Sample records for green algae evidence

  1. Differentiation between Prototheca and morphologically similar green algae in tissue.

    PubMed

    Chandler, F W; Kaplan, W; Callaway, C S

    1978-07-01

    Evidence that algae are pathogens was provided by the results of electron microscopic studies of tissues from five cattle and sheep suspected of having green algal infections. Chloroplasts were demonstrated in the algae in each case. Prototheca organisms, considered by some to be achloric mutants of green algae, are causative agents of disease in man and animals and may appear morphologically similar to green algae in tissue. However, electron microscopy showed that chloroplasts were absent in these organisms. Light microscopy revealed not only similarities in size, shape, and mode of reproduction, but also a striking difference between the Prototheca organisms and green algae. Unlike Prototheca, the green algae contained abundant cytoplasmic starch granules that were strongly positive by several staining procedures; these granules, which were PAS-negative following diastase digestion, provide a means of differentiating green algae from Prototheca cells in tissue.

  2. Blue-Green Algae

    MedlinePlus

    ... weeks does not improve fatigue in adults with long-term complaints of fatigue. Malnutrition. Early research on the use of blue-green algae in combination with other dietary treatments for malnutrition in infants and children shows conflicting results. Weight gain was seen in ...

  3. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  5. Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae

    DTIC Science & Technology

    2012-09-10

    Economic Production in Green Algae FA9550-10-1-0052 Georgianna, David, R Gimpel, Javier Hannon, Michael, J Mayfield, Stephen, P Prof. Stephen...Final Performance Report Project Title: Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae Award Number... ECONOMIC PRODUCTION IN GREEN ALGAE ABSTRACT It is now accepted that algae have enormous potential to generate economically viable and

  6. Effect of ferrate on green algae removal.

    PubMed

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  7. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  8. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    PubMed Central

    Mikkelsen, Maria D.; Harholt, Jesper; Ulvskov, Peter; Johansen, Ida E.; Fangel, Jonatan U.; Doblin, Monika S.; Bacic, Antony; Willats, William G. T.

    2014-01-01

    Background and Aims The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. Methods Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. Key Results Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. Conclusions The results provide new insights into the evolution of

  9. Algae façade as green building method: application of algae as a method to meet the green building regulation

    NASA Astrophysics Data System (ADS)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  10. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    PubMed Central

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  11. Hydrogen production by a thermophilic blue-green alga Mastigocladus laminosus

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Yokoyama, H.; Miyamoto, K.; Okazaki, M.; Komemushi, S.

    Light-driven hydrogen evolution by a thermophilic blue-green alga, Mastigocladus laminosus, was demonstrated and characterized under nitrogen-starved conditions. Air-grown cultures of this alga evolved hydrogen under Ar/CO2 at rates up to 2.2 ml/mg chl/hr. The optimum temperature and pH for the hydrogen evolution were 44-49 C and pH 7.0-7.5, respectively. Evolution in light was depressed by N2 gas and inhibited by salicylaldoxime or 2,4-dinitrophenol, indicating that nitrogenase was mainly responsible for the hydrogen evolution. The evolution rate was improved by adding carbon monoxide and acetylene to the gas phase of Ar/CO2. In addition, photobiological production of hydrogen (biophotolysis) by various blue-green algae is briefly reviewed and discussed.

  12. A Lack of Parasitic Reduction in the Obligate Parasitic Green Alga Helicosporidium

    PubMed Central

    Pombert, Jean-François; Blouin, Nicolas Achille; Lane, Chris; Boucias, Drion; Keeling, Patrick J.

    2014-01-01

    The evolution of an obligate parasitic lifestyle is often associated with genomic reduction, in particular with the loss of functions associated with increasing host-dependence. This is evident in many parasites, but perhaps the most extreme transitions are from free-living autotrophic algae to obligate parasites. The best-known examples of this are the apicomplexans such as Plasmodium, which evolved from algae with red secondary plastids. However, an analogous transition also took place independently in the Helicosporidia, where an obligate parasite of animals with an intracellular infection mechanism evolved from algae with green primary plastids. We characterised the nuclear genome of Helicosporidium to compare its transition to parasitism with that of apicomplexans. The Helicosporidium genome is small and compact, even by comparison with the relatively small genomes of the closely related green algae Chlorella and Coccomyxa, but at the functional level we find almost no evidence for reduction. Nearly all ancestral metabolic functions are retained, with the single major exception of photosynthesis, and even here reduction is not complete. The great majority of genes for light-harvesting complexes, photosystems, and pigment biosynthesis have been lost, but those for other photosynthesis-related functions, such as Calvin cycle, are retained. Rather than loss of whole function categories, the predominant reductive force in the Helicosporidium genome is a contraction of gene family complexity, but even here most losses affect families associated with genome maintenance and expression, not functions associated with host-dependence. Other gene families appear to have expanded in response to parasitism, in particular chitinases, including those predicted to digest the chitinous barriers of the insect host or remodel the cell wall of Helicosporidium. Overall, the Helicosporidium genome presents a fascinating picture of the early stages of a transition from free

  13. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Gain and loss of polyadenylation signals during evolution of green algae.

    PubMed

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-04-18

    The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence) 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE). However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs) from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza) and one streptophyte (Closterium peracerosum). Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA) was invented in derived chlorophytes and replaced not only the A-rich NUE but the complete poly

  15. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    PubMed

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  16. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  17. Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae.

    PubMed

    Narwani, Anita; Alexandrou, Markos A; Oakley, Todd H; Carroll, Ian T; Cardinale, Bradley J

    2013-11-01

    The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co-occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae. © 2013 John Wiley & Sons Ltd/CNRS.

  18. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae.

    PubMed

    Bornhütter, Tobias; Pohl, Judith; Fischer, Christian; Saltsman, Irena; Mahammed, Atif; Gross, Zeev; Röder, Beate

    2016-04-13

    Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  19. Isolation of plasmid from the blue-green alga Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  20. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  1. Development of Green Fuels From Algae - The University of Tulsa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are amore » diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.« less

  2. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    NASA Astrophysics Data System (ADS)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  3. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea.

    PubMed

    Xu, Fuxiang; Gao, Zhiqiang; Jiang, Xiaopeng; Shang, Weitao; Ning, Jicai; Song, Debin; Ai, Jinquan

    2018-03-01

    Previous studies have shown that the initial biomass of green tide was the green algae attaching to Pyropia aquaculture rafts in the Southern Yellow Sea. In this study, the green algae was identified with unmanned aerial vehicle (UAV), an biomass estimation model was proposed for green algae biomass in the radial sand ridge area based on Sentinel-2A image (S2A) and UAV images. The result showed that the green algae was detected highly accurately with the normalized green-red difference index (NGRDI); approximately 1340 tons and 700 tons of green algae were attached to rafts and raft ropes respectively, and the lower biomass might be the main cause for the smaller scale of green tide in 2017. In addition, UAV play an important role in raft-attaching green algae monitoring and long-term research of its biomass would provide a scientific basis for the control and forecast of green tide in the Yellow Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  5. Comparison of plastid 16S rRNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta).

    PubMed

    Tartar, Aurélien; Boucias, Drion G; Becnel, James J; Adams, Byron J

    2003-11-01

    The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes.

  6. Thermotropic Properties of Thermophilic, Mesophilic, and Psychrophilic Blue-green Algae

    PubMed Central

    Chen, Chang-Hwei; Berns, Donald S.

    1980-01-01

    Thermotropic properties of blue-green algae grown at high, room, and low temperatures in H2O and D2O media were studied by highly sensitive differential scanning microcalorimetry. The thermograms of these organisms contain an endothermal peak in the temperature range of 50 to 70 C with an endothermal heat ranging from 0.14 to 1.91 joules per gram organism. The temperature at which the endothermal peak occurs is comparable with the thermal denaturation temperature of phycocyanin, the major biliprotein isolated from these algae. A good correlation can be found for the relative thermal stability of various organisms with that of the isolated biliproteins. The ability of these algae to resist thermal disruption is correlated with the thermal environments in which these algal cells grow. The thermal stability of normal algae is in the order of thermophile > mesophile > psychrophile. It was found that the deuterated mesophilic algae were less able to resist thermal disruption than ordinary mesophilic algae. PMID:16661485

  7. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.

    PubMed

    Rasmussen, H E; Martínez, I; Lee, J Y; Walter, J

    2009-10-01

    To characterize the effect of edible blue-green algae (cyanobacteria) on the gastrointestinal microbiota of mice. C57BL/6J mice were fed a diet supplemented with 0% or 5% dried Nostoc commune, Spirulina platensis or Afanizominon flos-aquae (w/w) for 4 weeks. Molecular fingerprinting of the colonic microbiota using denaturing gradient gel electrophoresis revealed that administration of N. commune induced major alterations in colonic microbiota composition, while administration of S. platensis or A. flos-aquae had a more subtle impact. Community profile analysis revealed that administration of N. commune did not reduce microbial diversity indices of the colonic microbiota. Despite its pronounced effects on the bacterial composition in the colon, total bacterial numbers in the gut of mice fed N. commune were not reduced as assessed by quantitative real-time PCR and bacteriological culture. The results presented here show that administration of blue-green algae, and especially N. commune, alters colonic microbiota composition in mice with limited effects on total bacterial numbers or microbial diversity. Blue-green algae are consumed in many countries as a source of nutrients and to promote health, and they are intensively studied for their pharmaceutical value. Given the importance of the gut microbiota for many host functions, the effects of blue-green algae on gut microbial ecology revealed during this study should be considered when using them as food supplements or when studying their pharmaceutical properties.

  8. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  9. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  10. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-05-01

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt + ) and mating type minus (mt - ), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt + and mt - mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  11. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  12. Mosquito control by plankton management: the potential of indigestible green algae.

    PubMed

    Marten, G G

    1986-10-01

    Most kinds of phytoplankton are good food for mosquito larvae. However, Culex, Aedes and Anopheles larvae fail to develop successfully in water where certain species of closely related green algae in the order Chlorococcales are the main source of food; apparently because the larvae are unable to digest them. Many species of Scenedesmus, Kirchneriella, Dactylococcus, Elakotothrix, Tetrallantos, Coelastrum, Selenastrum and Tetradesmus have this effect. These algae may offer a practical possibility for mosquito control when introduced into mosquito breeding habitats. Introduction of these algae could be assisted by simultaneous introduction of select filter-feeding zooplankton such as Daphnia.

  13. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  14. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?

    PubMed

    Ji, Xing; Verspagen, Jolanda M H; Stomp, Maayke; Huisman, Jef

    2017-06-01

    Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similarmore » protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.« less

  16. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  17. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via anmore » ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.« less

  18. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  19. Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog.

    PubMed

    Bautista, Adrienne C; Moore, Caroline E; Lin, Yanping; Cline, Martha G; Benitah, Noemi; Puschner, Birgit

    2015-06-19

    Dietary supplement use in both human and animals to augment overall health continues to increase and represents a potential health risk due to the lack of safety regulations imposed on the manufacturers. Because there are no requirements for demonstrating safety and efficacy prior to marketing, dietary supplements may contain potentially toxic contaminants such as hepatotoxic microcystins produced by several species of blue-green algae. An 11-year-old female spayed 8.95 kg Pug dog was initially presented for poor appetite, lethargy polyuria, polydipsia, and an inability to get comfortable. Markedly increased liver enzyme activities were detected with no corresponding abnormalities evident on abdominal ultrasound. A few days later the liver enzyme activities were persistently increased and the dog was coagulopathic indicating substantial liver dysfunction. The dog was hospitalized for further care consisting of oral S-adenosylmethionine, silybin, vitamin K, and ursodeoxycholic acid, as well as intravenous ampicillin sodium/sulbactam sodium, dolasetron, N-acetylcysteine, metoclopramide, and intravenous fluids. Improvement of the hepatopathy and the dog's clinical status was noted over the next three days. Assessment of the dog's diet revealed the use of a commercially available blue-green algae dietary supplement for three-and-a-half weeks prior to hospitalization. The supplement was submitted for toxicology testing and revealed the presence of hepatotoxic microcystins (MCs), MC-LR and MC-LA. Use of the supplement was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the hepatopathy. To the authors' knowledge, this is the first case report of microcystin intoxication in a dog after using a commercially available blue-green algae dietary supplement. Veterinarians should recognize the potential harm that these supplements may cause and know that with intervention, recovery is possible. In addition, more prudent oversight of

  20. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems.

  1. The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization.

    PubMed

    Nelson, David R; Khraiwesh, Basel; Fu, Weiqi; Alseekh, Saleh; Jaiswal, Ashish; Chaiboonchoe, Amphun; Hazzouri, Khaled M; O'Connor, Matthew J; Butterfoss, Glenn L; Drou, Nizar; Rowe, Jillian D; Harb, Jamil; Fernie, Alisdair R; Gunsalus, Kristin C; Salehi-Ashtiani, Kourosh

    2017-06-17

    To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007 , which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline.

  2. Photosynthetic production of hydrogen. [Blue-green alga, Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, G.; Nicholas, D.J.D.; Bockris, J.O.

    A systematic investigation of photosynthetic hydrogen production using a blue-green alga, Anabaena cylindrica, was carried out. The results indicate that there are two important problems which must be overcome for large-scale hydrogen production using photosynthetic processes. These are (a) the development of a stable system, and (b) attainment of at least a fifty-fold increase in the rate of hydrogen evolution per unit area illuminated.

  3. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    PubMed

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2007-01-01

    Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales) and the sarcinoid Chlorokybus atmophyticus (Chlorokybales) represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA) of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag), two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean evolution is no longer tenable

  5. [Treatment of polluted urban river water using filamentous green algae].

    PubMed

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP < 0.50 mg x L(-1), TN < 10 mg x L(-1)), the average effluent concentration of PO4(3-) and NH4(+)-N are well below 0.1 mg x L(-1) and 2.0 mg x L(-1) respectively. During the experiments, the biomass of filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  6. The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization

    PubMed Central

    Nelson, David R; Khraiwesh, Basel; Fu, Weiqi; Alseekh, Saleh; Jaiswal, Ashish; Chaiboonchoe, Amphun; Hazzouri, Khaled M; O’Connor, Matthew J; Butterfoss, Glenn L; Drou, Nizar; Rowe, Jillian D; Harb, Jamil; Fernie, Alisdair R; Gunsalus, Kristin C; Salehi-Ashtiani, Kourosh

    2017-01-01

    To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline. DOI: http://dx.doi.org/10.7554/eLife.25783.001 PMID:28623667

  7. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    PubMed

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  8. Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis

    PubMed Central

    Henskens, Frieda L.; Green, T. G. Allan; Wilkins, Alistair

    2012-01-01

    Background and Aims Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles. Methods The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells. Key Results Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation. Conclusions These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is

  9. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    PubMed

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  10. Harvesting green algae from eutrophic reservoir by electroflocculation and post-use for biodiesel production.

    PubMed

    Valero, Enrique; Álvarez, Xana; Cancela, Ángeles; Sánchez, Ángel

    2015-01-01

    Each year there are more frequent blooms of green algae and cyanobacteria, representing a serious environmental problem of eutrophication. Electroflocculation (EF) was studied to harvest the algae which are present in reservoirs, as well as different factors which may influence on the effectiveness of the process: the voltage applied to the culture medium, run times, electrodes separation and natural sedimentation. Finally, the viability of its use to obtain biodiesel was studied by direct transesterification. The EF process carried out at 10V for 1min, with an electrode separation of 5.5cm and a height of 4cm in culture vessel, obtained a recovery efficiency greater than 95%, and octadecenoic and palmitic acids were obtained as the fatty acid methyl esters (FAMEs). EF is an effective method to harvest green algae during the blooms, obtaining the greatest amount of biomass for subsequent use as a source of biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Solar energy conversion with hydrogen-producing cultures of the blue-green alga, Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallenbeck, P.C.; Kochian, L.V.; Weissman, J.C.

    It was demonstrated that a catalytic, sustained production of hydrogen from water can be carried out under outdoor conditions using a simple glass converter and a stationary blue-green algal culture. This process meets the basic technical requirements of biophotolysis. Improvement in rates of hydrogen production by this system could be achieved by selecting wild-type blue-green algae better suited to hydrogen production and genetically improving the organism for this task. Specific requirements for the algae are tolerance of expected temperature variations, maximum nitrogenase (or, preferably, reversible hydrogenase) activity, increases in vegetative cell photosynthesis through decreased phycocyanin degradation during nitrogen starvation, andmore » increased filament strength. One of the most significant requirements is that the cells continue exhibiting high levels of hydrogen production even when not stirred or mixed. Thermophylic, mat-forming, blue-green algae might provide suitable strains. The actual culture vessels and hydrogen collectors should be arranged horizontally with a gas space, so the carrier gas need not be pushed through a liquid head. The key constraint on a biological solar energy converter is the very low capital and operational costs allowable. A simple calculation shows that, if 3% of incident energy in the Southwest United States were converted to hydrogen, only 0.25 x 10/sup 9/ joules/m/sup 2//yr (21.9 x 10/sup 3/ Btu/ft/sup 2//yr would be produced, worth about $0.60, assuming $2.40/10/sup 9/ joules (approx. =$2.50/MBtu). In conclusion, biophotolysis using heterocystous blue-green algae has been demonstrated. The practical application of this system is dependent upon the development of low-cost converters and effective algal strains. 8 figures, 2 tables.« less

  12. Sodium: a factor in growth of blue-green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Amelia Kay

    The response of heterocystous blue-green algae to varying concentrations of sodium was examined in axenic culture as well as in situ studies. Laboratory cultures of Anabaena cylindrica were treated with four concentrations of sodium and three concentrations of nitrate to determine the response in terms of rates of acetylene reduction, 14C assimilation, excretion of organic carbon, concentration of chlorophyll a, particulate organic carbon, particulate organic nitrogen, and heterocyst and filament numbers.

  13. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum1

    PubMed Central

    Vanlerberghe, Greg C.; Feil, Regina; Turpin, David H.

    1990-01-01

    The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga. PMID:16667805

  14. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    PubMed

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants.

    PubMed

    Bhattacharya, D; Steinkötter, J; Melkonian, M

    1993-12-01

    Centrin (= caltractin) is a ubiquitous, cytoskeletal protein which is a member of the EF-hand superfamily of calcium-binding proteins. A centrin-coding cDNA was isolated and characterized from the prasinophyte green alga Scherffelia dubia. Centrin PCR amplification primers were used to isolate partial, homologous cDNA sequences from the green algae Tetraselmis striata and Spermatozopsis similis. Annealing analyses suggested that centrin is a single-copy-coding region in T. striata and S. similis and other green algae studied. Centrin-coding regions from S. dubia, S. similis and T. striata encode four colinear EF-hand domains which putatively bind calcium. Phylogenetic analyses, including homologous sequences from Chlamydomonas reinhardtii and the land plant Atriplex nummularia, demonstrate that the domains of centrins are congruent and arose from the two-fold duplication of an ancestral EF hand with Domains 1+3 and Domains 2+4 clustering. The domains of centrins are also congruent with those of calmodulins demonstrating that, like calmodulin, centrin is an ancient protein which arose within the ancestor of all eukaryotes via gene duplication. Phylogenetic relationships inferred from centrin-coding region comparisons mirror results of small subunit ribosomal RNA sequence analyses suggesting that centrin-coding regions are useful evolutionary markers within the green algae.

  16. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution.

    PubMed

    Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G; O'Neill, Malcolm A; Bar-Peled, Maor

    2016-10-07

    Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution*

    PubMed Central

    Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G.; O'Neill, Malcolm A.; Bar-Peled, Maor

    2016-01-01

    Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. PMID:27551039

  18. Comparative energetics of carbon storage molecules in green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKie-Krisberg, Zaid M.; Laurens, Lieve M. L.; Huang, Andy

    Several members of the green algae possess the ability to produce lipids and/or high value compounds in significant quantities. While for several of these green algal species induction of increased lipid production has been shown, and cultivation of species for high value molecules occurs at production scale, the molecular mechanisms governing over-accumulation of molecules synthesized from isoprenoid precursors, carotenoids, for example, have received far less attention. Here, we present a calculation of the required ATP equivalencies per carbon atom and reducing power equivalencies as NADH/NADPH (NAD(P)H) per carbon atom for the isoprenoid molecules ..beta..-carotene (C40), astaxanthin (C40), and squalene (C30).more » We compared energetic requirements of carbohydrates, triacylglycerol, and isoprenoid molecules under a gradient of conditions of cellular stress. Our calculations revealed slightly less ATP and NAD(P)H equivalency per carbon atom between triacylglycerol and the three isoprenoid molecules. Based on our results, we propose that the driving force for differences in accumulation patterns of carotenoids vs. triacylglycerols in algal cells under stress is largely dependent on the presence and regulation of bypass mechanisms at metabolic junction bottlenecks, like pyruvate dehydrogenase (PDH), within particular species. We provide a discussion of several molecular mechanisms that may influence carbon partitioning within different groups of green algae, including metabolic inhibition through accumulation of specific substrates related to ATP and reducing equivalent production (NAD(P)H) as well as cellular compartmentalization. This work contributes to the ongoing discussion of cellular homeostatic regulation during stress, as well as the potential mechanisms driving long-term carbon storage as it relates to energy and redox states within the algal cell.« less

  19. Comparative energetics of carbon storage molecules in green algae

    DOE PAGES

    McKie-Krisberg, Zaid M.; Laurens, Lieve M. L.; Huang, Andy; ...

    2018-02-28

    Several members of the green algae possess the ability to produce lipids and/or high value compounds in significant quantities. While for several of these green algal species induction of increased lipid production has been shown, and cultivation of species for high value molecules occurs at production scale, the molecular mechanisms governing over-accumulation of molecules synthesized from isoprenoid precursors, carotenoids, for example, have received far less attention. Here, we present a calculation of the required ATP equivalencies per carbon atom and reducing power equivalencies as NADH/NADPH (NAD(P)H) per carbon atom for the isoprenoid molecules ..beta..-carotene (C40), astaxanthin (C40), and squalene (C30).more » We compared energetic requirements of carbohydrates, triacylglycerol, and isoprenoid molecules under a gradient of conditions of cellular stress. Our calculations revealed slightly less ATP and NAD(P)H equivalency per carbon atom between triacylglycerol and the three isoprenoid molecules. Based on our results, we propose that the driving force for differences in accumulation patterns of carotenoids vs. triacylglycerols in algal cells under stress is largely dependent on the presence and regulation of bypass mechanisms at metabolic junction bottlenecks, like pyruvate dehydrogenase (PDH), within particular species. We provide a discussion of several molecular mechanisms that may influence carbon partitioning within different groups of green algae, including metabolic inhibition through accumulation of specific substrates related to ATP and reducing equivalent production (NAD(P)H) as well as cellular compartmentalization. This work contributes to the ongoing discussion of cellular homeostatic regulation during stress, as well as the potential mechanisms driving long-term carbon storage as it relates to energy and redox states within the algal cell.« less

  20. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. When the lights go out: the evolutionary fate of free-living colorless green algae.

    PubMed

    Figueroa-Martinez, Francisco; Nedelcu, Aurora M; Smith, David R; Adrian, Reyes-Prieto

    2015-05-01

    The endosymbiotic origin of plastids was a launching point for eukaryotic evolution. The autotrophic abilities bestowed by plastids are responsible for much of the eukaryotic diversity we observe today. But despite its many advantages, photosynthesis has been lost numerous times and in disparate lineages throughout eukaryote evolution. For example, among green algae, several groups have lost photosynthesis independently and in response to different selective pressures; these include the parasitic/pathogenic trebouxiophyte genera Helicosporidium and Prototheca, and the free-living chlamydomonadalean genera Polytomella and Polytoma. Here, we examine the published data on colorless green algae and argue that investigations into the different evolutionary routes leading to their current nonphotosynthetic lifestyles provide exceptional opportunities to understand the ecological and genomic factors involved in the loss of photosynthesis.

  2. Comparative genomic analysis of retrogene repertoire in two green algae Volvox carteri and Chlamydomonas reinhardtii.

    PubMed

    Jąkalski, Marcin; Takeshita, Kazutaka; Deblieck, Mathieu; Koyanagi, Kanako O; Makałowska, Izabela; Watanabe, Hidemi; Makałowski, Wojciech

    2016-08-04

    Retroposition, one of the processes of copying the genetic material, is an important RNA-mediated mechanism leading to the emergence of new genes. Because the transcription controlling segments are usually not copied to the new location in this mechanism, the duplicated gene copies (retrocopies) become pseudogenized. However, few can still survive, e.g. by recruiting novel regulatory elements from the region of insertion. Subsequently, these duplicated genes can contribute to the formation of lineage-specific traits and phenotypic diversity. Despite the numerous studies of the functional retrocopies (retrogenes) in animals and plants, very little is known about their presence in green algae, including morphologically diverse species. The current availability of the genomes of both uni- and multicellular algae provides a good opportunity to conduct a genome-wide investigation in order to fill the knowledge gap in retroposition phenomenon in this lineage. Here we present a comparative genomic analysis of uni- and multicellular algae, Chlamydomonas reinhardtii and Volvox carteri, respectively, to explore their retrogene complements. By adopting a computational approach, we identified 141 retrogene candidates in total in both genomes, with their fraction being significantly higher in the multicellular Volvox. Majority of the retrogene candidates showed signatures of functional constraints, thus indicating their functionality. Detailed analyses of the identified retrogene candidates, their parental genes, and homologs of both, revealed that most of the retrogene candidates were derived from ancient retroposition events in the common ancestor of the two algae and that the parental genes were subsequently lost from the respective lineages, making many retrogenes 'orphan'. We revealed that the genomes of the green algae have maintained many possibly functional retrogenes in spite of experiencing various molecular evolutionary events during a long evolutionary time after

  3. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques

    PubMed Central

    Holzinger, Andreas; Pichrtová, Martina

    2016-01-01

    Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth’s history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an

  4. Acute toxicity of live and decomposing green alga Ulva ( Enteromorpha) prolifera to abalone Haliotis discus hannai

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Rencheng; Zhou, Mingjiang

    2011-05-01

    From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva ( Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.

  5. Repeated evolution and reversibility of self-fertilization in the volvocine green algae.

    PubMed

    Hanschen, Erik R; Herron, Matthew D; Wiens, John J; Nozaki, Hisayoshi; Michod, Richard E

    2018-02-01

    Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants.

    PubMed

    Iwai, Masakazu; Yokono, Makio

    2017-06-01

    Plants have successfully adapted to a vast range of terrestrial environments during their evolution. To elucidate the evolutionary transition of light-harvesting antenna proteins from green algae to land plants, the moss Physcomitrella patens is ideally placed basally among land plants. Compared to the genomes of green algae and land plants, the P. patens genome codes for more diverse and redundant light-harvesting antenna proteins. It also encodes Lhcb9, which has characteristics not found in other light-harvesting antenna proteins. The unique complement of light-harvesting antenna proteins in P. patens appears to facilitate protein interactions that include those lost in both green algae and land plants with regard to stromal electron transport pathways and photoprotection mechanisms. This review will highlight unique characteristics of the P. patens light-harvesting antenna system and the resulting implications about the evolutionary transition during plant terrestrialization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Mitochondrial Genome of Chara vulgaris: Insights into the Mitochondrial DNA Architecture of the Last Common Ancestor of Green Algae and Land PlantsW⃞

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2003-01-01

    Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria. PMID:12897260

  8. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    PubMed

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  9. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  10. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  11. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  12. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Pérez, María Esther; Crespo, José L.

    2017-01-01

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae. PMID:28704927

  13. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae)

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    Abstract To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G. planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G. planctonica and 262,888-bp G. sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G. sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. PMID:27503298

  14. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans.

    PubMed

    McKie-Krisberg, Zaid M; Sanders, Robert W

    2014-10-01

    Photosynthetic picoeukaryotes (PPE) are recognized as major primary producers and contributors to phytoplankton biomass in oceanic and coastal environments. Molecular surveys indicate a large phylogenetic diversity in the picoeukaryotes, with members of the Prymnesiophyceae and Chrysophyseae tending to be more common in open ocean waters and Prasinophyceae dominating coastal and Arctic waters. In addition to their role as primary producers, PPE have been identified in several studies as mixotrophic and major predators of prokaryotes. Mixotrophy, the combination of photosynthesis and phagotrophy in a single organism, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were widely considered as a purely photosynthetic group. The prasinophyte Micromonas is perhaps the most common picoeukaryote in coastal and Arctic waters and is one of the relatively few cultured representatives of the picoeukaryotes available for physiological investigations. In this study, we demonstrate phagotrophy by a strain of Micromonas (CCMP2099) isolated from Arctic waters and show that environmental factors (light and nutrient concentration) affect ingestion rates in this mixotroph. In addition, we show size-selective feeding with a preference for smaller particles, and determine P vs I (photosynthesis vs irradiance) responses in different nutrient conditions. If other strains have mixotrophic abilities similar to Micromonas CCMP2099, the widespread distribution and frequently high abundances of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several oceanic regimes.

  15. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes

    PubMed Central

    Bhagavathy, S; Sumathi, P

    2012-01-01

    Objective To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein, β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (P<0.05 for CA, P<0.001 for SCE). The MN frequencies of the cells were significantly decreased by the treatment with carotenoids when compared with the positive controls (P<0.05). Conclusions The findings of the present study demonstrate that, the green algae C. humicola is a rich source of bioactive compounds especially carotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects. PMID:23569879

  17. Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae.

    PubMed

    Ge, Fei; Xiao, Yao; Yang, Yixuan; Wang, Wei; Moe, Birget; Li, Xing-Fang

    2018-01-01

    We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone (HBQ) disinfection byproducts (DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, produced 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), the most prevalent HBQ DBP in disinfected water. Under varying pH conditions (pH6.0-9.0), 2,6-DCBQ formation ranged from 0.3 to 2.1μg/mg C with maximum formation at pH8.0. To evaluate the contribution of organic components of C. vulgaris to 2,6-DCBQ formation, we separated the organics into two fractions, the protein-rich fraction of intracellular organic matter (IOM) and the polysaccharide-laden fraction of extracellular organic matter (EOM). Chlorination of IOM and EOM produced 1.4μg/mg C and 0.7μg/mg C of 2,6-DCBQ, respectively. The IOM generated a two-fold higher 2,6-DCBQ formation potential than the EOM fraction, suggesting that proteins are potent 2,6-DCBQ precursors. This was confirmed by the chlorination of proteins extracted from C. vulgaris: the amount of 2,6-DCBQ produced is linearly correlated with the concentration of total algal protein (R 2 =0.98). These results support that proteins are the primary precursors of 2,6-DCBQ in algae, and control of green algal bloom outbreaks in source waters is important for management of HBQ DBPs. Copyright © 2017. Published by Elsevier B.V.

  18. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung H. A.; Padil, Vinod Vellora Thekkae; Slaveykova, Vera I.; Černík, Miroslav; Ševců, Alena

    2018-05-01

    Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga ( Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll ( Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.

  19. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action.

    PubMed

    Fu, Ling; Huang, Tao; Wang, Shuo; Wang, Xiaohong; Su, Limin; Li, Chao; Zhao, Yuanhui

    2017-02-01

    Although modes of action (MOAs) play a key role in the understanding of the toxic mechanism of chemicals, the MOAs have not been investigated for antibiotics to green algae. This paper is to discriminate excess toxicity from baseline level and investigate the MOAs of 13 different antibiotics to algae by using the determined toxicity values. Comparison of the toxicities shows that the inhibitors of protein synthesis to bacteria, such as azithromycin, doxycycline, florfenicol and oxytetracycline, exhibit significantly toxic effects to algae. On the other hand, the cell wall synthesis inhibitors, such as cefotaxime and amoxicillin, show relatively low toxic effects to the algae. The concentrations determined by HPLC indicate that quinocetone and amoxicillin can be easily photodegraded or hydrolyzed during the toxic tests. The toxic effects of quinocetone and amoxicillin to the algae are attributed to not only their parent compounds, but also their metabolites. Investigation on the mode of action shows that, except rifampicin, all the tested antibiotics exhibit excess toxicity to Pseudokirchneriella subcapitata (P. subcapitata). These antibiotics can be identified as reactive modes of action to the algae. They act as electrophilic mechanism of action to P. subcapitata. These results are valuable for the understanding of the toxic mechanism to algae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  1. Cytochrome and Alternative Pathway Respiration in Green Algae 1

    PubMed Central

    Weger, Harold G.; Guy, Robert D.; Turpin, David H.

    1990-01-01

    Inhibitor titration curves and discrimination against 18O2 by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities. PMID:16667462

  2. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae).

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-09-19

    To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G planctonica and 262,888-bp G sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. [Peculiarities of growth of the monocellular green algae culture after the influence of electromagnetic field in deuterated water-containing media].

    PubMed

    Semenov, K T; Aslanian, R R

    2013-01-01

    Exposing the inoculum of monocellular green algae Dunalialla tertiolecta and Tetraselmis viridis to 50 Hz electromagnetic field for several hours resulted in a reduced growth rate in both cultures. It was ascertained that heavy water inhibited growth of algae Dunaliella tertiolecta. The light water activated growth of the culture in the exponential phase only.

  4. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  5. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape

    DOE PAGES

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; ...

    2011-08-26

    Here, most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features ofmore » this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.« less

  6. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of thismore » species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.« less

  7. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  8. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  9. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal.

    PubMed

    Khanaev, I V; Dzyuba, E V; Kravtsova, L S; Grachev, M A

    2016-03-01

    In shallow water areas of open Lake Baikal, filamentous green alga of the genus Spirogyra grows abundantly. Together with alga of the genus Ulothrix, it forms algal mats. According to our observations from 2010 to 2013, the spawning habitat conditions for the yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottidae) proved to be significantly disturbed in the littoral zone of Listvennichnyi Bay (southern Baikal), which, in turn, reduced the number of egg layings. With a 100% projective cover of the floor and a high density of green filamentous algae, the shallow-water stony substrate becomes completely inaccessible for spawning of the August population.

  10. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  11. A new microscopic method to analyse desiccation‐induced volume changes in aeroterrestrial green algae

    PubMed Central

    LAJOS, K.; MAYR, S.; BUCHNER, O.; BLAAS, K.

    2016-01-01

    Summary Aeroterrestrial green algae are exposed to desiccation in their natural habitat, but their actual volume changes have not been investigated. Here, we measure the relative volume reduction (RVRED) in Klebsormidium crenulatum and Zygnema sp. under different preset relative air humidities (RH). A new chamber allows monitoring RH during light microscopic observation of the desiccation process. The RHs were set in the range of ∼4 % to ∼95% in 10 steps. RVRED caused by the desiccation process was determined after full acclimation to the respective RHs. In K. crenulatum, RVRED (mean ± SE) was 46.4 ± 1.9%, in Zygnema sp. RVRED was only 34.3 ± 2.4% at the highest RH (∼95%) tested. This indicates a more pronounced water loss at higher RHs in K. crenulatum versus Zygnema sp. By contrast, at the lowest RH (∼4%) tested, RVRED ranged from 75.9 ± 2.7% in K. crenulatum to 83.9 ± 2.2% in Zygnema sp. The final volume reduction is therefore more drastic in Zygnema sp. These data contribute to our understanding of the desiccation process in streptophytic green algae, which are considered the closest ancestors of land plants. PMID:27075881

  12. H+- and Na+- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas

    PubMed Central

    Liu, Yi; Visetsouk, Mike; Mynlieff, Michelle; Qin, Hongmin; Lechtreck, Karl F

    2017-01-01

    Although microtubules are known for dynamic instability, the dynamicity is considered to be tightly controlled to support a variety of cellular processes. Yet diverse evidence suggests that this is not applicable to Chlamydomonas, a biflagellate fresh water green alga, but intense autofluorescence from photosynthesis pigments has hindered the investigation. By expressing a bright fluorescent reporter protein at the endogenous level, we demonstrate in real time discreet sweeping changes in algal microtubules elicited by rises of intracellular H+ and Na+. These results from this model organism with characteristics of animal and plant cells provide novel explanations regarding how pH may drive cellular processes; how plants may respond to, and perhaps sense stresses; and how organisms with a similar sensitive cytoskeleton may be susceptible to environmental changes. PMID:28875932

  13. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption.

    PubMed

    Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders

    2017-02-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca 2+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH 2 ) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    PubMed Central

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  15. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-01-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae. PMID:25922486

  16. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    ERIC Educational Resources Information Center

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  17. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    PubMed

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time

  19. Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China

    NASA Astrophysics Data System (ADS)

    Deng, Yunyan; Tang, Xiaorong; Zhan, Zifeng; Teng, Linhong; Ding, Lanping; Huang, Bingxin

    2013-05-01

    The marine green alga Chaetomorpha valida fouls aquaculture ponds along the coastal cities of Dalian and Rongcheng, China. Unialgal cultures were observed under a microscope to determine the developmental morphological characters of C. valida. Results reveal that gametophytic filaments often produce lateral branches under laboratory culture conditions, suggesting an atypical heteromorphic life cycle of C. valida between unbranched sporophytes and branched gametophytes, which differs from typical isomorphic alternation of Chaetomorpha species. The shape of the basal attachment cell, an important taxonomic character within the genus, was found variable depending on environmental conditions. The 18S rDNA and 28S rDNA regions were used to explore the phylogenetic affinity of the taxa. Inferred trees from 18S rDNA sequences revealed a close relationship between C. valida and Chaetomorpha moniligera. These results would enrich information in general biology and morphological plasticity of C. valida and provided a basis for future identification of green tide forming algae.

  20. [Experimental assessment of combined effect of nitrates and acute gamma-irradiation on green algae Scenedesmus quadricauda growth].

    PubMed

    Triapitsyna, G A; Tarasova, S P; Atamaniuk, N I; Osipov, D I; Priakhin, E A

    2012-01-01

    The combined effect of acute gamma-irradiation at doses of 0, 50, 100, 150 and 200 Gy and nitrates in concentrations of 0.04 g/dm3 (that corresponds to maximum permissible concentrations for fishery waters), 0.1, 0.25, 0.5, 1.0, 2.5 g/dm3 (that is close to NO3(-) level in water of a reservoir R-17 used as radioactive waste storage of the "Mayak" Production Association) and 5.0 g/dm3 (that is close to NO3(-) level in the water of radioactive waste storage reservoir R-9) on the unicellular green algae Scenedesmus quadricauda growth has been studied in laboratory conditions. It was shown that the joint effects of nitrates and y-radiation had an antagonistic character. Thus, it may be concluded that chemical pollution is the factor limiting the development of green algae in reservoir R-17; probably, both factors, chemical and radiating, are essential to the algocenosis degradation in reservoir R-9.

  1. Comparative analysis of astaxanthin and its esters in the mutant E1 of Haematococcus pluvialis and other green algae by HPLC with a C30 column.

    PubMed

    Peng, Juan; Xiang, WenZhou; Tang, QuanMing; Sun, Ni; Chen, Feng; Yuan, JianPing

    2008-12-01

    A gradient reversed-phase high-performance liquid chromatography (HPLC) method using a C30 column was developed for the simultaneous determination of astaxanthin, astaxanthin monoesters and astaxanthin diesters in the green algae Chlorococcum sp., Chlorella zofingiensis, Haematococcus pluvialis and the mutant E1, which was obtained from the mutagenesis of H. pluvialis by exposure to UV-irradiation and ethyl methanesulphonate (EMS) with subsequent screening using nicotine. The results showed that the contents of total astaxanthins including free astaxanthin and astaxanthin esters ranged from 1.4 to 30.9 mg/g dry biomass in these green algae. The lower total astaxanthin levels (< 2 mg/g dry biomass) were detected in the green algae Chlorococcum sp. and C. zofingiensis. The higher total astaxanthin levels (>16 mg/g dry biomass) were found in the green alga H. pluvialis and its mutant E1. It is notable that the mutant E1 is found to have considerably higher amounts of total astaxanthin (30.9 mg/g) as compared to the wild strain of H. pluvialis (16.1 mg/g). This indicates that UV-irradiation and EMS compound mutagenesis with subsequent screening using nicotine is an effective method for breeding of a high-producing astaxanthin strain of H. pluvialis. In addition, the green alga C. zofingiensis had a remarkably higher percentage of astaxanthin diesters (76.3% of total astaxanthins) and a remarkably lower percentage of astaxanthin monoesters (18.0% of total astaxanthins) in comparison with H. pluvialis (35.5% for diesters and 60.9% for monoesters), the mutant E1 (49.1% and 48.1%) and Chlorococcum sp. (18.0% and 58.6%).

  2. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  3. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    PubMed

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    PubMed

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  5. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.

    PubMed

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  6. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae

    PubMed Central

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  7. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa.

    PubMed

    Peng, Can; Ma, Yuhui; Ding, Yayun; He, Xiao; Zhang, Peng; Lan, Tu; Wang, Dongqi; Zhang, Zhaohui; Zhang, Zhiyong

    2017-04-10

    Thorium (Th) is a natural radioactive element present in the environment and has the potential to be used as a nuclear fuel. Relatively little is known about the influence and toxicity of Th in the environment. In the present study, the toxicity of Th to the green algae Chlorella pyrenoidosa ( C. pyrenoidosa ) was evaluated by algal growth inhibition, biochemical assays and morphologic observations. In the cultural medium (OECD TG 201), Th(NO₃)₄ was transformed to amorphous precipitation of Th(OH)₄ due to hydrolysis. Th was toxic to C. pyrenoidosa , with a 96 h half maximum effective concentration (EC 50 ) of 10.4 μM. Scanning electron microscopy shows that Th-containing aggregates were attached onto the surface of the algal cells, and transmission electron microscopy indicates the internalization of nano-sized Th precipitates and ultrastructural alterations of the algal cells. The heteroagglomeration between Th(OH)₄ precipitation and alga cells and enhanced oxidative stress might play important roles in the toxicity of Th. To our knowledge, this is the first report of the toxicity of Th to algae with its chemical species in the exposure medium. This finding provides useful information on understanding the fate and toxicity of Th in the aquatic environment.

  8. Effect of methyl mercury on the growth of the green alga, Coelastrum microporum Naeg, strain 280

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderness, J.; Fenwick, M.G.; Lynch, D.L.

    The effect of methylmercury on the growth of the green alga, coelastrum microporum Naeg. strain 280 was examined. Growth was drastically reduced at a level of .006 ppM methylmercury chloride. It was noted that the organism stored more starch at higher concentrations of methylmercury. Levels of .0008 ppm were found to affect gross photosynthetic rates. (JWP)

  9. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum1

    PubMed Central

    Vanlerberghe, Greg C.; Turpin, David H.

    1990-01-01

    The green alga Selenastrum minutum (Naeg.) Collins is able to assimilate NH4+ in the dark under anaerobic conditions (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). In the present study, analysis of metabolites following addition of NH4+ to cells acclimated to anaerobic conditions has shown the following. There was a transient decline in adenylate energy charge from 0.6 to 0.4 followed by a recovery back to ~0.6. This was accompanied by a rapid increase in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also an increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase. These changes resulted in an increase in the rate of anaerobic starch breakdown. Anaerobic NH4+ assimilation also resulted in a two-fold increase in the rate of production of the major fermentative end-products in this alga, d-lactate and ethanol. There was no change in the rate of accumulation of the fermentative end product succinate but malate accumulated under anoxia during NH4+ assimilation. A rapid increase in Gln and decline in Glu indicates that primary NH4+ assimilation under anoxia was via glutamine synthetase-glutamate synthase. Almost all N assimilated under these conditions was sequestered in alanine. These results allow us to propose a model for the regulation of carbon metabolism during anaerobic NH4+ assimilation. PMID:16667806

  10. Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic.

    PubMed

    Zbikowski, Radosław; Szefer, Piotr; Latała, Adam

    2007-11-15

    The contents of Cd, Cu, Ni, Pb, Zn, Mn, K, Na, Ca and Mg were determined in the green algae Cladophora sp. from coastal and lagoonal waters of the southern Baltic. Factor analysis demonstrated spatial differences between concentration of chemical elements. The algae from the southern Baltic contained more Na and K while the anthropogenic impact of Cu, Pb and Zn was observed in the case of Cladophora sp. and Enteromorpha sp. from the Gulf of Gdansk at the vicinity of Gdynia. This area is exposed to emission of heavy metals from municipal and industrial sources with the main contribution of shipbuilding industry and seaport. The statistical evaluation of data has demonstrated that there exists a correlation between concentrations of Cu, Pb and Zn in both green algae collected at the same time and sampling sites of the Gulf of Gdansk. Our results show that in the case of absence of one species in the investigated area it is still possible to continue successfully the biomonitoring studies with its replacing by second one, i.e. Cladophora sp. by Enteromorpha sp. and vice versa; in consequence reliable results may be obtained.

  11. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    PubMed

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  12. Action Spectra for Nitrate and Nitrite Assimilation in Blue-Green Algae 1

    PubMed Central

    Serrano, Aurelio; Losada, Manuel

    1988-01-01

    Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes. PMID:16666041

  13. Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta) to Photochilling Stress

    PubMed Central

    Míguez, Fátima; Schiefelbein, Ulf; Karsten, Ulf; García-Plazaola, José I.; Gustavs, Lydia

    2017-01-01

    Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i) Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii) Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii) Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts) both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata-Baeomyces rufus, only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata. The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should also be

  14. Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta) to Photochilling Stress.

    PubMed

    Míguez, Fátima; Schiefelbein, Ulf; Karsten, Ulf; García-Plazaola, José I; Gustavs, Lydia

    2017-01-01

    Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i) Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii) Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii) Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts) both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata - Baeomyces rufus , only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata . The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should also be

  15. Effects of removing symbiotic green algae on the response of Hydra viridissima (Pallas 1776) to metals.

    PubMed

    Karntanut, W; Pascoe, D

    2005-03-01

    Hydra viridissima is distinctively green due to symbiotic algae within the endodermal cells. The current investigation was designed to see if these algae influenced the response of Hydra to pollutants, by comparing the toxicity of copper, cadmium, and zinc to both symbiotic and aposymbiotic (free of their endosymbiotic algae) H. viridissima. The results demonstrated that the toxicity of the metals was generally similar for both groups of Hydra. However, at the lowest copper concentrations there was a difference between the two group of polyps, with aposymbiotic animals dying at concentrations where symbiotic Hydra survived. The lowest observed effect concentrations were 0.0068 and 0.016 mg/L for aposymbiotic and symbiotic Hydra, respectively. It is suggested that the symbiotic Hydra derive benefits from the association that enable them to better tolerate the toxicant. This work demonstrated that experimental manipulation of symbionts can help to explain their complex interactions and the ways in which they respond to pollutants.

  16. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  17. Multiple Metabolic Roles for the Nonphotosynthetic Plastid of the Green Alga Prototheca wickerhamii†

    PubMed Central

    Borza, Tudor; Popescu, Cristina E.; Lee, Robert W.

    2005-01-01

    The presence of plastids in diverse eukaryotic lineages that have lost the capacity for photosynthesis is well documented. The metabolic functions of such organelles, however, are poorly understood except in the case of the apicoplast in the Apicomplexa, a group of intracellular parasites including Plasmodium falciparum, and the plastid of the green alga Helicosporidium sp., a parasite for which the only host-free stage identified in nature so far is represented by cysts. As a first step in the reconstruction of plastid functions in a nonphotosynthetic, predominantly free-living organism, we searched for expressed sequence tags (ESTs) that correspond to nucleus-encoded plastid-targeted polypeptides in the green alga Prototheca wickerhamii. From 3,856 ESTs, we found that 71 unique sequences (235 ESTs) correspond to different nucleus-encoded putatively plastid-targeted polypeptides. The identified proteins predict that carbohydrate, amino acid, lipid, tetrapyrrole, and isoprenoid metabolism as well as de novo purine biosynthesis and oxidoreductive processes take place in the plastid of P. wickerhamii. Mg-protoporphyrin accumulation and, therefore, plastid-to-nucleus signaling might also occur in this nonphotosynthetic organism, as we identified a transcript which encodes subunit I of Mg-chelatase, the enzyme which catalyzes the first committed step in chlorophyll synthesis. Our data indicate a far more complex metabolism in P. wickerhamii's plastid compared with the metabolic pathways predicted to be located in the apicoplast of P. falciparum and the plastid of Helicosporidium sp. PMID:15701787

  18. Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga Penium margaritaceum1[W][OPEN

    PubMed Central

    Domozych, David S.; Sørensen, Iben; Popper, Zoë A.; Ochs, Julie; Andreas, Amanda; Fangel, Jonatan U.; Pielach, Anna; Sacks, Carly; Brechka, Hannah; Ruisi-Besares, Pia; Willats, William G.T.; Rose, Jocelyn K.C.

    2014-01-01

    The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants. PMID:24652345

  19. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  20. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum1

    PubMed Central

    Vanlerberghe, Greg C.; Joy, Kenneth W.; Turpin, David H.

    1991-01-01

    We have determined the flow of 15N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of 15NH4+ to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH4+ accumulates in alanine. This is a unique feature of anaerobic NH4+ assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH4+ assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH4+ assimilation. PMID:16668034

  1. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta)

    PubMed Central

    Leliaert, Frederik; Marcelino, Vanessa R

    2018-01-01

    Abstract Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss. PMID:29635329

  2. Multi-Level Light Capture Control in Plants and Green Algae.

    PubMed

    Wobbe, Lutz; Bassi, Roberto; Kruse, Olaf

    2016-01-01

    Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production.

    PubMed

    Roth, Melissa S; Cokus, Shawn J; Gallaher, Sean D; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A; Merchant, Sabeeha S; Pellegrini, Matteo; Niyogi, Krishna K

    2017-05-23

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase ( BKT ), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.

  4. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    DOE PAGES

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; ...

    2017-05-08

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less

  5. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less

  6. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    PubMed Central

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A.; Merchant, Sabeeha S.; Pellegrini, Matteo

    2017-01-01

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production. PMID:28484037

  7. Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta.

    PubMed

    Pick, Uri; Avidan, Omri

    2017-10-13

    The halotolerant green alga Dunaliella tertiolecta accumulates starch and triacylglycerol (TAG) amounting to 70% and 10-15% of total cellular carbon, respectively, when exposed to nitrogen (N) deprivation. The purpose of this study was to clarify the inter-relationships between the biosynthesis of TAG, starch, and polar lipids (PLs) in this alga. Pulse labeling with [14C]bicarbonate was utilized to label starch and [14C]palmitic acid (PlA) to label lipids. Transfer of 14C into TAG was measured and used to calculate rates of synthesis. About two-thirds of the carbon in TAG originates from starch, and one-third is made de novo by direct CO2 assimilation. The level made from degradation of pre-formed PLs is estimated to be very small. Most of the de novo synthesis involves fatty acid transfer through PLs made during the first day of N deprivation. The results suggest that starch made by photosynthetic carbon assimilation at the early stages of N deprivation is utilized for synthesis of TAG. Trans-acylation from PLs is the second major contributor to TAG biosynthesis. The utilization of starch for TAG biosynthesis may have biotechnological applications to optimize TAG biosynthesis in algae. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Microplate technique for determining accumulation of metals by algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than didmore » blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.« less

  9. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    NASA Astrophysics Data System (ADS)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  10. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

    PubMed Central

    2014-01-01

    Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade

  11. Evolution of an atypical de-epoxidase for photoprotection in the green lineage

    PubMed Central

    Li, Zhirong; Peers, Graham; Dent, Rachel M.; Bai, Yong; Yang, Scarlett Y.; Apel, Wiebke; Leonelli, Lauriebeth; Niyogi, Krishna K.

    2016-01-01

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a tradeoff between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress, and adaptation to different light conditions1,2. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the CVDE gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria3. Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage. PMID:27618685

  12. Evolution of an atypical de-epoxidase for photoprotection in the green lineage.

    PubMed

    Li, Zhirong; Peers, Graham; Dent, Rachel M; Bai, Yong; Yang, Scarlett Y; Apel, Wiebke; Leonelli, Lauriebeth; Niyogi, Krishna K

    2016-09-12

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions(1,2). Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria(3). Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.

  13. Proteasome and NF-kappaB inhibiting phaeophytins from the green alga Cladophora fascicularis.

    PubMed

    Huang, Xinping; Li, Min; Xu, Bo; Zhu, Xiaobin; Deng, Zhiwei; Lin, Wenhan

    2007-03-21

    Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1), along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-alpha) induced nuclear factor-kappaB (NF-kappaB) activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.

  14. Extraction of nutraceuticals from Spirulina (blue-green alga): A bioorganic chemistry practice using thin-layer chromatography.

    PubMed

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J; Luna-Freire, Kristerson R; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together current research, theory, and practice, and always in accordance with pedagogical ideas. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael

    Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less

  16. Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions

    DOE PAGES

    Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael; ...

    2017-10-14

    Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less

  17. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  18. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J.

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  19. Expulsion of Symbiotic Algae during Feeding by the Green Hydra – a Mechanism for Regulating Symbiont Density?

    PubMed Central

    Fishman, Yelena; Zlotkin, Eliahu; Sher, Daniel

    2008-01-01

    Background Algal-cnidarian symbiosis is one of the main factors contributing to the success of cnidarians, and is crucial for the maintenance of coral reefs. While loss of the symbionts (such as in coral bleaching) may cause the death of the cnidarian host, over-proliferation of the algae may also harm the host. Thus, there is a need for the host to regulate the population density of its symbionts. In the green hydra, Chlorohydra viridissima, the density of symbiotic algae may be controlled through host modulation of the algal cell cycle. Alternatively, Chlorohydra may actively expel their endosymbionts, although this phenomenon has only been observed under experimentally contrived stress conditions. Principal Findings We show, using light and electron microscopy, that Chlorohydra actively expel endosymbiotic algal cells during predatory feeding on Artemia. This expulsion occurs as part of the apocrine mode of secretion from the endodermal digestive cells, but may also occur via an independent exocytotic mechanism. Significance Our results demonstrate, for the first time, active expulsion of endosymbiotic algae from cnidarians under natural conditions. We suggest this phenomenon may represent a mechanism whereby cnidarians can expel excess symbiotic algae when an alternative form of nutrition is available in the form of prey. PMID:18596972

  20. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Fristedt, Rikard; Dinc, Emine

    2016-01-01

    Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability. PMID:27637747

  1. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae

    PubMed Central

    Alexandrou, Markos A.; Cardinale, Bradley J.; Hall, John D.; Delwiche, Charles F.; Fritschie, Keith; Narwani, Anita; Venail, Patrick A.; Bentlage, Bastian; Pankey, M. Sabrina; Oakley, Todd H.

    2015-01-01

    The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences

  2. Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry.

    PubMed

    Sekine, Ryo; Moore, Katie L; Matzke, Marianne; Vallotton, Pascal; Jiang, Haibo; Hughes, Gareth M; Kirby, Jason K; Donner, Erica; Grovenor, Chris R M; Svendsen, Claus; Lombi, Enzo

    2017-11-28

    Increasing consumer use of engineered nanomaterials has led to significantly increased efforts to understand their potential impact on the environment and living organisms. Currently, no individual technique can provide all the necessary information such as their size, distribution, and chemistry in complex biological systems. Consequently, there is a need to develop complementary instrumental imaging approaches that provide enhanced understanding of these "bio-nano" interactions to overcome the limitations of individual techniques. Here we used a multimodal imaging approach incorporating dark-field light microscopy, high-resolution electron microscopy, and nanoscale secondary ion mass spectrometry (NanoSIMS). The aim was to gain insight into the bio-nano interactions of surface-functionalized silver nanoparticles (Ag-NPs) with the green algae Raphidocelis subcapitata, by combining the fidelity, spatial resolution, and elemental identification offered by the three techniques, respectively. Each technique revealed that Ag-NPs interact with the green algae with a dependence on the size (10 nm vs 60 nm) and surface functionality (tannic acid vs branched polyethylenimine, bPEI) of the NPs. Dark-field light microscopy revealed the presence of strong light scatterers on the algal cell surface, and SEM imaging confirmed their nanoparticulate nature and localization at nanoscale resolution. NanoSIMS imaging confirmed their chemical identity as Ag, with the majority of signal concentrated at the cell surface. Furthermore, SEM and NanoSIMS provided evidence of 10 nm bPEI Ag-NP internalization at higher concentrations (40 μg/L), correlating with the highest toxicity observed from these NPs. This multimodal approach thus demonstrated an effective approach to complement dose-response studies in nano-(eco)-toxicological investigations.

  3. Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae).

    PubMed

    Bağda, Esra; Tuzen, Mustafa; Sarı, Ahmet

    2017-09-01

    Removal of toxic chemicals from environmental samples with low-cost methods and materials are very useful approach for especially large-scale applications. Green algae are highly abundant biomaterials which are employed as useful biosorbents in many studies. In the present study, an interesting type of green algae, Cladophora hutchinsiae (C. hutchinsiae) was used for removal of highly toxic chemical such as uranium. The pH, biosorbent concentration, contact time and temperature were optimized as 5.0, 12 g/L, 60 min and 20 °C, respectively. For the equilibrium calculations, three well known isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed. The maximum biosorption capacity of the biosorbent was calculated as about 152 mg/g under the optimum batch conditions. The mean energy of biosorption was calculated as 8.39 kJ/mol from the D-R biosorption isotherm. The thermodynamic and kinetic characteristics of biosorption were also investigated to explain the nature of the process. The kinetic data best fits the pseudo-second-order kinetic model with a regression coefficient of >0.99 for all studied temperatures. The calculated ΔH° and ΔG° values showed that the biosorption process is exothermic and spontaneous for temperatures between 293 and 333 K. Furthermore, after seven cycling process, the sorption and desorption efficiencies of the biosorbent were found to be 70, and 58%, respectively meaning that the biosorbent had sufficiently high reusability performance as a clean-up tool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    PubMed

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Mycosporine-like Amino Acids and Other Phytochemicals Directly Detected by High-Resolution NMR on Klamath (Aphanizomenon flos-aquae) Blue-Green Algae.

    PubMed

    Righi, Valeria; Parenti, Francesca; Schenetti, Luisa; Mucci, Adele

    2016-09-07

    This study describes for the first time the use of high-resolution nuclear magnetic resonance (NMR) on Klamath (Aphanizomenon flos-aquae, AFA) blue-green algae directly on powder suspension. These algae are considered to be a "superfood", due to their complete nutritional profile that has proved to have important therapeutic effects. The main advantage of NMR spectroscopy is that it permits the detection of a number of metabolites all at once. The Klamath alga metabolome was revealed to be quite complex, and the most peculiar phytochemicals that can be detected directly on algae by NMR are mycosporine-like amino acids (porphyra-334, P334; shinorine, Shi) and low molecular weight glycosides (glyceryl β-d-galactopyranoside, GalpG; glyceryl 6-amino-6-deoxy-α-d-glucopyranoside, ADG), all compounds with a high nutraceutical value. The presence of cis-3,4-DhLys was revealed for the first time. This molecule could be involved in the anticancer properties ascribed to AFA.

  6. Observations of mechanisms of attachment in the green alga Ulva mutabilis Føyn. An ultrastructural and light microscopical study of zygotes and rhizoids.

    PubMed

    Bråten, T

    1975-01-01

    The development of the rhizoid cells of the green alga Ulva mutabilis was investigated at the ultrastructural level paying special attention to the mechanism of attachment of the plant. Cytochemical data concerning the initial settling of the early zygote are also given. On the basis of histochemical staining and enzyme treatment it is concluded that the adhesive material secreted by the rhizoid cells is chemically different from that secreted by the zygote during the initial settling of the alga.

  7. Evolution of an atypical de-epoxidase for photoprotection in the green lineage

    DOE PAGES

    Li, Zhirong; Peers, Graham; Dent, Rachel M.; ...

    2016-09-12

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here in this paper, we show that themore » Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria. Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.« less

  8. Evolution of an atypical de-epoxidase for photoprotection in the green lineage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhirong; Peers, Graham; Dent, Rachel M.

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here in this paper, we show that themore » Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria. Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.« less

  9. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans.

    PubMed

    Beach, Evan S; Eckelman, Matthew J; Cui, Zheng; Brentner, Laura; Zimmerman, Julie B

    2012-10-01

    Dewatering of the green algae Neochloris oleoabundans by flocculation was investigated for chitosan biopolymer, ferric sulfate, and alum. Chitosan was found to be most effective flocculant, with an optimum dose of 100mg/L algae broth. Zeta potential measurements suggest the mechanism involves both adsorption and charge neutralization processes. Life cycle assessment (LCA) was used to compare the chitosan method to other flocculation methods as well as centrifugation and filtration/chamber press processes. LCA showed that among these techniques, flocculation by chitosan is the least energy intensive and had the lowest impacts across all other categories of environmental impacts. The results are discussed in the overall context of biofuel production from algal biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Ca(2+)-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga.

    PubMed

    Chen, Hui; Hu, Jinlu; Qiao, Yaqin; Chen, Weixian; Rong, Junfeng; Zhang, Yunming; He, Chenliu; Wang, Qiang

    2015-10-09

    We previously showed that both the linear photosynthetic electron transportation rate and the respiration rate dropped significantly during N starvation-induced neutral lipid accumulation in an oil-producing microalga, Chlorella sorokiniana, and proposed a possible role for cyclic electron flow (CEF) in ATP supply. In this study, we further exploited this hypothesis in both Chlorella sorokiniana C3 and the model green alga Chlamydomonas. We found that both the rate of CEF around photosystem I and the activity of thylakoid membrane-located ATP synthetase increased significantly during N starvation to drive ATP production. Furthermore, we demonstrated that the Chlamydomonas mutant pgrl1, which is deficient in PGRL1-mediated CEF, accumulated less neutral lipids and had reduced rates of CEF under N starvation. Further analysis revealed that Ca(2+) signaling regulates N starvation-induced neutral lipid biosynthesis in Chlamydomonas by increasing calmodulin activity and boosting the expression of the calcium sensor protein that regulates Pgrl1-mediated CEF. Thus, Ca(2+)-regulated CEF supplies ATP for N starvation-induced lipid biosynthesis in green alga. The increased CEF may re-equilibrate the ATP/NADPH balance and recycle excess light energy in photosystems to prevent photooxidative damage, suggesting Ca(2+)-regulated CEF also played a key role in protecting and sustaining photosystems.

  11. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  12. Alpha-amylase Inhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management.

    PubMed

    Unnikrishnan, P S; Suthindhiran, K; Jayasri, M A

    2015-10-01

    In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. Among the various extracts screened, chloroform extract of C. aerea (IC50 - 408.9 μg/ml) and methanol extract of Chlorodesmis (IC50 - 147.6 μg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 - 666.3 μg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo assays will be noteworthy. Four green algae were

  13. Alpha-amylase Inhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management

    PubMed Central

    Unnikrishnan, P. S.; Suthindhiran, K.; Jayasri, M. A.

    2015-01-01

    Aim: In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. Materials and Methods: The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. Results: Among the various extracts screened, chloroform extract of C. aerea (IC50 − 408.9 μg/ml) and methanol extract of Chlorodesmis (IC50 − 147.6 μg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 – 666.3 μg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. Conclusion: Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo

  14. Stochastic Forecasting of Algae Blooms in Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  15. UNUSUAL PHENOLIC COMPOUNDS CONTRIBUTE TO ECOPHYSIOLOGICAL PERFORMANCE IN THE PURPLE-COLORED GREEN ALGA ZYGOGONIUM ERICETORUM (ZYGNEMATOPHYCEAE, STREPTOPHYTA) FROM A HIGH-ALPINE HABITAT

    PubMed Central

    Aigner, Siegfried; Remias, Daniel; Karsten, Ulf; Holzinger, Andreas

    2013-01-01

    The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high-alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High-performance liquid chromatography-screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ∼280 nm and sometimes with minor maxima at ∼380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron-dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron-translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high-alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress. PMID:25810559

  16. A screening method for cardiovascular active compounds in marine algae.

    PubMed

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii.

    PubMed

    Almeida, Carla Malaquias; Pereira, Cláudia; da Costa, Diana Soares; Pereira, Susana; Pissarra, José; Simões, Isaura; Faro, Carlos

    2012-07-01

    Aspartic proteinases have been extensively characterized in land plants but up to now no evidences for their presence in green algae group have yet been reported in literature. Here we report on the identification of the first (and only) typical aspartic proteinase from Chlamydomonas reinhardtii. This enzyme, named chlapsin, was shown to maintain the primary structure organization of typical plant aspartic proteinases but comprising distinct features, such as similar catalytic motifs DTG/DTG resembling those from animal and microbial counterparts, and an unprecedentedly longer plant specific insert domain with an extra segment of 80 amino acids, rich in alanine residues. Our results also demonstrated that chlapsin accumulates in Chlamydomonas chloroplast bringing this new enzyme to a level of uniqueness among typical plant aspartic proteinases. Chlapsin was successfully expressed in Escherichia coli and it displayed the characteristic enzymatic properties of typical aspartic proteinases, like optimum activity at acidic pH and complete inhibition by pepstatin A. Another difference to plant aspartic proteinases emerged as chlapsin was produced in an active form without its putative prosegment domain. Moreover, recombinant chlapsin showed a restricted enzymatic specificity and a proteolytic activity influenced by the presence of redox agents and nucleotides, further differentiating it from typical plant aspartic proteinases and anticipating a more specialized/regulated function for this Chlamydomonas enzyme. Taken together, our results revealed a pattern of complexity for typical plant aspartic proteinases in what concerns sequence features, localization and biochemical properties, raising new questions on the evolution and function of this vast group of plant enzymes.

  18. Phosphoproteome of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395, under Nitrogen-Replete and -Deplete Conditions

    DOE PAGES

    Guarnieri, Michael T.; Gerritsen, Alida T.; Henard, Calvin A.; ...

    2018-03-06

    The unicellular green alga, Chlorella vulgaris UTEX 395, represents a promising biocatalyst for renewable biofuel production due to its relatively rapid growth rate and high lipid accumulation capacity (Guarnieri et al., 2011, 2012; Gerken et al., 2013; Griffiths et al., 2014; Zuniga et al., 2016). Prior analyses have unveiled the global proteome dynamics of C. vulgaris following nitrogen depletion, which induces a high lipid accumulation phenotype (Guarnieri et al., 2011, 2013). More recently, we have reported a draft genome, genome-scale model, and nitrosoproteome for this alga (Zuniga et al., 2016; Henard et al., 2017)1 providing further insight into lipid biosynthetic-,more » nutrient response-, and post-transcriptional-regulatory mechanisms. To further our understanding of these regulatory mechanisms and expand the knowledge base surrounding this organism, comparative phosphoproteomic analyses were conducted under nitrogen-replete and -deplete conditions to identify differentially phosphorylated proteins that will aid in the evaluation of the potential role of phosphoregulation in lipogenesis.« less

  19. Phosphoproteome of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395, under Nitrogen-Replete and -Deplete Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Gerritsen, Alida T.; Henard, Calvin A.

    The unicellular green alga, Chlorella vulgaris UTEX 395, represents a promising biocatalyst for renewable biofuel production due to its relatively rapid growth rate and high lipid accumulation capacity (Guarnieri et al., 2011, 2012; Gerken et al., 2013; Griffiths et al., 2014; Zuniga et al., 2016). Prior analyses have unveiled the global proteome dynamics of C. vulgaris following nitrogen depletion, which induces a high lipid accumulation phenotype (Guarnieri et al., 2011, 2013). More recently, we have reported a draft genome, genome-scale model, and nitrosoproteome for this alga (Zuniga et al., 2016; Henard et al., 2017)1 providing further insight into lipid biosynthetic-,more » nutrient response-, and post-transcriptional-regulatory mechanisms. To further our understanding of these regulatory mechanisms and expand the knowledge base surrounding this organism, comparative phosphoproteomic analyses were conducted under nitrogen-replete and -deplete conditions to identify differentially phosphorylated proteins that will aid in the evaluation of the potential role of phosphoregulation in lipogenesis.« less

  20. New "missing link" genus of the colonial volvocine green algae gives insights into the evolution of oogamy.

    PubMed

    Nozaki, Hisayoshi; Yamada, Toshihiro K; Takahashi, Fumio; Matsuzaki, Ryo; Nakada, Takashi

    2014-03-03

    The evolution of oogamy from isogamy, an important biological event, can be summarized as follows: morphologically similar gametes (isogametes) differentiated into small "male" and large "female" motile gametes during anisogamy, from which immotile female gametes (eggs) evolved. The volvocine green algae represent a model lineage to study this type of sex evolution and show two types of gametic unions: conjugation between isogametes outside the parental colonies (external fertilization during isogamy) and fertilization between small motile gametes (sperm) and large gametes (eggs) inside the female colony (internal fertilization during anisogamy and oogamy). Although recent cultural studies on volvocine algae revealed morphological diversity and molecular genetic data of sexual reproduction, an intermediate type of union between these two gametic unions has not been identified. We identified a novel colonial volvocine genus, Colemanosphaera, which produces bundles of spindle-shaped male gametes through successive divisions of colonial cells. Obligately anisogamous conjugation between male and female motile gametes occurred outside the female colony (external fertilization during anisogamy). This new genus contains 16- or 32-celled spheroidal colonies similar to those of the volvocine genera Yamagishiella and Eudorina. However, Colemanosphaera can be clearly distinguished from these two genera based on its sister phylogenetic position to the enigmatic flattened colonial volvocine Platydorina and external fertilization during anisogamy. Two species of Colemanosphaera were found in a Japanese lake; these species are also distributed in European freshwaters based on a published sequence of an Austrian strain and the original description of Pandorina charkowiensis from Ukraine. Based on phylogeny and morphological data, this novel genus exhibits a missing link between Platydorina and the typical spheroidal colonial volvocine members such as Pandorina or Yamagishiella

  1. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  2. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: I. Regulation of Carbon Metabolism and Succinate as a Fermentation Product.

    PubMed

    Vanlerberghe, G C; Feil, R; Turpin, D H

    1990-11-01

    The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga.

  3. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: Insights into the architecture of ancestral chloroplast genomes

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    1999-01-01

    Green plants seem to form two sister lineages: Chlorophyta, comprising the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, and Streptophyta, comprising the Charophyceae and land plants. We have determined the complete chloroplast DNA (cpDNA) sequence (200,799 bp) of Nephroselmis olivacea, a member of the class (Prasinophyceae) thought to include descendants of the earliest-diverging green algae. The 127 genes identified in this genome represent the largest gene repertoire among the green algal and land plant cpDNAs completely sequenced to date. Of the Nephroselmis genes, 2 (ycf81 and ftsI, a gene involved in peptidoglycan synthesis) have not been identified in any previously investigated cpDNA; 5 genes [ftsW, rnE, ycf62, rnpB, and trnS(cga)] have been found only in cpDNAs of nongreen algae; and 10 others (ndh genes) have been described only in land plant cpDNAs. Nephroselmis and land plant cpDNAs share the same quadripartite structure—which is characterized by the presence of a large rRNA-encoding inverted repeat and two unequal single-copy regions—and very similar sets of genes in corresponding genomic regions. Given that our phylogenetic analyses place Nephroselmis within the Chlorophyta, these structural characteristics were most likely present in the cpDNA of the common ancestor of chlorophytes and streptophytes. Comparative analyses of chloroplast genomes indicate that the typical quadripartite architecture and gene-partitioning pattern of land plant cpDNAs are ancient features that may have been derived from the genome of the cyanobacterial progenitor of chloroplasts. Our phylogenetic data also offer insight into the chlorophyte ancestor of euglenophyte chloroplasts. PMID:10468594

  4. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga.

    PubMed

    Arriola, Matthew B; Velmurugan, Natarajan; Zhang, Ying; Plunkett, Mary H; Hondzo, Hanna; Barney, Brett M

    2018-02-01

    Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 - which does not release significant quantities of sugars to the extracellular space - was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 - which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Toxicity Assessment of Expired Pesticides to Green Algae Pseudokirchneriella subcapitata

    PubMed Central

    Satyavani, G.; Chandrasehar, G.; Varma, K. Krishna; Goparaju, A.; Ayyappan, S.; Reddy, P. Neelakanta; Murthy, P. Balakrishna

    2012-01-01

    In order to investigate the effect of expired pesticides on the yield and growth rate of green algae Pseudokirchneriella subcapitata, a study was conducted as per the Organisation for Economic Cooperation and Development (OECD) guideline number 201. Fifteen expired pesticide formulations, most commonly used in Indian agriculture, were tested in comparison with their unexpired counterparts. The expired pesticide formulations studied belonged to various class and functional groups: organophosphate, pyrethroid-based insecticides; azole-based fungicides; acetamide, propionate, acetic acid-based herbicides; fungicides mixtures containing two actives—azole and dithiocarbamate. The toxicity endpoints of yield (EyC50: 0–72 h) and growth rate (ErC50: 0–72 h) of Pseudokirchneriella subcapitata for each pesticide formulation (both expired and unexpired pesticides) were determined statistically using TOXSTAT 3.5 version software. The results pointed out that some expired pesticide formulations exhibited higher toxicity to tested algal species, as compared to the corresponding unexpired pesticides. These data thus stress the need for greater care to dispose expired pesticides to water bodies, to avoid the effects on aquatic ecospecies tested. PMID:23762633

  6. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    PubMed

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  8. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  9. A Novel High-Mannose Specific Lectin from the Green Alga Halimeda renschii Exhibits a Potent Anti-Influenza Virus Activity through High-Affinity Binding to the Viral Hemagglutinin

    PubMed Central

    Mu, Jinmin; Hirayama, Makoto; Sato, Yuichiro; Morimoto, Kinjiro; Hori, Kanji

    2017-01-01

    We have isolated a novel lectin, named HRL40 from the green alga Halimeda renschii. In hemagglutination-inhibition test and oligosaccharide-binding experiment with 29 pyridylaminated oligosaccharides, HRL40 exhibited a strict binding specificity for high-mannose N-glycans having an exposed (α1-3) mannose residue in the D2 arm of branched mannosides, and did not have an affinity for monosaccharides and other oligosaccharides examined, including complex N-glycans, an N-glycan core pentasaccharide, and oligosaccharides from glycolipids. The carbohydrate binding profile of HRL40 resembled those of Type I high-mannose specific antiviral algal lectins, or the Oscillatoria agardhii agglutinin (OAA) family, which were previously isolated from red algae and a blue-green alga (cyanobacterium). HRL40 potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells with half-maximal effective dose (ED50) of 2.45 nM through high-affinity binding to a viral envelope hemagglutinin (KD, 3.69 × 10−11 M). HRL40 consisted of two isolectins (HRL40-1 and HRL40-2), which could be separated by reverse-phase HPLC. Both isolectins had the same molecular weight of 46,564 Da and were a disulfide -linked tetrameric protein of a 11,641 Da polypeptide containing at least 13 half-cystines. Thus, HRL40, which is the first Type I high-mannose specific antiviral lectin from the green alga, had the same carbohydrate binding specificity as the OAA family, but a molecular structure distinct from the family. PMID:28813016

  10. Studies on allergenic algae of Delhi area: botanical aspects.

    PubMed

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  11. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza

    NASA Astrophysics Data System (ADS)

    Gao, Guang; Beardall, John; Bao, Menglin; Wang, Can; Ren, Wangwang; Xu, Juntian

    2018-06-01

    Large-scale green tides have been invading the coastal zones of the western Yellow Sea annually since 2008. Meanwhile, oceans are becoming more acidic due to continuous absorption of anthropogenic carbon dioxide, and intensive seaweed cultivation in Chinese coastal areas is leading to severe regional nutrient limitation. However, little is known about the combined effects of global and local stressors on the eco-physiology of bloom-forming algae. We cultured Ulva linza for 9-16 days under two levels of pCO2 (400 and 1000 µatm) and four treatments of nutrients (nutrient repletion, N limitation, P limitation, and N-P limitation) to investigate the physiological responses of this green tide alga to the combination of ocean acidification and nutrient limitation. For both sporelings and adult plants, elevated pCO2 did not affect the growth rate when cultured under nutrient-replete conditions but reduced it under P limitation; N or P limitations by themselves reduced growth rate. P limitation resulted in a larger inhibition in growth for sporelings compared to adult plants. Sporelings under P limitation did not reach the mature stage after 16 days of culture while those under P repletion became mature by day 11. Elevated pCO2 reduced net photosynthetic rate for all nutrient treatments but increased nitrate reductase activity and soluble protein content under P-replete conditions. N or P limitation reduced nitrate reductase activity and soluble protein content. These findings indicate that ocean acidification and nutrient limitation would synergistically reduce the growth of Ulva species and may thus hinder the occurrence of green tides in a future ocean environment.

  12. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance

    PubMed Central

    Herburger, Klaus; Holzinger, Andreas

    2015-01-01

    Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780

  13. A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae.

    PubMed

    Philipps, Gabriele; Krawietz, Danuta; Hemschemeier, Anja; Happe, Thomas

    2011-04-01

    The green alga Chlamydomonas reinhardtii has a complex anaerobic metabolism characterized by a plastidic hydrogenase (HYD1) coupled to photosynthesis and a bacterial-type fermentation system in which pyruvate formate lyase (PFL1) is the central fermentative enzyme. To identify mutant strains with altered hydrogen metabolism, a C. reinhardtii nuclear transformant library was screened. Mutant strain 48F5 showed lower light-dependent hydrogen (H₂) evolution rates and reduced in vitro hydrogenase activity, and fermentative H₂ production in the dark was enhanced. The transformant has a single integration of the paromomycin resistance cassette within the PFL1 gene, and is unable to synthesize PFL1 protein. 48F5 secretes no formate, but produces more ethanol, D-lactate and CO₂ than the wild type. Moreover, HYD1 transcript and HYD1 protein levels were lower in the pfl1 mutant strain. Complementation of strain 48F5 with an intact copy of the PFL1 gene restored formate excretion and hydrogenase activity to the wild type level. This analysis shows that the PFL1 pathway has a significant impact on hydrogen metabolism in C. reinhardtii. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. Anatoxin-a and its metabolites in blue-green algae food supplements from Canada and Portugal.

    PubMed

    Rawn, Dorothea F K; Niedzwiadek, Barbara; Lau, Benjamin P Y; Saker, Martin

    2007-03-01

    Blue-green algae and spirulina are marketed in health food stores and over the Internet as food supplements in Canada, the United States, and Europe. The reported benefits of consuming these products include improved digestion, strengthening of the immune system, and relief from the symptoms of attention deficit disorder. Some of these products have been found to contain elevated concentrations of microcystins, which are known hepatotoxins. In addition to producing microcystins, Anabaena sp. and Aphanizomenon sp. also produce the potent neurotoxin anatoxin-a. Samples of food supplements containing blue-green algae and spirulina were collected in Portugal and from urban centers across Canada in 2005. Extracts of these supplements were analyzed to determine the presence and concentrations of anatoxin-a and its two main metabolites, dihydroanatoxin-a and epoxyanatoxin-a. Initial analyses were performed using high-performance liquid chromatography (HPLC) with fluorescence detection, and confirmation required the use of LC with tandem mass spectrometry (LC-MS-MS). The HPLC with fluorescence detection indicated no anatoxin-a, but four samples were suspected to contain either dihydroanatoxin-a or epoxyanatoxin-a at 0.1 to 0.2 microg/g. LC-MS-MS results, however, indicated no trace of either transformation product in any sample analyzed. The detection limits for anatoxin-a, dihydroanatoxin-a, and epoxyanatoxin-a were similar for both fluorescence detection (0.2 to 0.3, 0.4 to 1.4, and 0.2 to 1.5 pg on the column, respectively) and mass spectrometry (0.3 to 1.5, 0.3 to 0.8, and 0.5 to 0.8 pg on the column, respectively). Because of the higher specificity of the LC-MS-MS analysis, all tested food supplement samples were considered free of anatoxin-a and its transformation products.

  15. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    PubMed

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.

    PubMed

    Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L

    2015-01-01

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.

  17. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  18. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    PubMed Central

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.

    2015-01-01

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230

  19. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE PAGES

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H 2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate undermore » anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less

  20. Cytochrome and alternative pathway respiration in green algae : measurements using inhibitors and o(2) discrimination.

    PubMed

    Weger, H G; Guy, R D; Turpin, D H

    1990-05-01

    Inhibitor titration curves and discrimination against (18)O(2) by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities.

  1. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis.

    PubMed

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-10-31

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction

    PubMed Central

    Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard

    2014-01-01

    functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. Significance This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors. PMID:25340847

  3. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    PubMed

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cancer prevention by green tea: evidence from epidemiologic studies.

    PubMed

    Yuan, Jian-Min

    2013-12-01

    In contrast to the consistent results of an inhibitory effect of green tea extracts and tea polyphenols on the development and growth of carcinogen-induced tumors in experimental animal models, results from human studies are mixed. Both observational and intervention studies have provided evidence in support of a protective role of green tea intake in the development of oral-digestive tract cancer or an inhibitory role of oral supplementation of green tea extract on a precancerous lesion of oral cavity. Evidence in support of green tea intake against the development of liver cancer risk is limited and inconsistent. An inverse association between green tea intake and lung cancer risk has been observed among never smokers but not among smokers. Although observational studies do not support a beneficial role of tea intake against the development of prostate cancer, several phase 2 clinical trials have shown an inhibitory effect of green tea extract against the progression of prostate premalignant lesions to malignant tumors. Prospective epidemiologic studies so far have not provided evidence for a protective effect of green tea consumption on breast cancer development. Current data neither confirm nor refute a definitive cancer-preventive role of green tea intake. Large randomized intervention trials on the efficacy of green tea polyphenols or extracts are required before a recommendation for green tea consumption for cancer prevention should be made.

  5. Meteorological effects on variation of airborne algae in Mexico

    NASA Astrophysics Data System (ADS)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  6. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    NASA Astrophysics Data System (ADS)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  7. Algae to Bio-Crude in Less Than 60 Minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Doug

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  8. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2018-01-16

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  9. Ammonium Assimilation Requires Mitochondrial Respiration in the Light : A Study with the Green Alga Selenastrum minutum.

    PubMed

    Weger, H G; Birch, D G; Elrifi, I R; Turpin, D H

    1988-03-01

    Mass spectrometric analysis of O(2) and CO(2) exchange in the green alga Selenastrum minutum (Naeg. Collins) provides evidence for the occurrence of mitochondrial respiration in light. Stimulation of amino acid synthesis by the addition of NH(4)Cl resulted in nearly a 250% increase in the rate of TCA cycle CO(2) efflux in both light and dark. Ammonium addition caused a similar increase in cyanide sensitive O(2) consumption in both light and dark. Anaerobiosis inhibited the CO(2) release caused by NH(4)Cl. These results indicated that the cytochrome pathway of the mitochondrial electron transport chain was operative and responsible for the oxidation of a large portion of the NADH generated during the ammonium induced increase in TCA cycle activity. In the presence of DCMU, ammonium addition also stimulated net O(2) consumption in the light. This implied that the Mehler reaction did not play a significant role in O(2) consumption under our conditions. These results show that both the TCA cycle and the mitochondrial electron transport chain are capable of operation in the light and that an important role of mitochondrial respiration in photosynthesizing cells is the provision of carbon skeletons for biosynthetic reactions.

  10. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Production of carbonate sediments by a unicellular green alga

    USGS Publications Warehouse

    Yates, K.K.; Robbins, L.L.

    1998-01-01

    This study investigates the ability of the unicellular green alga Natmochloris atoimis to precipitate CaCO3, quantifies mineral precipitation rates, estimates sediment production in a N. atomiis bloom, and discusses the implications of microbial calcification for carbonate sediment deposition. A series of N. atomus cultures, isolated from Lake Reeve, Australia, were incubated at various pH and calcium concentrations to determine environmental parameters for calcification. Rates of calcification were calculated from initial and postincubation alkalinity, pH, and calcium measurements. Replicate experiments and controls consisting of non-calcifying cultures, uninoculated media, and dead cell cultures were performed using environmental culture parameters determined in series cultures. Average calcification rates from replicate experiments were used to predict daily sediment production rates in a small bloom of N. atomus. N. atomus precipitates 0.138 g/L of calcite in approximately 4 h when incubated at pH 8.5, 14.24 mM calcium concentration, 33 ??C, 100 ??E/m2/s light intensity, and a cell population density of 107 cells/mL. Assuming continuous precipitation, this corresponds to a maximum estimated sediment production rate of 1.6 ?? 106 kg of CaCO3, per 12 h day in a single bloom of 3.2 ?? 109 L. Our results suggest that microbial calcification contributes significantly to the carbonate sediment budget.

  12. Biogenic Weathering: Solubilization of Iron from Minerals by Epilithic Freshwater Algae and Cyanobacteria

    PubMed Central

    2018-01-01

    A sandstone outcrop exposed to freshwater seepage supports a diverse assemblage of photosynthetic microbes. Dominant taxa are two cyanophytes (Oscillatoria sp., Rivularia sp.) and a unicellular green alga (Palmellococcus sp.). Less abundant taxa include a filamentous green alga, Microspora, and the desmid Cosmarium. Biologic activity is evidenced by measured levels of chlorophyll and lipids. Bioassay methods confirm the ability of these microbes to dissolve and metabolize Fe from ferruginous minerals. Chromatographic analysis reveals citric acid as the likely chelating agent; this low molecular weight organic acid is detectable in interstitial fluid in the sandstone, measured as 0.0756 mg/mL. Bioassays using a model organism, Synechoccus elongates strain UTEX 650, show that Fe availability varies among different ferruginous minerals. In decreasing order of Fe availability: magnetite > limonite > biotite > siderite > hematite. Biotite was selected for detailed study because it is the most abundant iron-bearing mineral in the sandstone. SEM images support the microbiologic evidence, showing weathering of biotite compared to relatively undamaged grains of other silicate minerals. PMID:29342973

  13. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  14. Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae.

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2017-04-20

    The chloroplast genomes of many algae and almost all land plants carry two identical copies of a large inverted repeat (IR) sequence that can pair for flip-flop recombination and undergo expansion/contraction. Although the IR has been lost multiple times during the evolution of the green algae, the underlying mechanisms are still largely unknown. A recent comparison of IR-lacking and IR-containing chloroplast genomes of chlorophytes from the Ulvophyceae (Ulotrichales) suggested that differential elimination of genes from the IR copies might lead to IR loss. To gain deeper insights into the evolutionary history of the chloroplast genome in the Ulvophyceae, we analyzed the genomes of Ignatius tetrasporus and Pseudocharacium americanum (Ignatiales, an order not previously sampled), Dangemannia microcystis (Oltmannsiellopsidales), Pseudoneochloris marina (Ulvales) and also Chamaetrichon capsulatum and Trichosarcina mucosa (Ulotrichales). Our comparison of these six chloroplast genomes with those previously reported for nine ulvophyceans revealed unsuspected variability. All newly examined genomes feature an IR, but remarkably, the copies of the IR present in the Ignatiales, Pseudoneochloris, and Chamaetrichon diverge in sequence, with the tRNA genes from the rRNA operon missing in one IR copy. The implications of this unprecedented finding for the mechanism of IR loss and flip-flop recombination are discussed.

  15. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca.

    PubMed

    Suzuki, Shigekatsu; Endoh, Rikiya; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Hirakawa, Yoshihisa

    2018-01-17

    Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis.

  16. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants.

    PubMed

    van Baren, Marijke J; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J; Kuo, Alan; Grigoriev, Igor V; Wong, Chee-Hong; Smith, Richard D; Callister, Stephen J; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore

  17. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  18. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    DOE PAGES

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; ...

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  19. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    PubMed

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Indocyanine green angiographic evidence of choroiditis in scleroderma.

    PubMed

    Abdellatief, Amro; Balasubramaniam, Saranya C; Grube, Thomas J; Gonzalez Santiago, Tania M; Osborn, Thomas G; Pulido, Jose S

    2015-01-01

    The purpose of this case report was to demonstrate evidence of indocyanine green angiography leakage consistent with choroiditis in a patient with scleroderma. In this case report, the patient underwent a variety of tests and examinations, including systemic evaluation, full ocular examination, skin biopsy, indocyanine green, and fluorescein angiography testing. A 52-year-old man had blurred vision centrally in both eyes. Vision was 20/25 and 20/20. Posterior examination showed cotton-wool spots in both eyes. The patient met European League against Rheumatism (EULAR) criteria for scleroderma. Fluorescein angiography confirmed the presence of leakage from the retinal vessels. More importantly, indocyanine green angiography revealed choroidal vessel leakage in both eyes. This provided evidence of choroiditis before vessel obliteration. Previous studies have shown evidence of choriocapillaris obliteration. Choroidal vessel leakage, however, has not been reported in patients with scleroderma. The results of this case demonstrate the usefulness of indocyanine green angiography in detecting the presence of choroiditis in scleroderma.

  1. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    EPA Science Inventory

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  2. Washington State University Algae Biofuels Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    chen, Shulin; McCormick, Margaret; Sutterlin, Rusty

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states ofmore » the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.« less

  3. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Ni, Wanmin; Luo, Yang; Jan Stevenson, R.; Qi, Jiaguo

    Although frequent algal blooms in Taihu Lake in China have become major environmental problems and have drawn national and international attention, little is understood about the relationship between algal blooms and water quality. The goal of this study was to assess the growth and species responses of freshwater algae to variation in water quality in Qinshan Lake, located in headwaters of the Taihu watershed. Water samples were collected monthly from ten study sites in the Qinshan Lake and were analyzed for species distribution of freshwater algae and physiochemical parameters such as total nitrogen (TN), NH4+-N, NO3--N, total phosphorus (TP), chemical oxygen demand (COD Mn) and Chl-a. The results showed that average TN was 4.47 mg/L, with 92.2% of values greater than the TN standard set by the Chinese Environmental Protection Agency; average TP was 0.051 mg/L, with 37.9% of values above the TP national standard; and average trophic level index (TLI) was 53, the lower end of eutrophic condition. Average Chl-a concentration was 12.83 mg/m 3. Green algae and diatom far outweighed other freshwater algae and were dominant most time of the year, with the highest relative abundances of 96% and 99%, respectively. Blue-green algae, composed mainly toxic strains like Microcystis sp ., Nostoc sp. and Oscillatoria sp., became most dominant in the summer with the maximum relative abundance of 69%. The blue-green algae sank to the lake bottom to overwinter, and then dinoflagellates became the dominant species in the winter, with highest relative abundance of 89%. Analysis indicated that nutrients, especially control of ammonia and co-varying nutrients were the major restrictive factor of population growth of blue-green algae, suggesting that control in nutrient enrichments is the major preventive measure of algal blooms in Qinshan Lake.

  4. Evaluation of in vitro anti-Leishmanial activity of some brown, green and red algae from the Persian Gulf.

    PubMed

    Fouladvand, M; Barazesh, A; Farokhzad, F; Malekizadeh, H; Sartavi, K

    2011-06-01

    Leishmaniasis is a protozoan parasitic disease which is transmitted by the female Phlebotomus sand fly and is prevalent in four continents.The first-choice treatment for the leishmaniasis is pentavalent antimonials, which are potentially toxic and often ineffective and use of them exhibit therapeutic failure. These pharmaceutical problems point towards the need to develop novel chemotherapeutic agents. Seaweeds are considered as source of bioactive metabolites characterized by a broad spectrum of biological activities. In this experimental study, cold and hot water crude extracts of four species of green, brown and red marine algae "Caulerpa sertularioides, Gracilaria corticata, Gracillaria salicornia and Sargassum oligocystum" collected along the Bushehr coast of the Persian Gulf (southwest of Iran), prepared and their in vitro activities against Leishmania major promastigote were evaluated by using the MTT assay test. The cold and hot water crude extracts of four algae species exhibited different anti-Leishmanial activities. The minimum inhibitory concentration of hot water extracts calculated as IC50 was as follows: Caulerpa sertularioides (IC50 < or =85 microg/ml), Gracilaria corticata (IC50 < or =38 microg/ml), Gracillaria salicornia (IC50 < or =46 microg/ml) and Sargassum oligocystum (IC(50)9 < or =78 microg/ml, while these values for cold water extracts were (IC50 >125 microg/ml) for Caulerpa Sertularioides (IC50 >65 microg/ml) for Gracilaria corticata (IC50 >74 microg/ml) for Gracilaria salicornia and (IC50 >105 microg/ml) for Sargassum oligocystum, IC50 values for reference drug (Amphotericin B) was (0.16-0.2 microg/ml). According to the results, inhibitory effects of the crude extracts from these four species algae specially hot water crude extracts from "Gracilaria corticata, Gracillaria salicornia and Sargassum oligocystum" are significant and in accordance with other studies that has been done on different algae species. So these results are

  5. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  6. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection.

    PubMed

    Komatsu, Takayuki; Kido, Nobuo; Sugiyama, Tsuyoshi; Yokochi, Takashi

    2013-02-01

    The extracts prepared from green algae are reported to possess a variety of biological activities including antioxidant, antitumor and antiviral activities. The acidic polysaccharide fraction from a green alga Coccomyxa gloeobotrydiformi (CmAPS) was isolated and the antiviral action on an in vitro infection of influenza A virus was examined. CmAPS inhibited the growth and yield of all influenza A virus strains tested, such as A/H1N1, A/H2N2, A/H3N2 and A/H1N1 pandemic strains. The 50% inhibitory concentration of CmAPS on the infection of human influenza A virus strains ranged from 26 to 70 µg/mL and the antiviral activity of CmAPS against influenza A/USSR90/77 (H1N1) was the strongest. The antiviral activity of CmAPS was not due to the cytotoxicity against host cells. The antiviral activity of CmAPS required its presence in the inoculation of virus onto MDCK cells. Pretreatment and post-treatment with CmAPS was ineffective for the antiviral activity. CmAPS inhibited influenza A virus-induced erythrocyte hemagglutination and hemolysis. Taken together, CmAPS was suggested to exhibit the anti-influenza virus activity through preventing the interaction of virus and host cells. The detailed antiviral activity of CmAPS is discussed.

  7. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881.

    PubMed

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction.

  8. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    PubMed Central

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  9. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantt, E.; Lipschultz, C.A.; Grabowski, J.

    1979-04-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimesmore » with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.« less

  10. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain.

    PubMed

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-04-22

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae.

  11. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: II. Assimilation of Ammonium by Anaerobic Cells.

    PubMed

    Vanlerberghe, G C; Turpin, D H

    1990-11-01

    The green alga Selenastrum minutum (Naeg.) Collins is able to assimilate NH(4) (+) in the dark under anaerobic conditions (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). In the present study, analysis of metabolites following addition of NH(4) (+) to cells acclimated to anaerobic conditions has shown the following. There was a transient decline in adenylate energy charge from 0.6 to 0.4 followed by a recovery back to ~0.6. This was accompanied by a rapid increase in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also an increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase. These changes resulted in an increase in the rate of anaerobic starch breakdown. Anaerobic NH(4) (+) assimilation also resulted in a two-fold increase in the rate of production of the major fermentative end-products in this alga, d-lactate and ethanol. There was no change in the rate of accumulation of the fermentative end product succinate but malate accumulated under anoxia during NH(4) (+) assimilation. A rapid increase in Gln and decline in Glu indicates that primary NH(4) (+) assimilation under anoxia was via glutamine synthetase-glutamate synthase. Almost all N assimilated under these conditions was sequestered in alanine. These results allow us to propose a model for the regulation of carbon metabolism during anaerobic NH(4) (+) assimilation.

  12. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    USDA-ARS?s Scientific Manuscript database

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  13. Three-Dimensional Ultrastructural Study of Oil and Astaxanthin Accumulation during Encystment in the Green Alga Haematococcus pluvialis

    PubMed Central

    Matsuura, Hazuki; Nango, Nobuhito; Hirata, Aiko; Kawano, Shigeyuki

    2013-01-01

    Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage. PMID:23326471

  14. Comparative Genomics of a Bacterivorous Green Alga Reveals Evolutionary Causalities and Consequences of Phago-Mixotrophic Mode of Nutrition

    PubMed Central

    Burns, John A.; Paasch, Amber; Narechania, Apurva; Kim, Eunsoo

    2015-01-01

    Abstract Cymbomonas tetramitiformis—a marine prasinophyte—is one of only a few green algae that still retain an ancestral particulate-feeding mechanism while harvesting energy through photosynthesis. The genome of the alga is estimated to be 850 Mb–1.2 Gb in size—the bulk of which is filled with repetitive sequences—and is annotated with 37,366 protein-coding gene models. A number of unusual metabolic pathways (for the Chloroplastida) are predicted for C. tetramitiformis, including pathways for Lipid-A and peptidoglycan metabolism. Comparative analyses of the predicted peptides of C. tetramitiformis to sets of other eukaryotes revealed that nonphagocytes are depleted in a number of genes, a proportion of which have known function in feeding. In addition, our analysis suggests that obligatory phagotrophy is associated with the loss of genes that function in biosynthesis of small molecules (e.g., amino acids). Further, C. tetramitiformis and at least one other phago-mixotrophic alga are thus unique, compared with obligatory heterotrophs and nonphagocytes, in that both feeding and small molecule synthesis-related genes are retained in their genomes. These results suggest that early, ancestral host eukaryotes that gave rise to phototrophs had the capacity to assimilate building block molecules from inorganic substances (i.e., prototrophy). The loss of biosynthesis genes, thus, may at least partially explain the apparent lack of instances of permanent incorporation of photosynthetic endosymbionts in later-divergent, auxotrophic eukaryotic lineages, such as metazoans and ciliates. PMID:26224703

  15. Natural vitamin B12 and fucose supplementation of green smoothies with edible algae and related quality changes during their shelf life.

    PubMed

    Castillejo, Noelia; Martínez-Hernández, Ginés Benito; Goffi, Valentina; Gómez, Perla A; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2018-04-01

    Some algae are an excellent sources of vitamin B12, of special interest for vegetarian/vegan consumers, and of fucose to supplement fruit and vegetable beverages such as smoothies. Nevertheless, supplementation of smoothies with algae may lead to possible quality changes during smoothie shelf life that need to be studied. Therefore, the quality changes in fresh green smoothies supplemented (2.2%) with nine edible algae (sea lettuce, kombu, wakame, thongweed, dulse, Irish moss, nori, Spirulina and Chlorella) were studied throughout 24 days at 5 °C. The initial vitamin C content - 238.7-326.0 mg kg -1 fresh weight (FW) - of a 200 g portion of any of the smoothies ensured full coverage of its recommended daily intake, and still supplying 50-60% of the recommended intake after 7 days. Chlorella and Spirulina smoothies showed the highest vitamin B12 content (33.3 and 15.3 µg kg -1 FW, respectively), while brown algae showed fucose content of 141.1-571.3 mg kg -1 FW. These vitamin B12 and fucose contents were highly maintained during shelf life. The Spirulina supplementation of a 200 g smoothie portion ensured full coverage of the recommended vitamin B12 intake, with lower vitamin C degradation, during a shelf life of 17 days. Furthermore, thongweed and kombu are also considered as excellent fucose sources with similar shelf life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  17. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).

    PubMed

    Ueno, Ryohei

    2009-04-01

    Fluorescent in situ hybridization (FISH) using taxon-specific, rRNA-targeted oligonucleotide probes is one of the most powerful tools for the rapid identification of harmful microorganisms. However, eukaryotic algal cells do not always allow FISH probes to permeate over their cell walls. Members of the pathogenic micro-algal genus Prototheca are characterized by their distinctive cell-wall component, sporopollenin, an extremely tough biopolymer that resists acid and alkaline hydrolysis, enzyme attack, and acetolysis. To our knowledge, there has been no report of the successful permeation by the oligonucleotide probes over the cell walls of unicellular green micro-algae, which contain sporopollenin. The DNA probes passed through the cell wall of Prototheca wickerhamii after treating the algal cells with cetyltrimethylammonium bromide (CTAB). Most cells in the middle logarithmic growth phase culture fluoresced when hybridized with the rRNA-targeted universal probe for eukaryotes, though individual cells included in this culture differed in the level of cell-wall vulnerability to attack by the polysaccharide-degrading enzyme, thus reflecting the different stages of the life cycle. This is the first report regarding the visualization of sporopollenin-containing, green micro-algal cells by FISH.

  18. Removal of Selected Pharmaceutical and Personal Care Products by the Green Alga Nannochloris sp.

    NASA Astrophysics Data System (ADS)

    Bai, X.; Acharya, K.

    2016-12-01

    Emerging contaminants have become an increasing concern in the environment due to their ubiquitous distribution and potential adverse effects on wildlife and humans. Municipal wastewater is a major source of pharmaceutical and personal care products (PPCPs) in the Las Vegas metropolitan area. The ecotoxic impacts of PPCPs on aquatic organisms include development of antimicrobial resistance, decreases in plankton diversity, and endocrine disruption. Freshwater algae can be responsible for the uptake and transfer of the contaminants because they are a major food source for most aquatic organisms. This research applied laboratory-based incubation studies to evaluate the removal efficiency and uptake mechanisms of the selected PPCPs (trimethoprim, sulfamethoxazole, and triclosan) by the green alga Nannochloris sp. The results showed that trimethoprim and sulfamethoxazole remained in the algal culture at 100% and 68%, respectively, after 14 days of incubation, and therefore were not significantly removed from the medium. However, the antimicrobial triclosan was significantly removed from the medium. Immediately after incubation began, 74% of triclosan dissipated and 100% of triclosan was removed after 7 days of incubation. Additionally, over 42% of triclosan was found associated with the algal cells throughout the incubation. The results demonstrate that the presence of Nannochloris sp. eliminated triclosan in the aquatic system, but could not significantly remove the antibiotics trimethoprim and sulfamethoxazole. This study provided crucial information that toxicity of triclosan in aquatic organisms is a critical concern because of its high uptake by phytoplankton. The resistance of trimethoprim and sulfamethoxazole to uptake by phytoplankton may threaten water quality.

  19. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    NASA Astrophysics Data System (ADS)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in green algae were fully encrusted with Fe-precipitates, the brown algae often exhibited discontinuous series of precipitates. This pattern was likely due to the intercalary growth of algal filaments which allowed them to avoid detrimental encrustation. 16S rRNA gene-targeted studies revealed that Gallionella-related FeOB dominated the bacterial RNA and DNA communities (70-97 and 63-96 %, respectively), suggesting their capacity to compete with the abiotic Fe-oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including

  20. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  1. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds.

    PubMed

    Koníčková, Renata; Vaňková, Kateřina; Vaníková, Jana; Váňová, Kateřina; Muchová, Lucie; Subhanová, Iva; Zadinová, Marie; Zelenka, Jaroslav; Dvořák, Aleš; Kolář, Michal; Strnad, Hynek; Rimpelová, Silvie; Ruml, Tomáš; J Wong, Ronald; Vítek, Libor

    2014-01-01

    Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 μM [PCB], and 125 μM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.

  2. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  3. Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China.

    PubMed

    Ma, Jianrong; Qin, Boqiang; Paerl, Hans W; Brookes, Justin D; Wu, Pan; Zhou, Jian; Deng, Jianming; Guo, Jinsong; Li, Zhe

    2015-04-01

    Enrichment of waterways with nitrogen (N) and phosphorus (P) has accelerated eutrophication and promoted cyanobacterial blooms worldwide. An understanding of whether cyanobacteria maintain their dominance under accelerated eutrophication will help predict trends and provide rational control measures. A mesocosm experiment was conducted under natural light and temperature conditions in Lake Taihu, China. It revealed that only N added to lake water promoted growth of colonial and filamentous cyanobacteria (Microcystis, Pseudoanabaena and Planktothrix) and single-cell green algae (Cosmarium, Chlorella, and Scenedesmus). Adding P alone promoted neither cyanobacteria nor green algae significantly. N plus P additions promoted cyanobacteria and green algae growth greatly. The higher growth rates of green algae vs. cyanobacteria in N plus P additions resulted in the biomass of green algae exceeding that of cyanobacteria. This indicates that further enrichment with N plus P in eutrophic water will enhance green algae over cyanobacterial dominance. However, it does not mean that eutrophication problems will cease. On the contrary, the risk will increase due to increasing total phytoplankton biomass.

  4. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    PubMed

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  5. Spirulan from blue-green algae inhibits fibrin and blood clots: its potent antithrombotic effects.

    PubMed

    Choi, Jun-Hui; Kim, Seung; Kim, Sung-Jun

    2015-05-01

    We investigated in vitro and in vivo fibrinolytic and antithrombotic activity of spirulan and analyzed its partial biochemical properties. Spirulan, a sulfated polysaccharide from the blue-green alga Arthrospira platensis, exhibits antithrombotic potency. Spirulan showed a strong fibrin zymogram lysis band corresponding to its molecular mass. It specifically cleaved Aα and Bβ, the major chains of fibrinogen. Spirulan directly decreased the activity of thrombin and factor X activated (FXa), procoagulant proteins. In vitro assays using human fibrin and mouse blood clots showed fibrinolytic and hemolytic activities of spirulan. Spirulan (2 mg/kg) showed antithrombotic effects in the ferric chloride (FeCl3 )-induced carotid arterial thrombus model and collagen and epinephrine-induced pulmonary thromboembolism mouse model. These results may be attributable to the prevention of thrombus formation and partial lysis of thrombus. Therefore, we suggest that spirulan may be a potential antithrombotic agent for thrombosis-related diseases. © 2015 Wiley Periodicals, Inc.

  6. Coastal habitat degradation and green sea turtle diets in Southeastern Brazil

    USGS Publications Warehouse

    Santos, Robson G.; Martins, Agnaldo Silva; Farias, Julyana da Nobrega; Horta, Antunes Paulo; Pinheiro, Hudson Tercio; Baptistotte, Cecilia; Seminoff, Jeffrey A.; Balazs, George H.; Work, Thierry M.

    2011-01-01

    To show the influence of coastal habitat degradation on the availability of food for green turtles (Chelonia mydas), we assessed the dietary preferences and macroalgae community at a feeding area in a highly urbanized region. The area showed low species richness and was classified as degraded. We examined stomach contents of 15 dead stranded turtles (CCL = 44.0 cm (SD 6.7 cm)). The diet was composed primarily of green algae Ulva spp. (83.6%). In contrast, the macroalgae community was dominated by the green alga Caulerpa mexicana. We found a selection for red algae, seagrass and Ulva spp., and avoidance for C. mexicana and brown alga Dictyopteris delicatula. The low diversity of available food items, possibly a result of environmental degradation, likely contributed to the low dietary diversity. The nutritional implications of this restricted diet are unclear.

  7. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

    PubMed Central

    Brawley, Susan H.; Blouin, Nicolas A.; Ficko-Blean, Elizabeth; Wheeler, Glen L.; Lohr, Martin; Goodson, Holly V.; Jenkins, Jerry W.; Blaby-Haas, Crysten E.; Helliwell, Katherine E.; Chan, Cheong Xin; Marriage, Tara N.; Klein, Anita S.; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M.; Gachon, Claire M. M.; Green, Beverley R.; Karpowicz, Steven J.; Kim, Jay W.; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J. S. C.; Pangilinan, Jasmyn L.; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T.; Sprecher, Brittany N.; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A.; Grimwood, Jane; Barry, Kerrie W.; Rokhsar, Daniel S.; Schmutz, Jeremy; Stiller, John W.; Grossman, Arthur R.; Prochnik, Simon E.

    2017-01-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses. PMID:28716924

  8. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

    PubMed

    Brawley, Susan H; Blouin, Nicolas A; Ficko-Blean, Elizabeth; Wheeler, Glen L; Lohr, Martin; Goodson, Holly V; Jenkins, Jerry W; Blaby-Haas, Crysten E; Helliwell, Katherine E; Chan, Cheong Xin; Marriage, Tara N; Bhattacharya, Debashish; Klein, Anita S; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M; Gachon, Claire M M; Green, Beverley R; Karpowicz, Steven J; Kim, Jay W; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J S C; Pangilinan, Jasmyn L; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T; Smith, Alison G; Sprecher, Brittany N; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A; Grimwood, Jane; Barry, Kerrie W; Rokhsar, Daniel S; Schmutz, Jeremy; Stiller, John W; Grossman, Arthur R; Prochnik, Simon E

    2017-08-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra , lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.

  9. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

    DOE PAGES

    Brawley, Susan H.; Blouin, Nicolas A.; Ficko-Blean, Elizabeth; ...

    2017-07-17

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a smallmore » set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.« less

  10. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brawley, Susan H.; Blouin, Nicolas A.; Ficko-Blean, Elizabeth

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a smallmore » set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.« less

  11. Ca2+ Requirement for Aerobic Nitrogen Fixation by Heterocystous Blue-Green Algae 1

    PubMed Central

    Rodríguez, Herminia; Rivas, Joaquín; Guerrero, Miguel G.; Losada, Manuel

    1990-01-01

    The requirement of Ca2+ for growth and nitrogen fixation has been investigated in two strains of heterocystous blue-green algae (Anabaena sp. and Anabaena ATCC 33047). With combined nitrogen (nitrate or ammonium) or with N2 under microaerobic conditions, Ca2+ was not required for growth, at least in concentrations greater than traces. In contrast, Ca2+ was required as a macronutrient for growth and nitrogen fixation with air as the nitrogen source. Addition of Ca2+ to an aerobic culture without Ca2+ promoted, after a lag of several hours, development of nitrogenase activity and cell growth. Provision of air to a microaerobic culture in the absence of Ca2+ promoted a drastic drop in nitrogenase activity, which rapidly recovered its initial level upon restoration of microaerobic conditions. Development of nitrogenase activity in response to either Ca2+ or low oxygen tension was dependent on de novo protein synthesis. The role of Ca2+ seems to be related to protection of nitrogenase from inactivation, by conferring heterocysts resistance to oxygen. PMID:16667401

  12. Phospholipids of New Zealand Edible Brown Algae.

    PubMed

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  13. Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula).

    PubMed

    Nedbalová, Linda; Mihál, Martin; Kvíderová, Jana; Procházková, Lenka; Řezanka, Tomáš; Elster, Josef

    2017-01-01

    The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day -1 ) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.

  14. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  15. The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome.

    PubMed

    Tartar, Aurélien; Boucias, Drion G

    2004-04-01

    A fragment of the Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) plastid genome has been sequenced. The genome architecture was compared to that of both a non-photosynthetic relative (Prototheca wickerhamii) and a photosynthetic relative (Chlorella vulgaris). Comparative genomic analysis indicated that Helicosporidium and Prototheca are closely related genera. The analyses also revealed that the Helicosporidium sp. plastid genome has been rearranged. In particular, two ribosomal protein-encoding genes (rpl19 and rps23) appeared to have been transposed, or lost from the Helicosporidium sp. plastid genome. RT-PCR reactions demonstrated that the retained plastid genes were transcribed, suggesting that, despite rearrangement(s), the Helicosporidium sp. plastid genome has remained functional. The modified plastid genome architecture is a novel apomorphy that indicates that the Helicosporidia are highly derived green algae, more so than Prototheca spp. As such, they represent a promising model to study organellar genome reorganizations in parasitic protists.

  16. Multilayer gyroid cubic membrane organization in green alga Zygnema.

    PubMed

    Zhan, Ting; Lv, Wenhua; Deng, Yuru

    2017-09-01

    Biological cubic membranes (CM), which are fluid membranes draped onto the 3D periodic parallel surface geometries with cubic symmetry, have been observed within subcellular organelles, including mitochondria, endoplasmic reticulum, and thylakoids. CM transition tends to occur under various stress conditions; however, multilayer CM organizations often appear associated with light stress conditions. This report is about the characterization of a projected gyroid CM in a transmission electron microscopy study of the chloroplast membranes within green alga Zygnema (LB923) whose lamellar form of thylakoid membrane started to fold into multilayer gyroid CM in the culture at the end of log phase of cell growth. Using the techniques of computer simulation of transmission electron microscopy (TEM) and a direct template matching method, we show that these CM are based on the gyroid parallel surfaces. The single, double, and multilayer gyroid CM morphologies are observed in which space is continuously divided into two, three, and more subvolumes by either one, two, or several parallel membranes. The gyroid CM are continuous with varying amount of pseudo-grana with lamellar-like morphology. The relative amount and order of these two membrane morphologies seem to vary with the age of cell culture and are insensitive to ambient light condition. In addition, thylakoid gyroid CM continuously interpenetrates the pyrenoid body through stalk, bundle-like, morphologies. Inside the pyrenoid body, the membranes re-folded into gyroid CM. The appearance of these CM rearrangements due to the consequence of Zygnema cell response to various types of environmental stresses will be discussed. These stresses include nutrient limitation, temperature fluctuation, and ultraviolet (UV) exposure.

  17. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    PubMed Central

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  18. Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.; Stiles, E.A.

    1981-01-01

    To assess the possible effects of volcanic ash from the May 18,1980, eruption of Mt. St. Helens, Washington, on aquatic ecosystems, we conducted a bioassay experiment with a blue-green alga, Anabaena flos-aquae. Results showed that leachate (obtained by leaching 151 g of ash with 130 mL of simulated freshwater) was lethal to Anabaena flos-aquae cultures when diluted as much as 1:100 with culture medium. Cultures exposed to a 1:500 dilution grew, but a toxic effect was indicated by abnormalities in the Anabaena filaments. This study indicates that ash from the Mt. St. Helens volcano could have an effect on aquatic ecosystems in the areas of significant ashfall. Further study is needed to determine the toxic chemical constituents in the ash and also its possible effects on other aquatic organisms.

  19. Partitioning of monomethylmercury between freshwater algae and water.

    PubMed

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  20. [Effect of green alga Ulva lactuca polysaccharides supplementation on blood pressure and on atherogenic risk factors, in rats fed a high fat diet].

    PubMed

    Tair, Z I; Bensalah, F; Boukortt, F

    2018-05-15

    To highlight the benefits of green alga Ulva lactuca polysaccharides supplementation on blood pressure and atherogenic risk factors in rats fed a high fat diet. Wistar male rats were fed a high fat diet (30% sheep fat) for 3 months. At an average body weight (BW) of 360g, the rats (n=18) were divided into 3 groups and consumed, for 28 days, either a high fat diet (HFD) or a high fat diet enriched with 1% of whole green algae (WGA) powder or with 1% of its polysaccharides (PLS). In HFD, WGA and PLS supplementation reduced BW and food intake. WGA and PLS compared to HFD reduced systolic (PAS) (-17% and -19%) and diastolic (PAD) blood pressure (-38% and -39%), serum glucose (-37% and -30%, respectively), insulinemia (-55% and -74%, respectively), serum and hepatic total lipids, triglycerides, total cholesterol levels, as well as the total cholesterol concentration of low and very low density lipoproteins. The same, atherogenicity ratios and membrane fluidity decreased in the WGA and PLS vs HFD while lecithin: cholesterol acyltransferase (LCAT) activity increased (51 and 41% respectively). Ulva lactuca and its polysaccharides, one of the bioactive compounds of this macroalga, seem to have hypotensive, hypoglycemic, hypolipaemic and antiatherogenic properties that can correct or prevent certain cardiovascular complications linked to a high fat diet. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr M.; Schwender J.; Polle, J. E. W.

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of themore » various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.« less

  2. Antibiotic Algae by Chemical Surface Engineering.

    PubMed

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    PubMed Central

    de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2006-01-01

    Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ

  4. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus.

    PubMed

    Das, Rudra Narayan; Roy, Kunal

    2014-06-01

    Hazardous potential of ionic liquids is becoming an issue of high concern with increasing application of these compounds in various industrial processes. Predictive toxicological modeling on ionic liquids provides a rational assessment strategy and aids in developing suitable guidance for designing novel analogues. The present study attempts to explore the chemical features of ionic liquids responsible for their ecotoxicity towards the green algae Scenedesmus vacuolatus by developing mathematical models using extended topochemical atom (ETA) indices along with other categories of chemical descriptors. The entire study has been conducted with reference to the OECD guidelines for QSAR model development using predictive classification and regression modeling strategies. The best models from both the analyses showed that ecotoxicity of ionic liquids can be decreased by reducing chain length of cationic substituents and increasing hydrogen bond donor feature in cations, and replacing bulky unsaturated anions with simple saturated moiety having less lipophilic heteroatoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes.

    PubMed

    Zhou, Yiwen; Zhou, Xiaohong; Han, Ruiming; Xu, Xiaoguang; Wang, Guoxiang; Liu, Xiansheng; Bi, Fengzhi; Feng, Deyou

    2017-02-15

    The role of fragments in restoring eutrophic lakes remains unclear despite the importance of re-establishing submerged macrophytes via fragments. This study established a manipulative experiment using different biomass fragments of Potamogeton crispus. This approach was adapted to study the reproductive capacity, nutrient removal efficiency, and algae inhibitory effect of fragments. Results showed that fragments could grow throughout a 49-day experiment by maintaining the stable photosynthesis efficiency of leaves and lengthening the stems. These floating fragments could regenerate by producing turions for the maintenance of their species. Moreover, the increasing removal efficiency of TP, TN, NH 4 + -N, and NO 3 - -N in water with the increase of fragment biomass indicates that the fragments could effectively purify water quality. Floating fragments competed with algae for nutrients, occupied a favorable ecological niche, and reduced algae biomass. They altered the structure of algae community and shifted the dominated green algae to cyanobacteria, the green algae of phytoplankton, and benthic algae. Findings imply that the postponable regulation of fragments is necessary for the ecological restoration of eutrophic lakes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora.

    PubMed

    Cao, De-ju; Shi, Xiao-dong; Li, Hao; Xie, Pan-pan; Zhang, Hui-min; Deng, Juan-wei; Liang, Yue-gan

    2015-02-01

    Effects of various concentrations (0.5, 1.0, 2.5, 5.0, 7.5, and 10.0 mg/L) of lead (Pb(2+)) on the growth, bioaccumulation, and antioxidative defense system of green algae, Cladophora, was investigated. Low concentrations of Pb(2+) accelerated Cladophora growth, but concentrations of 10.0 mg/L and above inhibited the growth because of the hinderance to photosynthesis. The total soluble sugar content of Cladophora was affected by Pb(2+) treatment, but the protein content showed no significant changes. The malondialdehyde (MDA) content and peroxidase(POD) activity of Cladophora gradually increased whereas superoxide dismutase(SOD) decreased with Pb(2+) concentrations. Catalase (CAT) activity exhibited no significant changes following Pb(2+) treatment. Pb(2+) accumulated in Cladophora and that the lead content in Cladophora was correlated with POD growth, MDA, and Metallothionein (MT). POD and MT play a role in the survival of Cladophora in Pb-contaminated environments. This study suggests that Cladophora can be a choice organism for the phytoremediation of Pb-polluted coastal areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella magna

    PubMed Central

    Smith, David Roy; Hua, Jimeng; Archibald, John M.; Lee, Robert W.

    2013-01-01

    Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1–7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species. The possible origins and consequences of this bizarre genomic architecture are discussed. PMID:23940100

  8. Colony organization in the green alga Botryococcus braunii is specified by a complex extracellular matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quickfreeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell ismore » surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. In addition, we propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.« less

  9. Colony organization in the green alga Botryococcus braunii is specified by a complex extracellular matrix

    DOE PAGES

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie; ...

    2012-08-31

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quickfreeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell ismore » surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. In addition, we propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.« less

  10. Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae).

    PubMed

    Lemieux, Claude; Vincent, Antony T; Labarre, Aurélie; Otis, Christian; Turmel, Monique

    2015-12-01

    The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages. The earliest-diverging clade displayed Hafniomonas laevis and the Crucicarteria, and was followed by the Radicarteria and then by the Chloromonadinia. The latter lineage was sister to two superclades, one consisting of the Oogamochlamydinia and Reinhardtinia and the other of the Caudivolvoxa and Xenovolvoxa. To our surprise, the Jenufa species and the two spine-bearing green algae belonging to the Golenkinia and Treubaria genera were recovered in a highly supported monophyletic group that also included three taxa

  11. Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.

    PubMed

    Metzler, David M; Erdem, Ayca; Huang, Chin Pao

    2018-03-25

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  12. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: III. Alanine Is the Product of Anaerobic Ammonium Assimilation.

    PubMed

    Vanlerberghe, G C; Joy, K W; Turpin, D H

    1991-02-01

    We have determined the flow of (15)N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of (15)NH(4) (+) to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH(4) (+) accumulates in alanine. This is a unique feature of anaerobic NH(4) (+) assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH(4) (+) assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH(4) (+) assimilation.

  13. Evidence for a photoprotective function for secondary carotenoids of snow algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidigare, R.R.; Ondrusek, M.E.; Kennicutt, M.C. II

    Snow algae occupy a unique habitat in high altitude and polar environments. These algae are often subject to extremes in nutrient availability, acidity, solar irradiance, desiccation, and ambient temperature. This report documents the accumulation of secondary carotenoids by snow algae in response to the availability of nitrogenous nutrients. Unusually large accumulations of astaxanthin esters in extra-chloroplastic lipid globules produce the characteristic red pigmentation typical of some snow algae (e.g., Chlamydomonas nivalis (Bauer) Wille). Consequently, these compounds greatly reduce the amount of light available for absorption by the light-harvesting pigment-protein complexes, thus potentially limiting photoinhibition and photodamage caused by intense solarmore » radiation. The esterification of astaxanthin with fatty acids represents a possible mechanism by which this chromophore can be concentrated within cytoplasmic globules to maximize its photoprotective efficiency. 53 refs., 2 figs., 4 tabs.« less

  14. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  15. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum.

    PubMed

    Roberts, Alison W; Roberts, Eric M; Delmer, Deborah P

    2002-12-01

    Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.

  16. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species--Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana.

    PubMed

    Liao, Xiaobin; Liu, Jinjin; Yang, Mingli; Ma, Hongfang; Yuan, Baoling; Huang, Ching-Hua

    2015-11-01

    Microcystis aeruginosa (blue-green alga) commonly blooms in summer and Cyclotella meneghiniana (diatom) outbreaks in fall in the reservoirs that serve as drinking water sources in Southeast China. Herein, an evaluation of disinfection by-product formation potential (DBPFP) from them during chlorination should be conducted. Five DBPs including trichloromethane (TCM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), 1,1-dichloropropanone (1,1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP) were monitored. The formation potential of TCM and TCNM was enhanced with the increase of reaction time and chlorine dosage, whereas that of DCAN, 1,1-DCP and 1,1,1-TCP increased first and then fell with continuing reaction time. M. aeruginosa showed higher DBPFP than C. meneghiniana, the yield of DBPs varied with components of algal cells. The DBPFP order from components of M. aeruginosa was cell suspension (CS) ≈ intracellular organic matter (IOM) > extracellular organic matter (EOM) > cell debris (CD), which indicated that IOM was the main DBP precursors for M. aeruginosa. The yields of DBPs from components of C. meneghiniana were in the order of CS>IOM≈ CD ≈ EOM, suggesting that three components made similar contributions to the total DBP formation. The amount of IOM with higher DBPFP leaked from both algae species increased with the chlorine dosage, indicating that chlorine dosage should be considered carefully in the treatment of eutrophic water for less destroying of the cell integrity. Though fluorescence substances contained in both algae species varied significantly, the soluble microbial products (SMPs) and aromatic protein-like substances were the main cellular components that contributed to DBP formation for both algae. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    PubMed

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis.

    PubMed

    Giannelli, Luca; Yamada, Hiroyuki; Katsuda, Tomohisa; Yamaji, Hideki

    2015-03-01

    The green alga Haematococcus pluvialis, which accumulates astaxanthin at an optimal temperature of 20°C, was cultivated under temperatures of 20°C, 23.5°C, 27°C, and 30.5°C, in order to assess the effects on algal metabolism during the growth phase. The culture growth rate declined with above-optimal increases in temperature, and the final maximum cell concentration at 30.5°C reached only 35% of that attained at 20°C. On the contrary, the biomass productivity was increased under all the high-temperature conditions, probably reflecting the metabolism switch from cell duplication to energy accumulation that is typically observed in algal cultures subjected to environmental stress. Moreover, an increase in the light-harvesting capability of the alga was observed by means of the total pigment balance and the photosynthesis-intensity (PI) curve measured under the different cultivation conditions. Cultures kept at higher temperatures were able to better harvest and utilize the impinging light due to photo-acclimation. Finally, the differences in the astaxanthin metabolism were elucidated by subjecting the cultures to nitrogen starvation at 20°C and 27°C. In the culture at 27°C, a 1.4-fold increase in the astaxanthin productivity was observed when compared to that at 20°C, and the latter required almost two-fold more energy for the astaxanthin production compared with the 27°C culture. Copyright © 2014. Published by Elsevier B.V.

  19. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    PubMed

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-05

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Freshwater algae competition and correlation between their growth and microcystin production.

    PubMed

    Álvarez, Xana; Valero, Enrique; Cancela, Ángeles; Sánchez, Ángel

    2016-11-01

    There are some different freshwater algae in Eutrophic reservoirs which bloom with specific environmental conditions, and some of them are cyanobacteria. In this investigation, we have cultivated microalgae present in natural water samples from a eutrophic reservoir. Variations in temperature and light were evaluated, as well as the competition among different green algae and cyanobacteria. There were three different freshwater algae growing together, Scenedesmus sp., Kirchneriella sp. and Microcystis aeruginosa, this cyanobacterium was the algae that reached the highest development and growth during the culture. While the algae grew, the concentration of toxin (microcystin-LR) increased until it reached the highest levels at 570 μg g -1 . Blooms occurred at temperatures of 28 ± 1.5 °C and light cycles of longer hours of light than dark. This took place during the summer months, from June to September (in the study area). At temperatures below 18 °C, algae did not grow. Blooms were reproduced to a laboratory scale in different conditions in order to understand the development of freshwater algae, as well as to help decision-making about water supply from that reservoir.

  1. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    PubMed Central

    Metzler, David M.; Erdem, Ayca; Huang, Chin Pao

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae. PMID:29587381

  2. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of Betaproteobacteria with Snow Algae.

    PubMed

    Terashima, Mia; Umezawa, Kazuhiro; Mori, Shoichi; Kojima, Hisaya; Fukui, Manabu

    2017-01-01

    Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.

  3. Bioavailability of mineral-bound iron to a snow algae-bacteria co-culture and implications for albedo-altering snow algae blooms.

    PubMed

    Harrold, Z R; Hausrath, E M; Garcia, A H; Murray, A E; Tschauner, O; Raymond, J; Huang, S

    2018-01-26

    Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo, increase local melt rates, and may impact the global heat budget and water cycle. Yet, underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algae blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe) -bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite and pyrite as Fe sources for a Chloromonas brevispina - bacteria co-culture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted co-cultures. Fo 90 -bearing systems also exhibited a decrease in bacteria:algae ratios compared to Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina co-culture also increased the rate of Fo 90 dissolution relative to an abiotic control. Analysis of 16S rRNA genes in the co-culture identified Gammaproteobacteria , Betaprotoeobacteria and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (> 1 %) OTUs. These data provide unequivocal evidence that mineral dust can support elevated snow algae growth under otherwise Fe-depleted growth conditions, and that snow algae can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algae blooms. The laboratory experiments described herein allow for a systematic investigation of snow algae-bacteria-mineral interactions and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and

  4. Environmental Chemistry and Chemical Ecology of "Green Tide" Seaweed Blooms.

    PubMed

    Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L

    2015-09-01

    Green tides are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green tides consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green tides have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green tides take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-tide blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved

  5. The evolution of blue-greens and the origins of chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  6. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae

    PubMed Central

    Huerlimann, Roger; Zenger, Kyall R.; Jerry, Dean R.; Heimann, Kirsten

    2015-01-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  7. Cloning and characterization of d-threonine aldolase from the green alga Chlamydomonas reinhardtii.

    PubMed

    Hirato, Yuki; Tokuhisa, Mayumi; Tanigawa, Minoru; Ashida, Hiroyuki; Tanaka, Hiroyuki; Nishimura, Katsushi

    2017-03-01

    d-Threonine aldolase (DTA) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent interconversion of d-threonine and glycine plus acetaldehyde. The enzyme is a powerful tool for the stereospecific synthesis of various β-hydroxy amino acids in synthetic organic chemistry. In this study, DTA from the green alga Chlamydomonas reinhardtii was discovered and characterized, representing the first report to describe the existence of eukaryotic DTA. DTA was overexpressed in recombinant Escherichia coli BL21 (DE3) cells; the specific activity of the enzyme in the cell-free extract was 0.8 U/mg. The recombinant enzyme was purified to homogeneity by ammonium sulfate fractionation, DEAE-Sepharose, and Mono Q column chromatographies (purified enzyme 7.0 U/mg). For the cleavage reaction, the optimal temperature and pH were 70 °C and pH 8.4, respectively. The enzyme demonstrated 90% of residual activity at 50 °C for 1 h. The enzyme catalyzed the synthesis of d- and d-allo threonine from a mixture of glycine and acetaldehyde (the diastereomer excess of d-threonine was 18%). DTA was activated by several divalent metal ions, including manganese, and was inhibited by PLP enzyme inhibitors and metalloenzyme inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta.

    PubMed

    Morelli, Elisabetta; Gabellieri, Edi; Bonomini, Alessandra; Tognotti, Danika; Grassi, Giacomo; Corsi, Ilaria

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have been widely employed in industrial applications, thus rising concern about their impact in the aquatic environment. In this study we investigated the chemical behaviour of TiO 2 NPs in the culture medium and its effect on the green alga Dunaliella tertiolecta, in terms of growth inhibition, oxidative stress, ROS (Reactive Oxygen Species) accumulation and chlorophyll content. In addition, the influence of exopolymeric substances (EPS) excreted by the microalgae on the stability of NPs has been evaluated. The physicochemical characterization showed a high propensity of TiO 2 NPs to form micrometric-sized aggregates within 30min, large enough to partially settle to the bottom of the test vessel. Indeed, an increasing amount of TiO 2 particles settled out with time, but the presence of EPS seemed to mitigate this behaviour in the first 6h of exposure where the main effects in D. tertiolecta were observed. TiO 2 NPs did not inhibit the 72-h growth rate of D. tertiolecta, nor affected the cellular chlorophyll concentration in the range 0.01-10mgL -1 . The time-course of ROS production showed an initial transient increase of ROS in TiO 2 NP-exposed algae compared to the control, concomitant with an enhancement of catalase activity. Interestingly, intracellular ROS was a small fraction of total ROS, the highest amount being extracellular. The occurrence of cell-mediated chemical transformations of TiO 2 NPs in the external medium, related to the presence of EPS, has been evaluated. Our results showed that carbohydrates were the major component of EPS, whereas proteins of medium molecular weight (20-80kDa) were preferentially bound to TiO 2 NPs, likely influencing their biological fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.

    PubMed

    Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A

    2014-08-20

    We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.

  10. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Kamarei, A. R.; Nakhost, Z.

    1985-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.

  11. Evolution of green plants as deduced from 5S rRNA sequences.

    PubMed

    Hori, H; Lim, B L; Osawa, S

    1985-02-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other.

  12. Evolution of green plants as deduced from 5S rRNA sequences

    PubMed Central

    Hori, Hiroshi; Lim, Byung-Lak; Osawa, Syozo

    1985-01-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other. PMID:16593540

  13. Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea.

    PubMed

    Kasai, Yuki; Oshima, Kohei; Ikeda, Fukiko; Abe, Jun; Yoshimitsu, Yuya; Harayama, Shigeaki

    2015-01-01

    Microalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea. In this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator. A self

  14. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    PubMed

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  15. Anaerobic metabolism in the N-limited green alga Selenastrum minutum. 3. Alanine is the product of anaerobic ammonium assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Turpin, D.H.; Joy, K.W.

    The authors have determined the flow of {sup 15}N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of {sup 15}NH{sub 4}{sup +} to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH{sub 4}{sup +} accumulates in alanine. This is a unique feature of anaerobic NH{sub 4}{sup +} assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH{sub 4}{supmore » +} assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH{sub 4}{sup +} assimilation.« less

  16. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    PubMed

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Evidence for methane production by the marine algae Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  18. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae

    PubMed Central

    Yan, Dong; Wang, Yun; Murakami, Tatsuya; Shen, Yue; Gong, Jianhui; Jiang, Huifeng; Smith, David R.; Pombert, Jean-Francois; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    The forfeiting of photosynthetic capabilities has occurred independently many times throughout eukaryotic evolution. But almost all non-photosynthetic plants and algae still retain a colorless plastid and an associated genome, which performs fundamental processes apart from photosynthesis. Unfortunately, little is known about the forces leading to photosynthetic loss; this is largely because there is a lack of data from transitional species. Here, we compare the plastid genomes of two “transitional” green algae: the photosynthetic, mixotrophic Auxenochlorella protothecoides and the non-photosynthetic, obligate heterotroph Prototheca wickerhamii. Remarkably, the plastid genome of A. protothecoides is only slightly larger than that of P. wickerhamii, making it among the smallest plastid genomes yet observed from photosynthetic green algae. Even more surprising, both algae have almost identical plastid genomic architectures and gene compositions (with the exception of genes involved in photosynthesis), implying that they are closely related. This close relationship was further supported by phylogenetic and substitution rate analyses, which suggest that the lineages giving rise to A. protothecoides and P. wickerhamii diverged from one another around six million years ago. PMID:26403826

  19. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae.

    PubMed

    Yan, Dong; Wang, Yun; Murakami, Tatsuya; Shen, Yue; Gong, Jianhui; Jiang, Huifeng; Smith, David R; Pombert, Jean-Francois; Dai, Junbiao; Wu, Qingyu

    2015-09-25

    The forfeiting of photosynthetic capabilities has occurred independently many times throughout eukaryotic evolution. But almost all non-photosynthetic plants and algae still retain a colorless plastid and an associated genome, which performs fundamental processes apart from photosynthesis. Unfortunately, little is known about the forces leading to photosynthetic loss; this is largely because there is a lack of data from transitional species. Here, we compare the plastid genomes of two "transitional" green algae: the photosynthetic, mixotrophic Auxenochlorella protothecoides and the non-photosynthetic, obligate heterotroph Prototheca wickerhamii. Remarkably, the plastid genome of A. protothecoides is only slightly larger than that of P. wickerhamii, making it among the smallest plastid genomes yet observed from photosynthetic green algae. Even more surprising, both algae have almost identical plastid genomic architectures and gene compositions (with the exception of genes involved in photosynthesis), implying that they are closely related. This close relationship was further supported by phylogenetic and substitution rate analyses, which suggest that the lineages giving rise to A. protothecoides and P. wickerhamii diverged from one another around six million years ago.

  20. Two-step evolution of endosymbiosis between hydra and algae.

    PubMed

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  2. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE PAGES

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; ...

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  3. Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation

    NASA Astrophysics Data System (ADS)

    Prasad Mandal, Ranju; Sekh, Sanoyaz; Sarkar, Neera Sen; Chattopadhyay, Dipankar; De, Swati

    2016-05-01

    The present work is a study on the biological synthesis of cadmium sulphide (CdS) nanoparticles using blue-green algae that is popularly used as a food supplement. This synthesis is unique in the sense that no external sulphur precursor is required, the CdS nanoparticles are synthesized in situ in the algal medium. The CdS nanoparticles thus synthesized are photoluminescent and can act as highly efficient photocatalysts for degradation of the dye pollutant malachite green. Thus the CdS nanoparticles synthesized in situ in the algae conform to the desired criteria of waste water treatment i.e. biosorption of the pollutant and its subsequent degradation. The novelty of this work also lies in its potential for use in bioremediation by conversion of the toxic Cd(II) ion to less toxic CdS nanoparticles within the algal framework.

  4. Colony Organization in the Green Alga Botryococcus braunii (Race B) Is Specified by a Complex Extracellular Matrix

    PubMed Central

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie; Vitha, Stanislav; Black, Ian; Azadi, Parastoo; Rusch, Jannette; Holzenburg, Andreas

    2012-01-01

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form “drapes” between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM. PMID:22941913

  5. Determining surface areas of marine alga cells by acid-base titration method.

    PubMed

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  6. Effects of Cu(2+) and Zn(2+) on growth and physiological characteristics of green algae, Cladophora.

    PubMed

    Cao, De-ju; Xie, Pan-pan; Deng, Juan-wei; Zhang, Hui-min; Ma, Ru-xiao; Liu, Cheng; Liu, Ren-jing; Liang, Yue-gan; Li, Hao; Shi, Xiao-dong

    2015-11-01

    Effects of various concentrations of Cu(2+) and Zn(2+) (0.0, 0.1, 0.25, 0.5, or 1.0 mg/L) on the growth, malondialdehyde (MDA), the intracellular calcium, and physiological characteristics of green algae, Cladophora, were investigated. Low Zn(2+) concentrations accelerated the growth of Cladophora, whereas Zn(2+) concentration increases to 0.25 mg/L inhibited its growth. Cu(2+) greatly influences Cladophora growth. The photosynthesis of Cladophora decreased under Zn(2+) and Cu(2+) stress. Cu(2+) and Zn(2+) treatment affected the content of total soluble sugar in Cladophora and has small increases in its protein content. Zn(2+) induced the intracellular calcium release, and copper induced the intracellular calcium increases in Cladophora. Exposure to Cu(2+) and Zn(2+) induces MDA in Cladophora. The stress concent of Cu(2+) was strictly correlated with the total soluble sugar content, Chla+Chlb, and MDA in Cladophora, and the stress concent of Zn(2+) was strictly correlated with the relative growth rate (RGR) and MDA of Cladophora.

  7. Research for Developing Renewable Biofuels from Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Paul N.

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulationmore » is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).« less

  8. Biosorption of trivalent chromium by free and immobilized blue green algae: kinetics and equilibrium studies.

    PubMed

    Shashirekha, V; Sridharan, M R; Swamy, Mahadeswara

    2008-03-01

    The process of biosorption of trivalent chromium (Cr(3+)) by live culture of Spirulina platensis and the sorption potential by the dried biomass, in both free and immobilized states have been investigated for a simulated chrome liquor in the concentration range of 100-4500 ppm. Both live and dried biomass were very good biosorbents as they could remove high amounts of chromium from tannery wastewater. Polyurethane foam and sodium alginate were used as immobilizing agents and their performances compared. Biosorption kinetic data on Cr(3+) sorption onto dried biomass were analyzed using pseudo-first-and pseudo-second-order kinetic models in batch column experiments. The second-order equation was more appropriate to predict the rate of biosorption. Subsequently, the effects of height of packing & diameter of the column, concentration of blue-green algae (BGA) in varying amounts of sodium alginate, chromium concentration were studied. The results fit into both Langmuir & Freundlich isotherm models with very high regression coefficients. Furthermore, equilibrium studies using retan chrome liquor (RCL), with a chromium concentration of 1660 ppm, obtained from a tannery also showed promising results. In general, our studies indicate the efficacy of the algal species in removal of chromium from tannery wastewater.

  9. Spirulina in Clinical Practice: Evidence-Based Human Applications

    PubMed Central

    Karkos, P. D.; Leong, S. C.; Karkos, C. D.; Sivaji, N.; Assimakopoulos, D. A.

    2011-01-01

    Spirulina or Arthrospira is a blue-green alga that became famous after it was successfully used by NASA as a dietary supplement for astronauts on space missions. It has the ability to modulate immune functions and exhibits anti-inflammatory properties by inhibiting the release of histamine by mast cells. Multiple studies investigating the efficacy and the potential clinical applications of Spirulina in treating several diseases have been performed and a few randomized controlled trials and systematic reviews suggest that this alga may improve several symptoms and may even have an anticancer, antiviral and antiallergic effects. Current and potential clinical applications, issues of safety, indications, side-effects and levels of evidence are addressed in this review. Areas of ongoing and future research are also discussed. PMID:18955364

  10. Choline and Inositol Distribution in Algae and Fungi1

    PubMed Central

    Ikawa, Miyoshi; Borowski, Paul T.; Chakravarti, Ashima

    1968-01-01

    Inositol and choline were present in varying amounts among the species of Rhodophyta, Phaeophyta, Chlorophyta, and Euglenophyta examined. However, in the two members of the order Fucales (division Phaeophyta) examined, no detectable amounts of choline were found. In contrast, the species of Cyanophyta examined contained no detectable amounts of either choline or inositol. All species of the fungal classes Phycomyceteae, Ascomyceteae, and Basidiomyceteae collected contained both inositol and choline in varying amounts. The red, brown, and blue-green algae usually contained much less inositol and choline than do plant and animals sources, but the fungi and the algae Chlorella and Euglena contained amounts comparable to those present in plant sources. PMID:5647522

  11. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  12. Presidential Green Chemistry Challenge: 2015 Specific Environmental Benefit: Climate Change Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2015 award winner, Algenol, blue-green algae to produce ethanol and other fuels, uses CO2 from air or industrial emitters, reduces the carbon footprint, costs and water usage, no reliance on food crops

  13. Effect of dynamic factors of space flights on the green alga Chlorella vulgaris.

    PubMed

    Moskvitin, E V; Vaulina, E N

    1974-01-01

    The biological effects of vibrational and linear acceleration on the alga Chlorella vulgaris were studied. Periodic vibration in the frequency range of 4-4000 Hz with vibrational acceleration up to 16 g did not affect the survival and mutability of Chlorella cells and did not modify the effects of acute gamma-radiation. However, random vibration similar to that occurring during launch of spaceships, combined with linear acceleration increased the radiation damage to algae produced by acute gamma-radiation at a dose of 10000 r. This effect is seen only in cells at the beginning of the G1 stage, which precedes DNA synthesis.

  14. New chemical constituents from Oryza sativa straw and their algicidal activities against blue-green algae.

    PubMed

    Ahmad, Ateeque; Kim, Seung-Hyun; Ali, Mohd; Park, Inmyoung; Kim, Jin-Seog; Kim, Eun-Hye; Lim, Ju-Jin; Kim, Seul-Ki; Chung, Ill-Min

    2013-08-28

    Five new constituents, 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-β-D-xylopyranosyl-(2a→1b)-2a-O-β-D-xylopyranosyl-(2b→1c)-2b-O-β-D-xylopyranosyl-2c-octadecanoate (1), 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-2d-octadecanoate (2), kaempferol-3-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-2d-hexadecanoate (3), methyl salicylate-2-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-(2d→1e)-2d-O-α-D-xylopyranosyl-(2e→1f)-2e-O-α-D-xylopyranosyl-(2f→1g)-2f-O-α-D-xylopyranosyl-(2g→1h)-2g-O-α-D-xylopyranosyl-2h-geranilan-8',10'-dioic acid-1'-oate (4), and oleioyl-β-D-arabinoside (5), along with eight known compounds, were isolated from a methanol extract of Oryza sativa straw. The structures of the new compounds were elucidated using one- and two-dimensional NMR spectroscopies in combination with IR, ESI/MS, and HR-ESI/FTMS. In bioassays with blue-green algae, the efficacies of the algicidal activities of the five new compounds (1-5) were evaluated at concentrations of 1, 10, and 100 mg/L. Compound 5 had the highest growth inhibition (92.6 ± 0.3%) for Microcystis aeruginosa UTEX 2388 at a concentration of 100 ppm (mg/L). Compound 5 has high potential for the ecofriendly control of weeds and algae harmful to water-logged rice.

  15. Regulating cellular trace metal economy in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  16. Regulating cellular trace metal economy in algae

    DOE PAGES

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2017-06-30

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  17. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    PubMed Central

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  18. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  19. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Onishi, Masayuki; Pringle, John R.

    2016-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025

  20. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants1[OPEN

    PubMed Central

    Huang, Ming-Der; Huang, Anthony H.C.

    2015-01-01

    Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins. PMID:26232488

  1. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    PubMed

    Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  2. In vitro vascular effects produced by crude aqueous extract of green marine algae, Cladophora patentiramea (Mont.) Kützing, in aorta from normotensive rats.

    PubMed

    Lim, Yee-Ling; Mok, Shiueh-Lian

    2010-01-01

    To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro. The antihypertensive activity of 11 species of seaweeds (5 brown, 1 red and 5 green algae) were tested by cumulative addition of the extracts to phenylephrine (PE)-precontracted Wistar-Kyoto (WKY) aortic rings in in vitro isometric contraction studies. Mechanisms for vasorelaxant effect were investigated in the presence of various antagonists. Of the 11 species tested, 2 showed a vasorelaxant effect. Further investigation of the mechanisms of action of the aqueous extract of green alga, Cladophora patentiramea (AECP),showed that the vascular relaxant effect was endothelium- and concentration-dependent. A maximum relaxation of 45.8 +/- 4.6% (n = 8, p < 0.001) was obtained at 0.1 mg/ml of extract, after which the response was found to reduce in a concentration-dependent manner to 15.7 +/- 4.9% (n = 8, p < 0.001) at the highest extract concentration tested. Pretreatment of endothelium-intact aortic rings with Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microM), (1)H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) and methylene blue (100 microM) resulted in a complete blockade of AECP-induced vasorelaxation. However, the relaxant effects of the extract were not blocked by atropine (1 microM), indomethacin (10 microM) and glibenclamide (10 microM), although the maximum relaxant responses were enhanced in the presence of glibenclamide. Our data showed that the in vitro vascular relaxant effect of AECPwas mediated through endothelium-dependent nitric oxide-cGMP pathway, and was not associated with the release of vasodilator prostaglandins, activation of muscarinic receptors, or ATP-sensitive potassium channels opening. Copyright 2010 S. Karger AG, Basel.

  3. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  4. Stability and morphological and molecular-genetic identification of algae in buried soils

    NASA Astrophysics Data System (ADS)

    Temraleeva, A. D.; Moskalenko, S. V.; El'tsov, M. V.; Vagapov, I. M.; Ovchinnikov, A. Yu.; Gugalinskaya, L. A.; Alifanov, V. M.; Pinskii, D. L.

    2017-08-01

    Living cultural strains of the green algae `Chlorella' mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.

  5. Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages.

    PubMed

    Bácsi, István; B-Béres, Viktória; Kókai, Zsuzsanna; Gonda, Sándor; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2016-05-01

    In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments

    PubMed Central

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C.; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-01-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H+-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  7. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva.

    PubMed

    Thompson, Stephanie E M; Callow, Maureen E; Callow, James A

    2010-01-01

    Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic T2; Intersleek 700; Intersleek 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.

  8. Genetic differentiation among populations of marine algae

    NASA Astrophysics Data System (ADS)

    Innes, D. J.

    1984-09-01

    Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data

  9. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  10. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Assimakopoulos, Konstantinos; Kotzabasis, Kiriakos

    2012-01-01

    Cultures from the unicellular green alga Scenedesmus obliquus biodegrade the toxic p-cresol (4-methylphenol) and use it as alternative carbon/energy source. The biodegradation procedure of p-cresol seems to be a two-step process. HPLC analyses indicate that the split of the methyl group (first step) that is possibly converted to methanol (increased methanol concentration in the growth medium), leading, according to our previous work, to changes in the molecular structure and function of the photosynthetic apparatus and therefore to microalgal biomass increase. The second step is the fission of the intermediately produced phenol. A higher p-cresol concentration results in a higher p-cresol biodegradation rate and a lower total p-cresol biodegradability. The first biodegradation step seems to be the most decisive for the effectiveness of the process, because methanol offers energy for the further biodegradation reactions. The absence of LHCII from the Scenedesmus mutant wt-lhc stopped the methanol effect and significantly reduced the p-cresol biodegradation (only 9%). The present contribution deals with an energy distribution between microalgal growth and p-cresol biodegradation, activated by p-cresol concentration. The simultaneous biomass increase with the detoxification of a toxic phenolic compound (p-cresol) could be a significant biotechnological aspect for further applications. PMID:23251641

  11. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation.

    PubMed

    Wu, Zhilin; Shen, Haifeng; Ondruschka, Bernd; Zhang, Yongchun; Wang, Weimin; Bremner, David H

    2012-10-15

    A suspension of Microcystis aeruginosa (30 μg L(-1)chlorophyll a) was circulated in a hydrodynamic cavitation device and ozone was introduced at the suction side of the pump. The removal of algae over 10 min using hydrodynamic cavitation alone and ozone alone is less than 15% and 35%, respectively. The destruction of algae rises significantly from 24% in the absence of the orifice to 91% with the optimized orifice on 5 min of processing using hydrodynamic cavitation along with ozone (HC/O(3)) and the utilization of ozone increases from 32% to 61%. Interestingly, the suction process is more effective than the extrusion method (positive pressure) and the optimal bulk temperature for algal elimination was found to be 20 °C. Increasing the input concentration of ozone is favorable for the removal of algae but leads to a greater loss of ozone and a decrease in the utilization of ozone. Under the optimal conditions, the algal cells and chlorophyll a are completely destroyed in 10 min by use of the hybrid method. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Urban green space and obesity in older adults: Evidence from Ireland.

    PubMed

    Dempsey, Seraphim; Lyons, Seán; Nolan, Anne

    2018-04-01

    We examine the association between living in an urban area with more or less green space and the probability of being obese. This work involves the creation of a new dataset which combines geo-coded data at the individual level from the Irish Longitudinal Study on Ageing with green space data from the European Urban Atlas 2012. We find evidence suggestive of a u-shaped relationship between green space in urban areas and obesity; those living in areas with the lowest and highest shares of green space within a 1.6 km buffer zone have a higher probability of being classified as obese (BMI [Formula: see text]). The unexpected result that persons in areas with both the lowest and highest shares of green space have a higher probability of being obese than those in areas with intermediate shares, suggests that other characteristics of urban areas may be mediating this relationship.

  13. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes

    PubMed Central

    Kurotani, Atsushi; Yamada, Yutaka

    2017-01-01

    Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893

  14. Inorganic carbon addition stimulates snow algae primary productivity

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  15. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi.

    PubMed

    Dorrell, Richard G; Hinksman, George A; Howe, Christopher J

    2016-02-01

    Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.

  16. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Sneed, J. M.; Paul, V. J.

    2016-06-01

    Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, ~10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies.

  17. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress

    PubMed Central

    Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli’s acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure. PMID:28033367

  18. Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata.

    PubMed

    McHardy, B M; George, J J

    1990-01-01

    The bioaccumulation and toxicity of zinc in Cladophora glomerata from two populations in the River Roding, Essex, UK, were examined in experimental laboratory flowing-water channels. Plants were subjected to zinc concentrations ranging from 0 to 4.0 mg litre(-1) at current velocities of 20-33 cm s(-1) for up to 3 h. Zinc in algal tissue was then quantified and toxicity was assessed by the ability of the alga to grow in a recovery medium after the experimental treatment. There was little difference in zinc bioaccumulation between Cladophora from the site showing mild organic pollution and that from the site subjected to considerable inputs from urban and motorway runoff. Uptake of zinc increased with increasing concentration in the test solution and was linear and proportional up to 0.4 mg litre(-1). Three stages of uptake were identified with the most dramatic accumulation occurring in the first 10 min. Experimental concentration factors ranged from 1.9-5.2 x 10(3), which were in agreement with those previously obtained in the field. Cellular damage was evident in Cladophora subjected to 0.4 mg litre(-1) zinc, and this increased with increasing zinc concentration, thus leading to the conclusion that, at times, the levels of zinc found in the river could be potentially damaging.

  19. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process.

    PubMed

    Skjånes, Kari; Rebours, Céline; Lindblad, Peter

    2013-06-01

    Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen

  20. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process

    PubMed Central

    2013-01-01

    Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen

  1. Comparing the Effects of Symbiotic Algae (Symbiodinium) Clades C1 and D on Early Growth Stages of Acropora tenuis

    PubMed Central

    Yuyama, Ikuko; Higuchi, Tomihiko

    2014-01-01

    Reef-building corals switch endosymbiotic algae of the genus Symbiodinium during their early growth stages and during bleaching events. Clade C Symbiodinium algae are dominant in corals, although other clades — including A and D — have also been commonly detected in juvenile Acroporid corals. Previous studies have been reported that only molecular data of Symbiodinium clade were identified within field corals. In this study, we inoculated aposymbiotic juvenile polyps with cultures of clades C1 and D Symbiodinium algae, and investigated the different effect of these two clades of Symbiodinium on juvenile polyps. Our results showed that clade C1 algae did not grow, while clade D algae grew rapidly during the first 2 months after inoculation. Polyps associated with clade C1 algae exhibited bright green fluorescence across the body and tentacles after inoculation. The growth rate of polyp skeletons was lower in polyps associated with clade C1 algae than those associated with clade D algae. On the other hand, antioxidant activity (catalase) of corals was not significantly different between corals with clade C1 and clade D algae. Our results suggested that clade D Symbiodinium algae easily form symbiotic relationships with corals and that these algae could contribute to coral growth in early symbiosis stages. PMID:24914677

  2. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  3. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    PubMed

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii

    PubMed Central

    Tanabe, Yuuhiko; Okazaki, Yusuke; Yoshida, Masaki; Matsuura, Hiroshi; Kai, Atsushi; Shiratori, Takashi; Ishida, Ken-ichiro; Nakano, Shin-ichi; Watanabe, Makoto M.

    2015-01-01

    Botryococcus braunii is a colony-forming green alga that accumulates large amounts of liquid hydrocarbons within the colony. The utilization of B. braunii for biofuel production is however hindered by its low biomass productivity. Here we describe a novel bacterial ectosymbiont (BOTRYCO-2) that confers higher biomass productivity to B. braunii. 16S rDNA analysis indicated that the sequence of BOTRYCO-2 shows low similarity (<90%) to cultured bacterial species and located BOTRYCO-2 within a phylogenetic lineage consisting of uncultured alphaproteobacterial clones. Fluorescence in situ hybridization (FISH) studies and transmission electric microscopy indicated that BOTRYCO-2 is closely associated with B. braunii colonies. Interestingly, FISH analysis of a water bloom sample also found BOTRYCO-2 bacteria in close association with cyanobacterium Microcystis aeruginosa colonies, suggesting that BOTRYCO-2 relatives have high affinity to phytoplankton colonies. A PCR survey of algal bloom samples revealed that the BOTRYCO-2 lineage is commonly found in Microcystis associated blooms. Growth experiments indicated that B. braunii Ba10 can grow faster and has a higher biomass (1.8-fold) and hydrocarbon (1.5-fold) yield in the presence of BOTRYCO-2. Additionally, BOTRYCO-2 conferred a higher biomass yield to BOT-22, one of the fastest growing strains of B. braunii. We propose the species name ‘Candidatus Phycosocius bacilliformis’ for BOTRYCO-2. PMID:26130609

  5. Enzymological evidence for the function of a plastid-located pyruvate carboxylase in the Haptophyte alga Emiliania huxleyi: a novel pathway for the production of C4 compounds.

    PubMed

    Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2012-06-01

    Pyruvate carboxylase (PYC) catalyzes the β-carboxylation of pyruvate to yield oxaloacetate (OAA). We previously isolated a cDNA encoding a putative PYC (EhPYC1) from the haptophyte alga Emiliania huxleyi and then proposed that EhPYC1 contributes to active anaplerotic β-carboxylation during photosynthesis although PYC activity was not detected in the cell extracts. Involvement of PYC in photosynthetic carbon metabolism is unique, since PYC generally functions in non-photosynthetic organisms. In the present study, we demonstrate that EhPYC1 is highly sensitive to endogenous proteases and therefore is easily degraded in cell extracts. By avoiding proteolytic degradation, PYC activity can be detected in the cell extracts of E. huxleyi. The activity of a recombinant His-tagged EhPYC1 expressed in Streptomyces lividans was inhibited by l-malate in a mixed non-competitive manner. Immunofluorescence labeling showed that EhPYC1 is located in the plastid. This result agrees with the prediction that a bipartite plastid-targeting signal is present that functions to deliver proteins into the four-membrane plastid of haptophyte algae. This is the first finding of a plastid-located PYC. These results indicate that E. huxleyi possesses a unique pathway to produce OAA catalyzed by PYC, and the pathway may provide carbon skeletons for amino acid biosynthesis in the plastid. A database search indicates that PYC genes are widespread in green algae, diatoms and brown algae, suggesting the crucial role of PYC in various aquatic phototrophs.

  6. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  7. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.

    PubMed

    Sucaldito, Melvir R; Camacho, Drexel H

    2017-08-01

    Cellulose nanocrystals (CNCs) are promising materials that are readily extracted from plants and other cellulose-containing organisms. In this study, CNCs were isolated from freshwater green algae (Cladophora rupestris) thriving in a volcanic lake, using hydrobromic acid (HBr) hydrolysis. Morphological and structural studies revealed highly crystalline CNCs (94.0% crystallinity index) with preferred orientation to [100] lattice plane as shown by XRD measurements and have an average diameter of 20.0 (±4.4)nm as shown by TEM. Thermal studies showed increased temperature for thermal decomposition of CNCs (381.6°C), which is a result of HBr hydrolysis for CNCs isolation. The isolated CNCs were reinforced into starch based biocomposites via solution casting and evaporation method. Mechanical strength was improved as high as 78% upon addition of 1% cellulose nanocrystals in the films. The produced films are promising materials for their high mechanical strength, biodegradability and availability of raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    PubMed

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  9. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2005-01-01

    Background The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum. Results The 157,089 bp Staurastrum and 165,372 bp Zygnema cpDNAs encode 121 and 125 genes, respectively. Although both cpDNAs lack an rRNA-encoding inverted repeat (IR), they are substantially larger than Chaetosphaeridium and land plant cpDNAs. This increased size is explained by the expansion of intergenic spacers and introns. The Staurastrum and Zygnema genomes differ extensively from one another and from their streptophyte counterparts at the level of gene order, with the Staurastrum genome more closely resembling its land plant counterparts than does Zygnema cpDNA. Many intergenic regions in Zygnema cpDNA harbor tandem repeats. The introns in both Staurastrum (8 introns) and Zygnema (13 introns) cpDNAs represent subsets of those found in land plant cp

  10. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae).

    PubMed

    Brouard, Jean-Simon; Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum . The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium , it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and dispersed repeats are more

  11. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  12. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed

    Tapia, Javier E; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.

  13. Feeding Preferences and the Nutritional Value of Tropical Algae for the Abalone Haliotis asinina

    PubMed Central

    Angell, Alex R.; Pirozzi, Igor; de Nys, Rocky; Paul, Nicholas A.

    2012-01-01

    Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae – or any feedstock – which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g−1) and the protein-rich Asparagopsis taxiformis (>15 g 100 g−1 of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties. PMID:22719967

  14. Physical structure and algae community of summer upwelling off eastern Hainan

    NASA Astrophysics Data System (ADS)

    Xu, H.; Liu, S.; Xie, Q.; Hong, B.; Long, T.

    2017-12-01

    The upwelling system is the most productive ecosystem along the continental shelf of the northern South China Sea Shelf. It brings nutrient from bottom to surface and blooms biotic community driven by summer monsoon. In this study, we present observed results of physical and biotic community structures during August, 2015 in the upwelling system along Hainan eastern coast, which is one the strongest upwelling systems in the northern South China Sea. By using hydrological data collected by CTD, we found a significant cold water tongue with high salinity which extended from offshore to 100 m isobaths. However, dissolved oxygen (DO) showed a sandwich structure in which high core of DO concentration appeared at the layer from 5 m to 30 m. It possibly was caused by the advection transport of high DO from adjacent area. Basically, this upwelling system was constrained at northern area of 18.8ºN in horizontal due to the weakening summer monsoon in August. In addition, we collected water sample at the upwelling area and measured algae categories and concentration by high performance liquid chromatography (HPLC). Results show the biotic community was dominated by five types of algae mainly, they were diatoms, dinoflagellates, green algae, prokaryotes and prochlorococcus. And different patterns of different algae were demonstrated. In the upwelling area, diatoms and prokaryotes show opposite structures, and more complex pattern for the rest three algae indicating an active biotic community in the upwelling system.

  15. De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq

    PubMed Central

    2013-01-01

    Background Microalgae can make a significant contribution towards meeting global renewable energy needs in both carbon-based and hydrogen (H2) biofuel. The development of energy-related products from algae could be accelerated with improvements in systems biology tools, and recent advances in sequencing technology provide a platform for enhanced transcriptomic analyses. However, these techniques are still heavily reliant upon available genomic sequence data. Chlamydomonas moewusii is a unicellular green alga capable of evolving molecular H2 under both dark and light anaerobic conditions, and has high hydrogenase activity that can be rapidly induced. However, to date, there is no systematic investigation of transcriptomic profiling during induction of H2 photoproduction in this organism. Results In this work, RNA-Seq was applied to investigate transcriptomic profiles during the dark anaerobic induction of H2 photoproduction. 156 million reads generated from 7 samples were then used for de novo assembly after data trimming. BlastX results against NCBI database and Blast2GO results were used to interpret the functions of the assembled 34,136 contigs, which were then used as the reference contigs for RNA-Seq analysis. Our results indicated that more contigs were differentially expressed during the period of early and higher H2 photoproduction, and fewer contigs were differentially expressed when H2-photoproduction rates decreased. In addition, C. moewusii and C. reinhardtii share core functional pathways, and transcripts for H2 photoproduction and anaerobic metabolite production were identified in both organisms. C. moewusii also possesses similar metabolic flexibility as C. reinhardtii, and the difference between C. moewusii and C. reinhardtii on hydrogenase expression and anaerobic fermentative pathways involved in redox balancing may explain their different profiles of hydrogenase activity and secreted anaerobic metabolites. Conclusions Herein, we have described a

  16. An endogenous microRNA (miRNA1166.1) can regulate photobio-H2 production in eukaryotic green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Yuting; Zhuang, Xiaoshan; Chen, Meirong; Zeng, Zhiyong; Cai, Xiaoqi; Li, Hui; Hu, Zhangli

    2018-01-01

    Hydrogen photoproduction from green microalgae is regarded as a promising alternative solution for energy problems. However, the simultaneous oxygen evolution from microalgae can prevent continuous hydrogen production due to the hypersensitivity of hydrogenases to oxygen. Sulfur deprivation can extend the duration of algal hydrogen production, but it is uneconomical to alternately culture algal cells in sulfur-sufficient and sulfur-deprived media. In this study, we developed a novel way to simulate sulfur-deprivation treatment while constantly maintaining microalgal cells in sulfur-sufficient culture medium by overexpressing an endogenous microRNA (miR1166.1). Based on our previous RNA-seq analysis in the model green alga Chlamydomonas reinhardtii , three endogenous miRNAs responsive to sulfur deprivation (cre-miR1166.1, cre-miR1150.3, and cre-miR1158) were selected. Heat-inducible expression vectors containing the selected miRNAs were constructed and transformed into C. reinhardtii . Comparison of H 2 production following heat induction in the three transgenic strains and untransformed control group identified miR1166.1 as the best candidate for H 2 production regulation. Moreover, enhanced photobio-H 2 production was observed with repeated induction of miR1166.1 expression. This study is the first to identify a physiological function of endogenous miR1166.1 and to show that a natural miRNA can regulate hydrogen photoproduction in the unicellular model organism C. reinhardtii .

  17. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    PubMed

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Marine green algae Codium iyengarii as a good bio-sorbent for elimination of reactive black 5 from aqueous solution.

    PubMed

    Azmat, Rafia

    2014-09-01

    The green seaweeds Codium iyengarii (C. iyengarii) was used to prepare as an adsorbent surface for the deletion of Reactive Black 5 (RB 5) from aqueous solution via adsorption. The batch technique was adopted under the optimal condition of amount of adsorbent, agitation time, concentration of dye, and at neutral and low pH. The depletion in concentration of the dye was monitored by Schimadzo 180 AUV/Visible spectrophotometer. It was initially monolayer adsorption, which showed multilayered formation later on with the passage of time at low and neutral pH. The Results displayed that adsorptive ability of C. iyengarii was 1.95-3.82mg/g with an elevation in primary application of dye contents (50ppm-70 ppm). The elimination data were well stable into the Langmuir and Freundlich adsorption isotherm equations. The Langmuir (R2=0.9848) and Freundlich (R2=0.9441) constants for biosorption of RB 5 on green algae were determined. The coefficient relation values suggested that the Langmuir isotherm was well fitted. It explained the interaction of surface molecules, which helps in well organization of dye molecules in a monolayer formation initially on algal biomass. The pseudo first and second order rate equations were applied to link the investigational statistics and found that the second order rate expression was found to be more suitable for both the models. The absorption spectrum of RB 5 before and after adsorption with respect to time was monitored which clearly indicate that C. iyengarii was much effective surface at very low quantity.

  19. Proteomics Reveals Plastid- and Periplastid-Targeted Proteins in the Chlorarachniophyte Alga Bigelowiella natans

    PubMed Central

    Hopkins, Julia F.; Spencer, David F.; Laboissiere, Sylvie; Neilson, Jonathan A.D.; Eveleigh, Robert J.M.; Durnford, Dion G.; Gray, Michael W.; Archibald, John M.

    2012-01-01

    Chlorarachniophytes are unicellular marine algae with plastids (chloroplasts) of secondary endosymbiotic origin. Chlorarachniophyte cells retain the remnant nucleus (nucleomorph) and cytoplasm (periplastidial compartment, PPC) of the green algal endosymbiont from which their plastid was derived. To characterize the diversity of nucleus-encoded proteins targeted to the chlorarachniophyte plastid, nucleomorph, and PPC, we isolated plastid–nucleomorph complexes from the model chlorarachniophyte Bigelowiella natans and subjected them to high-pressure liquid chromatography-tandem mass spectrometry. Our proteomic analysis, the first of its kind for a nucleomorph-bearing alga, resulted in the identification of 324 proteins with 95% confidence. Approximately 50% of these proteins have predicted bipartite leader sequences at their amino termini. Nucleus-encoded proteins make up >90% of the proteins identified. With respect to biological function, plastid-localized light-harvesting proteins were well represented, as were proteins involved in chlorophyll biosynthesis. Phylogenetic analyses revealed that many, but by no means all, of the proteins identified in our proteomic screen are of apparent green algal ancestry, consistent with the inferred evolutionary origin of the plastid and nucleomorph in chlorarachniophytes. PMID:23221610

  20. Solar spectral conversion for improving the photosynthetic activity in algae reactors.

    PubMed

    Wondraczek, Lothar; Batentschuk, Miroslaw; Schmidt, Markus A; Borchardt, Rudolf; Scheiner, Simon; Seemann, Benjamin; Schweizer, Peter; Brabec, Christoph J

    2013-01-01

    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.

  1. Utilization of xylose for growth by the eukaryotic alga, Chlorella.

    PubMed

    Hawkins, R L

    1999-06-01

    A green alga, Chlorella, was found to be capable of utilizing xylose or other pentose sugars (xylitol, arabinose) for enhanced growth rates when grown in the light, but not when grown heterotrophically in the dark. With selection for growth in xylose-containing medium, it was possible to improve dramatically the ability of selected Chlorella strains to grow on xylose mixotrophically. Growth on arabinose or xylitol was not changed in the xylose-selected strains.

  2. Biosynthesis of 3-Dimethylsulfoniopropionate in Marine Algae

    DTIC Science & Technology

    1999-03-05

    Tetraselmis sp., Emiliania huxleyi and Melosira nummuloides. Evidence was obtained for the following pathway in all cases: methionine -* 4...diverse microalgae (Tetraselmis sp., Emiliania huxleyi and Melosira nummuloides. [35S]Methionine (Met) was supplied to the algae and labeled

  3. Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata.

    PubMed

    Hirooka, Takashi; Nagase, Hiroyasu; Uchida, Kotaro; Hiroshige, Yuji; Ehara, Yoshie; Nishikawa, Jun-ichi; Nishihara, Tsutomu; Miyamoto, Kazuhisa; Hirata, Zazumasa

    2005-08-01

    Bisphenol A (BPA) is known as an endocrine disruptor and often is found in landfill leachates. Removal of BPA by green alga, Chlorella fusca, was characterized, because we previously found that various phenols were well removed by this strain, including BPA. Chlorella fusca was able to remove almost all BPA in the concentration range from 10 to 80 microM for 168 h under continuous illumination at 18 W/m2. At the low light intensity of 2 W/m2, 82% of 40 microM BPA was removed, and only 27% was removed in the dark. Moreover, C. fusca could remove 90% of 40 microM BPA under the 8:16-h light:dark condition, which was almost as high as that under the continuous-light condition. The amount of BPA contained in the cells was less than the amount of BPA removed from the medium. Monohydroxybisphenol A was detected as an intermediate of BPA degradation. Moreover, estrogenic activity that originated from BPA in the culture medium also completely disappeared. Based on these results, BPA was finally degraded to compounds having nonestrogenic activity. Therefore, C. fusca can be considered a useful organism to remove BPA from landfill leachates.

  4. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae.

    PubMed

    Benedetti, Serena; Benvenuti, Francesca; Pagliarani, Silvia; Francogli, Sonia; Scoglio, Stefano; Canestrari, Franco

    2004-09-24

    Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga (cyanophyta) rich in phycocyanin (PC), a photosynthetic pigment with antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate the ability of a novel natural extract from AFA enriched with PC to protect normal human erythrocytes and plasma samples against oxidative damage in vitro. In red blood cells, oxidative hemolysis and lipid peroxidation induced by the aqueous peroxyl radical generator [2,2'-Azobis (2-amidinopropane) dihydrochloride, AAPH] were significantly lowered by the AFA extract in a time- and dose-dependent manner; at the same time, the depletion of cytosolic glutathione was delayed. In plasma samples, the natural extract inhibited the extent of lipid oxidation induced by the pro-oxidant agent cupric chloride (CuCl2); a concomitant increase of plasma resistance to oxidation was observed as evaluated by conjugated diene formation. The involvement of PC in the antioxidant protection of the AFA extract against the oxidative damage was demonstrated by investigating the spectral changes of PC induced by AAPH or CuCl2. The incubation of the extract with the oxidizing agents led to a significant decrease in the absorption of PC at 620 nm accompanied with disappearance of its blue color, thus indicating a rapid oxidation of the protein. In the light of these in vitro results, the potential clinical applications of this natural compound are under investigation.

  5. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.

    PubMed

    Wase, Nishikant; Tu, Boqiang; Allen, James W; Black, Paul N; DiRusso, Concetta C

    2017-08-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii , and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Harmful Algae Bloom Occurrence in Urban Ponds: Relationship of Toxin Levels with Cell Density and Species Composition

    EPA Science Inventory

    Retention ponds constructed within urban watershed areas of high density populations are common as a result of green infrastructure applications. Several urban ponds in the Northern Kentucky area were monitored for algal community (algae and cyanobacteria) from October 2012 to Se...

  7. Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae.

    PubMed

    Wieners, Paul Christian; Mudimu, Opayi; Bilger, Wolfgang

    2018-05-30

    Desiccation-induced chlorophyll fluorescence quenching seems to be an indispensable part of desiccation resistance in the surveyed 28 green microalgal species. Lichens are desiccation tolerant meta-organisms. In the desiccated state photosynthesis is inhibited rendering the photobionts potentially sensitive to photoinhibition. As a photoprotective mechanism, strong non-radiative dissipation of absorbed light leading to quenching of chlorophyll fluorescence has been proposed. Desiccation-induced quenching affects not only variable fluorescence, but also the so-called basal fluorescence, F 0 . This phenomenon is well-known for intact lichens and some free living aero-terrestrial algae, but it was often absent in isolated lichen algae. Therefore, a thorough screening for the appearance of desiccation-induced quenching was undertaken with 13 different aero-terrestrial microalgal species and lichen photobionts. They were compared with 15 aquatic green microalgal species, among them also three marine species. We asked the following questions: Do isolated lichen algae show desiccation-induced quenching? Are aero-terrestrial algae different in this respect to aquatic algae and is the potential for desiccation-induced quenching coupled to desiccation tolerance? How variable is desiccation-induced quenching among species? Most of the aero-terrestrial algae, including all lichen photobionts, showed desiccation-induced quenching, although highly variable in extent, whereas most of the aquatic algae did not. All algae displaying quenching were also desiccation tolerant, whereas all algae unable to perform desiccation-induced quenching were desiccation intolerant. Desiccation-induced fluorescence quenching seems to be an indispensable part of desiccation resistance in the investigated species.

  8. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.

    PubMed

    Duan, Zhipeng; Tan, Xiao; Li, Niegui

    2017-10-01

    Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged Q A , a tightly bound one-electron acceptor, and blocked electron flow at Q B , a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm 3 ). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RC si s), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RC si occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.

  9. The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity.

    PubMed

    Heide, Heinrich; Kalisz, Henryk M; Follmann, Hartmut

    2004-02-01

    A thioredoxin-like chloroplast protein of the fructosebisphosphatase-stimulating f-type, but with an unusually high molecular mass of 28 kDa has previously been identified and purified to homogeneity in a fractionation scheme for resolution of the acid- and heat-stable, regular-size (12kDa) thioredoxins of the unicellular green algae, Scenedesmus obliquus. An apparently analogous protein of 26 kDa was described in a cyanobacterium, Anabaena sp., but no such large thioredoxin species f exists in the thioredoxin profiles of higher plants. The structure of the 28 kDa protein, which had been envisaged to represent a precursor, or fusion product of the two more specialized, common chloroplast thioredoxins f and m has now been determined by amino acid sequencing. Although it exhibits virtually all the properties and enzyme-modulating activities of a thioredoxin proper this algal protein, surprisingly, does not belong to the thioredoxin family of small redox proteins but is identical with OEE (oxygen evolving enhancer) protein 1, an auxiliary component of the photosystem II manganese cluster. Extracts of Chlorella vulgaris and Chlamydomonas reinhardtii also contain heat-stable protein fractions of 23-26 kDa capable of specifically stimulating chloroplast fructosebisphosphatase in vitro. In contrast, OEE protein 1 from spinach is not able to modulate FbPase or NADP malate dehydrogenase from spinach chloroplasts. A dual function of the OEE protein in algal photosynthesis is envisaged.

  10. Algae Derived Biofuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahan, Kauser

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA studymore » was also conducted to investigate the energy intensive steps in algae cultivation.« less

  11. Inhibitory effect of trichodermanone C, a sorbicillinoid produced by Trichoderma citrinoviride associated to the green alga Cladophora sp., on nitrite production in LPS-stimulated macrophages.

    PubMed

    Marra, Roberta; Nicoletti, Rosario; Pagano, Ester; DellaGreca, Marina; Salvatore, Maria Michela; Borrelli, Francesca; Lombardi, Nadia; Vinale, Francesco; Woo, Sheridan L; Andolfi, Anna

    2018-05-31

    From the green alga Cladophora sp. collected in Italy, the marine fungal strain A12 of Trichoderma citrinoviride was isolated, identified and characterized. LC-MS qTOF analysis was applied to perform a metabolic profile of the fungal culture. Chromatographic techniques and spectroscopic methods were used to isolate and characterize the major secondary metabolites produced by this strain in liquid culture. In particular, four known sorbicillinoids (trichodermanone C, spirosorbicillinol A, vertinolide and sorbicillin) were purified and identified, together with 2-phenylethanol and tyrosol. Moreover, metabolomic analysis allowed to detect small amounts of trichodimerol, rezishanone A, 2',3'-dihydrosorbicillin and bisvertinol. For the first time a significant inhibitory effect on nitrite levels has been shown for trichodermanone C in lipopolysaccharide-stimulated J774A.1 macrophages.

  12. When Green Goes Bad: An interdisciplinary approach to better understand cyanobacteria, nutrients, and lakes

    EPA Science Inventory

    The current connotation within the environmental protection arena is that "Green is Good." While that is very often true, in the case of lakes and ponds when they suddenly go green, it is most likely the result of an algae bloom. These blooms increasingly contain many harmful s...

  13. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis.

    PubMed

    Asselborn, Viviana; Fernández, Carolina; Zalocar, Yolanda; Parodi, Elisa R

    2015-10-01

    The effect of the organophosphorus insecticide chlorpyrifos on the growth, biovolume, and ultrastructure of the green microalga Ankistrodesmus gracilis was evaluated. Concentrations of 9.37, 18.75, 37.5, 75 and 150mgL(-1) of chlorpyrifos were assayed along with a control culture. At the end of the bioassay the ultrastructure of algal cells from control culture and from cultures exposed to 37.5 and 150mgL(-1) was observed under transmission (TEM) and scanning electron microscopy (SEM). After 24 and 48h, treatments with 75 and 150mgL(-1) inhibited the growth of A. gracilis; whereas after 72 and 96h, all the treatments except at 9.37mgL(-1) significantly affected the algae growth. The effective concentration 50 (EC50) after 96h was 22.44mgL(-1) of chlorpyrifos. After the exposure to the insecticide, an increase in the biovolume was observed, with a larger increase in cells exposed to 75 and 150mgL(-1). Radical changes were observed in the ultrastructure of cells exposed to chlorpyrifos. The insecticide affected the cell shape and the distribution of the crests in the wall. At 37.5mgL(-1) electodense bodies were observed along with an increase in the size and number of starch granules. At 150mgL(-1) such bodies occupied almost the whole cytoplasm together with lipids and remains of thylakoids. Autospores formation occurred normally at 37.5mgL(-1) while at 150mgL(-1) karyokinesis occurred, but cell-separation-phase was inhibited. The present study demonstrates that the exposure of phytoplankton to the insecticide chlorpyrifos leads to effects observed at both cellular and population level. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis.

    PubMed

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton; Li, Yuanguang; Han, Danxiang

    2016-10-01

    The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high-value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark-grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L(-1)  day(-1) ) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark-grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high-light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L(-1)  day(-1) by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark-grown cells under photo-induction conditions. Biotechnol. Bioeng. 2016;113: 2088-2099. © 2016 The Authors

  15. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis

    PubMed Central

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton

    2016-01-01

    ABSTRACT The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L−1 day−1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L−1 day−1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099.

  16. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds

    PubMed Central

    Mikami, Koji; Hosokawa, Masashi

    2013-01-01

    Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown seaweeds to date. Here, we propose a biosynthetic pathway for fucoxanthin in the brown seaweed, Ectocarpus siliculosus, derived from comparison of carotenogenic genes in its sequenced genome with those in the genomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum. Currently, fucoxanthin is receiving attention, due to its potential benefits for human health. Therefore, new knowledge regarding the medical and nutraceutical properties of fucoxanthin from brown seaweeds is also summarized here. PMID:23820585

  17. Response of benthic algae to environmental gradients in an agriculturally dominated landscape

    USGS Publications Warehouse

    Munn, M.D.; Black, R.W.; Gruber, S.J.

    2002-01-01

    Benthic algal communities were assessed in an agriculturally dominated landscape in the Central Columbia Plateau, Washington, to determine which environmental variables best explained species distributions, and whether algae species optima models were useful in predicting specific water-quality parameters. Land uses in the study area included forest, range, urban, and agriculture. Most of the streams in this region can be characterized as open-channel systems influenced by intensive dryland (nonirrigated) and irrigated agriculture. Algal communities in forested streams were dominated by blue-green algae, with communities in urban and range streams dominated by diatoms. The predominance of either blue-greens or diatoms in agricultural streams varied greatly depending on the specific site. Canonical correspondence analysis (CCA) indicated a strong gradient effect of several key environmental variables on benthic algal community composition. Conductivity and % agriculture were the dominant explanatory variables when all sites (n = 24) were included in the CCA; water velocity replaced conductivity when the CCA included only agricultural and urban sites. Other significant explanatory variables included dissolved inorganic nitrogen (DIN), orthophosphate (OP), discharge, and precipitation. Regression and calibration models accurately predicted conductivity based on benthic algal communities, with OP having slightly lower predictability. The model for DIN was poor, and therefore may be less useful in this system. Thirty-four algal taxa were identified as potential indicators of conductivity and nutrient conditions, with most indicators being diatoms except for the blue-greens Anabaenasp. and Lyngbya sp.

  18. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection.

    PubMed

    Dreesen, Imke A J; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2010-02-01

    While 15 million deaths per year are caused by communicable pathogens worldwide, health care authorities emphasize the considerable impact of poverty on the incidence of infectious diseases. The emergence of antigen-expressing plant tissues (e.g. rice, tomato, potato) has indicated the potential of land plants for low-cost vaccines in oral immunization programs. In this study, we engineered the chloroplasts of the unicellular green alga Chlamydomonas reinhardtii for the stable expression of the D2 fibronectin-binding domain of Staphylococcus aureus fused with the cholera toxin B subunit (CTB), under the control of rbcL UTRs. Analysis of sera and faeces of mice, fed for 5 weeks with transgenic algae grown in confined Wave Bioreactor, revealed the induction of specific mucosal and systemic immune responses. Algae-based vaccination significantly reduced the pathogen load in the spleen and the intestine of treated mice and protected 80% of them against lethal doses of S. aureus. Importantly, the alga vaccine was stable for more than 1.5 years at room temperature. These results indicate that C. reinhardtii may play an important role in molecular pharming, as it combines the beneficial features of land plant vaccines, while offering unmatched ease of growth compared to other members of the plant kingdom. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    PubMed

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  20. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Selective binding of Ca2+, Zn2+, Cu2+ and K+ by the physodes of the green alga Mougeotia scalaris.

    PubMed

    Tretyn, A; Grolig, F; Magdowski, G; Wagner, G

    1996-01-01

    Cells of the zygnematophycean green alga Mougeotia contain numerous globules with polyphenolic matrix, which resemble physodes. In order to analyse the capability of this compartment to sequester various ions, trichomes of Mougeotia scalaris were either fixed for X-ray microanalysis simultaneously in 2% glutardialdehyde/1% OsO4 in phosphate buffers of different K+/Na(+)-ratios, or embedded directly (fresh material) in Nanoplast resin. In addition, fixed material was treated with potassium antimonate and Ca2+ localization was examined by electron microscopic cytochemistry. A Ca(2+)-depletion upon fixation at different K+/Na(+)-ratios resulted in selective uptake of potassium, but not sodium. Consistent with earlier findings, calcium-binding by the polyphenolic physode matrix does not depend merely on electric charge but also on the presence of protonated/deprotonated phenolic groups, together with ester-linked carbonyl oxygen, which seem to be good candidates for a co-ordinate type of calcium-binding. Nanoplast embedding turned out to be the most adequate and fastest preparation for X-ray microanalysis and, apart from retaining calcium, allowed the detection of zinc and copper inside the physodes.

  2. Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon africanum.

    PubMed Central

    Bailey, D S; Northcote, D H

    1976-01-01

    A plasma-membrane fraction was isolated from the alga Hydrodictyon africanum by micro-dissection and its phospholipid components were analysed. Phosphatidylcholine was the major phospholipid of the preparation. Both phosphatidylserine and diphosphatidylglycerol were enriched in the fraction compared with the whole cell, but the relative amount of phosphatidylglycerol present was less than that in the whole cell. Phosphatidylinositol was absent from the plasma-membrane preparation. Images PLATE 1 PLATE 2 PMID:182144

  3. Effects of three veterinary antibiotics and their binary mixtures on two green alga species.

    PubMed

    Carusso, S; Juárez, A B; Moretton, J; Magdaleno, A

    2018-03-01

    The individual and combined toxicities of chlortetracycline (CTC), oxytetracycline (OTC) and enrofloxacin (ENF) have been examined in two green algae representative of the freshwater environment, the international standard strain Pseudokichneriella subcapitata and the native strain Ankistrodesmus fusiformis. The toxicities of the three antibiotics and their mixtures were similar in both strains, although low concentrations of ENF and CTC + ENF were more toxic in A. fusiformis than in the standard strain. The toxicological interactions of binary mixtures were predicted using the two classical models of additivity: Concentration Addition (CA) and Independent Action (IA), and compared to the experimentally determined toxicities over a range of concentrations between 0.1 and 10 mg L -1 . The CA model predicted the inhibition of algal growth in the three mixtures in P. subcapitata, and in the CTC + OTC and CTC + ENF mixtures in A. fusiformis. However, this model underestimated the experimental results obtained in the OTC + ENF mixture in A. fusiformis. The IA model did not predict the experimental toxicological effects of the three mixtures in either strain. The sum of the toxic units (TU) for the mixtures was calculated. According to these values, the binary mixtures CTC + ENF and OTC + ENF showed an additive effect, and the CTC + OTC mixture showed antagonism in P. subcapitata, whereas the three mixtures showed synergistic effects in A. fusiformis. Although A. fusiformis was isolated from a polluted river, it showed a similar sensitivity with respect to P. subcapitata when it was exposed to binary mixtures of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Investigating the feasibility of growing algae for fuel in Southern nevada

    NASA Astrophysics Data System (ADS)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  5. Chimpanzees routinely fish for algae with tools during the dry season in Bakoun, Guinea.

    PubMed

    Boesch, Christophe; Kalan, Ammie K; Agbor, Anthony; Arandjelovic, Mimi; Dieguez, Paula; Lapeyre, Vincent; Kühl, Hjalmar S

    2017-03-01

    Wild chimpanzees regularly use tools, made from sticks, leaves, or stone, to find flexible solutions to the ecological challenges of their environment. Nevertheless, some studies suggest strong limitations in the tool-using capabilities of chimpanzees. In this context, we present the discovery of a newly observed tool-use behavior in a population of chimpanzees (Pan troglodytes verus) living in the Bakoun Classified Forest, Guinea, where a temporary research site was established for 15 months. Bakoun chimpanzees of every age-sex class were observed to fish for freshwater green algae, Spirogrya sp., from rivers, streams, and ponds using long sticks and twigs, ranging from 9 cm up to 4.31 m in length. Using remote camera trap footage from 11 different algae fishing sites within an 85-km 2 study area, we found that algae fishing occurred frequently during the dry season and was non-existent during the rainy season. Chimpanzees were observed algae fishing for as little as 1 min to just over an hour, with an average duration of 9.09 min. We estimate that 364 g of Spirogyra algae could be retrieved in this time, based on human trials in the field. Only one other chimpanzee population living in Bossou, Guinea, has been described to customarily scoop algae from the surface of the water using primarily herbaceous tools. Here, we describe the new behavior found at Bakoun and compare it to the algae scooping observed in Bossou chimpanzees and the occasional variant reported in Odzala, Republic of the Congo. As these algae are reported to be high in protein, carbohydrates, and minerals, we hypothesize that chimpanzees are obtaining a nutritional benefit from this seasonally available resource. © 2016 Wiley Periodicals, Inc.

  6. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia

    PubMed Central

    Al-Saif, Sarah Saleh Abdu-llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A.; Aref, Ibrahim A.

    2013-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances. PMID:24596500

  7. Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor.

    PubMed

    Białk-Bielińska, Anna; Caban, Magda; Pieczyńska, Aleksandra; Stepnowski, Piotr; Stolte, Stefan

    2017-04-01

    Since humans and ecosystems are continually exposed to a very complex and permanently changing mixture of chemicals, there is increasing concern in the general public about the potential adverse effects they may cause. Among all "emerging pollutants", pharmaceuticals in particular have raised great environmental concern. For these reasons the aim of our study was to evaluate the mixture toxicity of six antimicrobial sulfonamides (SAs) and their two most commonly identified degradation products - sulfanilic acid (SNA) and sulfanilamide (SN) - to limnic green algae Scenedesmus vacuolatus and duckweed Lemna minor. The ecotoxicological data for the single toxicity of SNA and SN towards selected organisms are presented. The concept of Concentration Addition (CA) was applied to estimate the effects, and less than additive effects were observed. In general terms, it seems sufficiently precautionary for the aquatic environment to consider the toxicity of a sulfonamide mixture as additive. The Concentration Addition model proves to be a reasonable worst-case estimation. Such a comparative study on the mixture toxicity of sulfonamides and their transformation products has been presented for the first time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Levering, Jennifer; Henard, Calvin A.

    In this paper, microalgae have garnered extensive interest as renewable fuel feedstocks due to their high production potential relative to terrestrial crops, and unique cultivation capacity on non-arable lands. The oleaginous chlorophyte Chlorella vulgaris represents a promising model microalgal system and production host, due to its ability to synthesize and accumulate large quantities of fuel intermediates in the form of storage lipids. Recent omic analyses have identified transcriptional, post-transcriptional and -translational mechanisms governing lipid accumulation in this alga, including active protein nitrosylation. Here we report the draft nuclear genome and annotation of C. vulgaris UTEX 395.

  9. Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395

    DOE PAGES

    Guarnieri, Michael T.; Levering, Jennifer; Henard, Calvin A.; ...

    2018-04-05

    In this paper, microalgae have garnered extensive interest as renewable fuel feedstocks due to their high production potential relative to terrestrial crops, and unique cultivation capacity on non-arable lands. The oleaginous chlorophyte Chlorella vulgaris represents a promising model microalgal system and production host, due to its ability to synthesize and accumulate large quantities of fuel intermediates in the form of storage lipids. Recent omic analyses have identified transcriptional, post-transcriptional and -translational mechanisms governing lipid accumulation in this alga, including active protein nitrosylation. Here we report the draft nuclear genome and annotation of C. vulgaris UTEX 395.

  10. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation: Carbon Isotope Discrimination in Photosynthesis and Respiration by the N-Limited Green Alga Selenastrum minutum.

    PubMed

    Guy, R D; Vanlerberghe, G C; Turpin, D H

    1989-04-01

    The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO(2) fixation and respiratory CO(2) release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and alpha-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C(3) organism.

  11. Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa.

    PubMed

    Lu, Tao; Zhu, Youchao; Xu, Jiahui; Ke, Mingjing; Zhang, Meng; Tan, Chengxia; Fu, Zhengwei; Qian, Haifeng

    2018-03-01

    The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5-10 mg L -1 ) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L -1 AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Carbon budget of sea-ice algae in spring: Evidence of a significant transfer to zooplankton grazers

    NASA Astrophysics Data System (ADS)

    Michel, C.; Legendre, L.; Ingram, R. G.; Gosselin, M.; Levasseur, M.

    1996-08-01

    The fate of ice-bottom algae, before and after release from the first-year sea ice into the water column, was assessed during the period of ice-algal growth and decline in Resolute Passage (Canadian Arctic). During spring 1992 (from April to June), algae in the bottom ice layer and those suspended and sinking in the upper water column (top 15 m) were sampled approximately every 4 days. Ice-bottom chlorophyll a reached a maximum concentration of 160 mg m-2 in mid-May, after which it decreased to lower values. In the water column, chlorophyll a concentrations were low until the period of ice-algal decline (˜0.1 mg m-3), with most biomass in the <5-μm fraction. In both the suspended and sinking material, large increases of algal biomass occurred at the beginning of June, following the release of ice-algae into the water column. The input of ice-algal derived carbon to the upper water column and the proportions exported through sinking or remaining in suspension were assessed using a carbon budget for the two periods of ice-algal growth and decline. For each period the output terms closely balanced the input. The carbon budget showed that most of the biomass introduced into the upper water column remained suspended (>65% of total export) and that ice-algae were ingested by under-ice grazers after release from the ice. These results stress the importance of ice algae for pelagic consumers during the early stages of ice melt and show that the transfer of ice algae to higher trophic levels extends beyond the period of maximum algal production in the ice bottom.

  13. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance.

    PubMed

    Herburger, Klaus; Remias, Daniel; Holzinger, Andreas

    2016-08-01

    Streptophyte green algae, ancestors of Embryophytes, occur frequently in terrestrial habitats being exposed to high light intensities, water scarcity and potentially toxic metal cations under acidic conditions. The filamentous Zygogonium ericetorum synthesizes a purple vacuolar ferrous pigment, which is lost after aplanospore formation. However, it is unknown whether this cellular reorganization also removes excessive iron from the protoplast and how Z. ericetorum copes with high concentrations of aluminium. Here we show that aplanospore formation shifts iron into the extracellular space of the algal filament. Upon germination of aplanospores, aluminium is bound in the parental cell wall. Both processes reduce iron and aluminium in unpigmented filaments. Comparison of the photosynthetic oxygen production in response to light and temperature gradients in two different Z. ericetorum strains from an Austrian alpine and a Scottish highland habitat revealed lower values in the latter strain. In contrast, the Scottish strain showed a higher optimum quantum yield of PSII during desiccation stress followed by rehydration. Furthermore, pigmented filaments of both strains exhibited a higher light and temperature dependent oxygen production when compared to the unpigmented phenotype. Our results demonstrate a high metal tolerance of Z. ericetorum, which is crucial for surviving in acidic terrestrial habitats. © FEMS 2016.

  14. Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii1

    PubMed Central

    Melis, Anastasios; Zhang, Liping; Forestier, Marc; Ghirardi, Maria L.; Seibert, Michael

    2000-01-01

    The work describes a novel approach for sustained photobiological production of H2 gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H2 production method circumvents the severe O2 sensitivity of the reversible hydrogenase by temporally separating photosynthetic O2 evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H2 production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O2 evolution. Under these conditions, oxidative respiration by the cells in the light depleted O2 and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H2 gas production was observed in the light but not in the dark. The mechanism of H2 production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b6-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H2 evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H2 in the chloroplast stroma. PMID:10631256

  15. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance

    PubMed Central

    Herburger, Klaus; Remias, Daniel; Holzinger, Andreas

    2016-01-01

    Streptophyte green algae, ancestors of Embryophytes, occur frequently in terrestrial habitats being exposed to high light intensities, water scarcity and potentially toxic metal cations under acidic conditions. The filamentous Zygogonium ericetorum synthesizes a purple vacuolar ferrous pigment, which is lost after aplanospore formation. However, it is unknown whether this cellular reorganization also removes excessive iron from the protoplast and how Z. ericetorum copes with high concentrations of aluminium. Here we show that aplanospore formation shifts iron into the extracellular space of the algal filament. Upon germination of aplanospores, aluminium is bound in the parental cell wall. Both processes reduce iron and aluminium in unpigmented filaments. Comparison of the photosynthetic oxygen production in response to light and temperature gradients in two different Z. ericetorum strains from an Austrian alpine and a Scottish highland habitat revealed lower values in the latter strain. In contrast, the Scottish strain showed a higher optimum quantum yield of PSII during desiccation stress followed by rehydration. Furthermore, pigmented filaments of both strains exhibited a higher light and temperature dependent oxygen production when compared to the unpigmented phenotype. Our results demonstrate a high metal tolerance of Z. ericetorum, which is crucial for surviving in acidic terrestrial habitats. PMID:27178434

  16. [Ecological characteristic of benthic epipelic algae and the characteristic of water environment quality in heavily polluted river in city].

    PubMed

    Zhao, Zhen-hua; Ruan, Xiao-hong; Xing, Ya-nan; Ni, Li-xiao; Gao, Li-cun

    2009-12-01

    The water quality and algae community of Nanyuan Water System in the old city area of Suzhou were monitored for a year. Results showed that the water pollution in the studied area was mainly related to nitrogen (NH4+ -N and TN). Sometimes, they even exceeded the Environmental Quality Standards for Surface Water (GB 3838-2002, PRC) more than 5 times. 34 species of benthic epipelic algae were observed by microscope, and the species amount of diatom algae, green algae and blue algae are more than others. Their abundance and biomass are far higher than that of the pelagic algae in the same sites,and reach 2 145.5 x 10(4) cells/mL and 3.524 mg/mL,respectively. The dominant species of benthic epipelic algae in Nanyuan's water system are diatom algae and blue algae, most of which belong to the heterotrophic type or bi-trophic type algae, the typical genera include: Oscillaria amphibian (affiliated to Cyanophyta), Cyclotella sp., Melosira sp., Stephanodiscus hantzschii, Navicula sp., Nitzschia sp., Gomphonema (affiliated to Bacillariophyta) and so on. And their distribution of species and abundance are very nonuniform in different reach of heavily polluted city river, which relates to the pollutant characteristics of the river. The seasonal variety trend of the abundance for benthic algae showed that:summer > autumn > spring > winter, and that of biomass for benthic algae showed that: the biomass in winter is the most of four seasons and change extent of the biomass is not obvious in spring, summer and autumn. The research results can provide reference for the ecology restoration of city heavily polluted river.

  17. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.

    PubMed

    Ponce-Toledo, Rafael I; Moreira, David; López-García, Purificación; Deschamps, Philippe

    2018-06-19

    Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for genomic and organellar innovation. Plastids are a prominent example. After the primary endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer (EGT) have been detected and subjected to various interpretations. In this context, accurate detection of EGTs is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids.

  18. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Evolution of photoperiod sensing in plants and algae.

    PubMed

    Serrano-Bueno, Gloria; Romero-Campero, Francisco J; Lucas-Reina, Eva; Romero, Jose M; Valverde, Federico

    2017-06-01

    Measuring day length confers a strong fitness improvement to photosynthetic organisms as it allows them to anticipate light phases and take the best decisions preceding diurnal transitions. In close association with signals from the circadian clock and the photoreceptors, photoperiodic sensing constitutes also a precise way to determine the passing of the seasons and to take annual decisions such as the best time to flower or the beginning of dormancy. Photoperiodic sensing in photosynthetic organisms is ancient and two major stages in its evolution could be identified, the cyanobacterial time sensing and the evolutionary tool kit that arose in green algae and developed into the photoperiodic system of modern plants. The most recent discoveries about the evolution of the perception of light, measurement of day length and relationship with the circadian clock along the evolution of the eukaryotic green lineage will be discussed in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Introduction to the Thematic Minireview Series: Green biological chemistry.

    PubMed

    Jez, Joseph M

    2018-04-06

    Plants and their green cousins cyanobacteria and algae use sunlight to drive the chemistry that lets them grow, survive, and perform an amazing range of biochemical reactions. The ability of these organisms to use a freely available energy source makes them attractive as sustainable and renewable platforms for more than just food production. They are also a source of metabolic tools for engineering microbes for "green" chemistry. This Thematic Minireview Series discusses how green organisms capture light and protect their photosynthetic machinery from too much light; new structural snapshots of the clock complex that orchestrates signaling during the light/dark cycle; challenges for improving stress responses in crops; harnessing cyanobacteria as biofactories; and efforts to engineer microbes for "green" biopolymer production. © 2018 Jez.

  1. The Effect of Copper and Selenium Nanocarboxylates on Biomass Accumulation and Photosynthetic Energy Transduction Efficiency of the Green Algae Chlorella Vulgaris

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, Natalia F.; Zolotareva, Elena K.

    2017-02-01

    Nanoaquachelates, the nanoparticles with the molecules of water and/or carboxylic acids as ligands, are used in many fields of biotechnology. Ultra-pure nanocarboxylates of microelements are the materials of spatial perspective. In the present work, the effects of copper and selenium nanoaquachelates carboxylated with citric acid on biomass accumulation of the green algae Chlorella vulgaris were examined. Besides, the efficiency of the reactions of the light stage of photosynthesis was estimated by measuring chlorophyll a fluorescence. The addition of 0.67-4 mg L-1 of Cu nanocarboxylates resulted in the increase in Chlorella biomass by ca. 20%; however, their concentrations ranging from 20 to 40 mg L-1 strongly inhibited algal growth after the 12th day of cultivation. Se nanocarboxylates at 0.4-4 mg L-1 concentrations also stimulated the growth of C. vulgaris, and the increase in biomass came up to 40-45%. The addition of Se nanocarboxylates at smaller concentrations (0.07 or 0.2 mg L-1) at first caused the retardation of culture growth, but that effect disappeared after 18-24 days of cultivation. The addition of 2-4 mg L-1 of Cu nanocarboxylates or 0.4-4 mg L-1 of Se nanocarboxylates caused the evident initial increase in such chlorophyll a fluorescence parameters as maximal quantum yield of photosystem II photochemistry ( F v/ F m) and the quantum yield of photosystem II photochemistry in the light-adapted state ( F v'/ F m'). Photochemical fluorescence quenching coefficients declined after 24 days of growth with Cu nanocarboxylates, but they increased after 6 days of the addition of 2 or 4 mg L-1 Se nanocarboxylates. Those alterations affected the overall quantum yield of the photosynthetic electron transport in photosystem II.

  2. Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure.

    PubMed

    Zhang, Xiaowen; Ye, Naihao; Mou, Shanli; Xu, Dong; Fan, Xiao

    2013-09-01

    To avoid photoinhibition, plants have developed diverse photoprotection mechanisms. One of the short-term high light protection mechanisms in plants is non-photochemical quenching (NPQ), which dissipates the absorbed light energy as thermal energy. In the green alga, Ulva linza, the kinetics of NPQ starts with an initial, quick rise followed by a decline, and then a second and higher rise at longer time periods. During the whole phase, NPQ is triggered and controlled by ΔpH, then strengthened and modulated by zeaxanthin. Light-harvesting complex (LHC) family members are known to play crucial roles in this mechanism. The PSBS protein, a member of the LHC family that was thought to be present exclusively in higher plants, has been identified for the first time in U. linza. The expression of both PSBS and LHCSR was up-regulated during high light conditions, and LHCSR increased more than PSBS. Both LHCSR and PSBS-dependent NPQ may be important strategies for adapting to the environment, and they have undoubtedly played a role in their evolution. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp.

    PubMed

    Nguyen, Nhung H A; Von Moos, Nadia R; Slaveykova, Vera I; Mackenzie, Katrin; Meckenstock, Rainer U; Thűmmler, Silke; Bosch, Julian; Ševců, Alena

    2018-06-15

    As nanoremediation strategies for in-situ groundwater treatment extend beyond nanoiron-based applications to adsorption and oxidation, ecotoxicological evaluations of newly developed materials are required. The biological effects of four new materials with different iron (Fe) speciations ([i] FerMEG12 - pristine flake-like milled Fe(0) nanoparticles (nZVI), [ii] Carbo-Iron ® - Fe(0)-nanoclusters containing activated carbon (AC) composite, [iii] Trap-Ox® Fe-BEA35 (Fe-zeolite) - Fe-doped zeolite, and [iv] Nano-Goethite - 'pure' FeOOH) were studied using the unicellular green alga Chlamydomonas sp. as a model test system. Algal growth rate, chlorophyll fluorescence, efficiency of photosystem II, membrane integrity and reactive oxygen species (ROS) generation were assessed following exposure to 10, 50 and 500 mg L -1 of the particles for 2 h and 24 h. The particles had a concentration-, material- and time-dependent effect on Chlamydomonas sp., with increased algal growth rate after 24 h. Conversely, significant intracellular ROS levels were detected after 2 h, with much lower levels after 24 h. All Fe-nanomaterials displayed similar Z-average sizes and zeta-potentials at 2 h and 24 h. Effects on Chlamydomonas sp. decreased in the order FerMEG12 > Carbo-Iron® > Fe-zeolite > Nano-Goethite. Ecotoxicological studies were challenged due to some particle properties, i.e. dark colour, effect of constituents and a tendency to agglomerate, especially at high concentrations. All particles exhibited potential to induce significant toxicity at high concentrations (500 mg L -1 ), though such concentrations would rapidly decrease to mg or µg L -1 in aquatic environments, levels harmless to Chlamydomonas sp. The presented findings contribute to the practical usage of particle-based nanoremediation in environmental restoration. Copyright © 2018. Published by Elsevier Inc.

  4. The structural analysis of the mitochondrial SSUrRNA implies a close phylogenetic relationship between mitochondria from plants and from the heterotrophic alga Prototheca wickerhamii.

    PubMed

    Wolff, G; Kück, U

    1990-04-01

    The gene for the mitochondrial small subunit rRNA (SSUrRNA) from the heterotrophic alga Prototheca wickerhamii has been isolated from a gene library of extranuclear DNA. Sequence and structural analyses allow the determination of a secondary structure model for this rRNA. In addition, several sequence motifs are present which are typically found in SSUrRNAs of various mitochondrial origins. Unexpectedly, the Prototheca RNA sequence has more features in common with mitochondrial SSUrRNAs from plants than with that from the green alga Chlamydomonas reinhardtii. The phylogenetic relationship between mitochondria from plants and algae is discussed.

  5. Proteins related to green algal striated fiber assemblin are present in stramenopiles and alveolates.

    PubMed

    Harper, John D I; Thuet, Jacques; Lechtreck, Karl F; Hardham, Adrienne R

    2009-07-01

    In green algae, striated fiber assemblin (SFA) is the major protein of the striated microtubule-associated fibers that are structural elements in the flagellar basal apparatus. Using Basic Local Alignment Search Tool (BLAST) searches of recently established databases, SFA-like sequences were detected in the genomes not only of green algal species but also of a range of other protists. These included species in two alveolate subgroups, the ciliates (Tetrahymena thermophila, Paramecium tetraurelia) and the dinoflagellates (Perkinsus marinus), and two stramenopile subgroups, the oomycetes (Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans) and the diatoms (Thalassiosira pseudonana, Phaeodactylum tricornutum). Together with earlier identification of SFA-like sequences in the apicomplexans, these results indicate that homologs of SFA are present across the alveolates and stramenopiles. Antibodies raised against SFA from the green alga, Spermatozopsis similis, react in immunofluorescence assays with the two basal bodies and an anteriorly directed striated fiber in the flagellar apparatus of biflagellate Phytophthora zoospores.

  6. RELATIONSHIPS BETWEEN WATER AND SEDIMENT CHARACTERISTICS AND BENTHIC GREEN MACROALGAE ABUNDANCE IN YAQUINA BAY, OREGON: 1999-2000

    EPA Science Inventory

    "Green tides" or blooms of ulvoid green algae are frequent in Yaquina Bay Estuary on the central Oregon coast, USA. Measurements of their biomass were made from late spring to early winter in 1999 at six intertidal sites in the estuary and were continued throughout the winter of...

  7. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti

    2016-11-01

    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  8. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  9. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE PAGES

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  11. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan Wesley; Wu, Weihua

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  12. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Harvind K.; Muppaneni, Tapaswy; Patil, Prafulla D.

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel samplemore » produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.« less

  13. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.

    PubMed

    Matsuzaki, Motomichi; Misumi, Osami; Shin-I, Tadasu; Maruyama, Shinichiro; Takahara, Manabu; Miyagishima, Shin-Ya; Mori, Toshiyuki; Nishida, Keiji; Yagisawa, Fumi; Nishida, Keishin; Yoshida, Yamato; Nishimura, Yoshiki; Nakao, Shunsuke; Kobayashi, Tamaki; Momoyama, Yu; Higashiyama, Tetsuya; Minoda, Ayumi; Sano, Masako; Nomoto, Hisayo; Oishi, Kazuko; Hayashi, Hiroko; Ohta, Fumiko; Nishizaka, Satoko; Haga, Shinobu; Miura, Sachiko; Morishita, Tomomi; Kabeya, Yukihiro; Terasawa, Kimihiro; Suzuki, Yutaka; Ishii, Yasuyuki; Asakawa, Shuichi; Takano, Hiroyoshi; Ohta, Niji; Kuroiwa, Haruko; Tanaka, Kan; Shimizu, Nobuyoshi; Sugano, Sumio; Sato, Naoki; Nozaki, Hisayoshi; Ogasawara, Naotake; Kohara, Yuji; Kuroiwa, Tsuneyoshi

    2004-04-08

    Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.

  14. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    NASA Astrophysics Data System (ADS)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  15. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae1[OPEN

    PubMed Central

    2017-01-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. PMID:28652262

  16. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leavingmore » behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.« less

  17. Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti.

    PubMed

    Ridley, Christian J A; Day, John G; Smith, Alison G

    2018-01-01

    Algal-bacterial co-cultures, rather than cultures of algae alone, are regarded as having the potential to enhance productivity and stability in industrial algal cultivation. As with other inocula in biotechnology, to avoid loss of production strains, it is important to develop preservation methods for the long-term storage of these cultures, and one of the most commonly used approaches is cryopreservation. However, whilst there are many reports of cryopreserved xenic algal cultures, little work has been reported on the intentional preservation of both algae and beneficial bacteria in xenic cultures. Instead, studies have focused on the development of methods to conserve the algal strain(s) present, or to avoid overgrowth of bacteria in xenic isolates during the post-thaw recovery phase. Here, we have established a co-cryopreservation method for the long-term storage of both partners in a unialgal-bacterial co-culture. This is an artificial model mutualism between the alga Lobomonas rostrata and the bacterium Mesorhizobium loti , which provides vitamin B 12 (cobalamin) to the alga in return for photosynthate. Using a Planer Kryo 360 controlled-rate cooler, post-thaw viability (PTV) values of 72% were obtained for the co-culture, compared to 91% for the axenic alga. The cultures were successfully revived after 6 months storage in liquid nitrogen, and continued to exhibit mutualism. Furthermore, the alga could be cryopreserved with non-symbiotic bacteria, without bacterial overgrowth occurring. It was also possible to use less controllable passive freezer chambers to cryopreserve the co-cultures, although the PTV was lower. Finally, we demonstrated that an optimised cryopreservation method may be used to prevent the overgrowth potential of non-symbiotic, adventitious bacteria in both axenic and co-cultures of L. rostrata after thawing.

  18. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  19. Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa.

    PubMed

    Sun, Ying-Ying; Zhou, Wen-Jing; Wang, Hui; Guo, Gan-Lin; Su, Zhen-Xia; Pu, Yin-Fang

    2018-08-15

    Nine antialgal active compounds, (i.e. trehalose (1), twenty-two methyl carbonate (2), (-)-dihydromenisdaurilide (3), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), isophytol (5), 8-hexadecenol (6), 17-hydroxyheptadecanoic acid (7), trans-asarone (8) and 2-amino-3-mercaptopropanoic acid (9)) were isolated from Ulva pertusa for the first time by sephadex LH-20 column chromatography, silica gel column chromatography and repeated preparative TLC. Except for compound 4, all compounds represented novel isolated molecules from marine macroalgae. Further, antialgal activities of these compounds against Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense and Skeletonema costatum were investigated for the first time. Results showed these nine compounds have selectivity antialgal effects on all test red tide microalgae, and antialgal activities against red tide microalgae obviously enhanced with the increase of concentration of antialgal compounds. Based on this, EC 50-96 h values of these nine compounds for six red tide microalgae were obtained for the first time. By analyzing and comparing EC 50-96 h values, it has been determined that seven compounds (1, 3, 4, 6, 7, 8 and 9) showed the superior application potential than potassium dichromate or gossonorol and other six compounds as a characteristic antialgal agent against Heterosigma akashiwo, Karenia mikimitoi and Prorocentrum donghaiense. Overall this study has suggested that green algae Ulva pertusa is a new source of bioactive compounds with antialgal activity. Copyright © 2018. Published by Elsevier Inc.

  20. Monitoring Autophagy in the Model Green Microalga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Couso, Inmaculada; Heredia-Martínez, Luis G; Crespo, José L

    2017-10-22

    Autophagy is an intracellular catabolic system that delivers cytoplasmic constituents and organelles in the vacuole. This degradative process is mediated by a group of proteins coded by autophagy-related ( ATG ) genes that are widely conserved from yeasts to plants and mammals. Homologs of ATG genes have been also identified in algal genomes including the unicellular model green alga Chlamydomonas reinhardtii . The development of specific tools to monitor autophagy in Chlamydomonas has expanded our current knowledge about the regulation and function of this process in algae. Recent findings indicated that autophagy is regulated by redox signals and the TOR network in Chlamydomonas and revealed that this process may play in important role in the control of lipid metabolism and ribosomal protein turnover in this alga. Here, we will describe the different techniques and approaches that have been reported to study autophagy and autophagic flux in Chlamydomonas.

  1. Formation of algae growth constitutive relations for improved algae modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensivemore » predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.« less

  2. Isolation, purification, and identification of antialgal substances in green alga Ulva prolifera for antialgal activity against the common harmful red tide microalgae.

    PubMed

    Sun, Ying-ying; Wang, Hui; Guo, Gan-lin; Pu, Yin-fang; Yan, Bin-lun; Wang, Chang-hai

    2016-01-01

    Ten compounds (1~10) were successfully isolated from green algae Ulva prolifera through the combination of silica gel column chromatography, Sephadex LH-20 column chromatography and repeated preparative thin-layer chromatography. These ten compounds showed antialgal activity against red tide microalgae. Among them, compounds 3, 6, and 7 showed stronger antialgal activity against red tide microalgae. Furthermore, their structure was identified on the basis of spectroscopic data. There are three glycoglycerolipids: 1-O-octadecanoic acid-3-O-β-D-galactopyranosyl glycerol (2), 1-O-palmitoyl-3-O-β-D-galactopyranosyl glycerol (4), and 1-O-palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol (5); two monoglycerides: glycerol monopalmitate (1), 9-hexadecenoic acid, 2,3-dihydroxypropyl ester (3); two terpenoids: loliolide (6) and lsololiolide (7); one lipid-soluble pigments: zeaxanthin (8); one sterol: cholest-5-en-3-ol (9); and one alkaloid: pyrrolopiperazine-2,5-dione (10). These compounds were isolated from U. prolifera for the first time, and compounds 2, 3, 5, and 8 were isolated from marine macroalgae for the first time.

  3. MACROALGAL VOLUME: A SURROGATE FOR BIOMASS IN SOME GREEN ALGAE

    EPA Science Inventory

    Two green algal morphotypes, filamentous species (e.g., Chaetomorpha spp.) and flattened or tubular (e.g.,Ulva spp. and Enteromorpha spp.) were collected from 63 sites within the Yaquina Bay estuary (Newport, OR) and used to compare an in situ volumetric biomass estimator to the...

  4. The plastid genomes of nonphotosynthetic algae are not so small after all

    PubMed Central

    Figueroa-Martinez, Francisco; Nedelcu, Aurora M.; Reyes-Prieto, Adrian

    2017-01-01

    ABSTRACT The thing about plastid genomes in nonphotosynthetic plants and algae is that they are usually very small and highly compact. This is not surprising: a heterotrophic existence means that genes for photosynthesis can be easily discarded. But the loss of photosynthesis cannot explain why the plastomes of heterotrophs are so often depauperate in noncoding DNA. If plastid genomes from photosynthetic taxa can span the gamut of compactness, why can't those of nonphotosynthetic species? Well, recently we showed that they can. The free-living, heterotrophic green alga Polytoma uvella has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the most bloated plastome yet found in a heterotroph. In this addendum to the primary study, we elaborate on why the P. uvella plastome is so inflated, discussing the potential impact of a free-living vs. parasitic lifestyle on plastid genome expansion in nonphotosynthetic lineages. PMID:28377793

  5. Modeling Arctic sea-ice algae: Physical drivers of spatial distribution and algae phenology

    NASA Astrophysics Data System (ADS)

    Castellani, Giulia; Losch, Martin; Lange, Benjamin A.; Flores, Hauke

    2017-09-01

    Algae growing in sea ice represent a source of carbon for sympagic and pelagic ecosystems and contribute to the biological carbon pump. The biophysical habitat of sea ice on large scales and the physical drivers of algae phenology are key to understanding Arctic ecosystem dynamics and for predicting its response to ongoing Arctic climate change. In addition, quantifying potential feedback mechanisms between algae and physical processes is particularly important during a time of great change. These mechanisms include a shading effect due to the presence of algae and increased basal ice melt. The present study shows pan-Arctic results obtained from a new Sea Ice Model for Bottom Algae (SIMBA) coupled with a 3-D sea-ice-ocean model. The model is evaluated with data collected during a ship-based campaign to the Eastern Central Arctic in summer 2012. The algal bloom is triggered by light and shows a latitudinal dependency. Snow and ice also play a key role in ice algal growth. Simulations show that after the spring bloom, algae are nutrient limited before the end of summer and finally they leave the ice habitat during ice melt. The spatial distribution of ice algae at the end of summer agrees with available observations, and it emphasizes the importance of thicker sea-ice regions for hosting biomass. Particular attention is given to the distinction between level ice and ridged ice. Ridge-associated algae are strongly light limited, but they can thrive toward the end of summer, and represent an additional carbon source during the transition into polar night.

  6. Nuclear DNA Content Estimates in Multicellular Green, Red and Brown Algae: Phylogenetic Considerations

    PubMed Central

    KAPRAUN, DONALD F.

    2005-01-01

    • Background and Aims Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae. • Methods The DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry. • Key Results 2C DNA contents for 85 species of Chlorophyta range from 0·2–6·1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39·2 and 20·7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0·1–2·8 pg, and for 44 species of Phaeophyta range from 0·2–1·8 pg. • Conclusions New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges. PMID:15596456

  7. Evaluation of an edible blue-green alga, Aphanothece sacrum, for its inhibitory effect on replication of herpes simplex virus type 2 and influenza virus type A.

    PubMed

    Ogura, Fumie; Hayashi, Kyoko; Lee, Jung-Bum; Kanekiyo, Kenji; Hayashi, Toshimitsu

    2010-01-01

    A hot-water extract of Aphanothece sacrum, an edible aquacultured blue-green alga, was found to show a remarkable inhibitory effect on the replication of enveloped viruses including herpes simplex virus type 2 (HSV-2) and influenza virus type A (IFV-A, H1N1) in vitro. The main active components were suggested to be sulfated polysaccharides in non-dialyzable portion (ASWPH). ASWPH was found to inhibit the viral adsorption to the receptor of the host cells involved in the replication process of HSV-2 and IFV-A. In addition, while the penetration stage of HSV-2 was also significantly suppressed with ASWPH, no such effect was observed in the replication of IFV-A. These results suggest that ASWPH might be useful in the prevention of infectious diseases caused by HSV-2 as well as IFV-A.

  8. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water.

    PubMed

    Gavand, Meghana R; McClintock, James B; Amsler, Charles D; Peters, Robert W; Angus, Robert A

    2007-11-01

    Uptake and release of ship-borne ballast water is a major factor contributing to introductions of aquatic phytoplankton and invasive macroinvertebrates. Some invasive unicellular algae can cause harmful algal blooms and produce toxins that build up in food chains. Moreover, to date, few studies have compared the efficacy of ballast water treatments against different life history phases of aquatic macroinvertebrates. In the present study, the unicellular green alga Dunaliella tertiolecta, and three discrete life history phases of the brine shrimp Artemia salina, were independently used as model organisms to study the efficacy of sonication as well as the advanced oxidants, hydrogen peroxide and ozone, as potential ballast water treatments. Algal cells and brine shrimp cysts, nauplii, and adults were subjected to individual and combined treatments of sonication and advanced oxidants. Combined rather than individual treatments consistently yielded the highest levels of mortality in algal cells (100% over a 2 min exposure) and in brine shrimp (100% and 95% for larvae and adults, respectively, over a 2 min exposure). In contrast, mortality levels in brine shrimp cysts (66% over 2 min; increased to 92% over a 20 min exposure) were moderately high but consistently lower than that detected for larval or adult shrimp. Our results indicate that a combination of sonication and advanced chemical oxidants may be a promising method to eradicate aquatic unicellular algae and macroinvertebrates in ballast water.

  9. The effect of low temperature on Antarctic endolithic green algae

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Morris, G. J.; Friedmann, E. I.

    1988-01-01

    Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.

  10. Heveochlorella (Trebouxiophyceae): a little-known genus of unicellular green algae outside the Trebouxiales emerges unexpectedly as a major clade of lichen photobionts in foliicolous communities.

    PubMed

    Sanders, William B; Pérez-Ortega, Sergio; Nelsen, Matthew P; Lücking, Robert; de Los Ríos, Asunción

    2016-10-01

    Foliicolous lichens are formed by diverse, highly specialized fungi that establish themselves and complete their life cycle within the brief duration of their leaf substratum. Over half of these lichen-forming fungi are members of either the Gomphillaceae or Pilocarpaceae, and associate with Trebouxia-like green algae whose identities have never been positively determined. We investigated the phylogenetic affinities of these photobionts to better understand their role in lichen establishment on an ephemeral surface. Thallus samples of Gomphillaceae and Pilocarpaceae were collected from foliicolous communities in southwest Florida and processed for sequencing of photobiont marker genes, algal cultivation and/or TEM. Additional specimens from these families and also from Aspidothelium (Thelenellaceae) were collected from a variety of substrates globally. Sequences from rbcL and nuSSU regions were obtained and subjected to Maximum Likelihood and Bayesian analyses. Analysis of 37 rbcL and 7 nuSSU algal sequences placed all photobionts studied within the provisional trebouxiophycean assemblage known as the Watanabea clade. All but three of the sequences showed affinities within Heveochlorella, a genus recently described from tree trunks in East Asia. The photobiont chloroplast showed multiple thylakoid stacks penetrating the pyrenoid centripetally as tubules lined with pyrenoglobuli, similar to the two described species of Heveochlorella. We conclude that Heveochlorella includes algae of potentially major importance as lichen photobionts, particularly within (but not limited to) foliicolous communities in tropical and subtropical regions worldwide. The ease with which they may be cultivated on minimal media suggests their potential to thrive free-living as well as in lichen symbiosis. © 2016 Phycological Society of America.

  11. Transgenic algae engineered for higher performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  12. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae.

    PubMed

    Kelly, David; Budd, Kenneth; Lefebvre, Daniel D

    2006-01-01

    The biotransformation of Hg(II) in pH-controlled and aerated algal cultures was investigated. Previous researchers have observed losses in Hg detection in vitro with the addition of cysteine under acid reduction conditions in the presence of SnCl2. They proposed that this was the effect of Hg-thiol complexing. The present study found that cysteine-Hg, protein and nonprotein thiol chelates, and nucleoside chelates of Hg were all fully detectable under acid reduction conditions without previous digestion. Furthermore, organic (R-Hg) mercury compounds could not be detected under either the acid or alkaline reduction conditions, and only beta-HgS was detected under alkaline and not under acid SnCl2 reduction conditions. The blue-green alga Limnothrix planctonica biotransformed the bulk of Hg(II) applied as HgCl2 into a form with the analytical properties of beta-HgS. Similar results were obtained for the eukaryotic alga Selenastrum minutum. No evidence for the synthesis of organomercurials such as CH3Hg+ was obtained from analysis of either airstream or biomass samples under the aerobic conditions of the study. An analytical procedure that involved both acid and alkaline reduction was developed. It provides the first selective method for the determination of beta-HgS in biological samples. Under aerobic conditions, Hg(II) is biotransformed mainly into beta-HgS (meta-cinnabar), and this occurs in both prokaryotic and eukaryotic algae. This has important implications with respect to identification of mercury species and cycling in aquatic habitats.

  13. Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus.

    PubMed

    Guo, Ruixin; Du, Yingxiang; Zheng, Fengzhu; Wang, Jing; Wang, Zhiliang; Ji, Rong; Chen, Jianqiu

    2017-08-01

    In this study, we investigated the bioaccumulation and elimination of 14 C-labeled BPA by the green alga Chlorella pyrenoidosa and the subsequent transfer of 14 C-BPA residues from the contaminated alga to the rotifer Brachionus calyciflorus. After 10 days of BPA exposure, the algal cells accumulated 15% of the initial radioactivity from the medium, with 71% of the accumulated radioactivity occurring in the form of non-extractable bound residues. An approximate steady state of the accumulation of the 14 C-BPA residues in the algae was reached after about 4 days of exposure. The bioconcentration factor of total radioactivity in the algae was 106 mL (g dry weight) -1  at steady state. During the elimination phase, only the extractable residues were released from the algae into the water whereas the bound residues, following their ingestion by the rotifers, were converted to extractable forms and then also released. Furthermore, our results demonstrated the biomagnification of BPA-related residues in the food chain between algae and rotifers. The trophic transfer of these BPA-derived residues from the algae to rotifers and thus the environmental hazard may posed by this pathway, because of subsequent effects on the food chain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The globins of cyanobacteria and algae.

    PubMed

    Johnson, Eric A; Lecomte, Juliette T J

    2013-01-01

    Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins. © 2013 Elsevier Ltd. All rights reserved.

  15. The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades.

    PubMed

    Karsten, U; Lembcke, S; Schumann, R

    2007-03-01

    The effects of artificial ultraviolet radiation [UVR; 8 W m(-2) ultraviolet-A (UVA), 0.4 W m(-2) ultraviolet-B (UVB)] on photosynthetic performance, growth and the capability to synthesise mycosporine-like amino acids (MAAs) was investigated in the aeroterrestrial green algae Stichococcus sp. and Chlorella luteoviridis forming biofilms on building facades, and compared with the responses of two green algae, from soil (Myrmecia incisa) and brackish water (Desmodesmus subspicatus). All species exhibited decreasing quantum efficiency (Fv/Fm) after 1-3 days exposure to UVR. After 8-12 days treatment, however, all aeroterrestrial isolates exhibited full recovery under UVA and UVA/B. In contrast, D. subspicatus showed only 80% recovery after treatment with UVB. While Stichococcus sp. and C. luteoviridis exhibited a broad tolerance in growth under all radiation conditions tested, M. incisa showed a significant decrease in growth rate after exposure to UVA and UVA/B. Similarly D. subspicatus grew with a reduced rate under UVA, but UVA/B led to full inhibition. Using HPLC, an UV-absorbing MAA (324 nm-MAA) was identified in Stichococcus sp. and C. luteoviridis. While M. incisa contained a specific 322 nm-MAA, D. subspicatus lacked any trace of such compounds. UV-exposure experiments indicated that all MAA-containing species are capable of synthesizing and accumulating these compounds, thus supporting their function as an UV-sunscreen. All data well explain the conspicuous ecological success of aeroterrestrial green algae in biofilms on facades. Biosynthesis and accumulation of MAAs under UVR seem to result in a reduced UV-sensitivity of growth and photosynthesis, which consequently may enhance survival in the environmentally harsh habitat.

  16. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    PubMed

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Feeding by coral reef mesograzers: algae or cyanobacteria?

    NASA Astrophysics Data System (ADS)

    Cruz-Rivera, Edwin; Paul, Valerie J.

    2006-11-01

    Marine studies on herbivory have addressed the role of algae as food and shelter for small consumers, but the potential of benthic cyanobacteria to play similar roles is largely unknown. Here, feeding preferences were measured for eight invertebrate consumers from Guam, offered four common macroalgae and two cyanobacteria. The survivorship of another consumer raised on either macroalgae or cyanobacteria was also assessed. From the choices offered, the sacoglossans Elysia rufescens and E. ornata consumed the green macroalga Bryopsis pennata. The crab Menaethius monoceros preferred the red alga Acanthophora spicifera. The amphipods Parhyale hawaiensis and Cymadusa imbroglio consumed macroalgae and cyanobacteria in equivalent amounts, with C. imbroglio showing less selectivity among diets. In contrast to these patterns, in these assays the gastropods Stylocheilus striatus, Haminoea cymbalum, H. ovalis, and Haminoea sp. fed exclusively, or survived only, on cyanobacteria. Preferences for different cyanobacteria varied. Field surveys of cyanobacteria-associated species yielded 34 different invertebrate taxa and suggested different degrees of specificity in these associations. Tropical mesograzers exploit considerably different food resources, with some species adapted to consume cyanobacterial mats. Benthic cyanobacteria may play important roles as food and shelter for marine consumers and may indirectly influence local biodiversity through their associated fauna.

  18. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Pick, Uri

    2015-01-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers—plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)—are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae. PMID:26357883

  19. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  20. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  1. Magnetic separation of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Pulak; Twary, Scott N.

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  2. RNAi Knock-Down of LHCBM1, 2 and 3 Increases Photosynthetic H2 Production Efficiency of the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Oey, Melanie; Ross, Ian L.; Stephens, Evan; Steinbeck, Janina; Wolf, Juliane; Radzun, Khairul Adzfa; Kügler, Johannes; Ringsmuth, Andrew K.; Kruse, Olaf; Hankamer, Ben

    2013-01-01

    Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m−2 s−1) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems. PMID:23613840

  3. A mini review on the integration of resource recovery from wastewater into sustainability of the green building through phycoremediation

    NASA Astrophysics Data System (ADS)

    Yulistyorini, Anie

    2017-09-01

    Green building implementation is an important assessment for sustainable development to establish a good quality of the environment. To develop the future green building implementation, resource recovery from the building wastewater is significantly important to consider as a part of the green building development. Discharge of urban wastewater into water bodies trigger of eutrophication in the water catchment, accordingly need further treatment to recover the nutrient before it is reused or discharged into receiving water bodies. In this regard, integration of microalgae cultivation in closed photobioreactor as building façade is critically important to be considered in the implementation of the green building. Microalgae offer multi-function as bioremediation (phycoremediation) of the wastewater, production of the biofuels, and important algal bio-products. At the same time, algae façade boost the reduction of the operating cost in forms of light, thermal energy and add the benefit into the building for energy reduction and architecture function. It promises an environmental benefit to support green building spirit through nutrient recovery and wastewater reuse for algae cultivation and to enhance the aesthetic of the building façade.

  4. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    PubMed

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Green tea consumption and gastric cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population.

    PubMed

    Sasazuki, Shizuka; Tamakoshi, Akiko; Matsuo, Keitaro; Ito, Hidemi; Wakai, Kenji; Nagata, Chisato; Mizoue, Tetsuya; Tanaka, Keitaro; Tsuji, Ichiro; Inoue, Manami; Tsugane, Shoichiro

    2012-04-01

    Numerous in vitro and animal studies have shown that green tea has a protective effect against cancer. However, results from epidemiologic studies are conflicting. We evaluated the association between green tea consumption and risk for gastric cancer risk among the Japanese population based on a systematic review of epidemiologic evidence. Original data were obtained from MEDLINE searches using PubMed or from searches of the Ichushi database, complemented with manual searches. Evaluation of associations was based on the strength of evidence and the magnitude of association, together with biologic plausibility. Eight cohort studies and three case-control studies were identified. Overall, we found no preventive effect on gastric cancer for green tea intake in cohort studies. However, a small, consistent risk reduction limited to women was observed, which was confirmed by pooling data of six cohort studies (hazard ratio = 0.79, 95% confidence interval 0.65-0.96 with ≥5 cups/day of green tea intake). Case-control studies consistently showed a weak inverse association between green tea intake and gastric cancer risk. We conclude that green tea possibly decreases the risk of gastric cancer in women. However, epidemiologic evidence is still insufficient to demonstrate any association in men.

  6. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation.

    PubMed

    Fu, Ling; Hamzeh, Mahsa; Dodard, Sabine; Zhao, Yuan H; Sunahara, Geoffrey I

    2015-05-01

    This study investigated the possibility that titanium dioxide nanoparticles (nano-TiO2) toxicity in Pseudokirchneriella subcapitata involves reactive oxygen species (ROS) production, using the dichlorodihydrofluorescein (DCF) assay. Algae were exposed to nano-TiO2 under laboratory fluorescent lamps supplemented with UV irradiation for 3h, with or without a UV filter. Results showed that nano-TiO2 increased ROS production in UV-exposed cells, with or without a UV filter (LOEC values were 250 and 10mg/L, respectively). Sublethal effects of nano-TiO2 on UV pre-exposed algae were also examined. Toxicity studies indicated that exposure to nano-TiO2 agglomerates decreased algal growth following 3h pre-exposure to UV, with or without a UV filter (EC50s were 8.7 and 6.3mg/L, respectively). The present study suggests that the growth inhibitory effects of nano-TiO2 in algae occurred at concentrations lower than those that can elevate DCF fluorescence, and that ROS generation is not directly involved with the sublethal effects of nano-TiO2 in algae. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Algae Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in amore » variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.« less

  8. AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome

    PubMed Central

    2011-01-01

    Background Microalgae have the potential to deliver biofuels without the associated competition for land resources. In order to realise the rates and titres necessary for commercial production, however, system-level metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data. Results We have developed a genome-scale metabolic network model (named AlgaGEM) covering the metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866 unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was validated through the simulation of growth and algae metabolic functions inferred from literature. Using efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The model also predicted the physiological pathway for H2 production and

  9. Evaluation of algal phytodegradation of petroleum naphthenic acids.

    PubMed

    Headley, John V; Du, Jing Long; Peru, Kerry M; Gurprasad, Narine; McMartin, Dena W

    2008-02-15

    The algal phytodegradation of a model naphthenic acid (4-methylcyclohexaneacetic acid) and an oilsands mixture of naphthenic acids (NAs) were evaluated in support of studies to remediate recalcitrant NAs in soils and water. The algae investigated included blue-green algae (Oscillatoria sp.; Aphanizomenon sp.; Anbaena sp.) green algae (Selenastrum sp.; Nannochloris sp.; Ankistrodesmus sp.; Scenedesmus sp.; Haematococcus sp.; Chlorella sp.) and diatoms (Naviculla (1), Naviculla (2) and Nitzschia sp.). Both the cis- and trans-isomers of the model NA were completely uptaken and presumed phytodegraded by the diatom algae Naviculla (2) sp. at a concentration of approximately 5.5 mg/L within a period of 14 days. However, there was no evidence for the phytodegradation of the petroleum oilsands naphthenic acids mixtures, except for possibly experiments utilizing the green algae, Selenastrum sp. The differences in the phytodegradation of the model NA by the diatoms appears to be linked to differences in transport mechanisms by the algae along with differences in the concentration and structure of the respective naphthenic acids.

  10. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  11. Substratum location and zoospore behaviour in the fouling alga Enteromorpha.

    PubMed

    Callow, M E; Callow, J A

    2000-01-01

    The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'.

  12. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda.

    PubMed

    Řezanka, Tomáš; Kaineder, Katrin; Mezricky, Dana; Řezanka, Michal; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2016-12-01

    Lanthanides (La, Gd, Nd, Ce) accumulated in the green alga Desmodesmus quadricauda but their intracellular localizations were distinctly different: lanthanum and gadolinium were localized in cytoplasm, while neodymium and cerium were in the chloroplast. The effect of lanthanum and neodymium, as representatives of these two groups, on growth, chlorophyll content and photosynthetic rate at different light intensities was studied. At the lowest light intensity used (50 µmol photons m -2  s -1 ), in the presence of lanthanides (Nd), growth was enhanced by as much as 36 % over lanthanide free control, and the photosynthetic rate increased by up to 300 %. At high light intensities (238, 460, and 750 µmol photons m -2 s -1 ), photosynthetic rate increased markedly, but there was no significant difference between rates in the presence or absence of lanthanides. However, growth, measured as a percentage of dry weight, if compared with lanthanide free control, increased at all light intensities (31, 39, and 20 %, respectively). The total amount of chlorophyll after lanthanide treatment increased by up to 21 % relative to the control culture, mainly due to an increase in the level of chlorophyll b. Addition of lanthanides caused a change in the chlorophyll a/b ratio from 4.583 in control cultivation, to 1.05. Possible mechanisms of lanthanide-induced photosynthetic change, alterations in photosynthetic structures, and increases in growth are discussed and compared with findings in higher plants. The hypothesis that the lanthanide effect could be due to formation of lanthanide-pheophytins was not confirmed as lanthanide pheophytins were not found in D. quadricauda. Furthermore, we have shown that the preferential incorporation of heavy isotopes of magnesium, namely 25 Mg and 26 Mg, into chlorophyll during photosynthesis that occurred in controls was diminished in the presence of lanthanides.

  13. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae.

    PubMed

    Johnson, Maggie Dorothy; Price, Nichole N; Smith, Jennifer E

    2014-01-01

    Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species. Growth, calcification and photophysiology were measured for each species independently and metrics were combined from each experiment using a meta-analysis to examine overall trends across functional groups categorized as fleshy, upright calcareous, and crustose coralline algae (CCA). The magnitude of the effect of OA on algal growth response varied by species, but the direction was consistent within functional groups. Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced net calcification in upright calcareous algae, and caused net dissolution in CCA. Additionally, three of the five fleshy seaweeds tested became reproductive upon exposure to OA conditions. There was no consistent effect of OA on algal photophysiology. Our study provides experimental evidence to support the hypothesis that OA will reduce the ability of calcareous algae to biomineralize. Further, we show that CO2 enrichment either will stimulate population or somatic growth in some species of fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor non-calcifying algae and influence the relative dominance of fleshy macroalgae on reefs, perpetuating or exacerbating existing shifts in reef community structure.

  14. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    PubMed

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  15. Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae.

    PubMed

    Arakaki, Yoko; Fujiwara, Takayuki; Kawai-Toyooka, Hiroko; Kawafune, Kaoru; Featherston, Jonathan; Durand, Pierre M; Miyagishima, Shin-Ya; Nozaki, Hisayoshi

    2017-12-06

    The volvocine lineage, containing unicellular Chlamydomonas reinhardtii and differentiated multicellular Volvox carteri, is a powerful model for comparative studies aiming at understanding emergence of multicellularity. Tetrabaena socialis is the simplest multicellular volvocine alga and belongs to the family Tetrabaenaceae that is sister to more complex multicellular volvocine families, Goniaceae and Volvocaceae. Thus, T. socialis is a key species to elucidate the initial steps in the evolution of multicellularity. In the asexual life cycle of C. reinhardtii and multicellular volvocine species, reproductive cells form daughter cells/colonies by multiple fission. In embryogenesis of the multicellular species, daughter protoplasts are connected to one another by cytoplasmic bridges formed by incomplete cytokinesis during multiple fission. These bridges are important for arranging the daughter protoplasts in appropriate positions such that species-specific integrated multicellular individuals are shaped. Detailed comparative studies of cytokinesis between unicellular and simple multicellular volvocine species will help to elucidate the emergence of multicellularity from the unicellular ancestor. However, the cytokinesis-related genes between closely related unicellular and multicellular species have not been subjected to a comparative analysis. Here we focused on dynamin-related protein 1 (DRP1), which is known for its role in cytokinesis in land plants. Immunofluorescence microscopy using an antibody against T. socialis DRP1 revealed that volvocine DRP1 was localized to division planes during cytokinesis in unicellular C. reinhardtii and two simple multicellular volvocine species T. socialis and Gonium pectorale. DRP1 signals were mainly observed in the newly formed division planes of unicellular C. reinhardtii during multiple fission, whereas in multicellular T. socialis and G. pectorale, DRP1 signals were observed in all division planes during embryogenesis. These

  16. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    PubMed

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO 3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO 3(S) ; however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca 2+ onto the cell surface which provides nucleation sites for CaCO 3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO 3(S) . Removal of algae in the presence of Ca 2+ and Mg 2+ required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca 2+ concentration can be optimized for algae removal via coagulation-sedimentation.

  17. Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays

    NASA Astrophysics Data System (ADS)

    Berglund, J.; Mattila, J.; Rönnberg, O.; Heikkilä, J.; Bonsdorff, E.

    2003-04-01

    Submerged rooted macrophytes and drift algae were studied in shallow (0-1 m) brackish soft-bottom bays in the Åland Islands, N Baltic Sea, in 1997-2000. The study was performed by aerial photography and ground-truth sampling and the compatibility of the methods was evaluated. The study provided quantitative results on seasonal and inter-annual variation in growth, distribution and biomass of submerged macrophytes and drift algae. On an average, 18 submerged macrophyte species occurred in the studied bays. The most common species, by weight and occurrence, were Chara aspera, Cladophora glomerata, Pilayella littoralis and Potamogeton pectinatus. Filamentous green algae constituted 45-70% of the biomass, charophytes 25-40% and vascular plants 3-18%. A seasonal pattern with a peak in biomass in July-August was found and the mean biomass was negatively correlated with exposure. There were statistically significant differences in coverage among years, and among levels of exposure. The coverage was highest when exposure was low. Both sheltered and exposed bays were influenced by drift algae (30 and 60% occurrence in July-August) and there was a positive correlation between exposure and occurrence of algal accumulations. At exposed sites, most of the algae had drifted in from other areas, while at sheltered ones they were mainly of local origin. Data obtained by aerial photography and ground-truth sampling showed a high concordance, but aerial photography gave a 9% higher estimate than the ground-truth samples. The results can be applied in planning of monitoring and management strategies for shallow soft-bottom areas under potential threat of drift algae.

  18. Systems Biology of Lipid Body Formation in the Green Alga Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodenough, Ursula

    The project aimed to deepen our understanding of alga triacylglycerol (TAG) production to undergird explorations of using algal TAG as a source of biodiesel fuel. Our published contributions included the following: 1) Development of a rapid assay for TAG in algal cultures which was widely distributed to the algal community. 2) A comprehensive transcriptome analysis of the development of the ultra-high-TAG “obese” phenotype In Chlamydomonas reinhardtii. 3) A comprehensive biochemical and ultrastructural analysis of the cell wall of Nannochloropsis gaditana, whose walls render it both growth-hardy and difficult to rupture for TAG recovery. A manuscript in preparation considers the autophagymore » response in C. reinhardtii and its entrance into stationary phase, both having an impact on TAG production.« less

  19. Complete Mitochondrial and Plastid Genomes of the Green Microalga Trebouxiophyceae sp. Strain MX-AZ01 Isolated from a Highly Acidic Geothermal Lake

    PubMed Central

    Martínez-Romero, Esperanza

    2012-01-01

    We report the complete organelle genome sequences of Trebouxiophyceae sp. strain MX-AZ01, an acidophilic green microalga isolated from a geothermal field in Mexico. This eukaryote has the remarkable ability to thrive in a particular shallow lake with emerging hot springs at the bottom, extremely low pH, and toxic heavy metal concentrations. Trebouxiophyceae sp. MX-AZ01 represents one of few described photosynthetic eukaryotes living in such a hostile environment. The organelle genomes of Trebouxiophyceae sp. MX-AZ01 are remarkable. The plastid genome sequence currently presents the highest G+C content for a trebouxiophyte. The mitochondrial genome sequence is the largest reported to date for the Trebouxiophyceae class of green algae. The analysis of the genome sequences presented here provides insight into the evolution of organelle genomes of trebouxiophytes and green algae. PMID:23104370

  20. Carotenoid Biosynthesis in the Primitive Red Alga Cyanidioschyzon merolae▿

    PubMed Central

    Cunningham, Francis X.; Lee, Hansel; Gantt, Elisabeth

    2007-01-01

    Cyanidioschyzon merolae is considered to be one of the most primitive of eukaryotic photosynthetic organisms. To obtain insights into the origin and evolution of the pathway of carotenoid biosynthesis in eukaryotic plants, the carotenoid content of C. merolae was ascertained, genes encoding enzymes of carotenoid biosynthesis in this unicellular red alga were identified, and the activities of two candidate pathway enzymes of particular interest, lycopene cyclase and β-carotene hydroxylase, were examined. C. merolae contains perhaps the simplest assortment of chlorophylls and carotenoids found in any eukaryotic photosynthetic organism: chlorophyll a, β-carotene, and zeaxanthin. Carotenoids with ɛ-rings (e.g., lutein), found in many other red algae and in green algae and land plants, were not detected, and the lycopene cyclase of C. merolae quite specifically produced only β-ringed carotenoids when provided with lycopene as the substrate in Escherichia coli. Lycopene β-ring cyclases from several bacteria, cyanobacteria, and land plants also proved to be high-fidelity enzymes, whereas the structurally related ɛ-ring cyclases from several plant species were found to be less specific, yielding products with β-rings as well as ɛ-rings. C. merolae lacks orthologs of genes that encode the two types of β-carotene hydroxylase found in land plants, one a nonheme diiron oxygenase and the other a cytochrome P450. A C. merolae chloroplast gene specifies a polypeptide similar to members of a third class of β-carotene hydroxylases, common in cyanobacteria, but this gene did not produce an active enzyme when expressed in E. coli. The identity of the C. merolae β-carotene hydroxylase therefore remains uncertain. PMID:17085635

  1. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    PubMed Central

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  2. Partial purification and characterization of a Ca(2+)-dependent protein kinase from the green alga, Dunaliella salina

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1990-01-01

    A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10(-7) molar. and half-maximal activation was at about 3 x 10(-7) molar. The optimum pH for its Ca(2+)-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separated from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.

  3. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon.

    PubMed

    Knauer, Katja; Sobek, Anna; Bucheli, Thomas D

    2007-06-15

    Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives, such as diuron, are widely used as herbicides and diuron is regularly measured in European freshwater systems. In this study, the toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata was investigated in the presence of BC in its native and combusted form. As a toxicity endpoint, the in vivo chlorophyll fluorescence was determined and used to indicate the bioavailability of diuron. Fifty milligrams native BC/L reduced effects of 5mugdiuron/L on photosynthesis by 10+/-2%, whereas photosynthesis was completely restored in the presence of the same concentration of combusted BC, suggesting a significantly enhanced adsorption of diuron to the BC fraction compared to the organic carbon fraction. Assuming an environmentally realistic concentration of approximately 1.5mg of combusted BC/L, diuron toxicity would be reduced by approximately 20% in surface waters due to the presence of BC. Higher BC concentrations after storm events might reduce the toxicity even further. A calculation of the Freundlich sorption coefficient K(F,BC,tox) via the toxicity endpoint, resulted in a log K(F,BC,tox) of the combusted BC of 5.7, which is comparable to values obtained by classical sorption experiments. This study contributes to a refined risk assessment of micropollutants in surface waters taking into account the presence of potentially relevant sorbents and, consequently, reduced bioavailability.

  4. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, D.; Kail, B.; Curtis, W.

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuelsmore » production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal

  5. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  6. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  7. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  8. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  9. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  10. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    PubMed

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata.

    PubMed

    Avidan, Omri; Pick, Uri

    2015-12-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers-plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)-are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.

    PubMed

    Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V

    2003-12-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.

  13. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae).

    PubMed

    Goss, Reimund

    2003-09-01

    The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs

  14. Remote sensing monitoring of green tide in the Yellow Sea in 2015 based on GF-1 WFV data

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangyu; Gao, Zhiqiang; Ning, Jicai; Xu, Fuxiang; Liu, Chaoshun; Sun, Zhibin

    2016-09-01

    In this paper, the green tide (Large green algae-Ulva prolifera) in the Yellow Sea in 2015 is monitored which is based on remote sensing and geographic information system technology, using GF-1 WFV data, combined with the virtual baseline floating algae height index (VB-FAH) and manual assisted interpretation method. The results show that GF-1 data with high spatial resolution can accurately monitoring the Yellow Sea Ulva prolifera disaster, the Ulva prolifera was first discovered in the eastern waters of Yancheng in May 12th, afterwards drifted from the south to the north and affected the neighboring waters of Shandong Peninsula. In early July, the Ulva prolifera began to enter into a recession, the coverage area began to decrease, by the end of August 6th, the Ulva prolifera all died.

  15. The Non-Photosynthetic Algae Helicosporidium spp.: Emergence of a Novel Group of Insect Pathogens.

    PubMed

    Tartar, Aurélien

    2013-07-17

    Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully maintained in axenic cultures. The ability to produce large quantity of biological material has led to very significant advances in the understanding of Helicosporidium biology and its interactions with insect hosts. In particular, the unique infectious process has been well documented; the highly characteristic cyst and its included filamentous cell have been shown to play a central role during host infection and have been the focus of detailed morphological and developmental studies. In addition, phylogenetic analyses inferred from a multitude of molecular sequences have demonstrated that Helicosporidium are highly specialized non-photosynthetic algae (Chlorophyta: Trebouxiophyceae), and represent the first described entomopathogenic algae. This review provides an overview of (i) the morphology of Helicosporidium cell types, (ii) the Helicosporidium life cycle, including the entire infectious sequence and its impact on insect hosts, (iii) the phylogenetic analyses that have prompted the taxonomic classification of Helicosporidium as green algae, and (iv) the documented host range for this novel group of entomopathogens.

  16. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  17. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  18. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  19. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  20. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  1. Ecotoxicity tests using the green algae Chlorella vulgaris--a useful tool in hazardous effluents management.

    PubMed

    Silva, Aurora; Figueiredo, Sónia A; Sales, M Goreti; Delerue-Matos, Cristina

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  2. Lab Simulates Outdoor Algae Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae can be turned into renewable biofuel, which is why scientists want to discover an inexpensive, fast-growing strain of algae. Scientists at Pacific Northwest National Laboratory have developed a system to speed up this search. The unique climate-simulating system uses temperature controls and multi-colored LED lights to mimic the constantly changing conditions of an outdoor algae pond. By simulating outdoor climates inside the lab, the system saves researchers time and expense.

  3. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterisation Of Polysacharides And Lipids From Selected Green Algae Species By FTIR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Gerulová, Kristína

    2015-06-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chromochloris zofingiensis (Dönz) Fucíková et L.A. Lewis (SAG 211-14, Gottingen, Germany), Acutodesmus obliguus (Turpin) Hegewald (SAG 276-1, Gottingen, Germany) and Chlorella sorokiniana (K. Brandt) Pröschold et Darienko (SAG 211-40c, Gottingen, Germany). Polysaccharides and lipids from these three algae species were determined using Fourier Transformed Infrared Spectroscopy (FTIR) with ATR accessory with diamante crystal in spectral range from 400 - 4000 cm-1 and resolution 4.

  5. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra crispata...

  6. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia bicyclis...

  7. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids.

    PubMed

    Sturm, Sabine; Engelken, Johannes; Gruber, Ansgar; Vugrinec, Sascha; Kroth, Peter G; Adamska, Iwona; Lavaud, Johann

    2013-07-30

    Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by

  8. Spectral classifying base on color of live corals and dead corals covered with algae

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  9. Red algae and their use in papermaking.

    PubMed

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae.

    PubMed

    Couderchet, Michel; Vernet, Guy

    2003-07-01

    Weed control in Champagne vineyards has long relied on the use of diuron and substituted triazines; these compounds are now being replaced by flazasulfuron, a sulfonylurea that is used at a much lower dosage. The vineyards of Champagne are planted on steep slopes and runoff is important, and even though low doses of these herbicides are used, they may present some potential risk for freshwater ecosystems. Therefore, the effects of the sulfonylurea herbicide, flazasulfuron (formulated as Katana) was investigated on the unicellular green alga Scenedesmus obliquus. The pigment content of the algal suspensions was followed as a biomarker of exposure to the herbicide. The results demonstrate that flazasulfuron induced a reduction in chlorophyll content at concentrations of 10 microg/L, while the increase of pigment content in the culture was reduced with the lowest concentration tested (0.1 microg/L). Among the three pigments tested, chlorophyll a appeared to be the most sensitive biomarker. In the algal medium, flazasulfuron was slowly degraded (DT(50) approximately 8 days) in a compound that was tentatively identified. The toxicity of this herbicide for the algae was comparable to that of older herbicides which are used at a much higher rate. Therefore, we may speculate that even if flazasulfuron comes into contact with freshwater ecosystems, its effects on algae will be less deleterious than that of traditional herbicides.

  11. Preliminary study of the green algae chlorella (Chlorella vulgaris) for control on the root-knot nematode (Meloidogyne arenaria) in tomato plants and ectoparasite Xiphinema indexin grape seedlings.

    PubMed

    Choleva, B; Bileva, T; Tzvetkov, Y; Barakov, P

    2005-01-01

    The alternative ecological methods require investigation of many organo-biological means for plant protection against dangerous root parasites such as root-knot nematode Meloidogyne arenaria and some ectoparasites (Xiphinema index). The Bulgarian organic product - dry extract of green alga Chlorella vulgaris ("The Golden Apple"-Plamen Barakov) is the latest product, which in comparative aspect gives the best results. Series of laboratory and pot experiments are carried out with tomato (cv. Bele and cv. Ideal) and grape seedlings (cv. Cabernet Sauvignon). Different dosages of Chlorella from 0.5 g to 2 g per plant/pot are investigated. The first results show that even low dosages had double effect - on the one hand they suppress the parasite development and on the other hand they strongly stimulate plant growing. The very important conclusion is that Chlorella vulgaris ignores the negative influence of M. arenaria and X. index. These results give us opportunity for future model and field investigations of Chlorella vulgaris with the aim of its practical application.

  12. Potential biomedical applications of marine algae.

    PubMed

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  14. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  15. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  16. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  17. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  18. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  19. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  20. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  1. Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae.

    PubMed

    Abrahamsson, Katarina; Choo, Kyung Sil; Pedersén, Marianne; Johansson, Gustav; Snoeijs, Pauli

    2003-10-01

    Marine algae produce volatile halocarbons, which have an ozone-depleting potential. The formation of these compounds is thought to be related to oxidative stress, involving H2O2 and algal peroxidases. In our study we found strong correlations between the releases of H2O2 and brominated and some iodinated compounds to the seawater medium, but no such correlation was found for CHCl3, suggesting the involvement of other formation mechanisms as well. Little is known about the effects of environmental factors on the production of volatile halocarbons by algae and in the present study we focused on the influence of temperature. Algae were sampled in an area of the brackish Baltic Sea that receives thermal discharge, allowing us to collect specimens of the same species that were adapted to different field temperature regimes. We exposed six algal species (the diatom Pleurosira laevis, the brown alga Fucus vesiculosus and four filamentous green algae, Cladophora glomerata, Enteromorpha ahlneriana, E. flexuosa and E. intestinalis) to temperature changes of 0-11 degrees C under high irradiation to invoke oxidative stress. The production rates, as well as the quantitative composition of 16 volatile halocarbons, were strongly species-dependent and different types of responses to temperature were recorded. However, no response patterns to temperature change were found that were consistent for all species or for all halocarbons. We conclude that the production of certain halocarbons may increase with temperature in certain algal species, but that the amount and composition of the volatile halocarbons released by algal communities are probably more affected by temperature-associated species shifts. These results may have implications for climatic change scenarios.

  2. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Page, A.M.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examinedmore » the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.« less

  3. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  4. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, Patrick

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred.more » During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this

  6. Food production and gas exchange system using blue-green alga (spirulina) for CELSS

    NASA Technical Reports Server (NTRS)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki

    1987-01-01

    In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself was conducted. Spirulina was cultivated in the 6 liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46 percent) at a rate of 100 to approx. 150 ml per minute could be obtained.

  7. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    PubMed

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  8. Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains

    NASA Astrophysics Data System (ADS)

    Norris, Richard D.; Jones, Lawrence S.; Corfield, Richard M.; Cartlidge, Julie E.

    1996-05-01

    Isotopic analysis of lacustrine carbonates from the Eocene Green River Formation suggests that lake waters were derived partly from snow melt. This evidence for cool climates is in marked contrast to paleontological and model evidence for mild temperatures in the continental interior. Oxygen isotope ratios of carbonates frequently reach -12‰ to nearly -16‰ (Peedee belemnite), which suggests that lake waters probably had δ18O of <-13‰ (standard mean ocean water). Consideration of the evaporative 18O enrichment that typically occurs in modern large saline lakes suggests that the source waters to the Green River basin had a δ18O of <-18‰. These ratios are consistent with snow melt and are too negative to be easily accounted for by distillation in the atmosphere during heavy rainfall. The Green River lakes formed in a closed basin encircled by large mountains; this suggests that the snow melt was locally produced. The mountains surrounding the lake must have been high enough to occasionally supply significant melt water to the much lower lake. Lapse rate calculations suggest minimum altitudes of >3000 m for the mountains encircling the Green River basin.

  9. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    PubMed Central

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  10. Green Buildings and Health.

    PubMed

    Allen, Joseph G; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S; Eitland, Erika Sita; Spengler, John D

    2015-09-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading "Health Performance Indicators" for use in future studies of buildings and health.

  11. Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM.

    PubMed

    Eder, M; Lütz-Meindl, U

    2008-08-01

    Pectins are the major matrix polysaccharides of plant cell walls and are important for controlling growth, wall porosity and regulation of the ionic environment in plant cells. Pectic epitopes recognized by the monoclonal antibodies JIM5, JIM7 and 2F4 could be localized in the primary wall during development of the green alga Micrasterias. As the degree of pectin esterification determines the calcium-binding capacity and thus the physical properties of the cell wall, chemical and enzymatic in situ de-esterification was performed. This resulted in displacement of epitopes recognized by JIM5, JIM7 and 2F4, respectively, in changes in the intensity of the antibody labelling as visualized in CLSM. In addition, calcium-binding capacities of cell walls and components of the secretory apparatus were determined in transmission electron microscopy by electron energy loss spectroscopy and electron spectroscopic imaging. These analyses revealed that pectic polysaccharides are transported to the cell wall in a de-esterified form. At the primary wall, pectins get methyl-esterified at the inner side, thus allowing flexibility of the wall. At the outer side of the wall they become again de-esterified and bind high amounts of calcium which leads to cell wall stiffening. Mucilage vesicles possess the highest calcium-binding capacity of all structures observed in Micrasterias, indicating that the pectic polysaccharides of mucilage are secreted in a de-esterified, compact form. When mucilage is excreted through the cell wall, it loses its ability to bind calcium. The esterification of pectins involved is obviously required for swelling of mucilage by water uptake, which generates the motive force for orientation of this unicellular organism in respect to light. Incubation of Micrasterias in pectin methylesterase (PME), which de-esterifies pectic polymers in higher plants, resulted in growth inhibition, cell shape malformation and primary wall thickening. A PME-like enzyme could be

  12. Cellulose powder from Cladophora sp. algae.

    PubMed

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  13. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  14. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation

    PubMed Central

    Arata, Paula X.; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I.; Estevez, José M.; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution. PMID:29181012

  15. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation.

    PubMed

    Arata, Paula X; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I; Estevez, José M; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.

  16. Drifting algae and fish: Implications of tropical Sargassum invasion due to ocean warming in western Japan

    NASA Astrophysics Data System (ADS)

    Yamasaki, Mami; Aono, Mikina; Ogawa, Naoto; Tanaka, Koichiro; Imoto, Zenji; Nakamura, Yohei

    2014-06-01

    Evidence is accumulating that the invasion and extinction of habitat-forming seaweed species alters coastal community structure and ecological services, but their effects on the pelagic environment have been largely ignored. Thus, we examined the seasonal occurrence patterns of indigenous temperate and invasive tropical drifting algae and associated fish species every month for 2 years (2009-2011) in western Japan (Tosa Bay), where a rapid shift from temperate to tropical Sargassum species has been occurring in the coastal area since the late 1980s due to rising seawater temperatures. Of the 19 Sargassum species (31.6%) in drifting algae, we found that six were tropical species, whereas a study in the early 1980s found only one tropical species among 12 species (8.3%), thereby suggesting an increase in the proportion of tropical Sargassum species in drifting algae during the last 30 years. Drifting temperate algae were abundantly present from late winter to summer, whereas tropical algal clumps occurred primarily during summer. In the warm season, fish assemblages did not differ significantly between drifting temperate and tropical algae, suggesting the low host-algal specificity of most fishes. We also found that yellowtail juveniles frequently aggregated with drifting temperate algae from late winter to spring when drifting tropical algae were unavailable. Local fishermen collect these juveniles for use as aquaculture seed stock; therefore, the occurrence of drifting temperate algae in early spring is important for local fisheries. These results suggest that the further extinction of temperate Sargassum spp. may have negative impacts on the pelagic ecosystem and associated regional fisheries.

  17. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  18. Economic evaluation of algae biodiesel based on meta-analyses

    NASA Astrophysics Data System (ADS)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  19. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral.

    PubMed

    Kersting, Diego K; Cebrian, Emma; Casado, Clara; Teixidó, Núria; Garrabou, Joaquim; Linares, Cristina

    2015-12-22

    In the current global climate change scenario, stressors overlap in space and time, and knowledge on the effects of their interaction is highly needed to understand and predict the response and resilience of organisms. Corals, among many other benthic organisms, are affected by an increasing number of global change-related stressors including warming and invasive species. In this study, the cumulative effects between warming and invasive algae were experimentally assessed on the temperate reef-builder coral Cladocora caespitosa. We first investigated the potential local adaptation to thermal stress in two distant populations subjected to contrasting thermal and necrosis histories. No significant differences were found between populations. Colonies from both populations suffered no necrosis after long-term exposure to temperatures up to 29 °C. Second, we tested the effects of the interaction of both warming and the presence of invasive algae. The combined exposure triggered critical synergistic effects on photosynthetic efficiency and tissue necrosis. At the end of the experiment, over 90% of the colonies subjected to warming and invasive algae showed signs of necrosis. The results are of particular concern when considering the predicted increase of extreme climatic events and the spread of invasive species in the Mediterranean and other seas in the future.

  20. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae

    PubMed Central

    Smith, Jennifer E.; Thompson, Melissa

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2–4 mg L−1) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes. PMID:24482757