biotic stress factors including salt stress. In the present study, morphological, biochemical, and physiological responses of the theoretically immortal unicellular freshwater green alga Micrasterias denticulata were examined after salt (200 mM NaCl or 200 mM KCl) and osmotic stress induced by iso-osmotic sorbitol. KCl caused morphological changes such as cytoplasmic vacuolization, extreme deformation of mitochondria, and ultrastructural changes of Golgi and ER. However, prolonged salt stress (24 h) led to the degradation of organelles by autophagy, a special form of PCD, both in NaCl- and KCl-treated cells. This was indicated by the enclosure of organelles by ER-derived double membranes. DNA of NaCl- and KCl-stressed cells but not of sorbitol-treated cells showed a ladder-like pattern on agarose gel, which means that the ionic rather than the osmotic component of salt stress leads to the activation of the responsible endonuclease. DNA laddering during salt stress could be abrogated by addition of Zn2+. Neither cytochrome c release from mitochondria nor increase in caspase-3-like activity occurred after salt stress. Reactive oxygen species could be detected within 5 min after the onset of salt and osmotic stress. Respiration, photosynthetic activity, and pigment composition indicated an active metabolism which supports programmed rather than necrotic cell death in Micrasterias after salt stress. PMID:19213813

  11. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae.

    PubMed

    Deng, Junjing; Vine, David J; Chen, Si; Nashed, Youssef S G; Jin, Qiaoling; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ?90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context. PMID:25675478

  12. Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (race A).

    PubMed

    Hirose, Mana; Mukaida, Fukiko; Okada, Sigeru; Noguchi, Tetsuko

    2013-08-01

    Among oleaginous microalgae, the colonial green alga Botryococcus braunii accumulates especially large quantities of hydrocarbons. This accumulation may be achieved more by storage of lipids in the extracellular space rather than in the cytoplasm, as is the case for all other examined oleaginous microalgae. The stage of hydrocarbon synthesis during the cell cycle was determined by autoradiography. The cell cycle of B. braunii race A was synchronized by aminouracil treatment, and cells were taken at various stages in the cell cycle and cultured in a medium containing [(14)C]acetate. Incorporation of (14)C into hydrocarbons was detected. The highest labeling occurred just after septum formation, when it was about 2.6 times the rate during interphase. Fluorescent and electron microscopy revealed that new lipid accumulation on the cell surface occurred during at least two different growth stages and sites of cells. Lipid bodies in the cytoplasm were not prominent in interphase cells. These lipid bodies then increased in number, size, and inclusions, reaching maximum values just before the first lipid accumulation on the cell surface at the cell apex. Most of them disappeared from the cytoplasm concomitant with the second new accumulation at the basolateral region, where extracellular lipids continuously accumulated. The rough endoplasmic reticulum near the plasma membrane is prominent in B. braunii, and the endoplasmic reticulum was often in contact with both a chloroplast and lipid bodies in cells with increasing numbers of lipid bodies. We discuss the transport pathway of precursors of extracellular hydrocarbons in race A. PMID:23794509

  13. Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella magna

    PubMed Central

    Smith, David Roy; Hua, Jimeng; Archibald, John M.; Lee, Robert W.

    2013-01-01

    Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1–7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species. The possible origins and consequences of this bizarre genomic architecture are discussed. PMID:23940100

  14. Biosorption of trivalent chromium by free and immobilized blue green algae: kinetics and equilibrium studies.

    PubMed

    Shashirekha, V; Sridharan, M R; Swamy, Mahadeswara

    2008-03-01

    The process of biosorption of trivalent chromium (Cr(3+)) by live culture of Spirulina platensis and the sorption potential by the dried biomass, in both free and immobilized states have been investigated for a simulated chrome liquor in the concentration range of 100-4500 ppm. Both live and dried biomass were very good biosorbents as they could remove high amounts of chromium from tannery wastewater. Polyurethane foam and sodium alginate were used as immobilizing agents and their performances compared. Biosorption kinetic data on Cr(3+) sorption onto dried biomass were analyzed using pseudo-first-and pseudo-second-order kinetic models in batch column experiments. The second-order equation was more appropriate to predict the rate of biosorption. Subsequently, the effects of height of packing & diameter of the column, concentration of blue-green algae (BGA) in varying amounts of sodium alginate, chromium concentration were studied. The results fit into both Langmuir & Freundlich isotherm models with very high regression coefficients. Furthermore, equilibrium studies using retan chrome liquor (RCL), with a chromium concentration of 1660 ppm, obtained from a tannery also showed promising results. In general, our studies indicate the efficacy of the algal species in removal of chromium from tannery wastewater. PMID:18273745

  15. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    PubMed Central

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.

    2015-01-01

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230

  16. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE PAGESBeta

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.; Umen, James G.

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobicmore »conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less

  17. Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii? †

    PubMed Central

    Nguyen, Anh Vu; Thomas-Hall, Skye R.; Malnoë, Alizée; Timmins, Matthew; Mussgnug, Jan H.; Rupprecht, Jens; Kruse, Olaf; Hankamer, Ben; Schenk, Peer M.

    2008-01-01

    Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followed by real-time quantitative reverse transcription-PCR and protein analyses. The present work provides new insights into photosynthesis, sulfur acquisition strategies, and carbon metabolism-related gene expression during sulfur-induced hydrogen production. A general trend toward repression of transcripts encoding photosynthetic genes was observed. In contrast to all other LHCBM genes, the abundance of the LHCBM9 transcript (encoding a major light-harvesting polypeptide) and its protein was strongly elevated throughout the experiment. This suggests a major remodeling of the photosystem II light-harvesting complex as well as an important function of LHCBM9 under sulfur starvation and photobiological hydrogen production. This paper presents the first global transcriptional analysis of C. reinhardtii before, during, and after photobiological hydrogen production under sulfur deprivation. PMID:18708561

  18. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Assimakopoulos, Konstantinos; Kotzabasis, Kiriakos

    2012-01-01

    Cultures from the unicellular green alga Scenedesmus obliquus biodegrade the toxic p-cresol (4-methylphenol) and use it as alternative carbon/energy source. The biodegradation procedure of p-cresol seems to be a two-step process. HPLC analyses indicate that the split of the methyl group (first step) that is possibly converted to methanol (increased methanol concentration in the growth medium), leading, according to our previous work, to changes in the molecular structure and function of the photosynthetic apparatus and therefore to microalgal biomass increase. The second step is the fission of the intermediately produced phenol. A higher p-cresol concentration results in a higher p-cresol biodegradation rate and a lower total p-cresol biodegradability. The first biodegradation step seems to be the most decisive for the effectiveness of the process, because methanol offers energy for the further biodegradation reactions. The absence of LHCII from the Scenedesmus mutant wt-lhc stopped the methanol effect and significantly reduced the p-cresol biodegradation (only 9%). The present contribution deals with an energy distribution between microalgal growth and p-cresol biodegradation, activated by p-cresol concentration. The simultaneous biomass increase with the detoxification of a toxic phenolic compound (p-cresol) could be a significant biotechnological aspect for further applications. PMID:23251641

  19. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    PubMed

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-?) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. PMID:25016189

  20. Palindromic genes in the linear mitochondrial genome of the nonphotosynthetic green alga Polytomella magna.

    PubMed

    Smith, David Roy; Hua, Jimeng; Archibald, John M; Lee, Robert W

    2013-01-01

    Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1-7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species. The possible origins and consequences of this bizarre genomic architecture are discussed. PMID:23940100

  1. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii

    PubMed Central

    Tanabe, Yuuhiko; Okazaki, Yusuke; Yoshida, Masaki; Matsuura, Hiroshi; Kai, Atsushi; Shiratori, Takashi; Ishida, Ken-ichiro; Nakano, Shin-ichi; Watanabe, Makoto M.

    2015-01-01

    Botryococcus braunii is a colony-forming green alga that accumulates large amounts of liquid hydrocarbons within the colony. The utilization of B. braunii for biofuel production is however hindered by its low biomass productivity. Here we describe a novel bacterial ectosymbiont (BOTRYCO-2) that confers higher biomass productivity to B. braunii. 16S rDNA analysis indicated that the sequence of BOTRYCO-2 shows low similarity (<90%) to cultured bacterial species and located BOTRYCO-2 within a phylogenetic lineage consisting of uncultured alphaproteobacterial clones. Fluorescence in situ hybridization (FISH) studies and transmission electric microscopy indicated that BOTRYCO-2 is closely associated with B. braunii colonies. Interestingly, FISH analysis of a water bloom sample also found BOTRYCO-2 bacteria in close association with cyanobacterium Microcystis aeruginosa colonies, suggesting that BOTRYCO-2 relatives have high affinity to phytoplankton colonies. A PCR survey of algal bloom samples revealed that the BOTRYCO-2 lineage is commonly found in Microcystis associated blooms. Growth experiments indicated that B. braunii Ba10 can grow faster and has a higher biomass (1.8-fold) and hydrocarbon (1.5-fold) yield in the presence of BOTRYCO-2. Additionally, BOTRYCO-2 conferred a higher biomass yield to BOT-22, one of the fastest growing strains of B. braunii. We propose the species name ‘Candidatus Phycosocius bacilliformis’ for BOTRYCO-2. PMID:26130609

  2. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE PAGESBeta

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.; Umen, James G.

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.

  3. Lipopolysaccharide Containing l-Acofriose in the Filamentous Blue-Green Alga Anabaena variabilis

    PubMed Central

    Weckesser, J.; Katz, A.; Drews, G.; Mayer, H.; Fromme, I.

    1974-01-01

    For the first time, an O-antigenic lipopolysaccharide (LPS) has been isolated from a filamentous blue-green alga (Anabaena variabilis). It was extractable with phenol-water, resulting in extraction of the bulk of the LPS into the phenol phase. The polysaccharide moiety of this LPS consists of l-rhamnose, its 3-O-methyl ether l-acofriose, d-mannose, d-glucose, and d-galactose. l-Glycero-d-mannoheptose and 2-keto-3-deoxyoctonate, the two characteristic sugar components of enteric LPS, and phosphate groups are absent from the A. variabilis O antigen. The only amino sugar present is d-glucosamine. Three hydroxy fatty acids were identified, namely, ?-hydroxymyristic, ?-hydroxypalmitic and ?-hydroxystearic acids, in addition to palmitic and unidentified fatty acid. The LPS of A. variabilis is localized in the outermost cell wall layer and behaves like a bacterial O antigen in serological tests. The passive hemagglutination yielded high titers with isolated LPS (pretreated by heat or by alkali) and rabbit antisera prepared against living or heat-killed cells. The position of the precipitation arcs after immunoelectrophoresis of the O antigen indicates the lack of charged groups. The water phase of the phenol-water extract contains, in high yield, a glucose polymer. It is serologically inactive as shown by the passive hemagglutination test and by agar-gel precipitation. PMID:4218229

  4. Photosynthetic regeneration of ATP using a strain of thermophilic blue-green algae

    SciTech Connect

    Sawa, Y.; Kanayama, K.; Ochiai, H.

    1982-02-01

    Photosynthetic ATP accumulation was shown in the presence of exogenous ADP plus ortho-phosphate on illumination to the intact cells of a strain of thermophilic blue-green algae isolated from Matsue hot springs, Mastigocladus sp. Kinetic studies of various effectors on the ATP accumulation proved that the ATP synthesis depends mainly on the cyclic photophosphorylation system around photosystem I (PS-I) in the algal cells. The temperature and pH optima for the accumulation were found at 45 degrees C and pH 7.5. Maximum yield was obtained with light intensity higher than 15 mW/squared cm. Borate ion exerted pronounced enhancement on the ATP synthesis. With a continuous reactor at a flow rate of 1 ml/hour at 45 degrees C and pH 7.5, efficient photoconversion of ADP (2mM, at substrate reservoir) to ATP (1mM, at product outlet) has been maintained for a period of 2.5 days, though the efficiency has decreased in a further 2-day period to the level of 0.5 mM ATP/9.5 h of residence time. (Refs. 24).

  5. Health benefits of blue-green algae: prevention of cardiovascular disease and nonalcoholic fatty liver disease.

    PubMed

    Ku, Chai Siah; Yang, Yue; Park, Youngki; Lee, Jiyoung

    2013-02-01

    Blue-green algae (BGA) are among the most primitive life forms on earth and have been consumed as food or medicine by humans for centuries. BGA contain various bioactive components, such as phycocyanin, carotenoids, ?-linolenic acid, fibers, and plant sterols, which can promote optimal health in humans. Studies have demonstrated that several BGA species or their active components have plasma total cholesterol and triglyceride-lowering properties due to their modulation of intestinal cholesterol absorption and hepatic lipogenic gene expression. BGA can also reduce inflammation by inhibiting the nuclear factor ? B activity, consequently reducing the production of proinflammatory cytokines. Furthermore, BGA inhibit lipid peroxidation and have free radical scavenging activity, which can be beneficial for the protection against oxidative stress. The aforementioned effects of BGA can contribute to the prevention of metabolic and inflammatory diseases. This review provides an overview of the current knowledge of the health-promoting functions of BGA against cardiovascular disease and nonalcoholic fatty liver disease, which are major health threats in the developed countries. PMID:23402636

  6. Oxygen-dependent proton efflux in cyanobacteria (blue-green algae). [Anabaena variabilis

    SciTech Connect

    Scherer, S.; Stuerzl, E.; Boeger, P.

    1984-05-01

    The oxygen-dependent proton efflux (in the dark) of intact cells of Anabaena variabilis and four other cyanobacteria (blue-green algae) was investigated. In contrast to bacteria and isolated mitochondria, an H/sup +//e ratio (= protons translocated per electron transported) of only 0.23 to 0.35 and a P/e ratio of 0.8 to 1.5 were observed, indicative of respiratory electron transport being localized essentially on the thylakoids, not on the cytoplasmic membrane. Oxygen-induced acidification of the medium was sensitive to cyanide and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Inhibitors such as 2,6-dinitrophenol and vanadate exhibited a significant decrease in the H/sup +//e ratio. After the oxygen pulse, electron transport started immediately, but proton efflux lagged 40 to 60 s behind, a period also needed before maximum ATP pool levels were attained. The authors suggest that proton efflux in A. variabilis is due to a proton-translocating ATP hydrolase (ATP-consuming ATPase) rather than to respiratory electron transport located on the cytoplasmic membrane.

  7. New chemical constituents from Oryza sativa straw and their algicidal activities against blue-green algae.

    PubMed

    Ahmad, Ateeque; Kim, Seung-Hyun; Ali, Mohd; Park, Inmyoung; Kim, Jin-Seog; Kim, Eun-Hye; Lim, Ju-Jin; Kim, Seul-Ki; Chung, Ill-Min

    2013-08-28

    Five new constituents, 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-?-D-xylopyranosyl-(2a?1b)-2a-O-?-D-xylopyranosyl-(2b?1c)-2b-O-?-D-xylopyranosyl-2c-octadecanoate (1), 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-?-D-xylopyranosyl-(2a?1b)-2a-O-?-D-xylopyranosyl-(2b?1c)-2b-O-?-D-xylopyranosyl-(2c?1d)-2c-O-?-D-xylopyranosyl-2d-octadecanoate (2), kaempferol-3-O-?-D-xylopyranosyl-(2a?1b)-2a-O-?-D-xylopyranosyl-(2b?1c)-2b-O-?-D-xylopyranosyl-(2c?1d)-2c-O-?-D-xylopyranosyl-2d-hexadecanoate (3), methyl salicylate-2-O-?-D-xylopyranosyl-(2a?1b)-2a-O-?-D-xylopyranosyl-(2b?1c)-2b-O-?-D-xylopyranosyl-(2c?1d)-2c-O-?-D-xylopyranosyl-(2d?1e)-2d-O-?-D-xylopyranosyl-(2e?1f)-2e-O-?-D-xylopyranosyl-(2f?1g)-2f-O-?-D-xylopyranosyl-(2g?1h)-2g-O-?-D-xylopyranosyl-2h-geranilan-8',10'-dioic acid-1'-oate (4), and oleioyl-?-D-arabinoside (5), along with eight known compounds, were isolated from a methanol extract of Oryza sativa straw. The structures of the new compounds were elucidated using one- and two-dimensional NMR spectroscopies in combination with IR, ESI/MS, and HR-ESI/FTMS. In bioassays with blue-green algae, the efficacies of the algicidal activities of the five new compounds (1-5) were evaluated at concentrations of 1, 10, and 100 mg/L. Compound 5 had the highest growth inhibition (92.6 ± 0.3%) for Microcystis aeruginosa UTEX 2388 at a concentration of 100 ppm (mg/L). Compound 5 has high potential for the ecofriendly control of weeds and algae harmful to water-logged rice. PMID:23889328

  8. System Responses to Equal Doses of Photosynthetically Usable Radiation of Blue, Green, and Red Light in the Marine Diatom Phaeodactylum tricornutum

    PubMed Central

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M.

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions. PMID:25470731

  9. Production of Calcite by the Green Alga Halimeda in Artificial Cretaceous Seawater

    NASA Astrophysics Data System (ADS)

    Stanley, S. M.; Ries, J. B.

    2006-12-01

    The codiacean green alga Halimeda contributes 20-30% of the carbonate sediment in lagoonal areas adjacent to modern Caribbean and Indo-Pacific coral reefs. This alga is syncytial, lacking cell membranes, so that an individual thallus functions as a giant, multinucleate cell. The thallus grows as branching chains of segments interconnected by tubular filaments. A segment is formed in a single day and then filled with calcium carbonate over several days. Aragonite crystals grow within segments in the form of needles, but in some regions of a segment these are subsequently dissolved and their calcium carbonate is reprecipitated as microgranular aragonite. Some of the needles grow in a spherulitic pattern similar to that of inorganic aragonite precipitates. It has been debated whether Halimeda employs organic templates to secrete the aragonite polymorph of calcium carbonate or simply induces precipitation by taking up carbon dioxide for photosynthesis. We have found that Halimeda incrassata segments grown in seawater of modern ionic composition (Mg/Ca molar ratio = 5.2) actually contain an average of about 8% high-Mg calcite (mean 16 mol % Mg substituting for Ca). As the Mg/Ca ratio of ambient seawater is stepped down, calcite constitutes an increasing percentage of the calcium carbonate produced, and, as we have found for numerous other kinds of organisms, the Mg content of the calcite declines. For segments grown in seawater with the imputed Cretaceous Mg/Ca molar ratio of 1.5, calcite constituted, on average, 46% of the calcium carbonate (maximum, 67%) and contained about 6 mol% Mg. Experiments show that in artificial seawaters having different Mg/Ca molar ratios but otherwise having the ionic strength and chemical composition of modern seawater, aragonite can precipitate inorganically when the Mg/Ca molar ratio is above 2. The fact that Halimeda produces slightly more aragonite than calcite when the ambient Mg/Ca molar ratio is 1.5 indicates that it does exert a degree of biological control over its calcium carbonate production, but that the control is incomplete. Our growth experiments showed that there is a correlation between rate of production of carbonate and rate of production of organic matter by Halimeda, apparently because, as has been previously demonstrated, this alga's photosynthesis is enhanced by the carbon dioxide produced by its calcification. Productivity was highest in seawater of modern composition. Experiments in which either the ambient Mg/Ca ratio or the absolute concentration of Ca was held constant while the other was varied showed that an increase in either one led to a higher rate of production of both organic matter and calcium carbonate. Nonetheless, rates of production were higher in imputed Cretaceous seawater (Mg/Ca molar ratio = 1.5) than in imputed Oligocene seawater (Mg/Ca molar ratio = 2.5), presumably because in the Oligocene treatment, both of the minerals produced (high-Mg calcite and aragonite) were favored by the ambient Mg/Ca ratio, whereas in the Cretaceous treatment, 56% of the calcium carbonate was aragonite, which was not favored by the ambient Mg/Ca ratio.

  10. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata.

    PubMed

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-07-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae. PMID:25922486

  11. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-01-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae. PMID:25922486

  12. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae.

    PubMed Central

    Burger, G; Saint-Louis, D; Gray, M W; Lang, B F

    1999-01-01

    The mitochondrial DNA (mtDNA) of Porphyra purpurea, a circular-mapping genome of 36,753 bp, has been completely sequenced. A total of 57 densely packed genes has been identified, including the basic set typically found in animals and fungi, as well as seven genes characteristic of protist and plant mtDNAs and specifying ribosomal proteins and subunits of succinate:ubiquinone oxidoreductase. The mitochondrial large subunit rRNA gene contains two group II introns that are extraordinarily similar to those found in the cyanobacterium Calothrix sp, suggesting a recent lateral intron transfer between a bacterial and a mitochondrial genome. Notable features of P. purpurea mtDNA include the presence of two 291-bp inverted repeats that likely mediate homologous recombination, resulting in genome rearrangement, and of numerous sequence polymorphisms in the coding and intergenic regions. Comparative analysis of red algal mitochondrial genomes from five different, evolutionarily distant orders reveals that rhodophyte mtDNAs are unusually uniform in size and gene order. Finally, phylogenetic analyses provide strong evidence that red algae share a common ancestry with green algae and plants. PMID:10488235

  13. Settlement of marine periphytic algae in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Nayar, S.; Goh, B. P. L.; Chou, L. M.

    2005-08-01

    This note describes settlement studies of marine periphytic algae on glass substrata in a tropical estuary in Singapore. The rates of production in terms of 14C radiotracer uptake, biomass in terms of chlorophyll a, community structure and cell abundance were measured from the settled periphytic algae at various depths in the water column and compared with the prevailing hydrographical conditions. Relatively higher periphytic algal settlement was observed at 1 m depth, even though it was not statistically different from other depths. Diatoms such as Skeletonema costatum and Thalassiosira rotula dominated the assemblage, together with the marine cyanobacteria Synechococcus sp. The three settlement parameters viz., periphytic algal production, chlorophyll a and cell counts showed significant differences between the days of settlement, with no significant differences observed for different depths. The periphytic algal community in this study comprised 30 microalgal species, dominated by diatoms (78%), followed by cyanobacteria (19% - primarily Synechococcus sp.), green flagellates (1%), dinoflagellates (1%) and other forms accounting for the remaining 1% of the total cell counts. Correlation studies and principal component analysis (PCA) revealed significant influence of silicate concentrations in the water column with the settlement of periphytic algae in this estuary. Though photoinhibited at the surface, photosynthetically available radiation did not seem to influence the overall settlement of periphytic algae. Diatoms and Synechococcus in the periphytic algal community were influenced by water temperature, PAR, pH and dissolved oxygen as seen in the PCA plots.

  14. Artificial microfossils - Experimental studies of permineralization of blue-green algae in silica.

    NASA Technical Reports Server (NTRS)

    Oehler, J. H.; Schopf, J. W.

    1971-01-01

    A technique has been developed to artificially fossilize microscopic algae in crystalline silica under conditions of moderately elevated temperature and pressure. The technique is designed to simulate geochemical processes thought to have resulted in the preservation of organic microfossils in Precambrian bedded cherts. In degree of preservation and mineralogic setting, the artificially permineralized microorganisms are comparable to naturally occurring fossil algae.

  15. Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast.

    PubMed

    Sawitzky, H; Grolig, F

    1995-09-01

    Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video-enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei-associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the positioning of organelles at the fusion site, contrary to the proposed role of MTs in the higher plant phragmoplast. PMID:7559758

  16. Molecular phylogeny of conjugating green algae (Zygnemophyceae, Streptophyta) inferred from SSU rDNA sequence comparisons.

    PubMed

    Gontcharov, Andrey A; Marin, Birger A; Melkonian, Michael A

    2003-01-01

    Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino-Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised. PMID:12569426

  17. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis.

    PubMed

    Asselborn, Viviana; Fernández, Carolina; Zalocar, Yolanda; Parodi, Elisa R

    2015-10-01

    The effect of the organophosphorus insecticide chlorpyrifos on the growth, biovolume, and ultrastructure of the green microalga Ankistrodesmus gracilis was evaluated. Concentrations of 9.37, 18.75, 37.5, 75 and 150mgL(-1) of chlorpyrifos were assayed along with a control culture. At the end of the bioassay the ultrastructure of algal cells from control culture and from cultures exposed to 37.5 and 150mgL(-1) was observed under transmission (TEM) and scanning electron microscopy (SEM). After 24 and 48h, treatments with 75 and 150mgL(-1) inhibited the growth of A. gracilis; whereas after 72 and 96h, all the treatments except at 9.37mgL(-1) significantly affected the algae growth. The effective concentration 50 (EC50) after 96h was 22.44mgL(-1) of chlorpyrifos. After the exposure to the insecticide, an increase in the biovolume was observed, with a larger increase in cells exposed to 75 and 150mgL(-1). Radical changes were observed in the ultrastructure of cells exposed to chlorpyrifos. The insecticide affected the cell shape and the distribution of the crests in the wall. At 37.5mgL(-1) electodense bodies were observed along with an increase in the size and number of starch granules. At 150mgL(-1) such bodies occupied almost the whole cytoplasm together with lipids and remains of thylakoids. Autospores formation occurred normally at 37.5mgL(-1) while at 150mgL(-1) karyokinesis occurred, but cell-separation-phase was inhibited. The present study demonstrates that the exposure of phytoplankton to the insecticide chlorpyrifos leads to effects observed at both cellular and population level. PMID:26099464

  18. Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga.

    PubMed

    Wlodarczyk, Lucyna M; Snellenburg, Joris J; Ihalainen, Janne A; van Grondelle, Rienk; van Stokkum, Ivo H M; Dekker, Jan P

    2015-01-20

    State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ? 100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ? 1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii. PMID:25606675

  19. Optimization of culture conditions and comparison of biomass productivity of three green algae.

    PubMed

    Kim, Wonduck; Park, Jang Min; Gim, Geun Ho; Jeong, Sang-Hwa; Kang, Chang Min; Kim, Duk-Jin; Kim, Si Wouk

    2012-01-01

    Culture conditions for the mass production of three green algae, Chlorella sp., Dunaliella salina DCCBC2 and Dunaliella sp., were optimized using a response surface methodology (RSM). A central composite design was applied to investigate the effects of initial pH, nitrogen and phosphate concentrations on the cultivation of microalgae. The optimal growth conditions estimated from the design are as follows: Chlorella sp. (initial pH 7.2, ammonium 17 mM, phosphate 1.2 mM), D. salina DCCBC2 (initial pH 8.0, nitrate 3.3 mM, phosphate 0.0375 mM) and Dunaliella sp. (initial pH 8.0, nitrate 3.7 mM, phosphate 0.17 mM). Culturing the microalgae with the optimized conditions confirmed that the maximum growth rates were attained for these parameters. The optimum CO(2) concentrations of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 1.0, 3.0 and 1.0% (v/v), respectively. The specific growth rates (?) of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 0.58, 0.78 and 0.56 day(-1), respectively, and the biomass productivities were 0.28, 0.54 and 0.30 g dry cell wt l(-1) day(-1), respectively. The CO(2) fixation rates of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 42.8, 90.9 and 45.5 mg l(-1) day(-1), respectively. Mixotrophic cultivation of Chlorella sp. with glucose increased biomass productivity from 0.28 to 0.51 g dry cell wt l(-1) day(-1). However, D. salina DCCBC2 and Dunaliella sp. were not stimulated by several organic compounds tested. PMID:21909669

  20. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements.

    PubMed

    Gilroy, D J; Kauffman, K W; Hall, R A; Huang, X; Chu, F S

    2000-05-01

    The presence of blue-green algae (BGA) toxins in surface waters used for drinking water sources and recreation is receiving increasing attention around the world as a public health concern. However, potential risks from exposure to these toxins in contaminated health food products that contain BGA have been largely ignored. BGA products are commonly consumed in the United States, Canada, and Europe for their putative beneficial effects, including increased energy and elevated mood. Many of these products contain Aphanizomenon flos-aquae, a BGA that is harvested from Upper Klamath Lake (UKL) in southern Oregon, where the growth of a toxic BGA, Microcystis aeruginosa, is a regular occurrence. M. aeruginosa produces compounds called microcystins, which are potent hepatotoxins and probable tumor promoters. Because M. aeruginosa coexists with A. flos-aquae, it can be collected inadvertently during the harvesting process, resulting in microcystin contamination of BGA products. In fall 1996, the Oregon Health Division learned that UKL was experiencing an extensive M. aeruginosa bloom, and an advisory was issued recommending against water contact. The advisory prompted calls from consumers of BGA products, who expressed concern about possible contamination of these products with microcystins. In response, the Oregon Health Division and the Oregon Department of Agriculture established a regulatory limit of 1 microg/g for microcystins in BGA-containing products and tested BGA products for the presence of microcystins. Microcystins were detected in 85 of 87 samples tested, with 63 samples (72%) containing concentrations > 1 microg/g. HPLC and ELISA tentatively identified microcystin-LR, the most toxic microcystin variant, as the predominant congener. PMID:10811570

  1. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements.

    PubMed Central

    Gilroy, D J; Kauffman, K W; Hall, R A; Huang, X; Chu, F S

    2000-01-01

    The presence of blue-green algae (BGA) toxins in surface waters used for drinking water sources and recreation is receiving increasing attention around the world as a public health concern. However, potential risks from exposure to these toxins in contaminated health food products that contain BGA have been largely ignored. BGA products are commonly consumed in the United States, Canada, and Europe for their putative beneficial effects, including increased energy and elevated mood. Many of these products contain Aphanizomenon flos-aquae, a BGA that is harvested from Upper Klamath Lake (UKL) in southern Oregon, where the growth of a toxic BGA, Microcystis aeruginosa, is a regular occurrence. M. aeruginosa produces compounds called microcystins, which are potent hepatotoxins and probable tumor promoters. Because M. aeruginosa coexists with A. flos-aquae, it can be collected inadvertently during the harvesting process, resulting in microcystin contamination of BGA products. In fall 1996, the Oregon Health Division learned that UKL was experiencing an extensive M. aeruginosa bloom, and an advisory was issued recommending against water contact. The advisory prompted calls from consumers of BGA products, who expressed concern about possible contamination of these products with microcystins. In response, the Oregon Health Division and the Oregon Department of Agriculture established a regulatory limit of 1 microg/g for microcystins in BGA-containing products and tested BGA products for the presence of microcystins. Microcystins were detected in 85 of 87 samples tested, with 63 samples (72%) containing concentrations > 1 microg/g. HPLC and ELISA tentatively identified microcystin-LR, the most toxic microcystin variant, as the predominant congener. Images Figure 1 Figure 2 PMID:10811570

  2. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    PubMed

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts. PMID:25554634

  3. Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast

    PubMed Central

    1995-01-01

    Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video- enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei- associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the positioning of organelles at the fusion site, contrary to the proposed role of MTs in the higher plant phragmoplast. PMID:7559758

  4. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae.

    PubMed

    Alexandrou, Markos A; Cardinale, Bradley J; Hall, John D; Delwiche, Charles F; Fritschie, Keith; Narwani, Anita; Venail, Patrick A; Bentlage, Bastian; Pankey, M Sabrina; Oakley, Todd H

    2015-01-22

    The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis. PMID:25473009

  5. Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia

    NASA Technical Reports Server (NTRS)

    Palmisano, A. C.; Summons, R. E.; Cronin, S. E.; Des Marais, D. J.

    1989-01-01

    Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithfied stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, beta-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll, zeaxanthin, echinenone, beta-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a within the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids : chlorophyll a ratios (0.84-2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.

  6. The occurrence and biosynthesis of gamma-linolenic acid in a blue-green alga, Spirulina platensis

    Microsoft Academic Search

    B. W. Nichols; B. J. B. Wood

    1968-01-01

    The acyl-lipid and fatty acid composition of six blue-green algae, namely,Spirulina platensis, Myxosarcina chroococcoides, Chlorogloea fritschii, Anabaena cylindrica, Anabaena flos-aquae, and Mastigocladus\\u000a laminosus is reported.\\u000a \\u000a All contain major proportions of mono-and digalactosyl diglyceride, sulfoquinovosyl diglyceride, and phosphatidyl glycerol,\\u000a but none possess lecithin, phophatidyl ethanolamine, or phosphatidyl inositol. Trans-3-hexadecenoic acid was absent from all\\u000a extracts.\\u000a \\u000a \\u000a \\u000a The analyses provide further evidence that

  7. Combined effect of oil, oil products and dispersants on the blue-green algae Synechocystis aquatilis and Anabaena variabilis

    SciTech Connect

    Gapochka, L.D.; Brodskii, L.I.; Kravchenko, M.E.; Fedorov, V.D.

    1980-01-01

    The study of the combined effect of oil, oil products and dispersants on the growth of the blue-green algae Synechocystis aquatilis and Anabaena variabilis has shown that out of 12 studied oil-dispersant pairs 6 revealed a positive relationship, which provides evidence for a decrease in oil and oil products toxic effect in the presence of a dispersant. The positive interaction between oil and oil products was found. The negative oil and oil products effect on all studied indices of A. variabilis culture increases with time.

  8. Occurrence of metallothionein gene smtA in synechococcus Tx-20 and other blue-green algae

    SciTech Connect

    Robinson, N.J.; Gupta, A.; Huckle, J.W.; Jackson, P.; Whitton, B.A. (Univ. of Durham (England))

    1990-06-01

    Blue-green algae are often abundant at Zn- and Cd-contaminated sites. In order to understand the mechanisms associated with Zn- and Cd-tolerance, we have isolated a metallothionein gene, designated smtA, in Synechococcus Tx-20 (- Pcc 6301 - Anacystis nidulans), a strain apparently obtained from an unpolluted site. The gene was cloned and sequenced, and its expression investigated in a range of heavy-metal-tolerant strains of the same organism obtained by stepwise adaptation. The polymerase chain reaction was used to probe for the possible presence of the homologous gene in a range of other strains (especially Synechococcus) isolated from sites without and with heavy metal contamination.

  9. Components of natural gas resulting from thermal degradation of the blue-green alga (cyanobacterium) Oscillatoria tenuis

    Microsoft Academic Search

    Qingyu Wu; Guoging Sheng; Jiamo Fu

    1989-01-01

    Cultures of the blue-green alga (cyanobacterium)Oscillatoria tenuis were used to simulate thermal degradation and gas formation by heating without oxygen at 250 and 350 C for 100 h. Analysis\\u000a through gas chromatography showed that the gases were mainly CH4, C2H6, C3H8, iC4 (isobutane), nC4 (normal butane), iC5 (isopentane), nC5 (normal pentane), H2, C02 and N2. The volume of gases per

  10. Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: I. The effect of cadmium

    Microsoft Academic Search

    P. P?ibyl; V. Cepák; V. Zachleder

    2005-01-01

    Summary.  The aim of the study was to elucidate the effect of cadmium ions on the arrangement of the actin and tubulin cytoskeleton,\\u000a as well as the relationships between cytoskeletal changes and growth processes in the green filamentous alga Spirogyra decimina. Batch cultures of algae were carried out under defined conditions in the presence of various cadmium concentrations. In\\u000a control cells,

  11. Effect of copper on the activation of the acid phosphatase from the green algae Pseudokirchneriella subcapitata

    Microsoft Academic Search

    Claudio Martín Jonsson; Hiroshi Aoyama

    2010-01-01

    The presence of copper in water environment may have detrimental effects on aquatic organisms, including algae, where different\\u000a enzymatic systems can be affected. Algae acid phosphatase plays important roles in metabolic processes such as decomposition\\u000a of organic phosphate, autophagic digestive process, recycling cellular materials and zygote formation during reproduction.\\u000a This work describes an in vitro activation effect of copper on

  12. Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii.

    PubMed

    Turkina, Maria V; Kargul, Joanna; Blanco-Rivero, Amaya; Villarejo, Arsenio; Barber, James; Vener, Alexander V

    2006-08-01

    Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation. PMID:16670252

  13. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  14. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    PubMed Central

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-01-01

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown. PMID:21887287

  15. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    PubMed

    Hlavová, Monika; ?ížková, Mária; Vítová, Milada; Bišová, Kate?ina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  16. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    PubMed Central

    Vítová, Milada; Bišová, Kate?ina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  17. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae.

    PubMed Central

    Baldauf, S L; Manhart, J R; Palmer, J D

    1990-01-01

    Previous work suggested that the tufA gene, encoding protein synthesis elongation factor Tu, was transferred from the chloroplast to the nucleus within the green algal lineage giving rise to land plants. In this report we investigate the timing and mode of transfer by examining chloroplast and nuclear DNA from the three major classes of green algae, with emphasis on the class Charophyceae, the proposed sister group to land plants. Filter hybridizations reveal a chloroplast tufA gene in all Ulvophyceae and Chlorophyceae and in some but not all Charophyceae. One charophycean alga, Coleochaete orbicularis, is shown to contain an intact but highly divergent chloroplast tufA gene, whose product is predicted to be non-functional in protein synthesis. We propose that a copy of the tufA gene was functionally transferred from the chloroplast to the nucleus early in the evolution of the Charophyceae, with chloroplast copies of varying function being retained in some but not all of the subsequently diverging lineages. This proposal is supported by the demonstration of multiple tufA-like sequences in Coleochaete nuclear DNA and in nuclear DNA from all other Charophyceae examined. Images PMID:2371274

  18. New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy

    PubMed Central

    2014-01-01

    Background The evolution of oogamy from isogamy, an important biological event, can be summarized as follows: morphologically similar gametes (isogametes) differentiated into small “male” and large “female” motile gametes during anisogamy, from which immotile female gametes (eggs) evolved. The volvocine green algae represent a model lineage to study this type of sex evolution and show two types of gametic unions: conjugation between isogametes outside the parental colonies (external fertilization during isogamy) and fertilization between small motile gametes (sperm) and large gametes (eggs) inside the female colony (internal fertilization during anisogamy and oogamy). Although recent cultural studies on volvocine algae revealed morphological diversity and molecular genetic data of sexual reproduction, an intermediate type of union between these two gametic unions has not been identified. Results We identified a novel colonial volvocine genus, Colemanosphaera, which produces bundles of spindle-shaped male gametes through successive divisions of colonial cells. Obligately anisogamous conjugation between male and female motile gametes occurred outside the female colony (external fertilization during anisogamy). This new genus contains 16- or 32-celled spheroidal colonies similar to those of the volvocine genera Yamagishiella and Eudorina. However, Colemanosphaera can be clearly distinguished from these two genera based on its sister phylogenetic position to the enigmatic flattened colonial volvocine Platydorina and external fertilization during anisogamy. Two species of Colemanosphaera were found in a Japanese lake; these species are also distributed in European freshwaters based on a published sequence of an Austrian strain and the original description of Pandorina charkowiensis from Ukraine. Conclusions Based on phylogeny and morphological data, this novel genus exhibits a missing link between Platydorina and the typical spheroidal colonial volvocine members such as Pandorina or Yamagishiella. Considering the external obligate anisogamy, oogamy evolution may have been preceded by the transition from external to internal fertilization during anisogamy within the volvocine green algae. PMID:24589311

  19. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis.

    PubMed

    Wayama, Marina; Ota, Shuhei; Matsuura, Hazuki; Nango, Nobuhito; Hirata, Aiko; Kawano, Shigeyuki

    2013-01-01

    Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage. PMID:23326471

  20. Isolation and characterization of a xanthophyll-rich fraction from the thylakoid membrane of Dunaliella salina(green algae).

    PubMed

    Yokthongwattana, Kittisak; Savchenko, Tatyana; Polle, Juergen E W; Melis, Anastasios

    2005-12-01

    Long-term acclimation to irradiance stress (HL) of the green alga Dunaliella salina Teod. (UTEX 1644) entails substantial accumulation of zeaxanthin along with a lowering in the relative amount of other pigments, including chlorophylls and several carotenoids. This phenomenon was investigated with wild type and the zea1 mutant of D. salina, grown under conditions of low irradiance (LL), or upon acclimation to irradiance stress (HL). In the wild type, the zeaxanthin to chlorophyll (Zea/Chl)(mol : mol) ratio was as low as 0.009 : 1 under LL and as high as 0.8 : 1 under HL conditions. In the zea1 mutant, which constitutively accumulates zeaxanthin and lacks antheraxanthin, violaxanthin and neoxanthin, the Zea/Chl ratio was 0.15 : 1 in LL and 0.57 : 1 in HL. The divergent Zea/Chl ratios were reflected in the coloration of the cells, which were green under LL and yellow under HL. In LL-grown cells, all carotenoids occurred in structural association with the Chl-protein complexes. This was clearly not the case in the HL-acclimated cells. A beta-carotene-rich fraction occurred as loosely bound to the thylakoid membrane and was readily isolated by flotation following mechanical disruption of D. salina. A zeaxanthin-rich fraction was specifically isolated, upon mild surfactant treatment and differential centrifugation, from the thylakoid membrane of either HL wild type or HL-zea1 mutant. Such differential extraction of beta-carotene and Zea, and their separation from the Chl-proteins, could not be obtained from the LL-grown wild type, although small amounts of Zea could still be differentially extracted from the LL-grown zea1 strain. It is concluded that, in LL-grown D. salina, xanthophylls (including most of Zea in the zea1 strain) are structurally associated with and stabilized by the Chl-proteins in the thylakoid membrane. Under HL-growth conditions, however, zeaxanthin appears to be embedded in the lipid bilayer, or in a domain of the chloroplast thylakoids that can easily be separated from the Chl-proteins upon mild surfactant treatment. In conclusion, this work provides biochemical evidence for the domain localization of accumulated zeaxanthin under irradiance-stress conditions in green algae, and establishes protocols for the differential extraction of this high-value pigment from the green alga D. salina. PMID:16307118

  1. Biogeography of Marine Algae

    E-print Network

    Biogeography of Marine Algae David J Garbary, St Francis Xavier University, Antigonish, Nova Scotia and vicariance in establishing distributions and as factors associated with speciation. Since eukaryotic algae. There are many species that are virtually cosmopolitan (e.g. the green alga Enteromorpha intestinalis, the red

  2. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii

    Microsoft Academic Search

    Jin-Young An; Sang-Jun Sim; Jin Suk Lee; Byung Woo Kim

    2003-01-01

    A laboratory study was conducted on the removal of nitrogen and phosphorus from piggery wastewater during growth of Botryococcus braunii UTEX 572, together with measurements of hydrocarbon formation by the alga. The influence was tested of the initial nitrogen and phosphorus concentration on the optimum concentration range for a culture in secondarily treated piggery wastewater. A high cell density (>

  3. Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species

    Microsoft Academic Search

    V. K. Gupta; A. K. Shrivastava; Neeraj Jain

    2001-01-01

    Biosorption of heavy metals is an effective technology for the treatment of industrial wastewaters. Results are presented showing the sorption of Cr(VI) from solutions by biomass of filamentous algae Spirogyra species. Batch experiments were conducted to determine the adsorption properties of the biomass and it was observed that the adsorption capacity of the biomass strongly depends on equilibrium pH. Equilibrium

  4. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction

    PubMed Central

    Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard

    2014-01-01

    Background Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. Principal Findings For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. Significance This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors. PMID:25340847

  5. Developing Optimal Growth Parameters for the Green Microalgae Nannochloris oculata and the Diatom Nitzschia sp. for Large scale Raceway Production 

    E-print Network

    Luedecke, Phillip Ryan

    2011-10-21

    detrimental effects. These factors can affect growth and evidence suggests an interaction that exacerbates these effects. In an outdoor culture there are few practical control variables other than pond depth. As cultivation depth increases, the algae undergo...

  6. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina

    Microsoft Academic Search

    EonSeon Jin; Juergen E. W. Polle; Anastasios Melis

    2001-01-01

    A light-sensitive and chlorophyll (Chl)-deficient mutant of the green alga Dunaliella salina (dcd1) showed an amplified response to irradiance stress compared to the wild-type. The mutant was yellow–green under low light (100 ?mol photons m?2 s?1) and yellow under high irradiance (2000 ?mol photons m?2 s?1). The mutant had lower levels of Chl, lower levels of light harvesting complex II,

  7. Comparative efficiency of Azolla, blue-green algae and other organic manures in relation to N and P availability in a flooded rice soil

    Microsoft Academic Search

    P. K. Singh; B. C. Panigrahi; K. B. Satapathy

    1981-01-01

    Summary Pot incubation study with fresh Azolla (Azolla pinnata-India and Vietnam isolates,A. mexicana andA. filiculoides), blue-green algaAulosira sp., green manureSesbania cannabina, Azolla compost, farm yard manure and ammonium sulphate was conducted under flooded condition at CRRI, Cuttack keeping an equivalent amount of 25 ppm N through all the amendments where changes in availability of N and P, C?N ratio and

  8. Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticatum: effects on ammonium uptake

    Microsoft Academic Search

    G. Rosenberg; H. W. Paerl

    1981-01-01

    Nitrogen fixation (acetylene reduction) at rates of up to 1.2 µg N2 g dry wt-1 h-1 was measured for the siphonous green seaweed Codium decorticatum. No nitrogenase activity was detected in C. isthmocladum. The nitrogenase activity was light sensitive and was inhibited by the addition of DCMU and triphenyl tetrazolium chloride. Additions of glucose did not stimulate nitrogen fixation. Blue-green

  9. Population and community changes of attached algae to zinc stress alone and in combination with selected environmental variables

    SciTech Connect

    Genter, R.B.

    1986-01-01

    Three experiments were performed along the New River, Virginia. Outdoor flow-through stream mesocosms were continuously supplied with natural river water, and chemical treatments were administered with peristaltic pumps. The response variable was biovolume of algae attached to glass-rod artificial substrates. The first experiment was performed in spring, summer, and fall, 1984. Algal communities were exposed to four zinc (Zn) treatments (Ambient, 0.05, 0.5, 1.0 mg Zn/l). Treatments as low as 0.05 mg Zn/l reduced abundance of diatoms characteristics of the control treatment and increased abundance of green and blue-green algae. A similarity index (SIMI) indicated that samples generally became less similar to control samples as treatment increased from 0.05 to 1.0 mg/l. Total biovolume responded later than individual taxa and sometimes failed to distinguish between treatments. Zinc bound to periphyton was more reliable than total Zn in water for identifying Zn treatments. The second experiment investigated factorial treatments of snail grazing (absent, 400 Mudalia sp/m) and Zn (ambient, 0.5 mg/l) on algal abundance. Zinc treatment inhibited all algal taxa regardless of snail treatment. Snail grazing reduced abundance of 5 of 10 diatom taxa, but low temperature may have reduced grazing rate so that these algal populations increased by the end of the experiment. A third experiment investigated change in algal biovolume due to factorial treatments of pH (6, ambient, 9) and Zn (ambient, 0.05 mg An/l). Added Zn and pH 6 treatments reduced abundance of some diatoms and a filamentous blue-green alga and increased abundance of other diatoms, green, and coccoid blue-green algae.

  10. A cyber physical networking system for monitoring and cleaning up blue-green algae blooms with agile sensor and actuator control mechanism on Lake Tai

    Microsoft Academic Search

    Dong Li; Ze Zhao; Li Cui; He Zhu; Le Zhang; ZhaoLiang Zhang; Yi Wang

    2011-01-01

    Nowadays, the harmful blue-green algae blooms on lakes threaten the daily life of millions of people in China. We designed and developed a cyber physical networking system on Lake Tai for the monitoring and cleanup of the water blooms which is at work in Wuxi City, Jiangsu Province. We designed the sensor device and algorithm to monitor the order of

  11. The ultrastructure of the marine blue green alga, Trichodesmium erythraeum , with special reference to the cell wall, gas vacuoles, and cylindrical bodies

    Microsoft Academic Search

    Chase Baalen; R. Malcolm Brown

    1969-01-01

    The marine blue green alga, Trichodesmium erythraeum, was studied with electron microscopy in an attempt to elucidate the structural basis for its rapid lysis when removed from its marine environment. In this connection, it was found that a thining of the electron-dense layer of the longitudinal wall at the site adjacent to transverse wall attachment was responsible for lysis. The

  12. A comparison of the size distribution of the filamentous green alga Ulothrix in Daphnia guts and lake water from Lake Taihu, China

    Microsoft Academic Search

    F. Chen; R. D. Gulati; J. Li; Z. Liu

    2011-01-01

    This study compared the size distributions of the filamentous green alga Ulothrix in Daphnia guts and ambient lake water from February to May 2004 in Meiliang Bay, Lake Taihu, China. The aim was to establish whether daphnids selected the filaments in a certain length range or ingested them indiscriminately regardless of size. We also investigated the effect of Daphnia body

  13. Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: Light and temperature effects on photosynthesis and respiration

    Microsoft Academic Search

    Patricia Arancibia-Avila; Linda E. Graham

    One of the earliest and most reliable indications of acid precipitation affecting freshwater systems is the development of littoral blooms of the filamentous green alga Mougeotia (Zygnematales, Charophyceae). Field observations of depth distribution and seasonal abundance in Little Rock Lake, an experimentally acidified seepage lake in north-central Wisconsin, suggest that Mougeotia might prefer warmer temperatures and carry out net photosynthesis

  14. Inter and intraspecific differences in Daphnia life histories in response to two food sources: The green alga Scenedesmus and the filamentous cyanobacterium Oscillatoria

    Microsoft Academic Search

    Sari Repka

    1996-01-01

    The effects of two food sources on life history traits of Daphnia galeata, Daphnia cucullata and their interspecific hybrid, D.cucullataxgaleata, were studied. For each taxon, two clones were reared on both a green alga (Scenedesmus obliquus) and a filamentous cyanobacterium (Oscillatoria limnetica). Reproduction on Oscillatoria was generally lower than on Scenedesmus, but a positive population growth rate was still achieved,

  15. [Ecological characteristic of benthic epipelic algae and the characteristic of water environment quality in heavily polluted river in city].

    PubMed

    Zhao, Zhen-hua; Ruan, Xiao-hong; Xing, Ya-nan; Ni, Li-xiao; Gao, Li-cun

    2009-12-01

    The water quality and algae community of Nanyuan Water System in the old city area of Suzhou were monitored for a year. Results showed that the water pollution in the studied area was mainly related to nitrogen (NH4+ -N and TN). Sometimes, they even exceeded the Environmental Quality Standards for Surface Water (GB 3838-2002, PRC) more than 5 times. 34 species of benthic epipelic algae were observed by microscope, and the species amount of diatom algae, green algae and blue algae are more than others. Their abundance and biomass are far higher than that of the pelagic algae in the same sites,and reach 2 145.5 x 10(4) cells/mL and 3.524 mg/mL,respectively. The dominant species of benthic epipelic algae in Nanyuan's water system are diatom algae and blue algae, most of which belong to the heterotrophic type or bi-trophic type algae, the typical genera include: Oscillaria amphibian (affiliated to Cyanophyta), Cyclotella sp., Melosira sp., Stephanodiscus hantzschii, Navicula sp., Nitzschia sp., Gomphonema (affiliated to Bacillariophyta) and so on. And their distribution of species and abundance are very nonuniform in different reach of heavily polluted city river, which relates to the pollutant characteristics of the river. The seasonal variety trend of the abundance for benthic algae showed that:summer > autumn > spring > winter, and that of biomass for benthic algae showed that: the biomass in winter is the most of four seasons and change extent of the biomass is not obvious in spring, summer and autumn. The research results can provide reference for the ecology restoration of city heavily polluted river. PMID:20187390

  16. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds.

    PubMed

    Koní?ková, Renata; Va?ková, Kate?ina; Vaníková, Jana; Vá?ová, Kate?ina; Muchová, Lucie; Subhanová, Iva; Zadinová, Marie; Zelenka, Jaroslav; Dvo?ák, Aleš; Kolá?, Michal; Strnad, Hynek; Rimpelová, Silvie; Ruml, Tomáš; J Wong, Ronald; Vítek, Libor

    2014-01-01

    Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 ?M [PCB], and 125 ?M [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome. PMID:24552870

  17. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina.

    PubMed

    Zamani, Hajar; Moradshahi, Ali; Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein

    2014-09-01

    The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb(2+) in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 ?M Pb(2+) to the culture media had no significant (P>0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P>0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle-particle interaction was reduced in the GA-coated NPs. Aggregates of about 440 nm hydrodynamic diameter were formed within 35 min. Afterwards the aggregate size remained constant. It is concluded that PbS NPs have a negative effect on aquatic algae and their transformation by GA capping affects NPs aggregation properties and toxicity. PMID:24907922

  18. Promotive effect of se on the growth and antioxidation of a blue-green alga Spirulina maxima

    NASA Astrophysics Data System (ADS)

    Zhi-Gang, Zhou; Zhi-Li, Liu

    1998-12-01

    Cultures of a blue-green alga Spirulina maxima (Setch. et Gard.) Geitler with various concentrations of Se in Zarrouk's medium showed that not higher than 40 mg/L Se could promote its growth. The present experiments showed that S. maxima grown under normal conditions, has an oxidant stress defence system for hydrogen peroxide (H2O2) removal, which is the Halliwell-Asada pathway. When 4 to 20 mg/L Se was added to the algal medium, this pathway was replaced by a so-called Sestressed pathway containing GSH peroxidase (GSH-POD). As a result of the occurrence of both higher activity of GSH-POD and lower levels of hydroxyl radical (OH·), the Se-stressed pathway scavenged H2O2 so effectively that the growth of S. maxima was promoted by 4 to 20 mg/L Se. While GSH-POD activity of the alga disappeared at 40 mg/L Se, the recovery of ascorbate peroxidase was observed. The lower levels of ascorbic acid and GSH made the Halliwell-Asada pathway for scavenging H2O2 less effective, while the highest activity of catalase might be responsible in part for the H2O2 removal, causing the level of OH· in S. maxima grown at 40 mg/L Se to be much higher than the OH· level in this alga grown at 4 to 20 mg/L Se, but lower than that in the control. The OH· level changes caused the growth of S. maxima cultured at 40 mg/L Se to increase slightly to close to that of the control.

  19. Hydrogen metabolism of green algae: discovery and early research - a tribute to Hans Gaffron and his coworkers.

    PubMed

    Homann, Peter H

    2003-01-01

    The detection of hydrogen metabolism in green algae more than 60 years ago by Hans Gaffron dispelled the widely accepted dogma at that time that this feature was unique to prokaryotic organisms. Research on this unexpected aspect of algal physiology has continued until today because of its evolutionary implications and possible practical significance. This minireview focuses on the work of Gaffron and his collaborators, whose experiments provided most of the information about the mechanism of hydrogen metabolism in algae during the 35 years following its discovery. It is shown that the emergence of our present mechanistic concepts was closely linked to the changing perception of the process of photosynthetic water oxidation. Whereas the mechanism of 'photoreduction,' i.e., the photoassimilation of carbon dioxide with hydrogen as the electron donor, was well understood already by Gaffron's group as being a reaction mediated by Photosystem I only, a clear concept of the mechanism of light-dependent hydrogen production has been more difficult to establish. Gaffron and his collaborators provided ample evidence, however, that 'photohydrogen' evolution can be fueled by reducing equivalents derived from a photolysis of water as well as by an oxidation of internal and external organic molecules. The presently prevailing view embraces this concept of multiple pathways, but the relative contribution of each of them, and the regulatory mechanisms determining it, remain a matter of debate. PMID:16228569

  20. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    SciTech Connect

    Morales, I.; La Rosa, F.F. de (Univ. de Sevilla y CSIC (Spain))

    1992-07-01

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

  1. Occurrence of two isoforms of glutathione reductase in the green alga Chlamydomonas reinhardtii

    Microsoft Academic Search

    A. Serrano; A. Llobell

    1993-01-01

    Two isoforms (isoenzymes) of glutathione reductase (NADPH: oxidized glutathione oxidoreductase, EC 1.6.4.2; GR) were clearly resolved when enzyme preparations partially purified from the unicellular alga Chlamydomonas reinhardtii were subjected to column chromatofocusing in the pH range from 8 to 4. One isoform (GR I) exhibited an almost electroneutral isoelectric point (pI, 6.9–7.1) and the other (GR II) was a very

  2. Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon africanum.

    PubMed Central

    Bailey, D S; Northcote, D H

    1976-01-01

    A plasma-membrane fraction was isolated from the alga Hydrodictyon africanum by micro-dissection and its phospholipid components were analysed. Phosphatidylcholine was the major phospholipid of the preparation. Both phosphatidylserine and diphosphatidylglycerol were enriched in the fraction compared with the whole cell, but the relative amount of phosphatidylglycerol present was less than that in the whole cell. Phosphatidylinositol was absent from the plasma-membrane preparation. Images PLATE 1 PLATE 2 PMID:182144

  3. Effect of pesticides on blue-green algae and nitrogen-fixation

    Microsoft Academic Search

    Edgar J. DaSilva; Lars Eric Henriksson; Elisabet Henriksson

    1975-01-01

    The effects of the pesticides, amitrol, a derivative of amitrol (viz. 3,5-diamino-1,2,4-triazole), diquat, paraquat, linuron, MCPA, malathion, and monuron, were studied on the nitrogen-fixing algae,Anabaena cylindrica, Aulosira sp.,Calothrix elenkenii, Chlorogloeae fritschii, Cylindrospermum muscicola, Nostoc sp. fromCollema tenax, Nostoc muscorum, Tolypothrix tenuis, andWestiellopsis sp. In general, two types of response were discernible; an initial period of depression succeeded by an increased

  4. An investigation of glycolate excretion in two species of blue-green algae

    Microsoft Academic Search

    K. H. Cheng; A. G. Miller; Brian Colman

    1972-01-01

    The amount of 14C-glycolate excreted by Oscillatoria sp. and Anabaena flos-aquae is less than 1% of the 14C fixed by the algae during photosynthesis. Transfer of cells grown on 5% CO2 in air to a medium of low bicarbonate concentration or treatment of the cells with isonicotinyl hydrazide (INH) during photosynthesis, caused little increase in glycolate excretion. a-Hydroxysulfonates failed to

  5. The influence of nitrogen on heterocyst production in blue-green algae

    Microsoft Academic Search

    ROANN E. OGAWA; JOHN F. C CARR

    1969-01-01

    A series of experiments on heterocyst production in Anabaena uariabilis provides some strong indirect evidence for the role of heterocysts in nitrogen fixation. Of the algae tested (Anabaena uariabilk, A. inuequalis, A. cylindrica, A. flos-aquae, Tolypothrix distorta, Gloeotrichia echinulata, Aphaninomenon flos-aquae, Oscillatoria sp., and Microcystis aeru- ginosa), only those with heterocysts grew in a nitrate-free medium. Growth in the nitrate-

  6. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation.

    PubMed

    Wu, Zhilin; Shen, Haifeng; Ondruschka, Bernd; Zhang, Yongchun; Wang, Weimin; Bremner, David H

    2012-10-15

    A suspension of Microcystis aeruginosa (30 ?g L(-1)chlorophyll a) was circulated in a hydrodynamic cavitation device and ozone was introduced at the suction side of the pump. The removal of algae over 10 min using hydrodynamic cavitation alone and ozone alone is less than 15% and 35%, respectively. The destruction of algae rises significantly from 24% in the absence of the orifice to 91% with the optimized orifice on 5 min of processing using hydrodynamic cavitation along with ozone (HC/O(3)) and the utilization of ozone increases from 32% to 61%. Interestingly, the suction process is more effective than the extrusion method (positive pressure) and the optimal bulk temperature for algal elimination was found to be 20 °C. Increasing the input concentration of ozone is favorable for the removal of algae but leads to a greater loss of ozone and a decrease in the utilization of ozone. Under the optimal conditions, the algal cells and chlorophyll a are completely destroyed in 10 min by use of the hybrid method. PMID:22883706

  7. Planktonic blue-green algae: Production, sedimentation, and decomposition in Lake Mendota, Wisconsin

    Microsoft Academic Search

    ROBERT D. FALLON; Thomas D. Brockl

    1980-01-01

    During two annual phytoplankton cycles (1976, 1977), growth, primary production, and sedimentation were measured in Lake Mendota. Blue-green algal blooms developed after lake stratification in a succession of dominant genera. Aphunizomenon and Anabaena nor- mally dominated early populations with Microcystis becoming more important by midsum- mer. Periodic declines in blue-green algal standing crop could be accounted for by a com-

  8. Functional Characterization of the Plastidic Phosphate Translocator Gene Family from the Thermo-Acidophilic Red Alga Galdieria sulphuraria Reveals Specific Adaptations of Primary Carbon Partitioning in Green Plants and Red Algae1[W][OA

    PubMed Central

    Linka, Marc; Jamai, Aziz; Weber, Andreas P.M.

    2008-01-01

    In chloroplasts of green plants and algae, CO2 is assimilated into triose-phosphates (TPs); a large part of these TPs is exported to the cytosol by a TP/phosphate translocator (TPT), whereas some is stored in the plastid as starch. Plastidial phosphate translocators have evolved from transport proteins of the host endomembrane system shortly after the origin of chloroplasts by endosymbiosis. The red microalga Galdieria sulphuraria shares three conserved putative orthologous transport proteins with the distantly related seed plants and green algae. However, red algae, in contrast to green plants, store starch in their cytosol, not inside plastids. Hence, due to the lack of a plastidic starch pool, a larger share of recently assimilated CO2 needs to be exported to the cytosol. We thus hypothesized that red algal transporters have distinct substrate specificity in comparison to their green orthologs. This hypothesis was tested by expression of the red algal genes in yeast (Saccharomyces cerevisiae) and assessment of their substrate specificities and kinetic constants. Indeed, two of the three red algal phosphate translocator candidate orthologs have clearly distinct substrate specificities when compared to their green homologs. GsTPT (for G. sulphuraria TPT) displays very narrow substrate specificity and high affinity; in contrast to green plant TPTs, 3-phosphoglyceric acid is poorly transported and thus not able to serve as a TP/3-phosphoglyceric acid redox shuttle in vivo. Apparently, the specific features of red algal primary carbon metabolism promoted the evolution of a highly efficient export system with high affinities for its substrates. The low-affinity TPT of plants maintains TP levels sufficient for starch biosynthesis inside of chloroplasts, whereas the red algal TPT is optimized for efficient export of TP from the chloroplast. PMID:18799657

  9. The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer.

    PubMed

    Brembu, Tore; Winge, Per; Tooming-Klunderud, Ave; Nederbragt, Alexander J; Jakobsen, Kjetill S; Bones, Atle M

    2014-08-01

    The chloroplasts of heterokont algae such as diatoms are the result of a secondary endosymbiosis event, in which a red alga was engulfed by a non-photosynthetic eukaryote. The diatom chloroplast genomes sequenced to date show a high degree of similarity, but some examples of gene replacement or introduction of genes through horizontal gene transfer are known. The evolutionary origin of the gene transfers is unclear. We have sequenced and characterised the complete chloroplast genome and a putatively chloroplast-associated plasmid of the pennate diatom Seminavis robusta. The chloroplast genome contains two introns, a feature that has not previously been found in diatoms. The group II intron of atpB appears to be recently transferred from a Volvox-like green alga. The S. robusta chloroplast genome (150,905 bp) is the largest diatom chloroplast genome characterised to date, mainly due to the presence of four large gene-poor regions. Open reading frames (ORFs) encoded by the gene-poor regions show similarity to putative proteins encoded by the chloroplast genomes of different heterokonts, as well as the plasmids pCf1 and pCf2 found in the diatom Cylindrotheca fusiformis. A tyrosine recombinase and a serine recombinase are encoded by the S. robusta chloroplast genome, indicating a possible mechanism for the introduction of novel genes. A plasmid with similarity to pCf2 was also identified. Phylogenetic analyses of three ORFs identified on pCf2 suggest that two of them are part of an operon-like gene cluster conserved in bacteria. Several genetic elements have moved through horizontal gene transfer between the chloroplast genomes of different heterokonts. Two recombinases are likely to promote such gene insertion events, and the plasmid identified may act as vectors in this process. The copy number of the plasmid was similar to that of the plastid genome indicating a plastid localization. PMID:24365712

  10. Benthic algae as monitors of heavy metals in various polluted rivers by Energy Dispersive X-Ray Spectrometer.

    PubMed

    Lai, Sheue-Duan; Chen, Pei-Chung; Hsu, Hoang-Kao

    2003-05-01

    Benthic microalgae assemblages were used as monitors of copper (Cu), zinc (Zn), and chromium (Cr) in various polluted rivers of San-Yeh-Kong, in southern Taiwan, and analyzed using Scanning Electron Microscope and Energy Dispersive X-Ray Spectrometer (SEM-EDS). Under SEM-EDS, the benthic algae from seriously polluted rivers (dominant by the cyanobacteria Oscillatoria chalybea, green algae Euglena acus and diatom Nitzschia palea under light microscopes) revealed the elemental compositions of heavy metals such as Cu, Zn, Cr, Ti, and that of Mg, Al, Si, P, S, Cl, K, Ca, and Fe. In contrast, benthic algae from moderately (dominant by diatoms Cymbella turgidula and Gomphonema globiferm) and lightly polluted river (dominant by diatom Diatoma vulgare) didn't have any heavy metal elements. In addition to the algal samples, unfiltered water and bottom mud were also investigated for comparison. Further experiment involving the benthic algae from seriously polluted station revealed that all dominant species could survive on the 1 mL 60 ppm Cu, 1 mL 60 ppm Zn, and 1 mL 60 ppm Cr separately after five days culture. The data of this preliminary study are sufficient to encourage further experimentation into the potential for detecting benthic algae as a bioindicator under SEM-EDS to provide rapid information about water pollution. PMID:12744437

  11. Gas-bacuoles and other viruslike structures in blue-green algae

    Microsoft Academic Search

    E. Fjerdingstad

    1972-01-01

    The result of electron microscopic investigation of gas-vacuoles in a culture of the benthal algaOscillatoria chalybea was compared with the extensive literature concerning gas-vacuole formation and virus infection in bacteria and animals.\\u000a \\u000a On the basis of 21 features indicating that gas-vacuoles are pathological inclusions it was concluded that they are viruslike\\u000a particles.\\u000a \\u000a \\u000a \\u000a Viruslike structures have also been found in our

  12. THE EFFECT OF SPECIFIC POISONS UPON THE PHOTO-REDUCTION WITH HYDROGEN IN GREEN ALGAE

    PubMed Central

    Gaffron, Hans

    1942-01-01

    1. The effect of poisons upon the photoreduction with hydrogen in Scenedesmus and similar algae has been studied. The poisons used were cyanide, hydroxylamine, dinitrophenol, and carbon monoxide, substances known to inhibit more or less specifically certain enzymatic reactions. 2. It was found that quite generally one has to distinguish between the action of poisons upon the photoreduction in the stationary state, once this type of metabolism has been well established in the cells, and their effects on transition phenomena, on the "adaptation" and its reversal, the "turnback" from photoreduction to photosynthesis. 3. Cyanide inhibits photoreduction more strongly than it inhibits photosynthesis in the same algae. It is concluded that the mechanism of oxygen liberation, which is idle in photoreduction, is not very sensitive to cyanide. 4. Hydroxylamine in low concentrations is a powerful inhibitor of photosynthesis but has practically no influence on the rate of photoreduction. Consequently, it is assumed that it acts in photosynthesis mainly by inhibiting the evolution of oxygen. Greater concentrations of hydroxylamine clearly inhibit photoreduction, but diminish the rate to about one-half only. A greater degree of inhibition is obtained only by prolonged incubation. 5. Dinitrophenol was found to inhibit strongly the reduction of carbon dioxide, under aerobic as well as under anaerobic conditions. A stimulating effect of dinitrophenol can be demonstrated only with respiration or fermentation, not with photosynthesis. 6. Carbon monoxide interferes with all phases of the hydrogen metabolism in algae. It is supposed therefore to be a specific inhibitor for the hydrogenase system. 7. The "adaptation" to the hydrogen metabolism, which takes place if the algae are incubated anaerobically in hydrogen for several hours, is inhibited completely by very small amounts of cyanide. The adaptation reaction is more sensitive to cyanide than most of the other metabolic processes in the same cell. Correspondingly cyanide enhances the return to aerobic conditions, the "turnback," which occurs under the influence of light of high intensities. 8. Hydroxylamine, applied aerobically, inhibits the adaptation reaction to about the same degree as it inhibits photosynthesis. Photoreduction proceeds after the adaptation in presence of hydroxylamine only at a fraction of the rate that it would have if the poison were added later. 9. Hydroxylamine in concentrations of 10–3 M protects the anaerobic metabolism against the return to aerobic photosynthesis which normally occurs under the influence of light of too high intensity. The protection is only relative and the higher the light intensity the more hydroxylamine is needed to keep photoreduction going. Once a "turnback" occurs in presence of much hydroxylamine all photochemical gas exchange comes to an end. PMID:19873338

  13. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga.

    PubMed

    Tujula, Niina A; Crocetti, Gregory R; Burke, Catherine; Thomas, Torsten; Holmström, Carola; Kjelleberg, Staffan

    2010-02-01

    Marine Ulvacean algae are colonized by dense microbial communities predicted to have an important role in the development, defense and metabolic activities of the plant. Here we assess the diversity and seasonal dynamics of the bacterial community of the model alga Ulva australis to identify key groups within this epiphytic community. A total of 48 algal samples of U. australis that were collected as 12 individuals at 3 monthly intervals, were processed by applying denaturing gradient gel electrophoresis (DGGE), and three samples from each season were subjected to catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). CARD-FISH revealed that the epiphytic microbial community was comprised mainly of bacterial cells (90%) and was dominated by the groups Alphaproteobacteria (70%) and Bacteroidetes (13%). A large portion (47%) of sequences from the Alphaproteobacteria fall within the Roseobacter clade throughout the different seasons, and an average relative proportion of 19% was observed using CARD-FISH. DGGE based spatial (between tidal pools) and temporal (between season) comparisons of bacterial community composition demonstrated that variation occurs. Between individuals from both the same and different tidal pools, the variation was highest during winter (30%) and between seasons a 40% variation was observed. The community also includes a sub-population of bacteria that is consistently present. Sequences from excised DGGE bands indicate that members of the Alphaproteobacteria and the Bacteroidetes are part of this stable sub-population, and are likely to have an important role in the function of this marine epiphytic microbial community. PMID:19829319

  14. Nuclear DNA Content Estimates in Multicellular Green, Red and Brown Algae: Phylogenetic Considerations

    PubMed Central

    KAPRAUN, DONALD F.

    2005-01-01

    • Background and Aims Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae. • Methods The DNA-localizing fluorochrome DAPI (4?, 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry. • Key Results 2C DNA contents for 85 species of Chlorophyta range from 0·2–6·1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39·2 and 20·7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0·1–2·8 pg, and for 44 species of Phaeophyta range from 0·2–1·8 pg. • Conclusions New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges. PMID:15596456

  15. The genome of the diatom Thalassiosira pseudonana: Ecology,evolution, and metabolism

    SciTech Connect

    Ambrust, E.V.; Berges, J.; Bowler, C.; Green, B.; Martinez, D.; Putnam, N.; Zhou, S.; Allen, A.; Apt, K.; Bechner, M.; Brzezinski, M.; Chaal, B.; Chiovitti, A.; Davis, A.; Goodstein, D.; Hadi, M.; Hellsten,U.; Hildebrand, M.; Jenkins, B.; Jurka, J.; Kapitonov, V.; Kroger, N.; Lau, W.; Lane, T.; Larimer, F.; Lippmeier, J.; Lucas, S.; Medina, M.; Montsant, A.; Obornik, M.; Parker, M. Schnitzler; Palenik, B.; Pazour,G.; Richardson, P.; Rynearson, T.; Saito, M.; Schwartz, D.; Thamatrakoln,K.; Valentin, K.; Vardi, A.; Wilkerson, F.; Rokhsar, D.; Vardi, A.; Wilkerson, F.P.; Rokhsar, D.S.

    2004-09-01

    Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for {approx}20% of global carbon fixation. We report the 34 Mbp draft nuclear genome of the marine diatom, Thalassiosira pseudonana and its 129 Kbp plastid and 44 Kbp mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, utilization of a range of nitrogenous compounds and a complete urea cycle, all attributes that allow diatoms to prosper in the marine environment. Diatoms are unicellular, photosynthetic, eukaryotic algae found throughout the world's oceans and freshwater systems. They form the base of short, energetically-efficient food webs that support large-scale coastal fisheries. Photosynthesis by marine diatoms generates as much as 40% of the 45-50 billion tonnes of organic carbon produced each year in the sea (1), and their role in global carbon cycling is predicted to be comparable to that of all terrestrial rainforests combined (2, 3). Over geological time, diatoms may have influenced global climate by changing the flux of atmospheric carbon dioxide into the oceans (4). A defining feature of diatoms is their ornately patterned silicified cell wall or frustule, which displays species-specific nano-structures of such fine detail that diatoms have long been used to test the resolution of optical microscopes. Recent attention has focused on biosynthesis of these nano-structures as a paradigm for future silica nanotechnology (5). The long history (over 180 million years) and dominance of diatoms in the oceans is reflected by their contributions to vast deposits of diatomite, most cherts and a significant fraction of current petroleum reserves (6). As photosynthetic heterokonts, diatoms reflect a fundamentally different evolutionary history from the higher plants that dominate photosynthesis on land. Higher plants and green, red and glaucophyte algae are derived from a primary endosymbiotic event in which a non-photosynthetic eukaryote acquired a chloroplast by engulfing (or being invaded by) a prokaryotic cyanobacterium. In contrast, dominant bloom-forming eukaryotic phytoplankton in the ocean, such as diatoms and haptophytes, were derived by secondary endosymbiosis whereby a non-photosynthetic eukaryote acquired a chloroplast by engulfing a photosynthetic eukaryote, probably a red algal endosymbiont (Fig. 1). Each endosymbiotic event led to new combinations of genes derived from the hosts and endosymbionts (7). Prior to this project, relatively few diatom genes had been sequenced, few chromosome numbers were known, and genetic maps did not exist (8). The ecological and evolutionary importance of diatoms motivated our sequencing and analysis of the nuclear, plastid, and mitochondrial genomes of the marine centric diatom Thalassiosira pseudonana.

  16. Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae

    PubMed Central

    Foissner, Ilse

    2013-01-01

    RAB5 GTPases are important regulators of endosomal membrane traffic in yeast, plants, and animals. A specific subgroup of this family, the ARA6 group, has been described in land plants including bryophytes, lycophytes, and flowering plants. Here, we report on the isolation of an ARA6 homologue in a green alga. CaARA6 (CaRABF1) from Chara australis, a member of the Characeae that is a close relative of land plants, encodes a polypeptide of 237 aa with a calculated molecular mass of 25.4kDa, which is highly similar to ARA6 members from Arabidopsis thaliana and other land plants and has GTPase activity. When expressed in Nicotiana benthamiana leaf epidermal cells, fluorescently tagged CaARA6 labelled organelles with diameters between 0.2 and 1.2 µm, which co-localized with fluorescently tagged AtARA6 known to be present on multivesicular endosomes. Mutations in the membrane-anchoring and GTP-binding sites altered the localization of CaARA6 comparable to that of A. thaliana ARA6 (RABF1). In characean internodal cells, confocal immunofluorescence and immunogold electron microscopy with antibodies against AtARA6 and CaARA6 revealed ARA6 epitopes not only at multivesicular endosomes but also at the plasma membrane, including convoluted domains (charasomes), and at the trans-Golgi network. Our findings demonstrate that ARA6-like proteins have a more ancient origin than previously thought. They indicate further that ARA6-like proteins could have different functions in spite of the high similarity between characean algae and flowering plants. PMID:24127512

  17. QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae.

    PubMed

    Neuwoehner, Judith; Junghans, Marion; Koller, Mirjam; Escher, Beate I

    2008-10-20

    We propose the use of additional physiological endpoints in the 24h growth inhibition test with synchronous cultures of Scenedesmus vacuolatus for the classification of physiological modes of toxic action of chemicals in green algae. The classification scheme is illustrated on the example of one baseline toxicant (3-nitroaniline) and five biocides (irgarol, diuron, Sea-Nine, tributyltin (TBT) and norflurazon). The well-established endpoint of inhibition of reproduction is used for an analysis of the degree of specificity of toxicity by comparing the experimental data with predictions from a quantitative structure-activity relationship (QSAR) for baseline toxicity (narcosis). For those compounds with a toxic ratio greater than 10, i.e. a 10 times higher effect in reproduction than predicted by baseline toxicity, additionally the physiological endpoints inhibition of photosynthesis, cell division and cell volume growth were experimentally assessed. Depending on the relative sensitivity of the different endpoints the chemicals were classified into five different classes of modes of toxic action using a flow chart that was developed in the present study. The advantage of the novel classification scheme is the simplicity of the experimental approach. For the determination of the inhibition of reproduction, the cell size and numbers are quantified with a particle analyzer. This information can be used to derive also the physiological endpoints of cell volume growth and inhibition of cell division. The only additional measurement is the inhibition of the photosynthesis efficiency, which can be easily performed using the non-invasive saturation pulse method and pulse-modulated chlorophyll fluorometry with the Tox-Y-PAM instrument. This mechanistic approach offers a great future potential in ecotoxicology for the physiological mode of action classification of chemicals in algae, which should be a crucial step considered in the risk assessment of chemicals. PMID:18789546

  18. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.

    PubMed

    Vanegas, C H; Bartlett, J

    2013-01-01

    Marine algae have emerged as an alternative feedstock for the production of a number of renewable fuels, including biogas. In addition to energy potential, other characteristics make them attractive as an energy source, including their ability to absorb carbon dioxide (CO2), higher productivity rates than land-based crops and the lack of water use or land competition. For Ireland, biofuels from marine algae can play an important role by reducing imports of fossil fuels as well as providing the necessary energy in rural communities. In this study, five potential seaweed species common in Irish waters, Saccorhiza polyschides, Ulva sp., Laminaria digitata, Fucus serratus and Saccharina latissima, were co-digested individually with bovine slurry. Batch reactors of 120ml and 1000ml were set up and incubated at 35 degrees C to investigate their suitability for production of biogas. Digesters fed with S. latissima produced the maximum methane yield (335 ml g volatile solids(-1) (g(VS)(-1) followed by S. polyschides with 255 ml g(VS)(-1). L. digitata produced 246ml g(VS)(-1) and the lowest yields were from the green seaweed Ulva sp. 191ml g(VS)(-1). The methane and CO2 percentages ranged between 50-72% and 10-45%, respectively. The results demonstrated that the seaweed species investigated are good feedstocks candidates for the production of biogas and methane as a source of energy. Their use on a large-scale process will require further investigation to increase yields and reduce production costs. PMID:24350482

  19. Seasonal variation of antibacterial activities in the green alga Ulva pertusa Kjellman.

    PubMed

    Choi, Jae-Suk; Ha, Yu-Mi; Lee, Bo-Bae; Moon, Hye Eun; Cho, Kwang Keun; Choi, In Soon

    2014-03-01

    The present study was performed to screen out the extracts of algae and assess the seasonal variation in antimicrobial activity of Ulva pertusa against Gardnerella vaginalis. Seasonal variation in antibacterial activity was observed, with the extracts showing no activity during summer and autumn, and showing antibacterial activity from early winter (December) to middle spring (April). The maximum value of antimicrobial activity (6.5 mm inhibition zone at 5 mg disk(-1)) of U. pertusa against G. vaginalis was observed in April. Otherwise, for both chlorophyll a and b, the highest content (2.87 mg g(-1) and 1.37 mg g(-1)) was observed in March 2009. These results may reflect variation in cellular chemical compositions such as secondary metabolite(s) rather than chlorophyll and biological activities according to season. PMID:24665759

  20. Food production and gas exchange system using blue-green alga (spirulina) for CELSS

    NASA Technical Reports Server (NTRS)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki

    1987-01-01

    In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself was conducted. Spirulina was cultivated in the 6 liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46 percent) at a rate of 100 to approx. 150 ml per minute could be obtained.

  1. Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species.

    PubMed

    Gupta, V K; Shrivastava, A K; Jain, N

    2001-12-01

    Biosorption of heavy metals is an effective technology for the treatment of industrial wastewaters. Results are presented showing the sorption of Cr(VI) from solutions by biomass of filamentous algae Spirogyra species. Batch experiments were conducted to determine the adsorption properties of the biomass and it was observed that the adsorption capacity of the biomass strongly depends on equilibrium pH. Equilibrium isotherms were also obtained and maximum removal of Cr(VI) was around 14.7 x 10(3) mg metal, kg of dry weight biomass at a pH of 2.0 in 120 min with 5 mg/l of initial concentration. The results indicated that the biomass of Spirogyra species is suitable for the development of efficient biosorbent for the removal and recovery of Cr(VI) from wastewater. PMID:11791837

  2. Food production and gas exchange system using blue-green alga (Spirulina) for CELSS

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki

    In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself has been conducted. Spirulina was cultivated in the 6-liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46%) at a rate of 100 ~ 150 ml per minute could be obtained.

  3. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  4. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae)

    Microsoft Academic Search

    Sheng-Bing Wang; Feng Chen; Milton Sommerfeld; Qiang Hu

    2004-01-01

    Rapidly growing, green motile flagellates of Haematococcus pluvialis can transform into enlarged red resting cysts (aplanospores) under oxidative stress conditions. However, it is not known what initial molecular defense mechanisms occur in response to oxidative stress, and may ultimately lead to cellular transformation. In this study, global-expression profiling of cellular proteins in response to stress was analyzed by two-dimensional gel

  5. Soluble Nitrogenase from Vegetative Cells of the Blue-Green Alga Anabaena cylindrica

    Microsoft Academic Search

    R. V. Smith; M. C. W. Evans

    1970-01-01

    REPORTS of nitrogen fixation by blue-green algal species have, in the main, been restricted to members of the orders Nostocales and Stigonematales1. Unless they are grown in the presence of large concentrations of free ammonium ions, all the species produce characteristic types of cells called heterocysts. The correlation between the ability of a species to fix nitrogen and the possession

  6. ANNA – Artificial Neural Network model for predicting species abundance and succession of blue-green algae

    Microsoft Academic Search

    Friedrich Recknagel

    1997-01-01

    Predictive potential of deductive and inductivephytoplankton models are compared regarding theirusefulness for forecasting and control of harmfulalgal blooms. While applications of deductive modelsstill seem to be restricted by lack of knowledge, ad hocinductive models sometimes prove to bestraightforward and useful. The inductive neuralnetwork model ANNA is documented by means of anapplication to Lake Kasumigaura, Japan. ANNA wasvalidated for five blue-green

  7. Alkaloids in marine algae.

    PubMed

    Güven, Kasim Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  8. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kas?m Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  9. Growth responses of blue-green algae to sodium chloride concentration

    Microsoft Academic Search

    John C. Batterton; C. Baalen

    1971-01-01

    General characteristics of blue-green algal halotolerance were studied by growth experiments and selected analyses. Variation in NaCl concentration was used to mimic salinity. Marine isolates were more halotolerant (8–10% NaCl) than non-marine isolates (2% NaCl). The Na+ requirement for growth was saturated at 1 mg NaCl\\/l for non-marine isolates and 100mg NaCl\\/l for marine isolates. Intracellular Na+ values were affected

  10. Effects of snail grazing and nutrient release on growth of the macrophytes Ceratophyllum demersum and Elodea canadensis and the filamentous green alga Cladophora sp

    Microsoft Academic Search

    Agnieszka Pinowska

    2002-01-01

    The effects of snail (Lymnaea (Galba) turricula) nutrient release and grazing on young macrophytes and filamentous green algae were examined in a laboratory experiment. Snails released an average of 24.2 µg PO4-P and 48.9 µg NH4-N g-1 snail FW d-1. Snails consumed Cladophora sp. at the highest rate (45 mg g-1 snail FW d-1), Elodea canadensis at a lower rate

  11. Occurrence of bromoperoxidase in the marine green macro-alga, ulvella lens, and emission of volatile brominated methane by the enzyme

    Microsoft Academic Search

    Takashi Ohshiro; Satoru Nakano; Yoshinori Takahashi; Minoru Suzuki; Yoshikazu Izumi

    1999-01-01

    Bromoperoxidase activity was detected in the marine green macro-alga, Ulvella lens, which is used to induce the larval metamorphosis of sea urchin in aquaculture in Japan. The enzyme activity was enhanced 8.5- and 2.2-fold by the addition of cobalt and vanadium ions to the reaction mixture, respectively. The volatile halogenated compounds dibromomethane and tribromomethane were formed in the reaction mixture

  12. ADP-ribosylation of actin from the green alga Chara corallina by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin

    Microsoft Academic Search

    F. Grolig; I. Just; K. Aktories

    1996-01-01

    Summary The ability of two bacterial toxins to modify a plant actin by covalent ADP-ribosylation was tested in the green algaChara corallina. Using [32P]NAD, bothClostridium botulinum C2 toxin andClostridium perfringens iota toxin labelled a protein of Mr 42 kDa which comigrated with actin and was immunoprecipitated by a monoclonal anti-actin antibody. ADP-ribosylation ofChara actin was more efficient with iota toxin

  13. Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper

    Microsoft Academic Search

    Pavel P?ibyl; Vladislav Cepák; Vilém Zachleder

    2008-01-01

    The effect of the toxic metal ions, aluminium (Al3+), nickel (Ni2+), and copper (Cu2+), on both the actin and tubulin cytoskeleton of the green alga Spirogyra decimina was studied. Batch cultured cells were grown for different time intervals at concentrations of 10, 15, 40 and 100?M of aluminium as AlCl3, nickel as NiCl2 and copper as CuSO4·5H2O. The impact of

  14. Morphological and molecular changes in the unicellular green alga Dunaliella salina grown under supplemental UV-B radiation: cell characteristics and Photosystem II damage and repair properties

    Microsoft Academic Search

    Antonio Masi; Anastasios Melis

    1997-01-01

    The effect of supplemental UV-B radiation during growth in the green alga Dunaliella salina was investigated. At the cellular level, supplemental UV-B radiation induced a doubling of the cell volume, a phenomenon attributed to a slow-down in the rate of cell division. At the thylakoid mebrane level, supplemetal UV-B radiation induced photodamage to the 32 kDa (D1) and 34 kDa

  15. Rewetting of drought-resistant blue-green algae: Time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation

    Microsoft Academic Search

    Siegfried Scherer; Anneliese Ernst; Ting-Wei Chen; Peter BiJger

    1984-01-01

    The response of the terrestrial blue-green algae Nostoc flagelliforme, Nostoc commune, and Nostoc spec. to water uptake has been investigated after a drought period of approximately 2 years. Rapid half-times of rewetting (0.6, 3.3, and 15.5 min, respectively) are found. The surfaceto-mass ratio of the three species is inversely correlated to the speed of water uptake and loss. The ecological

  16. Severe Hepatotoxicity CausedbytheTropical Cyanobacterium (Blue-Green Alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya andSubbaRajuIsolated fromaDomestic Water Supply Reservoir

    Microsoft Academic Search

    C. RUNNEGAR; ALAN R. B. JACKSON

    raciborskii, atropical blooming species ofcyanobacterium (blue-green alga), wasisolated fromthedomestic water supply reservoir onPalmIsland, acontinental island offthetropical northeast coast ofAustralia. Thisspecies, notpreviously knowntobetoxic, wasshowntobeseverely hepatotoxic formice. The 50%lethal doseat24hafter injection wasfound tobe64± 5mgoffreeze-dried culture perkgofmouse. The principal lesion produced wascentrilobular tomassive hepatocyte necrosis, butvarious degrees ofinjury were also seen inthekidneys, adrenal glands, lungs, andintestine. Thepossible implication ofthis finding inrelation toanincident ofhepatoenteritis

  17. Biosorption of Cr 3+, Cd 2+ and Cu 2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process

    Microsoft Academic Search

    Katarzyna Chojnacka; Andrzej Chojnacki; Helena Górecka

    2005-01-01

    The process of biosorption of heavy metal ions (Cr3+, Cd2+, Cu2+) by blue–green algae Spirulina sp. is discussed in this paper. Spirulina sp. was found to be a very efficient biosorbent. The aim of the present study was to investigate quantitatively the potential binding sites present at the surface of Spirulina sp., using both potentiometric titrations and adsorption isotherms. The

  18. A laboratory investigation of the filtration and ingestion rates of the tilapia, Oreochromis niloticus , feeding on two species of blue-green algae

    Microsoft Academic Search

    Mark E. Northcott; Malcolm C. M. Beveridge; Lindsay G. Ross

    1991-01-01

    Synopsis Quantitative aspects of the filter-feeding of the tilapia,Oreochromis niloticus, on two species of the blue-green algae —Anabaena cylindrica andMicrocystis aeruginosa — were investigated in the laboratory. The ingestion rate of 85 mm SLO. niloticus was best fitted using a linear regression over the range of biovolume concentrations studied (3 × 106 ? 3 × 108 ?m3 ml?1). The ingestion

  19. Effects of light, temperature, pH, and inhibitors on the ATP level of the blue-green alga Anacystic nidulans

    Microsoft Academic Search

    T. Bornefeld; W. Simonis

    1974-01-01

    The dependence of the ATP level of the blue-green alga Anacystis nidulans on light intensity (300–20000 erg·cm-2·s-1 white light) and on temperature (0–50°), pH (6.5–9.0), and phosphate concentration (up to 10-1 M) in light (20000 lx) and dark was measured. In contrast to a low ATP level in darkness the level in light remains high and constant with each treatment

  20. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue–green algae Spirulina platensis

    Microsoft Academic Search

    L. M Mosulishvili; E. I Kirkesali; A. I Belokobylsky; A. I Khizanishvili; M. V Frontasyeva; S. S Pavlov; S. F Gundorina

    2002-01-01

    The great potential of using blue–green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb,

  1. The Control of Homoserine-O-transsuccinylase in a Methionine-requiring Mutant of the Blue-green Alga Anacystis nidulans

    Microsoft Academic Search

    S. F. Delaney; A. Dickson; N. G. Carr

    1973-01-01

    SUMMARY The regulation of the first step in methionine biosynthesis, homoserine-0- transsuccinylase, has been examined in a methionine-requiring mutant of the blue-green alga Anacystis nidulans. Using an improved assay for homoserine-0- transsuccinylase, no evidence of derepression of the biosynthesis of this enzyme was found, even under conditions of acute methionine starvation. End-product in- hibition of the enzyme by homoserine, cystathionine

  2. Management of Meloidogyne incognita on tomato by root-dip treatment in culture filtrate of the blue-green alga, Microcoleus vaginatus

    Microsoft Academic Search

    Z. Khan; S. D. Park; S. Y. Shin; S. G. Bae; I. K. Yeon; Y. J. Seo

    2005-01-01

    The nematicidal potential of culture filtrates of the blue-green alga, Microcoleus vaginatus (Cyanobacterium) was tested against Meloidogyne incognita on tomato in pots under greenhouse conditions. Prior to the transplantation of tomato seedling, roots were dipped in different concentrations (0.2%, 0.5%, 1%, 2%, 10%, 50% and 100%) of culture filtrate of M. vaginatus for 30min. Root-dip treatment reduced the root galling

  3. Complete Nucleotide Sequence of the Chloroplast Genome from the Green Alga Chlorella vulgaris: The Existence of Genes Possibly Involved in Chloroplast Division

    Microsoft Academic Search

    Tatsuya Wakasugi; Toshiyuki Nagai; Meenu Kapoor; Mamoru Sugita; Mari Ito; Shiho Ito; Junko Tsudzuki; Keiko Nakashima; Takahiko Tsudzuki; Yasuhiko Suzuki; Akira Hamada; Tutomu Ohta; Atsushi Inamura; Koichi Yoshinaga; Masahiro Sugiura

    1997-01-01

    The complete nucleotide sequence of the chloroplast genome (150,613 bp) from the unicellular green alga Chlorella vulgaris C-27 has been determined. The genome contains no large inverted repeat and has one copy of rRNA gene cluster consisting of 16S, 23S, and 5S rRNA genes. It contains 31 tRNA genes, of which the tRNALeu(GAG) gene has not been found in land

  4. Fouling coverage of a green tide alga, Ulva pertusa on some antifouling test surfaces exposed to Ayagin harbor waters, east coast of South Korea.

    PubMed

    Sidharthan, M; Shin, Hyun Woung; Joo, Jin Hyung

    2004-01-01

    Toxic antifouling chemicals released into the seawaters leads to marine environmental degradation. In order to identify a nontoxic antifoulant, an assessment of antifouling (AF) efficacy of some AF candidates was made at Ayagin harbor, east coast of South Korea. In this static panel study conducted during October 2000-March 2001, some commercial antifoulants, seaweed and seagrass extracts were screened. On panel surfaces coated with a seaweed extract, Ishige okamurae exhibited effective AF activity. Ulva pertusa was encountered as a 'monospecific' fouler with fairly high fouling coverage on many of the test panel surfaces. In recent years the increased influx of inorganic pollutants in the coastal waters causes exorbitant growth of fouling marine algae found all along the Korean peninsula. Especially, a cosmopolitan ship fouling alga U. pertusa occur with high abundance. It was largely suggested that the proposed international ban on the toxic antifoulant tributyltin (TBT) had significant effect on the 'green tide' phenomenon occurring in different parts of the world. However, it appears that Korean scenario of 'green tide' is a localized. Antifouling efficacy of some AF coatings and fouling coverage of a green tide alga, U. pertusa are discussed. PMID:15303702

  5. Induction of Inorganic Carbon Accumulation in the Unicellular Green Algae Scenedesmus obliquus and Chlamydomonas reinhardtii1

    PubMed Central

    Palmqvist, Kristin; Sjöberg, Staffan; Samuelsson, Göran

    1988-01-01

    The induction of a dissolved inorganic carbon (DIC) accumulating mechanism in the two algal species Scenedesmus obliquus (WT) and Chlamydomonas reinhardtii (137 c+) was physiologically characterized by monitoring DIC uptake kinetics at a low and constant DIC concentration (120-140 micromolar), after transfer from high-DIC culturing conditions. A potentiometric titration method was used to measure and calculate algal DIC uptake. Full acclimation to low-DIC conditions was obtained within a period of 90 min, after which time the DIC uptake had been increased 7 to 10 times. Experiments were also conducted in the presence of inhibitors against DIC accumulation. The inhibitor of extracellular carbonic anhydrase (CA), acetazolamide (50 micromolar), inhibited the adaptation partly, while the inhibitor of both extra- and intracellular CA, ethoxyzolamide (50 micromolar) totally inhibited the acclimation. Cycloheximide (10 micrograms per milliliter), which inhibits protein synthesis on cytoplasmic ribosomes, and vanadate (180 micromolar), which inhibits the plasmamembrane bound ATPase, also inhibited the acclimation totally. These results taken together suggest that the algae are dependent on intracellular CA, plasmamembrane bound ATPase, and de novo protein synthesis for DIC accumulation. Also, these components are more important than extracellular CA for the overall function of the DIC-accumulating mechanism. PMID:16666160

  6. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants

    PubMed Central

    Alaba, Sylwia; Piszczalka, Pawel; Pietrykowska, Halina; Pacak, Andrzej M; Sierocka, Izabela; Nuc, Przemyslaw W; Singh, Kashmir; Plewka, Patrycja; Sulkowska, Aleksandra; Jarmolowski, Artur; Karlowski, Wojciech M; Szweykowska-Kulinska, Zofia

    2015-01-01

    Liverworts are the most basal group of extant land plants. Nonetheless, the molecular biology of liverworts is poorly understood. Gene expression has been studied in only one species, Marchantia polymorpha. In particular, no microRNA (miRNA) sequences from liverworts have been reported. Here, Illumina-based next-generation sequencing was employed to identify small RNAs, and analyze the transcriptome and the degradome of Pellia endiviifolia. Three hundred and eleven conserved miRNA plant families were identified, and 42 new liverwort-specific miRNAs were discovered. The RNA degradome analysis revealed that target mRNAs of only three miRNAs (miR160, miR166, and miR408) have been conserved between liverworts and other land plants. New targets were identified for the remaining conserved miRNAs. Moreover, the analysis of the degradome permitted the identification of targets for 13 novel liverwort-specific miRNAs. Interestingly, three of the liverwort microRNAs show high similarity to previously reported miRNAs from Chlamydomonas reinhardtii. This is the first observation of miRNAs that exist both in a representative alga and in the liverwort P. endiviifolia but are not present in land plants. The results of the analysis of the P. endivifolia microtranscriptome support the conclusions of previous studies that placed liverworts at the root of the land plant evolutionary tree of life. PMID:25530158

  7. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants.

    PubMed

    Alaba, Sylwia; Piszczalka, Pawel; Pietrykowska, Halina; Pacak, Andrzej M; Sierocka, Izabela; Nuc, Przemyslaw W; Singh, Kashmir; Plewka, Patrycja; Sulkowska, Aleksandra; Jarmolowski, Artur; Karlowski, Wojciech M; Szweykowska-Kulinska, Zofia

    2015-04-01

    Liverworts are the most basal group of extant land plants. Nonetheless, the molecular biology of liverworts is poorly understood. Gene expression has been studied in only one species, Marchantia polymorpha. In particular, no microRNA (miRNA) sequences from liverworts have been reported. Here, Illumina-based next-generation sequencing was employed to identify small RNAs, and analyze the transcriptome and the degradome of Pellia endiviifolia. Three hundred and eleven conserved miRNA plant families were identified, and 42 new liverwort-specific miRNAs were discovered. The RNA degradome analysis revealed that target mRNAs of only three miRNAs (miR160, miR166, and miR408) have been conserved between liverworts and other land plants. New targets were identified for the remaining conserved miRNAs. Moreover, the analysis of the degradome permitted the identification of targets for 13 novel liverwort-specific miRNAs. Interestingly, three of the liverwort microRNAs show high similarity to previously reported miRNAs from Chlamydomonas reinhardtii. This is the first observation of miRNAs that exist both in a representative alga and in the liverwort P. endiviifolia but are not present in land plants. The results of the analysis of the P. endivifolia microtranscriptome support the conclusions of previous studies that placed liverworts at the root of the land plant evolutionary tree of life. PMID:25530158

  8. Marine green algae Codium iyengarii as a good bio-sorbent for elimination of reactive black 5 from aqueous solution.

    PubMed

    Azmat, Rafia

    2014-09-01

    The green seaweeds Codium iyengarii (C. iyengarii) was used to prepare as an adsorbent surface for the deletion of Reactive Black 5 (RB 5) from aqueous solution via adsorption. The batch technique was adopted under the optimal condition of amount of adsorbent, agitation time, concentration of dye, and at neutral and low pH. The depletion in concentration of the dye was monitored by Schimadzo 180 AUV/Visible spectrophotometer. It was initially monolayer adsorption, which showed multilayered formation later on with the passage of time at low and neutral pH. The Results displayed that adsorptive ability of C. iyengarii was 1.95-3.82mg/g with an elevation in primary application of dye contents (50ppm-70 ppm). The elimination data were well stable into the Langmuir and Freundlich adsorption isotherm equations. The Langmuir (R2=0.9848) and Freundlich (R2=0.9441) constants for biosorption of RB 5 on green algae were determined. The coefficient relation values suggested that the Langmuir isotherm was well fitted. It explained the interaction of surface molecules, which helps in well organization of dye molecules in a monolayer formation initially on algal biomass. The pseudo first and second order rate equations were applied to link the investigational statistics and found that the second order rate expression was found to be more suitable for both the models. The absorption spectrum of RB 5 before and after adsorption with respect to time was monitored which clearly indicate that C. iyengarii was much effective surface at very low quantity. PMID:25176238

  9. Dark Ammonium Assimilation Reduces the Plastoquinone Pool of Photosystem II in the Green Alga Selenastrum minutum 1

    PubMed Central

    Mohanty, Narendranath; Bruce, Doug; Turpin, David H.

    1991-01-01

    The impact of dark NH4+ and NO3? assimilation on photosynthetic light harvesting capability of the green alga Selenastrum minutum was monitored by chlorophyll a fluorescence analysis. When cells assimilated NH4+, they exhibited a large decline in the variable fluorescence/maximum fluorescence ratio, the fluorescence yield of photosystem II relative to that of photosystem I at 77 kelvin, and O2 evolution rate. NH4+ assimilation therefore poised the cells in a less efficient state for photosystem II. The analysis of complementary area of fluorescence induction curve and the pattern of fluorescence decay upon microsecond saturating flash, indicators of redox state of plastoquinone (PQ) pool and dark reoxidation of primary quinone electron acceptor (QA), respectively, revealed that the PQ pool became reduced during dark NH4+ assimilation. NH4+ assimilation also caused an increase in the NADPH/NADP+ ratio due to the NH4+ induced increase in respiratory carbon oxidation. The change in cellular reductant is suggested to be responsible for the reduction of the PQ pool and provide a mechanism by which the metabolic demands of NH4+ assimilation may alter the efficiency of photosynthetic light harvesting. NO3? assimilation did not cause a reduction in PQ and did not affect the efficiency of light harvesting. These results illustrate the role of cellular metabolism in the modulating photosynthetic processes. PMID:16668216

  10. Glycosyltransferase Family 43 Is Also Found in Early Eukaryotes and Has Three Subfamilies in Charophycean Green Algae

    PubMed Central

    Taujale, Rahil; Yin, Yanbin

    2015-01-01

    The glycosyltransferase family 43 (GT43) has been suggested to be involved in the synthesis of xylans in plant cell walls and proteoglycans in animals. Very recently GT43 family was also found in Charophycean green algae (CGA), the closest relatives of extant land plants. Here we present evidence that non-plant and non-animal early eukaryotes such as fungi, Haptophyceae, Choanoflagellida, Ichthyosporea and Haptophyceae also have GT43-like genes, which are phylogenetically close to animal GT43 genes. By mining RNA sequencing data (RNA-Seq) of selected plants, we showed that CGA have evolved three major groups of GT43 genes, one orthologous to IRX14 (IRREGULAR XYLEM14), one orthologous to IRX9/IRX9L and the third one ancestral to all land plant GT43 genes. We confirmed that land plant GT43 has two major clades A and B, while in angiosperms, clade A further evolved into three subclades and the expression and motif pattern of A3 (containing IRX9) are fairly different from the other two clades likely due to rapid evolution. Our in-depth sequence analysis contributed to our overall understanding of the early evolution of GT43 family and could serve as an example for the study of other plant cell wall-related enzyme families. PMID:26023931

  11. Macromolecule metabolism and photosynthetic functions in blue-green algae treated with virginiamycin, an inhibitor of protein synthesis.

    PubMed

    Cocito, C; Shilo, M

    1974-08-01

    The M component of virginiamycin inhibited growth of Plectonema boryanum under both photoautotrophic and heterotrophic conditions. Though the S component of this antibiotic had no apparent activity per se, it enhanced the inhibitory action of its partner. Cells incubated with suitable concentrations of either M or M + S stopped growing and lysed. Loss of the colony-forming capacity occurred quickly in the presence of M + S and slowly in the presence of M alone. Virginiamycin M inhibited protein synthesis in autotrophically and heterotrophically growing Plectonema. This effect was very rapid and could be reversed by removing the antibiotic. The S component did not block the incorporation of amino acids into proteins, but prevented the reversibility of the inhibitory effect of M. Virginiamycin M or S did not affect the photosynthetic oxygen development (Hill's reaction) in Plectonema. Moreover, carbon dioxide photoassimilation and formation of chlorophyll were inhibited only after an appreciable lag. Deoxyribonucleic acid synthesis was blocked virtually without delay by virginiamycin M. Since virginiamycin inhibited protein synthesis in a similar fashion in the unicellular Anacystis nidulans, as well as in the filamentous P. boryanum, the mechanism of action of this antibiotic is probably the same in all blue-green algae. PMID:15828183

  12. Effect of Spirulina, a blue green algae, on gentamicin-induced oxidative stress and renal dysfunction in rats.

    PubMed

    Kuhad, Anurag; Tirkey, Naveen; Pilkhwal, Sangeeta; Chopra, Kanwaljit

    2006-04-01

    Gentamicin (GM), an aminoglycoside, is widely employed in clinical practice for the treatment of serious Gram-negative infections. The clinical utility of GM is limited by the frequent incidence of acute renal failure. Experimental evidences suggest that oxidative and nitrosative stress play an important role in GM nephrotoxicity. Spirulina fusiformis is a blue green algae with potent free radical scavenging properties. The present study was designed to investigate renoprotective potential of S. fusiformis, against GM-induced oxidative stress and renal dysfunction. Spirulina fusiformis (500, 1000, 1500 mg/kg, p.o.) was administered 2 days before and 8 days concurrently with GM (100 mg/kg, i.p.). Renal injury was assessed by measuring serum creatinine, blood urea nitrogen and creatinine clearance and serum nitrite levels. Renal oxidative stress was determined by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of superoxide dismutase (SOD) and catalase. Chronic GM administration resulted in marked renal oxidative and nitrosative stress and significantly deranged renal functions. Treatment with S. fusiformis significantly and dose-dependently restored renal functions, reduced lipid peroxidation and enhanced reduced glutathione levels, SOD and catalase activities. The results of present study clearly demonstrate the pivotal role of reactive oxygen species and their relation to renal dysfunction and point to the therapeutic potential of S. fusiformis in GM-induced nephrotoxicity. PMID:16573712

  13. Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis

    PubMed Central

    Kobayashi, Makio; Kakizono, Toshihide; Nagai, Shiro

    1993-01-01

    In a green alga, Haematococcus pluvialis, a morphological change of vegetative cells into cyst cells was rapidly induced by the addition of acetate or acetate plus Fe2+ to the vegetative growth phase. Accompanied by cyst formation, algal astaxanthin formation was more enhanced by the addition of acetate plus Fe2+ than by the addition of acetate alone. Encystment and enhanced carotenoid biosynthesis were inhibited by either actinomycin D or cycloheximide. However, after cyst formation was induced by the addition of acetate alone, carotenoid formation could be enhanced with the subsequent addition of Fe2+ even in the presence of the inhibitors. The Fe2+ -enhanced carotenogenesis was inhibited by potassium iodide, a scavenger for hydroxyl radical, suggesting that hydroxyl radical formed by an iron-catalyzed Fenton reaction may be required for enhanced carotenoid biosynthesis. Moreover, it was demonstrated that four active oxygen species, singlet oxygen, superoxide anion radical, hydrogen peroxide, and peroxy radical, were capable of replacing Fe2+ in its role in the enhanced carotenoid formation in the acetate-induced cyst. From these results, it was concluded that oxidative stress is involved in the posttranslational activation of carotenoid biosynthesis in acetate-induced cyst cells. Images PMID:16348895

  14. Evaluation of antiangiogenic and antiproliferative potential of the organic extract of green algae chlorella pyrenoidosa

    PubMed Central

    Kyadari, Mahender; Fatma, Tasneem; Azad, Rajvardhan; Velpandian, Thirumurthy

    2013-01-01

    Objective: algae isolates obtained from fresh and marine resources could be one of the richest sources of novel bioactive secondary metabolites expected to have pharmaceutical significance for new drug development. This study was conducted to evaluate the antiangiogenic and antiproliferative activity of Chlorella pyrenoidosa in experimental models of angiogenesis and by MTT assay. Materials and Methods: lyophilized extract of C. pyrenoidosa was extracted using dichloromethane/methanol (2:1), concentrated and vacuum evaporated to obtain the dried extract. The crude extract was evaluated in the vascular endothelial growth factor (VEGF)-induced angiogenesis in in ovo chick chorioallantoic membrane assay (CAM) at various concentrations (n = 8) using thalidomide and normal saline as positive and untreated control groups, respectively. The crude extract was also subjected to the antiangiogenic activity in the silver nitrate/potassium nitrate cautery model of corneal neovascularization (CN) in rats where topical bevacizumab was used as a positive control. The vasculature was photographed and blood vessel density was quantified using Aphelion imaging software. The extract was also evaluated for its anti proliferative activity by microculture tetrazolium test (MTT) assay using HeLa cancer cell line (ATCC). Results: VEGF increased the blood vessel density by 220% as compared to normal and thalidomide treatment decreased it to 67.2% in in ovo assay. In the in-vivo CN model, the mean neovascular density in the control group, the C. pyrenoidosa extract and bevacizumab group were found to be 100%, 59.02%, and 32.20%, respectively. The Chlorella pyrenoidosa extract negatively affected the viability of HeLa cells. An IC50 value of the extract was 570 ?g/ml, respectively. Conclusion: a significant antiangiogenic activity was observed against VEGF-induced neovascularization and antiproliferative activity by MTT assay. In this study, it could be attributed that the activity may be due to the presence of secondary metabolites in the C. pyrenoidosa extract. PMID:24347763

  15. Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids.

    PubMed

    Sanchez, David; Houde, Magali; Douville, Mélanie; De Silva, Amila O; Spencer, Christine; Verreault, Jonathan

    2015-03-01

    Perfluoroalkyl phosphonic acids (PFPAs), a new class of perfluoroalkyl substances used primarily in the industrial sector as surfactants, were recently detected in surface water and wastewater treatment plant effluents. Toxicological effects of PFPAs have as yet not been investigated in aquatic organisms. The objective of the present study was to evaluate the effects of perfluorooctylphosphonic acid (C8-PFPA) and perfluorodecylphosphonic acid (C10-PFPA) exposure (31-250?g/L) on Chlamydomonas reinhardtii using genomic (qRT-PCR), biochemical (reactive oxygen species production (ROS) and lipid peroxidation), and physiological (cellular viability) indicators. After 72h of exposure, no differences were observed in cellular viability for any of the two perfluorochemicals. However, increase in ROS concentrations (36% and 25.6% at 125 and 250?g/L, respectively) and lipid peroxidation (35.5% and 35.7% at 125 and 250?g/L, respectively) was observed following exposure to C10-PFPA. C8-PFPA exposure did not impact ROS production and lipid peroxidation in algae. To get insights into the molecular response and modes of action of PFPA toxicity, qRT-PCR-based assays were performed to analyze the transcription of genes related to antioxidant responses including superoxide dismutase (SOD-1), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST), and ascorbate peroxidase (APX I). Genomic analyses revealed that the transcription of CAT and APX I was up-regulated for all the C10-PFPA concentrations. In addition, PFPAs were quantified in St. Lawrence River surface water samples and detected at concentrations ranging from 250 to 850pg/L for C8-PFPA and 380 to 650pg/L for C10-PFPA. This study supports the prevalence of PFPAs in the aquatic environment and suggests potential impacts of PFPA exposure on the antioxidant defensive system in C. reinhardtii. PMID:25621396

  16. Impact and recovery of freshwater algae and bacteria to mine stress in Iron Creek, Idaho

    SciTech Connect

    Genter, R. [Johnson State Coll., VT (United States); Lehman, R.M.; O`Connell, S.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    Benthic algal population abundances and the metabolic diversity of the benthic and suspended (seston) microbial heterotrophic communities were used to assess the impact and trends in recovery downstream from a point source flowing from an abandoned mine. Benthic algae and microbes were sampled by brushing a confined area on naturally-colonized rocks in Iron Creek, Idaho, and whole-water samples were collected for seston. Algae were counted microscopically. Microbial community metabolic diversity was determined by simultaneously measuring short-term heterotrophic utilization of 94 different carbon sources. Benthic algal populations shifted from a community dominated by diatoms and filamentous blue-green algae in the two upstream references sites to a community dominated by the unicellular blue-green alga Entophysalis rivals (Chamaesiphon) on rocks below the point source. Community composition of benthic algae in the furthest downstream sites increased in similarity to reference sites, but complete recovery was not observed. Microbial community metabolic diversity of the seston and benthic communities along the stream transect followed a similar pattern; the seston metabolic diversity nearly recovered and the benthic metabolic diversity did not recover when compared to the reference sites. The results suggest that benthic algae and microbial metabolic diversity are useful as structural and functional measures of environmental stress and recovery.

  17. Accumulation of 241Am by suspended matter, diatoms and aquatic weeds of the Yenisei River

    Microsoft Academic Search

    T. A. Zotina; A. Ya. Bolsunovsky; L. G. Bondareva

    2010-01-01

    In this work we experimentally estimated the capacities of the key components of the Yenisei River (Russia): particulate suspended matter (seston), diatom microalgae, and submerged macrophytes for accumulating 241Am from water. In our experiments large particles of seston (>8?m), comparable in size with diatoms, took up most of americium from water. The accumulation of americium by isolated diatom algae (Asterionella

  18. Seeing Toxic Algae Before it Blooms By Steve Ress

    E-print Network

    Nebraska-Lincoln, University of

    of toxic blue-green algae before the bacteria that produce it can grow into a full-scale bloom. Now UNL and monitor in real-time, the water-borne agents that can cause toxic blue- green algae to flourish and become Technologies (CALMIT) can see algae pigments, such as chlorophyll and cyanobacteria that blue-green algae

  19. Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714.

    PubMed Central

    Pelroy, R A; Kirk, M R; Bassham, J A

    1976-01-01

    Polymers synthesized by heterotrophically growing (glucose as carbon source) cultures of Aphanocapsa 6714 were compared with polymers synthesized in photosynthetically grown cultures. Loss of photosystem II by dark incubation, or inhibition of light-grown cells with the photosystem II-specific inhibitor dichlorophenylmethylurea, caused an 80 to 90% reduction in the rate of lipid and total ribonucleic acid synthesis, and more than a 90% reduction in the rate of protein synthesis. In contrast, glycogen synthesis was reduced only about 50% in dark cells and less than 30% in dichlorphenylmethylurea-inhibited cells. After longer heterotrophic growth, glycogen became the major component, whereas in photosynthetically grown cultures protein was the major constituent. 14C (from 14CO2 and/or [14C]glucose) assimilated into protein by heterotrophically grown cells was found in amino acids in nearly the same proportions as in photosynthetically grown cells. Thus, routes of biosynthesis available to autotropic cells were also available to heterotrophic cultures, but the supply of carbon precursors to those pathways was greatly reduced. The limited biosynthesis in heterotrophic cells was not due to a limitation for cellular energy. The adenylates were maintained at nearly the same concentrations (and hence the energy charge also) as in photosynthetic cells. The concentration of reduced nicotinamide adenine dinucleotide phosphate was higher in heterotrophic (dark) cells than in photosynthetic cells. From rates of CO2 fixation and/or glycogen biosynthesis it was determined that stationary-phase cells expended approximately 835, 165, and less than 42 nmol of adenosine 5'-triphosphate per mg (dry weight) of algae per 30 min during photosynthetic, photoheterotrophic, and chemoheterotrophic metabolism, respectively. Analysis of the soluble metabolite pools in dark heterotrophic cultures by double-labeling experiments revealed rapid equilibration of 14C through the monophosphate pools, but much slower movement of label into the diphosphate pools of fructose-1,6-diphosphate and sedoheptulose-1,7-diphosphate. Carbon did flow into 3-phosphoglycerate in the dark; however, the initial rate was low and the concentration of this metabolite soon fell to an undetectable level. In photosynthetic cells, 14C quickly equilibrated throughout all the intermediates of the reductive pentose cycle, in particular, into 3-phosphoglycerate. Analysis of glucose-6-phosphate dehydrogenase in cell extracts showed that the enzyme was very sensitive to product inhibition by reduced nicotinamide adenine dinucleotide. PMID:10279

  20. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions.

    PubMed

    Verheyen, Liesbeth; Versieren, Liske; Smolders, Erik

    2014-09-01

    Natural dissolved organic matter (DOM) can have contrasting effects on metal bioaccumulation in algae because of complexation reactions that reduce free metal ion concentrations and because of DOM adsorption to algal surfaces which promote metal adsorption. This study was set up to reveal the role of different natural DOM samples on cadmium (Cd) uptake by the green algae Pseudokirchneriella subcapitata (Korschikov). Six different DOM samples were collected from natural freshwater systems and isolated by reverse osmosis. In addition, one (13)C enriched DOM sample was isolated from soil to trace DOM adsorption to algae. Algae were exposed to standardized solutions with or without these DOM samples, each exposed at equal DOM concentrations and at equal non-toxic Cd(2+) activity (?4 nM) that was buffered with a resin. The DOM increased total dissolved Cd by factors 3-16 due to complexation reactions at equal Cd(2+) activity. In contrast, the Cd uptake was unaffected by DOM or increased maximally 1.6 fold ((13)C enriched DOM). The (13)C analysis revealed that maximally 6% of algal C was derived from DOM and that this can explain the small increase in biomass Cd. It is concluded that free Cd(2+) and not DOM-complexed Cd is the main bioavailable form of Cd when solution Cd(2+) is well buffered. PMID:24874007

  1. Photosynthetic characteristics of a multicellular green alga Volvox carteri in response to external CO2 levels possibly regulated by CCM1/CIA5 ortholog.

    PubMed

    Yamano, Takashi; Fujita, Akimitsu; Fukuzawa, Hideya

    2011-09-01

    When CO(2) supply is limited, aquatic photosynthetic organisms induce a CO(2)-concentrating mechanism (CCM) and acclimate to the CO(2)-limiting environment. Although the CCM is well studied in unicellular green algae such as Chlamydomonas reinhardtii, physiological aspects of the CCM and its associated genes in multicellular algae are poorly understood. In this study, by measuring photosynthetic affinity for CO(2), we present physiological data in support of a CCM in a multicellular green alga, Volvox carteri. The low-CO(2)-grown Volvox cells showed much higher affinity for inorganic carbon compared with high-CO(2)-grown cells. Addition of ethoxyzolamide, a membrane-permeable carbonic anhydrase inhibitor, to the culture remarkably reduced the photosynthetic affinity of low-CO(2) grown Volvox cells, indicating that an intracellular carbonic anhydrase contributed to the Volvox CCM. We also isolated a gene encoding a protein orthologous to CCM1/CIA5, a master regulator of the CCM in Chlamydomonas, from Volvox carteri. Volvox CCM1 encoded a protein with 701 amino acid residues showing 51.1% sequence identity with Chlamydomonas CCM1. Comparison of Volvox and Chlamydomonas CCM1 revealed a highly conserved N-terminal region containing zinc-binding amino acid residues, putative nuclear localization and export signals, and a C-terminal region containing a putative LXXLL protein-protein interaction motif. Based on these results, we discuss the physiological and genetic aspects of the CCM in Chlamydomonas and Volvox. PMID:21253860

  2. An original adaptation of photosynthesis in the marine green alga Ostreococcus

    PubMed Central

    Cardol, Pierre; Bailleul, Benjamin; Rappaport, Fabrice; Derelle, Evelyne; Béal, Daniel; Breyton, Cécile; Bailey, Shaun; Wollman, Francis André; Grossman, Arthur; Moreau, Hervé; Finazzi, Giovanni

    2008-01-01

    Adaptation of photosynthesis in marine environment has been examined in two strains of the green, picoeukaryote Ostreococcus: OTH95, a surface/high-light strain, and RCC809, a deep-sea/low-light strain. Differences between the two strains include changes in the light-harvesting capacity, which is lower in OTH95, and in the photoprotection capacity, which is enhanced in OTH95. Furthermore, RCC809 has a reduced maximum rate of O2 evolution, which is limited by its decreased photosystem I (PSI) level, a possible adaptation to Fe limitation in the open oceans. This decrease is, however, accompanied by a substantial rerouting of the electron flow to establish an H2O-to-H2O cycle, involving PSII and a potential plastid plastoquinol terminal oxidase. This pathway bypasses electron transfer through the cytochrome b6f complex and allows the pumping of “extra” protons into the thylakoid lumen. By promoting the generation of a large ?pH, it facilitates ATP synthesis and nonphotochemical quenching when RCC809 cells are exposed to excess excitation energy. We propose that the diversion of electrons to oxygen downstream of PSII, but before PSI, reflects a common and compulsory strategy in marine phytoplankton to bypass the constraints imposed by light and/or nutrient limitation and allow successful colonization of the open-ocean marine environment. PMID:18511560

  3. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Ni, Wanmin; Luo, Yang; Jan Stevenson, R.; Qi, Jiaguo

    Although frequent algal blooms in Taihu Lake in China have become major environmental problems and have drawn national and international attention, little is understood about the relationship between algal blooms and water quality. The goal of this study was to assess the growth and species responses of freshwater algae to variation in water quality in Qinshan Lake, located in headwaters of the Taihu watershed. Water samples were collected monthly from ten study sites in the Qinshan Lake and were analyzed for species distribution of freshwater algae and physiochemical parameters such as total nitrogen (TN), NH4+-N, NO3--N, total phosphorus (TP), chemical oxygen demand (COD Mn) and Chl-a. The results showed that average TN was 4.47 mg/L, with 92.2% of values greater than the TN standard set by the Chinese Environmental Protection Agency; average TP was 0.051 mg/L, with 37.9% of values above the TP national standard; and average trophic level index (TLI) was 53, the lower end of eutrophic condition. Average Chl-a concentration was 12.83 mg/m 3. Green algae and diatom far outweighed other freshwater algae and were dominant most time of the year, with the highest relative abundances of 96% and 99%, respectively. Blue-green algae, composed mainly toxic strains like Microcystis sp ., Nostoc sp. and Oscillatoria sp., became most dominant in the summer with the maximum relative abundance of 69%. The blue-green algae sank to the lake bottom to overwinter, and then dinoflagellates became the dominant species in the winter, with highest relative abundance of 89%. Analysis indicated that nutrients, especially control of ammonia and co-varying nutrients were the major restrictive factor of population growth of blue-green algae, suggesting that control in nutrient enrichments is the major preventive measure of algal blooms in Qinshan Lake.

  4. Laboratory Assessment of Altered Atmospheric Carbon Dioxide on Filamentous Green Algae Phenolic Content and Caddisfly Growth and Survival

    Microsoft Academic Search

    A. K. Swanson; S. Hrinda; J. B. Keiper

    2007-01-01

    To test global change effects on lentic ecosystems, we examined I) if algae phenolic content was influenced by CO treatments, and 2) if algivores fed CO-treated algae were impacted. Four common Chlorophytes (Cladophora glomerata, Spirogyra grevilleana, Ulothrix, fimbriata, and Zygnema sp.) were grown under three atmospheric carbon dioxide environments (200, 360, and 3000 mg\\/L). Algivore (the microcaddisfly Hydroptila waubesiana [Trichoptera:

  5. Steady-State Chlorophyll a Fluorescence Transients during Ammonium Assimilation by the N-Limited Green Alga Selenastrum minutum1

    PubMed Central

    Turpin, David H.; Weger, Harold G.

    1988-01-01

    The assimilation of ammonium by the N-limited green alga Selenastrum minutum results in the suppression of photosynthetic electron flow from H2O to CO2 (6, 7, 18). In this study, results are presented which describe the correponding change in steady-state chlorophyll a fluorescence. The addition of ammonium resulted in a transient decline in fluorescence followed by a marked increase. Fluorescence did not return to control levels until the added ammonium had been assimilated. Analysis of the fluorescence transients showed that ammonium assimilation resulted in a rapid increase in nonphotochemical quenching (Qe) peaking 10 to 15 seconds after ammonium addition. Qe then decreased dramatically reaching a minimum value approximately 45 seconds following ammonium addition and returned to the control level only after the added ammonium had been assimilated. There were no effects of ammonium addition on photochemical quenching (Qq) for approximately 10 to 15 seconds at which time both gross O2 evolution (as measured by mass spectrometry) and Qq declined. In the presence of d,l-glyceraldehyde or when cells were held at the CO2 compensation point, the addition of ammonium resulted in a decline in Qe 10 to 15 seconds after addition. The Qe peak and the Qq decline were absent. These results imply that the transient increase in Qe and the subsequent decline in Qq may be attributed to the decline in Calvin cycle activity during ammonium assimilation. The decline in Qe is apparently a direct result of ammonium assimilation. The observation that the Qe peak precedes the Qq decline would be consistent with the decreases in Calvin cycle carbon flow occurring at the kinase reactions prior to glyceraldehyde-3-phosphate dehydrogenase. PMID:16666285

  6. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon.

    PubMed

    Knauer, Katja; Sobek, Anna; Bucheli, Thomas D

    2007-06-15

    Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives, such as diuron, are widely used as herbicides and diuron is regularly measured in European freshwater systems. In this study, the toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata was investigated in the presence of BC in its native and combusted form. As a toxicity endpoint, the in vivo chlorophyll fluorescence was determined and used to indicate the bioavailability of diuron. Fifty milligrams native BC/L reduced effects of 5mugdiuron/L on photosynthesis by 10+/-2%, whereas photosynthesis was completely restored in the presence of the same concentration of combusted BC, suggesting a significantly enhanced adsorption of diuron to the BC fraction compared to the organic carbon fraction. Assuming an environmentally realistic concentration of approximately 1.5mg of combusted BC/L, diuron toxicity would be reduced by approximately 20% in surface waters due to the presence of BC. Higher BC concentrations after storm events might reduce the toxicity even further. A calculation of the Freundlich sorption coefficient K(F,BC,tox) via the toxicity endpoint, resulted in a log K(F,BC,tox) of the combusted BC of 5.7, which is comparable to values obtained by classical sorption experiments. This study contributes to a refined risk assessment of micropollutants in surface waters taking into account the presence of potentially relevant sorbents and, consequently, reduced bioavailability. PMID:17482288

  7. Blue Light, a Positive Switch Signal for Nitrate and Nitrite Uptake by the Green Alga Monoraphidium braunii1

    PubMed Central

    Aparicio, Pedro J.; Quińones, Miguel A.

    1991-01-01

    Blue light was shown to regulate the utilization of oxidized nitrogen sources by green algae, both by activating nitrate reductase and promoting nitrite reductase biosysnthesis (MA Quińones, PJ Aparicio [1990] Inorganic Nitrogen in Plants and Microorganisms, Springer-Verlag, Berlin, pp 171-177; MA Quińones, PJ Aparicio [1990] Photochem Photobiol 51: 681-692). The data reported herein show that, when cells of Monoraphidium braunii at pH 8, containing both active nitrate reductase and nitrite reductase, were sparged with CO2-free air and irradiated with strong background red light, they took up oxidized nitrogen sources only when PAR comprised blue light. The activation of the transport system(s) of either both nitrate and nitrite was very quick and elicited by low irradiance blue light. In fact, blue light appears to act as a switch signal from the environment, since the uptake of these anions immediately ceased when this radiation was turned off. The requirement of blue light for nitrate uptake was independent of the availability of CO2 to cells. However, cells under high CO2 tensions, although they showed an absolute blue light requirement to initially establish the uptake of nitrite, as they gained carbon skeletons to allocate ammonia, gradually increased their nitrite uptake rates in the subsequent red light intervals. Under CO2-free atmosphere, cells irradiated with strong background red light of 660 nanometers only evolved oxygen when they were additionally irradiated with low irradiance blue light and either nitrate or nitrite was present in the media to provide electron acceptors for the photosynthetic reaction. PMID:16667993

  8. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix.

    PubMed

    Weiss, Taylor L; Roth, Robyn; Goodson, Carrie; Vitha, Stanislav; Black, Ian; Azadi, Parastoo; Rusch, Jannette; Holzenburg, Andreas; Devarenne, Timothy P; Goodenough, Ursula

    2012-12-01

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous ?-1, 4- and/or ?-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM. PMID:22941913

  9. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO?e/MJ(EtOH) down to 12.3 g CO?e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat. PMID:20968295

  10. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae

    NASA Astrophysics Data System (ADS)

    Chang, Christopher; Alber, David; Graf, Peter; Kim, Kwiseon; Seibert, Michael

    2007-07-01

    The Genomics Revolution has resulted in a massive and growing quantity of whole-genome DNA sequences, which encode the metabolic catalysts necessary for life. However, gene annotations can rarely be complete, and measurement of the kinetic constants associated with the encoded enzymes can not possibly keep pace, necessitating the use of careful modeling to explore plausible network behaviors. Key challenges are (1) quantitatively formulating kinetic laws governing each transformation in a fixed model network; (2) characterizing the stable solution (if any) of the associated ordinary differential equations (ODEs); (3) fitting the latter to metabolomics data as it becomes available; and, (4) optimizing a model output against the possible space of kinetic parameters, with respect to properties such as robustness of network response, or maximum consumption/production. This SciDAC-2 project addresses this large-scale uncertainty in the genome-scale metabolic network of the water-splitting, H2-producing green alga Chlamydomonas reinhardtii. Each metabolic transformation is formulated as an irreversible steady-state process, such that the vast literature on known enzyme mechanisms may be incorporated directly. To start, glycolysis, the tricarboxylic acid cycle, and basic fermentation pathways have been encoded in Systems Biology Markup Language (SBML) with careful annotation and consistency with the KEGG database, yielding a model with 3 compartments, 95 species, 38 reactions, and 109 kinetic constants. To study and optimize such models with a view toward larger models, we have developed a system which takes as input an SBML model, and automatically produces C code that when compiled and executed optimizes the model's kinetic parameters according to test criteria. We describe the system and present numerical results. Further development, including overlaying of a parallel multistart algorithm, will allow optimization of thousands of parameters on high-performance systems ranging from distributed grids to unified petascale architectures.

  11. Author's personal copy A novel ocean color index to detect oating algae in the global oceans

    E-print Network

    Meyers, Steven D.

    (Kahru et al., 2007), diatoms (Sathyendranath et al., 2004), harmful algae (Cannizzaro et al., 2008 been used to monitor and study harmful algal blooms (HAAuthor's personal copy A novel ocean color index to detect oating algae in the global oceans

  12. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Bajguz, Andrzej; Piotrowska-Niczyporuk, Alicja

    2013-10-01

    The relationships between brassinosteroids (BRs) (brassinolide, BL; 24-epiBL; 28-homoBL; castasterone, CS; 24-epiCS; 28-homoCS) and auxins (indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-propionic acid, IPA) in the regulation of cell number, phytohormone level and metabolism in green alga Chlorella vulgaris were investigated. Exogenously applied auxins had the highest biological activity in algal cells at 50 ?M. Among the auxins, IAA was characterized by the highest activity, while IBA - by the lowest. BRs at 0.01 ?M were characterized by the highest biological activity in relation to auxin-treated and untreated cultures of C. vulgaris. The application of 50 ?M IAA stimulated the level of all detected endogenous BRs in C. vulgaris cells. The stimulatory effect of BRs in green algae was arranged in the following order: BL > 24-epiBL > 28-homoBL > CS > 24-epiCS > 28-homoCS. Auxins cooperated synergistically with BRs stimulating algal cell proliferation and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for the mixture of BL with IAA, whereas the lowest in the culture treated with both 28-homoCS and IBA. However, regardless of the applied mixture of BRs with auxins, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone. Obtained results confirm that both groups of plant hormones cooperate synergistically in the control of growth and metabolism of unicellular green alga C. vulgaris. PMID:23994360

  13. BOTANICAL BRIEFING Streptophyte algae and the origin of embryophytes

    E-print Network

    BOTANICAL BRIEFING Streptophyte algae and the origin of embryophytes Burkhard Becker* and Birger March 2009 Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli

  14. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  15. NADPH oxidases in Eukaryotes: red algae provide new hints!

    PubMed

    Hervé, Cécile; Tonon, Thierry; Collén, Jonas; Corre, Erwan; Boyen, Catherine

    2006-03-01

    The red macro-alga Chondrus crispus is known to produce superoxide radicals in response to cell-free extracts of its green algal pathogenic endophyte Acrochaete operculata. So far, no enzymes involved in this metabolism have been isolated from red algae. We report here the isolation of a gene encoding a homologue of the respiratory burst oxidase gp91(phox) in C. crispus, named Ccrboh. This single copy gene encodes a polypeptide of 825 amino acids. Search performed in available genome and EST algal databases identified sequences showing common features of NADPH oxidases in other algae such as the red unicellular Cyanidioschyzon merolae, the economically valuable red macro-alga Porphyra yezoensis and the two diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Domain organization and phylogenetic relationships with plant, animal, fungal and algal NADPH oxidase homologues were analyzed. Transcription analysis of the C. crispus gene revealed that it was over-transcribed during infection of C. crispus gametophyte by the endophyte A. operculata, and after incubation in presence of atrazine, methyl jasmonate and hydroxyperoxides derived from C20 polyunsaturated fatty acids (PUFAs). These results also illustrate the interest of exploring the red algal lineage for gaining insight into the deep evolution of NADPH oxidases in Eukaryotes. PMID:16344959

  16. [Photoreduction of Se (VI) by marine algae-transitional metals-light system].

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Deng, Nan-Sheng; Hong, Hua-Sheng; Zhu, Guo-Hui

    2005-07-01

    Seven marine phytoplankton, including five green algae (Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp. and Tetraselmis subcordiformis), one diatom (Phaeodactylum tricornutum), one red alga (Porphyridium purpureum), and three usual transitional metals (Fe(III), Cu(II), Mn(II)) were used to make up marine phytoplankton-light or transitional metals-light or marine phytoplankton-transitional metals-light system. In such system, Se(VI) could be transformed into Se(IV) by photoreduction. The species transformation of selenium could be photo-induced by redox reaction of transitional metals. The photochemical activity of marine phytoplankton was confirmed for the first time, because marine phytoplankton could adsorb and concentrated of selenium, transitional metals and organic substances (including the exudation of algae, as reducing agent) which redox potentials were changed. The ratios of Se(VI) to Se(IV) were dominated by the species, the concentration of marine phytoplankton and transitional metals, and it could be enhanced through increasing the concentration of marine algae or the combined effect from marine algae and transitional metals. After photoreduction by ternary system, the ratio of Se(VI) to Se(IV) ranges from 1.17 to 2.85, which is close to the actual value in euphotic layer of seawater. The photochemical process that is induced by marine algae and transitional metals dominative the leading effects on the distribution of oxidation states of selenium. PMID:16212166

  17. The optimum conditions for the extraction of antioxidant compounds from the Persian gulf green algae (Chaetomorpha sp.) using response surface methodology.

    PubMed

    Safari, Parva; Rezaei, Masoud; Shaviklo, Amir Reza

    2015-05-01

    The potential of antioxidant activity of the green algae (Chaetomorpha sp.) was studied in this work. The optimum processing conditions for the extraction of antioxidant compounds from dried green algae were determined using response surface methodology (RSM). A central composite design (CCD) was applied to determine the effects of three process variables as follows: solvent concentration (percent), extraction time (min) and microwave power (w) on total phenolic contents, ferric reducing power, 2'2-dipheny-l-picrylhydrazyl (DPPH) radical scavenging activity and total antioxidant capacity assays. The independent variables were coded at five levels and CCD included 20 experimental runs with six replications at the center point. The statistical analysis of data was performed using design expert software and second-order polynomial models generated after analysis of variance (ANOVA) applied for predicting the responses. The results revealed that the highest total phenol content and reducing power were 1.09 and 0.12 mg of tannic acid equivalent/g dry weight, respectively. The maximum antioxidant activity was 0.19 mg ascorbic acid equivalent/g dry weight and DPPH was 99.8 % under MAE. The optimum conditions using RSM for the predicted responses were: microwave power 300 W, extraction time 8 min and solvent concentration 25 %, respectively. Furthermore the actual experimental values were adjacent to the corresponding predicted values which demonstrated fitness of the employed models and suitability of RSM in extraction parameters optimization. PMID:25892798

  18. Liver failure in a dog following suspected ingestion of blue-green algae (Microcystis spp.): a case report and review of the toxin.

    PubMed

    Sebbag, Lionel; Smee, Nicole; van der Merwe, Deon; Schmid, Dustin

    2013-01-01

    A 2.5 yr old spayed female Weimaraner presented after ingestion of blue-green algae (Microcystis spp.). One day prior to presentation, the patient was swimming at a local lake known to be contaminated with high levels of blue-green algae that was responsible for deaths of several other dogs the same summer. The patient presented 24 hr after exposure with vomiting, inappetence, weakness, and lethargy. Blood work at the time of admission was consistent with acute hepatic failure, characteristic findings of intoxication by Microcystis spp. Diagnosis was suspected by analyzing a water sample from the location where the patient was swimming. Supportive care including fluids, fresh frozen plasma, whole blood, vitamin K, B complex vitamins, S-adenosyl methionine, and Silybum marianum were started. The patient was discharged on supportive medications, and follow-up blood work showed continued improvement. Ingestion is typically fatal for most patients. This is the first canine to be reported in the literature to survive treatment after known exposure. PMID:23861261

  19. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    SciTech Connect

    McKnight, D.M.; Pereira, W.E.; Rostad, C.E.; Stiles, E.A.

    1983-01-01

    Oil shale reserves in Piceance Creek and the White River, Colorado, contain retorted-shale piles which may pollute th eground water through leaching. Bioassay experiments were carried out to determine the effects of leachates on algae, particularly ANABAENA FLOSAQUAE and SCENEDESMUS. Tests were done to establish inhibitionary concentrations of the leachates from various sources of spent shale. Retorted-shale leachates had major effects on the algae papulations at a 40% concentration, minor effects at 8%, and no effects at 0.4%. Discrepancies between experimental results and actual retorted-shale piles are dixcussed. (JMT)

  20. The origin of red algae and the evolution of chloroplasts

    Microsoft Academic Search

    David Moreira; Hervé Le Guyader; Hervé Philippe

    2000-01-01

    Chloroplast structure and genome analyses support the hypothesis that three groups of organisms originated from the primary photosynthetic endosymbiosis between a cyanobacterium and a eukaryotic host: green plants (green algae + land plants), red algae and glaucophytes (for example, Cyanophora). Although phylogenies based on several mitochondrial genes support a specific green plants\\/red algae relationship, the phylogenetic analysis of nucleus-encoded genes

  1. Comparative Studies on the Green Algae Chlorella homosphaera and Chlorella vulgaris with Respect to Oil Pollution in the River Nile

    Microsoft Academic Search

    Mostafa M. El-Sheekh; Amal H. El-Naggar; Mohamed E. H. Osman; Ayman Haieder

    2000-01-01

    The effect of oil pollution on growth and metabolic activitiesof the fresh water algae Chlorella homosphaera and C.vulgaris was studied. The study was conducted on two locationsin the river Nile, one is oil polluted and the other is notpolluted. The assemblage of the different algal groups wasmonitored in both locations. Chlorophyta was more dominant thanCyanophyta and Bacillariophyta in both locations

  2. Low energy method of manufacturing high-grade protein using blue-green algae of the genus Spirulina

    SciTech Connect

    Leesley, M.E.; Newsom, T.M.; Burleson, J.D.

    1981-01-01

    Algae are well suited to replace many conventional sources of protein because of their efficient use of energy, land, and raw materials. The most promising genus, Spirulina, is compared with conventional protein sources on the bases of energy efficiency, land usage, and production costs.

  3. The Central Carbon and Energy Metabolism of Marine Diatoms

    PubMed Central

    Obata, Toshihiro; Fernie, Alisdair R.; Nunes-Nesi, Adriano

    2013-01-01

    Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved. PMID:24957995

  4. Characterization of the Heterotrimeric G-Protein Complex and Its Regulator from the Green Alga Chara braunii Expands the Evolutionary Breadth of Plant G-Protein Signaling1[C][W][OPEN

    PubMed Central

    Hackenberg, Dieter; Sakayama, Hidetoshi; Nishiyama, Tomoaki; Pandey, Sona

    2013-01-01

    The lack of heterotrimeric G-protein homologs in the sequenced genomes of green algae has led to the hypothesis that, in plants, this signaling mechanism coevolved with the embryophytic life cycle and the acquisition of terrestrial habitat. Given the large evolutionary gap that exists between the chlorophyte green algae and most basal land plants, the bryophytes, we evaluated the presence of this signaling complex in a charophyte green alga, Chara braunii, proposed to be the closest living relative of land plants. The C. braunii genome encodes for the entire G-protein complex, the G?, G?, and G? subunits, and the REGULATOR OF G-PROTEIN SIGNALING (RGS) protein. The biochemical properties of these proteins and their cross-species functionality show that they are functional homologs of canonical G-proteins. The subunit-specific interactions between CbG? and CbG?, CbG? and CbG?, and CbG? and CbRGS are also conserved, establishing the existence of functional G-protein complex-based signaling mechanisms in green algae. PMID:24179134

  5. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in?chloroplast?division

    PubMed Central

    Wakasugi, Tatsuya; Nagai, Toshiyuki; Kapoor, Meenu; Sugita, Mamoru; Ito, Mari; Ito, Shiho; Tsudzuki, Junko; Nakashima, Keiko; Tsudzuki, Takahiko; Suzuki, Yasuhiko; Hamada, Akira; Ohta, Tutomu; Inamura, Atsushi; Yoshinaga, Koichi; Sugiura, Masahiro

    1997-01-01

    The complete nucleotide sequence of the chloroplast genome (150,613 bp) from the unicellular green alga Chlorella vulgaris C-27 has been determined. The genome contains no large inverted repeat and has one copy of rRNA gene cluster consisting of 16S, 23S, and 5S rRNA genes. It contains 31 tRNA genes, of which the tRNALeu(GAG) gene has not been found in land plant chloroplast DNAs analyzed so far. Sixty-nine protein genes and eight ORFs conserved with those found in land plant chloroplasts have also been found. The most striking is the existence of two adjacent genes homologous to bacterial genes involved in cell division, minD and minE, which are arranged in the same order in Escherichia coli. This finding suggests that the mechanism of chloroplast division is similar to bacterial division. Other than minD and minE homologues, genes encoding ribosomal proteins L5, L12, L19, and S9 (rpl5, rpl12, rpl19, and rps9); a chlorophyll biosynthesis Mg chelating subunit (chlI); and elongation factor EF-Tu (tufA), which have not been reported from land plant chloroplast DNAs, are present in this genome. However, many of the new chloroplast genes recently found in red and brown algae have not been found in C. vulgaris. Furthermore, this algal species possesses two long ORFs related to ycf1 and ycf2 that are exclusively found in land plants. These observations suggest that C. vulgaris is closer to land plants than to red and brown algae. PMID:9159184

  6. Development of a Nuclear Transformation System for Oleaginous Green Alga Lobosphaera (Parietochloris) incisa and Genetic Complementation of a Mutant Strain, Deficient in Arachidonic Acid Biosynthesis

    PubMed Central

    Khozin-Goldberg, Inna; Leu, Stefan; Shapira, Michal; Kaye, Yuval; Tourasse, Nicolas; Vallon, Olivier; Boussiba, Sammy

    2014-01-01

    Microalgae are considered a promising source for various high value products, such as carotenoids, ?-3 and ?-6 polyunsaturated fatty acids (PUFA). The unicellular green alga Lobosphaera (Parietochloris) incisa is an outstanding candidate for the efficient phototrophic production of arachidonic acid (AA), an essential ?-6 PUFA for infant brain development and a widely used ingredient in the baby formula industry. Although phototrophic production of such algal products has not yet been established, estimated costs are considered to be 2–5 times higher than competing heterotrophic production costs. This alga accumulates unprecedented amounts of AA within triacylglycerols and the molecular pathway of AA biosynthesis in L. incisa has been previously elucidated. Thus, progress in transformation and metabolic engineering of this high value alga could be exploited for increasing the efficient production of AA at competitive prices. We describe here the first successful transformation of L. incisa using the ble gene as a selection marker, under the control of the endogenous RBCS promoter. Furthermore, we have succeeded in the functional complementation of the L. incisa mutant strain P127, containing a mutated, inactive version of the delta-5 (?5) fatty acid desaturase gene. A copy of the functional ?5 desaturase gene, linked to the ble selection marker, was transformed into the P127 mutant. The resulting transformants selected for zeocine resistant, had AA biosynthesis partially restored, indicating the functional complementation of the mutant strain with the wild-type gene. The results of this study present a platform for the successful genetic engineering of L. incisa and its long-chain PUFA metabolism. PMID:25133787

  7. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division.

    PubMed

    Wakasugi, T; Nagai, T; Kapoor, M; Sugita, M; Ito, M; Ito, S; Tsudzuki, J; Nakashima, K; Tsudzuki, T; Suzuki, Y; Hamada, A; Ohta, T; Inamura, A; Yoshinaga, K; Sugiura, M

    1997-05-27

    The complete nucleotide sequence of the chloroplast genome (150,613 bp) from the unicellular green alga Chlorella vulgaris C-27 has been determined. The genome contains no large inverted repeat and has one copy of rRNA gene cluster consisting of 16S, 23S, and 5S rRNA genes. It contains 31 tRNA genes, of which the tRNALeu(GAG) gene has not been found in land plant chloroplast DNAs analyzed so far. Sixty-nine protein genes and eight ORFs conserved with those found in land plant chloroplasts have also been found. The most striking is the existence of two adjacent genes homologous to bacterial genes involved in cell division, minD and minE, which are arranged in the same order in Escherichia coli. This finding suggests that the mechanism of chloroplast division is similar to bacterial division. Other than minD and minE homologues, genes encoding ribosomal proteins L5, L12, L19, and S9 (rpl5, rpl12, rpl19, and rps9); a chlorophyll biosynthesis Mg chelating subunit (chlI); and elongation factor EF-Tu (tufA), which have not been reported from land plant chloroplast DNAs, are present in this genome. However, many of the new chloroplast genes recently found in red and brown algae have not been found in C. vulgaris. Furthermore, this algal species possesses two long ORFs related to ycf1 and ycf2 that are exclusively found in land plants. These observations suggest that C. vulgaris is closer to land plants than to red and brown algae. PMID:9159184

  8. Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: I. The effect of cadmium.

    PubMed

    Pribyl, P; Cepák, V; Zachleder, V

    2005-12-01

    The aim of the study was to elucidate the effect of cadmium ions on the arrangement of the actin and tubulin cytoskeleton, as well as the relationships between cytoskeletal changes and growth processes in the green filamentous alga Spirogyra decimina. Batch cultures of algae were carried out under defined conditions in the presence of various cadmium concentrations. In control cells, the cytoskeleton appeared to be a transversely oriented pattern of both microtubules and actin filaments of various thickness in the cell cortex; colocalization of cortical microtubules and actin filaments was apparent. Microtubules were very sensitive to the presence of cadmium ions. Depending on the cadmium concentration and the time of exposure, microtubules disintegrated into short rod-shaped fragments or they completely disappeared. A steep increase in cell width and a decrease in growth rate accompanied (and probably ensued) a very rapid disintegration of microtubules. Actin filaments were more stable because they were disturbed several hours later than microtubules at any cadmium concentration used. When cadmium ions were washed out, the actin cytoskeleton was rebuilt even in cells in which actin filaments were completely disintegrated at higher cadmium concentrations (40 or 100 microM). The much more sensitive microtubules were regenerated after treatment with lower cadmium concentrations (10 or 15 microM) only. PMID:16333580

  9. Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker.

    PubMed

    Liu, Jin; Sun, Zheng; Gerken, Henri; Huang, Junchao; Jiang, Yue; Chen, Feng

    2014-06-01

    The unicellular green alga Chlorella zofingiensis has been proposed as a promising producer of natural astaxanthin, a commercially important ketocarotenoid. But the genetic toolbox for this alga is not available. In the present study, an efficient transformation system was established for C. zofingiensis. The transformation system utilized a modified norflurazon-resistant phytoene desaturase (PDS-L516F, with an leucine-phenylalanine change at position 516) as the selectable marker. Three promoters from endogenous PDS, nitrate reductase (NIT), and ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RBCS) genes were tested, with the RBCS promoter demonstrating the highest transformation efficiency. Inclusion of the first intron of the PDS gene further enhanced the efficiency by 91 %. Both particle bombardment and electroporation methods were examined, and the latter gave a fourfold higher transformation efficiency. The introduction of PDS-L516F, which exhibited a 33 % higher desaturation activity than the unaltered enzyme, enabled C. zofingiensis to produce 32.1 % more total carotenoids (TCs) and 54.1 % more astaxanthin. The enhanced accumulation of astaxanthin in transformants was revealed to be related to the increase in the transcripts of PDS, ?-carotenoid ketolase (BKT), and hydroxylase (CHYb) genes. Our study clearly shows that the modified PDS gene is a dominant selectable marker for the transformation of C. zofingiensis and possibly for the genetic engineering of the carotenoid biosynthetic pathway. In addition, the engineered C. zofingiensis might serve as an improved source of natural astaxanthin. PMID:24584513

  10. Hyaloraphidium curvatum is not a green alga, but a lower fungus; Amoebidium parasiticum is not a fungus, but a member of the DRIPs.

    PubMed

    Ustinova, I; Krienitz, L; Huss, V A

    2000-10-01

    The unicellular heterotrophic protist Hyaloraphidium is classified with a family of green algae, the Ankistrodesmaceae. The only species that exists in pure culture and that is available for taxonomic studies is H. curvatum. Comparative 18S ribosomal RNA sequence analyses showed that H. curvatum belongs to the fungi rather than to the algae. Within the fungi, H. curvatum preferentially clustered with Chytridiomycetes. Unlike Chytridiomycetes, H. curvatum propagates by autosporulation, and the presence of flagella has never been reported. Transmission electron microscopy indicated that H. curvatum in some respects resembles Chytridiomycetes, but no elements of a flagellar apparatus were detected. The habitus of H. curvatum is unlike that of other fungi except the trichomycete Amoebidium parasiticum. The cell wall sugar composition of H. curvatum was unique, but to some extent resembled that of A. parasiticum. However, H. curvatum and A. parasiticum are not closely related to each other according to 18S rRNA sequence data. Moreover, A. parasiticum clustered with protistan animals, the Mesomycetozoa (DRIPs). Combined molecular, ultrastructural and chemical data do not allow assignment of H. curvatum to any recognized clade of fungi. This suggests that H. curvatum may represent an independent evolutionary lineage within the fungi. PMID:11079770

  11. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    Microsoft Academic Search

    Haifeng Qian; Wei Chen; G. Daniel Sheng; Xiaoyan Xu; Weiping Liu; Zhengwei Fu

    2008-01-01

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12–96h of exposure, and gene

  12. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae)

    Microsoft Academic Search

    Maki Yamamoto; Mariko Fujishita; Aiko Hirata; Shigeyuki Kawano

    2004-01-01

    Cell-wall synthesis in Chlorella vulgaris, an autospore-forming alga, was observed using the cell wall-specific fluorescent dye Fluostain I. The observation suggested two clearly distinguishable stages in cell-wall synthesis: moderate synthesis during the cell-growth process and rapid synthesis at the cell-division stage. We used electron microscopy to examine the structural changes that occurred with growth in the premature daughter cell wall

  13. Physiological and Biochemical Role of Brassinosteroids and Their StructureActivity Relationship in the Green Alga Chlorella vulgaris Beijerinck ( Chlorophyceae )

    Microsoft Academic Search

    A. Bajguz; R. Czerpak

    1998-01-01

    .   This paper studies the influence of the 7-oxalactone type of brassinosteroids (BRs) and 6-ketone upon the biological activity\\u000a of the alga Chlorella vulgaris (Chlorophyceae). The results of the study indicate significant differences in the growth and metabolism of C. vulgaris cells caused by the different chemical structures of the BRs used. The most significant differences in the stimulation of

  14. Diatoms—From Cell Wall Biogenesis to Nanotechnology

    Microsoft Academic Search

    Nils Kröger; Nicole Poulsen

    2008-01-01

    Diatoms are single-celled algae that produce intricately structured cell walls made of nanopatterned silica (SiO2). The cell wall structure is a species-specific characteristic demonstrating that diatom silica mor- phogenesis is genetically encoded. Understanding the molecular mech- anisms by which a single cell executes the morphogenetic program for the formation of an inorganic material (biomineralization) is not only a fascinating biological

  15. Identification of the green alga, Chlorella vulgaris (SDC1) using cyanobacteria derived 16S rDNA primers: targeting the chloroplast.

    PubMed

    Burja, A M; Tamagnini, P; Bustard, M T; Wright, P C

    2001-08-21

    We have tested a set of oligonucleotide primers originally developed for the specific amplification of 16S rRNA gene segments from cyanobacteria, in order to determine their versatility as an identification tool for phototrophic eucaryotes. Using web-based bioinformatics tools we determined that these primers not only targeted cyanobacterium sequences as previously described, but also 87% of sequences derived from phototrophic eucaryotes. In order to qualify our finding, a type culture and environmental strain from the freshwater unicellular, green algae genus Chlorella Beijerinck, were selected for further study. Subsequently, we sequenced a 578-bp fragment of the 16S rRNA gene, which proved to be present within the chloroplast genome, performed sequence analysis and positively identified our solvent-degrading environmental strain (SDC1) as Chlorella vulgaris. PMID:11520614

  16. Experimental Substantiation of the Possibility of Developing Selenium- and Iodine-Containing Pharmaceuticals Based on Blue-Green Algae Spirulina Platensis

    E-print Network

    Mosulishvili, L M; Belokobylsky, A I; Khisanishvili, L A; Frontasyeva, M V; Pavlov, C C; Gundorina, S F

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using -reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loding of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  17. Organophosphorous insecticides as herbicide synergists on the green algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor.

    PubMed

    Munkegaard, Mads; Abbaspoor, Majid; Cedergreen, Nina

    2008-01-01

    Models proposed for risk assessment of chemical mixtures assume no interactions between the chemicals. There are, however, studies indicating that some organophosporous insecticides can inhibit the detoxification of other chemicals in plants thereby enhancing their effect. The present study investigates whether interactions between selected organophosporous insecticides and herbicides can take place in the aquatic algae Pseudokirchneriella subcapitata and the aquatic macrophyte Lemna minor. For both species binary mixtures of the organophosphate insecticides: malathion, endosulfan and chlorpyrifos were tested together with the herbicides metsulfuron-methyl, terbutylazine and bentazone. For mixtures with malathion on algae, dose-response surfaces were made and the results tested against the model of concentration addition (CA) and independent action (IA). The Lemna minor tests showed no indication of synergy for any of the combinations, on the contrary, significant antagonism was found for several of the mixtures. The response surface analysis showed antagonism in relation to both concentration addition and independent action for mixtures between malathion and metsulfuron-methyl and terbuthylazine, while the mixtures with bentazone could be explained with CA. The study shows no indications of synergistic interactions between the tested pesticides, confirming the applicability of CA as a reference model predicting mixture effects of pesticides for aquatic plants and algae. PMID:17940868

  18. Algae fuel clean electricity generation

    Microsoft Academic Search

    1993-01-01

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried

  19. Effects of pesticides on freshwater diatoms.

    PubMed

    Debenest, Timothée; Silvestre, Jérôme; Coste, Michel; Pinelli, Eric

    2010-01-01

    The study of pesticide effects on algae, and diatoms in particular, was focused on photosynthesis and biomass growth disturbances. Few studies have been performed to investigate the effects of these toxic agents on intracellular structures of diatom cells. Nuclear alterations and cell wall abnormalities were reported for diatoms exposed to toxic compounds. Nevertheless, the cellular mechanisms implicated in the development of such alterations and abnormalities remain unclear. Sensitivity to pesticides is known to be quite different among different diatom species. Eutrophic and small species are recognized for their tolerance to pesticides exposure. More pronounced cell defenses against oxidative stress may explain this absence of sensitivity in species of smaller physical size. Notwithstanding, on the whole, explaining the rationale behind tolerance variations among species has been quite difficult, thus far. In this context, the understanding of intracellular toxicity in diatoms and the relation between these intracellular effects and the disturbance of species composition in communities represent a key target for further research. The original community species structure determines the response of a diatom community to toxic agent exposure. Diatom communities that have species capable of switching from autotrophic to heterotrophic modes, when photosynthesis is inhibited (e.g., after pesticide exposure), can continue to grow, even in the presence of high pesticide pollution. How diatoms respond to toxic stress, and the degree to which they respond, also depends on cell and community health, on ecological interactions with other organisms, and on general environmental conditions. The general structural parameters of diatom communities (biomass, global cell density) are less sensitive to pesticide effects than are the specific structural parameters of the unicellular organisms themselves (cell density by species, species composition). For benthic species, biofilm development and grazing on this matrix as a source of food for invertebrates and fishes may also modify the response of diatom communities. Environmental parameters (light exposure, nutrient concentrations, and hydraulic conditions) affect, and often interfere with, the response of diatoms to pesticides. Therefore, the complexity of aquatic ecosystems and the complexity of pesticide to easily detect the effects of such pollutants on diatoms. Clearly more research will be required to address this problem. PMID:19957117

  20. Designer diatom episomes delivered by bacterial conjugation

    PubMed Central

    Karas, Bogumil J.; Diner, Rachel E.; Lefebvre, Stephane C.; McQuaid, Jeff; Phillips, Alex P.R.; Noddings, Chari M.; Brunson, John K.; Valas, Ruben E.; Deerinck, Thomas J.; Jablanovic, Jelena; Gillard, Jeroen T.F.; Beeri, Karen; Ellisman, Mark H.; Glass, John I.; Hutchison III, Clyde A.; Smith, Hamilton O.; Venter, J. Craig; Allen, Andrew E.; Dupont, Christopher L.; Weyman, Philip D.

    2015-01-01

    Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research. PMID:25897682